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Abstract

Background:

The availability of both pedigree and genomic sources of information for animal
breeding and genetics has created new challenges in understanding how best they
may be utilized and how they may be interpreted. This study computed the variance
components obtained using genomic information_and compared these to the variances
obtained using pedigree in a population generated to estimate non-additive genetic
variance. Further, the impact of assumptions concerning Hardy-Weinberg Equilibrium
(HWE) on the component estimates was examined. The magnitude of inbreeding
depression for important commercial traits in Nile tilapia was estimated for the first

time, here using genomic data.

Results

The non-additive genetic variance in a Nile tilapia population was estimated from full-
sib families and, where present, was found to be almost entirely additive by additive
epistatic variance, although in pedigree studies this source is commonly assumed to
arise from dominance. For body depth (BD) and body weight at harvest (BWH), the
estimates of the additive by additive epistatic ratio (P<0.05) were found to be 0.15 and
0.17 in the current breeding population using genomic data. In addition, we found
maternal variance (P<0.05) for BD, BWH, body length (BL) and fillet weight (FW),
explaining approximately 10% of the observed phenotypic variance, which are
comparable to the pedigree-based estimates. This study also disclosed detrimental
effects of inbreeding in commercial traits of tilapia, which were estimated to cause
1.1%, 0.9%, 0.4% and 0.3% decrease in the trait value with 1% increase in the

individual homozygosity for FW, BWH, BD and BL, respectively. The inbreeding
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depression and lack of dominance variance was consistent with an infinitesimal

dominance model

Conclusions:

An eventual utilisation of non-additive genetic effects in breeding schemes is not
evident or straightforward from our findings, but inbreeding depression suggests for
cross-breeding, although commercially this conclusion will depend on cost structures.
However, the creation of maternal lines in Tilapia breeding schemes may be a

possibility if this variation is found to be heritable.

Keywords: Nile tilapia, genomic selection, dominance, epistasis, maternal variance,

non-additive genetic effects, reciprocal, heritability, inbreeding depression
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Background

This paper is a part of a wider study on the non-additive genetic effects in Nile tilapia
and their potential utilization in tilapia breeding programs. A previous study [1] used
the classical approach to partition the variance observed from a diallel mating design
into additive, non-additive and maternal components using pedigree information to
generate the additive and dominance relationship matrixes. These variance
components are inferred from the variances within and between full-sib families, where

the latter is also decomposed among sires and among dams.

These pedigree based selection methods have been gradually supplemented with, or
replaced by, genomic information in various livestock species [2], and even in some
commercial aquaculture species [3]. With the possibility of improved accuracy and
more detailed information from genomics [4], there has been a growing interest to try
to quantify and potentially utilize the non-additive genetic source of phenotypic
variation. This new technology has introduced new challenges to fully understand the
results of these methods and their equivalence to the classical decompositions based
on pedigree. The availability of genomic information in Nile tilapia [5] has offered the
opportunity to close this gap in an important aquacultural species. The first aim of this
paper is to compare the genetic variance components obtained from using either
genomics or pedigree information to generate the appropriate relationship matrices in

a design generated to estimate non-additive variances.

The genomic BLUP (GBLUP) model builds a matrix of relationships between all
individuals of a population based on genomic data, and BLUP uses these relations to
partition the variance and predict the breeding values. The assumptions used to
construct these relationship matrices have a direct effect on the accuracy of the
results. There are different methods to construct the relationship matrices, most of
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84 them differing in the scaling parameters [6-8], which makes it difficult to make
85 comparisons of results obtained with each of the methods. One method of comparison
86 has been published by Legarra (2016) [9], where it is shown that re-scaling of the
87  relationship matrices to the same reference population is necessary. In constructing
88 relationship matrices, assumptions are often made about the presence of Hardy-
89  Weinberg equilibrium (HWE), (e.g. in the use of Van Raden matrices [7] , as used by
90 GCTA[10]), and on managing the linkage disequilibrium (LD) [11]. These assumptions
91 influence the orthogonality of the estimates of the variance components and hence the
92 validity and generality of their biological interpretation. Thus, the second aim of this
93  paper is to examine the impact of assumption of HWE on the relationship matrices

94  and the consequences for the estimation.

