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One sentence Summary: Deep mutagenesis of the lambda repressor reveals that changes in gene
expression will alter the strength and direction of genetic interactions between mutations in many

genes.

Summary

An important goal in disease genetics and evolutionary biology is to understand how mutations
combine to alter phenotypes and fithess. Non-additive interactions between mutations occur
extensively and change across conditions, cell types, and species, making genetic prediction a
difficult challenge. To understand the reasons for this, we reduced the problem to a minimal system
where we combined mutations in a single protein performing a single function (a transcriptional
repressor inhibiting a target gene). Even in this minimal system, a change in gene expression altered
both the strength and type of genetic interactions. These seemingly complicated changes could,
however, be predicted by a mathematical model that propagates the effects of mutations on protein
folding to the cellular phenotype. We show that similar changes will be observed for many genes.
These results provide fundamental insights into genotype-phenotype maps and illustrate how
changes in genetic interactions can be predicted using hierarchical mechanistic models.
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Highlights

o Deep mutagenesis of the lambda repressor at two expression levels reveals extensive

changes in mutational effects and genetic interactions

e Genetic interactions can switch from positive (suppressive) to negative (enhancing) as the

expression of a gene changes

¢ A mathematical model that propagates the effects of mutations on protein folding to the

cellular phenotype accurately predicts changes in mutational effects and interactions

e Changes in expression will alter mutational effects and interactions for many genes

e For some genes, perfect mechanistic models will never be able to predict how mutations of

known effect combine without measurements of intermediate phenotypes
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Introduction

To interpret personal genomes, make accurate genetic predictions, and understand evolution we
need to be able to predict the effects of mutations and also to understand how they combine
(interact). Large-scale projects (Costanzo et al., 2016) and deep mutagenesis (Bank et al., 2015;
Diss and Lehner, 2018; Domingo et al., 2018; Fowler et al., 2010; Hietpas et al., 2011; Melamed et
al., 2013; Olson et al., 2014; Sarkisyan et al., 2016) have revealed that mutations frequently interact
non-additively, which makes accurate genetic prediction a difficult challenge (Lehner, 2011).

Genetic (epistatic) interactions between gene deletions and loss-of-function alleles have been
mapped genome-wide in budding yeast, revealing that both pairwise (Costanzo et al., 2016) and
higher order (Dowell et al., 2010; Kuzmin et al., 2018) epistasis are widespread. Similarly, epistasis is
widely detected when combining all possible pairs of mutations between two different proteins (Diss
and Lehner, 2018), between natural genetic variants (Brem et al., 2005; Taylor et al., 2016) and
between mutations selected during adaptation to new environments (Palmer et al., 2015; Weinreich et
al., 2006). Systematic mutagenesis of individual proteins (Bank et al., 2015; Fowler et al., 2010;
Hietpas et al., 2011; Melamed et al., 2013; Olson et al., 2014; Sarkisyan et al., 2016) and
RNAs(Domingo et al., 2018; Li et al., 2016; Puchta et al., 2016) has also revealed widespread

epistasis within individual macromolecules.

Moreover, comparisons across species (Dixon et al., 2008; Frost et al., 2012a; Roguev et al., 2008;
Tischler et al., 2008), conditions (Bandyopadhyay et al., 2010; Diaz-Mejia et al., 2018a; Harrison et
al., 2007) and cell types (Park and Lehner, 2015), have repeatedly found that genetic interactions are
plastic, changing in different cells and conditions. This plasticity has important clinical implications for
both evolution and genetic disease. For example, a ‘synthetic lethal’ genetic interaction between a
cancer driver mutation and a drug or gene inhibition that can be exploited to specifically kill tumour
cells of one type often proves ineffective in other cell types that carry the same driver mutation
(Ashworth et al., 2011).

Why is this? Why do both the effects of mutations and genetic interactions change across conditions,
cell types and species? Comparing between any two cell types, environmental conditions or species,
there are typically thousands of molecular differences such as changes in gene expression, making
this a difficult question to address. We reasoned that one way to address this question would be to
ask it in a minimal system in which we could quantify the effects of mutations and how mutations
interact and then test how these effects and interactions change in response to a simple perturbation
of the cellular state. One of the simplest perturbations to make to a system is to change the
expression level of a single gene, for example the expression level of the gene that is being mutated
(Castel et al., 2018).
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The phage lambda repressor (Cl) is one of the best characterized proteins, serving as a paradigm for
both gene regulation (Ptashne, 2004) and quantitative biology (Ackers et al., 1982; Igler et al., 2018;
Lagator et al., 2017). The detailed and quantitative understanding of how this protein functions makes
it an ideal system in which to address our question of how mutational effects and the interactions

between mutations change when a system is perturbed.

Here we show that, even in this minimal system, the effects of individual mutations and the
interactions between mutations change extensively when the expression level of the mutated gene is
altered. Indeed we show that even a simple perturbation can result in the interactions between
mutations changing in sign, flipping between positive (suppressive) and negative (enhancing)
epistasis. We show that these seemingly complicated changes can be both understood and predicted
using a mathematical model that propagates the effects of mutations on protein folding to the cellular
phenotype. More generally, changes in gene expression will alter the effects of mutations and how
they interact whenever the relationship between expression and a phenotype is nonlinear. Given that
this is the case for most genes, shifts and switches in the interactions between mutations should be

widely expected when the expression level of a gene changes.
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Results

Deep mutagenesis of the lambda repressor at two expression levels

We used ‘doped’ oligonucleotide synthesis to introduce random mutations into the 59 amino acid
helix-turn-helix DNA-binding domain of CI, and quantified the ability of each genotype to repress
expression of a fluorescent protein (GFP) from the PR (Promoter R) target promoter by fluorescence-
activated cell sorting into near neutral (Outputl) and partially detrimental (Output2) bins and deep
sequencing (Figure 1A — C). Cl was expressed at a level similar to that observed in phage lysogens
(Ptashne, 2004) (see STAR Methods). We quantified both the effects of single mutants and the
genetic interactions between pairs of mutations. We then repeated the experiment expressing Cl at a
higher expression level and re-quantified the mutation effects and genetic interactions. The effects of
wild type, 18 single and 4 double mutants when measured individually were highly correlated with
their effects quantified in the pooled assay by deep sequencing at both expression levels (Figures 1D,
rho=0.87, P<2e-16, n= 46; rho=0.82 and rho=0.71 respectively for low and high CI expression
conditions, n=23, S1).

At both expression levels, the single (Figure 2A, n=351) and double amino acid-change mutants
(Figure 2B, n=468) had a bimodal distribution of target gene expression levels, with the low and high
modes centred on the phenotypes observed for synonymous and premature stop codon-containing
genotypes, respectively (Figure 2A, B). These bimodal distributions of mutational effects are
consistent with observations for many different proteins (Diss and Lehner, 2018; Hietpas et al., 2011;
Jiang et al., 2013; Melamed et al., 2013; Olson et al., 2014; Sarkisyan et al., 2016; Starr et al., 2018;
Wylie and Shakhnovich, 2011), as is the shifted distribution of double mutant phenotypes towards
higher expression of the target gene (i.e. reduced activity (Diss and Lehner, 2018; Sarkisyan et al.,
2016)) (Figure 2A, B). Also consistent with previous deep mutagenesis datasets (Araya et al., 2012;
Melamed et al., 2013; Olson et al., 2014; Sarkisyan et al., 2016), mutations in the core residues of the
protein were more detrimental (reduced repression of the target gene) than mutations in solvent-
exposed residues (Figures 2C, S2). Mutations in residues contacting DNA were also more detrimental
than mutations in solvent-exposed residues (Figures 2C, S2). As expected, mutations to less similar
amino acids were also more detrimental, as were mutations predicted to reduce the free energy of
protein folding or DNA-binding (Figure S2C — F). Mutations to less hydrophobic amino acids were
detrimental in the core and mutations that introduced a negative charge were detrimental at positions
that contact DNA (Figure S2G — J).

Mutation effects change non-linearly with a change in expression
Comparing the expression of the target gene when the same single (Figure 2D) or double (Figure 2E)

mutant genotypes were expressed at high and low levels revealed a nonlinear relationship, with four
main classes of genotypes: (1) genotypes with little effect at either high or low expression (~42% of


https://doi.org/10.1101/578419
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/578419; this version posted March 15, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

single mutants), (2) genotypes having little effect at high expression but detrimental effects at low
expression (~26% of single mutants), (3) genotypes that are partially detrimental at high expression
but behave similarly to null alleles at low expression (~5% of single mutants), and (4) genotypes that
behave similar to null alleles at both expression levels (~20% of single mutants). This ‘unmasking’ of
detrimental mutation effects at low expression levels has been previously observed for mutations in a
region of yeast Hsp90 (Jiang et al., 2013) and also for human disease-causing variants (Castel et al.,
2018).

Changing expression alters how mutations interact

We quantified epistasis between pairs of mutations as the difference between the observed and
expected phenotypes based on a log additive model (Boucher et al., 2016). A positive epistatic
interaction means that repression of the target gene by the double mutant is greater than expected
and a negative interaction means that it is less than expected (Figure 2F). The distribution of epistasis
scores differed between the two expression levels of the protein, with more strong positive and
negative interactions at high expression (Figure 2G, two-sample Kolmogorov-Smirnov Test P=4.1e-8,
D=0.19, n=468). Furthermore, epistasis scores of the same pairs of mutations at the two protein
expression levels correlated only weakly (Figure 2H, rho=0.15, P=0.001,n=468). Plotting epistasis
against the expected double mutational effects revealed systematic trends in the data (Figure S5A).
Whereas double mutants with high expected target gene expression tended to interact positively at
both low and high expression, double mutants with intermediate expected outcomes had stronger
negative interactions at low expression, and double mutants with low expected target gene

expression had stronger negative interactions at high expression (Figure S5A).

A simple mathematical modelling predicts changes in mutational effects and interactions

What accounts for these systematic patterns of epistasis and also their dependence on expression
level? To address this, we turned to a previously published quantitative model of repression of the PR
promoter by CI (Ackers et al., 1982) (Figure S3A). Briefly, the model describes the probability of CI
repressing the expression of the target gene as a function of the CI concentration (Figure 3A, C). We
first mapped each single mutant’s effect from the target gene expression level to the concentration of
active Cl. We then extended this model to include the effects of mutations on the folding of Cl and
estimated changes in the free energy of folding for each single mutant (see STAR Methods). To
predict the CI concentration and the resulting expression of the GFP target gene for each double
mutant, we summed the change in free energy for each single mutant and then mapped the total free
energy to a change in protein folding and concentration, which was in turn mapped to altered
repression of the target gene (Figure S3B, C). We compared the behaviour of the full model (Figure
3B — E) to that of models that only considered protein folding (Figure S3D) or only repression of the
target gene by CI (Figure S3E).
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Both the full model and the transcription regulation-only model correctly predict the shape of the
relationship between mutation effects at low and high expression (Figure 3E, n=819). However, only
the full model provides good prediction of the phenotypes of double mutants from the phenotypes of
the single mutants (Figure 3F). The full model (Figure 3G, H), but not the folding-only or regulation-
only models (Figure S4), also captures the systematic trends in how mutations combine at both low

and high expression.

