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Abstract

Brain iron plays key roles in catecholaminergic neurotransmitter synthesis and early life brain
development. It is also central to cellular energetics and neurotransmitter metabolism throughout the
lifespan. Disturbances in brain iron have been implicated in a growing number of psychiatric and late-
life neurodegenerative disorders. Additionally, brain iron accumulations are thought to play a
deleterious role in neuroinflammatory processes in later life. Despite its importance, the role of brain
iron in development, aging, and psychiatric disorders remains comparatively understudied. This is
partly due to technical challenges inherent in implementation and analysis of formal iron imaging
protocols and practical constraints on scan session durations. Here, we introduce a method to estimate
relative brain iron concentrations that is 1) computationally simple, 2) shows excellent correspondence
with formal iron imaging in-vivo, 3) replicates clinically-relevant findings from formal iron imaging, 4)
yields novel insights into brain iron and cognition across the lifespan, and 5) leverages a widely
available and frequently shared brain imaging modality: functional MRI. The computationally simple
nature of the measure, coupled with the availability of fMRI datasets across the lifespan and disorders,
has the potential to transform our understanding of the complex and critical relationship between iron
and brain health.

Introduction

Iron metabolism and accumulation are undisputedly essential to healthy brain function, but their roles in
brain health are complex when considered across the lifespan. In prenatal life, iron serves to guide
neuronal development, subserves myelination’ and dopamine receptor development?, and is essential
for synthesis of catecholaminergic neurotransmitters. This is particularly evident throughout childhood?®
and into later life in areas such as the striatum, midbrain, and brainstem areas such as the substantia
nigra, ventral tegmental area and locus coeruleus*®. As in most cells in the mammalian body, iron also
plays a central role in brain cellular energetics®, as well as myelin maintenance throughout the
lifespan™’. Iron is poorly absorbed into the body, tightly regulated once incorporated, and crosses the
blood-brain barrier via active transport®®. Unlike most other metals, active mechanisms to eliminate
iron from the body do not exist'®. Indeed, in areas where iron utilization is high, such as the striatum
and other catecholamine-rich areas, iron tends to gradually accumulate throughout the lifespan"'2.
Unfortunately, accumulation of iron results in cellular oxidative stress'®, suggesting a potential
deleterious role of brain iron accumulation in otherwise non-pathological aging.

It is also, perhaps, not surprising that dysregulation of this key element is increasingly associated with a
number of psychiatric disorders. Some, such as restless leg syndrome™*, and Attention-Deficit
Hyperactivity Disorder'*'® (ADHD) are associated with reduced brain iron levels, with evidence that iron
supplementation can provide some symptom relief'®'8. Other disorders such as Parkinson’s disease'®"
21 and Alzheimer's dementia®>?>?® are associated with excessive regional brain iron, leading to
hypotheses about ferroptosis (iron-mediated cell death)*?*2¢, and approaches to reduce iron levels as
a target for intervention??*?” Given these observations, iron appears to be a useful index to track
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normative maturation from early to late-life, while also serving as a reliable indicator of pathological
disruption from that normative trajectory.

Unfortunately, despite the clear importance of brain iron, both as a boon for brain development and
metabolism and as a hazard through later life oxidative stress, iron has been comparatively
understudied with neuroimaging, particularly relative to modalities such as functional Magnetic
Resonance Imaging (fMRI). This can likely be ascribed to the requirements for specialized imaging
sequences in MRI studies, which tend to be deprioritized relative to functional, diffusion, and
morphometric imaging protocols, as well as specialized knowledge required to analyze standard
quantitative iron imaging protocols. These observations highlight the need for a computationally
tractable method to quantify brain iron that can be generated without compromising or overburdening
ongoing data collection efforts.

