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Abstract

Frequencies of synonymous codons are typically non-uniform, despite the fact that such codons correspond to the same
amino acid in the genetic code. This phenomenon, known as codon bias, is broadly believed to be due to a combination
of factors including genetic drift, mutational biases, and selection for speed and accuracy of codon translation; however,
quantitative modeling of codon bias has been elusive. We have developed a biophysical population genetics model which
explains genome-wide codon frequencies observed across 20 organisms. We assume that codons evolve independently of
each other under the influence of mutation and selection forces, and that the codon population has reached evolutionary
steady state. Our model implements codon-level treatment of mutations with transition/transversion biases, and includes
two contributions to codon fitness which describe codon translation speed and accuracy. Furthermore, our model includes
wobble pairing — the possibility of codon-anticodon base pairing mismatches at the 3’ nucleotide position of the codon.
We find that the observed patterns of genome-wide codon usage are consistent with a strong selective penalty for
mistranslated amino acids. Thus codons undergo purifying selection and their relative frequencies are affected in part by
mutational robustness. We find that the dependence of codon fitness on translation speed is weaker on average compared
to the strength of selection against mistranslation. Although no constraints on codon-anticodon pairing are imposed a
priori, a reasonable hierarchy of pairing rates, which conforms to the wobble hypothesis and is consistent with available
structural evidence, emerges spontaneously as a model prediction. Finally, treating the translation process explicitly in
the context of a finite ribosomal pool has allowed us to estimate mutation rates per nucleotide directly from the coding
sequences. Reminiscent of Drake’s observation that mutation rates are inversely correlated with the genome size, we
predict that mutation rates are inversely proportional to the number of genes. Overall, our approach offers a unified
biophysical and population genetics framework for studying codon bias across all domains of life.
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Introduction understanding of its evolution is critical to molecular

The central dogma of molecular biology states that biology.

consecutive triplets of nucleotides called codons are Because a protein’s function is determined solely by its

translated into amino acids during protein production amino acid sequence, arguably the most basic mechanism
(Alberts et al., 2015; Crick, 1958). As there are 64 codons

and 20 amino acids, the translation code is degenerate,

for dictating the choice of synonymous codons is neutral

evolution on a fitness landscape shaped by selective

with as many as 6 codons translated into a single amino
acid. Pronounced differences in synonymous codon usage
are observed in any organism for which protein coding
sequences are available and therefore codon frequencies
can be reliably computed. These genome-wide differences
are known as codon bias (Hershberg and Petrov, 2008;
Napolitano et al., 2016; Nielsen et al., 2007; Sharp
et al., 2005, 2010). Since codon usage is one of the

most fundamental features of genomes, a quantitative

penalties for amino acid mistranslation (Akashi, 2001;
Kimura, 1981). In this approach, non-uniform codon
frequencies are produced due to mutational robustness
(van Nimwegen et al., 1999) and transition/transversion
mutational biases (Yang, 2006).

Another popular explanation for the global codon bias
involves selection and postulates that certain codons are
translated more efficiently than others, resulting in higher
protein production rates and therefore higher cellular
growth rates or fitness (Akashi, 2001; Bulmer, 1991;
Duret, 2002; Plotkin and Kudla, 2011). This translation

efficiency can be characterized as a balance between
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translation speed and accuracy (Tuller et al., 2010): a
particular codon may be more rapidly translated due to
a higher concentration of the corresponding tRNAs (a
hypothesis supported by the correlation between tRNA
gene copy numbers and codon frequencies (Kanaya et al.,
1999)), but may also cause more translation errors. The
translation errors can be viewed through the lens of
the wobble hypothesis, which states that each codon
can be recognized by non-cognate tRNA species, with
mispairings that occur at the 3’ nucleotide position in the
codon (Crick, 1966; Stoletzki and Eyre-Walker, 2007).

Codon bias has been previously examined through
population genetic models which incorporate mutation,
selection, and drift in a system of two codon types
(Bulmer, 1991; Kimura, 1991; Kondrashov, 1995; Li,
1987; McVean and Charlesworth, 1999). Since a complete
treatment of a multi-allelic mutation-selection-drift model
is prohibitively complex, especially in the polymorphic
limit (Mustonen and Léssig, 2010), previous work has
attributed the difference in codon frequencies to a balance
between selection and drift, with mutations playing a
subordinate role (Hershberg and Petrov, 2008). However,
because selection strength has to be inversely proportional
to the effective population size to reproduce the observed
genomic codon frequencies, this approach leads to the
“fine-tuning” problem in which selective advantages of
the preferred codons have to vary through many orders
of magnitude in order to reflect a broad range of effective
population sizes (Charlesworth, 2009). It is challenging to
provide a biophysical explanation for this behavior.

In contrast, our model focuses on the interplay
between mutational and selective forces acting on
individual codons: the observed codon frequencies emerge
as a steady-state balance between mutational forces
on one hand, and selection on translation speed and
accuracy on the other. We have explicitly modeled the
evolutionary process on the full 64-codon mutational
network in a population of organisms whose fitness is
determined by genomic codon content. Our approach is
based on a realistic codon-level mutation model which
includes transition/transversion biases and mutational
robustness, and allows for non-cognate tRNA-mRNA
pairings consistent with the wobble hypothesis. Using
this selection-mutation framework, we were able to
accurately predict genome-wide codon frequencies in
a variety of organisms spanning both prokaryotic and
eukaryotic domains. Our predictions of the codon-
anticodon pairing rates are largely consistent with
previously postulated wobble rules (Crick, 1966) and
with the crystallographic analysis of wobble base

pairs in the context of the ribosomal decoding center
(Murphy IV and Ramakrishnan, 2004). We incorporated
Bulmer’s biophysical model, which explicitly describes
the details of the translation process given a finite
ribosomal pool (Bulmer, 1991), into our approach,
and estimated single-nucleotide mutation rates using
biophysical model parameters such as ribosomal on-rates
and codon translation times. Finally, our framework
yields a potential explanation for Drake’s rule (Drake,
1991), which states that the mutation rate is inversely
proportional to the genome size.

Results

Biophysical model of codon evolution

We have developed a biophysical model of codon
population dynamics which is designed to predict genome-
wide codon frequencies under the assumption that each
organism in a population is subjected to mutation
and selection on single-codon translation efficiency. We
focus our attention primarily on the species with large
effective codon population sizes, allowing us to neglect
the effects of genetic drift in our model, which assumes
that codons evolve independently at multiple genomic
sites throughout the genome.