95 Inbreeding depression is a natural phenomenon that is widely assumed to be
96 deleterious for traits of commercial importance and thus has serious practical
97 implications [12-15]. It has greater impact in populations with smaller effective
98 population size (Ne) than in those with higher Ne, due to more efficient purging of
99 deleterious alleles in the latter [16,17], which makes it a concern to breeders since Ne
100 is often restricted in breeding populations. Genomic data allows a direct assessment
101 of the extent of homozygosity and its variation rather than a reliance on changes
102  predicted as a consequence of pedigree inbreeding. Consequently, utilisation of
103 genomic data may contribute to a better design and operation of breeding programs.
104 To date, the authors are unaware of estimates of inbreeding depression in Nile tilapia,
105 even using the pedigree. Thus, the final aim of this paper is to quantify the effect of
106  inbreeding depression for important commercial traits in Nile tilapia using genomic

107 data.
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108  Hence, this paper has tried to dissect the maternal, additive and non-additive genetic
109 effects for growth and carcass traits in Nile tilapia, examining the impact of the
110 assumption of HWE on the genomic relationship matrices and quantifying the

111 inbreeding depression for these commercial traits.

112 Methodology

113  Experimental design, phenotypes and genotypes:

114  The population used in this study and the experimental design have been previously
115  described in more detail [1]. In short, the population was obtained from the reciprocal
116  crossing of 2 parent groups, A and B, of Nile tilapia. The matings were partly factorial
117  so that each parent used, male or female, had offspring that were both full-sibs and
118  half-sibs. All offspring were hormonally treated, i.e. were either males or sex-reversed
119 males, a normal aquacultural procedure to avoid sexual maturation, which may largely
120  abrupt the growth, especially among females. Offspring were reared in three batches
121 and harvested over 8 different days after 6-7 months in the grow-out ponds. The fish
122 were filleted by three filleters. The phenotypes recorded were body weight at harvest
123 (BWH), body depth (BD), body length (BL), body thickness (BT), fillet weight (FW) and
124  Fillet yield (FY). Phenotypes were obtained on a total of 2524 individuals, with 1318

125 and 1206 from each of the two reciprocal crosses, in altogether 155 full-sib families.

126  From these, 1882 Nile tilapia samples were only genotyped using the Onil50 SNP-
127  array (see Joshi et al. (2018) [5] for details). The raw dataset contained 58,466 SNPs,
128  which were analysed using the Best Practices Workflow with default settings (sample
129  Dish QC = 0.82, QC call rate = 97; SNP call-rate cutoff = 97) in the Axiom Analysis
130  Suite software [18]. Ten samples fell below the minimum QC call rate and were

131 excluded. Then SNPs were selected based on the informativeness, i.e. based on the


https://doi.org/10.1101/579334
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/579334; this version posted March 18, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

132 formation of clusters and resolution. Only SNPs classified as PolyHighResolution [18]
133 (formation of three clusters with good resolution) and NoMinorHom [18] (formation of
134  two clusters with no samples of one homozygous genotype) were selected, and
135 43,014 SNPs were retained. The mean SNP call rate for these SNPs was 99.5 (range:
136  97-100). Finally, SNPs were filtered for minor allele frequency (MAF = 0.05), and
137 39,927 SNPs (68.3% of the total genotyped SNPs) were retained after all the quality
138  control parameters had been applied. From the marker genotypes, the individual
139  homozygosity was calculated as the proportion of homozygous loci per individual, and
140 was incorporated into the models described below as a covariate for detecting

141  directional dominance [19].

142 Of the 1882 genotyped, 1119 individuals from 74 full-sib families with an average of
143 15.1 offspring per full-sib family (range 1 to 44; standard deviation = 11.2) had
144  phenotypic observation and were used for further analysis. Supplementary 1 shows
145 the data structure and descriptive statistics in Tables S1.1 and S1.2 respectively,
146  whereas scatterplots and the phenotypic correlations for these individuals are shown

147  in Figure S1.1.

148  Statistical Analysis

149  ASReml-4 [20] was used to fit mixed linear models, using REML to estimate variance
150 components and breeding values. Eight different univariate GBLUP models were
151  tested and compared for the six traits described above. The basic model used was an
152  animal model (A), which was gradually expanded to an ADME (model with additive
153  (A), dominance (D), maternal (M) and first order epistatic interactions (E) effects) by
154 adding each effect as random effects in a heuristic approach. This resulted in the

155  following models:
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156 A model: y = XB +thb+ Zia + e