Here, we report findings from targeted investigations examining whether standard fMRI images can be
leveraged to estimate relative brain iron concentrations. We conclude that our approach, termed
relative concentration of brain iron (rcFe), has substantial potential to facilitate the study of brain iron in
development, aging, neurologic and psychiatric populations. We argue from first principles that fMRI
sequences should be sensitive to brain iron concentrations, and proceed to report a series of findings
supporting this claim and its intriguing implications. However, in the interest of transparency, we note
that our results emerged serendipitously from explorations of possible confounds in the quality of fMRI
skull stripping algorithms as a function of participant age. After resolving the skull stripping issue, the
lead investigator had a large sample
Hypothetical Voxel Intensity at Varying Iron Levels and Echo Times  (n=341) of skull-stripped and
coregistered 3D mean fMRI images.
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Figure 1. Top panel: illustration of expected signal decay in a susceptibility-
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paramagnetic and increases the rate of signal decay, much like unbound iron, while oxygenated blood
is moderately diamagnetic and has the effect of slowing the rate of signal decay®®. However, standard
fMRI sequences use a fixed TE that optimally distinguishes oxygenated vs. deoxygenated blood levels
(i.e., blood oxygen level dependent, or BOLD signal). fMRI sequences only collect a single TE, and
therefore cannot be used to estimate a decay function at each voxel. However, they are, by design,
sensitive to variations in magnetic susceptibility such as those caused by variations in brain iron.
Although it is not possible to estimate absolute iron content from a susceptibility image with a single TE,
it may be possible to provide an estimate of the relative iron content at each voxel, particularly for
regions that are high in iron content such as the striatum. As an example, Figure 1, top, demonstrates
how the signal in a susceptibility weighted image might decay given different levels of iron when
sampled at 7 different echo times; these values would be fit to an exponential decay function; the
reciprocal of this fit is linearly related to iron content (e.g., 1/T2=R2; 1/T2*=R2*). Figure 1, bottom,
illustrates how those same decay curves might be sampled at a single TE (e.g., 2E), and inverted to
create an estimate of the relative concentration of brain iron, which we term rcFe.

In this paper, we first describe our initial finding of age-related variability in mean fMRI signal. We then
report on a series of studies carried out after observing the striking consistency of our initial findings
with extant quantitative MRI and post-mortem studies of brain iron concentrations. Specifically, we
report on our efforts to: 1) explore variability in our rcFe measure by evaluating a large lifespan sample
through independent components analysis (ICA), we then 2) validate the sensitivity of rcFe to iron in an
aqueous phantom containing iron levels selected to approximate known iron concentrations within the
human brain, 3) examine the correspondence between rcFe measures and standard approaches to
iron imaging, 4) replicate established findings related to subcortical iron concentrations in a clinical
population, as well as reveal a novel finding in the relationship between brain iron and ADHD
symptomatology in typically developing children, and 5) provide novel insights into the age-varying
relationship between relative subcortical iron concentrations and IQ across the lifespan.

Results
Initial observations

The initial findings demonstrating the
impact of age on the mean fMRI
signal are shown in Figure 2, left
panel. The peak clusters,
thresholded at Z>18, clearly highlight
the anatomical structure of the
putamen. The overall relationship
between age and mean fMRI signal
in the displayed mask plotted in
Figure 2, right panel, illustrate a
striking relationship between age and
mean fMRI signal (r(339)=0.81,
p<0.001). This general observation is
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Independent components analysis in larger NKI-Rockland Sample Initiative

Our initial observation related to regional age-wise variation in mean fMRI signal was provocative and
consistent with predictions that might be made regarding the accumulation of brain iron across the
lifespan. A further exploratory ICA investigation of the rcFe images within a larger NKI-RSI cross-

ICA-Derived ROlIs and rcFe Values Across the Lifespan
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Figure 3. Top panel: Independent components analysis of rcFe values revealed three subcortical components, putamen and caudate
(RED), globus pallidus (BLUE), and thalamus (GREEN). Bottom panel: Mean rcFe values for each of the three ROIs plotted against
age for each of the 1354 participants.

sectional sample yielded additional insights into the patterns of variation across the lifespan. Inspection
of the ICA outcomes revealed three distinct spatial components encompassing three iron-rich
subcortical structures. These components are shown in Figure 3, top panel, and include aspects of the
putamen and caudate (red), globus pallidus (blue), and thalamus (green), overlain on the MNI152 T1
template. Figure 3, lower panel shows the mean rcFe values within those three ROlIs plotted against
age. rcFe values were significantly correlated with age in all three ROls, although the putamen
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(r(1352)=0.72) and globus pallidus (r(1352)=0.62) correlations were notably stronger than that for the
thalamus (r(1352)=0.15); all ps <0.0001. Again, these findings are generally consistent with previous
MRI and post-mortem studies of striatal brain iron accumulations.