We consider the fitness of each organism, w, given the
presence of a codon c¢ at a particular genomic location
and the optimal amino acid or STOP instruction j at
that location, as the product of two terms modeling
translation speed and accuracy, respectively (Materials

and Methods):
0= (1= ) 1=s(@)=1- g =50, )
where T} sets the ov‘erall scale of the selecfion coefficient in
the first term, which penalizes for slow codon translation,
and C°" is the effective tRNA gene copy number. The
approximation in Eq. (1) is valid when the two selection
terms T, /C" and s;(c) are small, as is generally expected
for selection on a single codon. Since according to the
wobble hypothesis non-cognate codon-anticodon pairing
is allowed at the 3’ codon position, C° is computed as a
weighted sum over all possible codon-anticodon pairings,
Cf = Z T 1nCe(n'), (2)
n’€{A,U,C,G}
where 7,,/,, is the codon-anticodon pairing rate associated
with the nucleotide pairing n’/n at the 5 anticodon
and 3’ codon positions, respectively, and C.(n’) is the
corresponding anticodon tRNA gene copy number, which
we assume is proportional to the total number of tRNA
molecules in the cell. For brevity, we shall refer to r,,
as “pairing rates” from now on. Note that the pairing
rates are defined to be dimensionless and unnormalized
(see Materials and Methods for details).
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FIG. 1. Illustration of the biophysical fitness model on E. coli populations. (a) Three initial E. coli populations: one wild-type and

two with a single-nucleotide mutation (ATA—ATG, ATA—AAA) at codon 101 in the thrA gene. (b) The same E. coli populations after a

fixed period of growth. (¢) RNA transcripts of the thrA gene from all three strains. Each colored box around the codon in question indicates

the amino acid that is primarily translated, with green, blue and red corresponding to Ile, Met, and Lys, respectively. (d) An E. coli cell

with the tRNA gene copies for Ile (green) and Met (blue) shown as colored rectangles. (¢) A magnified portion of the cell with three tRNA

molecules charged with Ile (green) and three more charged with Met (blue). The proportions of each type of tRNA molecule roughly match

the proportions of gene copies in (d), as assumed in our model. (f) A further magnification of (e) with two representative tRNAs shown in

molecular detail. The two tRNA molecules shown, one charged with Met and the other with Ile, are present in the K-12 MG1655 E. coli and

can bind AUA through wobble pairing, with wobble rates TC/A and TG/A respectively. Note that there is no cognate tRNA for this codon.

In the second term on the right-hand side of Eq. (1),
s;j(c) is the amino-acid-level selection coefficient which
penalizes for incorrect amino acid translations due to
wobble pairing:

Zn’e{A,U,C,G}Tn’/nCC(nl)gg(n/)

En’e{A,U,C,G}rn’/”CC(n/)
where 5%(n’) is either zero when the tRNA bound to

codon c is charged with the optimal amino acid j, or a

(3)

sj(c)=

constant penalty, s, for any other amino acid. Thus, our
model assumes that all codons in the genome evolve under
purifying selection at the amino acid level: as a result, all
amino acid substitutions are considered to be deleterious.
In other words, each codon position is assigned either an
optimal amino acid given by cognate tRNA pairing with
the codon currently observed at that genomic position,
or a STOP instruction, such that j=1,...,21. According
to Eq. (3), even codons that predominantly produce the
optimal amino acid will be penalized if there are non-zero
pairing rates for translation into suboptimal amino acids.

Similarly, a mutation into a codon for which the rates

for translation into suboptimal amino acids are enhanced
(for example, mutations of a codon which predominantly
produces arginine (Arg) into a predominantly non-Arg
codon at a position where the optimal amino acid is Arg)
is considered deleterious. Since at each codon position
evolutionary dynamics depends on the optimal amino
acid, we obtain 21 distinct diagonal matrices containing
fitness values for each codon, for 20 amino acids and the
STOP instruction (i.e., translating stop codons into amino
acids is also considered deleterious in our model).

Equation (1) implements the idea that additional tRNA
gene copies should increase the available pool of tRNA
molecules which can be paired with the codon ¢, reducing
translation times and therefore increasing the fitness of
the organism (i.e., as C°T increases, w;(c) also increases).
However, changes in the tRNA pool may also result in
more translation errors, which will be reflected in the
increased s;(c) (Eq. (3)).

To describe mutations between codons, we have
adapted the model of Tamura and Nei (1993). According
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to this model, py.=pn., where p.. is the mutation
rate per generation from the nucleotide trimer ¢ to ¢/,
7. is the steady-state frequency of the nucleotide trimer
¢, and [ is a scale factor. We compute values of m,
from intergenic sequences which are assumed to evolve
under the influence of mutational forces only (Tamura
and Nei, 1993; Yang, 2006). The no-selection assumption
is supported by the observation that trimeric nucleotide
frequencies are very similar in the intergenic regions of all
the species we have examined (Fig. S1). Additionally, two
transition/transversion rate biases are included when the
trimer substitution involves a pyrimidine-to-pyrimidine
(C<++T) exchange (k;), or a purine-to-purine (A<« G)
exchange (k3). For example, the mutation rate from codon
CGT to codon CGC is given by Brimcac, whereas the
CGA—CGC mutation rate is given by S8mcac. Mutation
rates corresponding to multiple nucleotide substitutions
are set to zero.

Our selection-mutation approach allows us to predict
genome-wide codon frequencies through a steady-state
population genetics model (Materials and Methods). The
major features of the approach are illustrated in Fig. 1
using Fscherichia coli as an example. Figure 1A shows
three initial E. coli populations which are genetically
identical except for a single codon: one population
contains the wild-type codon ATA at position 101 in
the thrA gene (position 1 is the start codon), whereas
the other two contain codons with single-nucleotide
mutations: ATG and AAA, respectively. After a fixed
period of time, the three progeny populations have
different sizes due to differences in their growth rates
(Fig. 1B). The thrA codon under consideration is at a
location which, according to the genetic code and the
fact that the wild-type codon is ATA, codes optimally
for isoleucine (Ile). Figure 1C shows mRNA transcripts
produced in the three E. coli strains, with colored
boxes around codons corresponding to the predominantly
translated amino acid in each case: Ile (green), Met (blue),
and Lys (red). The lowest-fitness strain has experienced
an ATA—AAA mutation, resulting in a codon which
cannot be translated into the optimal amino acid, Ile, even
through wobble pairing. In comparison, the ATG strain
has higher fitness since it can produce Ile through wobble
pairing: however, the ATG codon is primarily translated
into Met through cognate pairing. The wild-type ATA
strain has the highest fitness as it predominantly produces
Tle, even though the cognate tRNA of ATA is in fact not
present in E. coli (Fig. 1D-F).

