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Abstract	

The	 hippocampus	 uses	 pattern	 separation	 and	 pattern	 completion	 in	 a	 continuous	 manner	 to	
successfully	 encode	 and	 retrieve	memories1,2.	 However,	whether	 and	how	 cognitive	 factors	might	
modulate	 the	 dynamics	 between	 these	 types	 of	 computation	 is	 not	 well	 understood.	 Here	 we	
examine	 the	 role	 of	 expectation	 in	 shifting	 the	 hippocampus	 to	 perform	 pattern	 separation.	
Expectation	 can	 be	 built	 up	 through	multiple	 contextual	 exposures	 leading	 to	 prediction	 (as	 in	 a	
learnt	 contingency)	 or	 through	 logical	 deduction	 based	 on	 a	 previous	 mnemonic	 response.	
Participants	 first	 learned	 a	 contingency	 between	 a	 cue	 and	 an	 object’s	 category	 (man-made	 or	
natural).	 Then,	 at	 encoding,	 one	 third	 of	 the	 cues	 that	 preceded	 the	 to-be-memorised	 objects	
violated	the	studied	rule.	At	test,	participants	performed	an	old/new	recognition	task	with	old	items	
(targets)	 and	 a	 set	 of	 parametrically	 manipulated	 (very	 similar	 to	 dissimilar)	 new	 foils	 for	 each	
object.	We	explored	the	effects	of	both	contextual	expectation,	manipulated	at	initial	encoding,	and	
mnemonic-attribution	 expectation,	 driven	 by	 the	mnemonic	 decisions	 taken	 on	 previous	 retrieval	
trials.	 For	 example,	 a	 target	 would	 be	 unexpected	 if	 in	 a	 previous	 trial	 a	 similar	 foil	 had	 been	
erroneously	accepted	as	old.	Memory	was	found	to	be	better	for	foils	of	high	and	mid	similarity	to	
contextually	unexpected	targets	at	encoding,	compared	to	expected	ones.	Additionally,	violations	of	
mnemonic-attribution	 expectation	 also	 yielded	 improved	memory	 performance	when	 the	 level	 of	
foil	 similarity	 was	 high.	 These	 results	 suggest	 that	 violations	 of	 both	 contextual	 expectation	 and	
mnemonic-attribution	 expectation	 engage	 pattern	 separation,	 resulting	 in	 better	 discrimination	
performance	for	these	items.	Importantly,	this	mechanism	is	engaged	when	input	differentiation	is	
required	in	order	to	make	a	correct	recognition	decision.	

Introduction	

Memory	is	a	dynamic	process;	the	information	we	encounter,	as	well	as	our	internal	state,	can	affect	
how	we	 remember.	 This	 intrinsic	 characteristic	makes	 episodic	memory	 a	 key	 aspect	 of	 adaptive	
behaviour.	Whether	a	given	event	or	 item	will	be	successfully	encoded	and	subsequently	retrieved	
from	memory	will	depend	on	multiple	contributing	factors,	ranging	from	the	outputs	of	lower-level	
biological	 computations	 to	 the	 products	 of	 complex	 higher-level	 cognitive	 processes.	 Memory	
experiences	 can	 change	 dynamically,	 depending	 on	what	we	 expect	 to	 encounter	 in	 everyday	 life	
and	on	its	mnemonic	attribution.		For	example,	an	unexpected	sequence	of	events	might	make	your	
commute	to	work	today	stand	out	from	previous	ones.	Critically,	what	we	expect	to	encounter	may	
be	 driven	 by	 external	 cues	 (e.g.	 the	 contextual	 setting)	 but	 it	 can	 also	 be	 driven	 by	 internally	
generated	cues	(i.e.	spontaneous	recall	of	a	previous	memory	experience).	Whilst	there	is	evidence	
for	 the	effect	of	 the	 former	on	memory	performance,	 the	 latter	has	 received	 little	attention.	Two	
questions	 therefore	 arise;	 what	 underlying	 memory	 mechanism	 renders	 unexpected	 encounters	
more	 recallable?	 And,	 can	 this	 mechanism	 be	 triggered	 by	 both	 externally-	 and	 internally-cued	
expectation?	To	answer	 these	questions,	we	employ	a	novel	approach	to	elicit	both	an	externally-
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driven	 explicit	 rule-based	 expectation	 and	 an	 internally-driven	 dynamic	 mnemonic-attribution	
expectation.	 We	 examine	 whether	 they	 both	 engage	 a	 fundamental	 computation	 underlying	
memory;	that	of	pattern	separation.				

As	we	constantly	encode	and	retrieve	information	from	memory,	it	is	easy	to	overlook	the	potential	
complexity	 of	 the	 mechanisms	 supporting	 these	 processes.	 Perhaps	 the	 most	 computationally-
demanding	 task	 is	 to	 separate	memories	 of	 similar	 events.	 Consider	 trying	 to	 remember	whether	
you	have	locked	your	door	today.	You	probably	have	multiple	experiences	of	locking	your	door,	and	
therefore	would	need	a	distinct	way	 to	 represent	 today	 as	 opposed	 to	 any	other	day.	 To	 achieve	
this,	 the	 hippocampus	 performs	 constant	 comparisons	 between	 existing	 and	 new	 information,	
resulting	in	pattern	separation	(PS);	encoding	the	current	input	as	separate	and	distinct	from	existing	
memories,	and	pattern	completion	(PC);	retrieving	a	complete	memory	representation	from	a	partial	
cue1,3.	 These	 computations	 are	 complementary4	 and	 believed	 to	 occur	 incessantly5–7	 to	 support	
episodic	memory.	 If	 you	have	successfully	pattern-separated	 locking	your	door	 today,	 it	 should	be	
easy	 to	 retrieve	 this	 memory	 accurately.	 However,	 similar	 memories	 often	 interfere,	 leading	 to	
erroneous	 pattern	 completion	 to	 another	 stored	 memory.	 Pattern	 separating	 an	 episode	 is	 thus	
essential	 to	 being	 able	 to	 later	 successfully	 pattern	 complete	 (recall)	 it.	 Therefore,	 identifying	
external	 or	 internal	 cognitive	 factors	 that	 facilitate	 a	 shift	 towards	 PS	 could	 improve	 our	
understanding	of	what	makes	some	memories	more	readily	recallable	than	others.			