Aqueous iron phantom

To examine the sensitivity of rcFe images to known iron concentrations, we examined rcFe values from
a phantom with varying aqueous iron concentrations, scanned under a well-established fMRI sequence.
Figure 4, inset, shows a photograph of the aqueous phantom. Figure 4 shows a stripplot of all 216 rcFe
voxel values for each iron
concentration level, taken
Aqueous Iron Phantom and rcFe Values from 6x6x6 voxel regions of
interest placed near the
2 - spatial center of the vials
containing each iron
1 ) concentration in the phantom.
Voxel rcFe values for each
0 iron concentration within the
ROlIs are non-overlapping,
o) with reduced variance at
higher iron concentrations.
Overall, these results bear a
striking resemblance to the
expected pattern of results
from a hypothetical single TE
susceptibility weighted image,
and appear to confirm the
sensitivity of rcFe to
biologically plausible iron
concentrations.

rcFe Values

mcg/mi

Figure 4. Inset: Aqueous iron phantom used to assess the sensitivity of rcFe to known
iron concentrations selected to be biologically plausible. Stripplot showing the rcFe
values for all 216 voxels extracted from the center of each iron phantom vial.

In-Vivo comparison between rcFe and formal iron methods

Figure 5 illustrates the relationship between rcFe and iron levels estimated from three different iron
imaging protocols in 10 subcortical regions of interest taken from the Harvard-Oxford subcortical atlas.
The top panel plots the rcFe values against the normalized iron values for each ROI for 5 participants.
Each colored line represents a best fit line for each participant. The overall correlations between ROI
values for rcFe and the formal iron imaging protocols within subcortical structures was robust, with
rn48)=0.92, r(48)=0.93, r(48)=0.84 for the Siemens clinical, 10-echo R2, and 6-echo R2* sequences,
respectively; all p values < 0.0001. The lower panel shows a 25% subsampling of within-brain voxel-
values for rcFe plotted against values derived from each of the three iron imaging sequences for a
single representative participant. These correlations were substantially lower than those constrained to
subcortical regions of interest, with r=0.26, r=0.29, and r=0.27, for the Siemens clinical, 10-echo R2,
and 6-echo R2* sequences, respectively; all ps < 0.0001. Overall, this pattern of findings suggests that
there is good correspondence between rcFe and some more traditional iron imaging approaches, at
least within well-defined subcortical areas. These findings, in combination with those from the aqueous
iron phantom, suggest that rcFe has reasonable sensitivity to relative iron concentrations.
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Figure 5. In-vivo comparison between rcFe and three standard iron imaging approaches. Top panel:
Mean rcFe and iron values for each of 10 subcortical ROls taken from the Harvard Oxford Subcortical
Atlas. Bottom panel: voxelwise plots of rcFe and iron estimates for a single subject.

Examination of rcFe clinical relevance within the ADHD200 Sample

Conceptual replication of NKI-RSI ICA. Having established the sensitivity of rcFe to iron content in the
aqueous phantom and good correspondence between rcFe and more standard assessments of brain
ICA-Derived rcFe ROIs from ADHD 200 Dataset ~ "on: We next examined the utility of rcFe in
a clinical population. Specifically, we
examined rcFe in an openly available
sample of ADHD and typically developing
children (TDCs), given the well-established
reductions in brain iron associated with
ADHD. As an initial examination, we
conducted a conceptual replication of the
ICA analysis (reported above) from the
NKI-RSI dataset. Specifically, rcFe images
Figure 6. Conceptual replication of NKI-RSI ICA findings. ~ Were computed from the ADHD200
Similar subcortical components are evident in the dataset, preprocessed, and submitted to

