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Abstract

Frequencies of synonymous codons are typically non-uniform, despite the fact that such codons correspond to the same

amino acid in the genetic code. This phenomenon, known as codon bias, is broadly believed to be due to a combination

of factors including genetic drift, mutational biases, and selection for speed and accuracy of codon translation; however,

quantitative modeling of codon bias has been elusive. We have developed a biophysical population genetics model which

explains genome-wide codon frequencies observed across 20 organisms. We assume that codons evolve independently of

each other under the influence of mutation and selection forces, and that the codon population has reached evolutionary

steady state. Our model implements codon-level treatment of mutations with transition/transversion biases, and includes

two contributions to codon fitness which describe codon translation speed and accuracy. Furthermore, our model includes

wobble pairing – the possibility of codon-anticodon base pairing mismatches at the 3’ nucleotide position of the codon.

We find that the observed patterns of genome-wide codon usage are consistent with a strong selective penalty for

mistranslated amino acids. Thus codons undergo purifying selection and their relative frequencies are affected in part by

mutational robustness. We find that the dependence of codon fitness on translation speed is weaker on average compared

to the strength of selection against mistranslation. Although no constraints on codon-anticodon pairing are imposed a

priori, a reasonable hierarchy of pairing rates, which conforms to the wobble hypothesis and is consistent with available

structural evidence, emerges spontaneously as a model prediction. Finally, treating the translation process explicitly in

the context of a finite ribosomal pool has allowed us to estimate mutation rates per nucleotide directly from the coding

sequences. Reminiscent of Drake’s observation that mutation rates are inversely correlated with the genome size, we

predict that mutation rates are inversely proportional to the number of genes. Overall, our approach offers a unified

biophysical and population genetics framework for studying codon bias across all domains of life.
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Introduction

The central dogma of molecular biology states that

consecutive triplets of nucleotides called codons are

translated into amino acids during protein production

(Alberts et al., 2015; Crick, 1958). As there are 64 codons

and 20 amino acids, the translation code is degenerate,

with as many as 6 codons translated into a single amino

acid. Pronounced differences in synonymous codon usage

are observed in any organism for which protein coding

sequences are available and therefore codon frequencies

can be reliably computed. These genome-wide differences

are known as codon bias (Hershberg and Petrov, 2008;

Napolitano et al., 2016; Nielsen et al., 2007; Sharp

et al., 2005, 2010). Since codon usage is one of the

most fundamental features of genomes, a quantitative

understanding of its evolution is critical to molecular

biology.

Because a protein’s function is determined solely by its

amino acid sequence, arguably the most basic mechanism

for dictating the choice of synonymous codons is neutral

evolution on a fitness landscape shaped by selective

penalties for amino acid mistranslation (Akashi, 2001;

Kimura, 1981). In this approach, non-uniform codon

frequencies are produced due to mutational robustness

(van Nimwegen et al., 1999) and transition/transversion

mutational biases (Yang, 2006).

Another popular explanation for the global codon bias

involves selection and postulates that certain codons are

translated more efficiently than others, resulting in higher

protein production rates and therefore higher cellular

growth rates or fitness (Akashi, 2001; Bulmer, 1991;

Duret, 2002; Plotkin and Kudla, 2011). This translation

efficiency can be characterized as a balance between
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translation speed and accuracy (Tuller et al., 2010): a

particular codon may be more rapidly translated due to

a higher concentration of the corresponding tRNAs (a

hypothesis supported by the correlation between tRNA

gene copy numbers and codon frequencies (Kanaya et al.,

1999)), but may also cause more translation errors. The

translation errors can be viewed through the lens of

the wobble hypothesis, which states that each codon

can be recognized by non-cognate tRNA species, with

mispairings that occur at the 3’ nucleotide position in the

codon (Crick, 1966; Stoletzki and Eyre-Walker, 2007).

Codon bias has been previously examined through

population genetic models which incorporate mutation,

selection, and drift in a system of two codon types

(Bulmer, 1991; Kimura, 1991; Kondrashov, 1995; Li,

1987; McVean and Charlesworth, 1999). Since a complete

treatment of a multi-allelic mutation-selection-drift model

is prohibitively complex, especially in the polymorphic

limit (Mustonen and Lässig, 2010), previous work has

attributed the difference in codon frequencies to a balance

between selection and drift, with mutations playing a

subordinate role (Hershberg and Petrov, 2008). However,

because selection strength has to be inversely proportional

to the effective population size to reproduce the observed

genomic codon frequencies, this approach leads to the

“fine-tuning” problem in which selective advantages of

the preferred codons have to vary through many orders

of magnitude in order to reflect a broad range of effective

population sizes (Charlesworth, 2009). It is challenging to

provide a biophysical explanation for this behavior.

In contrast, our model focuses on the interplay

between mutational and selective forces acting on

individual codons: the observed codon frequencies emerge

as a steady-state balance between mutational forces

on one hand, and selection on translation speed and

accuracy on the other. We have explicitly modeled the

evolutionary process on the full 64-codon mutational

network in a population of organisms whose fitness is

determined by genomic codon content. Our approach is

based on a realistic codon-level mutation model which

includes transition/transversion biases and mutational

robustness, and allows for non-cognate tRNA-mRNA

pairings consistent with the wobble hypothesis. Using

this selection-mutation framework, we were able to

accurately predict genome-wide codon frequencies in

a variety of organisms spanning both prokaryotic and

eukaryotic domains. Our predictions of the codon-

anticodon pairing rates are largely consistent with

previously postulated wobble rules (Crick, 1966) and

with the crystallographic analysis of wobble base

pairs in the context of the ribosomal decoding center

(Murphy IV and Ramakrishnan, 2004). We incorporated

Bulmer’s biophysical model, which explicitly describes

the details of the translation process given a finite

ribosomal pool (Bulmer, 1991), into our approach,

and estimated single-nucleotide mutation rates using

biophysical model parameters such as ribosomal on-rates

and codon translation times. Finally, our framework

yields a potential explanation for Drake’s rule (Drake,

1991), which states that the mutation rate is inversely

proportional to the genome size.