157  AD model: y =XB+hb +Zia+ Zod + e

158  ADE model y = XB +hb + Zia + Zod + Z3eaa + €

159  ADME model y = XB +hb + Zia + Zod + Z3eaa + Zsm+ e
160 ADM model: y=XB +hb + Zaa + Zod + Zam + e

161  AM model: y = XB +hb + Zaa + Zem + e

162  AME model y = XB +hb + Zia +Z3zeaa + Zam + e

163  AE model: y = XB +hb + Zia + Zzeaa + €

164  where, y is the vector of records; B is the vector of fixed effects that account for
165  reciprocal cross (1 d.f.), batch (2 d.f.) and day of harvest (7 d.f.); h the vector of overall
166  marker homozygosity for each individual, with b the inbreeding depression parameter;
167 a is a vector of random additive genetic effects; d is vector of random dominance
168  effects; eaa is the vectors of first order additive x additive epistatic interactions; m is
169  vector of maternal effects; e is a vector of random residual errors; and X, Zi, Z2, Z3
170  and Za, are corresponding design matrices for the fixed and random effects. For FW
171 and FY, the fixed model also included filleter (2 d.f.). The (co)variance structures of
172 the random effects are described below. Vectors a, d, eaaand e had effects for each

173 individual having genotypes; m for each maternal family.

174  The models were also fitted with additive x dominance and dominance x dominance
175 epistatic interaction effects, separately and in combination with additive x additive
176  epistatic interaction effects. These parameters were bound to zero while solving the

177  mixed model equations, thereby producing parameter values similar to those models
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178  without these random effects (results not shown). The distributional assumptions for

179  the random effects were multivariate normal, with mean zero and

ra G 02 0 0 0]
| d | 0 Dop 0 0 0
Var|ega |=[ 0 0  k(GH#G)dZ, 0 0
lm J 0 0 0 Ic 0

¢ 0 0 0 0 IoZl

180

181  where 02a, 0°p, 0%kaa, 0°m @and 0%k are additive genetic variance, dominance genetic
182  variance, additive by additive epistatic variance, maternal variance and error variance
183  respectively; G is the genomic relationship matrix with elements gi; D is the dominance
184  relationship matrix and | is an identity matrix of appropriate size. k(G#G) represents
185 the additive by additive epistatic relationship matrix, where k is the scaling factor as
186  described below and # is the Hadamard product of the two matrices given by (G#G)j

187 = gif* for elements in the indices i and j.

188  The phenotypic variance was calculated as 0%r = 02a + 0%p + 0%kaa + 0°m + 0%, and
189 the estimated variance components were expressed relative to the total phenotypic
190 variance (02%p): additive heritability (h?) = %A/ o%p, dominance ratio (d?) = oo/ o%r and
191  maternal ratio (m?) = 0?u/ 0%p. Broad sense heritability (H?) was calculated as (0%a +

192  0°p + O°eaa) / 0%p and the terms not in a model were set to 0. The variances obtained
193  were also scaled by diag(V)—\_/ where V is their corresponding (co)variance matrix

194  of size n and the bar denote the mean value [9].

195 Genomic natural and orthogonal interactions (NOIA) and Hardy-Weinberg Equilibrium
196 (HWE) approaches were used to calculate the G, D and k(G#G) following the methods

197  of [21]. These approaches differ in two ways: (i) the contrasts between genotypes used


https://doi.org/10.1101/579334
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/579334; this version posted March 18, 2019. The copyright holder for this preprint (which was

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

to define dominance deviations, and (ii) the scaling factors used for the relationship

matrices.

The NOIA approach relaxes the assumption of HWE in the population, under which

the genomic relationship matrix (G) is defined as:

H.H|
G=—1e
tr(HgHg)/n

where, Ha contains additive coefficients (ha) having the dimension of n x m, with n

= number of animals and m = number of SNPs. h; is coded as:

2(1—pa) AA
ha =13 (1—2p,) for genotypes {AB
—2pa BB

where, p, is the frequency of allele A. For dominance deviations, NOIA uses the
contrast that is orthogonal to ha at each locus. Therefore, if paa, pas and pss are the
allelic frequencies of the respective genotypes, the dominance relationship matrix (D)

is defined as;

HyH)
tr(HgHy)/n

where, Hda contains dominance coefficients (hq) defined for animal i and marker j

by:
_ 2pAB PBB
Paa+PeB—([PAa—PBB)? AA
4pAADBB
hg= for genotypes
d | PaatPBB—(PAA—PBB)? g yp AB
k_ 2PAADAB BB
Paa+Pep—([Paa—-PBB)?