Hierarchy of evolutionary models

To determine which biophysical factors contribute most
to the codon bias and what level of detail is necessary
to predict genome-wide codon frequencies, we have
constructed a hierarchy of models which include from 3 to
19 free parameters (see Table 1 for detailed descriptions),
and fit the models to E. coli (K-12 MG1655) genomic
data. Specifically, each model was fit to minimize the L!

distance:
18
legz’ﬁc_pcla (4)
c=1

where p. and p. are predicted and observed genome-wide
codon frequencies, respectively (see SI, section S1.1 for a
detailed description of the global optimization algorithm).
Each model was subjected to 5-fold cross-validation: all
genomic codons were randomly divided into 5 subsets of
equal size, and the model was fitted separately on each
subset, with L' denoting the average L' distance resulting
from these 5 fits. For the purposes of cross-validation,
L' distances were computed between codon frequencies
predicted by each of the 5 fits and codon frequencies
observed in each of the other 4 codon subsets which were
not used to fit the model in the current round. The cross-
validation score, Lt,, was then computed by averaging
first over the other 4 subsets left out of the current fit
and, finally, over the 5 independent fits.

The first model we have examined is a minimal model
which does not consider wobble pairing or the fitness
penalty for slow translation and therefore only includes
transition/transversion mutational parameters x; and ks
and the amino acid selection parameter s/[3. Note that
the codon frequencies are affected only by the ratio of
the amino acid selection coefficient s, which penalizes
translation into suboptimal amino acids, and the overall
mutation scale 8 (see SI, section S1.2 for an additional
discussion). Under this 3-parameter model, genome-wide
codon frequencies are determined by a combination
of mutation rate biases and mutational proximity to
deleterious sequences (i.e., mutational robustness). We
illustrate this point using 6 Arg codons as a representative
example (Fig. 2A,B). Under the 3-parameter model there
is a marked enrichment of the frequencies of CGC, CGG,
and CGT codons and a suppression of AGA and AGG
codon frequencies, even though all 6 codons have the
same fitness. These trends, with the exception of the CGG
enrichment, match genome-wide codon frequency data,
and are not present in the intergenic regions (Fig. 2A).

Next, we examined a family of models which in
addition to k;, Ko, and s/f include a fitness penalty
for slow codon translation, Ty/8, with Ty defined in

Eq. (1). In addition, each model in the hierarchy includes
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FIG. 2. Prediction of genome-wide codon frequencies in E. coli. (a) Codon frequencies of the arginine (Arg) group predicted by the

3-parameter model (black) and found in coding regions (grey), and nucleotide trimer frequencies in the intergenic regions (red). (b) The

single-point mutational network formed by the codons which translate into Arg according to the standard genetic code. The width of each line

is proportional to the mutation rate, with an arrow indicating the direction of mutation. The fading lines represent all mutation rates from

Arg to the corresponding non-Arg codons. The size of each circle indicates the frequency at which each codon sequence occurs in intergenic

trimers (red) and when mutation and selection against non-Arg codons are taken into account (3-parameter model; black). (c) Model scores

Lt (solid lines) and f/(ljv (dashed lines) as a function of model complexity. Each model was fit to genomic data (blue lines) and synthetic data

(red lines). (d) Normalized difference of E%JV model scores, AE%V:(ElcV(neW) —f/lcv(old))/(Nnew—Nold)7 in going from a less complex

(“old”) to a more complex (“new”) model. Nnew and Ng)q denote the number of model parameters in the old and new models, respectively.

an increasingly diverse set of pairing rates (Table 1).
Specifically, the 5-parameter model has a single parameter
describing all non-cognate pairing rates. In this model,
cognate pairings are assumed to occur at a rate of
Tnn=1, while four pairings are suppressed (r, /,,=0)
based on the crystallographic analysis of wobble base
pairs in the context of the ribosomal decoding center
(Murphy IV and Ramakrishnan, 2004). The remaining 8
rates are described by a single free parameter, r. The 7-
parameter model replaces this single parameter with three
rates: 19, which accounts for pairings across nucleotide
types (purine to pyrimidine) expected to be closest to
cognate pairing; r;, which characterizes all same-base
pairings that are not already suppressed on the basis of
crystallographic evidence; and 79, which accounts for the

two remaining pairings. In the 12-parameter model, rates

for 8 pairings that are neither cognate nor suppressed are
allowed to vary individually. In the 16-parameter model,
the assumption that some of the wobble pairings are
suppressed is relaxed, resulting in 4 additional pairing
rates. Finally, in the 19-parameter model the assumption
that all cognate pairings have a rate of r,,//, =1 is relaxed,
and each of the possible 16 pairings is assigned an
individual rate. Since there is now a degeneracy in the
model related to the fact that the Tp/Ce" ratio remains
invariant in Eq. (1) if both Ty and all wobble rates are
scaled by the same factor, we have chosen to set Ty /5=1,
resulting in 19 independent parameters. An alternative
approach in which one of the cognate rates was set to 1.0
and T,/ was allowed to vary yielded numerically inferior

solutions.
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Table 1. Hierarchy of models fit to E. coli genomic data. All models share the same three mutation and selection parameters 1, k9, and
s/B, and all except the 3-parameter model also include Tp /8. The pairing rates are parameterized according to various categories of nucleotide
base pairing: Watson-Crick (Cognate); disallowed according to Murphy IV and Ramakrishnan (2004) (Suppressed); different in type, purine
or pyrimidine, and are not disallowed or cognate (Alternate); and two nucleotides of the same type that are not disallowed (Same base). p:

Pearson correlation coefficient between predicted and observed frequencies, p: the corresponding p-value.

Parameter \ Description

K1 Transition/transversion rate bias for mutations between pyrimidines (T—C and C—T).
K2 Transition/transversion rate bias for mutations between purines (G—A and A—G).
s/B Selection coefficient for translation into a suboptimal amino acid divided by the overall mutation scale.
To/B Selective penalty for slow single-codon translations divided by the overall mutation scale.
Number of Wobble rate Nucleotide pairing Paired nucleotides Model prediction
model parameters (anticodon 5'/codon 3') p (p-value)
3 1 Cognate: A/U, C/G, G/C, and U/A. 0.79 (1.1x 10714)
0 All else.
5 1 Cognate: A/U, C/G, G/C, and U/A. 0.79 (6.2x 10713)
0 Suppressed: C/C, C/U, G/A, and G/G.
r All else: A/A, A/C, A/G, C/A,
G/U, U/C, U/G, and U/U.
7 1 Cognate: A/U, C/G, G/C, and U/A. 0.76 (1.9x 10713)
0 Suppressed: C/C, C/U, G/A, and G/G.
ro Alternate: A/C, C/A, G/U, and U/G.
1 Same base: A/A and U/U.
ro All else: A/G and U/C.
12 1 Cognate: A/U, C/G, G/C, and U/A. 0.86 (1.6 x 10719)
0 Suppressed: C/C, C/U, G/A, and G/G.
TA/A All else: A/A
TA/C A/C
. X 8 parameters
TU/U U/U
16 1 Cognate: A/U, C/G, G/C, and U/A. 0.93 (2.0x10729)
TA/A All else: A/A
Ta/C A/C
. . 12 parameters
Tu/u U/U
19 TA/A A/A 0.97 (4.4x 10~41)
TA/C A/C
. . 16 parameters
TU/U U/U

