

1 **Genomic dissection of maternal, additive and non-**
2 **additive genetic effects for growth and carcass traits in**
3 **Nile tilapia**

4

5 **R Joshi, JA Woolliams, THE Meuwissen and HM Gjøen**

6

7 **Rajesh Joshi** (corresponding author), Department of Animal and Aquacultural
8 Sciences, Norwegian University of Life Sciences, P.O. Box 5003, 1432 Ås, Norway.
9 +4767232739. rajesh.joshi@nmbu.no

10 **John Woolliams**, The Roslin Institute, Royal (Dick) School of Veterinary Studies,
11 University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, United Kingdom. And
12 Department of Animal and Aquacultural Sciences, Norwegian University of Life
13 Sciences, P.O. Box 5003, 1432 Ås, Norway.
14 john.woolliams@roslin.ed.ac.uk

15 **Theodorus Meuwissen**, Department of Animal and Aquacultural Sciences,
16 Norwegian University of Life Sciences, P.O. Box 5003, 1432 Ås, Norway.
17 +4767232739. theo.meuwissen@nmbu.no

18 **Hans Magnus Gjøen**, Department of Animal and Aquacultural Sciences, Norwegian
19 University of Life Sciences, P.O. Box 5003, 1432 Ås, Norway. +4767232739.
20 hans.magnus.gjoen@nmbu.no

21

22

23 **Abstract**

24 **Background:**

25 *The availability of both pedigree and genomic sources of information for animal
26 breeding and genetics has created new challenges in understanding how best they
27 may be utilized and how they may be interpreted. This study computed the variance
28 components obtained using genomic information and compared these to the variances
29 obtained using pedigree in a population generated to estimate non-additive genetic
30 variance. Further, the impact of assumptions concerning Hardy-Weinberg Equilibrium
31 (HWE) on the component estimates was examined. The magnitude of inbreeding
32 depression for important commercial traits in Nile tilapia was estimated for the first
33 time, here using genomic data.*

34 **Results**

35 *The non-additive genetic variance in a Nile tilapia population was estimated from full-
36 sib families and, where present, was found to be almost entirely additive by additive
37 epistatic variance, although in pedigree studies this source is commonly assumed to
38 arise from dominance. For body depth (BD) and body weight at harvest (BWH), the
39 estimates of the additive by additive epistatic ratio ($P<0.05$) were found to be 0.15 and
40 0.17 in the current breeding population using genomic data. In addition, we found
41 maternal variance ($P<0.05$) for BD, BWH, body length (BL) and fillet weight (FW),
42 explaining approximately 10% of the observed phenotypic variance, which are
43 comparable to the pedigree-based estimates. This study also disclosed detrimental
44 effects of inbreeding in commercial traits of tilapia, which were estimated to cause
45 1.1%, 0.9%, 0.4% and 0.3% decrease in the trait value with 1% increase in the
46 individual homozygosity for FW, BWH, BD and BL, respectively. The inbreeding*

47 *depression and lack of dominance variance was consistent with an infinitesimal*
48 *dominance model*

49 **Conclusions:**

50 *An eventual utilisation of non-additive genetic effects in breeding schemes is not*
51 *evident or straightforward from our findings, but inbreeding depression suggests for*
52 *cross-breeding, although commercially this conclusion will depend on cost structures.*
53 *However, the creation of maternal lines in Tilapia breeding schemes may be a*
54 *possibility if this variation is found to be heritable.*

55

56 **Keywords:** Nile tilapia, genomic selection, dominance, epistasis, maternal variance,
57 non-additive genetic effects, reciprocal, heritability, inbreeding depression

58

59 **Background**

60 This paper is a part of a wider study on the non-additive genetic effects in Nile tilapia
61 and their potential utilization in tilapia breeding programs. A previous study [1] used
62 the classical approach to partition the variance observed from a diallel mating design
63 into additive, non-additive and maternal components using pedigree information to
64 generate the additive and dominance relationship matrixes. These variance
65 components are inferred from the variances within and between full-sib families, where
66 the latter is also decomposed among sires and among dams.

67 These pedigree based selection methods have been gradually supplemented with, or
68 replaced by, genomic information in various livestock species [2], and even in some
69 commercial aquaculture species [3]. With the possibility of improved accuracy and
70 more detailed information from genomics [4], there has been a growing interest to try
71 to quantify and potentially utilize the non-additive genetic source of phenotypic
72 variation. This new technology has introduced new challenges to fully understand the
73 results of these methods and their equivalence to the classical decompositions based
74 on pedigree. The availability of genomic information in Nile tilapia [5] has offered the
75 opportunity to close this gap in an important aquacultural species. The first aim of this
76 paper is to compare the genetic variance components obtained from using either
77 genomics or pedigree information to generate the appropriate relationship matrices in
78 a design generated to estimate non-additive variances.

79 The genomic BLUP (GBLUP) model builds a matrix of relationships between all
80 individuals of a population based on genomic data, and BLUP uses these relations to
81 partition the variance and predict the breeding values. The assumptions used to
82 construct these relationship matrices have a direct effect on the accuracy of the
83 results. There are different methods to construct the relationship matrices, most of

84 them differing in the scaling parameters [6–8], which makes it difficult to make
85 comparisons of results obtained with each of the methods. One method of comparison
86 has been published by Legarra (2016) [9], where it is shown that re-scaling of the
87 relationship matrices to the same reference population is necessary. In constructing
88 relationship matrices, assumptions are often made about the presence of Hardy-
89 Weinberg equilibrium (HWE), (e.g. in the use of Van Raden matrices [7] , as used by
90 GCTA [10]), and on managing the linkage disequilibrium (LD) [11]. These assumptions
91 influence the orthogonality of the estimates of the variance components and hence the
92 validity and generality of their biological interpretation. Thus, the second aim of this
93 paper is to examine the impact of assumption of HWE on the relationship matrices
94 and the consequences for the estimation.

95 Inbreeding depression is a natural phenomenon that is widely assumed to be
96 deleterious for traits of commercial importance and thus has serious practical
97 implications [12–15]. It has greater impact in populations with smaller effective
98 population size (N_e) than in those with higher N_e , due to more efficient purging of
99 deleterious alleles in the latter [16,17], which makes it a concern to breeders since N_e
100 is often restricted in breeding populations. Genomic data allows a direct assessment
101 of the extent of homozygosity and its variation rather than a reliance on changes
102 predicted as a consequence of pedigree inbreeding. Consequently, utilisation of
103 genomic data may contribute to a better design and operation of breeding programs.
104 To date, the authors are unaware of estimates of inbreeding depression in Nile tilapia,
105 even using the pedigree. Thus, the final aim of this paper is to quantify the effect of
106 inbreeding depression for important commercial traits in Nile tilapia using genomic
107 data.

108 Hence, this paper has tried to dissect the maternal, additive and non-additive genetic
109 effects for growth and carcass traits in Nile tilapia, examining the impact of the
110 assumption of HWE on the genomic relationship matrices and quantifying the
111 inbreeding depression for these commercial traits.

112 **Methodology**

113 **Experimental design, phenotypes and genotypes:**

114 The population used in this study and the experimental design have been previously
115 described in more detail [1]. In short, the population was obtained from the reciprocal
116 crossing of 2 parent groups, A and B, of Nile tilapia. The matings were partly factorial
117 so that each parent used, male or female, had offspring that were both full-sibs and
118 half-sibs. All offspring were hormonally treated, i.e. were either males or sex-reversed
119 males, a normal aquacultural procedure to avoid sexual maturation, which may largely
120 abrupt the growth, especially among females. Offspring were reared in three batches
121 and harvested over 8 different days after 6-7 months in the grow-out ponds. The fish
122 were filleted by three filleters. The phenotypes recorded were body weight at harvest
123 (BWH), body depth (BD), body length (BL), body thickness (BT), fillet weight (FW) and
124 Fillet yield (FY). Phenotypes were obtained on a total of 2524 individuals, with 1318
125 and 1206 from each of the two reciprocal crosses, in altogether 155 full-sib families.