Whilst	dynamic	shifts	between	PS	and	PC	have	been	discussed	extensively2,3,5,7,	the	possibility	of	top-
down	 cognitive	 processes	 tilting	 the	 scale	 towards	 PS	 or	 PC	 has	 not	 been	 well	 studied.	 Such	 a	
modulator	would	need	to	compute	discrepancies	between	current	input	and	stored	information,	to	
capture	 mismatches	 or	 update	 the	 predictive	 value	 of	 existing	 representations8.	 One	 cognitive	
process	 that	 performs	 such	 comparisons	 is	 expectation.	 Indeed,	 top-down	 expectation	 plays	 a	
significant	role	 in	guiding	adaptive	behaviour9–12.	Recently,	there	has	been	growing	 interest	 in	how	
expectation	 drives	 memory	 processes13–15.	 Consequently,	 the	 advantageous	 effect	 of	 contextual	
surprise	 on	 memory	 has	 been	 observed	 in	 numerous	 studies16–18.	 The	 hippocampus,	 perhaps	
through	interaction	with	the	dopaminergic	system19–22,	is	believed	to	support	this	effect	by	engaging	
an	 encoding	 state,	 leading	 to	 improved	memory	 performance21,23–25.	 Findings	 from	animal	models	
provide	 some	 support	 for	 this	 claim,	 showing	 context-sensitive	 shifts	 between	 PS	 and	 PC26,27.	
However,	 evidence	 to	 date	 has	 failed	 to	 demonstrate	 the	 relationship	 between	 contextual	
expectation	 and	 pattern	 separation/completion	 markers	 in	 humans.	 To	 shed	 light	 on	 this	
relationship,	comparison	is	needed	between	expected	and	unexpected	items	in	tasks	where	memory	
performance	is	dependent	on	successful	pattern	separation.		

Given	that	PS	entails	disambiguating	similar	inputs,	whereas	PC	results	in	integrating	across	inputs,	a	
common	approach	to	probe	them	is	using	perceptually	similar	foils28–31.	In	such	tasks,	‘old’	responses	
to	 foils	 (false	 alarms)	 can	 be	 interpreted	 as	 a	 result	 of	 erroneously	 pattern	 completing	 to	 target,	
whereas	 ‘new’	 responses	 to	 foils	 (correct	 rejections)	 capture	pattern	 separation,	distinct	 from	 the	
target.	 As	 similarity	 increases	 between	 target	 and	 foils,	 discrimination	 becomes	 more	 difficult,	
therefore	 requiring	 pattern	 separation.	 If	 a	 violation	 of	 expectation	 triggers	 a	 shift	 towards	 a	 PS	
encoding	state,	 items	from	sets	whose	target	was	unexpected	would	be	more	easily	discriminated	
than	 those	 from	expected	 sets,	 of	 the	 same	 similarity	 level.	 Alternatively,	 if	 expectation	 does	 not	
modulate	memory,	performance	should	reflect	solely	the	degree	of	similarity.	Using	a	discrimination	
task	 also	 allows	 us	 to	 directly	 test	 whether	 the	 beneficial	 effect	 of	 surprise	 selectively	 targets	 a	
pattern	 separation	mechanism	or	provides	a	more	general	memory	boost.	 If	 the	 latter	 is	 true,	we	
should	 observe	 more	 hits	 as	 well	 as	 more	 correct	 rejections	 of	 all	 unexpected	 items	 (a	 global	
enhancement	 effect).	 On	 the	 other	 hand,	 an	 effect	 that	 is	 selective	 to	 correct	 rejections	 of	
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unexpected	 similar	 foils	 would	 suggest	 violations	 of	 expectation	 trigger	 a	 shift	 towards	 PS.	 This	
mechanism	would	only	be	observed	when	input	differentiation	is	essential	to	task	performance.	

Despite	 the	 fact	 that	expectation	can	be	elicited	and	violated	 in	different	ways,	 to	 the	best	of	our	
knowledge,	research	to	date	has	only	focused	on	external	(contextual)	expectation16–18	and	has	not	
distinguished	between	different	sources	of	expectation.	However,	employing	a	behavioural	pattern	
separation	task,	with	several	 foils	of	different	 levels	of	similarity	 to	each	target,	also	enables	us	 to	
explore	mnemonic-attribution	expectation.	This	expectation,	which	we	believe	to	be	predominantly	
implicit,	 is	 driven	by	 the	mnemonic	 status	 attributed	 to	 existing	memorial	 representations.	Unlike	
explicit	expectation,	which	can	be	prompted	using	a	learned	contingency12	and	requires	an	external	
contextual	 cue,	mnemonic-attribution	 expectation	 is	 elicited	 internally	 and	 therefore	may	 be	 less	
likely	to	require	conscious	processing.	In	everyday	life	we	do	not	normally	explicitly	label	information	
as	old	or	new,	as	we	would	in	a	lab-based	task.	Nevertheless,	given	the	dynamic	nature	of	memory,	
these	 processes	 still	 take	 place,	 implicitly,	 as	 one	 stimulus	 representation	 can	 evoke	 a	 memory	
representation	 of	 a	 previous	 stimulus.	 Such	 ‘automatic	 memory	 recording’32	 has	 been	 used	 to	
explain	binding	of	items	to	context,	which	forms	the	basis	for	the	contextual	expectation,	introduced	
above.	 Here,	 we	 extend	 this	 notion	 to	 include	 not	 only	 the	 item	 itself,	 but	 also	 its	 attributed	
mnemonic	 status.	Therefore,	mnemonic-attribution	expectation	would	encompass	 the	conjunction	
between	a	sequence	of	 items	at	retrieval,	and	their	mnemonic	representation	(whether	they	were	
previously	judged	as	old	or	new).		

In	 the	current	study,	 therefore,	we	refer	 to	mnemonic-attribution	expectation	as	 that	arising	 from	
previous	mnemonic	responses	to	similar	items	presented	within	the	retrieval	phase.	For	example,	a	
foil	prompting	an	 ‘old’	 response	 (false	alarm)	would	make	a	subsequent	 target	unexpected,	as	 the	
target	had	already	been	 identified	(albeit	erroneously).	Mnemonic-attribution	expectation	requires	
reinstatement	of	the	decision	made	in	an	earlier	trial,	which	can	then	be	used	to	guide	the	current	
memory	 judgment31.	 It	 is	 therefore	more	 dynamic,	 and	 dependent	 on	 the	 continuous	 retrieval	 of	
previous	mnemonic	decisions,	 rather	 than	on	a	single	pre-defined	context.	 It	 thus	 follows	that	 the	
choice	of	retrieval	task	in	this	case	is	crucial;	a	continuous	old/new	(yes/no)	recognition	task	is	best	
suited	to	examine	such	effects	as	it	allows	independent	mnemonic	decision	for	each	stimulus33	(i.e.	
no	restriction	on	‘old’	responses	for	stimuli	from	the	same	set).	If	a	previous	mnemonic	decision	has	
elicited	an	expectation	 (which	can	be	met	or	violated	during	 the	current	 trial),	we	should	observe	
differences	in	memory	performance	depending	on	whether	correct	or	incorrect	previous	responses	
were	made.	 By	 combining	mnemonic-attribution	 expectations	 and	 contextual	 expectations	 in	 one	
study,	we	 can	 explore,	more	 fully,	 the	 extent	 to	which	 different	 sources	 of	 expectation	modulate	
memory,	while	shedding	light	on	the	nature	of	any	underlying	mechanisms.	

