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Abstract 23 

Background:  24 

The availability of both pedigree and genomic sources of information for animal 25 

breeding and genetics has created new challenges in understanding how best they 26 

may be utilized and how they may be interpreted. This study computed the variance 27 

components obtained using genomic information and compared these to the variances 28 

obtained using pedigree in a population generated to estimate non-additive genetic 29 

variance. Further, the impact of assumptions concerning Hardy-Weinberg Equilibrium 30 

(HWE) on the component estimates was examined. The magnitude of inbreeding 31 

depression for important commercial traits in Nile tilapia was estimated for the first 32 

time, here using genomic data. 33 

Results 34 

The non-additive genetic variance in a Nile tilapia population was estimated from full-35 

sib families and, where present, was found to be almost entirely additive by additive 36 

epistatic variance, although in pedigree studies this source is commonly assumed to 37 

arise from dominance. For body depth (BD) and body weight at harvest (BWH), the 38 

estimates of the additive by additive epistatic ratio (P<0.05) were found to be 0.15 and 39 

0.17 in the current breeding population using genomic data.  In addition, we found 40 

maternal variance (P<0.05) for BD, BWH, body length (BL) and fillet weight (FW), 41 

explaining approximately 10% of the observed phenotypic variance, which are 42 

comparable to the pedigree-based estimates. This study also disclosed detrimental 43 

effects of inbreeding in commercial traits of tilapia, which were estimated to cause 44 

1.1%, 0.9%, 0.4% and 0.3% decrease in the trait value with 1% increase in the 45 

individual homozygosity for FW, BWH, BD and BL, respectively. The inbreeding 46 
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depression and lack of dominance variance was consistent with an infinitesimal 47 

dominance model 48 

Conclusions: 49 

An eventual utilisation of non-additive genetic effects in breeding schemes is not 50 

evident or straightforward from our findings, but inbreeding depression suggests for 51 

cross-breeding, although commercially this conclusion will depend on cost structures. 52 

However, the creation of maternal lines in Tilapia breeding schemes may be a 53 

possibility if this variation is found to be heritable. 54 

 55 

Keywords: Nile tilapia, genomic selection, dominance, epistasis, maternal variance, 56 

non-additive genetic effects, reciprocal, heritability, inbreeding depression 57 
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Background 59 

This paper is a part of a wider study on the non-additive genetic effects in Nile tilapia 60 

and their potential utilization in tilapia breeding programs. A previous study [1] used 61 

the classical approach to partition the variance observed from a diallel mating design 62 

into additive, non-additive and maternal components using pedigree information to 63 

generate the additive and dominance relationship matrixes. These variance 64 

components are inferred from the variances within and between full-sib families, where 65 

the latter is also decomposed among sires and among dams. 66 

These pedigree based selection methods have been gradually supplemented with, or 67 

replaced by, genomic information in various livestock species [2], and even in some 68 

commercial aquaculture species [3]. With the possibility of improved accuracy and 69 

more detailed information from genomics [4], there has been a growing interest to try 70 

to quantify and potentially utilize the non-additive genetic source of phenotypic 71 

variation. This new technology has introduced new challenges to fully understand the 72 

results of these methods and their equivalence to the classical decompositions based 73 

on pedigree. The availability of genomic information in Nile tilapia [5] has offered the 74 

opportunity to close this gap in an important aquacultural species. The first aim of this 75 

paper is to compare the genetic variance components obtained from using either 76 

genomics or pedigree information to generate the appropriate relationship matrices in 77 

a design generated to estimate non-additive variances. 78 

The genomic BLUP (GBLUP) model builds a matrix of relationships between all 79 

individuals of a population based on genomic data, and BLUP uses these relations to 80 

partition the variance and predict the breeding values. The assumptions used to 81 

construct these relationship matrices have a direct effect on the accuracy of the 82 

results. There are different methods to construct the relationship matrices, most of 83 
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them differing in the scaling parameters [6–8], which makes it difficult to make 84 

comparisons of results obtained with each of the methods. One method of comparison 85 

has been published by Legarra (2016) [9], where it is shown that re-scaling of the 86 

relationship matrices to the same reference population is necessary. In constructing 87 

relationship matrices, assumptions are often made about the presence of Hardy-88 

Weinberg equilibrium (HWE), (e.g. in the use of Van Raden matrices [7] , as used by 89 

GCTA [10]), and on managing the linkage disequilibrium (LD) [11]. These assumptions 90 

influence the orthogonality of the estimates of the variance components and hence the 91 

validity and generality of their biological interpretation. Thus, the second aim of this 92 

paper is to examine the impact of assumption of HWE on the relationship matrices 93 

and the consequences for the estimation. 94 

Inbreeding depression is a natural phenomenon that is widely assumed to be 95 

deleterious for traits of commercial importance and thus has serious practical 96 

implications [12–15]. It has greater impact in populations with smaller effective 97 

population size (Ne) than in those with higher Ne, due to more efficient purging of 98 

deleterious alleles in the latter [16,17], which makes it a concern to breeders since Ne 99 

is often restricted in breeding populations. Genomic data allows a direct assessment 100 

of the extent of homozygosity and its variation rather than a reliance on changes 101 

predicted as a consequence of pedigree inbreeding. Consequently, utilisation of 102 

genomic data may contribute to a better design and operation of breeding programs. 103 