Nonlinear concentration-phenotype relationships cause expression-dependent epistasis

Inspection of the model reveals that it is the nonlinear relationship (Otwinowski et al., 2018) between
protein concentration and target gene repression that causes the concentration-dependence of both
mutational effects and genetic interactions (Figure 3D, ). Each mutation has a fixed effect on the free
energy of protein folding (Figure 3B). When combining two mutations, the changes in free energy are
summed and so alter the fraction of folded protein according to the nonlinear relationship in Figure
3B. However, because the relationship between protein concentration and target gene expression is
also nonlinear, the same change in protein concentration can lead to a different change in target gene
expression depending upon the starting protein concentration (Figure 3B — D). The nonlinear
relationship between protein concentration and target gene expression therefore transforms the
concentration-independent effects of mutations on protein folding (Figure 3B) into concentration-
dependent changes in target gene expression (Figure 3C, D), resulting in concentration-dependent
epistasis (Figures 3l — K, S5).

Changes in gene expression reverse the sign of genetic interactions

Comparing how mutations combine at different expression levels in the full model revealed that
changes in expression not only alter the magnitude of genetic interactions but can also switch their
sign (between positive and negative interactions, Figure 4A, B). Re-analysis of the experimental data
validated this prediction, with mutations in the regime predicted by the model switching from positive
to negative epistasis as the expression level increased (Figures 4C, S6). In other words, genetic
interactions that are suppressive at one expression level can become enhancing at another
expression level (Figure 4D,E). Our model and data therefore show for the first time that changes in
expression can alter both the strength and the type of epistasis between mutations.

Changes in gene expression will alter genetic interactions for many genes

To what extent should we expect these conclusions to apply to other genes? Mutational effects and
genetic interactions will be expression-level dependent whenever the relationship between expression
and a phenotype is nonlinear. Such nonlinear expression-fitness functions are indeed very common in
biology because of the abundance of cooperation, competition, and feedback, with nonlinear functions
used to model almost all aspects of cell biology (Bhaskaran et al., 2015). Moreover, the relationship
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between expression level and fithess (growth rate) has been systematically quantified for 81 yeast
genes and, for all genes sensitive to a change in expression in the tested conditions, the expression-

fitness function was nonlinear (Keren et al., 2016).

We quantified epistasis and its sensitivity to concentration changes in three of the most common
expression-fitness functions of yeast genes (Keren et al., 2016). For many yeast genes, fitness
increases as a concave function as their expression is increased from zero to a fithess plateau close
to the wild-type expression level (Figure 5A). For these genes, epistasis changes in magnitude but not
sign as the expression level changes (Figures 5C, E, G, S7). Similar results are seen for genes where
fithess decreases as a concave function as expression is increased (Figure 5). Multiple genes in
yeast have a ‘peaked’ expression-fitness landscape(Keren et al., 2016). For these genes epistasis
can change substantially and also switch in sign as the expression level changes because of the non-
monotonic relationship between the free energy of protein folding and fitness (Figure 5B, D, F, H).

Non-monotonic expression-phenotype relationships result in ambiguous genetic prediction

Finally, analysing how mutations combine in genes with different expression-fitness functions we
realised that for some genes accurate predictions for how mutations combine will never be possible,
even with a perfect mechanistic model. Specifically, when there is a non-monotonic relationship
between the expression level and a phenotype, the same observed phenotype for a single mutant can
map to two or more different free energies of protein folding, leading to multiple possible double
mutant phenotype predictions for each mutation pair (Figures 6, S8). For these genes, even a perfect
mechanistic model is therefore insufficient to predict how mutations of precisely measured effects
combine to alter a phenotype. In such cases it will always be necessary to make additional
measurements — for example of intermediate phenotypes such as protein concentrations — to predict

how two mutations will combine to alter a phenotype.
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Discussion

Non-additive interactions between mutations greatly complicate genotype-phenotype maps and so
make genetic prediction a difficult challenge. That the interactions between mutations change across
conditions, for example between different types of cancer (Park and Lehner, 2015), further
complicates this. To better understand the plasticity of both mutational effects and genetic
interactions, we studied the question in a very well-understood minimal system where we could
quantify how both the effects of mutations and their interactions change in response to a simple
perturbation. We chose to use the lambda repressor as a model system because it is one of the best-
understood regulatory proteins in biology and because there are very well established and accurate

mathematical models that describe its regulatory activity (Ackers et al., 1982).

For the lambda repressor, we found that a change in expression altered both the effects of individual
mutations and how these mutations combined. Moreover, we found that changes in expression
altered both the strength and the type of interactions between mutations, with many mutations

switching from positive (suppressive) to negative (enhancing) epistasis at different expression levels.

Although our experimental work focussed on the lambda repressor, by analysing other common
expression-fitness functions, we have shown that our conclusions will widely apply to many genes.
Indeed changes in expression will transform the effects of mutations and their interactions whenever
the relationship between expression and a phenotype is nonlinear. In yeast, where expression-fitness
functions have been systematically quantified (Keren et al., 2016), this is normally the case: for most
genes the growth rate of the organism does not depend in a linear way on the gene’s expression
level. For many genes, therefore, changes in expression alone will drive changes in mutational effects
and genetic interactions. Thus we should expect that genetic interactions will change extensively
across conditions and cell types in an animal, as well as between individuals in a population and
between different species. Analyses of genetic interactions across conditions (Bandyopadhyay et al.,
2010; Diaz-Mejia et al., 2018b; Harrison et al., 2007; Onge et al., 2007), cell types (Ashworth et al.,
2011; Park and Lehner, 2015), and species (Dixon et al., 2008; Frost et al., 2012b; Roguev et al.,
2008; Tischler et al., 2008) are highly consistent with this.

Changes in genetic interactions are highly relevant to both agriculture (Soyk et al., 2017) and human
genetic disease. For example, dynamic epistasis may contribute to the tissue-specificity of human
disease mutations as well as the cancer type-specificity of interactions between cancer driver
mutations (Park and Lehner, 2015). Moreover, the success of synthetic lethal strategies to
specifically kill target cells depends on the stability of these interactions. Many examples now exist of
synthetic lethal gene perturbations that are effective in one cancer cell type but ineffective in other cell
types, and the most successful targets will be interactions that are very stable across individuals and
perturbations (Ashworth et al., 2011; Park and Lehner, 2015).
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Finally, the plasticity of epistasis will also need to be incorporated into evolutionary models. Epistasis
is a strong determinant of evolutionary paths (Breen et al., 2012; Starr and Thornton, 2016). The
plasticity of epistasis caused by changes in the expression level suggests that the accessible and

most likely evolutionary paths will change over time as the expression level of a gene is altered.

Very importantly, we found that the seemingly complicated shifts and switches in genetic interactions
as the expression level of the lambda repressor changed could be both understood and accurately
predicted using a hierarchical mechanistic model that propagates the effects of mutations on the free
energy of protein folding to the cellular phenotype. Considering just the effects of mutations on
protein folding or just how the repressor regulates gene expression could not account for the changes
in interactions. We envisage that such multi-step models that propagate the effects of mutations on
protein stability to higher-level phenotypes may prove generally useful for genetic prediction and for
understanding how mutations combine to alter phenotypes, including in human disease.

In our analyses we only considered the effects of mutations that alter the free energy of protein
folding. Altered protein stability is likely to be by far the most common affect of amino acid changing
mutations (Tokuriki and Tawfik, 2009a). However, subsets of mutations will have additional effects,
for example altering the affinity and kinetics of molecular interactions. In future work it will be
important to study how mutations with different molecular effects interact with each other, as well as
with mutations that affect stability and with changes in expression. Our model also makes the
assumption that the effects of mutations on protein stability are independent of the expression level
but this may sometimes not be the case, for example because of chaperone titration (Tokuriki and
Tawfik, 2009b) or interactions with other molecules (Bridgham et al., 2009; Diss and Lehner, 2018).
Concentration-dependent changes in the effects of mutations on protein stability will lead to further

shifts in mutational effects and genetic interactions as a gene’s expression changes.

Finally, although we found that a hierarchical model provided accurate genetic prediction for the
lambda repressor, we also realised that there are cases where such a mechanistic model will fail to
accurately predict how mutations combine to alter phenotypes. Specifically, when there is a non-
monotonic relationship between the concentration of a protein and a phenotype, it is sometimes not
possible to predict how two mutations will combine, even with a detailed mechanistic model. This is
because some phenotypes map to two or more possible changes in protein concentration and so to
multiple changes in the free energy of protein folding. Without additional measurements it is not
possible to tell which of the underlying changes is causing the phenotype. This results in multiple
possible outcomes when mutations of known phenotypic effect are combined. In these cases,
additional measurements of intermediate phenotypes such as protein concentrations will always be
required for accurate genetic prediction.
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Figure titles and legends:

Figure 1. Deep mutagenesis of the lambda repressor Cl DNA-binding domain at two
expression levels (see also Figure S1).

(A) Cl-operator complex with mutated HTH domain in magenta.

(B) Experimental design.

(C) Distribution of GFP target gene expression when the mutant library is expressed at high and low
levels and when WT or no Cl is expressed. Sorted populations with GFP level similar to the wild-type
population (Outputl), and population with intermediate GFP level (Output2) were collected for deep
sequencing.

(D) Correlation of target gene expression estimated by deep sequencing with target gene expression
individually quantified for wild type, 22 single and double mutants at low and high expression levels.
Error bars denote standard error of the mean from four (y-axis) and three (x-axis) biological replicates.

Figure 2. Comparison of mutational effects and genetic interactions at two expression levels
(see also Figure S2).

(A and B) Histogram of the mean mutational effects of single (n=351) (A) and double (n=468) (B)
missense amino acid variants together with synonymous (n=114 for single, n=37 for double) and
nonsense (n=21 for single, n=47 for double) variants.

(C) Effects of single mutants in different structural regions. Classes compared using Wilcoxon Rank
Sum test.

(D and E) Comparison of mean mutational effects at the two expression levels.

(F) Log-additive definition of epistasis.

(G) Cumulative distributions of mean epistasis scores at the two expression levels (n=468).
Distributions compared using two-sample Kolmogorov—Smirnov test.

(H) Mean epistasis scores at the two expression levels. Error bars in (D, E, H) denote standard error

of the mean.

Figure 3. Combined model of protein folding and regulatory interaction predicts mutational
effects and genetic interactions (see also Figures S3 —5).

(A) Mutations alter the free energy of protein folding (AGg) and so protein concentration and
repression of the target gene.

(B — D) Relationships between change in folding energy (AAGE) and the fraction of folded protein (B),
protein concentration and target gene expression (C), and change in folding energy (AAGg) and target
gene expression at low (blue) and high (red) expression (D). The effect of an example mutation (A) is
indicated in each graph.