126 From these, 1882 Nile tilapia samples were only genotyped using the Onil50 SNP-
127 array (see Joshi et al. (2018) [5] for details). The raw dataset contained 58,466 SNPs,
128 which were analysed using the Best Practices Workflow with default settings (sample
129 Dish QC ≥ 0.82 , QC call rate ≥ 97 ; SNP call-rate cutoff ≥ 97) in the Axiom Analysis
130 Suite software [18]. Ten samples fell below the minimum QC call rate and were
131 excluded. Then SNPs were selected based on the informativeness, i.e. based on the

132 formation of clusters and resolution. Only SNPs classified as PolyHighResolution [18]
133 (formation of three clusters with good resolution) and NoMinorHom [18] (formation of
134 two clusters with no samples of one homozygous genotype) were selected, and
135 43,014 SNPs were retained. The mean SNP call rate for these SNPs was 99.5 (range:
136 97-100). Finally, SNPs were filtered for minor allele frequency (MAF ≥ 0.05), and
137 39,927 SNPs (68.3% of the total genotyped SNPs) were retained after all the quality
138 control parameters had been applied. From the marker genotypes, the individual
139 homozygosity was calculated as the proportion of homozygous loci per individual, and
140 was incorporated into the models described below as a covariate for detecting
141 directional dominance [19].

142 Of the 1882 genotyped, 1119 individuals from 74 full-sib families with an average of
143 15.1 offspring per full-sib family (range 1 to 44; standard deviation = 11.2) had
144 phenotypic observation and were used for further analysis. Supplementary 1 shows
145 the data structure and descriptive statistics in Tables S1.1 and S1.2 respectively,
146 whereas scatterplots and the phenotypic correlations for these individuals are shown
147 in Figure S1.1.

148 Statistical Analysis

149 ASReml-4 [20] was used to fit mixed linear models, using REML to estimate variance
150 components and breeding values. Eight different univariate GBLUP models were
151 tested and compared for the six traits described above. The basic model used was an
152 animal model (A), which was gradually expanded to an ADME (model with additive
153 (A), dominance (D), maternal (M) and first order epistatic interactions (E) effects) by
154 adding each effect as random effects in a heuristic approach. This resulted in the
155 following models:

156 A model: $y = X\beta + hb + Z_1a + e$

157 AD model: $y = X\beta + hb + Z_1a + Z_2d + e$

158 ADE model $y = X\beta + hb + Z_1a + Z_2d + Z_3e_{aa} + e$

159 ADME model $y = X\beta + hb + Z_1a + Z_2d + Z_3e_{aa} + Z_4m + e$

160 ADM model: $y = X\beta + hb + Z_1a + Z_2d + Z_4m + e$

161 AM model: $y = X\beta + hb + Z_1a + Z_6m + e$

162 AME model $y = X\beta + hb + Z_1a + Z_3e_{aa} + Z_4m + e$

163 AE model: $y = X\beta + hb + Z_1a + Z_3e_{aa} + e$

164 where, y is the vector of records; β is the vector of fixed effects that account for reciprocal cross (1 d.f.), batch (2 d.f.) and day of harvest (7 d.f.); h the vector of overall marker homozygosity for each individual, with b the inbreeding depression parameter;

165 a is a vector of random additive genetic effects; d is vector of random dominance effects; e_{aa} is the vectors of first order additive x additive epistatic interactions; m is vector of maternal effects; e is a vector of random residual errors; and X , Z_1 , Z_2 , Z_3 and Z_4 , are corresponding design matrices for the fixed and random effects. For FW and FY, the fixed model also included filleter (2 d.f.). The (co)variance structures of the random effects are described below. Vectors a , d , e_{aa} and e had effects for each individual having genotypes; m for each maternal family.

174 The models were also fitted with additive x dominance and dominance x dominance epistatic interaction effects, separately and in combination with additive x additive epistatic interaction effects. These parameters were bound to zero while solving the 175 176 177 mixed model equations, thereby producing parameter values similar to those models

178 without these random effects (results not shown). The distributional assumptions for
179 the random effects were multivariate normal, with mean zero and

$$\text{Var} \begin{bmatrix} a \\ d \\ e_{aa} \\ m \\ e \end{bmatrix} = \begin{bmatrix} \mathbf{G}\sigma_A^2 & 0 & 0 & 0 & 0 \\ 0 & \mathbf{D}\sigma_D^2 & 0 & 0 & 0 \\ 0 & 0 & k(\mathbf{G}\#\mathbf{G})\sigma_{Eaa}^2 & 0 & 0 \\ 0 & 0 & 0 & \mathbf{I}\sigma_M^2 & 0 \\ 0 & 0 & 0 & 0 & \mathbf{I}\sigma_E^2 \end{bmatrix}$$

180
181 where σ_A^2 , σ_D^2 , σ_{Eaa}^2 , σ_M^2 and σ_E^2 are additive genetic variance, dominance genetic
182 variance, additive by additive epistatic variance, maternal variance and error variance
183 respectively; \mathbf{G} is the genomic relationship matrix with elements g_{ij} ; \mathbf{D} is the dominance
184 relationship matrix and \mathbf{I} is an identity matrix of appropriate size. $k(\mathbf{G}\#\mathbf{G})$ represents
185 the additive by additive epistatic relationship matrix, where k is the scaling factor as
186 described below and $\#$ is the Hadamard product of the two matrices given by $(\mathbf{G}\#\mathbf{G})_{ij}$
187 $= g_{ij}^2$ for elements in the indices i and j .

188 The phenotypic variance was calculated as $\sigma_P^2 = \sigma_A^2 + \sigma_D^2 + \sigma_{Eaa}^2 + \sigma_M^2 + \sigma_E^2$, and
189 the estimated variance components were expressed relative to the total phenotypic
190 variance (σ_P^2): additive heritability (h^2) = σ_A^2 / σ_P^2 , dominance ratio (d^2) = σ_D^2 / σ_P^2 and
191 maternal ratio (m^2) = σ_M^2 / σ_P^2 . Broad sense heritability (H^2) was calculated as $(\sigma_A^2 +$
192 $\sigma_D^2 + \sigma_{Eaa}^2) / \sigma_P^2$ and the terms not in a model were set to 0. The variances obtained
193 were also scaled by $\overline{\text{diag}(\mathbf{V})} - \bar{\mathbf{V}}$ where \mathbf{V} is their corresponding (co)variance matrix
194 of size n and the bar denote the mean value [9].

195 Genomic natural and orthogonal interactions (NOIA) and Hardy-Weinberg Equilibrium
196 (HWE) approaches were used to calculate the \mathbf{G} , \mathbf{D} and $k(\mathbf{G}\#\mathbf{G})$ following the methods
197 of [21]. These approaches differ in two ways: (i) the contrasts between genotypes used

198 to define dominance deviations, and (ii) the scaling factors used for the relationship
199 matrices.