To date, the authors are unaware of estimates of inbreeding depression in Nile tilapia, 104 

even using the pedigree. Thus, the final aim of this paper is to quantify the effect of 105 

inbreeding depression for important commercial traits in Nile tilapia using genomic 106 

data. 107 
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Hence, this paper has tried to dissect the maternal, additive and non-additive genetic 108 

effects for growth and carcass traits in Nile tilapia, examining the impact of the 109 

assumption of HWE on the genomic relationship matrices and quantifying the 110 

inbreeding depression for these commercial traits. 111 

Methodology 112 

Experimental design, phenotypes and genotypes:  113 

The population used in this study and the experimental design have been previously 114 

described in more detail [1]. In short, the population was obtained from the reciprocal 115 

crossing of 2 parent groups, A and B, of Nile tilapia. The matings were partly factorial 116 

so that each parent used, male or female, had offspring that were both full-sibs and 117 

half-sibs. All offspring were hormonally treated, i.e. were either males or sex-reversed 118 

males, a normal aquacultural procedure to avoid sexual maturation, which may largely 119 

abrupt the growth, especially among females. Offspring were reared in three batches 120 

and harvested over 8 different days after 6-7 months in the grow-out ponds. The fish 121 

were filleted by three filleters. The phenotypes recorded were body weight at harvest 122 

(BWH), body depth (BD), body length (BL), body thickness (BT), fillet weight (FW) and 123 

Fillet yield (FY). Phenotypes were obtained on a total of 2524 individuals, with 1318 124 

and 1206 from each of the two reciprocal crosses, in altogether 155 full-sib families. 125 

From these, 1882 Nile tilapia samples were only genotyped using the Onil50 SNP-126 

array (see Joshi et al. (2018) [5] for details). The raw dataset contained 58,466 SNPs, 127 

which were analysed using the Best Practices Workflow with default settings (sample 128 

Dish QC ≥ 0.82, QC call rate ≥ 97; SNP call-rate cutoff ≥ 97) in the Axiom Analysis 129 

Suite software [18]. Ten samples fell below the minimum QC call rate and were 130 

excluded. Then SNPs were selected based on the informativeness, i.e. based on the 131 
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formation of clusters and resolution. Only SNPs classified as PolyHighResolution [18] 132 

(formation of three clusters with good resolution) and NoMinorHom [18] (formation of 133 

two clusters with no samples of one homozygous genotype) were selected, and 134 

43,014 SNPs were retained. The mean SNP call rate for these SNPs was 99.5 (range: 135 

97-100). Finally, SNPs were filtered for minor allele frequency (MAF ≥ 0.05), and 136 

39,927 SNPs (68.3% of the total genotyped SNPs) were retained after all the quality 137 

control parameters had been applied. From the marker genotypes, the individual 138 

homozygosity was calculated as the proportion of homozygous loci per individual, and 139 

was incorporated into the models described below as a covariate for detecting 140 

directional dominance [19]. 141 

Of the 1882 genotyped, 1119 individuals from 74 full-sib families with an average of 142 

15.1 offspring per full-sib family (range 1 to 44; standard deviation = 11.2) had 143 

phenotypic observation and were used for further analysis. Supplementary 1 shows 144 

the data structure and descriptive statistics in Tables S1.1 and S1.2 respectively, 145 

whereas scatterplots and the phenotypic correlations for these individuals are shown 146 

in Figure S1.1. 147 

Statistical Analysis 148 

ASReml-4 [20] was used to fit mixed linear models, using REML to estimate variance 149 

components and breeding values. Eight different univariate GBLUP models were 150 

tested and compared for the six traits described above. The basic model used was an 151 

animal model (A), which was gradually expanded to an ADME (model with additive 152 

(A), dominance (D), maternal (M) and first order epistatic interactions (E) effects) by 153 

adding each effect as random effects in a heuristic approach. This resulted in the 154 

following models: 155 
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A model:   y = Xβ +hb+ Z1a + e 156 

AD model:   y = Xβ +hb + Z1a + Z2d + e 157 

ADE model  y = Xβ +hb + Z1a + Z2d + Z3eaa + e 158 

ADME model  y = Xβ +hb + Z1a + Z2d + Z3eaa + Z4m+ e 159 

ADM model:   y = Xβ +hb + Z1a + Z2d + Z4m + e 160 

AM model:  y = Xβ +hb + Z1a + Z6m + e 161 

AME model  y = Xβ +hb + Z1a +Z3eaa + Z4m + e 162 

AE model:  y = Xβ +hb + Z1a + Z3eaa + e 163 

where, y is the vector of records; β is the vector of fixed effects that account for 164 

reciprocal cross (1 d.f.), batch (2 d.f.) and day of harvest (7 d.f.); h the vector of overall 165 

marker homozygosity for each individual, with b the inbreeding depression parameter; 166 

a is a vector of random additive genetic effects; d is vector of random dominance 167 

effects; eaa is the vectors of first order additive x additive epistatic interactions; m is 168 

vector of maternal effects; e is a vector of random residual errors; and X, Z1, Z2, Z3 169 