The epistatic relationship matrices were then calculated from the Hadamard projects
and scaled using the average of the diagonals. Therefore, the additive by additive

epistatic relationship was calculated as:

10


https://doi.org/10.1101/579334
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/579334; this version posted March 18, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

GHG

217 k(G#G) = TGFOn

218 The HWE approach assumes that the population is under HWE equilibrium both in its
219 scaling and in calculating the contrast for defining dominance deviations. If the locus
220 is not in HWE the dominance contrast is not orthogonal to that for the additive effect,
221 unlike in NOIA. The contrasts used to define the additive effects are unchanged but

222  scaled assuming HWE, and the result is equivalent to method 1 of Raden [7]. So

HoH,'

223 =
Y 2pi(1-py)

224  where the sum in the denominator is over all m loci. The dominance relationship matrix
225 was calculated as

Waw,'

226 D= —X—
4y p?q?

227  where Wq contains elements wqg defined for animal i and marker |

—2p3 AA
228 Wd =< 2D4PB for genotypes {AB
—2p3 BB

229  The scaling factor k for epistatic relationship matrices using the HWE approach was
230 1, so the additive by additive epistatic relationship matrix is simply the Hadamard
231 product between the two matrices. The scatterplots for different relationship matrices

232 are presented in Figure S1.3 and Figure S1.4 of Supplementary 1.

233  The software used to calculate the matrices [21] did not accept missing genotypes. As
234  described above, 0.4% of genotypes were missing and these were predicted using R
235 code [22] by sampling from {0,1,2} with the probabilities for each given by observed

236  probabilities for that SNP. The effect of this prediction was checked with GCTA [10] by

11
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237 constructing the GRMs including and excluding the imputed genotypes. The
238  correlation of >0.9995 between the additive and dominance relationships constructed
239 using these two sets of genotypes suggest that there is no significant effect of
240  prediction of the missing genotypes on our results as seen from the scatterplots of

241  relationships in Figure S1.2 of Supplementary 1.

242 Comparison of Models

243  Likelihood ratio tests were used to measure the goodness of fit for the models. The
244  critical values were corrected for boundary effects following [23]. The critical values
245  are obtained from a mixture of x? distributions with different degrees of freedom (d.f.)
246  and were obtained for standard thresholds (P < 0.05, 0.01 and 0.001) by iteration using
247  R. The distributions of the likelihood under the null hypothesis of zero variances for 1,
248 2 and 3 components were ¥ I[0] + Y2 X?1, ¥4 I[0] + %2 ¥?1 + Ya x%2 and Y& [0] +% X%1 + %

249 x%2+ Y x%3 where I[0] corresponds to a point mass of 1 at x=0.

250

12
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251 Results

252 Genetic architecture

253  The six traits could be differentiated into three distinct groups based on the scores of
254  their likelihood ratio tests for the various models (Table 1): BD and BWH showed
255  evidence of significant maternal environmental effects and non-additive genetic effects
256 in the form of additive by additive epistasis. BL and FW showed evidence of significant
257 maternal environmental effects only; whereas BT and FY showed no evidence of
258  neither maternal environmental nor additive by additive epistatic effects. None of the
259 traits showed significant dominance variance. The assumption of HWE in the breeding
260 population did not influence the goodness of fit for any of the model, as the log
261 likelihood values were identical. This is expected since the models are equivalent and

262 only the parametrization differs.

263 Inbreeding depression

264  Detrimental effects of genomic homozygosity were evident for all of these commercial
265 traits, although of different magnitudes. BWH and FW were found to be more sensitive
266 to inbreeding than the other traits, with about 1% decrease in the trait value per 1%
267 increase in the individual homozygosity (Table 2). The difference between upper and
268 lower 5 percentile for homozygosity in this population was 0.062, and the resulting
269 differences in performance were ~6%, i.e. 23.21 g for BWH, 0.21 g for BD, 0.47 cm
270 for BL and 9.76 g for FW. Traits BT and FY, the two traits with no evidence of non-
271  additive genetic and maternal environmental effects, were found to be least sensitive

272 with the estimates not differing significantly from 0 (P>0.05).

13
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273  Decomposition of variance components
274  Estimates of the variance components with the HWE and NOIA approaches for all the
275 models and traits are presented graphically in Figure 1. The summary table for the

276  models selected based on the likelihood ratio test are presented in Table 3.