ADHD200 sample to those identified in the NKI-RSI. exploratory ICA. Visual mspectlc_)n of the
resulting component maps readily

identified three subcortical components
showing a striking similarity to those identified in the NKI-RSI dataset. Figure 6 shows these
components overlain on the MNI152 T1 template; again these include aspects of the putamen and
caudate (red), globus pallidus (blue), and thalamus (green).
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Group differences in subcortical iron. Perhaps not surprisingly, initial comparisons of ROI values
revealed a significant effect of age in the putamen (F[1,616]=5.67, p<0.018), globus pallidus
(F[1,616]=,7.91, p.<0.005), and thalamus (F[1,616]=8.16, p.<0.004). However, there were also
substantial site effects for putamen (F[1,616]=68.75, p<0.001), globus pallidus (F[1,616]=99.04,
p.<0.005), and thalamus
(F[1,616]=8.16, p.<0.004),
0.00 pLcFein g pallidus by Diagnosis suggesting that z-scaling rcFe
values within-volume is not
sufficient to completely remove
sitewise differences in hardware
or scanning protocols.
Importantly, however, rcFe was

rcFe in putamen by Diagnosis rcFe in thalamus by Diagnosis

0.35 -0.05

-0.10
0.25

o0 010 020 significantly lower for ADHD
005 participants, compared to
000 000 o controls in the putamen
< S & < (t[616]=6.97, p.<0.0001), globus

Figure 7. Bar graph showing rcFe values for children with ADHD and pallidus (t{616]=5.25, p.<0.0001)
TDCs. These findings are consistent with previous observations of  and thalamus (t{616]=4.99,
depleted brain iron levels in ADHD. p.<0.0001). See Figure 7.

Moreover, accounting for the
effects of age and site in the contrast between ADHD and TDCs resulted in a more robust effect of
diagnosis for putamen (i{614]=8.61, p.<0.0001), globus pallidus (t[614]=7.07, p.<0.0001), and thalamus
(t[614]=6.82, p.<0.0001), suggesting that while sitewise differences in protocol may contribute noise to
datasets pooled across disparate sites and protocols, the overall effect of rcFe-estimated iron content in
ADHD vs. TDCs was quite robust and consistent with expectations regarding typically iron-deficient
ADHD participants.

ADHD symptom severity in ADHD and TDC

ADHD symptom severity and subcortical rcFe. The overall pattern of group differences in diagnostic
status was consistent with the idea that participants with ADHD had lower subcortical brain iron than
TDCs. However, iron deficiency has been proposed as a causal mechanism for ADHD
symptomatology>®, symptom severity appears to be modifiable by iron supplementation, and symptom
severity is correlated with serum iron levels in blood. This suggests that estimated brain iron levels
may predict ADHD symptom severity along a continuum.
To investigate this possibility, we restricted analyses to participants from the ADHD200 sample who
had valid ADHD symptom scores on the ADHD Rating Scale IV (ADHD-RS)* provided with the
ADHD200 phenotypic

ADHD Symptom Severity by rcFe Values and Diagnosis information: this resulted
in a sample of 374
Putamen Globus Pallidus Thalamus participants (155 ADHD,
100 100 - 100 - 219 TDC). No significant
difference in age existed
801 @ 80 1 "4 80 1 ‘< (11.7 and 12.01 years

for ADHD and TDCs,

Jer*s ns.). There was, as
aoHo  expected, a significant

difference in adhd
symptom severity score
as a function of
diagnostic status.
Participants with ADHD
scored significantly
higher on symptom
severity than TDC
participants (57.1 vs.

60

ADHDIndex
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Figure 8. rcFe values for each of the 3 subcortical ROls, corrected for age and site, plotted against
ADHD symptom severity separately for children with ADHD (Green) and TDCs (Blue).
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37.5, respectively; t[372]=11.37, p<0.001).
We entered diagnostic status (ADHD vs TDC) and mean rcFe values into separate regression models
predicting ADHD symptoms for each of the 3 ROIs*’. However, given the impact of site and age on
mean rcFe value seen above, we first residualized the rcFe values for each ROI by regressing out site
and age. Regression analyses revealed that, collapsing across diagnostic status, rcFe was significantly
related to ADHD symptomatology for the putamen (F[3,374]=44.01, p.<0.001), globus pallidus
(F[3,374]=34.12, p.<0.001), and thalamus (F[3,374]=33.51, p<0.001). Interestingly, however, a
significant interaction between diagnostic status and rcFe value predicting ADHD symptom severity for
putamen (F[3,374]=24.95, p.< 0.001), globus pallidus (F[3,374]=6.69, p.<0.01), and thalamus
(F[3,374]=4.15, p.<0.042). Figure 8 shows the rcFe values plotted against ADHD symptom score, split
by diagnostic status. In all three ROls, it is apparent that the symptom severity overall is negatively
related to rcFe intensity, with the suggestion that with reduced rcFe estimated iron levels ADHD
symptom severity increases. This is generally consistent with the hypothesis that depletion of
subcortical iron is related to ADHD symptomatology. It is also apparent from the plots in Figure 7 that
symptom severity is related only to variation in rcFe values in the TDC sample.