(E) Regulatory interaction-only but not the protein folding-only model predicts the inverse relationship
between target gene expression at the two expression levels. SSDC: sum of the squared distance
from the curve.
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(F) Percentage of variance explained for double mutations for each model. ‘L’ indicates low
expression and ‘H’ indicates high expression of CI.

(G and H) Observed vs. predicted target gene expression for the log-additive and full folding +
regulation model at low (G) and high (H) CI expression. RMSD: root-mean-square-deviation between
the predicted and observed data. |, Predicted epistasis at low and high expression for the full model.
(J and K) Model-predicted and experimentally-observed target gene expression and epistasis when
combining mutants at low (J) and high (K) expression. Mutations were ordered by their effects into 5
equally-populated bins and the median target gene expression and epistasis plotted for each bin

combination.

Figure 4. Changes in expression alter both the strength and sign of epistasis (See also Figure
S6).

(A and B) Changes in epistasis strength (A) and class (B) between low and high expression predicted
by the model.

(C) Experimentally-determined epistasis scores for double mutants with the indicated model-predicted
epistasis scores.

(D and E) The same pair of mutations can interact positively at low expression (D) and negatively at
high expression (E).

Figure 5. Other common expression-fitness functions generate concentration-dependent
genetic interactions (See also Figure S7).

(A and B) Two common expression-fitness functions in budding yeast.

(C and D) Relationship between change in free energy of protein folding and fitness for these
functions,

(E and F) Change in epistasis magnitude between high and low expression.

(G and H) Change in epistasis sign between high and low expression.

Figure 6. Unpredictable double mutant phenotypes (See also Figure S8).

(A) For ‘peaked’ expression-fitness functions such as that shown in Figure 5B, the same change in
fithess can be caused by two different changes in folding free energy.

(B) For a pair of single mutant phenotypes there can therefore be up to 4 possible double mutant

outcomes.
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Supplemental figure titles and legends:

Figure S1. Reproducibility of mutational effects between biological replicates. Related to
Figure 1.

(A and B) Spearman correlations of mutational effects among three biological replicates for low (A)
and high (B) CI expression.

(C) Comparisons of mutational effects between low and high expression level for 22 individually
retested single and double mutants together with wild type. Error bars denote standard error of the
mean.

(D) Density plots of GFP expression for the 22 individually re-tested single and double mutants at the

two expression levels of CI.

Figure S2. Mutational effects depend on both the chemical features of amino acid
substitutions and the tertiary structural positions. Related to Figure 2.

(A) Structure of CI dimer bound to an operator (PDB 3bdn). One monomer is shown as a ribbon and
the other one with all its atoms shown as spheres. Only the mutagenized HTH domain is shown. Left
panel is the structural classification of the residues. Middle and right panels show the positional
median z-scores of GFP expression levels after subtracting wild type z-scores at the two expression
levels of Cl. Z-scores rather than absolute GFP expression levels are shown here to compare
positional sensitivity to mutations at two expressions of Cl.

(B) Heatmaps of mean GFP expression for single mutations at the two expression levels. Amino acids
are ordered based on their similarities, from top to bottom: hydrophobic aromatic (F,W,Y),
hydrophobic nonpolar aliphatic (P,M,I,L,V,A,G), hydrophilic polar uncharged (C,S,T,N,Q), hydrophilic
negatively charged (D,E) and hydrophilic positively charged (H,K,R). Wild type amino acids are shown
as letters inside the heatmap.

(C and D) Target GFP expression compared to the amino acid substitution matrix scores
(BLOSUMGB2) at low (C) and high (D) expression of CI.

(E and F) Target GFP expression compared to the FoldX-predicted changes in the folding energy of
the protein (E) and protein-DNA binding (F) at the two expression levels. Linear regression lines for
each structural class are shown with the shaded areas showing the permutation-based 95%
confidence intervals for the fit. ns — not significant.

(G and H) Target gene expression compared to the change in the hydrophobicity at low (G) and high
(H) expression of CI.

(Iand J) Target gene expression compared to to changes in the side chain charges at low (1) and high
(J) expression of Cl.
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Figure S3. Mathematical models. Related to Figure 3.

(A) Eight configuration states (CS) of the PR promoter.

(B) Obtaining functional protein concentration (panels b1,b4), fraction of folded protein (panels b2,b3),
and change in folding energy (panels b2,b3) from GFP expression levels of a mutation at low
expression of the protein.

(C) Scheme for predicting double mutants’ GFP expression levels from single mutants’ GFP
expression levels based on different models.

(D) Folding-only model.

(E) Regulation-only model.

Figure S4. Predictions of double mutants based on folding-only or regulation-only model.
Related to Figure 3.

(A and B) Observed versus predicted GFP expression levels for the folding-only (A) and regulation-
only (B) models. RMSD: root-mean-square-deviation from the predicted to the observed data.

(C — F) Binned median target gene expression levels (C, E) and epistasis scores (D, F) for the folding-
only (C, D) and regulation-only (E, F) models. Mutations were sorted into 5 equally populated bins by

their single mutant phenotypes as in Figure 3J,K.

Figure S5. Epistasis pattern predicted from different models. Related to Figure 3.

(A — D) Epistasis versus GFP expression levels for observed data (A), predicted from full model (B),
folding-only model (C) and regulation-only model (D).

(E — G) Epistasis scores at the two expression levels of Cl protein for full model (E), folding-only
model (F) and regulation-only model (G). Two-sample Kolmogorov—Smirnov test was performed for

cumulative distributions of epistasis scores at the two expression levels of CI protein.

Figure S6. Observed versus predicted expression level-dependent changes in epistasis.
Related to Figure 4.

(A) Histogram of the model-predicted epistasis score distributions at the two expression levels of the
protein. The grey dotted lines mark the center bin with the epistasis score thresholds of -0.25 and
0.25; and the black dotted lines mark the center three bins with the epistasis score thresholds of -0.75
and 0.75.

(B and C) Distribution of the observed epistasis scores grouped by the model-predicted classes of
epistasis scores, with classification threshold of -0.25 and 0.25.

(D and E) Distribution of the observed epistasis scores grouped by the model-predicted classes of
epistasis scores, with two additional classification thresholds, between -0.75 and 0.75 (D) and
between -0.1 and 0.1 (E). “L” - low expression and “H” - high expression.

Figure S7. Concentration-dependent genetic interactions in the yeast fitness landscape.
Related to Figure 5.
(A — C) Concentration-dependent mutation effects and epistasis in a “decreasing” expression-fitness
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function(Keren et al., 2016).
(D — L) Concentration-dependent epistasis for three common expression-fitness functions with stable,

marginally stable and unstable proteins.

Figure S8. Unpredictable double mutant phenotypes. Related to Figure 6.

(A) A measured fitness effect can be caused by two different changes in protein concentration in a
‘peaked’ fitness landscape when the WT protein is expressed at the fitness optimum.

(B) Only very small changes in fithess can be mapped to either increased or decreased fraction of
folded protein, due to the limit of fraction of folded protein (maximum equals to 1). For example, a
mutant with the fitness effect of -0.02 (w,) can be caused by two different mutations (A1 and A2) that
cause changes in the free energy of protein folding (AAGE a1 Or AAGE a2) and so two different changes
in protein concentration. In contrast, larger fithess changes can only be caused by one change in free
energy of folding. For example, a mutant with a fitness effect of -0.05 (wg) can be caused by either a
5-fold increase or decrease in the functional protein concentration. However, a 5-fold increase in
concentration cannot be achieved by a change in folding because it would require more than 100% of
the protein to be folded. Therefore, a mutant with a fitness effect of -0.05 can only be caused by a
decrease in protein stability (mutant B1).

(C) Combining two mutations of known fitness can lead to two possible double mutant outcomes and
either positive or negative epistasis. For the case of A2 + B1, mutant A2 is detrimental in the wild type
background (wa,=-0.02), but beneficial at the mutant B1 background (wazg1- ®g;=-0.02 —(-0.05)=
0.03). The interaction between mutant A2 and B1 is. Therefore an example of sign epistasis. The

possible outcomes are up to 4 if the fitness landscape is not symmetrical.

Figure S9. Fluorescence-activated cell sorting (FACS). Related to STAR Methods.
(A and B) An example (High expression, replicate 3) of the gating strategy for FACS.C. FACS
recordings from each biological replicate performed on different days. GFP_index is used to quantify

variation in fluorescence readings between batches.

Figure S10. Protein quantification. Related to STAR Methods.

(A) Distribution of fluorescence signal of cells expressing C-terminal GFP-tagged ClI at high and low
expression levels.

(B) Fluorescence linearly correlates with the number of molecules of equivalent soluble fluorochrome
(MESF) from GFP beads.

(C) Relative fold-change of soluble CI protein concentrations at high versus low expression levels.

Error bars denote standard error of the mean.

Figure S11. Filtering of sequencing data. Related to STAR Methods.
(A and B) Sequencing data was filtered to only retain genotypes with at least 100 read counts (red
line) in all three biological replicates for both low (A) and high (B) expression datasets. Each smooth

scatter panel shows the relationship between enrichment scores (S, ; for Outputl and S, ., for
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Output2) and input read counts for each replicate. The top density plot shows the input count
distribution for each replicate.
(C and D) Only variants with propagated mean enrichment score standard errors smaller than 1 (red

line) were retained.

Figure S12. Converting enrichment scores to GFP expression. Related to STAR Methods.

(A — C) Relationship between GFP signals either with Outputl enrichment scores (A), with Output2
enrichment scores (B), or with transformed Output2 enrichment scores (C) for the individually tested
variants (n=23).

(D and E) Relationship between Outputl and Output2 enrichment scores (D) or transformed Output2
enrichment scores (E) for all single nucleotide variants (n=531).

(F and G) Comparisons of individually tested mean GFP signals with the predicted mean GFP signals
from Outputl and Output2 enrichment scores (F) or with Outputl and transformed Output2
enrichment scores (G) (n=23). All error bars denote standard error of the mean. RMSD: root-mean-

square-deviation between the predicted and observed data, after averaging the replicates.

Figure S13. Correcting for technical biases. Related to STAR Methods.

(A) Relationship between predicted GFP expression for biological replicates for all single nucleotide
variants (n=531) before (gray) and after (blue or red) transforming the replicate 1 and 3 data to the
reference replicate 2 (see Methods).

(B and C) Density plot of GFP expression before (B) and after (C) correcting for technical biases by
transforming replicates 1 and 3 to the reference replicate 2 for all single nucleotide variants (n=531).
(D) Smooth scatter showing the relationship between the mean GFP signal of all amino acid

genotypes (n=888) before and after scaling to the detection range (see Supplementary Methods).

Figure S14. Mathematical modelling. Related to STAR Methods.

(A) Relationship between free CI dimer concentration and total Cl concentration in the cell in Ackers’
model.

(B — D) Parameter search for the line intercept that best describes the relationship of GFP at low and
high expression for the folding-only model. Dashed lines in (B) and (D) mark equal GFP level at the
two expression levels. Solid lines in (B) mark the range of the intercepts searched for the best fit. Red
dashed line in (C) shows the best fit (the smallest SSDC).