Here	 we	 developed	 a	 novel	 behavioural	 approach	 that	 allows	 us	 to	 test	 whether	 the	 beneficial	
influence	of	expectation	on	memory	is	driven	by	a	shift	towards	PS,	and	to	explore	the	specificity	of	
this	 memory-enhancement	 mechanism.	 To	 elicit	 contextual	 expectation,	 we	 employed	 a	 rule-
learning	task	where	participants	learned	an	association	between	a	cue	and	a	category	(man-made	or	
natural).	In	each	trial,	participants	were	presented	with	a	cue	for	1s	and	asked	to	guess	the	following	
item’s	category.	They	then	received	feedback	about	their	decision	and	were	 instructed	to	use	 it	to	
learn	 the	 contingency	 between	 the	 cue	 and	 category.	 In	 two	 encoding	 runs,	 participants	 were	
presented	with	 the	 same	 set	 of	 cues,	 followed	by	 an	object	 to	 encode.	 In	 the	 first	 round	all	 cues	
were	 rule-abiding,	 however,	 in	 the	 second	 round,	 some	 of	 the	 cues	 were	 incongruent	 with	 the	
subsequent	 stimulus,	 resulting	 in	 unexpected	 encoding	 trials.	 At	 retrieval,	 we	 employed	 foils	 of	
parametrically-manipulated	 similarity	 (high	 similarity	 F1,	mid	 similarity	 F2,	 low	 similarity	 F3,	 using	
stimuli	and	dissimilarity	indices	provided	by	SOLID34).	Targets	and	their	three	associated	foils	formed	
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sets;	 the	 old/new	 recognition	 task	 allowed	 the	modulation	 of	 mnemonic-attribution	 expectation,	
elicited	by	decisions	made	on	previous	presentations	of	items	from	the	same	set.	This	paradigm	(see	
Figure	 1A-C)	 allowed	 us	 to	 address	 two	 questions;	 first,	 does	 expectation	 affect	 memory	
performance	by	modulating	 shifts	 between	pattern	 separation	and	pattern	 completion?	 Secondly,	
are	 expectation	 effects	 specific	 to	 contextual	 expectations,	 or	 can	 they	 also	 be	 driven	 by	 a	more	
dynamic	 phenomenon	 involving	 the	 comparison	 between	 previous	 mnemonic	 decisions	
(experiences)	and	current	inputs	(i.e.,	mnemonic-attribution	context)?	We	hypothesised	that	similar	
discrimination	 performance	 would	 be	 observed	 for	 both	 contextual	 and	 mnemonic-attribution	
expectations.	 Specifically,	 we	 predicted	 that	 unexpected	 items	 would	 benefit	 from	 enhanced	
discrimination	performance	compared	to	expected	ones,	driven	by	a	shift	towards	PS.			

Results	

Rule-learning	 performance.	 To	 ensure	 contextual	 expectations	 were	 established,	 we	 examined	
participants’	memory	performance	following	the	second	half	of	the	rule-learning	task	(Figure	1D-E).	
Average	performance,	excluding	 two	participants	who	did	not	 reach	criterion	 (75%	accuracy),	was	
91.6%	(SD	=	6.5%),	significantly	above	chance	(t(25)	=	32.77,	p	<	0.001,	Cohen’s	d	=	6.42).	Next,	we	
examined	reaction	times	for	the	predictions,	within	the	1s	decision	window.	There	was	no	significant	
difference	in	mean	reaction	time	between	the	first	and	second	halves	of	the	task	(t(25)	=	0.001,	p	=	
0.999).		

Figure	1	|	Experimental	design	and	rule	learning	task	results	A)	In	the	rule-learning	task	participants	learned	a	
contingency	 between	 a	 cue	 and	 an	 object’s	 category,	 man-made	 or	 natural.	 B)	 During	 the	 first	 round	 of	
encoding,	participants	were	presented	with	the	same	cues	(all	rule-abiding)	and	had	to	indicate	whether	the	
object	was	man-made	or	natural.	In	the	second	round,	participants	are	asked	to	study	the	item	carefully	and	
1/3	of	the	cues	are	misleading	(unexpected).	C)	 In	the	final	retrieval	task	old	 items	(targets)	and	new	similar	
foils	are	presented,	and	participants	are	asked	to	respond	whether	the	item	is	old	or	new.	D)	Accuracy	in	rule	
learning	task	as	a	factor	of	task	progression.	Participants	learned	the	cue-category	contingency	well	and	their	
accuracy	was	above	chance	from	the	second	half	of	the	task.	E)	Reaction	time	(RT)	was	restricted	to	1s,	so	no	
differences	 in	 mean	 RT	 were	 observed,	 but	 there	 was	 a	 reduction	 in	 variance	 as	 the	 task	 progressed	 and	
participants	learned	the	contingency.	Unless	otherwise	stated,	error	bars	in	all	figures	reflect	standard	error;	*	
p	≤	0.05,	**	p	≤	0.01,	***	p	≤	0.001.	
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Recognition	memory	performance.	To	quantify	the	probability	of	giving	a	correct	response	on	each	
retrieval	 trial	 we	 used	mixed-effects	 logistic	 regression	modelling.	 This	 allowed	 us	 to	 capture	 the	
influence	 on	 memory,	 of	 the	 contextual	 expectation	 set	 at	 encoding,	 as	 well	 as	 the	 expectation	
driven	by	previous	mnemonic	decisions	for	objects	from	the	same	set,	and	the	distance	(number	of	
intervening	trials)	between	previous	and	current	trials.		

As	 contextual	 expectations	 were	 manipulated	 at	 encoding,	 we	 can	 look	 at	 the	 first	 retrieval	
presentation	of	an	item	to	examine	contextual	expectation	effects	without	any	interference	driven	

by	 mnemonic-attribution	 expectation	 (Figure	 2).	 There	 were	 more	 correct	 rejections	 of	 high	
similarity	foils	(F1s)	of	unexpected	targets,	compared	to	expected	ones	(β	=	0.466,	z	=	2.4,	p	=	0.016).	
Mid-similarity	 foils	 (F2s)	 showed	 a	 similar	 trend,	 with	 more	 correct	 rejections	 for	 unexpected	 F2	
from	sets	whose	 target	was	unexpected	at	encoding	 (β	=	0.405,	 z	 =	1.92,	p	=	0.054).	 Targets	 (β	=	
0.181,	SE	=	0.339,	z	=	0.523,	p	=	0.592)	and	low	similarity	foils	(F3s)	(β	=	-0.118,	z	=	-0.533,	p	=	0.594)	
did	not	show	any	contextual	expectation	effects.	These	results	therefore	show	a	selective	increase	in	
the	correct	rejection	of	foils	similar	to	contextually	unexpected	targets.	