rcFe, age, and IQ in the larger NKI-RSI

Within a developmental sample, it appears that reduced brain iron is detrimental to brain health, while
later in life accumulation of brain iron appears to be associated with oxidative stress and a host of
neurodegenerative disorders. We returned to the NKI-RSI to address the potential implications of brain
iron and its effects on brain health from a lifespan perspective. We again leveraged the 3 subcortical
ROIs identified in the NKI-RSI, and conceptually replicated in the ADHD200 sample. Specifically, for
each of the ROlIs we examined the relationship between putative regional brain iron as assessed by
rcFe and full-scale 1Q as a function of age, using a varying coefficient model framework*'. We modeled
the relationship between full-scale 1Q and rcFe in each of the three subcortical ROls, examining the
varying effect of age on that relationship, assuming a gaussian smoother function and identity linkage.
Figure 9, top panel, shows the age-varying relationship between rcFe estimates of brain iron and 1Q
across the lifespan. In each of the three ROls, higher brain iron is associated with better performance
on the 1Q test in childhood, while in middle and later life rcFe estimates of brain iron levels become
irrelevant or detrimental to 1Q performance. The age by iron smoother terms predicting 1Q were
statistically significant in the putamen (F[9.48, 1304]=54.4, p<0.0001), globus pallidus (F[8.5,
1304]=26.7, p<0.0001) and thalamus (F[9.7, 1304]=51.9, p<0.0001).

Figure 9, lower panel shows a simplified representation of these effects by presenting the correlation
between rcFe ROI values in each of three age bands: Child (6-17), Adult (18-45), and Older (46-85). In
all three ROls, the child age band demonstrated a significant positive correlation with rcFe brain iron
estimates (ps <0.01). Notably, however, that pattern was significantly reversed in the putamen for
adults, and globus pallidus ROI older adults (ps. < 0.01).
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Figure 9. Top panel: Relationship between rcFe and IQ, as a function of age. Bottom panel: A simplified
representation of the varying coefficient model above, showing correlations between rcFe and IQ for

child, adult and older participants. In both cases, it is apparent that rcFe and IQ are positively correlated

in childhood, but either irrelevant or detrimental in adulthood. This pattern is consistent with the
opposing effects of brain iron and brain health in development, compared to aging.
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Discussion

Despite the clear importance of brain iron in development, aging, and psychiatric disorders, it remains
relatively understudied. Here, we presented evidence in support of rcFe, a computationally tractable
method to assess relative brain iron concentrations that avoids overburdening or compromising
ongoing efforts. The current study resulted from an initial serendipitous observation that resembled
well-established patterns of brain iron accumulation across the lifespan. We argued that the idea that
mean fMRI images are sensitive to brain iron content has reasonable construct validity given the nature
of fMRI sequences and of unbound iron in a magnetic field. We suggested a simple method to compute
a marker that would correct for variability in site-wise or individual scaling of an fMRI image, and
intuitively convey potential relative iron content. We then validated this approach with an aqueous
phantom of water vials titrated to biologically plausible levels of iron, as well as in-vivo subcortical
regions compared against three common iron imaging approaches. We also demonstrated the
emergence of three subcortical regions through independent components analysis in two independent
samples (NKI-RSI and ADHD200). We then leveraged these ROIs to evaluate the relationship between
rcFe-based estimates of brain iron in both samples. We conceptually replicated previous findings
demonstrating reduced brain iron content in participants with ADHD compared to TDCs using rcFe. We
demonstrated predictive validity of the rcFe estimate to classify the sample by diagnosis (ADHD or
TDC).. In addition, we found that rcFe was significantly related to ADHD symptomatology in the TDC
sample however, this association was not observed in the ADHD sample. Finally, we presented a novel
finding demonstrating that the relationship between rcFe and 1Q is critically dependent on age, with
higher levels of estimated brain iron being beneficial early in life, but either irrelevant or detrimental later
in life. This pattern of results is highly consistent with predictions from models of iron and its impact on
brain in development vs later life.