Since 63 independent codon frequencies are fit to models
containing from 3 to 19 independent parameters, it is
important to ensure that there is no overfitting. Figure 2C
demonstrates the quality-of-fit scores L' and L&, for
each of the models described above. A standard way of
checking the extent of overfitting, 5-fold cross-validation,
has limited applicability here since codon frequencies are
very similar in all 5 subsets, as manifested by the high
degree of similarity between L' and Ll in all Fig. 2C
fits. Thus, to investigate the issue of overfitting from a
different angle, we have carried out model fits not only
on genomic codon frequencies (blue lines), but also on
synthetically generated data for which models previously
fit on genomic data were used to generate artificial codon
counts (for a full description of synthetic data generation,
see SI, section S1.1). These counts were then used in

a subsequent round of model fitting (red lines). The

idea is to provide a score baseline in which a given
model type is employed to both generate the synthetic
data and carry out subsequent parameter inference. This
two-step procedure leads to consistent recovery of all
model parameters used in generating the synthetic data
(Table S1). As can be seen in Fig. 2C, there is no
trend in the model scores of fits on synthetic data as
the model complexity increases, and for each model type
genomic fit scores are significantly above synthetic fit
scores, indicating the absence of overfitting. Furthermore,
model scores of fits on genomic data improve with
model complexity, suggesting that overall increasing the
model complexity is beneficial. Note however that the
genomic scores become worse in going from the 3- to 5-
parameter model, showing that an increase in the number
of model parameters does not necessarily guarantee an

improvement in fitting performance.
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FIG. 3. Prediction of codon frequencies in E. coli. Codon frequencies predicted using the 19-parameter model (blue), and genome-wide

frequencies observed in E. coli (grey). All codons are sorted by the absolute magnitude of the prediction error, defined as the absolute

magnitude of the difference between predicted, pc, and observed, pe, frequencies of each codon c: |pe —pc|. The Pearson correlation coefficient

p between predicted and observed frequencies is also shown, along with the corresponding p-value.

We have also investigated the effects of intentional
overfitting on synthetic data. To this effect, an “old”
model with lower complexity, previously fit on genomic
data, was used to generate the codon counts, which were
subsequently used to fit a “new,” higher-complexity model
(red bars in Fig. 2D). Surprisingly, this overfitting always
resulted in worse model scores, again underscoring that
increasing model complexity does not necessarily lead to
better scores, due to both essential differences in model
parameterization and the lack of numerical convergence.
However, this effect becomes very slight on the higher-
complexity end of the model spectrum. To investigate this
issue further, we have generated synthetic data using the
7-parameter model, and fit all model types to it (Fig. S2).
We observe that, as expected, lower-complexity models
are not able to fit the synthetic dataset as well as the
“native” 7-parameter model. Furthermore, fitting more
complex models does not offer any marked improvements
in model scores.

In contrast to the results based on synthetic data, there
is a significant improvement in model performance on
genomic data with each increase in model complexity
(blue bars in Fig. 2D), with a sole exception of the 3-
and 5-parameter model pair. However, the gains in model
scores diminish gradually, indicating that increasing the
number of parameters beyond 19 is unlikely to lead to
further significant improvements in model performance.
Given that the 19-parameter model yields the best
performance, we have chosen it for all further analysis
carried out in this study. The model’s predictions in FE.
coli are shown in Fig. 3 and Fig. S3A, indicating that
our approach is capable of reproducing all the major
features observed in genome-wide codon frequencies in

this organism.

Tree scale: 1000 Myr .

—

Listeria monocytogenes
Bacillus subtilis

Chlamydia trachomatis

Vibrio parahaemolyticus
Vibrio cholerae

Salmonella enterica
Escherichia coli
Arabidopsis thaliana
Saccharomyces cerevisiae
Schizosaccharomyces pombe

L

_’

[ Caenorhabditis remanei

Drosophila simulans

Drosophila sechellia
Drosophila melanogaster

Caenorhabditis elegans
l Caenorhabditis briggsae
Xenopus tropicalis

Mus musculus
Homo sapiens
Pan troglodytes

FIG. 4. Phylogenetic relationships between all organisms
included in this study. The divergence times between all species
examined in this study were set to the estimated values reported
in the TimeTree database (Hedges et al., 2006; Kumar et al., 2017).
These divergence times were then used to construct the phylogenetic

tree via the Interactive Tree Of Life (Letunic and Bork, 2016).

Modeling codon bias in multiple species

We have fit the 19-parameter model to 20 organisms
spanning both unicellular and multicellular life forms
(Fig. 4; see SI, section S1.3 for details of genomic data
acquisition). In each case, the model fits the data to
a high degree of accuracy, with the Pearson correlation

coefficients in the [0.80,0.98] range, with an average of
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0.91 (Fig. S3B). The inferred biophysical and population
genetics parameters and the L, cross-validation scores
for each organism are available in Supplementary Dataset
S1; distributions of these parameters are summarized in
Fig. 5.

As might be expected, the wvalues of the two
transition/transversion rate biases, k; and ko, are fairly
conserved, especially in eukaryotes, with larger values
generally found in bacteria (Fig. S4, Fig. 5A). This
observation is consistent with the fact that trimeric
nucleotide frequencies found in intergenic regions, which
on average are likely to evolve only under the influence
of mutational forces, are nearly organism-independent
(Fig. S1). The values of the k; and k, biases are strongly
correlated with each other, with k; > ko in all cases. Note
that the biases are not always >1, in agreement with a
previously reported result (Keller et al., 2007).

We observe strong selection against mis-sense mutations
(s/B=5.84 on average), indicating that amino acids
translated from the genomic codons on the basis of
the standard genetic code are generally optimal and
their mutations are deleterious (Fig. 5B). The value of
the selection coefficient s is closely correlated with the
distribution of s;(c) values in each organism (Fig. 6A),
indicating that it is a good measure of the strength of
selection against amino acid mistranslations. Moreover,
the strength of selection for the speed of codon translation
is generally weaker than the strength of mutational
forces, as measured by the overall mutational scale 3,
although there are also notable exceptions (Fig. 6B).
Correspondingly, in the majority of cases selection for
mistranslation dominates selection for translation speed
(Fig. 6C).