Figure	2	|	Contextual	expectation.	Contextually	unexpected	high	(F1)	and	mid	(F2;	p	=	0.054)	similarity	 foils	
were	correctly	rejected	(CR1,	CR2)	more	than	expected	ones.	No	differences	were	observed	for	low	similarity	
foils	(F3)	or	targets.	

Next,	we	sought	 to	explore	how	mnemonic-attribution	expectation	affected	memory	performance	
and	whether	it	interacted	with	contextual	expectation.	To	achieve	this,	we	extracted	items	that	were	
presented	later	 in	the	set	position	at	retrieval,	after	all	other	 items	from	the	same	set	had	already	
been	presented	and	attributed	a	mnemonic	decision.	For	clarity,	we	report	here	the	results	for	the	
last	items	(4th	position	in	the	set),	similar	results	were	obtained	using	unique	models	for	each	of	the	
preceding	 items	 (see	 Supplementary	 Materials).	 When	 targets	 were	 presented	 last	 in	 the	 set	
sequence	(Figure	3),	we	observed	more	hits	following	a	false	alarm	response	to	F1	(β	=	-1.44,	z	=	-
3.38,	p	<	0.001)	and	F3	items	(β	=	-0.752,	z	=	-2.27,	p	=	0.023),	compared	to	correct	rejections.	This	
shows	that	erroneous	mnemonic	attribution	of	previous	F1	and	F3	items	as	old	was	associated	with	
more	hits	for	following	targets.	No	difference	between	F2	responses	was	observed	(β	=	-0.272,	z	=	-
1.14,	p	=	0.255).	There	was	also	a	significant	interaction	between	F1	response	and	distance	between	
target	and	F1	(β	=	2.04,	z	=	2.28,	p	=	0.022),	showing	there	were	more	hits	for	targets	following	false	
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alarms	 of	 high	 similarity	 foils	 (FA1),	 compared	 to	 CR1,	 when	 targets	 and	 F1	 were	 closer	 in	 the	
retrieval	phase.				

Figure	3	 |	Predicting	hits.	A)	 There	were	more	hits	 for	 targets	 following	 false	 alarms	of	high	 similarity	 foils	
(FA1),	especially	 if	 they	were	closer	 in	time.	B)	More	target	hits	were	observed	following	 low	similarity	 false	
alarms	(FA3).	Target’s	contextual	expectation	(set	during	encoding)	and	F2	response	did	not	affect	hits.				

Next,	we	examined	F1	trials	that	were	presented	last	to	evaluate	the	expectation	effect,	elicited	by	
mnemonic	attributions	of	previous	 items	 from	the	same	set,	at	 retrieval	 (Figure	4a).	We	observed	
more	correct	rejections	following	missed	targets	than	following	hits	(β	=	-1.02,	z	=	-3.79,	p	<	0.001),	
indicating	 a	 mnemonic-attribution	 expectation	 effect	 of	 previously	 missed	 targets	 on	 correct	
rejections	of	current	F1	items,	rendering	them	unexpected.	Higher	levels	of	CR1	were	also	observed	
following	previous	correct	rejections	of	F2	(β	=	0.814,	z	=	3.89,	p	<	0.001)	and	F3	(β	=	0.774,	z	=	3.15,	
p	=	0.002),	compared	to	false	alarms.	Including	distances	between	F1	and	any	of	the	previous	items	
from	 the	 same	 set	 did	 not	 significantly	 improve	 the	 model	 (χ²	 (3)	 =	 0.255,	 p	 =	 0.968).	 Correct	
rejections	of	last	F2	items	(Figure	4b)	were	boosted	when	they	were	preceded	by	correct	rejections	
of	F1	(β	=	0.544,	z	=	2.3,	p	=	0.021)	and	F3	(β	=	0.799,	z	=	2.86,	p	=	0.004),	compared	to	false	alarms.	
The	effects	 of	 contextual	 expectation	 (β	 =	 0.103,	 z	 =	 0.429,	 p	 =	 0.668)	 and	 target	 response	 (β	 =	 -
0.199,	z	=	-0.648,	p	=	0.517)	were	not	significant.	 Including	distances	between	F2	and	the	previous	
items	 did	 not	 significantly	 improve	 the	 model	 (χ²	 (3)	 =	 2.11,	 p	 =	 0.549).	 Finally,	 when	 F3	 was	
presented	 last	 (Figure	 4c),	we	 observed	more	 correct	 rejections	when	 it	was	 preceded	by	 correct	
rejections	of	F2	compared	to	false	alarms	(β	=	1.21,	z	=	3.49,	p	<	0.001).	There	were	no	significant	
effects	of	contextual	expectation	(β	=	-0.268,	z	=	-0.774,	p	=	0.439),	target	(β	=	0.122,	z	=	0.274,	p	=	
0.784),	or	F1	responses	(β	=	-0.02,	z	=	-0.057,	p	=	0.954).	Including	distances	in	retrieval	trials	from	
previous	items	did	not	improve	model	fit	(χ²	(3)	=	5.6	p	=	0.132).	
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Figure	4	|	Predicting	correct	rejections.	A)	More	correct	rejections	of	high	similarity	foils	(CR1)	were	observed	
when	they	were	preceded	by	CR	of	other	foils	(CR2,	CR3),	and	by	missed	targets.	B)	More	correct	rejections	of	
mid	similarity	foils	(CR2)	were	observed	when	they	followed	correct	rejections	of	other	foils	(CR1,	CR3).	C)	Low	
similarity	foils	had	more	correct	rejections	(CR3)	when	they	were	preceded	by	CR2.	

Discussion	

This	 set	of	 results	offers	 the	 first	direct	evidence	 for	 the	 role	of	expectation	 in	engaging	a	pattern	
separation	mechanism.	We	 found	 the	 contextual	manipulation	 exerted	 an	 effect	 only	 on	 the	 first	
item	presented	within	a	set,	when	there	was	no	mnemonic-attribution	expectation.	High	and	mid-
similarity	foils	from	sets	whose	target	was	unexpected	at	encoding	produced	more	correct	rejections	
at	 retrieval,	 compared	 to	 foils	 whose	 target	 was	 expected	 at	 encoding.	 Targets,	 as	 well	 as	 low	
similarity	foils,	were	unaffected	by	this	manipulation.	As	the	retrieval	task	progressed,	the	effect	of	
contextual	expectation	diminished	and	was	replaced	by	the	more-immediate	mnemonic-attribution	
expectation.	 By	 examining	 the	 last	 items	 presented	within	 a	 set	 at	 retrieval,	 we	 found	 hits	 were	
more	likely	following	FA1	and	FA3.	A	complementary	effect	was	observed	for	CR1,	with	more	correct	
rejections	 following	misses,	 compared	 to	 hits.	 Finally,	 across	 similarity	 levels,	 the	 level	 of	 correct	
rejections	of	previous	foils	was	associated	with	better	discrimination	performance	(correct	rejection	
of	current	foil).	Overall,	our	results	suggest	expectations,	both	contextual	and	mnemonic-attribution,	
engage	 the	 hippocampal	 system	 and	 support	 memory	 performance	 by	 employing	 PS	 to	
disambiguate	 highly	 similar	 items.	 Such	 a	 mechanism	 could	 support	 adaptive	 memory,	 making	
unexpected	information	more	memorable.		