200 The NOIA approach relaxes the assumption of HWE in the population, under which
201 the genomic relationship matrix (**G**) is defined as:

202
$$\mathbf{G} = \frac{\mathbf{H}_a \mathbf{H}'_a}{\text{tr}(\mathbf{H}_a \mathbf{H}'_a)/n}$$

203 where, **H_a** contains additive coefficients (h_a) having the dimension of $n \times m$, with n
204 = number of animals and m = number of SNPs. h_a is coded as:

205
$$h_a = \begin{cases} 2(1 - p_A) & \text{for genotypes } \begin{cases} AA \\ AB \end{cases} \\ (1 - 2p_A) & \\ -2p_A & \text{for genotypes } \begin{cases} BB \end{cases} \end{cases}$$

206 where, p_A is the frequency of allele A. For dominance deviations, NOIA uses the
207 contrast that is orthogonal to h_a at each locus. Therefore, if p_{AA} , p_{AB} and p_{BB} are the
208 allelic frequencies of the respective genotypes, the dominance relationship matrix (**D**)
209 is defined as;

210
$$\mathbf{D} = \frac{\mathbf{H}_d \mathbf{H}'_d}{\text{tr}(\mathbf{H}_d \mathbf{H}'_d)/n}$$

211 where, **H_d** contains dominance coefficients (h_d) defined for animal i and marker j
212 by:

213
$$h_d = \begin{cases} -\frac{2p_{AB} p_{BB}}{p_{AA} + p_{BB} - (p_{AA} - p_{BB})^2} & \text{for genotypes } \begin{cases} AA \\ AB \end{cases} \\ \frac{4p_{AA} p_{BB}}{p_{AA} + p_{BB} - (p_{AA} - p_{BB})^2} & \\ -\frac{2p_{AA} p_{AB}}{p_{AA} + p_{BB} - (p_{AA} - p_{BB})^2} & \text{for genotypes } \begin{cases} BB \end{cases} \end{cases}$$

214 The epistatic relationship matrices were then calculated from the Hadamard products
215 and scaled using the average of the diagonals. Therefore, the additive by additive
216 epistatic relationship was calculated as:

217
$$k(\mathbf{G} \# \mathbf{G}) = \frac{\mathbf{G} \# \mathbf{G}}{tr(\mathbf{G} \# \mathbf{G})/n}$$

218 The HWE approach assumes that the population is under HWE equilibrium both in its
219 scaling and in calculating the contrast for defining dominance deviations. If the locus
220 is not in HWE the dominance contrast is not orthogonal to that for the additive effect,
221 unlike in NOIA. The contrasts used to define the additive effects are unchanged but
222 scaled assuming HWE, and the result is equivalent to method 1 of Raden [7]. So

223
$$\mathbf{G} = \frac{\mathbf{H}_a \mathbf{H}_a'}{\sum 2p_i(1-p_i)}$$

224 where the sum in the denominator is over all m loci. The dominance relationship matrix
225 was calculated as

226
$$\mathbf{D} = \frac{\mathbf{W}_d \mathbf{W}_d'}{4 \sum p_i^2 q_i^2}$$

227 where \mathbf{W}_d contains elements w_{dj} defined for animal i and marker j

228
$$w_{dj} = \begin{cases} -2p_B^2 & \text{for genotypes } \begin{cases} AA \\ AB \end{cases} \\ 2p_A p_B & \\ -2p_A^2 & \text{for genotypes } BB \end{cases}$$

229 The scaling factor k for epistatic relationship matrices using the HWE approach was
230 1, so the additive by additive epistatic relationship matrix is simply the Hadamard
231 product between the two matrices. The scatterplots for different relationship matrices
232 are presented in Figure S1.3 and Figure S1.4 of Supplementary 1.

233 The software used to calculate the matrices [21] did not accept missing genotypes. As
234 described above, 0.4% of genotypes were missing and these were predicted using R
235 code [22] by sampling from $\{0, 1, 2\}$ with the probabilities for each given by observed
236 probabilities for that SNP. The effect of this prediction was checked with GCTA [10] by

237 constructing the GRMs including and excluding the imputed genotypes. The
238 correlation of >0.9995 between the additive and dominance relationships constructed
239 using these two sets of genotypes suggest that there is no significant effect of
240 prediction of the missing genotypes on our results as seen from the scatterplots of
241 relationships in Figure S1.2 of Supplementary 1.

242 **Comparison of Models**

243 Likelihood ratio tests were used to measure the goodness of fit for the models. The
244 critical values were corrected for boundary effects following [23]. The critical values
245 are obtained from a mixture of χ^2 distributions with different degrees of freedom (d.f.)
246 and were obtained for standard thresholds ($P < 0.05, 0.01$ and 0.001) by iteration using
247 R. The distributions of the likelihood under the null hypothesis of zero variances for 1,
248 2 and 3 components were $\frac{1}{2} I[0] + \frac{1}{2} \chi^2_1$, $\frac{1}{4} I[0] + \frac{1}{2} \chi^2_1 + \frac{1}{4} \chi^2_2$ and $\frac{1}{8} I[0] + \frac{3}{8} \chi^2_1 + \frac{3}{8}$
249 $\chi^2_2 + \frac{1}{8} \chi^2_3$ where $I[0]$ corresponds to a point mass of 1 at $x=0$.

250

251 **Results**

252 **Genetic architecture**

253 The six traits could be differentiated into three distinct groups based on the scores of
254 their likelihood ratio tests for the various models (Table 1): BD and BWH showed
255 evidence of significant maternal environmental effects and non-additive genetic effects
256 in the form of additive by additive epistasis. BL and FW showed evidence of significant
257 maternal environmental effects only; whereas BT and FY showed no evidence of
258 neither maternal environmental nor additive by additive epistatic effects. None of the
259 traits showed significant dominance variance. The assumption of HWE in the breeding
260 population did not influence the goodness of fit for any of the model, as the log
261 likelihood values were identical. This is expected since the models are equivalent and
262 only the parametrization differs.

263 **Inbreeding depression**

264 Detrimental effects of genomic homozygosity were evident for all of these commercial
265 traits, although of different magnitudes. BWH and FW were found to be more sensitive
266 to inbreeding than the other traits, with about 1% decrease in the trait value per 1%
267 increase in the individual homozygosity (Table 2). The difference between upper and
268 lower 5 percentile for homozygosity in this population was 0.062, and the resulting
269 differences in performance were ~6%, i.e. 23.21 g for BWH, 0.21 g for BD, 0.47 cm
270 for BL and 9.76 g for FW. Traits BT and FY, the two traits with no evidence of non-
271 additive genetic and maternal environmental effects, were found to be least sensitive
272 with the estimates not differing significantly from 0 (P>0.05).

273 **Decomposition of variance components**

274 Estimates of the variance components with the HWE and NOIA approaches for all the
275 models and traits are presented graphically in Figure 1. The summary table for the
276 models selected based on the likelihood ratio test are presented in Table 3.

277 The simple A model gave the higher additive genetic variances, and the higher
278 heritabilities across all the traits. Addition of dominance in the models had no effect on
279 the estimated additive genetic variances, whereas including the additive by additive
280 epistatic effect reduced the additive genetic variances markedly, except for BT and FY
281 where there was no evidence ($P>0.05$) of epistasis. Inclusion of maternal
282 environmental effects reduced the additive genetic variance compared to what was
283 estimated with the simple A model, implying that without the maternal effect the
284 additional variance associated with dams was interpreted as evidence of additive
285 genetic effects. Including a maternal effect (AME models) also reduced the additive by
286 additive epistatic variance compared to AE models. These reductions were again
287 minimal for BT and FY. Similar results were obtained in both the NOIA and HWE
288 assumption approaches. Hence, the numerical values are shown for the NOIA
289 approach (scaled to the reference population [9]), unless otherwise mentioned.

290 Model dependent variation in the estimation of additive variance was also observed in
291 the heritability estimates. For BT and FY, the two traits where the model of best fit was
292 the simple A model, the heritabilities were least dependent on the models. For other
293 traits, the differences observed among the models was up to 50%. For the best fit
294 models, the estimates of the heritabilities were low to moderate, ranging from $0.08 \pm$
295 0.03 for BL to 0.19 ± 0.04 for FY (Table 4).