(E) Projection of individual data points from observed GFP expression levels at low and high CI

expression to the model-predicted curve.
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STAR Methods

CONTACT FOR REAGENT AND RESOURCE SHARING
Further information and requests for resources and reagents should be directed to and will be fulfilled

by the Lead Contact, Ben Lehner (ben.lehner@crg.eu)

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Microbe strain and growth conditions

E.coli BW27783 MKOL strain (kindly provided by the M.Isalan lab), modified to homogenously express
arabinose-induced genes (Kogenaru and Tans, 2014) was used to express the mutant library. A
single colony of the E.coli BW27783 MKO1 strain was picked Luria-Bertani (LB) agar plate, grown
overnight at LB liquid medium supplemented with chloramphenicol to 14ug/ml concentration at 37°C.
The 500pI overnight growth media with cells mixed with 500ul of 50% glycerol were stored at -80°C
freezer. For experiments, cells were always grown at 37°C in LB liquid medium supplemented with
appropriate antibiotics. For specific experimental growth conditions, please refer to the method details
in the following section.

METHOD DETAILS
Experimental Methods
Mutant oligonucleotide library synthesis and amplification

A 250-nucleotide-long oligonucleotide library was synthesized by TriLink BioTechnologies. Library
oligonucleotides contain a 177-nucleotide-long sequence of the ClI Helix-Turn-Helix domain (52th-
210th nucleotide bases, based on Cl ORF GenelD:3827059), “doped” at each position with 0.4% of
each of the three non-reference nucleotides. The “doped” region is flanked by invariant sequences
corresponding to the wild type sequences of immediate upstream (36 nucleotide bases) and
downstream (37 nucleotide bases) of the doped region and used as constant overhang regions for the
PCR primers to bind. The designed oligonucleotide sequence is:

5'CCATTAACACAAGAGCAGCTTGAGGACGCACGTCGC Ccttaaagcaatttatgaaaaaaagaaaaatgaacttggc
ttatcccaggaatctgtcgcagacaagatggggatggggcagtcaggegttggtgctttatttaatggcatcaatgcattaaatgcttataacgec
gcattgcttgcaaaaattctcaaagttagcgtigaagaattAGCCCTTCAATCGCCAGAGAAATCTACGAGATGTATG
3

Upper case indicates the constant regions and lower case the “doped” sequence.

The ‘doped’ library was dissolved in 500ul MilliQ water as a stock solution, and 10yl of the stock
solution was further diluted in 500ul of MilliQ water as a working solution. The working solution
oligonucleotide concentration was estimated to be 390ng/ul based on NanoDrop (Thermofisher
Scientific) measurement of SSDNA concentration. Next, the working solution ‘doped’ library was
further diluted by a factor of 100, and a total of about 40ng was used as the template to synthesize
the complementary strand as well as to be amplified. Polymerase chain reaction (PCR) was
performed using Phusion high fidelity PCR kit (Thermo Scientific) with primers that bind to the
constant regions of the ‘doped’ library oligonucleotide (Table S1). Each 50pl PCR reaction consisted
of 10pl of the ‘doped’ library oligonucleotide as the template, 10ul of 5X Phusion HF reaction buffer,
1pl of 20mM dNTP (NEB), 2.5ul of 10uM forward and reverse primers each, 0.5ul of Phusion
polymerase and 12.5ul MilliQ. PCR reactions followed the manufacturer’s instruction for a standard
protocol.18 PCR cycles were performed to minimize incorporation of PCR errors to the library. PCRs


https://doi.org/10.1101/578419
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/578419; this version posted March 15, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

were performed with annealing temperature at 55°C and extension at 72°C for 30 seconds. The
fragment with the correct size (230 nucleotide bases) was visualized and retrieved using the 2% size-
select E-gel purification system (Invitrogen). To achieve optimal ligation efficiency, the size-selected
PCR fragment was further purified with the MiniElute PCR purification kit (QIAGEN) to remove excess
salt. The Gibson assembly (GA) system was used to ligate the PCR fragments to the modified
plasmid backbone (see below) following the standard GA protocol.

Plasmid constructs and the expression of the mutant plasmid libraries

The Cl open reading frame (GenelD:3827059) was cloned into the bacterial expression vector
pBADM-11 (obtained from CRG biomolecular screening & protein technologies unit), between the
arabinose-inducible promoter pBAD and three stop codons in all three reading frames (“tagttaagtga”),
followed by the strong synthetic bidirectional terminator L3S2P21(Chen et al., 2013). The PR
promoter (that overlaps with OR3, OR2 and ORL1 repressor binding sites) followed by the RBS- GFP
(LVA) ORF(Andersen et al., 1998) was cloned downstream of the L3S2P21 terminator. Three stop
codons in all three reading frames (“tagttaagtga”) were cloned immediately downstream of the GFP
ORF and upstream of the pBADM-11 intrinsic rrnB_T2 terminator.

The two plasmid constructs (pCIPR plasmids) used in our experiments—the construct expressing Cl
to a high concentration (pCIPR-High) and the construct expressing CI to a low concentration (pCIPR-
Low)—differed in the DNA sequences between the predicted strongest ribosome binding sequence
(RBS) and the ATG start codon of the CI gene. In pCIPR-High, the start codon is immediately after
the RBS. In pCIPR-Low the start codon is 82 nucleotides downstream of the RBS.

The pCIPR-High and pCIPR-Low plasmids were linearized by removing the coding region of the ClI
helix-turn-helix motif (HTH) domain that contains the ‘doped’ sequence. The doped oligonucleotide
library and the linearized plasmids were assembled using the GA system (master mix provided by
CRG biomolecular screening & protein technologies unit) following the standard protocol. The
assembly reactions were dialysed using 0.025um VSWP membrane filters (Merk Millipore Ltd) and
electroporated into the high efficiency commercial NEB10B competent cells (NEB, C3020K). After
recovery in 500ul Super Optimal broth with Catabolite repression (SOC) culture media at 37°C for one
hour, an aliquot of the cells was plated on Luria-Bertani (LB) agar plate with 100ug/ml ampicillin to
examine the transformation efficiency, and the rest was diluted 1 in 200 in fresh Luria-Bertani

(LB) broth with 100pg/ml ampicillin for overnight growth. About 780,000 independent transformant
colonies were obtained for the mutant plasmid library construction. Plasmids were purified using the
Qiagen Midiprep kit (cat.12143) and the purified plasmids were then used as the mutant plasmid
library.

Making highly efficient electro-competent cells

We chose the E.coli BW27783 MKOL1 strain (kindly provided by the Isalan lab)(Kogenaru and Tans,
2014), modified to homogenously express arabinose-induced genes, to express the mutant library. A
single chloramphenicol-resistant colony of was picked into 4ml LB medium with 2.8pl of 20mg/ml
chloramphenicol and let grow for 3.5 hours at 37°C. 2ml of this pre-culture bacterial media was then
diluted into 250ml of pre-warmed 2 xTy media with 175ul 20mg/ml chloramphenicol for 2 hours and
10 minutes and ensured that the OD600 did not exceed 0.6. The culture was cooled down on ice for 5
minutes, divided into four 50ml falcon tubes and centrifuged at a speed of 4000rpm for 5 minutes at
4°C . The cell pellets were suspended in 50ml cold Milli-Q water in each of the four falcon tubes and
then centrifuged again at a speed of 4000rpm for 5 minutes at 4°C. After that, the cell pellets were
suspended in 50ml cold Milli-Q water in two falcon tubes, and the centrifugation step was repeated as
before. A final wash of cell pellets was performed in cold 10% glycerol. After centrifuging for 7 minutes
at 4°C and 4000rpm, the supernatant was shaken away and the cells were re-suspended in their own
juice.
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Expressing the mutant library and fluorescence-activated cell sorting (FACS)
Sample preparation

0.5pl of 200ng/ul pCIPR plasmids were transformed into 25ul electrocompetent cells made on the
same day, inside a 0.1cm-gap cuvette (Bio-Rad) using the Gene Pulser Xcell™ electroporation
system (Bio-Rad), with the pre-set protocol for E.coli transformation. Cells were recovered in SOC
culture media at 37°C for one hour, and an aliquot of the cells was plated on LB agar plate with
100ug/ml ampicillin to examine the transformation efficiency. One transformation with this step
produced millions of transformants without creating a bottleneck. Cells were grown overnight in 25ml
LB medium with 100ug/ml ampicillin. An aliquot of the overnight culture was diluted 1 in 100 into LB
media containing 100ug/ml ampicillin, 0.4% glucose and 0.2% arabinose and grown at 37°C for 2.5
hours to reach an OD600 of about 0.7. The bacteria culture was further diluted 1 in 5 with fresh
medium (same composition) and the cells grown for another hour, after which the OD600 was about
0.9. As a control for no Cl induction (no repression of the target gene GFP), cells were grown in the
LB medium without arabinose but with glucose. All experiments included cells with plasmids
containing the wild type Cl genotype (positive control) and cells containing an empty pBADM-11
plasmid (to quantify cell autofluorescence) in addition to the cells carrying the mutant library. After the
induction of ClI expression, cells were immediately diluted 1 in 500 into Phosphate buffered saline
(PBS) and put on ice before FACS.

Sorting

Sorting was performed at the CRG FACS core facility. A FACSAria Il SORP sorter along with the
FACSDiva Version 6.1.2 software was used to sort the cells. Bacterial cells were selected based on
side scatter (SSC) and forward scatter (FSC), and gate selection was based on FITC-A fluorescence
filter for GFP (Figure S9A). Cells were sorted into three gates: the near neutral gate was defined as
including 90% of the matching wild type population. The completely detrimental gate included 90% of
non-repressed high GFP population (no CI induction). The intermediate population between the two
populations mentioned above (about 3~4% of all the library population was in this gate) was also
collected (Figure S9B). Purity of sorting was examined by passing the sorted cells through the FACS
again immediately after sorting, and recording the population proportions belonging to the sorted gate.
At least 30 million cells were sorted per biological replicate.

Post-sorting

Sorted cells were kept on ice in PBS in 15ml falcon tube each. They were centrifuged at 4000rpm at
4°C for 30 minutes. The supernatant was removed carefully, and the plasmid-prep was performed
directly form the cell pellets. Plasmids from the sorted cells (together with the unsorted input cells)
were extracted immediately with the QlAprep Spin Miniprep kit (QIAGEN). The mutagenized region
was amplified using barcoded PCR primers (Table S1) for 25 cycles using hot start Phusion
polymerase (Thermo Scientific) in 50yl reactions, following the manufacturer instruction. PCR
products were purified using the E-gel 2% size-select system (Invitrogen) to remove smaller
fragments. In order to produce three full biological replicates, the procedure described up to this -from
transformation of the mutation plasmid library to cell sorting and plasmid extraction- was performed
three times on three different days (Figure S9C).