An	 abundance	 of	 literature	 has	 addressed	 hippocampal	 shifts	 between	 PS	 and	 PC,	 mostly	 in	
rodents26,27,	and	as	a	possible	 factor	contributing	 to	deteriorating	memory	 in	ageing35,36.	However,	
the	contribution	 (if	any)	of	 top-down	cognitive	 factors	 to	 these	shifts	has	 remained	unclear.	 If	 the	
balance	between	PS	and	PC	was	controlled	merely	by	bottom-up	information,	based	on	a	raw	input	
similarity	function,	we	would	not	expect	a	cognitive	manipulation	to	make	any	difference.	 Instead,	
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here	we	show	top-down	expectations,	both	contextual	and	mnemonic-attribution	expectations,	play	
a	 role	 in	 engaging	 PS.	 Unexpected	 similar	 items	 were	more	 accurately	 recognised	 than	 expected	
ones,	whereas	 there	was	no	expectation-driven	difference	 in	memory	performance	 for	 items	of	 a	
lower	similarity.	It	is	important	to	note	that	although	we	did	not	record	neural	activity	in	this	study,	
our	 experimental	 design	 explicitly	 taps	 behavioural	 markers	 of	 pattern	 separation28–31,	 which	
supports	recall	and	is	heavily	dependent	on	hippocampal	function4.	

Previous	 studies	 have	 shown	 that	 contextual	 expectation	 plays	 an	 important	 role	 in	 modulating	
hippocampal	involvement	and	behavioural	memory	responses13,18,22,23.	However,	the	extent	of	these	
effects,	 and	 the	 underlying	 mechanism	 supporting	 them,	 remained	 unclear.	 Here	 we	 show	
contextual	 surprise	 does	 not	 enhance	 memory	 unequivocally,	 but	 specifically	 aids	 the	
disambiguation	of	overlapping	inputs.	This	suggests	that	the	beneficial	effect	of	surprise	stems	from	
enhanced	 PS	 rather	 than	 a	 more	 general	 memory	 boost,	 which	 could	 be	 mediated	 by	 an	 extra-
hippocampal	 circuit.	 We	 found	 that	 violations	 of	 expectation	 at	 encoding	 support	 the	 ability	 to	
correctly	 identify	 similar	 foils	 as	 such.	 Additionally,	 we	 did	 not	 observe	 any	 beneficial	 effect	 of	
contextual	 expectations	 on	 hits	 or	 correct	 rejections	 of	 low-similarity	 foils.	 Taken	 together,	 these	
results	strongly	suggest	that	a	modulating	mechanism	is	employed	when	unexpected	events	occur,	
leading	 to	 a	 shift	 towards	 pattern	 separation	 of	 the	 surprising	 information.	 Importantly,	 the	
behavioural	output	of	such	a	mechanism	depends	on	the	amount	of	overlap	between	existing	and	
new	inputs.	In	cases	of	full	input-test	overlap	(targets)	and	low	overlap	(low	similarity	foils),	pattern	
separation	 is	 redundant	 in	 supporting	memory	 performance,	 therefore	 even	 if	 the	 shift	 occurs,	 it	
would	 not	 be	 reflected	 in	 the	 memory	 response.	 Our	 results	 are	 consistent	 with	 previous	
computational	work4	showing	hippocampal	PS	peaks	at	high	(but	not	full)	input	similarity	level,	and	
gradually	decreases	as	similarity	levels	advance	towards	either	end	of	the	scale	(see	Figure	5).		

	

Figure	5	|	Conceptual	Illustration.	A)	Contextual	expectation	generated	at	encoding.	Each	encoding	trial	was	
associated	with	a	cue	from	the	rule	learning	task.	An	item	is	unexpected	(u)	when	there	is	a	mismatch	between	
cue	and	the	item’s	category	and	expected	(e)	when	there	is	no	mismatch.	At	retrieval,	the	independent	effect	
of	 this	 expectation	 can	 be	 examined	 in	 the	 first	 presentation	 of	 items	 from	 unique	 sets.	 Different	 sets	 are	
represented	by	different	 colours.	B)	Mnemonic-attribution	expectation	generated	at	 retrieval.	 The	 response	
given	to	each	item	is	in	superscript,	arrows	reflect	the	mnemonic-attribution	expectation	within	a	set.	When	a	
previous	 response	was	 incorrect	 (e.g.	miss)	 the	 following	 presentation	 of	 a	 similar	 item	 from	 the	 same	 set	
prompts	 violation	of	 the	mnemonic-attribution	 expectation	 and	 a	 subsequent	 correct	 response	 (e.g.	 CR).	 C)	
Illustration	of	the	memory	effects.	When	input	similarity	between	encoding	and	retrieval	 is	very	 low	(target-
F3)	or	very	high	(target-target),	violation	of	expectation	does	not	exert	an	effect	on	memory.	When	similarity	is	
sufficiently	 high	 (e.g.	 target-F1),	 violation	of	 both	 contextual	 and	mnemonic-attribution	expectations	boosts	
memory	performance.	
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A	 PS-dependent	 effect	was	 also	 observed	 for	mnemonic-attribution	 expectation.	 This	 expectation	
was	elicited	dynamically	during	retrieval	and	changed	according	to	participants’	mnemonic	decision	
on	 previous	 trials.	 Here,	 if	 a	 previous	 foil	 elicited	 an	 ‘old’	 response	 (erroneously	 identified	 as	 a	
target),	the	subsequent	presentation	of	the	target	from	the	same	set	would	be	unexpected.	Indeed,	
we	 found	 in	 trials	 like	 this,	 unexpected	 items	were	 associated	with	 better	memory	 performance.	
Importantly,	 this	was	only	true	for	 targets	and	high	similarity	 foils,	whereas	mid	and	 low	similarity	
foils	were	unaffected.	These	 results	 suggest	 that	 the	continuous	comparison	between	current	and	
previous	inputs	elicits	a	similar	effect	to	that	of	contextual	expectation,	supported	by	increased	PS	of	
unexpected	items.	While	the	notion	that	memory	is	altered	by	information	presented	at	retrieval,	is	
not	 a	 new	one37,	 it	 has	 been	discussed	predominantly	 in	 relation	 to	 the	presentation	of	 semantic	
features	 or	 external	 associative	 cues	 as	modulating	 factors38.	 Here,	 we	 show	 that	 the	mnemonic	
attribution	of	previous	items	(hit,	miss,	CR	or	FA)	also	plays	an	important	role	in	modifying	memory	
performance.	The	mnemonic-attribution	expectation	demonstrated	here	reflects	the	continuous	re-
encoding	 of	 test	 items	 based	 on	 the	 mnemonic	 decision	 their	 set	 members	 previously	 elicited,	
combined	with	their	perceptual	similarity.	This	finding	pertains	to	the	dynamic	nature	of	expectation	
and	its	resulting	influence	on	memory	decisions.		