and Z4, are corresponding design matrices for the fixed and random effects. For FW 170 

and FY, the fixed model also included filleter (2 d.f.). The (co)variance structures of 171 

the random effects are described below. Vectors a, d, eaa and e had effects for each 172 

individual having genotypes; m for each maternal family.  173 

The models were also fitted with additive x dominance and dominance x dominance 174 

epistatic interaction effects, separately and in combination with additive x additive 175 

epistatic interaction effects. These parameters were bound to zero while solving the 176 

mixed model equations, thereby producing parameter values similar to those models 177 
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without these random effects (results not shown). The distributional assumptions for 178 

the random effects were multivariate normal, with mean zero and  179 

 180 

where σ2
A, σ2

D, σ2
Eaa, σ2

M and σ2
E are additive genetic variance, dominance genetic 181 

variance, additive by additive epistatic variance, maternal variance and error variance 182 

respectively; G is the genomic relationship matrix with elements gij; D is the dominance 183 

relationship matrix and I is an identity matrix of appropriate size. k(G#G) represents 184 

the additive by additive epistatic relationship matrix, where k is the scaling factor as 185 

described below and # is the Hadamard product of the two matrices given by (G#G)ij 186 

= gij
2 for elements in the indices i and j. 187 

The phenotypic variance was calculated as σ2
P = σ2

A + σ2
D + σ2

Eaa + σ2
M + σ2

E, and 188 

the estimated variance components were expressed relative to the total phenotypic 189 

variance (σ2
P): additive heritability (h2) = σ2

A / σ2
P, dominance ratio (d2) = σ2

D / σ2
P and 190 

maternal ratio (m2) = σ2
M / σ2

P. Broad sense heritability (H2) was calculated as (σ2
A + 191 

σ2
D + σ2

Eaa) / σ2
P and the terms not in a model were set to 0. The variances obtained 192 

were also scaled by ( )diag −V V  where V is their corresponding (co)variance matrix 193 

of size n and the bar denote the mean value [9]. 194 

Genomic natural and orthogonal interactions (NOIA) and Hardy-Weinberg Equilibrium 195 

(HWE) approaches were used to calculate the G, D and k(G#G) following the methods 196 

of [21]. These approaches differ in two ways: (i) the contrasts between genotypes used 197 

 Var

[
 
 
 
 
𝑎
𝑑
𝑒𝑎𝑎
𝑚
𝑒  ]
 
 
 
 

=
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𝑮𝜎𝐴

2 0 0 0 0

0 𝑫𝜎𝐷
2 0 0 0

0 0 𝑘(𝑮#𝑮)𝜎𝐸𝑎𝑎
2 0 0

0 0 0 𝑰𝜎𝑀
2 0

0 0 0 0 𝑰𝜎𝐸
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to define dominance deviations, and (ii) the scaling factors used for the relationship 198 

matrices. 199 

The NOIA approach relaxes the assumption of HWE in the population, under which 200 

the genomic relationship matrix (𝐆) is defined as: 201 

G = 
𝑯𝒂𝑯𝒂

′

𝑡𝑟(𝑯𝒂𝑯𝒂
′ )/𝑛

 202 

where, Ha contains additive coefficients (ha) having the dimension of n x m, with n 203 

= number of animals and m = number of SNPs. ha is coded as: 204 

ha = {

2(1 − 𝑝𝐴)
(1 − 2𝑝𝐴)
−2𝑝𝐴

       for genotypes {
𝐴𝐴
𝐴𝐵
𝐵𝐵

 205 

where, 𝑝𝐴 is the frequency of allele A. For dominance deviations, NOIA uses the 206 

contrast that is orthogonal to ha at each locus. Therefore, if pAA, pAB and pBB are the 207 

allelic frequencies of the respective genotypes, the dominance relationship matrix (D) 208 

is defined as; 209 

D = 
𝑯𝒅𝑯𝒅

′

𝑡𝑟(𝑯𝒅𝑯𝒅
′ )/𝑛

 210 

where, Hd contains dominance coefficients (hd) defined for animal i and marker j 211 

by: 212 

hd= 

{
 
 

 
 −

2𝑝𝐴𝐵 𝑝𝐵𝐵

𝑝𝐴𝐴+𝑝𝐵𝐵−(𝑝𝐴𝐴−𝑝𝐵𝐵)2

4𝑝𝐴𝐴 𝑝𝐵𝐵

𝑝𝐴𝐴+𝑝𝐵𝐵−(𝑝𝐴𝐴−𝑝𝐵𝐵)2

−
2𝑝𝐴𝐴 𝑝𝐴𝐵

𝑝𝐴𝐴+𝑝𝐵𝐵−(𝑝𝐴𝐴−𝑝𝐵𝐵)2

        for genotypes {
𝐴𝐴
𝐴𝐵
𝐵𝐵

 213 

The epistatic relationship matrices were then calculated from the Hadamard projects 214 

and scaled using the average of the diagonals. Therefore, the additive by additive 215 

epistatic relationship was calculated as: 216 
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k(G#G) = 
𝑮 # 𝑮