Results
Biophysical model of codon evolution

We have developed a biophysical model of codon

population dynamics which is designed to predict genome-

wide codon frequencies under the assumption that each

organism in a population is subjected to mutation

and selection on single-codon translation efficiency. We

focus our attention primarily on the species with large

effective codon population sizes, allowing us to neglect

the effects of genetic drift in our model, which assumes

that codons evolve independently at multiple genomic

sites throughout the genome.

We consider the fitness of each organism, w, given the

presence of a codon c at a particular genomic location

and the optimal amino acid or STOP instruction j at

that location, as the product of two terms modeling

translation speed and accuracy, respectively (Materials

and Methods):

wj(c)=

(
1− T0

Ceff
c

)
(1−sj(c))'1− T0

Ceff
c

−sj(c), (1)

where T0 sets the overall scale of the selection coefficient in

the first term, which penalizes for slow codon translation,

and Ceff
c is the effective tRNA gene copy number. The

approximation in Eq. (1) is valid when the two selection

terms T0/C
eff
c and sj(c) are small, as is generally expected

for selection on a single codon. Since according to the

wobble hypothesis non-cognate codon-anticodon pairing

is allowed at the 3’ codon position, Ceff
c is computed as a

weighted sum over all possible codon-anticodon pairings,

Ceff
c ≡

∑
n′∈{A,U,C,G}

rn′/nCc(n
′), (2)

where rn′/n is the codon-anticodon pairing rate associated

with the nucleotide pairing n′/n at the 5’ anticodon

and 3’ codon positions, respectively, and Cc(n
′) is the

corresponding anticodon tRNA gene copy number, which

we assume is proportional to the total number of tRNA

molecules in the cell. For brevity, we shall refer to rn′/n

as “pairing rates” from now on. Note that the pairing

rates are defined to be dimensionless and unnormalized

(see Materials and Methods for details).
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FIG. 1. Illustration of the biophysical fitness model on E. coli populations. (a) Three initial E. coli populations: one wild-type and

two with a single-nucleotide mutation (ATA→ATG, ATA→AAA) at codon 101 in the thrA gene. (b) The same E. coli populations after a

fixed period of growth. (c) RNA transcripts of the thrA gene from all three strains. Each colored box around the codon in question indicates

the amino acid that is primarily translated, with green, blue and red corresponding to Ile, Met, and Lys, respectively. (d) An E. coli cell

with the tRNA gene copies for Ile (green) and Met (blue) shown as colored rectangles. (e) A magnified portion of the cell with three tRNA

molecules charged with Ile (green) and three more charged with Met (blue). The proportions of each type of tRNA molecule roughly match

the proportions of gene copies in (d), as assumed in our model. (f) A further magnification of (e) with two representative tRNAs shown in

molecular detail. The two tRNA molecules shown, one charged with Met and the other with Ile, are present in the K-12 MG1655 E. coli and

can bind AUA through wobble pairing, with wobble rates rC/A and rG/A, respectively. Note that there is no cognate tRNA for this codon.

In the second term on the right-hand side of Eq. (1),

sj(c) is the amino-acid-level selection coefficient which

penalizes for incorrect amino acid translations due to

wobble pairing:

sj(c)=

∑
n′∈{A,U,C,G}rn′/nCc(n

′)s̄cj(n
′)∑

n′∈{A,U,C,G}rn′/nCc(n′)
, (3)

where s̄cj(n
′) is either zero when the tRNA bound to

codon c is charged with the optimal amino acid j, or a

constant penalty, s, for any other amino acid. Thus, our

model assumes that all codons in the genome evolve under

purifying selection at the amino acid level: as a result, all

amino acid substitutions are considered to be deleterious.

In other words, each codon position is assigned either an

optimal amino acid given by cognate tRNA pairing with

the codon currently observed at that genomic position,

or a STOP instruction, such that j=1,...,21. According

to Eq. (3), even codons that predominantly produce the

optimal amino acid will be penalized if there are non-zero

pairing rates for translation into suboptimal amino acids.

Similarly, a mutation into a codon for which the rates

for translation into suboptimal amino acids are enhanced

(for example, mutations of a codon which predominantly

produces arginine (Arg) into a predominantly non-Arg

codon at a position where the optimal amino acid is Arg)

is considered deleterious. Since at each codon position

evolutionary dynamics depends on the optimal amino

acid, we obtain 21 distinct diagonal matrices containing

fitness values for each codon, for 20 amino acids and the

STOP instruction (i.e., translating stop codons into amino

acids is also considered deleterious in our model).

Equation (1) implements the idea that additional tRNA

gene copies should increase the available pool of tRNA

molecules which can be paired with the codon c, reducing

translation times and therefore increasing the fitness of

the organism (i.e., as Ceff
c increases, wj(c) also increases).

However, changes in the tRNA pool may also result in

more translation errors, which will be reflected in the

increased sj(c) (Eq. (3)).

To describe mutations between codons, we have

adapted the model of Tamura and Nei (1993). According

3
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to this model, µc′c =βπc′ , where µc′c is the mutation

rate per generation from the nucleotide trimer c to c′,

πc is the steady-state frequency of the nucleotide trimer

c, and β is a scale factor. We compute values of πc

from intergenic sequences which are assumed to evolve

under the influence of mutational forces only (Tamura

and Nei, 1993; Yang, 2006). The no-selection assumption

is supported by the observation that trimeric nucleotide

frequencies are very similar in the intergenic regions of all

the species we have examined (Fig. S1). Additionally, two

transition/transversion rate biases are included when the

trimer substitution involves a pyrimidine-to-pyrimidine

(C↔T ) exchange (κ1), or a purine-to-purine (A↔G)

exchange (κ2). For example, the mutation rate from codon

CGT to codon CGC is given by βκ1πCGC, whereas the

CGA→CGC mutation rate is given by βπCGC. Mutation

rates corresponding to multiple nucleotide substitutions

are set to zero.