We have found that in all organisms the rates
corresponding to the A/G, C/A, C/C, G/A and G/G
pairings are vanishingly small compared to all other
rates (Fig. 5C). According to crystallographic evidence
(Murphy IV and Ramakrishnan, 2004), C/U, C/C,
G/A, and G/G pairings should be sterically disallowed,
which is consistent with our findings except for C/U,
for which only 3 out of the 20 organisms yield non-
vanishing rc,uy rates: S. pombe, V. cholerae, and A.
thaliana. Additionally, purine-pyrimidine pairings are
consistently assigned higher rates than purine-purine
and pyrimidine-pyrimidine pairings, with cognate pairings
being predominant compared to non-cognate pairings: for
example, averages across all species of the T /a, Ta,c,
Ta/G, and T,y pairing rates are 0.9, 3.3, 0.3, and 8.7,
respectively. However, a notable exception is the rq/u

rate, which is considerably higher than rg,c and in

fact assumes unrealistically large values for ~50% of
the species considered. We do not have a satisfactory
explanation for this finding at the moment.

Finally, we have examined a matrix of correlations
among 19 model parameters and several additional key
values characterizing either the genome (genome size,
total number of codons, total number of genes) or the
population (effective population size) (Fig. S5). We find
that, as expected, the genome size, the total number of
codons and the total number of genes are all correlated
with each other and anti-correlated with the effective
population size and the ki, ko mutational biases, the
latter observation being consistent with the fact that these
biases are higher in prokaryotes (Fig. S4). In contrast, the
selection coefficient s/8 is not strongly correlated with
any other parameter, including the effective population
size. Finally, we observe that some of the pairing rates
(e.g. Taja and ra/q) are strongly correlated with each

other, reducing the effective number of model parameters.

Estimation of the genome-wide mutation rate

Our biophysical approach has also enabled us to estimate
the genome-wide mutation rate per nucleotide per

generation as an average over all codon types:
=3 peape o)

¢ cle

Indeed, following the approach developed by Bulmer
(1991), we can estimate Tp in Eq. (1) directly from
the explicit biophysical model of ribosome-mediated
translation (see SI, section S1.4 for details). Here, we have
focused our attention on FE. coli and S. cerevisiae, for
which all the requisite values of biophysical parameters
are available in the literature. For both of these organisms,

we find that
T -Ptotfy
To~— 6
0 o Gt[k] ) ( )
where P, is the total protein production rate in the cell,

G is the total number of genes, t; is the average ribosome
initiation time, k; is the average initiation on-rate per free
ribosome, and 7 and « are defined in Egs. (16) and (17),

respectively (Materials and Methods). Finally,
G

— Rbrpr
I

where P, is the protein production rate of gene r
(such that ETGZIPT:PM), Ry, is the average number of

ribosomes bound to each transcript of gene r, and Ry is

r=1

the number of free ribosomes in each cell.

Using Eq. (6) and our assumption of 7y/5=1 in the 19-
parameter model, we can estimate 5 and, consequently,
(u) via Eq. (5), using intergenic trimer frequencies and
predicted values of xk; and k,. Note that although the

To=/ assumption is arbitrary, we estimate 7/a from
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FIG. 5. Distributions of inferred biophysical and population genetics parameter values across 20 organisms. All models are

fitted separately on 5 codon subsets and the resulting parameters averaged, as indicated by the overbar. For each parameter averaged in

this way, median values across all organisms as well as the first, @1, and third, @3, quartiles are plotted using box-and-whisker plots.

The locations of upper and lower whiskers are given by the largest data point below Q3+1.5(Q3

Q1-1.5(Q3

—@1) and the smallest data point above

—@1)- Data points which extend outside of this range are considered outliers and plotted explicitly using species-specific symbols.

(a) Transition/transversion rate biases &1 and &g, (b) amino acid selection coefficients (s/8), and (c) wobble rates 7, In- The wobble rates

are separated into four sets by vertical dashed grey lines, one for each anticodon nucleotide. The cognate pairings are highlighted in solid

cyan, and non-cognate pairings with alternate nucleotide types (purine to pyrimidine pairings) are highlighted in faded cyan.

the predicted pairing rates in a way that makes our
procedure invariant with respect to rescaling both Tj
and all pairing rates by an arbitrary factor (cf. Egs. (1),
(2), (6), and (S24)). We have estimated the value of S
using both the most up-to-date data available in the
literature and Bulmer’s original data (see Table S2 for
input parameter values). Both sets of parameters yield
very similar estimates for the average effective mutation
rate: 2.4x107% and 1.1 x 10~ mutations per nucleotide
per generation, respectively. These estimates differ from
independent estimates of the genomic mutation rate in
E. coli (Drake, 1991; Wielgoss et al., 2011), which yield
values on the order of 107'° mutations per nucleotide
per generation (Table S2). The same calculation in S.
cerevisiae, which has a similar effective population size
(Table S2),

per nucleotide per generation, which is also higher than

has resulted in (u)=7.1x10"" mutations

the independently estimated mutation rate of 3.3 x 10710

mutations per nucleotide per generation (Lynch et al.,

2008) (see SI, section S1.4 for details and Table S2 for
input parameters).

A possible explanation for the observed discrepancy,
which is reminiscent of the difficulties encountered by
Bulmer in trying to reconcile a population genetics model
with the biophysics of mRNA translation (Bulmer, 1991),
is that the codon diversity seen in E. coli and S. cerevisiae
genomic data is affected by linkage and may require an
explicit treatment of genetic drift, as uN,<1 for both
organisms (Table S2). Indeed, genetic drift can contribute
to allele diversity observed across multiple sites, even if
each individually evolving site is in the monomorphic
2012; Sella and Hirsh, 2005).
Note that our model describes the frequencies of N.~
GL/20=0(10°) codon sites per individual for each fitness

landscape, where L is the average gene length in codons

regime (Manhart et al.,

(494 in S. cerevisiae and 319 in E. coli), and 20 accounts

for the number of distinct amino acid types (positions
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FIG. 6. Comparison of selection strengths for speed and accuracy of codon translation. All selection coefficients have been

computed by fitting the 19-parameter model to genomic data from 20 organisms. (a) Ratios of the selection coefficients for amino acid

mistranslation, s;(c) (cf. Egs. (1) and (3)), averaged over optimal amino acids/STOP instruction as indicated by angle brackets, to the overall

mutation scale 3, shown as box-and-whisker plots for each organism. Horizontal dashed red lines indicate the corresponding value of s. (b)

Ratios of the selection coefficient for the speed of codon translation, TO/Cgﬂ (cf. Egs. (1) and (2)), to the overall mutation scale 3, shown

as box-and-whisker plots for each organism. (¢) Ratios of the two selection coefficients from (a) and (b), shown as box-and-whisker plots for

each organism. Horizontal dashed grey lines in panels (a)-(c) indicate where each quantity equals 1.

where the STOP instruction has the highest fitness are
excluded from the estimate).