The clinical and lifespan findings reported here demonstrate the potential utility of rcFe as an indicator
of relative brain iron concentrations. The public availability of large-scale fMRI datasets such as the
NKI-RSI, Healthy Brain Network, Human Connectome Project, UK Biobank, and ADNI, underscores the
potential for broad-scale reanalysis of existing fMRI data to advance the study of brain iron across
multiple dimensions. In particular, rcFe could be a powerful tool to identify early and midlife markers for
later life pathological processes that may elucidate environmental and genetic contributions to both
normal aging and age-related disease. It should also be noted that our ADHD results, derived from the
ADHD200 dataset, demonstrate the power of aggregating rcFe datasets across disparate sites,
hardware configurations, and imaging protocols. As such, rcFe also holds promise in the application to
a growing number of ad-hoc aggregations of fMRI datasets acquired from clinical populations, including
disorders where iron has been implicated in the etiology (e.g. autism [ABIDE], schizophrenia [COBRE]).

While the initial findings with rcFe and its potential to open new avenues of inquiry to brain iron are
promising, there are limitations to both the method and the current study. The most obvious limitation of
rcFe is that, unlike quantitative approaches, rcFe can at best provide only a relative estimate of brain
iron. In the current study, we restricted our analyses to subcortical structures, which by nature have
high iron concentrations. The utility of the rcFe method to cortical areas, or even other subcortical
areas, remains unexplored. Our approach to calibrating the rcFe by a linear scaling factor worked
reasonably well as a first-approximation, but is almost certainly suboptimal. This was readily apparent
in the robust site-wise rcFe effects in the ADHD200 sample. Future work evaluating other approaches
that better match the predicted signal decay at a fixed TE (e.g.inverse log) are likely to prove fruitful.
Unclear what range of parameters might be appropriate (e.g. variation in TE), or specifically how they
might affect the contrast seen here. This is highlighted by the robust main effect of site on rcFe intensity
within the ADHD200 sample. Future investigations into this question are likely to be highly fruitful.
Similarly, despite the successful aggregation of rcFe across the ADHD200 datasets, it remains unclear
what limitations exist in fMRI sequence parameters appropriate for rcFe generation. Future work
addressing sequence parameter variation (e.g. TE, bandwidth), combining rcFe, quantitative iron
imaging, and phantoms of known iron concentration could provide useful information about the impact
of sequence parameters, and perhaps even generate an effective post-hoc calibration algorithm for a
range of fMRI sequence permutations.
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Materials and Methods
Initial observations

341 MRI datasets and basic phenotypic information (age, sex), were drawn from the publicly available
NKI-RSI sample*?, a large scale community ascertained dataset that includes extensive imaging and
phenotypic assessments. Participant ages ranged from 6-85 (mean = 44.1yoa, 196 females), as a
methodological examination of variation in fMRI image skull stripping efficacy as a function of age.
Each dataset consisted of the NKI-RSI 1400ms multiband 4 (MB4) resting state fMRI sequence
(TR=1400ms; TE=30ms, alpha=80, 64 slices; FOV=224; acquisition voxel size = 2.0mm iso, multiband
factor = 4; duration = 10min) and a high resolution T1 structural image (MPRAGE, TR=2500ms;
TE=3.5ms; TI=1200ms; voxel size: 1.0mm iso; alpha=8; 174 slices, FOV=256mm; Grappa=2). Images
were subjected to the following procedures: fMRI images were motion corrected to the middle image in
series®, skull stripped**, and coregistered to the T1 structural image. The T1 image was warped to the
MNI152 T1 template*, and the combined spatial transformation was applied to the mean EPI image.
Out of curiosity, the values at each voxel were regressed against the participants’ age using FSL’s*
Feat*’, and mean EPI values within the thresholded z-stat mask were plotted against age for visual
inspection.