𝑡𝑟(𝑮 # 𝑮)/𝑛
 217 

The HWE approach assumes that the population is under HWE equilibrium both in its 218 

scaling and in calculating the contrast for defining dominance deviations. If the locus 219 

is not in HWE the dominance contrast is not orthogonal to that for the additive effect, 220 

unlike in NOIA. The contrasts used to define the additive effects are unchanged but 221 

scaled assuming HWE, and the result is equivalent to method 1 of Raden [7].  So 222 

G = 
𝑯𝒂𝑯𝒂

′

∑ 2𝑝𝑖(1−𝑝𝑖)
   223 

where the sum in the denominator is over all m loci.  The dominance relationship matrix 224 

was calculated as  225 

D =  
𝑾𝒅𝑾𝒅

′

4∑ 𝑝𝑖
2𝑞𝑖

2 226 

where Wd contains elements wd defined for animal i and marker j 227 

wd = {

−2𝑝𝐵
2

2𝑝𝐴𝑝𝐵
−2𝑝𝐴

2

       for genotypes {
𝐴𝐴
𝐴𝐵
𝐵𝐵

 228 

The scaling factor k for epistatic relationship matrices using the HWE approach was 229 

1, so the additive by additive epistatic relationship matrix is simply the Hadamard 230 

product between the two matrices. The scatterplots for different relationship matrices 231 

are presented in Figure S1.3 and Figure S1.4 of Supplementary 1. 232 

The software used to calculate the matrices [21] did not accept missing genotypes. As 233 

described above, 0.4% of genotypes were missing and these were predicted using R 234 

code [22] by sampling from {0,1,2} with the probabilities for each given by observed 235 

probabilities for that SNP. The effect of this prediction was checked with GCTA [10] by 236 
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constructing the GRMs including and excluding the imputed genotypes. The 237 

correlation of >0.9995 between the additive and dominance relationships constructed 238 

using these two sets of genotypes suggest that there is no significant effect of 239 

prediction of the missing genotypes on our results as seen from the scatterplots of 240 

relationships in Figure S1.2 of Supplementary 1. 241 

Comparison of Models 242 

Likelihood ratio tests were used to measure the goodness of fit for the models. The 243 

critical values were corrected for boundary effects following [23]. The critical values 244 

are obtained from a mixture of χ2 distributions with different degrees of freedom (d.f.) 245 

and were obtained for standard thresholds (P < 0.05, 0.01 and 0.001) by iteration using 246 

R. The distributions of the likelihood under the null hypothesis of zero variances for 1, 247 

2 and 3 components were ½ I[0] + ½ χ2
1, ¼ I[0] + ½ χ2

1 + ¼ χ2
2 and ⅛ I[0] +⅜ χ2

1 + ⅜ 248 

χ2
2+ ⅛ χ2

3 where I[0] corresponds to a point mass of 1 at x=0.  249 

250 
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Results 251 

Genetic architecture 252 

The six traits could be differentiated into three distinct groups based on the scores of 253 

their likelihood ratio tests for the various models (Table 1): BD and BWH showed 254 

evidence of significant maternal environmental effects and non-additive genetic effects 255 

in the form of additive by additive epistasis. BL and FW showed evidence of significant 256 

maternal environmental effects only; whereas BT and FY showed no evidence of 257 

neither maternal environmental nor additive by additive epistatic effects. None of the 258 

traits showed significant dominance variance. The assumption of HWE in the breeding 259 

population did not influence the goodness of fit for any of the model, as the log 260 

likelihood values were identical. This is expected since the models are equivalent and 261 

only the parametrization differs. 262 

Inbreeding depression 263 

Detrimental effects of genomic homozygosity were evident for all of these commercial 264 

traits, although of different magnitudes. BWH and FW were found to be more sensitive 265 

to inbreeding than the other traits, with about 1% decrease in the trait value per 1% 266 

increase in the individual homozygosity (Table 2). The difference between upper and 267 

lower 5 percentile for homozygosity in this population was 0.062, and the resulting 268 

differences in performance were ~6%, i.e. 23.21 g for BWH, 0.21 g for BD, 0.47 cm 269 

for BL and 9.76 g for FW. Traits BT and FY, the two traits with no evidence of non-270 

additive genetic and maternal environmental effects, were found to be least sensitive 271 

with the estimates not differing significantly from 0 (P>0.05). 272 
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Decomposition of variance components 273 

Estimates of the variance components with the HWE and NOIA approaches for all the 274 

models and traits are presented graphically in Figure 1. The summary table for the 275 

models selected based on the likelihood ratio test are presented in Table 3. 276 

The simple A model gave the higher additive genetic variances, and the higher 277 

heritabilities across all the traits. Addition of dominance in the models had no effect on 278 

the estimated additive genetic variances, whereas including the additive by additive 279 

epistatic effect reduced the additive genetic variances markedly, except for BT and FY 280 

where there was no evidence (P>0.05) of epistasis. Inclusion of maternal 281 

environmental effects reduced the additive genetic variance compared to what was 282 

estimated with the simple A model, implying that without the maternal effect the 283 

additional variance associated with dams was interpreted as evidence of additive 284 

genetic effects. Including a maternal effect (AME models) also reduced the additive by 285 

additive epistatic variance compared to AE models. These reductions were again 286 

minimal for BT and FY. Similar results were obtained in both the NOIA and HWE 287 

assumption approaches. Hence, the numerical values are shown for the NOIA 288 

approach (scaled to the reference population [9]) , unless otherwise mentioned. 289 