296 For BD and BWH, the traits for which the best fit model included additive by additive
297 epistatic effect, the additive by additive epistatic ratio (e_{aa}^2) was 0.15 ± 0.09 and 0.17
298 ± 0.10 (Table 4), and additive by additive epistasis was found to be 48% and 63% of
299 the total genetic variance for BD and BWH, respectively, but with large standard errors.
300 Various other papers with genomic epistatic models also report large epistatic
301 components [21,24,25] with corresponding large standard errors. Large differences
302 between the individuals (Figure 2a) and the full-sib families (Figure 2b) were observed
303 for the additive by additive epistatic effects.
304 For the four traits where the model of best fit included maternal environmental effect,
305 the maternal ratio was found to be around 0.08 ± 0.04 to 0.09 ± 0.06 . As expected, this
306 variance ratio was not affected by the two approaches or the models used. Thus, the
307 previous recommendation [1] of possibility of creation of specialised maternal and sire
308 lines in Nile tilapia breeding program is still relevant, if the maternal variance is found
309 to be heritable.

310 Discussion

311 Interpretation of variance within the full-sib family

312 A major finding of this study is that the use of genomic relationship matrixes identified
313 the source of non-additive genetic variance as being almost entirely additive by
314 additive epistatic variance. The primary source of non-additive variance is commonly
315 assumed to be dominance in pedigree based analyses [1,26,27], but this assumption
316 can be very misleading as here, where the estimates of dominance variance were
317 negligible. In this study, the information for estimating non-additive variance comes
318 from the variance within full-sib families (see Supplementary Information 2), and in the
319 presence of dominance and epistasis, the additional variance in full-sib families, above

320 the additive variance provided by the sire and dam, is $\frac{1}{4} \sigma^2_D + \frac{1}{8} \sigma^2_{Eaa} + \frac{1}{8} \sigma^2_{Ead} + \frac{1}{8}$
321 σ^2_{Edd} , where σ^2_D , σ^2_{Eaa} , σ^2_{Ead} and σ^2_{Edd} are dominance, additive by additive, additive
322 by dominance and dominance by dominance epistatic variances [28]. Under an
323 infinitesimal model with both additive and dominance effects, with the increase in the
324 number of loci, either the dominance variance tends towards zero or the inbreeding
325 depression tends towards infinity [28,29]. Thus, dominance may be present, but the
326 genomic approach is showing this component behaves infinitesimally, with σ^2_D , σ^2_{Ead}
327 and σ^2_{Edd} undetectable in analyses.

328 [Comparison with pedigree approach](#)

329 This study adds a new dimension to our previous paper [1]. The availability of the
330 genomic data in populations will inevitably lead to comparisons of genomic- and
331 pedigree-based heritabilities, but these are not straightforward. Some publications
332 argue that pedigree-based methods overestimate heritabilities [30–32], while some
333 suggest the reverse [33–36], and others that the heritabilities are similar [37].

334 However, few studies recognize that the variance parameters obtained (i.e. the scaling
335 parameters to the numerator or genomic relationship matrix) even in basic additive
336 models do not refer to the same populations, and therefore the simple comparison of
337 parameters can be rendered meaningless. For pedigree-based analyses the
338 parameter refers to the base population of the pedigree (a subset of **A**), and for
339 genomic-based analyses it can be viewed as the genetic variance in the population
340 defined by the whole **G** assuming all the markers are in HWE. Many papers compare
341 these values but they are uninformative as a large part of the difference can be
342 accounted for by such distinctions [9,21]. To overcome the problem of comparability,
343 the variance parameters from NOIA and HWE approaches were used to estimate the
344 genetic variance in the entire population of this study [9] with marker genotypes as

345 observed, equivalent to scaling the variance component estimates by $\overline{\text{diag}(\mathbf{V})} - \overline{\mathbf{V}}$,

346 where \mathbf{V} is the relevant relationship matrix and the bar denotes averaging elements.

347 In this study, where the models go beyond the additive components, there are

348 additional reasons why components may differ. In the tilapia population studied here,

349 the additive variance, when dominance is assumed to be the source of non-additive

350 variation, gives a qualitatively different estimate to that obtained if additive epistasis is

351 assumed (see Supplementary 2). Therefore, differences should be expected between

352 the current study and [1]. A further issue with this study was that the data used was

353 only a subset of the data used for [1], although Figure S1.5 of Supplementary 1 shows

354 the sampling does not deviate far from random sampling expectations. This issue was

355 overcome by repeating the pedigree analyses using only the phenotypes included in

356 this study (see Table S1.4 in Supplementary 1).

357 The outcome from objective comparisons of the pedigree- and genomic analyses

358 showed a qualitatively similar pattern of contributing sources of variance for all 6 traits

359 insofar as additive, maternal and non-additive variances. Some small differences were

360 observed: for example, the qualitative statistical significance for maternal ratio showed

361 differences for BT and BL although the quantitative outcomes for the maternal ratio

362 were similar. The evidence of non-additive genetic effects was found for the same

363 traits (BD, BWH) irrespective of the type of relationships used. However, as

364 mentioned above, critically, the genomics identified the source of non-additivity as

365 additive by additive epistasis rather than dominance.

366 Genomic models were robust to misspecification in partitioning the variance among

367 the components of the genetic and environmental models, and this robustness is

368 another potential cause of difference between genomic and pedigree models. This is

369 clearly observed when the basic model 'A' is fitted to traits for which the true genetic
370 architecture is more complex (results are shown in Supplementary 1, Table S1.4). In
371 the basic model 'A', using pedigree, the dam information is absorbed into estimating
372 additive variance; in contrast to the genomic model, where it is the genotypes of the
373 dam and its offspring that contribute information on the heritabilities, so the dam
374 variance is no longer (wrongly) absorbed into the additive variance. Hence the
375 pedigree-based heritabilities are higher for traits with maternal variance, as a
376 consequence of the wrong model, and this difference was as large as 0.18.

377 **Impact of approaches used**

378 GBLUP uses GRMs, and the assumptions in the construction of these GRMs can have
379 a direct effect on the components; e.g. Van Raden matrices [7]) assume Hardy
380 Weinberg equilibrium when scaling the relationship matrices, whereas this assumption
381 is avoided with NOIA matrices. In this study, the use of these genomic approaches
382 showed no difference to the qualitative outcomes related to the genetic architecture of
383 the trait, but did make a quantitative difference e.g. additive-by-additive epistatic ratio
384 (e_{aa}^2) was inflated by ca. 20 % and 18%, and heritability (h^2) by 6% and 10% for the
385 traits BD and BWH respectively (Table 3). Such quantitative differences have also
386 been observed in other studies [21]. As a consequence of the absence of dominance
387 variance in this study, the differences between the NOIA and HWE collapse into
388 differences in the scaling of the relationship matrices as the contrasts used to construct
389 the matrices were identical. Therefore, the transformation of the components to a
390 similar scale based on $\overline{\text{diag}(\mathbf{V})} - \overline{\mathbf{V}}$ for these relationship matrices yielded identical
391 variance components and ratios.

392 The NOIA and HWE approaches are statistical models in that they partition the
393 variance observed in a population and use these parameters to estimate breeding

394 values and dominance deviations [21]. As such, these estimates depend on the allele
395 frequencies in the particular population, and the structure of the population which will
396 influence the genotypic frequencies. A distinction needs to be made between the
397 magnitudes of the variance components in the total genetic variance and the effects
398 estimated using them on the one hand, and the ubiquity of the same phenomena in
399 genotypic models (sometimes called biological models) on the other hand [38,39]. For
400 example, the genotypes at a single locus may show complete dominance, but have a
401 negligible dominance deviation, because the superior homozygote is very rare in the
402 population. Although the NOIA approach removes limitations of HWE, there are major
403 barriers to it moving towards the building of genotypic models. Firstly, it does not
404 remove the impact of LD on estimates of the effects, and more seriously, the genotypic
405 models are meaningful only if constructed with the causal variants and not with
406 anonymous markers.