Concentration of each purified PCR product was measured on NanoDrop (Thermofisher Scientific).
Equimolar quantities of three independent amplifications of the input library (Input) and equimolar
guantities of three output replicates from near neutral population (Outputl) were pooled together in
one Eppendorf tube (Samplel). Equimolar quantities of three output replicates from intermediate
population (Output2) were pooled together as a separate sample in a different Eppendorf tube
(Sample2). The two samples were sent to EMBL Genomics Core Facility where two PCR-free
sequencing libraries were prepared and sequenced on lllumina HiSeq2000 platform. The PCR-free
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sequencing library Samplel was run on two lane of an lllumina HiSeq 2500 for each Cl concentration
experiment. The PCR-free sequencing library Sample2 was multiplexed with other samples to about
10% of one lane loading, considering the small size of the cell population.

Verification of mutational effects

22 genotypes (Figure S1C,D and Table S2) were selected based on their enrichment scores and
reproducibility (Standard error of the mean enrichment scores <1, see Data analysis section) at both
ClI concentrations for re-testing. Individual genotypes were constructed using the NEB Q5 site-
directed mutagenesis kit (NEB cat. E0554S) with the wild type pCIPR-High and pCIPR-Low plasmids
as templates. After verifying the sequences by Sanger sequencing, we picked four colonies from each
genotype to examine their target gene GFP expression levels (Figure S1C, D). The experiment was
performed in one batch on the same day so that the results from this experiment could be used as a
confirmation set to which other FACS experiment sets can be mapped. LSR Fortesta florescence
analyser was used at the CRG FACS Core facility.

GFP signal and the shape information of 10,000 cells per biological replicate were recorded, and the
“.FCS” files from the recordings were analyzed using the FlowCore package in R. Cells were filtered
based on SSC and FSC, and the first 3,000 cell recordings were discarded to avoid cross-well
contamination. The mean output GFP signal (in AU, arbitrary units) from about 5,000 cells in each
biological replicate of individual variant was calculated after the filtering process. The mean GFP
signal and standard error of the mean for each variant were obtained from each biological replicate.

Quantification of CI protein expression

The relative amount of CI protein at the two expression levels was quantified by tagging Cl with GFP
at its C-terminus with the flexible linker amino acid sequence GSAGSAAGSGEF (Waldo et al., 1999).
The PR-GFP sequences were removed from the original pCIPR-High and pCIPR-Low plasmids to
make plasmids pCIGFP-High and pCIGFP-low. Fluorescence from Cl-induced cells was analysed
using a LSR Fortesta florescence analyser at the CRG FACS Core facility (Figure S10A). In the same
experiment, GFP calibration beads (CloneTech) were used to calibrate and obtain exact molecule
numbers based on the GFP signal (Figure S10B, C). For quantification, mean GFP signals and
standard errors of were calculated from four biological replicates.

Data analysis
From sequencing data to target gene expression

Our data analysis pipeline consists of three main parts: 1) Filtering. 2) Mapping enrichment scores to
the target gene (GFP) expression levels. 3) Correcting for the batch effects (Figure S9C) and the
detection limits set by the experiment. The processed final datasets for the analysis were organised
both on nucleotide level and amino acid level. Even though our conclusions were mainly based on
amino-acid level mutational effects, the dataset with nucleotide-level mutational effects was needed
as reference.

The analyses from sequencing data to GFP expression level were all performed on the nucleotide-
level, and the amino-acid level mutational effects were examined based on the processed nucleotide-
level datasets. Whenever involving combining replicates (at the level of enrichment scores, predicted
GFP singles at the nucleotide level and at amino acid level), the random error model was used.

From lllumina sequencing reads to variant counts

To extract variant counts from the raw sequencing data, we adapted the pipeline developed by our
group in a previously published project (Julien et al., 2016). Specifically, the raw sequencing data was


https://doi.org/10.1101/578419
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/578419; this version posted March 15, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

demultiplexed with the SABRE software (https://github.com/najoshi/sabre) and paired reads were
merged with the PEAR software (Zhang et al., 2014) with parameters set not to allow any
mismatches in the overlap regions. Reverse complementation of merged sequences was performed
when necessary with the fastx_reverse_complement tool (http://hannonlab.cshl.edu/fastx_toolkit/).
Then the primer sequences were trimmed using the seqtk tool (https://github.com/Ih3/seqtk).
Finally, the number of occurrences of each variant was counted with fastx_collapser
(http://hannonlab.cshl.edu/fastx_toolkit/) and a custom python script(Julien et al., 2016).

Calculating enrichment scores and filtering

Variants up to 2-Hamming-distance nucleotide changes from the wild type sequence with at least 100
read counts in all three input replicates were selected for further analysis (Figure S11A,B). The 100
read count threshold included all the 1-Hamming-distance nucleotide changes (n=531) but only about
11% (n=10,862 for low expression dataset) and 7% (n=3,686 for high expression dataset) of all the 2-
Hamming-distance nucleotide changes observed. This restriction was necessary to obtain the
confident variant counts. The threshold was chosen based on the logic that each bacterial cell be
expected to carry hundreds of plasmid copies (pUC replication origin). Considering experimental
steps of plasmid extraction and PCR amplifications until obtaining read counts from Illlumina
seguencing, we reasoned that variants observed less than 100 read counts were likely to be from too
few cells, resulting in unreliable enrichment scores for the following steps.

Enrichment scores for each variant v from each experimental replicate i (REPI), for each sorted cell
output j (Oj with O1 as near neutral fraction and O2 as partially detrimental fraction) were calculated
as follows:

SV,O]’,REPi = log2 ( Cy,0j,REPi 10.5 ) —log2 ( Cyinput,REPi T0-5 ) )

Cwt,0jREPiT0.5 Cwt,input,REPi +0.5

With C as sequencing read counts, v as variant, wt as wild type. A pseudo count of 0.5 was added to
avoid log 0. Poisson-based error for each variant for each replicate for each output (SE, g;jrepi) Was
also calculated using the formula below:

1 1 1 1
SEV,Oj,repi = \/ + + + (2)

Cvinput,REPIT0-5  CwtinputREPiT05  CyojRrEPiT0.5 = Cw,o0jREPiT0.5

In order to merge scores over replicates for each output and for each variant, and to be able to filter
variants based on the standard errors of the mean, a random-effect error model as proposed by
Rubin et al for this type of data analysis (Rubin et al., 2017) was used.

The details are as follows:

For the first iteration, for each output, an initial error §E,,0}-,12 for each variant was calculated based
on its standard deviation from the unweighted mean.

~ Z."==3 So i .

SV,Oj,l _ &i=1 \;.0],REP1 (3)
— 2 1 N
SEvoj1 =75 % i1 (Sv,05rERPE — Sv,051 )7 (4)

The initial weighted mean enrichment score for each output was calculated as the follows:


https://doi.org/10.1101/578419
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/578419; this version posted March 15, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

-1
X (Sv.Oj,REPiX (§Ev,0j,12 + SEy 0j,REPi 2) ) )

— 2 2 \—
¥ (SEypjs +SEvojrepi )"

Sv,051 =

For each iteration k, the standard error was calculated as follows:

- 2 2 N
¥5-1(SEvojk  + SEvojrEPi 2 )2 (Sv,0i,REPi — Sv,0ik ) 2
2 -
31 (SEvojx * + SEyojrepi 2)72 (6)

3 e 7 2.—
%21 (SEyojk  +SEv0jREPI )Tt

. 2 —
SEvojxr1 = SEvojk X

& 2 2 \—
%P 1(SEvojik +SEvoirepi 2 )7t

After 50 iterations (k=50), the final mean enrichment score and standard error for each variant for
each output were calculated as shown in equations (7) and (8) respectively.

. 2 1
N Sy (Sv,oj,REPiX(SEv,oj,su + SEy,0j,REPI ) )

Sv0i = — 2
i %3_1(SEv,0js0  + SEvRroj EPi Zyt

)

. . ) A1) 05
SEy o) = (213=1 (SEV,Oj,so + SEy, 05 REPI ) ) ®

In order to estimate the overall errors of enrichment scores for each variant and to filter only the
confident data for the following data analysis, the estimated errors from Outputl ( ST, ,; ) and Output2
(SE,,02) were combined with the following formula:

= -~ 2 —  2\05
SEV,01+02 = (SEV,Ol + SEV,OZ ) (9)

Variants with S‘E,,(,HUZ >1 were removed for downstream analyses (Figure S11C, D).
Mapping enrichment scores to GFP signal

In order to calculate GFP signals from enrichment scores, we first examined the relationships
between GFP signals and enrichment scores from individually assayed confirmation data set (Table
S2). As designed by the experiment, the smaller enrichment score from the Outputl S, ,; was, the
higher GFP signal (more detrimental) of a variant was (Figure S12A). Enrichment scores from the
Output2 S, ., (the intermediate fraction) did not relate monotonically to the mean GFP signal,
because variants enriched in Output2 (S, ;) were depleted for both strongly detrimental and near
neutral variants (Figure S12B).

To examine the possibility of predicting GFP signals with a linear combination of the two enrichment
scores for each replicate from each expression level experiment, we built linear models to predict the
mean GFP signals with S, 1 repiand S, o2 repi With the confirmation dataset. The calculated GFP signal
from the mean enrichment scores predicted the individual variants’ GFP signals well (Figure S12F).
However, the predictions were not completely linearly related with the observed GFP signals.

In order to improve the GFP signal predictions based on the enrichment scores, for each biological
replicate, we transformed each S, o2 repi 1O Sy o2.trans, Repi Dased on its relationship with Sy o1 repi SUCH
that variants predicted to be detrimental by S, o1 repi WoOuld have higher S, gz rans, Repi @and variants
predicted to be near neutral by S, o1 repi WOUld have lower S, o2 trans, rRepi (Figure S12D, E).
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The logic behind this transformation was as follows: 1) A potentially beneficial mutation was expected
to be enriched in Outputl and depleted in Output2 (Syc1repi> 0 and S, o2 repi < 0). We kept the
Output2 score as it was. 2) An intermediately detrimental mutation was expected to be enriched in
Output2 (Sy02repi > 0) regardless of its enrichment score in Outputl. We kept its enrichment score in
Output2 as it was as well. 3) A very detrimental mutation was expected to be depleted both in Outputl
and Output2 (Sy,o1reri< 0 and Sy oz repi < 0). In order to distinguish S, o, repi Of these variants from that
of potentially beneficial mutations (the first case, where S, o> repi is also smaller than 0), we
transformed S, o, repi tO @ positive value and bigger than the intermediately detrimental variants’
Svozrepi - This way, a transformed S, o2 rrans, Repi WaS expected to be bigger for more detrimental
mutations (Figure S12C). To avoid influence by extreme outliers, 95" quartiles (Q) were used as
thresholds for detrimental mutations (Sye1,repi < Q(Swt_syn.01,reri, 0.95)) and as an approximate for the
maximum S, .2 repi before transformation. To summarize, the equation follows:

if (Sv,ol,REPi < Q(SWT,syn,oLREPi: 0-95) & Sy o2 rEPI < 0):
Sv,021rans REPI = Q(Soz,repi» 0.95) + abs(Sy oz repi)s (10)
else,
Sv,oZ,REPi

A linear model was built again to predict the mean GFP signals for each expression level experiment
with the mean enrichment scores §1,,01 and §v102 ransUSING the confirmation dataset. Inverse of the

variance was used as weights. This linear model improved the prediction of GFP signal in the low CI
expression dataset (Figure S12G). For the high expression dataset, the S,,,, trans COEfficient was not
significant (Table S3, Figure S12G) and including the S, ., rans,reri did Not improve logged GFP signal
(as an output of mutational effects, denoted O) O, gep; predictions (note R* and the median RMSD did
not change in the predictions for high expression dataset, Figure S12G). Therefore, we set

Sv.02 mans,repi = 0 When calculating signals and the errors for the high Cl expression dataset in the
following equations to avoid inflating the errors of the estimation (refer to equation (12)).