Our selection-mutation approach allows us to predict

genome-wide codon frequencies through a steady-state

population genetics model (Materials and Methods). The

major features of the approach are illustrated in Fig. 1

using Escherichia coli as an example. Figure 1A shows

three initial E. coli populations which are genetically

identical except for a single codon: one population

contains the wild-type codon ATA at position 101 in

the thrA gene (position 1 is the start codon), whereas

the other two contain codons with single-nucleotide

mutations: ATG and AAA, respectively. After a fixed

period of time, the three progeny populations have

different sizes due to differences in their growth rates

(Fig. 1B). The thrA codon under consideration is at a

location which, according to the genetic code and the

fact that the wild-type codon is ATA, codes optimally

for isoleucine (Ile). Figure 1C shows mRNA transcripts

produced in the three E. coli strains, with colored

boxes around codons corresponding to the predominantly

translated amino acid in each case: Ile (green), Met (blue),

and Lys (red). The lowest-fitness strain has experienced

an ATA→AAA mutation, resulting in a codon which

cannot be translated into the optimal amino acid, Ile, even

through wobble pairing. In comparison, the ATG strain

has higher fitness since it can produce Ile through wobble

pairing: however, the ATG codon is primarily translated

into Met through cognate pairing. The wild-type ATA

strain has the highest fitness as it predominantly produces

Ile, even though the cognate tRNA of ATA is in fact not

present in E. coli (Fig. 1D-F).

Hierarchy of evolutionary models

To determine which biophysical factors contribute most

to the codon bias and what level of detail is necessary

to predict genome-wide codon frequencies, we have

constructed a hierarchy of models which include from 3 to

19 free parameters (see Table 1 for detailed descriptions),

and fit the models to E. coli (K-12 MG1655) genomic

data. Specifically, each model was fit to minimize the L1

distance:

L1 =
1

2

64∑
c=1

|p̂c−pc|, (4)

where p̂c and pc are predicted and observed genome-wide

codon frequencies, respectively (see SI, section S1.1 for a

detailed description of the global optimization algorithm).

Each model was subjected to 5-fold cross-validation: all

genomic codons were randomly divided into 5 subsets of

equal size, and the model was fitted separately on each

subset, with L̄1 denoting the average L1 distance resulting

from these 5 fits. For the purposes of cross-validation,

L1 distances were computed between codon frequencies

predicted by each of the 5 fits and codon frequencies

observed in each of the other 4 codon subsets which were

not used to fit the model in the current round. The cross-

validation score, L̄1
CV, was then computed by averaging

first over the other 4 subsets left out of the current fit

and, finally, over the 5 independent fits.

The first model we have examined is a minimal model

which does not consider wobble pairing or the fitness

penalty for slow translation and therefore only includes

transition/transversion mutational parameters κ1 and κ2

and the amino acid selection parameter s/β. Note that

the codon frequencies are affected only by the ratio of

the amino acid selection coefficient s, which penalizes

translation into suboptimal amino acids, and the overall

mutation scale β (see SI, section S1.2 for an additional

discussion). Under this 3-parameter model, genome-wide

codon frequencies are determined by a combination

of mutation rate biases and mutational proximity to

deleterious sequences (i.e., mutational robustness). We

illustrate this point using 6 Arg codons as a representative

example (Fig. 2A,B). Under the 3-parameter model there

is a marked enrichment of the frequencies of CGC, CGG,

and CGT codons and a suppression of AGA and AGG

codon frequencies, even though all 6 codons have the

same fitness. These trends, with the exception of the CGG

enrichment, match genome-wide codon frequency data,

and are not present in the intergenic regions (Fig. 2A).

Next, we examined a family of models which in

addition to κ1, κ2, and s/β include a fitness penalty

for slow codon translation, T0/β, with T0 defined in

Eq. (1). In addition, each model in the hierarchy includes

4
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FIG. 2. Prediction of genome-wide codon frequencies in E. coli. (a) Codon frequencies of the arginine (Arg) group predicted by the

3-parameter model (black) and found in coding regions (grey), and nucleotide trimer frequencies in the intergenic regions (red). (b) The

single-point mutational network formed by the codons which translate into Arg according to the standard genetic code. The width of each line

is proportional to the mutation rate, with an arrow indicating the direction of mutation. The fading lines represent all mutation rates from

Arg to the corresponding non-Arg codons. The size of each circle indicates the frequency at which each codon sequence occurs in intergenic

trimers (red) and when mutation and selection against non-Arg codons are taken into account (3-parameter model; black). (c) Model scores

L̄1 (solid lines) and L̄1
CV (dashed lines) as a function of model complexity. Each model was fit to genomic data (blue lines) and synthetic data

(red lines). (d) Normalized difference of L̄1
CV model scores, ∆L̄1

CV =(L̄1
CV(new)−L̄1

CV(old))/(Nnew−Nold), in going from a less complex

(“old”) to a more complex (“new”) model. Nnew and Nold denote the number of model parameters in the old and new models, respectively.

an increasingly diverse set of pairing rates (Table 1).