Model dependent variation in the estimation of additive variance was also observed in 290 

the heritability estimates. For BT and FY, the two traits where the model of best fit was 291 

the simple A model, the heritabilities were least dependent on the models. For other 292 

traits, the differences observed among the models was up to 50%. For the best fit 293 

models, the estimates of the heritabilities were low to moderate, ranging from 0.08 ± 294 

0.03 for BL to 0.19 ± 0.04 for FY (Table 4). 295 
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For BD and BWH, the traits for which the best fit model included additive by additive 296 

epistatic effect, the additive by additive epistatic ratio (eaa
2) was 0.15 ± 0.09 and 0.17 297 

± 0.10 (Table 4), and additive by additive epistasis was found to be 48% and 63% of 298 

the total genetic variance for BD and BWH, respectively, but with large standard errors. 299 

Various other papers with genomic epistatic models also report large epistatic 300 

components [21,24,25] with corresponding large standard errors. Large differences 301 

between the individuals (Figure 2a) and the full-sib families (Figure 2b) were observed 302 

for the additive by additive epistatic effects.  303 

For the four traits where the model of best fit included maternal environmental effect, 304 

the maternal ratio was found to be around 0.08±0.04 to 0.09± 0.06. As expected, this 305 

variance ratio was not affected by the two approaches or the models used. Thus, the 306 

previous recommendation [1] of possibility of creation of specialised maternal and sire 307 

lines in Nile tilapia breeding program is still relevant, if the maternal variance is found 308 

to be heritable. 309 

Discussion 310 

Interpretation of variance within the full-sib family  311 

A major finding of this study is that the use of genomic relationship matrixes identified 312 

the source of non-additive genetic variance as being almost entirely additive by 313 

additive epistatic variance. The primary source of non-additive variance is commonly 314 

assumed to be dominance in pedigree based analyses [1,26,27], but this assumption 315 

can be very misleading as here, where the estimates of dominance variance were 316 

negligible. In this study, the information for estimating non-additive variance comes 317 

from the variance within full-sib families (see Supplementary Information 2), and in the 318 

presence of dominance and epistasis, the additional variance in full-sib families, above 319 
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the additive variance provided by the sire and dam, is ¼ σ2
D + ⅛ σ2

Eaa + ⅛ σ2
Ead + ⅛ 320 

σ2
Edd, where σ2

D, σ2
Eaa, σ2

Ead and σ2
Edd are dominance, additive by additive, additive 321 

by dominance and dominance by dominance epistatic variances [28].  Under an 322 

infinitesimal model with both additive and dominance effects, with the increase in the 323 

number of loci, either the dominance variance tends towards zero or the inbreeding 324 

depression tends towards infinity [28,29]. Thus, dominance may be present, but the 325 

genomic approach is showing this component behaves infinitesimally, with σ2
D, σ2

Ead 326 

and σ2
Edd undetectable in analyses. 327 

Comparison with pedigree approach 328 

This study adds a new dimension to our previous paper [1]. The availability of the 329 

genomic data in populations will inevitably lead to comparisons of genomic- and 330 

pedigree-based heritabilities, but these are not straightforward. Some publications 331 

argue that pedigree-based methods overestimate heritabilities [30–32], while some 332 

suggest the reverse [33–36], and other that the heritabilities are similar [37]. 333 

However, few studies recognize that the variance parameters obtained (i.e. the scaling 334 

parameters to the numerator or genomic relationship matrix) even in basic additive 335 

models do not refer to the same populations, and therefore the simple comparison of 336 

parameters can be rendered meaningless. For pedigree-based analyses the 337 

parameter refers to the base population of the pedigree (a subset of A), and for 338 

genomic-based analyses it can be viewed as the genetic variance in the population 339 

defined by the whole G assuming all the markers are in HWE. Many papers compare 340 

these values but they are uninformative as a large part of the difference can be 341 

accounted for by such distinctions [9,21]. To overcome the problem of comparability, 342 

the variance parameters from NOIA and HWE approaches were used to estimate the 343 

genetic variance in the entire population of this study [9] with marker genotypes as 344 
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observed, equivalent to scaling the variance component estimates by ( )diag −V V , 345 

where V is the relevant relationship matrix and the bar denotes averaging elements. 346 