Oy repi = ]OgZ(GFPV,REPi) =a+B-Syo1rEPi T Y * Sv.02¢rans,REPI (11)

Oy repi @bove is the output GFP signal in log scale for each variant in each of the three biological
replicates i and the coefficients q, B, y (Table S3) derived from the linear model trained with the
confirmation dataset.

A measurement error for the log GFP signal (OE, repi) for each variant v in each replicate i and for
each CI concentration (high and low) was calculated with the following formula:

pz - SEv,ol,REPiZ +v%- SEv,oztrans,REPiz
OE, repi = +2-B-vy- COV(Sv,ol,REPi: Sv,oztrans,REPi) (12)
+BE2 - Syorrepi” +YE? Sy 0ziqns rEpi- T+ AE2

Where BE?, yE?, aE? are squares of the standard errors of the estimated a, § and y coefficients
respectively, and cov(S, o1 repi, Sv.02trans,repi) IS the covariance between S, o; and S, o2.trans fOr €ach
replicate (Table S4).

Correcting technical biases

Each biological replicate from FACS sorting on different days had different ranges of GFP expression
levels (GFP index, Figure S9C) and these biases were reflected on the estimated O, repi (Figure
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S13A,B). In order to correct these technical biases, one replicate from each CI concentration
experiment was set as reference, and the other replicates were linearly mapped to the same range as
the reference replicate (i.e., replicate 2 as the reference).

Oy,rep1 2 = a1 + B1- Oy repy (13)
Oy,rep3 2 = @3 + B3 - Oy rep3 (14)

In the function above, the coefficients al and B1 derived from mapping the line defined by replicate 1
wild type 0, rgps and weighted means of the nonsense mutations’ Omm,REPl to the line defined by
replicate 2 wild type O, rep, and weighted means of the nonsense mutations’ Onon’REpg (Table S5,
Figure S13A - C).

B1 = Onon,REP2~ OwtREP2 (15)
Onon,REP1— OwtREP1

o] = 2nonrEP1XOwtRrEP2 ~ OnonREP2XOwtREP1 (16)
Onon,REP1~ OwtREP1

The same equations as (15) and (16) applies to coefficients a3 and 3 to map replicate 3 to replicate
2 by only substituting replicate 1 with replicate 3.

The mean GFP signals 0, and standard errors of the mean OE,, over biological replicates were
calculated using random-effect error model as described in the previous section for combining
enrichment scores over the biological replicates.

Calculating mutational effects at amino acid level

In order to examine mutational effects at the amino acid level, the processed data at the nucleotide
level was converted to the amino acid level.

First, for each replicate, weighted mean GFP signals of all the nucleotide variants encoding the same
amino acid variants were calculated. The inverse of the GFP signal errors of the nucleotide variants
were given as weights. Errors from each nucleotide variants were propagated as the error of the GFP
signals for each amino acid variant in each replicate.

Then, mean GFP signals 0, and the standard errors of the mean OE,, over biological replicates at
amino acid level were calculated based on the random-effect error model as for combining
enrichment scores and nucleotide level GFP signals over replicates.

Rescaling the mean GFP signals to the detection limits

In the FACS experiments, the detection limit for the lowest GFP signal was equal to the auto-
fluorescence of the bacterial cells not expressing GFP. The auto-fluorescence of the bacterial cells
was not distinguishable from the cells that repressed the target gene GFP expression completely (Cl
WT high expression) (Figure S9C). The theoretical maximum GFP expression level was equal to that
of bacterial cells expressing the target GFP without any repressor.
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However, some variants’ estimated GFP signals from the bulk sequencing data exceeded the GFP
signal range defined by theoretical maximum and minimum GFP. These GFP signals outside the
theoretical limits were not likely to be real and they could potentially bias our analysis.

In order to correct this problem, estimated GFP signals from the enrichment scores were rescaled to
abide to the theoretical maximum and minimum GFP ranges. The lower GFP detection limit was
determined by the lower limit of 95% confidence interval from the mean CI WT high expression GFP
level. The upper GFP detection limit was determined by the 95" percentile of the weighted mean GFP
signals of all nonsense mutations at low expression level of Cl. The 95" percentile (or confidence
interval) rather than the mean WT or nonsense GFP signals were selected as detection limits, so that
the modes of the mutational effects would not shift after rescaling.

This GFP detection range [4.5,12.8] was first divided into 1000 evenly spaced bins (O). Then, given
the observed mean GFP signal and the standard error of a variant, the probability of the true mean
GFP signal of the variant falling into each bin was calculated as follows:

M (17)

Iy = —
Plvk OBy x 2x70-3

Finally, the mean GFP signal of a variant was calculated based on the weighted mean of the GFP
signals from each bin with the weights given as the probability of the true mean falling into each bin k
(prvx), as shown below:

5 _ S(pryx0)
v,rescaled Z(Prv,k)

(18)

The Ov,rescaled (Figure S13D) was used as the mean GFP signal for each variant in the following

analysis, denoted as 0, replacing the value before transformation, and the standard error OE, was
kept the same as before rescaling.

Folding energy, binding energy and structural analysis

Folding energy prediction and structural analysis were performed based on the 3.909A x-ray structure
(PDB 3BDN) of CI dimer bound to an operator site OL1.

To estimate the mutational effects on folding energies and binding energies of ClI protein, we used
FoldX4 software (Schymkowitz et al., 2005). First, BuildModel command was used to build a structural
model from each single mutation in our experiment. Then, the AnalyzeComplex command (with the
complexWithDNA option set to true) was used to obtain the absolute energies of protein-DNA
complex (AGc.or rodx) @s Well as the protein itself (AGg roax) for each mutation. Binding energy of Cl
to DNA (AGg roiax) Was calculated as energy difference between the protein-DNA complex and the
protein by itself for each mutation. AAG for folding (AGk roiax) @and binding energies (AGg roix) for each
variant were calculated by subtracting folding and binding energies of wild type CI respectively.

AAGg go1ax = AGgpolax — AGwtF Foldx (19)

AAGg polax = (AGci-or Folax — AGEpolax) — (AGwici-orFolax — AGwiFFoldx) (20)

Analyses were repeated with PDB structure 1LMB (1 A x-ray structure of CI N-terminal domain bound
to OL1) and with 3BDN structure bound to OR1 instead of OL1 (by mutating OL1 sequence to OR1
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based on PDB 3BDN structure). FoldX4 returned the same AAG with these analyses; therefore, only
results using PDB 3BDN as a template were shown.

3D structures were visualized and analysed using PyMOL (v1.7.6.0). Amino acid positions were
classified as core residues if the ratio between solvent exposed area and the total area fell within the
first quartile of the obtained data based on a PyMOL script (“get_area”,
https://pymolwiki.org/index.php/Get_Area) with parameters dot_density set as 4 and dot_solvent set
as 1. Positions were classified as DNA-contacting when the differences in the solvent exposed area
without DNA and with DNA were greater than 0.1A%.

Other features tested for their association with mutational effects

562 amino acid indices taken from the AAindex database (https://www.genome.jp/aaindex/)
(Kawashima et al., 2007) together with BLOSUM®62 matrix scores
(ftp://ftp.ncbi.nih.gov/blast/matrices/), structural information, and FoldX predicted energy values were
examined. The top features that correlated with the mutational effects of CI protein were: (1) the
hydrophobicity index (Zaslavsky et al., 1982); (2) the number of negative charges introduced by a
mutation (Cherstvy, 2009); (3) the amino acid substitution matrix BLOSUM®62 (Henikoff and Henikoff,
1992); (4) changes in the protein folding energy; (5) changes in the protein-DNA binding energy
predicted by FoldX (Schymkowitz et al., 2005) together with the structural features of mutations (i.e.,
at the core, interface with DNA or at the solvent-exposed positions).

Mathematical model

Our aim was to build a mathematical model that captures the most important features of the system
that apply to all mutations. The model propagates the effects of mutations on the folding of the
lambda repressor to changes in expression of the target gene through the well-described regulatory
model of the PR promoter. The model makes the following assumptions: 1) Mutations change the
free energy of protein folding so altering the fraction of folded protein; 2) the fraction of folded protein
is independent of the protein concentration; 3) changes in protein folding free energy are additive for
all mutations. In reality, all of these assumptions may be violated for some mutations. For example,
some mutations will also affect the binding affinity of the lambda repressor to the DNA operator sites
or alter transcription or translation. Others may result in protein aggregation. Moreover, the fraction
of folded protein may not be independent of concentration, for example at very high expression levels
because of chaperone titration. Finally combining mutations in structurally contacting or indirectly
energetically-coupled residues may result in non-additive changes in free energy. However, our aim
was to test whether the simplest possible model of the system captured the overall changes in
mutation effects and changes in the strength and sign of genetic interactions as the expression level
changed. We of course acknowledge that some mutations will not meet these assumptions and these
exceptions likely contribute to some of the unexplained variance in our data.

Regulatory interaction model of the Cl-repressor system

Ackers’ 8-configuration model (Ackers et al., 1982) was used to predict the relationship between the
total amount of CI protein and the expression levels of its repressed gene. As in our experiment, the
Cl regulatory interaction system in Ackers’ model involves three operators (OR1, OR2 and OR3),
resulting in eight possible configuration states (CS) in which the CI dimer can bind to the operators
(Table S6). Based on the model, each configuration state causes the downstream promoter to be in
either an ON or OFF state (Figure S3A). Only two configuration states fail to repress expression of the
target gene: when the CI dimer is not bound to any operators (CS1) and when CI dimer is only bound
to OR3 (CS2). The probability of repressing the target gene expression is the sum of the probabilities
of the six remaining configuration states that result in the OFF state of the promoter. The likelihood of
each configuration state is a function of the binding energies and the free CI protein dimer
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concentration when the number of OR binding sites is fixed. In Ackers’ model, the number of OR sites
is equivalent to that found in an average lysogen (bacteria that carries the phage genes integrated in
its genome) with the ORs integrated into its genome (Ackers et al., 1982).