Despite	the	fact	that	our	recognition	task	encouraged	an	independent	mnemonic	decision	on	each	
retrieval	trial,	we	found	that	previous	decisions	modulated	current	ones,	dependent	on	the	level	of	
perceptual	similarity	between	the	items.	We	interpret	this	finding	as	a	demonstration	of	an	implicit	
form	of	expectation	that	tracks	not	only	the	dynamic	sequence	of	stimuli	presented,	but	also	their	
mnemonic	 attribution.	 An	 alternative	 account	 could	 be	 related	 to	 online	 error	 awareness;	 for	
instance,	 if	 a	 target	 is	missed	and	 the	participant	 realised	 their	 recognition	decision	was	wrong	 in	
real	time,	we	would	predict	all	following	foils	to	be	correctly	rejected.	However,	our	results	show	a	
specific	effect	of	subsequent	correct	rejections	of	F1,	but	not	F2	and	F3	(see	Supplementary	Figure	1	
as	well).	This	pattern	also	negates	the	possibility	that	memory	performance	for	items	from	the	same	
set	could	be	driven	by	enhanced	encoding	of	the	target,	in	which	case	we	would	predict	equivalent	
response	 accuracy	 across	 items.	 Instead,	 these	 findings	 provide	 novel	 evidence	 for	 the	 important	
contribution	 that	 implicit	mnemonic	 processes	 play	 in	 other	 areas	 of	 cognition,	 such	 as	 decision-
making39.	 They	 could	 help	 elucidate	 how	 previous	 experience,	 and	 its	 memorial	 representation	
(including	 its	mnemonic	attribution),	 implicitly	affects	external	markers	such	as	explicit	choices.	To	
this	end,	future	research	would	also	benefit	from	examining	how	mnemonic-attribution	expectation	
is	manifested	over	a	longer	time	scale	(e.g.	over	days).	

Although	our	results	indicate	that	contextual	and	mnemonic-attribution	expectations	show	a	similar	
effect,	possibly	supported	by	a	common	computation	of	expected	vs.	received	input8,18,19,	we	did	not	
observe	an	interaction	between	the	two	types	of	expectation.	Given	that	contextual	expectation	was	
manipulated	only	 at	 encoding,	whereas	mnemonic-attribution	expectation	dynamically	 changes	 at	
retrieval,	 this	 is	 not	 surprising.	 Nevertheless,	 the	 lack	 of	 interaction	 does	 offer	 insight	 into	 the	
sensitivity	 of	 expectation	 effects	 on	 memory	 performance.	 In	 the	 current	 study,	 mnemonic-
attribution	 expectation	 was	 object-specific,	 whereas	 contextual	 expectations	 were	 binary,	
depending	 on	 the	 item’s	 category	 (man-made	 or	 natural).	 A	 recent	 study25	 showed	 increased	
hippocampal	 mismatch	 signals	 with	 increased	 prediction	 strength,	 and	 prediction-outcome	
similarity.	Therefore,	the	stronger	effect	exerted	by	mnemonic-attribution	expectation	in	our	study	
could	be	explained	by	the	higher	degree	of	similarity	between	outcome	and	prediction,	with	object-
dependent	predictions	being	more	specific	(and	thus	more	similar)	than	category-dependent	ones.		

In	 conclusion,	 we	 provide	 the	 first	 evidence	 for	 the	 modulating	 role	 of	 expectations	 on	 the	
behavioural	marker	 of	 hippocampal	 pattern	 separation.	We	 introduce	 the	 concept	 of	mnemonic-
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attribution	 expectation,	 and	 show	 that	 violations	 of	 both	 this	 form	of	 expectation	 and	 contextual	
expectation	 result	 in	 enhanced	 memory	 discrimination	 performance,	 supported	 by	 pattern	
separation.	The	specificity	of	this	effect	to	highly	overlapping	inputs	provides	further	support	for	the	
role	 of	 PS	 as	 the	 driving	 force	 behind	 the	 enhancement	 effects	 of	 surprise	 on	 memory.	 Future	
research	 should	 examine	 interactions	 between	 contextual	 and	mnemonic-attribution	 expectations	
during	retrieval,	and	their	neural	correlates.		

Methods	

Participants.	29	participants	(mean	age	=	19.5,	7	males)	gave	informed	consent	and	took	part	in	the	
experiment.	 Three	 participants	 were	 excluded	 from	 analysis	 due	 to	 memory	 performance	 below	
chance	 (one	 participant)	 or	 failure	 to	 perform	 the	 rule	 learning	 task	 (two	 participants).	 All	
procedures	were	approved	by	the	University	of	Manchester	Research	Ethics	Committee.	

Materials.	78	 images,	natural	 (39)	and	man-made	 (39),	were	selected	using	 the	Dissimilarity	 Index	
from	 the	 Similar	 Object-Lures	 Image	 Database34	 (SOLID).	 These	 images	 were	 used	 as	 the	 target	
objects,	 presented	 during	 encoding.	 Using	 a	 custom	 MATLAB	 (MathWorks	 Inc.)	 function	
(https://github.com/frdarya/SOLID/blob/master/ChooseFoils.m),	 three	 foils	 of	 decreasing	 levels	 of	
similarity	 were	 selected	 (DIs	 1300,	 2000	 and	 2700)	 for	 each	 target	 image.	 Similarity	 was	
parametrically	manipulated	by	keeping	 the	average	distance	between	the	 levels	constant	 (average	
DI	between	foils	2100).	For	the	rule	learning	task	56	more	images	(28	from	each	manmade/natural	
category)	were	taken	from	SOLID.		

Procedure.	 The	 experiment	was	 controlled	 using	 PsychoPy2	 version	 1.8240	 and	 consisted	 of	 three	
main	parts	 (see	Figure	1a-c),	similar	to	the	design	used	by	Kafkas	and	Montaldi17.	A)	Rule	 learning	
task.	 Participants	 learned	 an	 association	 between	 a	 symbol	 cue	 and	 a	 category	 (man-made	 or	
natural),	to	generate	contextual	expectations.	There	was	a	total	of	four	cues,	two	for	man-made	and	
two	for	natural	objects.	Following	a	fixation	cross,	a	cue	appeared	on	the	screen	for	1s,	during	which	
participants	 were	 asked	 to	 predict	 the	 category	 of	 the	 next	 item.	 They	 were	 instructed	 to	 guess	
during	the	first	few	trials,	but	to	learn	the	contingency	as	the	task	progressed.	Subsequently,	a	man-
made	 or	 natural	 object	 (not	 tested)	 appeared	 and	 participants	 received	 feedback	 about	 their	
prediction	(3s).	Each	cue	was	repeated	14	times	and	cues	were	counterbalanced	across	participants.	