277 The simple A model gave the higher additive genetic variances, and the higher
278 heritabilities across all the traits. Addition of dominance in the models had no effect on
279 the estimated additive genetic variances, whereas including the additive by additive
280 epistatic effect reduced the additive genetic variances markedly, except for BT and FY
281 where there was no evidence (P>0.05) of epistasis. Inclusion of maternal
282  environmental effects reduced the additive genetic variance compared to what was
283  estimated with the simple A model, implying that without the maternal effect the
284  additional variance associated with dams was interpreted as evidence of additive
285 genetic effects. Including a maternal effect (AME models) also reduced the additive by
286 additive epistatic variance compared to AE models. These reductions were again
287 minimal for BT and FY. Similar results were obtained in both the NOIA and HWE
288 assumption approaches. Hence, the numerical values are shown for the NOIA

289  approach (scaled to the reference population [9]) , unless otherwise mentioned.

290 Model dependent variation in the estimation of additive variance was also observed in
291 the heritability estimates. For BT and FY, the two traits where the model of best fit was
292 the simple A model, the heritabilities were least dependent on the models. For other
293 traits, the differences observed among the models was up to 50%. For the best fit
294  models, the estimates of the heritabilities were low to moderate, ranging from 0.08 *

295 0.03 for BL to 0.19 + 0.04 for FY (Table 4).

14
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296 For BD and BWH, the traits for which the best fit model included additive by additive
297  epistatic effect, the additive by additive epistatic ratio (eaa?) was 0.15 + 0.09 and 0.17
298 +0.10 (Table 4), and additive by additive epistasis was found to be 48% and 63% of
299 the total genetic variance for BD and BWH, respectively, but with large standard errors.
300 Various other papers with genomic epistatic models also report large epistatic
301 components [21,24,25] with corresponding large standard errors. Large differences
302 between the individuals (Figure 2a) and the full-sib families (Figure 2b) were observed

303 for the additive by additive epistatic effects.

304  For the four traits where the model of best fit included maternal environmental effect,
305 the maternal ratio was found to be around 0.08+0.04 to 0.09+ 0.06. As expected, this
306 variance ratio was not affected by the two approaches or the models used. Thus, the
307 previous recommendation [1] of possibility of creation of specialised maternal and sire
308 lines in Nile tilapia breeding program is still relevant, if the maternal variance is found

309 to be heritable.

310 Discussion

311 Interpretation of variance within the full-sib family

312 A major finding of this study is that the use of genomic relationship matrixes identified
313 the source of non-additive genetic variance as being almost entirely additive by
314 additive epistatic variance. The primary source of non-additive variance is commonly
315 assumed to be dominance in pedigree based analyses [1,26,27], but this assumption
316 can be very misleading as here, where the estimates of dominance variance were
317 negligible. In this study, the information for estimating non-additive variance comes
318 from the variance within full-sib families (see Supplementary Information 2), and in the

319 presence of dominance and epistasis, the additional variance in full-sib families, above
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320 the additive variance provided by the sire and dam, is ¥ 0%p + ¥ O%Eaa + & O%Ead + V&
321  02%edd, Where 0%p, 0%kaa, 0%ead and 0%edd are dominance, additive by additive, additive
322 by dominance and dominance by dominance epistatic variances [28]. Under an
323 infinitesimal model with both additive and dominance effects, with the increase in the
324  number of loci, either the dominance variance tends towards zero or the inbreeding
325 depression tends towards infinity [28,29]. Thus, dominance may be present, but the
326 genomic approach is showing this component behaves infinitesimally, with 0%p, 0%ad

327  and 0%edd undetectable in analyses.

328 Comparison with pedigree approach

329  This study adds a new dimension to our previous paper [1]. The availability of the
330 genomic data in populations will inevitably lead to comparisons of genomic- and
331 pedigree-based heritabilities, but these are not straightforward. Some publications
332 argue that pedigree-based methods overestimate heritabilities [30-32], while some

333  suggest the reverse [33-36], and other that the heritabilities are similar [37].

334  However, few studies recognize that the variance parameters obtained (i.e. the scaling
335 parameters to the numerator or genomic relationship matrix) even in basic additive
336  models do not refer to the same populations, and therefore the simple comparison of
337 parameters can be rendered meaningless. For pedigree-based analyses the
338 parameter refers to the base population of the pedigree (a subset of A), and for
339 genomic-based analyses it can be viewed as the genetic variance in the population
340 defined by the whole G assuming all the markers are in HWE. Many papers compare
341 these values but they are uninformative as a large part of the difference can be
342  accounted for by such distinctions [9,21]. To overcome the problem of comparability,
343 the variance parameters from NOIA and HWE approaches were used to estimate the
344 genetic variance in the entire population of this study [9] with marker genotypes as
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345 observed, equivalent to scaling the variance component estimates by diag(V)-V,

346  where V is the relevant relationship matrix and the bar denotes averaging elements.