In this study, where the models go beyond the additive components, there are 347 

additional reasons why components may differ. In the tilapia population studied here, 348 

the additive variance, when dominance is assumed to be the source of non-additive 349 

variation, gives a qualitatively different estimate to that obtained if additive epistasis is 350 

assumed (see Supplementary 2). Therefore, differences should be expected between 351 

the current study and [1]. A further issue with this study was that the data used was 352 

only a subset of the data used for [1], although Figure S1.5 of Supplementary 1 shows 353 

the sampling does not deviate far from random sampling expectations. This issue was 354 

overcome by repeating the pedigree analyses using only the phenotypes included in 355 

this study (see Table S1.4 in Supplementary 1). 356 

The outcome from objective comparisons of the pedigree- and genomic analyses 357 

showed a qualitatively similar pattern of contributing sources of variance for all 6 traits 358 

insofar as additive, maternal and non-additive variances. Some small differences were 359 

observed: for example, the qualitative statistical significance for maternal ratio showed 360 

differences for BT and BL although the quantitative outcomes for the maternal ratio 361 

were similar. The evidence of non-additive genetic effects was found for the same 362 

traits (BD, BWH) irrespective of the type of relationships used.  However, as 363 

mentioned above, critically, the genomics identified the source of non-additivity as 364 

additive by additive epistasis rather than dominance.  365 

Genomic models were robust to misspecification in partitioning the variance among 366 

the components of the genetic and environmental models, and this robustness is 367 

another potential cause of difference between genomic and pedigree models. This is 368 
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clearly observed when the basic model ‘A’ is fitted to traits for which the true genetic 369 

architecture is more complex (results are shown in Supplementary 1, Table S1.4). In 370 

the basic model ‘A’, using pedigree, the dam information is absorbed into estimating 371 

additive variance; in contrast to the genomic model, where it is the genotypes of the 372 

dam and its offspring that contribute information on the heritabilities, so the dam 373 

variance is no longer (wrongly) absorbed into the additive variance. Hence the 374 

pedigree-based heritabilities are higher for traits with maternal variance, as a 375 

consequence of the wrong model, and this difference was as large as 0.18. 376 

Impact of approaches used 377 

GBLUP uses GRMs, and the assumptions in the construction of these GRMs can have 378 

a direct effect on the components; e.g. Van Raden matrices [7]) assume Hardy 379 

Weinberg equilibrium when scaling the relationship matrices, whereas this assumption 380 

is avoided with NOIA matrices. In this study, the use of these genomic approaches 381 

showed no difference to the qualitative outcomes related to the genetic architecture of 382 

the trait, but did make a quantitative difference e.g.  additive-by-additive epistatic ratio 383 

(eaa
2) was inflated by ca. 20 % and 18%, and heritability (h2) by 6% and 10% for the 384 

traits BD and BWH respectively (Table 3).  Such quantitative differences have also 385 

been observed in other studies [21].  As a consequence of the absence of dominance 386 

variance in this study, the differences between the NOIA and HWE collapse into 387 

differences in the scaling of the relationship matrices as the contrasts used to construct 388 

the matrices were identical.  Therefore, the transformation of the components to a 389 

similar scale based on ( )diag −V V  for these relationship matrices yielded identical 390 

variance components and ratios. 391 

The NOIA and HWE approaches are statistical models in that they partition the 392 

variance observed in a population and use these parameters to estimate breeding 393 
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values and dominance deviations [21]. As such, these estimates depend on the allele 394 

frequencies in the particular population, and the structure of the population which will 395 

influence the genotypic frequencies. A distinction needs to be made between the 396 

magnitudes of the variance components in the total genetic variance and the effects 397 

estimated using them on the one hand, and the ubiquity of the same phenomena in 398 

genotypic models (sometimes called biological models) on the other hand [38,39]. For 399 

example, the genotypes at a single locus may show complete dominance, but have a 400 

negligible dominance deviation, because the superior homozygote is very rare in the 401 

population. Although the NOIA approach removes limitations of HWE, there are major 402 

barriers to it moving towards the building of genotypic models. Firstly, it does not 403 

remove the impact of LD on estimates of the effects, and more seriously, the genotypic 404 

models are meaningful only if constructed with the causal variants and not with 405 

anonymous markers.  406 

Inbreeding depression 407 

Absence of dominance variance does not necessarily mean the absence of inbreeding 408 

depression when the genetic architecture approaches the infinitesimal model, and 409 

evidence was found for depression in precisely the same four traits for which the basic 410 

‘A’ model was rejected. To the authors’ knowledge, these estimates are the first for 411 

the commercial traits in Nile tilapia. Most of the quantification has been done using 412 

pedigree information in other aquaculture species, e.g.  [40–42], and a few using 413 

genomics, e.g. [43].  In the present study, this information was not observable without 414 

the application of genomics because of the near identical inbreeding coefficients 415 

among individuals of the study population. Most of the traits clearly show the signal of 416 

inbreeding depression and ignoring this term leaves the estimates of the variance 417 

components and predictions of offspring merit open to bias (Supplementary 3). 418 
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Further, the inbreeding depression is commercially significant for commercial traits, for 419 

example, FW decreases by 1% with 1% increase in homozygosity. Our population 420 

shows 6% difference between upper and lower 5 percentile for homozygosity in this 421 

population. This causes 6% difference for FW between individuals with high and low 422 

homozygosity, which has a huge commercial implication. Homozygosity can be 423 

minimized by controlling inbreeding, and by crossing unrelated lines. The latter will 424 

cause a large reduction in inbreeding depression if the regression on homozygosity 425 

holds also across lines. 426 

In the infinitesimal model the allelic additive effects (a’) are if the order of 1/ n  (i.e. 427 

O(1/ n )), as the number of loci, n, becomes large, so the additive variance remains 428 

finite. For inbreeding depression to remain finite the directional dominance deviations 429 