B)	Encoding	task.	In	this	task	participants	were	presented	with	the	78	target	images,	encoded	twice,	
in	two	rounds.	During	the	first	round,	a	previously-learned	cue	(1s)	was	followed	by	an	object	(3s),	
and	participants	were	asked	to	indicate	whether	the	object	is	man-made	and	natural.	In	this	round	
all	cues	were	consistent	with	the	rule	 (no	expectation	violation).	 In	 the	second	round,	participants	
were	asked	to	study	the	perceptual	details	of	the	image	carefully	(5s).	Importantly,	70%	of	the	cues	
in	this	round	were	consistent	with	the	rule	(expected	stimuli)	while	the	other	30%	of	cues	violated	
the	 rule	 (unexpected	 stimuli).	 In	 both	 encoding	 rounds	 participants	were	 instructed	 to	 ignore	 the	
cue	 and	 focus	 on	 the	 main	 task.	 Stimulus	 presentation	 order	 was	 random,	 and	 allocation	 to	
expectation	 condition	 pseudo-random,	maintaining	 equal	 number	 of	 expected-/unexpected	 items	
for	 the	 two	 categories.	 Prior	 to	 the	 retrieval	 task,	 an	 arithmetic	 distractor	 task	 was	 used	 for	 5	
minutes.	C)	Retrieval	task.	The	final	task	was	a	continuous	recognition	memory	paradigm.	A	stimulus	
appeared	on	the	screen	for	5	seconds	during	which	participants	had	to	decide	if	it	was	old	(target)	or	
new	(foil).		

Data	 Analysis.	Given	 the	 nature	 of	 our	 recognition	 task,	 and	 our	 interest	 in	 interactions	 between	
contextual	and	mnemonic-attribution	expectations,	we	collated	object	sets	(target	+	3	foils)	and	ran	
mixed	 effect	 binary	 logistic	 regression	models	 on	 these	 ungrouped	 data.	Models	 were	 computed	
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using	 the	 lme4	package41	 in	 the	R	 environment42.	 The	parameters	 of	 such	models	 can	be	used	 to	
assess	the	probability	of	giving	a	correct	response	(‘old’	for	targets,	‘new’	for	foils)	whilst	accounting	
for	each	participant’s	unique	intercept.		

To	assess	the	independent	effect	of	contextual	expectations	established	during	encoding,	we	used	a	
simple	model	using	expectation	as	the	only	predictor,	for	each	item	(target,	F1	etc.)	separately.	To	
examine	the	effect	of	mnemonic-attribution	expectation	we	had	to	take	into	account	the	response	
to	a	previous	 item	 (hit,	miss,	 FA	or	CR),	and	 the	distance	 (in	number	of	 trials)	between	 these	 two	
items.	 We	 used	 a	 nested	 modelling	 approach,	 with	 predictors:	 contextual	 expectation,	 previous	
mnemonic	 response,	and	distance,	and	used	a	 likelihood	ratio	 test	 to	 identify	 the	best	performing	
model.	 This	 method	 examines	 the	 contribution	 of	 each	 a-priori	 chosen	 parameter	 to	 the	 overall	
model	 fit.	Using	 the	Akaike	 Information	Criterion	 (AIC)	 to	 compare	 these	models	 yielded	 identical	
results.		

	

Acknowledgments	

The	authors	would	like	to	thank	Lewis	Fry	and	Harry	Hoyle	for	their	assistance	in	data	collection,	and	
Alex	 Kafkas	 for	 helpful	 discussions.	 D.F.	 is	 supported	 by	 a	 PDS	 award	 from	 The	 University	 of	
Manchester.	

Authors	Contribution	

D.F.	and	D.M.	designed	the	experiment	and	wrote	the	manuscript.	D.F.	collected	and	analysed	the	
data.	

	

References	

1.	 McClelland,	J.	L.,	McNaughton,	B.	L.	&	O’Reilly,	R.	C.	Why	there	are	complementary	learning	
systems	in	the	hippocampus	and	neocortex:	Psychol.	Rev.	102,	419–57	(1995).	

2.	 Yassa,	M.	a	&	Stark,	C.	E.	L.	Pattern	separation	in	the	hippocampus.	Trends	Neurosci.	34,	515–
525	(2011).	

3.	 Leutgeb,	J.	K.,	Leutgeb,	S.,	Moser,	M.-B.	&	Moser,	E.	I.	Pattern	Separation	in	the	Dentate	
Gyrus	and	CA3	of	the	Hippocampus.	Science	(80-.	).	315,	961–966	(2007).	

4.	 Norman,	K.	A.	&	O’Reilly,	R.	C.	Modeling	hippocampal	and	neocortical	contributions	to	
recognition	memory:	A	complementary-learning-systems	approach.	Psychol.	Rev.	110,	611–
646	(2003).	

5.	 Hasselmo,	M.	E.,	Bodelon,	C.	&	Wyble,	B.	P.	A	Proposed	Function	for	Hippocampal	Theta	
Rhythm :	Separate	Phases	of	Encoding	and	Retrieval	Enhance	Reversal	of	Prior	Learning.	
Neural	Comput.	14,	793–817	(2002).	

6.	 Hasselmo,	M.	E.	What	is	the	function	of	hippocampal	theta	rhythm?—Linking	behavioral	data	
to	phasic	properties	of	field	potential	and	unit	recording	data.	Hippocampus	15,	936–949	
(2005).	

7.	 Ketz,	N.,	Morkonda,	S.	G.	&	O’Reilly,	R.	C.	Theta	Coordinated	Error-Driven	Learning	in	the	
Hippocampus.	PLoS	Comput.	Biol.	9,	e1003067	(2013).	

8.	 Kumaran,	D.	&	Maguire,	E.	A.	An	Unexpected	Sequence	of	Events:	Mismatch	Detection	in	the	

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 15, 2019. ; https://doi.org/10.1101/577791doi: bioRxiv preprint 

https://doi.org/10.1101/577791
http://creativecommons.org/licenses/by/4.0/


	 12	

Human	Hippocampus.	PLoS	Biol.	4,	e424	(2006).	

9.	 Bar,	M.	The	proactive	brain :	memory	for	predictions.	1235–1243	(2009).	
doi:10.1098/rstb.2008.0310	

10.	 Friston,	K.	J.	A	theory	of	cortical	responses.	Philos.	Trans.	R.	Soc.	B	Biol.	Sci.	360,	815–836	
(2005).	

11.	 Hohwy,	J.	The	predicitive	mind.	(Oxford	University	Press,	2013).	

12.	 Rescorla,	R.	A.	&	Wagner,	A.	R.	A	theory	of	Pavlovian	condi-	tioning:	Variations	in	the	
effectiveness	of	reinforcement	and	non-	reinforcement.	in	Classical	Conditioning	II	(eds.	
Black,	A.	H.	&	Prokasy,	W.	F.)	64–99	(Appleton-Century-Crofts,	1972).	