347 In this study, where the models go beyond the additive components, there are
348  additional reasons why components may differ. In the tilapia population studied here,
349 the additive variance, when dominance is assumed to be the source of non-additive
350 variation, gives a qualitatively different estimate to that obtained if additive epistasis is
351 assumed (see Supplementary 2). Therefore, differences should be expected between
352 the current study and [1]. A further issue with this study was that the data used was
353  only a subset of the data used for [1], although Figure S1.5 of Supplementary 1 shows
354 the sampling does not deviate far from random sampling expectations. This issue was
355 overcome by repeating the pedigree analyses using only the phenotypes included in

356  this study (see Table S1.4 in Supplementary 1).

357 The outcome from objective comparisons of the pedigree- and genomic analyses
358 showed a qualitatively similar pattern of contributing sources of variance for all 6 traits
359 insofar as additive, maternal and non-additive variances. Some small differences were
360 observed: for example, the qualitative statistical significance for maternal ratio showed
361 differences for BT and BL although the quantitative outcomes for the maternal ratio
362 were similar. The evidence of non-additive genetic effects was found for the same
363 traits (BD, BWH) irrespective of the type of relationships used. However, as
364 mentioned above, critically, the genomics identified the source of non-additivity as

365 additive by additive epistasis rather than dominance.

366 Genomic models were robust to misspecification in partitioning the variance among
367 the components of the genetic and environmental models, and this robustness is

368 another potential cause of difference between genomic and pedigree models. This is
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369 clearly observed when the basic model ‘A’ is fitted to traits for which the true genetic
370  architecture is more complex (results are shown in Supplementary 1, Table S1.4). In
371 the basic model ‘A’, using pedigree, the dam information is absorbed into estimating
372 additive variance; in contrast to the genomic model, where it is the genotypes of the
373 dam and its offspring that contribute information on the heritabilities, so the dam
374 variance is no longer (wrongly) absorbed into the additive variance. Hence the
375 pedigree-based heritabilities are higher for traits with maternal variance, as a

376  consequence of the wrong model, and this difference was as large as 0.18.

377 Impact of approaches used

378 GBLUP uses GRMs, and the assumptions in the construction of these GRMs can have
379 a direct effect on the components; e.g. Van Raden matrices [7]) assume Hardy
380 Weinberg equilibrium when scaling the relationship matrices, whereas this assumption
381 is avoided with NOIA matrices. In this study, the use of these genomic approaches
382  showed no difference to the qualitative outcomes related to the genetic architecture of
383 the trait, but did make a quantitative difference e.g. additive-by-additive epistatic ratio
384 (eaa®) was inflated by ca. 20 % and 18%, and heritability (h?) by 6% and 10% for the
385 traits BD and BWH respectively (Table 3). Such quantitative differences have also
386 been observed in other studies [21]. As a consequence of the absence of dominance
387 variance in this study, the differences between the NOIA and HWE collapse into
388 differences in the scaling of the relationship matrices as the contrasts used to construct

389 the matrices were identical. Therefore, the transformation of the components to a
390 similar scale based on diag(V)—V for these relationship matrices yielded identical

391 variance components and ratios.

392 The NOIA and HWE approaches are statistical models in that they partition the

393 variance observed in a population and use these parameters to estimate breeding
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394 values and dominance deviations [21]. As such, these estimates depend on the allele
395 frequencies in the particular population, and the structure of the population which will
396 influence the genotypic frequencies. A distinction needs to be made between the
397 magnitudes of the variance components in the total genetic variance and the effects
398 estimated using them on the one hand, and the ubiquity of the same phenomena in
399 genotypic models (sometimes called biological models) on the other hand [38,39]. For
400 example, the genotypes at a single locus may show complete dominance, but have a
401 negligible dominance deviation, because the superior homozygote is very rare in the
402  population. Although the NOIA approach removes limitations of HWE, there are major
403  barriers to it moving towards the building of genotypic models. Firstly, it does not
404  remove the impact of LD on estimates of the effects, and more seriously, the genotypic
405 models are meaningful only if constructed with the causal variants and not with

406  anonymous markers.