407 **Inbreeding depression**

408 Absence of dominance variance does not necessarily mean the absence of inbreeding
409 depression when the genetic architecture approaches the infinitesimal model, and
410 evidence was found for depression in precisely the same four traits for which the basic
411 'A' model was rejected. To the authors' knowledge, these estimates are the first for
412 the commercial traits in Nile tilapia. Most of the quantification has been done using
413 pedigree information in other aquaculture species, e.g. [40–42], and a few using
414 genomics, e.g. [43]. In the present study, this information was not observable without
415 the application of genomics because of the near identical inbreeding coefficients
416 among individuals of the study population. Most of the traits clearly show the signal of
417 inbreeding depression and ignoring this term leaves the estimates of the variance
418 components and predictions of offspring merit open to bias (Supplementary 3).

419 Further, the inbreeding depression is commercially significant for commercial traits, for
420 example, FW decreases by 1% with 1% increase in homozygosity. Our population
421 shows 6% difference between upper and lower 5 percentile for homozygosity in this
422 population. This causes 6% difference for FW between individuals with high and low
423 homozygosity, which has a huge commercial implication. Homozygosity can be
424 minimized by controlling inbreeding, and by crossing unrelated lines. The latter will
425 cause a large reduction in inbreeding depression if the regression on homozygosity
426 holds also across lines.

427 In the infinitesimal model the allelic additive effects (a') are of the order of $1/\sqrt{n}$ (i.e.
428 $O(1/\sqrt{n})$), as the number of loci, n , becomes large, so the additive variance remains
429 finite. For inbreeding depression to remain finite the directional dominance deviations
430 (d') must be $O(1/n)$, and so the consequence of an infinitesimal dominance model is
431 that d'/a' must reduce by $1/\sqrt{n}$ as n increases. This is consistent with biological
432 pathway models such as [44], as when loci have increasingly small effect, responses
433 will be more adequately described by the linear term based on the gradient of the
434 response, and so the importance of partial dominance will diminish.

435 [Utilisation of the additive by additive epistatic effects](#)

436 In the long run, additive by additive epistatic variance is expected to be exploited
437 indirectly as it is converted to additive genetic variance due to random drift and
438 selection; hence this form of variance affects the medium and long-term selection
439 response indirectly [45]. Therefore, this argues for a simple breeding scheme, utilising
440 only additive genetic effects, although re-structuring towards a cross breeding
441 scheme, e.g. reciprocal recurrent selection, may be desirable for reasons related to

442 the infinitesimal dominance detected or the inbreeding depression or the maternal
443 variances.

444 Nevertheless, for some traits substantial additive by additive epistasis was observed
445 even though it is expected that epistatic variance would be much smaller than the
446 additive genetic variance in elite commercial populations [28,45]. This may prompt two
447 questions. Firstly, whether these effects should be included in the estimation of genetic
448 parameters: this is unlikely to be of benefit in selection decisions, partly because
449 additive genetic variance already contains some of the variance arising from epistatic
450 effects [24,28,46]. Secondly, whether the large epistatic ratio, predicting large
451 differences among individuals in the population (Figure 2) can be used in the Nile
452 tilapia breeding program in some way: since the observations of the epistasis relies
453 upon anonymous loci, a more direct exploitation of epistasis will depend on finding out
454 the causal variants showing large epistatic interactions [47,48] for different traits. This
455 will require substantial resources to achieve, probably an order of magnitude greater
456 than for identifying the additive effects of causal variants. Hence, this route seems
457 rather complicated and costly to realise.

458 **Conclusion**

459 This study has found that the non-additive genetic variance in the Nile tilapia
460 population was almost entirely additive by additive epistatic variance, when using
461 genomic relationship matrixes, whereas these non-additive effects are commonly
462 assumed to be dominance using pedigree-based relationship matrixes. The
463 inbreeding depression and lack of dominance variance was consistent with an
464 infinitesimal dominance model. Finally, the creation of maternal lines in Tilapia
465 breeding schemes may be a possibility if this variation is found to be heritable.

467 **List of abbreviations**

Acronym	Full Form
BD	Body Depth
BL	Body Length
BT	Body Thickness
BWH	Body Weight at Harvest
d.f.	degrees of freedom
FW	Fillet Weight
FY	Fillet Yield
GRMs	Genomic relationship matrices
HWE	Hardy-Weinberg Equilibrium
LD	Linkage Disequilibrium
NOIA	Natural and orthogonal interactions

468 **Declarations**

469 **Ethics approval and consent to participate:** Not applicable

470 **Consent for publication:** Not applicable

471 **Availability of data and material**

472 The genotype data used in the study are from commercial family material. This
473 information may be made available to non-competitive interests under conditions
474 specified in a Data Transfer Agreement. Requests to access these datasets should be
475 directed to Alejandro Tola Alvarez: alex@genomar.com.

476 **Competing interests**

477 This work was completed as part of RJ's PhD which was funded by the university and
478 the data was provided by GenoMar Genetics AS. Since completing the PhD RJ is now
479 employed by GenoMar Genetics AS. The other authors declare they have no
480 competing interests.

481 **Funding:** Not applicable

482 **Authors' contributions**

483 HMG conceived and designed the study, RJ did the statistical analysis, JAW
484 contributed to this analysis and developing the models used, and all authors
485 contributed to the discussion of the results and writing of the paper.

486 **Acknowledgements**

487 We would like to thank GenoMar AS for providing the data, in particular Anders
488 Skaarud and Alejandro Tola Alvarez. JAW gratefully acknowledges funding by NMBU
489 and by the UK Biotechnology and Biological Sciences Research Council
490 BBS/E/D/30002275. ASReml analysis was performed in the Abel Cluster, Oslo.

491 **Authors' information (optional):**

492

493 **Supplementary files**

494 Supplementary 1: Data Structure and the relationship matrices
495 Supplementary 2: Assumptions on the nature of non-additive genetic variance and the
496 impact on estimates of additive genetic variance
497 Supplementary 3: Impact of inbreeding depression on models

498 References

- 499 1. Joshi R, Woolliams J, Meuwissen T, Gjøen H. Maternal, dominance and additive
500 genetic effects in Nile tilapia; influence on growth, fillet yield and body size traits.
501 Heredity (Edinb) [Internet]. Nature Publishing Group; 2018 [cited 2018 Jan 16];1.
502 Available from: <http://www.nature.com/articles/s41437-017-0046-x>
- 503 2. Meuwissen T, Hayes B, Goddard M. Genomic selection: A paradigm shift in
504 animal breeding. Anim Front. American Society of Animal Science; 2016;6:6–14.
- 505 3. HOSOYA S, KIKUCHI K, NAGASHIMA H, ONODERA J, SUGIMOTO K, SATOH
506 K, et al. Genomic Selection in Aquaculture. Bull Jap Fish Res Edu Agen No.
507 2017;45:35–9.
- 508 4. Gianola D, Fernando RL, Stella A. Genomic assisted prediction of genetic value
509 with semi-parametric procedures. Genetics. Genetics Soc America; 2006;
- 510 5. Joshi R, Arnyasi M, Lien S, Gjoen HM, Alvarez AT, Kent M. Development and
511 validation of 58K SNP-array and high-density linkage map in Nile tilapia (*O.*
512 *niloticus*). bioRxiv. Cold Spring Harbor Laboratory; 2018;322826.
- 513 6. Speed D, Balding DJ. Relatedness in the post-genomic era: is it still useful? Nat
514 Rev Genet. Nature Publishing Group; 2015;16:33.
- 515 7. VanRaden PM. Efficient Methods to Compute Genomic Predictions. J Dairy Sci.
516 2008;91:4414–23.
- 517 8. Yang J, Benyamin B, McEvoy BP, Gordon S, Henders AK, Nyholt DR, et al.
518 Common SNPs explain a large proportion of the heritability for human height. Nat
519 Genet [Internet]. 2010;42:565–9. Available from: <http://dx.doi.org/10.1038/ng.608>
- 520 9. Legarra A. Comparing estimates of genetic variance across different relationship
521 models. Theor Popul Biol. Elsevier; 2016;107:26–30.
- 522 10. Yang J, Lee SH, Goddard ME, Visscher PM. GCTA: a tool for genome-wide
523 complex trait analysis. Am J Hum Genet. Elsevier; 2011;88:76–82.
- 524 11. Speed D, Cai N, Johnson MR, Nejentsev S, Balding DJ, Consortium U.
525 Reevaluation of SNP heritability in complex human traits. Nat Genet. Nature
526 Publishing Group; 2017;49:986.
- 527 12. Fessehaye Y, Bovenhuis H, Rezk MA, Crooijmans R, van Arendonk JAM,
528 Komen H. Effects of relatedness and inbreeding on reproductive success of Nile
529 tilapia (*Oreochromis niloticus*). Aquaculture. Elsevier; 2009;294:180–6.
- 530 13. Christensen K, Jensen P, Jørgensen JN. A note on effect of inbreeding on
531 production traits in pigs. Anim Sci. Cambridge University Press; 1994;58:298–300.
- 532 14. Smith LA, Cassell BG, Pearson RE. The effects of inbreeding on the lifetime
533 performance of dairy cattle. J Dairy Sci. Elsevier; 1998;81:2729–37.
- 534 15. Bjelland DW, Weigel KA, Vukasinovic N, Nkrumah JD. Evaluation of inbreeding
535 depression in Holstein cattle using whole-genome SNP markers and alternative
536 measures of genomic inbreeding. J Dairy Sci. Elsevier; 2013;96:4697–706.
- 537 16. Meuwissen THE, Woolliams JA. Effective sizes of livestock populations to
538 prevent a decline in fitness. Theor Appl Genet. Springer; 1994;89:1019–26.