Finally, our analysis yields an inverse relationship
between (u) and the total number of genes G, which
in turn is strongly correlated with the total number of
nucleotides in the genome (Fig. S5). This is consistent
with Drake’s rule, which states that organisms with
larger genomes tend to have smaller mutational rates
(Drake, 1991). Multiple-species biophysical data of the
type displayed in Table S2 will be required to confirm the

trend and estimate its significance quantitatively.

10

Discussion

We have developed a population genetics treatment
of the biophysical model of codon bias. We assume
that genome-wide codon frequencies have reached
steady state and model the codon population using a
selection-mutation framework in which codons evolve
independently of one another. Our model includes a
detailed description of codon-level mutations which takes
transition/transversion biases into account (Tamura and
Nei, 1993; Yang, 2006). Furthermore, there are two

kinds of selective forces in the model. We assume that
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most protein coding regions in the genome evolve under
purifying selection and that for each codon, translation
into amino acids different from the optimal one (which
corresponds to the codon in the standard genetic code)
carries a selective penalty. Thus our model incorporates
mutational robustness, in which steady-state allele
frequencies in a polymorphic population of equal-fitness
alleles can be non-uniform, with more robust alleles,
separated on average by a higher number of mutational
steps from the deleterious alleles, being relatively enriched
(van Nimwegen et al., 1999). Interestingly, even the
minimal 3-parameter model, which takes only mutation
and selection against mistranslation into account and
considers only cognate codon-anticodon pairings, is
capable of reproducing genome-wide codon frequencies
with p=0.79 in E. coli (Table 1).

In addition to the factors described above, we assume
that cellular fitness is proportional to the total protein
production rate, which leads to selective penalties for
codons with longer translation times. A major factor
which determines translation speed is the cellular tRNA
concentration, which in our model is assumed to be
proportional to the tRNA gene copy numbers in the
genome (Kanaya et al., 1999). Finally, codon-anticodon
pairing rates are computed on the basis of the wobble
hypothesis, such that a mutation in the 3’ nucleotide of a
given codon may bring about a complicated set of changes
in which the effective tRNA gene copy number may
increase or decrease simultaneously with the change in the
codon’s mistranslation rate. Thus the final contribution
of the codon to the total cellular fitness depends on
the delicate balance between speed and accuracy of
the codon’s translation, and the genome-wide codon
frequencies depend on the steady-state balance between
selection and mutation forces. While we have neglected
other possible mechanisms of selection on codon usage,
such as mRNA toxicity (Mittal et al., 2018), mRNA
transcription (Zhou et al., 2016), translation initiation
(Bhattacharyya et al., 2018), and co-translational folding
(Jacobs and Shakhnovich, 2017), the ability of our model
to empirically explain observed patterns of codon usage
across many organisms suggests that these mechanisms,
while undoubtedly important in some cases, do not play
a dominant role in shaping codon usage genome-wide.

We have fit our biophysical model to genomic codon
frequencies from 20 organisms. Overall, the model
reproduces observed genome-wide patterns of codon usage
to a high degree of accuracy (Fig. S3). When codons are
ranked based on the accuracy of the model prediction,

the codon CTA appears in 8 of the 20 organisms as one of

the top 4 least accurately predicted codon frequencies.
No such pattern emerges for amino acids. In terms of
the predicted model parameters, the values of mutational
biases k1 and ko are fairly conserved as expected, with
larger values typically found in prokaryotes and with
K1 > ko in all organisms. The universality of mutational
rate biases across organisms is consistent with the fact
that nucleotide trimer frequencies are strongly conserved
in the intergenic regions (Fig. S1).

Furthermore, we observe that codons are under strong
selection against mistranslation, with s/8=>5.84 when
averaged over all organisms (Fig. 5B), and s/f<1 only
in S. pombe, C. remanei, and A. thaliana. We have found
that in each organism the fitted value of the selective
penalty s, introduced in Eq. (3), is nearly equal to
the mean of the corresponding distribution of the s;(c)
selection coefficients, defined in Eq. (1) (Fig. 6A). On
the other hand, in both E. coli and S. cerevisaie [ is
several-fold larger than (u), the genome-wide mutation
rate per nucleotide per generation averaged over all
codon types (see SI, section S1.4 for details). Thus we
expect s/(u) to be >1 in all organisms, making selection
against mistranslation a dominant evolutionary force in
comparison with mutational effects.

In contrast, the ratio of the selection coefficient
associated with the translation speed to the mutation
scale, Ty/(BC™), is <1 on average (Fig. 6B). Thus
our model predicts that fitness costs associated with
slow translation are often subordinate to the mutational
effects, and are much less pronounced than selection
against mistranslation (Fig. 6C). Nonetheless, we expect
To/({p)CS™) to be > 1 for a nonzero fraction of all codons,
indicating that at least in some cases selection against
slow translation is an important factor which shapes
observed codon frequencies.

Finally, despite the fact that pairing rates are
unrestricted in the 19-parameter model, the rates follow
well-established patterns consistent with both empirical
rules of the wobble hypothesis (Crick, 1966) and atom-
level details of codon-anticodon binding on the ribosomal
template (Murphy IV and Ramakrishnan, 2004). For
example, rates of cognate pairing are much higher than
rates of wobble pairing (Fig. 5C), with the sole exception
of the G/U pairing whose rates are predicted to be
anomalously large. Note that in our framework the first
two codon positions are assumed to have no effect on the
pairing rates.

As an additional test of our approach, we have
estimated Tj, defined in Eq. (1), directly using an explicit

biophysical model of ribosome-mediated translation
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originally developed by Bulmer (1991). Bulmer’s model
relies on biophysical parameters such as single-codon
translation times and translation initiation rates, whose
values are available in the literature for F. coli and S.
cerevisaie (Table S2). Estimating T, has enabled us to
find the average mutation rate per nucleotide, (u), in the
coding regions, and compare it with previously published
estimates of genome-wide mutation rates (Charlesworth,
2009; Drake, 1991; Lynch et al., 2008, 2011; Wielgoss
et al., 2011). Our estimates of (i) are several orders of
magnitude higher than the values of u available in the
literature. A model of codon evolution which includes
genetic drift and linkage between multiple codon loci
is necessary to investigate these discrepancies further.
Additional refinements of the model could also replace s
with several fitness penalties which would depend on the
physico-chemical similarity of the mistranslated amino
acid to the optimal one.

Finally, we note that according to our biophysical
framework, (u) is inversely proportional to the number
of genes (Eq. (6)). This is reminiscent of the observation,
due to Drake, that organisms with larger genomes tend to
have smaller mutational rates (Drake, 1991). We intend
to extend our mutation-selection model to all conserved
and non-conserved regions of the genome in order to study

this correlation in more detail.