407 Inbreeding depression

408  Absence of dominance variance does not necessarily mean the absence of inbreeding
409 depression when the genetic architecture approaches the infinitesimal model, and
410 evidence was found for depression in precisely the same four traits for which the basic
411 ‘A’ model was rejected. To the authors’ knowledge, these estimates are the first for
412  the commercial traits in Nile tilapia. Most of the quantification has been done using
413  pedigree information in other aquaculture species, e.g. [40-42], and a few using
414  genomics, e.g. [43]. In the present study, this information was not observable without
415 the application of genomics because of the near identical inbreeding coefficients
416 among individuals of the study population. Most of the traits clearly show the signal of
417  inbreeding depression and ignoring this term leaves the estimates of the variance

418 components and predictions of offspring merit open to bias (Supplementary 3).
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419  Further, the inbreeding depression is commercially significant for commercial traits, for
420 example, FW decreases by 1% with 1% increase in homozygosity. Our population
421  shows 6% difference between upper and lower 5 percentile for homozygosity in this
422  population. This causes 6% difference for FW between individuals with high and low
423  homozygosity, which has a huge commercial implication. Homozygosity can be
424  minimized by controlling inbreeding, and by crossing unrelated lines. The latter will
425 cause a large reduction in inbreeding depression if the regression on homozygosity

426  holds also across lines.

427 In the infinitesimal model the allelic additive effects (a’) are if the order of 1/Jn (i.e.

428 O(l/\/ﬁ)), as the number of loci, n, becomes large, so the additive variance remains
429 finite. For inbreeding depression to remain finite the directional dominance deviations
430 (d’) must be O(1/n), and so the consequence of an infinitesimal dominance model is
431 that d7a’ must reduce by 1/+/n as n increases. This is consistent with biological
432  pathway models such as [44], as when loci have increasingly small effect, responses

433  will be more adequately described by the linear term based on the gradient of the

434  response, and so the importance of partial dominance will diminish.

435  Ultilisation of the additive by additive epistatic effects

436 In the long run, additive by additive epistatic variance is expected to be exploited
437 indirectly as it is converted to additive genetic variance due to random drift and
438  selection; hence this form of variance affects the medium and long-term selection
439  response indirectly [45]. Therefore, this argues for a simple breeding scheme, utilising
440 only additive genetic effects, although re-structuring towards a cross breeding

441  scheme, e.g. reciprocal recurrent selection, may be desirable for reasons related to
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442  the infinitesimal dominance detected or the inbreeding depression or the maternal

443  variances.

444  Nevertheless, for some traits substantial additive by additive epistasis was observed
445  even though it is expected that epistatic variance would be much smaller than the
446  additive genetic variance in elite commercial populations [28,45]. This may prompt two
447  questions. Firstly, whether these effects should be included in the estimation of genetic
448  parameters: this is unlikely to be of benefit in selection decisions, partly because
449  additive genetic variance already contains some of the variance arising from epistatic
450 effects [24,28,46]. Secondly, whether the large epistatic ratio, predicting large
451  differences among individuals in the population (Figure 2) can be used in the Nile
452  tilapia breeding program in some way: since the observations of the epistasis relies
453  upon anonymous loci, a more direct exploitation of epistasis will depend on finding out
454  the causal variants showing large epistatic interactions [47,48] for different traits. This
455  will require substantial resources to achieve, probably an order of magnitude greater
456  than for identifying the additive effects of causal variants. Hence, this route seems

457  rather complicated and costly to realise.

458  Conclusion

459  This study has found that the non-additive genetic variance in the Nile tilapia
460 population was almost entirely additive by additive epistatic variance, when using
461 genomic relationship matrixes, whereas these non-additive effects are commonly
462 assumed to be dominance using pedigree-based relationship matrixes. The
463 inbreeding depression and lack of dominance variance was consistent with an
464  infinitesimal dominance model. Finally, the creation of maternal lines in Tilapia

465 breeding schemes may be a possibility if this variation is found to be heritable.

466
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467 List of abbreviations

Acronym Full Form

BD Body Depth

BL Body Length

BT Body Thickness

BWH Body Weight at Harvest

d.f. degrees of freedom

FW Fillet Weight

FY Fillet Yield

GRMs Genomic relationship matrices
HWE Hardy-Weinberg Equilibrium
LD Linkage Disequilibrium

NOIA Natural and orthogonal interactions
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646  List of tables

647 Table 1: Log likelihood values with significance levels for different models for the six
648 traits. The significance level for the likelihood ratio tests are expressed relative to the
649  full model ADME. The critical values for Type 1 errors of 0.05, 0.01 and 0.001 were:
650 for 1 d.f., 2.71, 5.42 and 9.55, respectively; for 2 d.f., 4.24, 7.29 and 11.77; and for 3
651 d.f. 5.44, 8.75 and13.48 respectively. The statistical significance is labelled as "', **
652 and *** for P<0.05, P<0.01 and P<0.001, respectively.