Specifically, the 5-parameter model has a single parameter

describing all non-cognate pairing rates. In this model,

cognate pairings are assumed to occur at a rate of

rn′/n =1, while four pairings are suppressed (rn′/n =0)

based on the crystallographic analysis of wobble base

pairs in the context of the ribosomal decoding center

(Murphy IV and Ramakrishnan, 2004). The remaining 8

rates are described by a single free parameter, r. The 7-

parameter model replaces this single parameter with three

rates: r0, which accounts for pairings across nucleotide

types (purine to pyrimidine) expected to be closest to

cognate pairing; r1, which characterizes all same-base

pairings that are not already suppressed on the basis of

crystallographic evidence; and r2, which accounts for the

two remaining pairings. In the 12-parameter model, rates

for 8 pairings that are neither cognate nor suppressed are

allowed to vary individually. In the 16-parameter model,

the assumption that some of the wobble pairings are

suppressed is relaxed, resulting in 4 additional pairing

rates. Finally, in the 19-parameter model the assumption

that all cognate pairings have a rate of rn′/n =1 is relaxed,

and each of the possible 16 pairings is assigned an

individual rate. Since there is now a degeneracy in the

model related to the fact that the T0/C
eff
c ratio remains

invariant in Eq. (1) if both T0 and all wobble rates are

scaled by the same factor, we have chosen to set T0/β=1,

resulting in 19 independent parameters. An alternative

approach in which one of the cognate rates was set to 1.0

and T0/β was allowed to vary yielded numerically inferior

solutions.
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Table 1. Hierarchy of models fit to E. coli genomic data. All models share the same three mutation and selection parameters κ1, κ2, and

s/β, and all except the 3-parameter model also include T0/β. The pairing rates are parameterized according to various categories of nucleotide

base pairing: Watson-Crick (Cognate); disallowed according to Murphy IV and Ramakrishnan (2004) (Suppressed); different in type, purine

or pyrimidine, and are not disallowed or cognate (Alternate); and two nucleotides of the same type that are not disallowed (Same base). ρ:

Pearson correlation coefficient between predicted and observed frequencies, p: the corresponding p-value.

Parameter Description

κ1 Transition/transversion rate bias for mutations between pyrimidines (T→C and C→T).

κ2 Transition/transversion rate bias for mutations between purines (G→A and A→G).

s/β Selection coefficient for translation into a suboptimal amino acid divided by the overall mutation scale.

T0/β Selective penalty for slow single-codon translations divided by the overall mutation scale.

Number of Wobble rate Nucleotide pairing Paired nucleotides Model prediction
model parameters (anticodon 5’/codon 3’) ρ (p-value)

3 1 Cognate: A/U, C/G, G/C, and U/A. 0.79 (1.1×10−14)
0 All else.

5 1 Cognate: A/U, C/G, G/C, and U/A. 0.79 (6.2×10−15)
0 Suppressed: C/C, C/U, G/A, and G/G.
r All else: A/A, A/C, A/G, C/A,

G/U, U/C, U/G, and U/U.

7 1 Cognate: A/U, C/G, G/C, and U/A. 0.76 (1.9×10−13)
0 Suppressed: C/C, C/U, G/A, and G/G.
r0 Alternate: A/C, C/A, G/U, and U/G.
r1 Same base: A/A and U/U.
r2 All else: A/G and U/C.

12 1 Cognate: A/U, C/G, G/C, and U/A. 0.86 (1.6×10−19)
0 Suppressed: C/C, C/U, G/A, and G/G.

rA/A All else: A/A
8 parameters

rA/C A/C
...

...
rU/U U/U

16 1 Cognate: A/U, C/G, G/C, and U/A. 0.93 (2.0×10−29)
rA/A All else: A/A

12 parameters
rA/C A/C

...
...

rU/U U/U

19 rA/A A/A
16 parameters

0.97 (4.4×10−41)
rA/C A/C

...
...

rU/U U/U

Since 63 independent codon frequencies are fit to models

containing from 3 to 19 independent parameters, it is

important to ensure that there is no overfitting. Figure 2C

demonstrates the quality-of-fit scores L̄1 and L̄1
CV for

each of the models described above. A standard way of

checking the extent of overfitting, 5-fold cross-validation,

has limited applicability here since codon frequencies are

very similar in all 5 subsets, as manifested by the high

degree of similarity between L̄1 and L̄1
CV in all Fig. 2C

fits. Thus, to investigate the issue of overfitting from a

different angle, we have carried out model fits not only

on genomic codon frequencies (blue lines), but also on

synthetically generated data for which models previously

fit on genomic data were used to generate artificial codon

counts (for a full description of synthetic data generation,

see SI, section S1.1). These counts were then used in

a subsequent round of model fitting (red lines). The

idea is to provide a score baseline in which a given

model type is employed to both generate the synthetic

data and carry out subsequent parameter inference. This

two-step procedure leads to consistent recovery of all

model parameters used in generating the synthetic data

(Table S1). As can be seen in Fig. 2C, there is no

trend in the model scores of fits on synthetic data as

the model complexity increases, and for each model type

genomic fit scores are significantly above synthetic fit

scores, indicating the absence of overfitting. Furthermore,

model scores of fits on genomic data improve with

model complexity, suggesting that overall increasing the

model complexity is beneficial. Note however that the

genomic scores become worse in going from the 3- to 5-

parameter model, showing that an increase in the number

of model parameters does not necessarily guarantee an

improvement in fitting performance.
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FIG. 3. Prediction of codon frequencies in E. coli. Codon frequencies predicted using the 19-parameter model (blue), and genome-wide

frequencies observed in E. coli (grey). All codons are sorted by the absolute magnitude of the prediction error, defined as the absolute

magnitude of the difference between predicted, p̂c, and observed, pc, frequencies of each codon c: |p̂c−pc|. The Pearson correlation coefficient

ρ between predicted and observed frequencies is also shown, along with the corresponding p-value.