539 17. Kristensen TN, Sørensen AC. Inbreeding—lessons from animal breeding,
540 evolutionary biology and conservation genetics. *Anim Sci*. Cambridge University
541 Press; 2005;80:121–33.

542 18. Thermo Fisher Scientific Inc. Axiom™Analysis Suite (AxAS) v4.0 USER GUIDE
543 [Internet]. 2018. Available from:
544 https://downloads.thermofisher.com/Affymetrix_Softwares/Axiom_Analysis_Suite_AxAS_v4.0_User_Guide.pdf

546 19. Xiang T, Christensen OF, Vitezica ZG, Legarra A. Genomic evaluation by
547 including dominance effects and inbreeding depression for purebred and crossbred
548 performance with an application in pigs. *Genet Sel Evol* [Internet]. BioMed Central;
549 2016 [cited 2017 May 15];48:92. Available from:
550 <http://www.ncbi.nlm.nih.gov/pubmed/27887565>

551 20. Gilmour A, Thompson R. ASReml 4 Australasian Statistics Conference Port
552 Lincoln 2014. 2014;

553 21. Vitezica ZG, Legarra A, Toro MA, Varona L. Orthogonal Estimates of Variances
554 for Additive, Dominance, and Epistatic Effects in Populations. *Genetics* [Internet].
555 2017 [cited 2018 Jan 29];206:1297–307. Available from:
556 <http://www.ncbi.nlm.nih.gov/pubmed/28522540>

557 22. Mesfingo. R-code-for-missing-genotype-imputation [Internet]. 2016 [cited 2018
558 Jan 3]. Available from: <https://github.com/Mesfingo/R-code-for-missing-genotype-imputation>

560 23. Visscher PM. A note on the asymptotic distribution of likelihood ratio tests to test
561 variance components. *Twin Res Hum Genet* [Internet]. Cambridge University Press;
562 2006;9:490–5. Available from: <https://doi.org/10.1375/twin.9.4.490>

563 24. Raidan FSS, Porto-Neto LR, Li Y, Lehnert SA, Vitezica ZG, Reverter A.
564 Evaluation of non-additive effects in yearling weight of tropical beef cattle. *J Anim
565 Sci*. 2018;

566 25. Piaskowski J, Hardner C, Cai L, Zhao Y, Iezzoni A, Peace C. Genomic
567 heritability estimates in sweet cherry reveal non-additive genetic variance is relevant
568 for industry-prioritized traits. *BMC Genet*. BioMed Central; 2018;19:23.

569 26. Shaw FH, Woolliams JA. Variance component analysis of skin and weight data
570 for sheep subjected to rapid inbreeding. *Genet Sel Evol*. BioMed Central; 1999;31:1.

571 27. Hill WG. On estimation of genetic variance within families using genome-wide
572 identity-by-descent sharing. *Genet Sel Evol*. BioMed Central; 2013;45:32.

573 28. Falconer DS, Mackay TF, Frankham R. Introduction to Quantitative Genetics (4th
574 edn). *Trends Genet*. 1996;12:280.

575 29. Toro MA, Mäki-Tanila A. Some intriguing questions on Fisher's ideas about
576 dominance. *J Anim Breed Genet*. Wiley Online Library; 2018;135:149–50.

577 30. Haile-Mariam M, Nieuwhof GJ, Beard KT, Konstantinov K V, Hayes BJ.
578 Comparison of heritabilities of dairy traits in Australian Holstein-Friesian cattle from
579 genomic and pedigree data and implications for genomic evaluations. *J Anim Breed
580 Genet*. Wiley Online Library; 2013;130:20–31.

581 31. Bérénos C, Ellis PA, Pilkington JG, Pemberton JM. Estimating quantitative
582 genetic parameters in wild populations: a comparison of pedigree and genomic
583 approaches. *Mol Ecol*. Wiley Online Library; 2014;23:3434–51.

584 32. Veerkamp RF, Mulder HA, Thompson R, Calus MPL. Genomic and pedigree-
585 based genetic parameters for scarcely recorded traits when some animals are
586 genotyped. *J Dairy Sci* [Internet]. 2011;94:4189–97. Available from:
587 <http://www.sciencedirect.com/science/article/pii/S002203021100422X>

588 33. Tsai H-Y, Hamilton A, Tinch AE, Guy DR, Gharbi K, Stear MJ, et al. Genome
589 wide association and genomic prediction for growth traits in juvenile farmed Atlantic
590 salmon using a high density SNP array. *BMC Genomics*. BioMed Central;
591 2015;16:969.

592 34. Bangera R, Correa K, Lhorente JP, Figueroa R, Yáñez JM. Genomic predictions
593 can accelerate selection for resistance against *Piscirickettsia salmonis* in Atlantic
594 salmon (*Salmo salar*). *BMC Genomics*. BioMed Central; 2017;18:121.

595 35. Tan B, Grattapaglia D, Wu HX, Ingvarsson PK. Genomic relationships reveal
596 significant dominance effects for growth in hybrid Eucalyptus. *Plant Sci*. Elsevier;
597 2018;267:84–93.

598 36. Zhang YD, Johnston DJ, Bolormaa S, Hawken RJ, Tier B. Genomic selection for
599 female reproduction in Australian tropically adapted beef cattle. *Anim Prod Sci*.
600 CSIRO; 2014;54:16–24.

601 37. Vitezica ZG, Varona L, Elsen J-M, Misztal I, Herring W, Legarra A. Genomic
602 BLUP including additive and dominant variation in purebreds and F1 crossbreds,
603 with an application in pigs. *Genet Sel Evol* [Internet]. BioMed Central; 2016 [cited
604 2016 Feb 2];48:6. Available from:
605 <http://gsejournal.biomedcentral.com/articles/10.1186/s12711-016-0185-1>

606 38. Vitezica ZG, Varona L, Legarra A. On the additive and dominant variance and
607 covariance of individuals within the genomic selection scope. *Genetics* [Internet].
608 2013 [cited 2016 Jul 8];195:1223–30. Available from:
609 <http://www.ncbi.nlm.nih.gov/pubmed/24121775>

610 39. Hill WG, Goddard ME, Visscher PM. Data and theory point to mainly additive
611 genetic variance for complex traits. *PLoS Genet*. Public Library of Science;
612 2008;4:e1000008.