Models d.f. BD BL BT BWH FW FY

ADME -43.48  -191.28 -1.78 -31.51 -69.90 -68.55
ADE 1 -46.55** -195.75** | -2.25 -35.82** -74.74*** -69.10
ADM 1 -45.14* -192.02 -2.34 -33.40*  -70.40 -68.65
AME 1 -43.48 -191.28 -1.78 -31.51 -69.90 -68.55
AD 2 -49.29** -197.99*** -3.04 -39.29*** -76.05*** -69.25
AE 2 -46.55* -195.75** -2.25 -35.82** -74.74** -69.10
AM 2 -45.15 -192.02 -2.40 -33.40 -70.40 -68.65
A 3 -49.29** -197.99** -3.06 -39.29*** -76.05** -69.25
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655 Table 2: Inbreeding depression for the commercial traits in Nile tilapia. “b” is the
656  regression coefficient of trait on individual homozygosity, and D is the percentage
657 decrease in the trait value per 1% increase in the individual homozygosity due to
658 inbreeding depression. Standard errors are presented inside the parenthesis (). **
659 indicates p values 0.001 - 0.01 and * indicates p values 0.01 - 0.05 for significant
660 values. “Difference” is the difference in performance between the upper and lower 5
661  percentile for homozygosity in the population. “Unit” is the unit for “b” and “Difference”
662  of different traits.

BD BWH BL FW BT FY
b -3.27** -371** -7.57* -156** -7.08 -6.90
(1.19) (137) (2.95) (56) (5.05) (4.93)
D 0.37 0.91 0.34 1.08 0.17 0.21
Difference 0.21 23.22 0.47 9.76 0.44 0.43
Unit cm g cm g mm %
663
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Table 3: Components and their ratios with phenotypic variance for the models of best
fit for different traits. Standard errors are presented in parentheses. The ratios are:
narrow heritability h?, broad heritability H2, maternal ratio m2 and epistatic ratio eaa?

Trait

BD

BWH

BL

FW

BT

FY

BD

BWH

BL

FW

BT

FY

Model

AME

AME

AM

AM

A

A

AME

AME

AM

AM

O'ZA

0.086
699
0.284
118
1.695

1.758

0.097
791
0.321
133
1.915

1.987

02Eaa Uzm

0.080 0.047
1183 635
0.257

99

0.102 0.047
1504 635
0.257

99

0%

0.328

4540

2.803

1009

8.015

7.461

0.326

4520

2.801

1009

8.004

7.450

30

0%

NOIA
0.541

7059
3.345
1227
9.710
9.220

HWE
0.573

7450
3.380
1241
9.92

9.437

h2

0.158
0.099
0.085
0.096
0.174

0.190

0.169
0.106
0.095
0.107
0.193

0.210

HZ

0.307

0.266

0.348

0.308

mZ

0.087

0.090

0.076

0.080

0.082

0.085

0.076

0.079

2
€aa

0.148

0.167

0.178

0.201
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670
671
672

673
674

Table 4: Corrected heritabilities, ratio and variances for the models of best fit for
different traits and approaches. The variances and ratios were corrected by (Mean
(leading diagonal) — Mean) of the the corresponding relationship matrices as per
Legarra (2016). Standard errors are presented in parenthesis.

Traits HWE NOIA
o’ O'zEaa h? €aa’ o’a O'zEaa h? €aa’

BD 0.086 0.080 0.159 0.147 0.086 0.080 0.159 0.147
BWH 698.774 1169.547 0.099 0.167 698.772 1169.539 0.099 0.167
BL 0.285 0.085 0.284 0.085

FW 117.948 0.096 117.948 0.096

BT 1.694 0.174 1.694 0.174

FY 1.757 0.191 1.758 0.191
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675
676  Figure 1: Decomposition of the phenotypic variance into different components using

677 NOIA and HWE assumption approaches for the six traits. The ratios are: h? is additive;
678 d?is dominance; eaa? is additive by additive epistatic; m? is maternal; and e? is residual.
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679 EBVs EBVs

680 Figure 2: Scatterplot of estimated breeding values (EBVs) and epistatic (additive by
681 additive) values (EEVs) for the trait BWH using NOIA approach (a) shows the
682  scatterplot for all the individuals (b) shows the scatterplot for the mean values for
683 different full-sib families. Please note that the values for x-axis and y-axis are different
684  for both plots. The color of the dots in the scatterplot represents the types of reciprocal
685  cross (rc): AxB and BxA.
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