Materials and Methods

Population genetics model

In order to predict genome-wide codon frequencies, we
have employed a mutation-selection population genetics
model. We represent codon counts in a population of N
organisms as a vector with 64 entries, |[N(t)), and evolve
the state of the population from one generation to the

next using the deterministic equation:
IN(t+1)); =T+M)W;|N (1)), (8)

where W, is a diagonal matrix of fitness values
conditioned either on the optimal amino acid or the STOP
instruction (i.e., 7=1,...,21), M is the mutation matrix,
and I is the identity matrix. The off-diagonal entries of
the mutation matrix, M., are the mutation rates from
codon ¢ to ¢, and diagonal entries are fixed through
> eM..=0. Equation (8) can be rewritten in terms of
the codon frequencies in a population evolving under the
same fitness matrix, |p(t)),; =|N(t));/(1|N(t)); (]1) is a

vector with 1 in every entry),

_ING+1));

I+M)W;,[N (1)),
(LA+M)W;[N(2));

MW NG, IEMW ),
AW,INGY, AW (0),

12

Eventually these frequencies will reach a steady-state

|p**); determined by
(I+M)W;[p**);=w;|p*);, (10)

where w;=(1|W,|p**); is the average fitness of the
corresponding population.

Finally, if each fitness matrix W operates at C; codon
locations in the genome, steady-state codon frequencies
are given by the genome-wide average:
) = )5

Zj Cj

where each |p*®); is found using Eq. (10) with the

(11)

corresponding W;. Note that the mutation rates are
assumed to be independent of the fitness matrix j,

yielding a universal M for each species.

Biophysical model of codon evolution

We model the cell’s fitness, w, as proportional to the
product of its total protein production rate, P, (c,q,¢),
which depends on the presence of codon ¢ at location /¢
on gene ¢ (explicit dependence on all the other codons is

suppressed for brevity), and a mistranslation penalty:
w;(e,q,0) x Pt (¢,q,0) (1—s;(c)), (12)

where s;(c) is the selection coefficient for codon
mistranslation, which we assume to be dependent on the
codon’s genomic location only through the optimal amino
acid or STOP instruction, j, at that location (Eq. (3)).
The change in P,,; upon mutating the current codon, c,
at genomic coordinates (¢,¢) into codon ¢ is expected to
be small compared to the total protein production rate.
The new protein production rate, P (c’,q,¢), can then be

approximated by a first-order expansion,

/ dPO c c /
w;(c,q,0) Ptot(c,q,f)—i-dtc(ztz) (t —t UM))] (1—s;(c)),

(13)

where the single-codon translation time ¢¢ is assumed to

be independent of the codon’s location, and t°(99 is the
translation time of codon ¢ at genomic coordinates (g,¥).
Next, Eq. (13) is averaged over all codon positions for
which s;(c’) is the same (that is, over all positions which
have the same optimal amino acid or STOP instruction j
and therefore evolve under the same fitness matrix):
1

1
=G 215

q=1

ij(c’,q,ﬁ)z<wj(c’,q,€)>, (14)
0esS)

where G is the total number of genes, Sg is the set of codon
locations with the same optimal amino acid or STOP
instruction j on gene ¢, and |S}| is the number of such

locations. Note that all instances for which |S]|=0 are
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excluded from the average. We obtain

, » / dlog P, (a0 A1og Py ,
w;(c') o {1+t <dt0(q»;)t>_ <t (q,f)idtc(q,;)t >} (1—s;(c))

dlog Piot

gl dte(a,0) e (A
& ll t <tc(q’l) d;ongt>_1‘| (]‘ S](C ))

tc(a,€)

(15)

We model the translation time, t°, as inversely
proportional to the tRNA cellular counts:

! T
¢ =
Zne{AyU,c,G}Tn/cg cell [tRNAnJré,QS] ’

(16)

where Vg is the cell volume, 7 is the characteristic time
scale for tRNA molecules to be acquired by the ribosome
for translation, 7,/ are dimensionless pairing rates at
which tRNAs with n as their 5’ anticodon nucleotide bind
to the 3’ nucleotide of codon ¢/, denoted ¢ (the other
two anticodon nucleotides are always cognate to ¢'), and
[tRNAnJrgQS] are concentrations of tRNAs with anticodon
n+Chs, where ¢, denotes the second and third nucleotides
of the reverse complement of ¢/. We assume that the tRNA
gene copy number, denoted as C,,¢, , is proportional to
the tRNA cellular counts:

‘/cell [tRNAn+E’23] :acn+6/23’ (17)
where « is a proportionality constant, leading to
, T
¢ =—— 18
aCet’ (18)

with the effective gene copy number C¢ given by Eq. (2).
Finally, with

. dlog Piot
2(q,€)
=T Va (19)
c(g,0) dlog Prot \
a (telrh palss) —1

Eq. (15) reduces to Eq. (1). The 64 fitness values for each
codon, computed using Eq. (1) and conditioned on the
optimal amino acid or STOP instruction j, provide the

diagonal entries of the fitness matrix W,

Acknowledgments

MM was supported by an NIH F32 fellowship
(GM116217). AVM and WBK acknowledge financial
and logistical support from the Center for Quantitative

Biology at Rutgers.
References

Akashi, H. 2001. Gene expression and molecular evolution. Curr
Opin Genet Dev, 11: 660—666.

Alberts, B., Johnson, A., Lewis, J., Morgan, D., Raff, M., Roberts,
K., and Walter, P. 2015. Molecular Biology of the Cell. Garland
Science, New York, NY.

Bhattacharyya, S., Jacobs, W. M., Adkar, B. V., Yan, J., Zhang, W.,
and Shakhnovich, E. I. 2018. Accessibility of the Shine-Dalgarno
sequence dictates N-terminal codon bias in E.coli. Mol Cell, 70:
894-905.

Bulmer, M. 1991. The

synonymous codon usage. Genetics, 129: 897-907.

selection-mutation-drift theory of

Charlesworth, B. 2009. Effective population size and patterns of

molecular evolution and variation. Nat Rev Genet, 10.

Crick, F. H. C. 1958. On protein synthesis. In F. K. Sanders, editor,
Symposia of the Society for Fxperimental Biology, Number XII:
The Biological Replication of Macromolecules, pages 138-163.
Cambridge University Press, Cambridge.

Crick, F. H. C. 1966. Codon-anticodon pairing: The wobble
hypothesis. J Mol Biol, 19: 548-555.

Drake, J. W. 1991. A constant rate of spontaneous mutation in
DNA-based microbes. Proc Natl Acad Sci USA, 88: 7160-7164.

Duret, L. 2002. Evolution of synonymous codon usage in metazoans.
Curr Opin Genet Dev, 12: 640-649.

Hedges, S., Dudley, J., and Kumar, S. 2006. TimeTree: A
public knowledge-base of divergence times among organisms.
Bioinformatics, 22: 2971-2972.