613 40. Rye M, Mao ILL. Nonadditive genetic effects and inbreeding depression for body
614 weight in Atlantic salmon (*Salmo salar* L.). *Livest Prod Sci* [Internet]. Elsevier; 1998
615 [cited 2018 Sep 4];57:15–22. Available from:
616 <https://www.sciencedirect.com/science/article/pii/S0301622698001651>

617 41. Pante MJR, Gjerde B, McMillan I. Effect of inbreeding on body weight at harvest
618 in rainbow trout, *Oncorhynchus mykiss*. *Aquaculture* [Internet]. Elsevier; 2001 [cited
619 2018 Sep 4];192:201–11. Available from:
620 <https://www.sciencedirect.com/science/article/pii/S0044848600004671>

621 42. Neira R, Díaz NF, Gall GAE, Gallardo JA, Lhorente JP, Manterola R. Genetic
622 improvement in Coho salmon (*Oncorhynchus kisutch*). I: Selection response and
623 inbreeding depression on harvest weight. *Aquaculture* [Internet]. Elsevier; 2006
624 [cited 2018 Sep 4];257:9–17. Available from:

625 <https://www.sciencedirect.com/science/article/pii/S0044848606001839>

626 43. Hu G, Wang C, Da Y. Genomic heritability estimation for the early life-history
627 transition related to propensity to migrate in wild rainbow and steelhead trout
628 populations. *Ecol Evol* [Internet]. 2014 [cited 2015 Oct 16];4:1381–8. Available from:
629 <http://doi.wiley.com/10.1002/ece3.1038>

630 44. Kacser H, Burns JA. Molecular democracy: who shares the controls? *Biochem
631 Soc Trans.* Portland Press Limited; 1979;7:1149–60.

632 45. Hill WG. “Conversion” of epistatic into additive genetic variance in finite
633 populations and possible impact on long-term selection response. *J Anim Breed
634 Genet.* Wiley Online Library; 2017;134:196–201.

635 46. Mäki-Tanila A, Hill WG. Contribution of gene–gene interaction to genetic
636 variation and its utilisation by selection. *Proc 10th World Congr Genet Appl to Livest
637 Prod.* 2014.

638 47. Carlborg Ö, Jacobsson L, Åhgren P, Siegel P, Andersson L. Epistasis and the
639 release of genetic variation during long-term selection. *Nat Genet.* Nature Publishing
640 Group; 2006;38:418.

641 48. Große-Brinkhaus C, Jonas E, Buschbell H, Phatsara C, Tesfaye D, Jüngst H, et
642 al. Epistatic QTL pairs associated with meat quality and carcass composition traits in
643 a porcine Duroc× Pietrain population. *Genet Sel Evol.* BioMed Central; 2010;42:39.

644

645

646 **List of tables**

647 **Table 1:** Log likelihood values with significance levels for different models for the six
648 traits. The significance level for the likelihood ratio tests are expressed relative to the
649 full model ADME. The critical values for Type 1 errors of 0.05, 0.01 and 0.001 were:
650 for 1 d.f., 2.71, 5.42 and 9.55, respectively; for 2 d.f., 4.24, 7.29 and 11.77; and for 3
651 d.f. 5.44, 8.75 and 13.48 respectively. The statistical significance is labelled as '*, **'
652 and '***' for $P < 0.05$, $P < 0.01$ and $P < 0.001$, respectively.

Models	d.f.	BD	BL	BT	BWH	FW	FY
ADME		-43.48	-191.28	-1.78	-31.51	-69.90	-68.55
ADE	1	-46.55**	-195.75**	-2.25	-35.82**	-74.74***	-69.10
ADM	1	-45.14*	-192.02	-2.34	-33.40*	-70.40	-68.65
AME	1	-43.48	-191.28	-1.78	-31.51	-69.90	-68.55
AD	2	-49.29**	-197.99***	-3.04	-39.29***	-76.05***	-69.25
AE	2	-46.55*	-195.75**	-2.25	-35.82**	-74.74**	-69.10
AM	2	-45.15	-192.02	-2.40	-33.40	-70.40	-68.65
A	3	-49.29**	-197.99**	-3.06	-39.29***	-76.05**	-69.25

653

654

655 **Table 2:** Inbreeding depression for the commercial traits in Nile tilapia. “b” is the
656 regression coefficient of trait on individual homozygosity, and D is the percentage
657 decrease in the trait value per 1% increase in the individual homozygosity due to
658 inbreeding depression. Standard errors are presented inside the parenthesis (). **
659 indicates p values 0.001 - 0.01 and * indicates p values 0.01 - 0.05 for significant
660 values. “Difference” is the difference in performance between the upper and lower 5
661 percentile for homozygosity in the population. “Unit” is the unit for “b” and “Difference”
662 of different traits.

	BD	BWH	BL	FW	BT	FY
b	-3.27** (1.19)	-371** (137)	-7.57* (2.95)	-156** (56)	-7.08 (5.05)	-6.90 (4.93)
D	0.37	0.91	0.34	1.08	0.17	0.21
Difference	0.21	23.22	0.47	9.76	0.44	0.43
Unit	cm	g	cm	g	mm	%

663

664

665 **Table 3:** Components and their ratios with phenotypic variance for the models of best
 666 fit for different traits. Standard errors are presented in parentheses. The ratios are:
 667 narrow heritability h^2 , broad heritability H^2 , maternal ratio m^2 and epistatic ratio e_{aa}^2