We have also investigated the effects of intentional

overfitting on synthetic data. To this effect, an “old”

model with lower complexity, previously fit on genomic

data, was used to generate the codon counts, which were

subsequently used to fit a “new,” higher-complexity model

(red bars in Fig. 2D). Surprisingly, this overfitting always

resulted in worse model scores, again underscoring that

increasing model complexity does not necessarily lead to

better scores, due to both essential differences in model

parameterization and the lack of numerical convergence.

However, this effect becomes very slight on the higher-

complexity end of the model spectrum. To investigate this

issue further, we have generated synthetic data using the

7-parameter model, and fit all model types to it (Fig. S2).

We observe that, as expected, lower-complexity models

are not able to fit the synthetic dataset as well as the

“native” 7-parameter model. Furthermore, fitting more

complex models does not offer any marked improvements

in model scores.

In contrast to the results based on synthetic data, there

is a significant improvement in model performance on

genomic data with each increase in model complexity

(blue bars in Fig. 2D), with a sole exception of the 3-

and 5-parameter model pair. However, the gains in model

scores diminish gradually, indicating that increasing the

number of parameters beyond 19 is unlikely to lead to

further significant improvements in model performance.

Given that the 19-parameter model yields the best

performance, we have chosen it for all further analysis

carried out in this study. The model’s predictions in E.

coli are shown in Fig. 3 and Fig. S3A, indicating that

our approach is capable of reproducing all the major

features observed in genome-wide codon frequencies in

this organism.

FIG. 4. Phylogenetic relationships between all organisms

included in this study. The divergence times between all species

examined in this study were set to the estimated values reported

in the TimeTree database (Hedges et al., 2006; Kumar et al., 2017).

These divergence times were then used to construct the phylogenetic

tree via the Interactive Tree Of Life (Letunic and Bork, 2016).

Modeling codon bias in multiple species

We have fit the 19-parameter model to 20 organisms

spanning both unicellular and multicellular life forms

(Fig. 4; see SI, section S1.3 for details of genomic data

acquisition). In each case, the model fits the data to

a high degree of accuracy, with the Pearson correlation

coefficients in the [0.80,0.98] range, with an average of
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0.91 (Fig. S3B). The inferred biophysical and population

genetics parameters and the L̄1
CV cross-validation scores

for each organism are available in Supplementary Dataset

S1; distributions of these parameters are summarized in

Fig. 5.

As might be expected, the values of the two

transition/transversion rate biases, κ1 and κ2, are fairly

conserved, especially in eukaryotes, with larger values

generally found in bacteria (Fig. S4, Fig. 5A). This

observation is consistent with the fact that trimeric

nucleotide frequencies found in intergenic regions, which

on average are likely to evolve only under the influence

of mutational forces, are nearly organism-independent

(Fig. S1). The values of the κ1 and κ2 biases are strongly

correlated with each other, with κ1>κ2 in all cases. Note

that the biases are not always >1, in agreement with a

previously reported result (Keller et al., 2007).

We observe strong selection against mis-sense mutations

(s/β=5.84 on average), indicating that amino acids

translated from the genomic codons on the basis of

the standard genetic code are generally optimal and

their mutations are deleterious (Fig. 5B). The value of

the selection coefficient s is closely correlated with the

distribution of sj(c) values in each organism (Fig. 6A),

indicating that it is a good measure of the strength of

selection against amino acid mistranslations. Moreover,

the strength of selection for the speed of codon translation

is generally weaker than the strength of mutational

forces, as measured by the overall mutational scale β,

although there are also notable exceptions (Fig. 6B).

Correspondingly, in the majority of cases selection for

mistranslation dominates selection for translation speed

(Fig. 6C).

We have found that in all organisms the rates

corresponding to the A/G, C/A, C/C, G/A and G/G

pairings are vanishingly small compared to all other

rates (Fig. 5C). According to crystallographic evidence

(Murphy IV and Ramakrishnan, 2004), C/U, C/C,

G/A, and G/G pairings should be sterically disallowed,

which is consistent with our findings except for C/U,

for which only 3 out of the 20 organisms yield non-

vanishing rC/U rates: S. pombe, V. cholerae, and A.

thaliana. Additionally, purine-pyrimidine pairings are

consistently assigned higher rates than purine-purine

and pyrimidine-pyrimidine pairings, with cognate pairings

being predominant compared to non-cognate pairings: for

example, averages across all species of the rA/A, rA/C,

rA/G, and rA/U pairing rates are 0.9, 3.3, 0.3, and 8.7,

respectively. However, a notable exception is the rG/U

rate, which is considerably higher than rG/C and in

fact assumes unrealistically large values for ∼50% of

the species considered. We do not have a satisfactory

explanation for this finding at the moment.

Finally, we have examined a matrix of correlations

among 19 model parameters and several additional key

values characterizing either the genome (genome size,

total number of codons, total number of genes) or the

population (effective population size) (Fig. S5). We find

that, as expected, the genome size, the total number of

codons and the total number of genes are all correlated

with each other and anti-correlated with the effective

population size and the κ1, κ2 mutational biases, the

latter observation being consistent with the fact that these

biases are higher in prokaryotes (Fig. S4). In contrast, the

selection coefficient s/β is not strongly correlated with

any other parameter, including the effective population

size. Finally, we observe that some of the pairing rates

(e.g. rA/A and rA/G) are strongly correlated with each

other, reducing the effective number of model parameters.