The probability that each of the eight configuration state (f,s;) to occur is:

foo = eBGCsi/RT y[cp, NI (21)
CSi 5 e~8Gcsi/RT x[cp,|Ni

Where AG.g; is the total free energy of lambda repressor dimers in the respective configuration i; the
exponent Ni is the total number of the lambda repressor dimers in the corresponding configuration i;
[Cl,] is the free dimer concentration; R is the gas constant (R = 1.98x10?kcal/M) and T is the
absolute temperature (310.15 kelvin).

The probability of repression (Ps) is the sum of the probabilities of the configurations in which
promoter Pg is repressed (¥;=(3.3; fcsi)- TO calculate Ps as a function of the free dimer ClI concentration
[CI;] based on the equation (19) and Table S6, we obtain the following equation:

e~8Gcs1/RTy[c],10 4+ e~8Gcs2/RT (], ] (22)
Z§=1(e—AGcsi/RT x[CIz]Ni)

Po=1—feg —fesz =1—

The target gene expression level (GFP) is modelled to be proportional to the binding probability of the
RNA polymerase, which is given by one minus the probability of repression by CI (Ps) (equation 21).

GFP o8 PRNA—pOl = 1 - Ps (23)

Despite its simplicity, this model has been shown to be predictive of the gene expression levels (Bintu
et al., 2005). Because bacterial cells displayed auto-fluorescence (GFP,yy0), this auto-fluorescence
signal from bacteria needed to be considered when measuring the effects of mutations on GFP levels.
Therefore, by rewriting the equation (21) by taking into account the auto-fluorescence of the cells, the
probability of GFP repression can be shown as in the equation (22).

GFP— GFP
P=1-— auto (24)
GFPmax— GFPauto

Both equations (20) and (22) show the probability of repressing the target gene, with equation (22) as
a function of the GFP signal and equation (20) as a function of the free ClI dimer concentration. By
combining equation (20) with equation (22), we obtain an equation that describes the relationship
between the free CI dimer concentration [Cl,] and the GFP signal as shown in the following equation:

GFP — GFP, ~AGes2/RT x [C] 1
1— ps - auto — € [ 2] + : (25)
GFPmax - GFPauto 218=1(3_AGCSi/RT X [CIZ] Nl)

By rewriting the equation (23), we can show the GFP signal as a function of free CI dimer
concentration:
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((GFPmaX— GFPauto)x(e™20cs2/RT x[Cl, ]+ 1) )
GFP = B + GFPyyto
+ 3]s e Aesi/RT ]2

+ Y3, e 26esi/RT (el | +1

(26)

The equation (24) allows us to calculate the GFP signal for each variant from a known free CI dimer
concentration. In order to calculate [Cl;] from equation (24), uniroot function was used with R script to
find a unique root of equation (24) that was within the range of 10*° and 10 (M).

Next, the relationship between the total Cl concentration [Cl{] and the free dimer concentration [Cl;]
was evaluated, in order to model the relationship between the GFP signal and total Cl concentration.
This is because the total protein concentration in the cells but not the free dimer concentration of the
protein is the one that can be experimentally measured and manipulated. The total lambda repressor
concentration in the cell [Cl4] is the sum of the free monomer concentration [CI] plus two times the
concentrations of the free dimer [CI;] plus two times the concentration of the dimers bound to
operators [OR]. Compared to the original Ackers’ model, in our experimental system, each bacterial
cell was expected to carry up to hundreds of folds more operator sites, the same fold changes in ClI
protein coding region and the target gene. Given the same fold changes in all the functional blocks in
this model, we simply kept the same parameters from original model and mapped our experimental
system to the original model system.

[Clr] = [CI] + 2 X [Cl5] + 2 X [ORoral] X iy (Ni X fesi) (27)
The concentrations of free monomer [CI] and free dimer [CI;] follow the equilibrium:
[CL,] = Ka x [CI]? (28)

By combining the equations (25) and (26), we can describe the relationships between [Cl] and [Cl;]
as follows:

[Clr] = ([CI2]/Ka)%® + 2 X [Cl,] + 2 X [ORotar] X Xy (Ni X fegi) (29)

By further substituting Y5, (Ni X fg;) from the equation (27) with the equation (19), we obtain the
following equation:

[CIg] =
K,%% x [CI,]%° 4 2 x [CI,] +

2x[ORIx(31_, e %csi/RT 42x3]_ e ™4Ccsi/RT 13 e=AGcsa/RT)

(30)

Y, e 86esi/RT x[Cl,]+3%7_ e"2Gcsi/RT x[Cl,]2 + e~2Gcss/RT [ 1,3

The equation allows us to calculate [Cly] from [CI;]. [CI;] can be calculated by finding the unique root
from the equation (24) from the known GFP signal as described earlier. Given the complexities of
both equations (24) and (28), the calculations were performed in two steps according to the two
equations. For the following process, for ease of reference, we denote the process of calculating total
protein [Cl4] for each variant from its target GFP signals f'ackers:
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[CIT] = fIAckers (GFP) (31)

The reverse process to calculate GFP signals from the total protein [Cl;] involves two steps: 1)
inversing equation (28) to calculate the corresponding [Cl,]; 2) calculating GFP with equation (24) with
[ClI;] from the previous step.

Inversing and finding the exact root of equation (28) is mathematically impossible. Therefore, an
approximate solution was found based on a local polynomial regression (loess function with R, span
parameter 0.3) describing the relationship between [CI;] and [Cl;] based on equation (28) (Figure
S14A).

Based on equation (24), GFP signal was calculated by inputting [CI;] from the previous step. We
denote the process as fackers, Which is the inverse of equation (29) for the ease of future reference.

GFP = fackers ([CIT]) (32)

The parameters were kept as they were originally used in the model by Ackers (Ackers et al., 1982)
(Table S7) that were experimentally determined.

Two additional parameters (GFP,.x and GFP,,,) were specific to our experiment and not described in
the original model by Ackers. For modelling, the maximum GFP signal GFP,x was defined as the
weighted mean GFP signals of all single nonsense mutations with weights given as the inverse of the
variance (3470.67 AU, or 11.76AU in log2 scale) based on the ClI low expression dataset. The
minimum GFP signal GFP,,, corresponding to the cellular auto-fluorescence GFP signal, was found
through parameter search as follows. To start with, two constraints for GFP,, were considered: first,
based on the regulatory interaction model, repression of the target gene expression can never reach
100% even though it can infinitely approach this level.

In other words, the GFP 4., cannot be set to be the same as the GFP signal from the wild type protein
at high expression. Second, GFP,,, should allow the calculated ratio of wild type [Cl{] between high
and low expression levels based on equation (29) f'ackers t0 agree with experimentally quantified ratio
(15:1, see protein quantification section, Figure S10). We performed the parameter search for GFP 0
that allowed the ratio of calculated wild type [Cl{] at two expression levels to be 15:1 based on the
model calculation as shown below:

[CIT,wt,High] — f/Ackers (GFPwt,High) - 15 (33)
[CIT,wt,Low] f,Ackers(GFPwt,Low )

GFP.u Was estimated to be 23.24AU (4.54AU in log2 scale) to meet the condition set by equation
(31).

Estimating the functional protein concentration for all variants

An estimate of wild type CI protein concentration [Clt ] in each of the two experiments can be
obtained by inputting GFPy igh and GFPy ow Values into f'aqers function. The same way, the total
protein concentration of a variant [Cly,] can be derived for each experiment with the ' ackers function.
Differences between [Cly,] and [Cl+,,] were assigned to differences in their functional protein fraction
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rather than changes in the total expressed protein amount. This is based on the assumption that the
mutations with one or two amino acid alterations affected GFP levels mostly through changing the
fractions of natively folded protein (fy).

In order to calculate the fraction of correctly folded protein for each variant (fy,), knowledge of the
total expressed protein concentration [Clg] for each experiment was needed. Based on the calculated
[Clt.w] at both low and high expression levels and the information that the fraction folded of the wild
type protein is 0.9913 (see the next section), the total expressed protein concentration in the cell can
be calculated by multiplying the concentration of functional wild type CI protein by 1/0.9913 (Table
S8).

The fraction of natively folded protein for a variant v (fy,) was calculated as the ratio of [Cl+,] (that is
calculated based on ' acers (GFPy) ) over total expressed CI [Clg] (as a parameter calculated based on
f ackers (GFPyy), Table S8 ):

_Clry] (34)
fuy = [CIg]

Thermodynamics of Cl folding model

ClI has been shown to follow a two-state model of protein folding(Huang and Oas, 1995) that can be
described with the following equation:

fn = frolding(AGR) = ——35 (35)
1+ e RT
With fy as the fraction of natively folded protein, AGg as the total free energy of the protein folding. R is
the gas constant (R = 1.98x10° kcal/M) and T is the absolute temperature of our experimental setting

(T=310.15 kelvin, 37°C).

Rewriting the equation (33), we obtain:

AGe = Fring(fv) = —R x Tl (1) (36)
The equilibrium between the concentration of unfolded and native CI protein follows the equation
below:

Cly s Cly (37)
Equation (35) is governed by an equilibrium constant Ks,q whose value is known to be 114 for the wild

type CI protein(Parsell and Sauer, 1989) :

[CIN] fN _ﬁ
= = = RT 38
Kfora O] 1-fy ¢ (38)

By solving equation (36) with Ksq= 114, we obtain the wild type CI fy = 0.9913 which was used to
calculate the total protein concentration in the cells (Table S8), as shown in the previous section.

The folding energy of a double missense mutation (AB) can be predicted by adding the folding
energies of the two single mutations (A and B) that together make the double mutation (AB).
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AGpaB predict = AGpa +AGpp — AGpt (39)

Combining thermodynamics of the Cl folding model with the regulatory interaction model of
CI-OR system

To predict GFP signal of a mutation A from AGg values of the mutation, the output of fiyging function
was added to fackers function:

GFPy = fackers (frolding(AGra) X [CIE]) (40)

f/Ackers (GFPA)) (41)

AGga = fro1as
FA folding < [CIE]

Comparing four different sub-models for the effects of mutations

To evaluate the importance of (a) protein folding and (b) Cl-concentration-dependent repression of
the target gene expression independently as well as in combination, we generated and compared four
models (Figures 3, S3). The four models are based on four different assumptions. The first model is
the log-additive model where changes in the target gene expression levels are simply additive in the
log scale (Figure S3C). The second model is the full model that incorporates the effects of mutations
both at the level of protein folding and at the level of regulatory interaction of CI-OR system on the
target gene expression (as shown in equations (37-39), Figures 3A, S3B,C). The third model is a
protein folding-only model that incorporates the thermodynamics of protein folding but not the
regulatory interaction model (it assumes a linear relationship between target gene expression and
functional CI concentration). Therefore, the protein folding energies are additive features of this model
(Figure S3B-D). The last model is the regulation-only model that incorporates the regulatory
interaction model but not the thermodynamics of protein folding (it assumes a linear relationship AGg
and fy). Therefore, the functional protein amount is the additive feature of this model (Figure S3
B,C,E).