Independent components analysis in larger NKI-Rockland Sample Initiative

As a further exploratory examination, we replicated the preprocessing applied to the fMRI and structural
images described in the Preliminary Observation section, above. However, we expanded the sample
size to include 1354 cross-sectional participants from the NKI-RS ranging from 6 to 86 years of age
(mean = 41.26 +/- 21.43; 836 females).

rcFe image creation. All rcFe images were generated with the following procedures. The fMRI
sequence was motion corrected*®, averaged across time, and skull stripped to remove non-brain
tissue*. The mean skull-stripped image was then z-scaled (zero-meaned and unit variance normalized
within the 3D volume mask) to account for any differences in overall image intensity scaling. The
images were then sign-inverted so that higher numbers reflected putative increases in relative iron
concentration. We termed the resulting voxel map a relative concentration of iron (rcFe) image. This
image was smoothed with a 4mm iso FWHM Gaussian kernel and forwarded for further analysis.

Study-specific template. Prior to spatial normalization of the rcFe image, we created a study-specific
template by warping each participant’s T1 image to the MNI 152 2mm T1 template and subsequently
averaging across each participant’s image. The spatial transformation from native EPI space to
template space was achieved by applying the by combined spatial transforms from the mean skull-
stripped EPI to the high resolution T1 structural MRI **, and the transformation from T1 structural MRI
study-specific template*.

Independent components analysis. The spatially smoothed and normalized rcFe images were
submitted to independent components analysis via FSL’s*® MELODIC, allowing the algorithm to select
the optimal number of components. The resulting components were inspected for correspondence with
iron-rich subcortical brain structures.

Aqueous iron phantom

To examine the potential sensitivity of standard fMRI sequences to biologically plausible iron levels, an
aqueous iron phantom was created using 50ml plastic tubes, each filled with distilled water and titrated
with commercially available monocrystalline iron oxide nanoparticle solution (AMAG Pharmaceuticals,
Inc, Waltham, MA) to achieve solutions of 5, 10, 15 and 20 micromolar iron concentrations. These
tubes were submerged in a 250ml beaker of distilled water prior to imaging. 20 fMRI volumes were
collected using the standard NKI-RSI 1400ms MB4 sequence. These images were motion corrected®
and averaged across time to create a mean volume. This volume was masked to include only the
phantom and its contents. The values within the mask were z-transformed to scale the values within the
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volume, and sign-inverted so that higher values might reflect higher iron concentration. Four regions of
interest containing 64 contiguous voxels (8x8x8) were created near the spatial center of each vial, and
the values at each voxel were extracted and plotted against the millimolar iron concentration for each
vial.

In-Vivo comparison between rcFe and formal iron methods

We next examined the correspondence between fMRI sensitivity to iron concentration and more
standard measures of brain iron. Five volunteers participated in this experiment, aged 28 to 68 yoa, 3
males. Following consenting procedures, they were asked to remain motionless while scanned in
several MRI protocols. Siemens Clinical (TR=2500ms; TE=19.0ms, 136ms, 252ms, 64 slices;
FOV=210; acquisition voxel size=1.0x0.8x2.0mm; duration=5min), 10-echo R2 (TR=3910ms;
TE=13.2ms, 26.4ms, 39.6ms, 52.8ms, 66.0ms, 79.2ms, 92.4ms, 105.6ms, 118.8ms, 132ms, 28 slices;
FOV=210; acquisition voxel size=1.1x1.1x3.0mm; duration= 7min), and a 6-echo R2* (TR=2223ms;
TE=5.92ms, 25.16ms, 30.32ms, 35.48ms, 40.64ms, 45.80ms, 44 slices; FOV=220; acquisition voxel
size=1.1x0.9x3.0mm; duration=4min) imaging protocol as representative iron imaging protocols, as well
as the NKI-RSI standard 1400ms fMRI protocol TR=1400ms; TE=30ms, alpha=80, 64 slices; FOV=224;
acquisition voxel size = 2.0mm iso, multiband factor = 4; duration = 1min), and T1 (MPRAGE;
TR=2500ms; TE=3.5ms; TI=1200ms; voxel size: 1.0mm iso; alpha=8; 174 slices, FOV=256mm;
Grappa=2) structural imaging protocol.

rcFe processing. rcFe images were calculated, as described above, for each participant in the sample,
then smoothed with a 4mm iso gaussian spatial kernel and forwarded to further analysis. The spatial
transformation from native EPI space to template space was achieved by applying the by combined
spatial transforms from the mean skull-stripped EPI to the high resolution T1 structural MRI **, and the
transformation from T1 structural MRI study-specific template®°.