Estimation of the genome-wide mutation rate

Our biophysical approach has also enabled us to estimate

the genome-wide mutation rate per nucleotide per

generation as an average over all codon types:

〈µ〉= 1

3

∑
c

∑
c′ 6=c

µc′cpc. (5)

Indeed, following the approach developed by Bulmer

(1991), we can estimate T0 in Eq. (1) directly from

the explicit biophysical model of ribosome-mediated

translation (see SI, section S1.4 for details). Here, we have

focused our attention on E. coli and S. cerevisiae, for

which all the requisite values of biophysical parameters

are available in the literature. For both of these organisms,

we find that

T0≈
τ

α

Ptotγ

GtIkI
, (6)

where Ptot is the total protein production rate in the cell,

G is the total number of genes, tI is the average ribosome

initiation time, kI is the average initiation on-rate per free

ribosome, and τ and α are defined in Eqs. (16) and (17),

respectively (Materials and Methods). Finally,

γ−1 =R2
f +

G∑
r=1

RbrPr

kI
, (7)

where Pr is the protein production rate of gene r

(such that
∑G

r=1Pr =Ptot), Rbr is the average number of

ribosomes bound to each transcript of gene r, and Rf is

the number of free ribosomes in each cell.

Using Eq. (6) and our assumption of T0/β=1 in the 19-

parameter model, we can estimate β and, consequently,

〈µ〉 via Eq. (5), using intergenic trimer frequencies and

predicted values of κ1 and κ2. Note that although the

T0 =β assumption is arbitrary, we estimate τ/α from
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FIG. 5. Distributions of inferred biophysical and population genetics parameter values across 20 organisms. All models are

fitted separately on 5 codon subsets and the resulting parameters averaged, as indicated by the overbar. For each parameter averaged in

this way, median values across all organisms as well as the first, Q1, and third, Q3, quartiles are plotted using box-and-whisker plots.

The locations of upper and lower whiskers are given by the largest data point below Q3 +1.5(Q3−Q1) and the smallest data point above

Q1−1.5(Q3−Q1). Data points which extend outside of this range are considered outliers and plotted explicitly using species-specific symbols.

(a) Transition/transversion rate biases κ̄1 and κ̄2, (b) amino acid selection coefficients (s/β), and (c) wobble rates rn′/n. The wobble rates

are separated into four sets by vertical dashed grey lines, one for each anticodon nucleotide. The cognate pairings are highlighted in solid

cyan, and non-cognate pairings with alternate nucleotide types (purine to pyrimidine pairings) are highlighted in faded cyan.

the predicted pairing rates in a way that makes our

procedure invariant with respect to rescaling both T0

and all pairing rates by an arbitrary factor (cf. Eqs. (1),

(2), (6), and (S24)). We have estimated the value of β

using both the most up-to-date data available in the

literature and Bulmer’s original data (see Table S2 for

input parameter values). Both sets of parameters yield

very similar estimates for the average effective mutation

rate: 2.4×10−6 and 1.1×10−6 mutations per nucleotide

per generation, respectively. These estimates differ from

independent estimates of the genomic mutation rate in

E. coli (Drake, 1991; Wielgoss et al., 2011), which yield

values on the order of 10−10 mutations per nucleotide

per generation (Table S2). The same calculation in S.

cerevisiae, which has a similar effective population size

(Table S2), has resulted in 〈µ〉=7.1×10−7 mutations

per nucleotide per generation, which is also higher than

the independently estimated mutation rate of 3.3×10−10

mutations per nucleotide per generation (Lynch et al.,

2008) (see SI, section S1.4 for details and Table S2 for

input parameters).

A possible explanation for the observed discrepancy,

which is reminiscent of the difficulties encountered by

Bulmer in trying to reconcile a population genetics model

with the biophysics of mRNA translation (Bulmer, 1991),

is that the codon diversity seen in E. coli and S. cerevisiae

genomic data is affected by linkage and may require an

explicit treatment of genetic drift, as µNe�1 for both

organisms (Table S2). Indeed, genetic drift can contribute

to allele diversity observed across multiple sites, even if

each individually evolving site is in the monomorphic

regime (Manhart et al., 2012; Sella and Hirsh, 2005).

Note that our model describes the frequencies of Nc'
GL/20=O(105) codon sites per individual for each fitness

landscape, where L is the average gene length in codons

(494 in S. cerevisiae and 319 in E. coli), and 20 accounts

for the number of distinct amino acid types (positions
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FIG. 6. Comparison of selection strengths for speed and accuracy of codon translation. All selection coefficients have been

computed by fitting the 19-parameter model to genomic data from 20 organisms. (a) Ratios of the selection coefficients for amino acid

mistranslation, sj(c) (cf. Eqs. (1) and (3)), averaged over optimal amino acids/STOP instruction as indicated by angle brackets, to the overall

mutation scale β, shown as box-and-whisker plots for each organism. Horizontal dashed red lines indicate the corresponding value of s. (b)

Ratios of the selection coefficient for the speed of codon translation, T0/C
eff
c (cf. Eqs. (1) and (2)), to the overall mutation scale β, shown

as box-and-whisker plots for each organism. (c) Ratios of the two selection coefficients from (a) and (b), shown as box-and-whisker plots for

each organism. Horizontal dashed grey lines in panels (a)-(c) indicate where each quantity equals 1.

where the STOP instruction has the highest fitness are

excluded from the estimate).

Finally, our analysis yields an inverse relationship

between 〈µ〉 and the total number of genes G, which

in turn is strongly correlated with the total number of

nucleotides in the genome (Fig. S5). This is consistent

with Drake’s rule, which states that organisms with

larger genomes tend to have smaller mutational rates

(Drake, 1991). Multiple-species biophysical data of the

type displayed in Table S2 will be required to confirm the

trend and estimate its significance quantitatively.