(d’) must be O(1/n), and so the consequence of an infinitesimal dominance model is 430 

that d’/a’ must reduce by 1/ n  as n increases. This is consistent with biological 431 

pathway models such as [44], as when loci have increasingly small effect, responses 432 

will be more adequately described by the linear term based on the gradient of the 433 

response, and so the importance of partial dominance will diminish. 434 

Utilisation of the additive by additive epistatic effects 435 

In the long run, additive by additive epistatic variance is expected to be exploited 436 

indirectly as it is converted to additive genetic variance due to random drift and 437 

selection; hence this form of variance affects the medium and long-term selection 438 

response indirectly [45]. Therefore, this argues for a simple breeding scheme, utilising 439 

only additive genetic effects, although re-structuring towards a cross breeding 440 

scheme, e.g. reciprocal recurrent selection, may be desirable for reasons related to 441 
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the infinitesimal dominance detected or the inbreeding depression or the maternal 442 

variances. 443 

Nevertheless, for some traits substantial additive by additive epistasis was observed 444 

even though it is expected that epistatic variance would be much smaller than the 445 

additive genetic variance in elite commercial populations [28,45]. This may prompt two 446 

questions. Firstly, whether these effects should be included in the estimation of genetic 447 

parameters: this is unlikely to be of benefit in selection decisions, partly because 448 

additive genetic variance already contains some of the variance arising from epistatic 449 

effects [24,28,46]. Secondly, whether the large epistatic ratio, predicting large 450 

differences among individuals in the population (Figure 2) can be used in the Nile 451 

tilapia breeding program in some way: since the observations of the epistasis relies 452 

upon anonymous loci, a more direct exploitation of epistasis will depend on finding out 453 

the causal variants showing large epistatic interactions [47,48] for different traits. This 454 

will require substantial resources to achieve, probably an order of magnitude greater 455 

than for identifying the additive effects of causal variants. Hence, this route seems 456 

rather complicated and costly to realise. 457 

Conclusion 458 

This study has found that the non-additive genetic variance in the Nile tilapia 459 

population was almost entirely additive by additive epistatic variance, when using 460 

genomic relationship matrixes, whereas these non-additive effects are commonly 461 

assumed to be dominance using pedigree-based relationship matrixes. The 462 

inbreeding depression and lack of dominance variance was consistent with an 463 

infinitesimal dominance model. Finally, the creation of maternal lines in Tilapia 464 

breeding schemes may be a possibility if this variation is found to be heritable. 465 

466 
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List of abbreviations 467 

Acronym Full Form 

BD Body Depth 

BL Body Length 

BT Body Thickness 

BWH Body Weight at Harvest 

d.f. degrees of freedom 

FW Fillet Weight 

FY Fillet Yield 

GRMs Genomic relationship matrices 

HWE Hardy-Weinberg Equilibrium  

LD Linkage Disequilibrium 

NOIA Natural and orthogonal interactions 
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List of tables 646 

Table 1: Log likelihood values with significance levels for different models for the six 647 

traits. The significance level for the likelihood ratio tests are expressed relative to the 648 

full model ADME. The critical values for Type 1 errors of 0.05, 0.01 and 0.001 were: 649 

for 1 d.f., 2.71, 5.42 and 9.55, respectively; for 2 d.f., 4.24, 7.29 and 11.77; and for 3 650 

d.f.  5.44, 8.75 and13.48 respectively. The statistical significance is labelled as '*', ‘**’ 651 

and ‘***’ for P<0.05, P<0.01 and P<0.001, respectively. 652 

Models d.f. BD BL BT BWH FW FY 

ADME   -43.48 -191.28 -1.78 -31.51 -69.90 -68.55 

ADE 1 -46.55** -195.75** -2.25 -35.82** -74.74*** -69.10 

ADM 1 -45.14* -192.02 -2.34 -33.40* -70.40 -68.65 

AME 1 -43.48 -191.28 -1.78 -31.51 -69.90 -68.55 

AD 2 -49.29** -197.99*** -3.04 -39.29*** -76.05*** -69.25 

AE 2 -46.55* -195.75** -2.25 -35.82** -74.74** -69.10 

AM 2 -45.15 -192.02 -2.40 -33.40 -70.40 -68.65 

A 3 -49.29** -197.99** -3.06 -39.29*** -76.05** -69.25 

 653 

654 
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Table 2: Inbreeding depression for the commercial traits in Nile tilapia. “b” is the 655 

regression coefficient of trait on individual homozygosity, and D is the percentage 656 

decrease in the trait value per 1% increase in the individual homozygosity due to 657 

inbreeding depression. Standard errors are presented inside the parenthesis (). ** 658 

indicates p values 0.001 - 0.01 and * indicates p values 0.01 - 0.05 for significant 659 

values. “Difference” is the difference in performance between the upper and lower 5 660 

percentile for homozygosity in the population. “Unit” is the unit for “b” and “Difference” 661 

of different traits.  662 

 BD BWH BL FW BT FY 

b -3.27** 
(1.19) 

-371** 
(137) 

-7.57* 
(2.95) 

-156** 
(56) 

-7.08 
(5.05) 

-6.90 
(4.93) 