Iron Image Preprocessing. Image series were initially masked for in-brain content by automated skull-
stripping of the shortest TE image in each sequence, followed by manual inspection and mask editing.
A monoexponential decay function was fit at each voxel against echo time within the brain mask to
estimate T2 (10-echo sequence) and T2* (6-echo sequence) decay. R2 and R2* images were created
by calculating the reciprocal of the T2 and T2* estimates. The combined transform from the native-
space lowest TE to high-resolution T1 structural image *3, and the T1 to MNI 152 2mm T1 template
transformation *° was subsequently applied to the R2 images.

ROl creation. We created 10 subcortical ROIs derived from a-priori masks provided with the Harvard-
Oxford subcortical atlas provided with FSL*. Atlas probability maps were extracted for the nucleus
accumbens, caudate, putamen, globus pallidus, and thalamus for the left and right hemisphere
separately, thresholded at a 75% probability level and binarized, yielding 10 distinct subcortical ROls.
These ROI masks were used to extract mean regional rcFe and iron content estimates, which were
then forwarded for direct comparison.

Examination of rcFe clinical relevance within the ADHD200 Sample. To examine the potential of rcFe
images to replicate well-established findings regarding diminished brain iron levels in ADHD
participants, as well as associations with ADHD clinical features, we took advantage of the publicly-
available ADHD200*. Specifically we downloaded the NeuroBureau’s Athena pipeline preprocessed
fMRI data*® already coregistered to MNI template space. A total of 617 participants ranging from 7 to
21 years of age (mean = 12.34, +/- 3.20; 392 males), were entered into the analysis. rcFe images were
created (see rcFe preprocessing). These rcFe images were then upsampled to 2mm iso resolution,
spatially smoothed with a 4mm iso Gaussian kernel and subjected to interrogation at several levels.
Phenotypic data including age, sex, handedness, diagnostic status, measures of symptom severity, and
IQ were downloaded from the ADHD200 site (http://fcon_1000.projects.nitrc.org/indi/adhd200/). For the
purposes of all analyses here, we collapsed across ADHD subtypes (hyperactive/impulsive, inattentive,
and combined) to form a single binary ADHD diagnosis. This resulted in 226 participants with an ADHD
diagnostic label and 392 TDCs.
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Conceptual replication of NKI-RS! ICA analysis and ROl creation. As an initial step, we subjected the
ADHD200 rcFe images to independent components analysis and manually inspected the resulting
component maps for correspondence with iron-rich subcortical brain structures. We identified 3
subcortical ICA components; these roughly corresponded to the thalamus, putamen, and globus
pallidus components previously identified in the NKI-RSI sample. Regions of interest were created by
thresholding and binarizing these component maps.

rcFe sensitivity to ADHD status and symptomatology. Using the subcortical ROls identified above, we
extracted the mean rcFe values within each mask for each participant, and forwarded them to a series
of interrogations. We first examined differences in overall rcFe intensity in each of ROls according to
ADHD status (ADHD vs. TDC) in a series of between-Ss t-test. We then investigated the utility of
subcortical ROI rcFe values to predict ADHD status under logistic regression, evaluating the
prediction’s receiver-operator characteristics (ROC) and area under the curve (AUC). Finally, we
examined whether subcortical rcFe ROI values were predictive of ADHD symptomatology in ADHD and
TDC participants.

rcFe, age, and IQ in the larger NKI-RSI

We extracted rcFe values for each of 3 subcortical ROls identified via ICA in the NKI-RSI sample from
each of the 1354 participants described previously. These, along with age and the full scale I1Q score
from the NKI-RSI phenotypic battery, were forwarded for analysis via varying coefficient model
framework*' predicting the relationship between each of the subcortical rcFe values and IQ
performance as a function of age. As a secondary illustration of the pattern, we split the sample into
three groups by age: child (6-17), adult (18-45), and older (46-86), and computed the correlation
between mean rcFe ROI values and 1Q.
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