Discussion

We have developed a population genetics treatment

of the biophysical model of codon bias. We assume

that genome-wide codon frequencies have reached

steady state and model the codon population using a

selection-mutation framework in which codons evolve

independently of one another. Our model includes a

detailed description of codon-level mutations which takes

transition/transversion biases into account (Tamura and

Nei, 1993; Yang, 2006). Furthermore, there are two

kinds of selective forces in the model. We assume that
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most protein coding regions in the genome evolve under

purifying selection and that for each codon, translation

into amino acids different from the optimal one (which

corresponds to the codon in the standard genetic code)

carries a selective penalty. Thus our model incorporates

mutational robustness, in which steady-state allele

frequencies in a polymorphic population of equal-fitness

alleles can be non-uniform, with more robust alleles,

separated on average by a higher number of mutational

steps from the deleterious alleles, being relatively enriched

(van Nimwegen et al., 1999). Interestingly, even the

minimal 3-parameter model, which takes only mutation

and selection against mistranslation into account and

considers only cognate codon-anticodon pairings, is

capable of reproducing genome-wide codon frequencies

with ρ=0.79 in E. coli (Table 1).

In addition to the factors described above, we assume

that cellular fitness is proportional to the total protein

production rate, which leads to selective penalties for

codons with longer translation times. A major factor

which determines translation speed is the cellular tRNA

concentration, which in our model is assumed to be

proportional to the tRNA gene copy numbers in the

genome (Kanaya et al., 1999). Finally, codon-anticodon

pairing rates are computed on the basis of the wobble

hypothesis, such that a mutation in the 3’ nucleotide of a

given codon may bring about a complicated set of changes

in which the effective tRNA gene copy number may

increase or decrease simultaneously with the change in the

codon’s mistranslation rate. Thus the final contribution

of the codon to the total cellular fitness depends on

the delicate balance between speed and accuracy of

the codon’s translation, and the genome-wide codon

frequencies depend on the steady-state balance between

selection and mutation forces. While we have neglected

other possible mechanisms of selection on codon usage,

such as mRNA toxicity (Mittal et al., 2018), mRNA

transcription (Zhou et al., 2016), translation initiation

(Bhattacharyya et al., 2018), and co-translational folding

(Jacobs and Shakhnovich, 2017), the ability of our model

to empirically explain observed patterns of codon usage

across many organisms suggests that these mechanisms,

while undoubtedly important in some cases, do not play

a dominant role in shaping codon usage genome-wide.

We have fit our biophysical model to genomic codon

frequencies from 20 organisms. Overall, the model

reproduces observed genome-wide patterns of codon usage

to a high degree of accuracy (Fig. S3). When codons are

ranked based on the accuracy of the model prediction,

the codon CTA appears in 8 of the 20 organisms as one of

the top 4 least accurately predicted codon frequencies.

No such pattern emerges for amino acids. In terms of

the predicted model parameters, the values of mutational

biases κ1 and κ2 are fairly conserved as expected, with

larger values typically found in prokaryotes and with

κ1>κ2 in all organisms. The universality of mutational

rate biases across organisms is consistent with the fact

that nucleotide trimer frequencies are strongly conserved

in the intergenic regions (Fig. S1).

Furthermore, we observe that codons are under strong

selection against mistranslation, with s/β=5.84 when

averaged over all organisms (Fig. 5B), and s/β<1 only

in S. pombe, C. remanei, and A. thaliana. We have found

that in each organism the fitted value of the selective

penalty s, introduced in Eq. (3), is nearly equal to

the mean of the corresponding distribution of the sj(c)

selection coefficients, defined in Eq. (1) (Fig. 6A). On

the other hand, in both E. coli and S. cerevisaie β is

several-fold larger than 〈µ〉, the genome-wide mutation

rate per nucleotide per generation averaged over all

codon types (see SI, section S1.4 for details). Thus we

expect s/〈µ〉 to be >1 in all organisms, making selection

against mistranslation a dominant evolutionary force in

comparison with mutational effects.

In contrast, the ratio of the selection coefficient

associated with the translation speed to the mutation

scale, T0/(βC
eff
c ), is <1 on average (Fig. 6B). Thus

our model predicts that fitness costs associated with

slow translation are often subordinate to the mutational

effects, and are much less pronounced than selection

against mistranslation (Fig. 6C). Nonetheless, we expect

T0/(〈µ〉Ceff
c ) to be &1 for a nonzero fraction of all codons,

indicating that at least in some cases selection against

slow translation is an important factor which shapes

observed codon frequencies.

Finally, despite the fact that pairing rates are

unrestricted in the 19-parameter model, the rates follow

well-established patterns consistent with both empirical

rules of the wobble hypothesis (Crick, 1966) and atom-

level details of codon-anticodon binding on the ribosomal

template (Murphy IV and Ramakrishnan, 2004). For

example, rates of cognate pairing are much higher than

rates of wobble pairing (Fig. 5C), with the sole exception

of the G/U pairing whose rates are predicted to be

anomalously large. Note that in our framework the first

two codon positions are assumed to have no effect on the

pairing rates.

As an additional test of our approach, we have

estimated T0, defined in Eq. (1), directly using an explicit

biophysical model of ribosome-mediated translation
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originally developed by Bulmer (1991). Bulmer’s model

relies on biophysical parameters such as single-codon

translation times and translation initiation rates, whose

values are available in the literature for E. coli and S.

cerevisaie (Table S2). Estimating T0 has enabled us to

find the average mutation rate per nucleotide, 〈µ〉, in the

coding regions, and compare it with previously published

estimates of genome-wide mutation rates (Charlesworth,

2009; Drake, 1991; Lynch et al., 2008, 2011; Wielgoss

et al., 2011). Our estimates of 〈µ〉 are several orders of

magnitude higher than the values of µ available in the

literature. A model of codon evolution which includes

genetic drift and linkage between multiple codon loci

is necessary to investigate these discrepancies further.

Additional refinements of the model could also replace s

with several fitness penalties which would depend on the

physico-chemical similarity of the mistranslated amino

acid to the optimal one.

Finally, we note that according to our biophysical

framework, 〈µ〉 is inversely proportional to the number

of genes (Eq. (6)). This is reminiscent of the observation,

due to Drake, that organisms with larger genomes tend to

have smaller mutational rates (Drake, 1991). We intend

to extend our mutation-selection model to all conserved

and non-conserved regions of the genome in order to study

this correlation in more detail.