Depending on the model evaluated, the functions linking the target gene GFP expression level to
[Cl4], or [Cl+] to AGE can be different. The details of each model are explained below.

1) Log-additive model

Consistent with extensively used null models where the effects of mutations are log-additive, this
model predicts the log GFP signal of a double mutation AB relative to the wild type to be the sum of
the log GFP signals of each of the two single mutations relative to the wild type:

]OgZ(GFPAB,predicted) - lng (GFPwt)
= (log2(GFPy) — log,(GFP,)) + (log, (GFPg) — log, (GFP,)) (42)

Therefore,

1085 (GFPap predicted) = 1082 (GFPy) + log, (GFPg) — log, (GFP,,) (43)

2) Full model
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To predict the GFP expression levels of a double mutation, we first estimated the AGk of the
corresponding single mutations using equation (39). The AGk ag of the double mutation was calculated
with equation (37) and then converted to an expected GFP signal using equation (38).

3) Folding-only model

This model assumes that the GFP expression levels are linearly responsive to the fraction of natively
folded protein fy. That is, this model replaces fackers With a linear transformation between GFP signal
and fy (Figure S3E). At the same time, this model includes the nonlinear relationship between fy and
AGgthat was introduced by the thermodynamics model of protein folding. Thus, for a mutation A, the
relationship between GFP signal and the fraction of folded protein fy was given by a modified version
Of fackers, Which we call frogers.

1082(GFPy ) = finoders (1082([Clral)) = @ + B x log,([Clra]) (44)

log,(GFPy) — «a

10g2([Clr.a1) = f'mode1s(log2(GFPy ) = 3 (45)
The output of fregeiz Can then be introduced into f't4ing (€quations 34 and 37).
fImodelB (GFPA)
=, [DeCeSr A7 4
AGF,A ffoldmg ( [CIE] ( 6)
GFP, = fmodel3(ffolding (AGF,A) X [CIE]) (47)

The a and B parameters from fogeis (€quation (42)) determine the linear relationship between the
functional repressor concentration and GFP expression levels (a is the intercept and B is the slope).
Also, the parameters [Clg ow] @and [Clg nign] (Table S8) were kept the same as in the other models.

Comparing the mutational effects at two expression levels based on equation (42), we obtain the
following equation:

Cly am;
1082 ([GFPA pign]1) — log2([GFPaow]) = B X logy <%) (48)

The ratio of [Cly »] at two expression levels was set as the constant 15 (as defined by wild type
protein, see the previous section). Equation (46) therefore can be re-written as follows:

log,(GFPanign ) = B X 10g2(15) + logz(GFPajow ) (49)

By substituting Bxlog,(15) with a coefficient C, we can rewrite equation (47) as follows:

1085 (GFPapigh ) = C+ logz(GFPsjow ) (50)

From equation (48), we can see that GFP signal at the two CI expression levels is linearly related with
the fixed slope of one in the log space. Parameter search was performed to find the coefficient C that
best described the observed relationships between GFP signals at low and high expression levels of

Cl. In detail, we firstly sampled a hundred log,(GFP, ) values ranging between 10g,(GFPy ow) = 7.23
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and log2(GFP...x) = 11.76. Then, a range of intercept C between -3.3 and -1.3 with the step of 0.03
was used to calculate the corresponding logz(GFPhign) for each logx(GFPw) (Figure S14B-D). The
value C =-2.07 was selected that resulted in the smallest sum of the squared distances from the
observed data points to the line defined by simulated relationship between GFP signals at two
expression levels (Figure S14C). Based on C=pxlog,(15), we further calculated B = -0.52.

The coefficient a was calculated by placing the values B and the wild type CI low expression data
[Clg ow] @and logx(GFPy 0w) to equation (42) and rewritten as below:

a = 1082(GFPytiow ) — B X logz(fuwr X [Clgjow ]) (51)

With 10g,(GFPyt10w ) = 7.23 as observed in the experiment, B = -0.52 as calculated above, and the
known parameters fyw = 0.9913 and [Clg 0] = 5.5x10®, we obtained a = -17.

To estimate the GFP signals of a double mutations with the folding-only model, we first estimated the
AGg » and AGe g of the corresponding single mutations using equation (44). Double mutants’ AGg ag
was calculated using equation (37). AGE ag of the double mutant was then converted to an expected
GFP signal using equation (45) (Figure S3B,C).

4) Regulation-only model

This model assumes that the fy of a protein is linearly related to its AGg. That is, this model replaces
frolding With a linear transformation between fy and AGg. At the same time, this model includes the
nonlinear relationship between fy and GFP expression levels from Ackers’ model.

Because of the assumed linear relationship between fy and AGg, the effects of mutations are additive
in fy space making friing UNNecessary in this model at all (Figure S3B,C). To estimate the GFP
expression levels of a double mutant with the regulation-only model, we first estimated the functional
protein concentration of the corresponding single mutants using f’ ackers (GFP). The expected functional
protein concentration of the double mutant was then given by the following equation.

[Clrag] = [Clpal+ [Clrg] — [Clrwe] (52)

The expected GFP signal for this double mutant was calculated using fackers ([Clt ag]), as shown in
equation (30) (Figure S3B, C).

Simulating mutational effects and genetic interactions based on the model

To test to which extent each model can explain 1) the double mutational effects given the single
mutational effects 2) the relationship between the mutational effects at the two protein concentrations
3) the pair-wise genetic interactions at both protein concentrations, we simulated mutational effects
and their interactions based on each model to compare with our data.

Simulating the mutational effects based on the model

We sampled 100 AGk values equally spaced between -3kcal/mol and 3kcal/mol, and estimated their
GFP signals at high and low CI concentrations using each of the four sub-models described above.

For a given model, plotting the GFP signals predicted for the high CI concentration case against the
GFP signals predicted for the low CI concentration case resulted in a curve (or a line) (Figure 3E).
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To test how well each model explained the observed protein concentration dependent mutational
effects, we used the Princurve package(Hastie and Stuetzle, 1989) in R to calculate the sum of
squared distance from the curve (SSDC) between every experimental data point and the line or curve
described by the model (Figure S14E).

To predict the AGE for a specific variant, we first projected each data point in the log GFP (high CI
concentration) vs. log GFP (low CI concentration) scatter plot to the nearest point in the model curve
(line, in the case of folding-only model) (Figure S14D, E). The projected GFP signal corresponds to a
single AGg of each variant based on the model. This correction allowed us to estimate a single AGr
using the GFP value for both the high and the low CI concentrations. Finally, this estimated AGr
(functional protein concentration [Cl+], in the case of regulation-only model) of a variant was used in
the following processes for predicting double mutational effects and to predict the epistasis patterns.

Comparing model predicted and observed double mutational effects

The percentage of variance explained (PVE) for the mean GFP expression levels of the double
mutation was calculated as follows:

SSres

PVE={(1—- ——) %100 (53)
SSTotal

Where SSis the residual sum of squares between the model-predicted versus the observed GFP

expression levels and SSy is the variance in the observed data.

Predicting pair-wise genetic interactions with each sub-model

Epistasis was defined as the difference between the GFP expression levels of a double mutant based
on the model (full model, folding-only model and regulation-only model) and the log-additive model
(equation (41)), as shown in the equation below (Figure 2F).

Epistasismodel i = 1082(GFPaR log—additive) — 1082( GFPAR Model i) (54)
For a given double mutant, we first predicted the AGg values (full model and the folding-only model) or
fy (regulation-only model) of the corresponding single mutants, as stated above. We then used each
model to convert the double mutant’s predicted AGk or fy value back into the GFP signal. This
predicted GFP signal was compared with the expected GFP signal based on the log-additive null
model (equation (41)). The genetic interaction patterns were further compared to the experimental
observation (Figures 3G, H, J, K and S4, S5).

The summary of the modelling mutational effects based on each model was illustrated as a cartoon in
the Figure S3A-C.

Toy models of three protein expression—fitness relationships

Three most common fitness-protein concentration relationships were modelled based on the fitness
effects of changes in protein concentrations in yeast (Keren et al., 2016).

Fitness increases with lower protein concentration:

[protein]

wr= (0.1 + [protein]) (55)

Fitness with optimal protein concentration:
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1.2 x[protein] y 1 56
®o = (0.1 + [protein]) © (1 + 0.1 x [protein]) (56)

Fitness decreases with higher protein concentration:

1
" 1+ 0.1 x [protein])

wp (57)

These functions were integrated into the full model (sub-model 2) in place of facers t0 build three new
models linking fitness to changes in protein folding energy AGg. Note that because foging Was left
untouched, all these three new models assumed a two-state protein folding kinetics as for CI protein.
Mutational effects and pairwise genetic interactions were analysed at two simulated protein
concentrations (high and low) based on these models. For both ‘Increasing’ and ‘Decreasing’ fithess
landscapes, the two wild type protein concentrations in each simulation were selected so that one wild
type protein concentration would be abundant enough to be robust to mutational effects and the other
one would be sensitive to the mutational effects. For the ‘Peaked fitness landscape’, the two protein
concentrations were selected so that the fitness effects would be the same but the protein expression
levels at ‘Low’ would be below the optimal protein concentration and at ‘High’ would be above the
optimal protein concentration.

We evaluated the effects of 50 mutations with AAG evenly spaced between -1kcal/mol and
+5kcal/mol in four different wild type proteins with different protein folding energies: (1) very stable
wild type protein (AGE .« = -3kcal/mol); (2) stable wild type protein (AGg . = -1.6kcal/mol); (3)
marginally stable wild type protein (AGgw = -1kcal/mol); (4) unstable wild type protein (AGg w =
Okcal/mol) (Figures 5A — H, S7). The effects on fitness of all the pairwise combinations of mutations
were also evaluated assuming that the effects of mutations are additive in AAGE space.

Epistasis was quantified as the difference between the “observed” double mutational effects
(calculated by adding the AAGE of the single mutations, as described above) with the expected effects
(calculated by adding up single mutational effects based on the log-additive null model):

Epistasis = Observedpiipess — Expectedpiiness (58)

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical details of experiments including the statistical test used, the exact number of the data
points, mean values, standard errors of the mean (SEM), and 95% confidence intervals, p-values can
be found in the figure legends and results. As described in the Data Analysis section of the STAR
Methods, data with low reproducibility from the three biological replicates (SEM>1 for the predicted
mean GFP) were excluded from subsequent analyses.

DATA AND SOFTWARE AVAILABILITY

Processed data used for the analysis is available as supplementary data file Data S1. Raw “lllumina
sequencing” data and the processed count data files that support the findings of this study have been
deposited in NCBI's Gene Expression Omnibus and are accessible through GEO Series accession
number GSE122806 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE122806) with reviewer
token szgxsmygbxylhaz. Scripts are available from GitHub (https://github.com/lehner-
lab/concentration_epistasis_ClI).

Supplemental tables


https://doi.org/10.1101/578419
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/578419; this version posted March 15, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

Tables S1 — S8. Related to STAR Methods.

Supplemental Information titles

Data S1. Processed final data table for all single and double amino acid mutations analyzed in this
study.
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