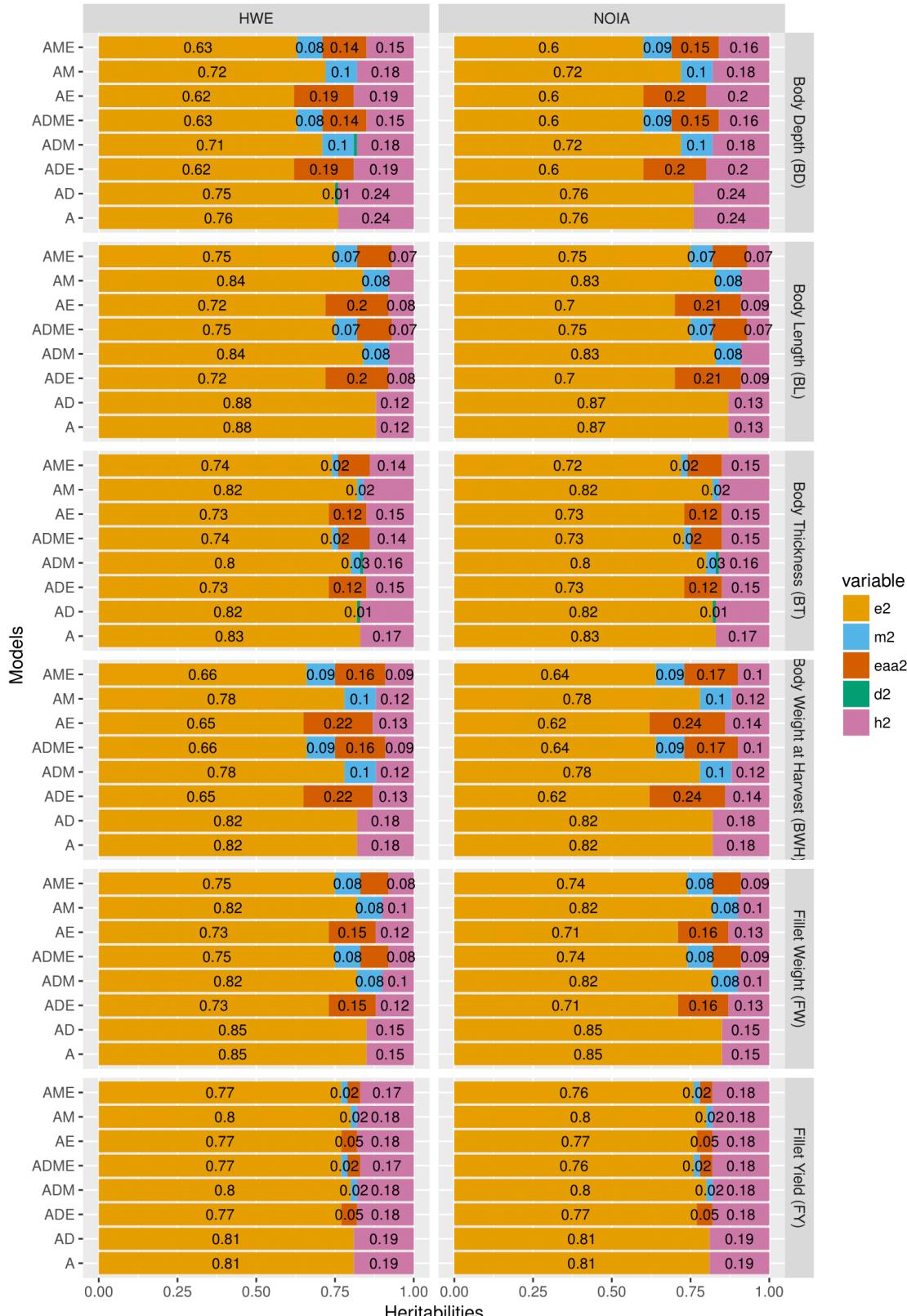
Trait	Model	σ^2_A	σ^2_{Eaa}	σ^2_m	σ^2_e	σ^2_p	h^2	H^2	m^2	e_{aa}^2
NOIA										
BD	AME	0.086 (0.024)	0.080 (0.049)	0.047 (0.032)	0.328 (0.044)	0.541 (0.039)	0.158 (0.042)	0.307 (0.090)	0.087 (0.055)	0.148 (0.091)
BWH	AME	699 (268)	1183 (680)	635 (418)	4540 (618)	7059 (498)	0.099 (0.037)	0.266 (0.093)	0.090 (0.054)	0.167 (0.096)
BL	AM	0.284 (0.107)		0.257 (0.162)	2.803 (0.136)	3.345 (0.209)	0.085 (0.031)		0.076 (0.045)	
FW	AM	118 (42)		99 (63)	1009 (50)	1227 (79)	0.096 (0.033)		0.080 (0.047)	
BT	A	1.695 (0.441)			8.015 (0.411)	9.710 (0.458)	0.174 (0.041)			
FY	A	1.758 (0.406)			7.461 (0.378)	9.220 (0.435)	0.190 (0.039)			
HWE										
BD	AME	0.097 (0.027)	0.102 (0.063)	0.047 (0.032)	0.326 (0.045)	0.573 (0.042)	0.169 (0.046)	0.348 (0.1)	0.082 (0.053)	0.178 (0.106)
BWH	AME	791 (303)	1504 (864)	635 (418)	4520 (626)	7450 (544)	0.106 (0.04)	0.308 (0.104)	0.085 (0.051)	0.201 (0.111)
BL	AM	0.321 (0.120)		0.257 (0.162)	2.801 (0.136)	3.380 (0.213)	0.095 (0.034)		0.076 (0.044)	
FW	AM	133 (47)		99 (63)	1009 (50)	1241 (81)	0.107 (0.036)		0.079 (0.047)	
BT	A	1.915 (0.498)			8.004 (0.413)	9.92 (0.492)	0.193 (0.044)			
FY	A	1.987 (0.459)			7.450 (0.379)	9.437 (0.467)	0.210 (0.042)			

668

669 **Table 4:** Corrected heritabilities, ratio and variances for the models of best fit for
 670 different traits and approaches. The variances and ratios were corrected by (Mean
 671 (leading diagonal) – Mean) of the the corresponding relationship matrices as per
 672 Legarra (2016). Standard errors are presented in parenthesis.

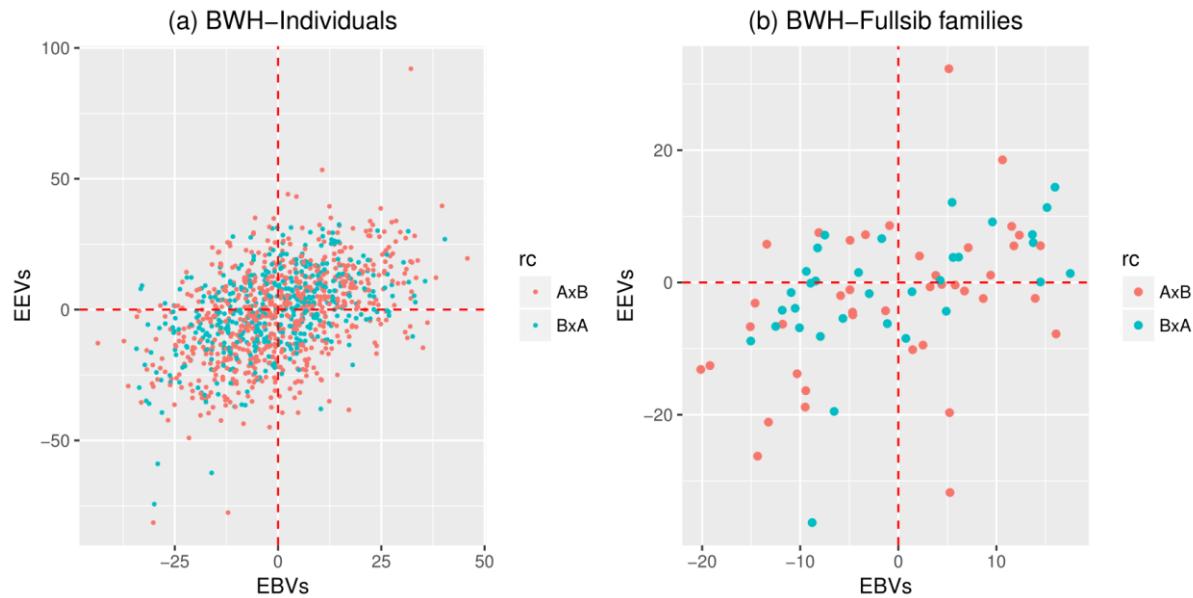
Traits	HWE				NOIA			
	σ^2_A	σ^2_{Eaa}	h^2	e_{aa}^2	σ^2_A	σ^2_{Eaa}	h^2	e_{aa}^2
BD	0.086 (0.024)	0.080 (0.049)	0.159 (0.043)	0.147 (0.091)	0.086 (0.024)	0.080 (0.049)	0.159 (0.043)	0.147 (0.091)
BWH	698.774 (267.730)	1169.547 (672.154)	0.099 (0.037)	0.167 (0.096)	698.772 (267.729)	1169.539 (672.149)	0.099 (0.037)	0.167 (0.095)
BL	0.285 (0.107)		0.085 (0.031)		0.284 (0.107)		0.085 (0.031)	
FW	117.948 (41.825548)		0.096 (0.0324407)		117.948 (41.825)		0.096 (0.033)	
BT	1.694 (0.441)		0.174 (0.041)		1.694 (0.441)		0.174 (0.041)	
FY	1.757 (0.406)		0.191 (0.039)		1.758 (0.406)		0.191 (0.039)	

673
 674



675

676 **Figure 1:** Decomposition of the phenotypic variance into different components using
 677 NOIA and HWE assumption approaches for the six traits. The ratios are: h^2 is additive;
 678 d^2 is dominance; e_{aa}^2 is additive by additive epistatic; m^2 is maternal; and e^2 is residual.



679
680 **Figure 2:** Scatterplot of estimated breeding values (EBVs) and epistatic (additive by
681 additive) values (EEVs) for the trait BWH using NOIA approach (a) shows the
682 scatterplot for all the individuals (b) shows the scatterplot for the mean values for
683 different full-sib families. Please note that the values for x-axis and y-axis are different
684 for both plots. The color of the dots in the scatterplot represents the types of reciprocal
685 cross (rc): AxB and BxA.