Materials and Methods
Population genetics model

In order to predict genome-wide codon frequencies, we

have employed a mutation-selection population genetics

model. We represent codon counts in a population of N

organisms as a vector with 64 entries, |N(t)〉, and evolve

the state of the population from one generation to the

next using the deterministic equation:

|N(t+1)〉j =(I+M)Wj|N(t)〉j, (8)

where Wj is a diagonal matrix of fitness values

conditioned either on the optimal amino acid or the STOP

instruction (i.e., j=1,...,21), M is the mutation matrix,

and I is the identity matrix. The off-diagonal entries of

the mutation matrix, Mc′c, are the mutation rates from

codon c to c′, and diagonal entries are fixed through∑
cMc′c =0. Equation (8) can be rewritten in terms of

the codon frequencies in a population evolving under the

same fitness matrix, |p(t)〉j = |N(t)〉j/〈1|N(t)〉j (|1〉 is a

vector with 1 in every entry),

|p(t+1)〉j =
|N(t+1)〉j
〈1|N(t+1)〉j

=
(I+M)Wj|N(t)〉j
〈1|(I+M)Wj|N(t)〉j

=
(I+M)Wj|N(t)〉j
〈1|Wj|N(t)〉j

=
(I+M)Wj|p(t)〉j
〈1|Wj|p(t)〉j

. (9)

Eventually these frequencies will reach a steady-state

|pss〉j determined by

(I+M)Wj|pss〉j = w̄j|pss〉j, (10)

where w̄j =〈1|Wj|pss〉j is the average fitness of the

corresponding population.

Finally, if each fitness matrix Wj operates at Cj codon

locations in the genome, steady-state codon frequencies

are given by the genome-wide average:

|pss〉gen =

∑
jCj|pss〉j∑

jCj

, (11)

where each |pss〉j is found using Eq. (10) with the

corresponding Wj. Note that the mutation rates are

assumed to be independent of the fitness matrix j,

yielding a universal M for each species.

Biophysical model of codon evolution

We model the cell’s fitness, w, as proportional to the

product of its total protein production rate, Ptot(c,q,`),

which depends on the presence of codon c at location `

on gene q (explicit dependence on all the other codons is

suppressed for brevity), and a mistranslation penalty:

wj(c,q,`)∝Ptot(c,q,`)(1−sj(c)), (12)

where sj(c) is the selection coefficient for codon

mistranslation, which we assume to be dependent on the

codon’s genomic location only through the optimal amino

acid or STOP instruction, j, at that location (Eq. (3)).

The change in Ptot upon mutating the current codon, c,

at genomic coordinates (q,`) into codon c′ is expected to

be small compared to the total protein production rate.

The new protein production rate, Ptot(c
′,q,`), can then be

approximated by a first-order expansion,

wj(c
′,q,`)∝

[
Ptot(c,q,`)+

dPtot

dtc(q,`)

(
tc

′
−tc(q,`)

)]
(1−sj(c′)),

(13)

where the single-codon translation time tc
′

is assumed to

be independent of the codon’s location, and tc(q,`) is the

translation time of codon c at genomic coordinates (q,`).

Next, Eq. (13) is averaged over all codon positions for

which sj(c
′) is the same (that is, over all positions which

have the same optimal amino acid or STOP instruction j

and therefore evolve under the same fitness matrix):

wj(c
′)=

1

G

G∑
q=1

1

|Sj
q |
∑
`∈Sj

q

wj(c
′,q,`)≡〈wj(c

′,q,`)〉, (14)

whereG is the total number of genes, Sj
q is the set of codon

locations with the same optimal amino acid or STOP

instruction j on gene q, and |Sj
q | is the number of such

locations. Note that all instances for which |Sj
q |=0 are
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excluded from the average. We obtain

wj(c
′) ∝

[
1+tc

′
〈
dlogPtot

dtc(q,`)

〉
−
〈
tc(q,`)

dlogPtot

dtc(q,`)

〉]
(1−sj(c′))

∝
[

1−tc
′

〈
dlogPtot

dtc(q,`)

〉〈
tc(q,`) dlogPtot

dtc(q,`)

〉
−1

]
(1−sj(c′)). (15)

We model the translation time, tc
′
, as inversely

proportional to the tRNA cellular counts:

tc
′
=

τ∑
n∈{A,U,C,G}rn/c′3Vcell

[
tRNAn+c̄′23

] , (16)

where Vcell is the cell volume, τ is the characteristic time

scale for tRNA molecules to be acquired by the ribosome

for translation, rn/c′3 are dimensionless pairing rates at

which tRNAs with n as their 5’ anticodon nucleotide bind

to the 3’ nucleotide of codon c′, denoted c′3 (the other

two anticodon nucleotides are always cognate to c′), and[
tRNAn+c̄′23

]
are concentrations of tRNAs with anticodon

n+ c̄′23, where c̄′23 denotes the second and third nucleotides

of the reverse complement of c′. We assume that the tRNA

gene copy number, denoted as Cn+c̄′23
, is proportional to

the tRNA cellular counts:

Vcell

[
tRNAn+c̄′23

]
=αCn+c̄′23

, (17)

where α is a proportionality constant, leading to

tc
′
=

τ

αCeff
c′
, (18)

with the effective gene copy number Ceff
c′ given by Eq. (2).

Finally, with

T0 =
τ

α

〈
dlogPtot

dtc(q,`)

〉〈
tc(q,`) dlogPtot

dtc(q,`)

〉
−1

(19)

Eq. (15) reduces to Eq. (1). The 64 fitness values for each

codon, computed using Eq. (1) and conditioned on the

optimal amino acid or STOP instruction j, provide the

diagonal entries of the fitness matrix Wj.
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