D 0.37 0.91 0.34 1.08 0.17 0.21 
Difference 0.21 23.22 0.47 9.76 0.44 0.43 
Unit cm g cm g mm % 

 663 

664 
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Table 3: Components and their ratios with phenotypic variance for the models of best 665 

fit for different traits. Standard errors are presented in parentheses.  The ratios are: 666 

narrow heritability h2, broad heritability H2, maternal ratio m2 and epistatic ratio eaa
2 667 

Trait Model σ2
A σ2

Eaa σ2
m σ2

e σ2
p h2 H2 m2 eaa

2 

   NOIA 

BD AME 0.086 
(0.024) 

0.080 
(0.049) 

0.047 
(0.032) 

0.328 
(0.044) 

0.541 
(0.039) 

0.158 
(0.042) 

0.307 
(0.090) 

0.087 
(0.055) 

0.148 
(0.091) 

BWH AME 699 
(268) 

1183 
(680) 

635 
(418) 

4540 
(618) 

7059 
(498) 

0.099 
(0.037) 

0.266 
(0.093) 

0.090 
(0.054) 

0.167 
(0.096) 

BL AM 0.284 
(0.107) 

 0.257 
(0.162) 

2.803 
(0.136) 

3.345 
(0.209) 

0.085 
(0.031) 

 0.076 
(0.045) 

 

FW AM 118 
(42) 

 99 
(63) 

1009 
(50) 

1227 
(79) 

0.096 
(0.033) 

 0.080 
(0.047) 

 

BT A 1.695 
(0.441) 

  8.015 
(0.411) 

9.710 
(0.458) 

0.174 
(0.041) 

   

FY A 1.758 
(0.406) 

  7.461 
(0.378) 

9.220 
(0.435) 

0.190 
(0.039) 

   

   HWE 

BD AME 0.097 
(0.027) 

0.102 
(0.063) 

0.047 
(0.032) 

0.326 
(0.045) 

0.573 
(0.042) 

0.169 
(0.046) 

0.348 
(0.1) 

0.082 
(0.053) 

0.178 
(0.106) 

BWH AME 791 
(303) 

1504 
(864) 

635 
(418) 

4520 
(626) 

7450 
(544) 

0.106 
(0.04) 

0.308 
(0.104) 

0.085 
(0.051) 

0.201 
(0.111) 

BL AM 0.321 
(0.120) 

 0.257 
(0.162) 

2.801 
(0.136) 

3.380 
(0.213) 

0.095 
(0.034) 

 0.076 
(0.044) 

 

FW AM 133 
(47) 

 99 
(63) 

1009 
(50) 

1241 
(81) 

0.107 
(0.036) 

 0.079 
(0.047) 

 

BT A 1.915 
(0.498) 

  8.004 
(0.413) 

9.92 
(0.492) 

0.193 
(0.044) 

   

FY A 1.987 
(0.459) 

  7.450 
(0.379) 

9.437 
(0.467) 

0.210 
(0.042) 

   

 668 
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Table 4: Corrected heritabilities, ratio and variances for the models of best fit for 669 

different traits and approaches. The variances and ratios were corrected by (Mean 670 

(leading diagonal) – Mean) of the the corresponding relationship matrices as per 671 

Legarra (2016). Standard errors are presented in parenthesis. 672 

Traits HWE NOIA 

σ2
A σ2

Eaa h2 eaa
2 σ2

A σ2
Eaa h2 eaa

2 

BD 0.086 
(0.024) 

0.080 
(0.049) 

0.159 
(0.043) 

0.147 
(0.091) 

0.086 
(0.024) 

0.080 
(0.049) 

0.159 
(0.043) 

0.147 
(0.091) 

BWH 698.774 
(267.730) 

1169.547 
(672.154) 

0.099 
(0.037) 

0.167 
(0.096) 

698.772 
(267.729) 

1169.539 
(672.149) 

0.099 
(0.037) 

0.167 
(0.095) 

BL 0.285 
(0.107) 

 0.085 
(0.031) 

 0.284 
(0.107) 

 0.085 
(0.031) 

 

FW 117.948 
(41.825548) 

 0.096 
(0.0324407) 

 117.948 
(41.825) 

 0.096 
(0.033) 

 

BT 1.694 
(0.441) 

 0.174 
(0.041) 

 1.694 
(0.441) 

 0.174 
(0.041) 

 

FY 1.757 
(0.406) 

 0.191 
(0.039) 

 1.758 
(0.406) 

 0.191 
(0.039) 

 

 673 
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 675 

Figure 1: Decomposition of the phenotypic variance into different components using 676 

NOIA and HWE assumption approaches for the six traits. The ratios are: h2 is additive; 677 

d2 is dominance; eaa
2 is additive by additive epistatic; m2 is maternal; and e2 is residual. 678 
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679 
Figure 2: Scatterplot of estimated breeding values (EBVs) and epistatic (additive by 680 

additive) values (EEVs) for the trait BWH using NOIA approach (a) shows the 681 

scatterplot for all the individuals (b) shows the scatterplot for the mean values for 682 

different full-sib families. Please note that the values for x-axis and y-axis are different 683 

for both plots. The color of the dots in the scatterplot represents the types of reciprocal 684 

cross (rc): AxB and BxA. 685 
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