Hershberg, R. and Petrov, D. A. 2008. Selection on codon bias.
Annu Rev Genet, 42: 287-299.

Jacobs, W. M. and Shakhnovich, E. I. 2017. Evidence of evolutionary
selection for cotranslational folding. Proc Natl Acad Sci USA,
114: 11434-11439.

Kanaya, S., Yamada, Y., Kudo, Y., and Ikemura, T. 1999. Studies
of codon usage and tRNA genes of 18 unicellular organisms
and quantification of Bacillus subtilis tRNAs: gene expression
level and species-specific diversity of codon usage based on
multivariate analysis. Gene, 238: 143-155.

Keller, 1., Bensasson, D., and Nichols, R. A. 2007.

transversion bias is not universal: a counter example from

Transition-

grasshopper pseudogenes. PLoS Genet, 3: e22.

Kimura, M. 1981. Possibility of extensive neutral evolution under
stabilizing selection with special reference to nonrandom usage of
synonymous codons. Proc Natl Academy Sci USA, 78: 5773-5777.

Kimura, M. 1991.
review of recent evidence. Jpn J Genet, 66: 367-386.

The neutral theory of molecular evolution: a

Kondrashov, A. S. 1995. Contamination of the genome by very
slightly deleterious mutations: why have we not died 100 times
over? J Theor Biol, 175: 583-594.

Kumar, S.,; Stecher, G., Suleski, M., and Hedges, S. 2017. TimeTree:
A resource for timelines, timetrees, and divergence times. Mol
Biol Evol, 34: 1812-1819.

Letunic, I. and Bork, P. 2016. Interactive tree of life (iTOL) v3: an
online tool for the display and annotation of phylogenetic and
other trees. Nucl Acids Res, 44: W242-W245.

Li, W. H. 1987. Models of nearly neutral mutations with particular
implications for nonrandom usage of synonymous codons. J Mol
Evol, 24: 337-345.

Lynch, M., Sung, W., Morris, K., Coffey, N., Landry, C. R., Dopman,
E. B., Dickinson, W. J.; Okamoto, K., Kulkarni, S., Hartl, D. L.,
and Thomas, W. K. 2008. A genome-wide view of the spectrum
of spontaneous mutations in yeast. Proc Natl Acad Sci USA, 105:
9272-9277.

Lynch, M., Bobay, L.-M., Catania, F., Gout, J.-F., and Rho, M.
2011. The repatterning of eukaryotic genomes by random genetic
drift. Annu Rev Genom Hum Genet, 12: 347-366.

Manhart, M., Haldane, A., and Morozov, A. V. 2012. A universal
scaling law determines time reversibility and steady state of
substitutions under selection. Theor. Pop. Biol., 82: 66-76.

McVean, G. A. T. and Charlesworth, B. 1999. A population genetic
model for the evolution of synonymous codon usage: patterns and
predictions. Genetical Res, 74: 145—158.

Mittal, P., Brindle, J., Stephen, J., Plotkin, J. B., and Kudla, G.
2018. Codon usage influences fitness through RNA toxicity. Proc
Natl Acad Sci USA, 115: 8639-8644.

Murphy IV, F. V. and Ramakrishnan, V. 2004. Structure of a purine-

purine wobble base pair in the decoding center of the ribosome.

13


https://doi.org/10.1101/578815
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/578815; this version posted March 16, 2019. The copyright holder for this preprint (which was not certified by peer review) is
the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC 4.0 International license.

Nat Struct Mol Biol, 11: 1251-1252.

Mustonen, V. and Léassig, M. 2010. Fitness flux and ubiquity of
adaptive evolution. Proc Nat Acad Sci USA, 107: 4248-4253.
Napolitano, M. G., Landon, M., Gregg, C. J., Lajoie, M. J.,
Govindarajan, L., Mosberg, J. A., Kuznetsov, G., Goodman,
D. B., Vargas-Rodriguez, O., Isaacs, F. J., Soll, D., and Church,
G. M. 2016. Emergent rules for codon choice elucidated by editing
rare arginine codons in Escherichia coli. Proc Natl Acad Sci USA,

113: E5588-E5597.

Nielsen, R., Bauer DuMont, V. L., Hubisz, M. J., and Aquadro, C. F.
2007. Maximum likelihood estimation of ancestral codon usage
bias parameters in Drosophila. Mol Biol Evol, 24: 228-235.

Plotkin, J. B. and Kudla, G. 2011. Synonymous but not the same:
the causes and consequences of codon bias. Nat Rev Genet, 12:
32-42.

Sella, G. and Hirsh, A. E. 2005. The application of statistical physics
to evolutionary biology. Proc Natl Academy Sci USA, 102: 9541—
9546.

Sharp, P. M., Bailes, E., Grocock, R. J., Peden, J. F.; and Sockett,
R. E. 2005. Variation in the strength of selected codon usage bias
among bacteria. Nucl Acids Res, 33: 1141-1153.

Sharp, P. M., Emery, L. R., and Zeng, K. 2010. Forces that influence
the evolution of codon bias. Phil Trans R Soc Lond B, 365(1544):
1203-1212.

Stoletzki, N. and Eyre-Walker, A. 2007. Synonymous codon usage
in Escherichia coli: Selection for translational accuracy. Mol Biol
Evol, 24: 374-381.

Tamura, K. and Nei, M. 1993. Estimation of the number of
nucleotide substitutions in the control region of mitochondrial
DNA in humans and chimpanzees. Mol Biol Evol, 10: 512-526.

Tuller, T., Carmi, A., Vestsigian, K., Navon, S., Dorfan, Y.,
Zaborske, J., Pan, T., Dahan, O., Furman, 1., and Pilpel, Y.
2010. An evolutionarily conserved mechanism for controlling the
efficiency of protein translation. Cell, 141: 344-354.

van Nimwegen, E., Crutchfield, J. P., and Huynen, M. 1999. Neutral
evolution of mutational robustness. Proc Natl Academy Sci USA,
96: 9716-9720.

Wielgoss, S., Barrick, J. E., Tenaillon, O., Cruveiller, S., Chane-
Woon-Ming, B., Médigue, C., Lenski, R. E., and Schneider, D.
2011. Mutation rate inferred from synonymous substitutions
in a long-term evolution experiment with Escherichia coli. G3
(Bethesda), 1: 183-186.

Yang, Z. 2006. Computational Molecular FEvolution.  Oxford
University Press, Oxford, UK.

Zhou, Z., Dang, Y., Zhou, M., Li, L., h. Yu, C.; Fu, J., Chen, S.,
and Liu, Y. 2016. Codon usage is an important determinant of
gene expression levels largely through its effects on transcription.
Proc Natl Acad Sci USA, 113: E6117-E6125.

14


https://doi.org/10.1101/578815
http://creativecommons.org/licenses/by-nc/4.0/