13.	 Kafkas,	A.	&	Montaldi,	D.	Expectation	affects	learning	and	modulates	memory	experience	at	
retrieval.	Cognition	180,	123–134	(2018).	

14.	 Greve,	A.,	Cooper,	E.,	Kaula,	A.,	Anderson,	M.	C.	&	Henson,	R.	N.	Does	prediction	error	drive	
one-shot	declarative	learning ?	J.	Mem.	Lang.	94,	149–165	(2017).	

15.	 Frank,	D.,	Montaldi,	D.,	Wittmann,	B.	&	Talmi,	D.	Beneficial	and	detrimental	effects	of	schema	
incongruence	on	memory	for	contextual	events.	Learn.	Mem.	25,	352–360	(2018).	

16.	 Long,	N.	M.,	Lee,	H.	&	Kuhl,	B.	a.	Hippocampal	Mismatch	Signals	Are	Modulated	by	the	
Strength	of	Neural	Predictions	and	Their	Similarity	to	Outcomes.	J.	Neurosci.	36,	12677–
12687	(2016).	

17.	 Kafkas,	A.	&	Montaldi,	D.	Expectation	affects	learning	and	modulates	memory	experience	at	
retrieval.	Cognition	180,	123–134	(2018).	

18.	 Greve,	A.,	Cooper,	E.,	Kaula,	A.,	Anderson,	M.	C.	&	Henson,	R.	N.	Does	prediction	error	drive	
one-shot	declarative	learning ?	J.	Mem.	Lang.	94,	149–165	(2017).	

19.	 Kafkas,	A.	&	Montaldi,	D.	How	do	memory	systems	detect	and	respond	to	novelty?	Neurosci.	
Lett.	0–1	(2018).	doi:10.1016/j.neulet.2018.01.053	

20.	 Lisman,	J.	E.	&	Grace,	A.	a.	The	Hippocampal-VTA	Loop:	Controlling	the	Entry	of	Information	
into	Long-Term	Memory.	Neuron	46,	703–713	(2005).	

21.	 Shohamy,	D.	&	Adcock,	R.	A.	Dopamine	and	adaptive	memory.	Trends	Cogn.	Sci.	14,	464–472	
(2010).	

22.	 Kafkas,	A.	&	Montaldi,	D.	Striatal	and	midbrain	connectivity	with	the	hippocampus	selectively	
boosts	memory	for	contextual	novelty.	Hippocampus	12,	1–12	(2015).	

23.	 Kumaran,	D.	&	Maguire,	E.	A.	Match	Mismatch	Processes	Underlie	Human	Hippocampal	
Responses	to	Associative	Novelty.	J.	Neurosci.	27,	8517–8524	(2007).	

24.	 Strange,	B.	a.,	Duggins,	A.,	Penny,	W.,	Dolan,	R.	J.	&	Friston,	K.	J.	Information	theory,	novelty	
and	hippocampal	responses:	Unpredicted	or	unpredictable?	Neural	Networks	18,	225–230	
(2005).	

25.	 Long,	N.	M.,	Lee,	H.	&	Kuhl,	B.	A.	Hippocampal	Mismatch	Signals	Are	Modulated	by	the	
Strength	of	Neural	Predictions	and	Their	Similarity	to	Outcomes.	J.	Neurosci.	36,	12677–
12687	(2016).	

26.	 Colgin,	L.	L.,	Moser,	E.	I.	&	Moser,	M.	B.	Understanding	memory	through	hippocampal	
remapping.	Trends	Neurosci.	31,	469–477	(2008).	

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 15, 2019. ; https://doi.org/10.1101/577791doi: bioRxiv preprint 

https://doi.org/10.1101/577791
http://creativecommons.org/licenses/by/4.0/


	 13	

27.	 Jeffery,	K.	J.	Place	Cells,	Grid	Cells,	Attractors,	and	Remapping.	Neural	Plast.	2011,	1–11	
(2011).	

28.	 Bakker,	A.,	Kirwan,	C.	B.,	Miller,	M.	&	Stark,	C.	E.	L.	Pattern	Separation	in	the	Human	
Hippocampal	CA3	and	Dentate	Gyrus.	Science	(80-.	).	319,	1640–1642	(2008).	

29.	 Lacy,	J.	W.,	Yassa,	M.	a,	Stark,	S.	M.,	Muftuler,	L.	T.	&	Stark,	C.	E.	L.	Distinct	pattern	separation	
related	transfer	functions	in	human	CA3/dentate	and	CA1	revealed	using	high-resolution	
fMRI	and	variable	mnemonic	similarity.	Learn.	Mem.	18,	15–18	(2011).	

30.	 Paleja,	M.,	Girard,	T.	a.	&	Christensen,	B.	K.	Virtual	human	analogs	to	rodent	spatial	pattern	
separation	and	completion	memory	tasks.	Learn.	Motiv.	42,	237–244	(2011).	

31.	 Molitor,	R.	J.,	Ko,	P.	C.,	Hussey,	E.	P.	&	Ally,	B.	a.	Memory-related	eye	movements	challenge	
behavioral	measures	of	pattern	completion	and	pattern	separation.	Hippocampus	24,	666–
672	(2014).	

32.	 Morris,	R.	G.	M.	&	Frey,	U.	Hippocampal	synaptic	plasticity:	role	in	spatial	learning	or	the	
automatic	recording	of	attended	experience?	Philos.	Trans.	R.	Soc.	London.	Ser.	B	Biol.	Sci.	
352,	1489–1503	(1997).	

33.	 Migo,	E.,	Montaldi,	D.,	Norman,	K.	a,	Quamme,	J.	&	Mayes,	A.	The	contribution	of	familiarity	
to	recognition	memory	is	a	function	of	test	format	when	using	similar	foils.	Q.	J.	Exp.	Psychol.	
62,	1198–1215	(2009).	

34.	 Frank,	D.,	Gray,	O.	&	Montaldi,	D.	SOLID-Similar	object	and	lure	image	database.	Behav.	Res.	
Methods	(2019).	doi:10.3758/s13428-019-01211-7	

35.	 Yassa,	M.	a,	Mattfeld,	A.	T.,	Stark,	S.	M.	&	Stark,	C.	E.	L.	Age-related	memory	deficits	linked	to	
circuit-specific	disruptions	in	the	hippocampus.	Proc.	Natl.	Acad.	Sci.	U.	S.	A.	108,	8873–8	
(2011).	

36.	 Paleja,	M.	&	Spaniol,	J.	Spatial	pattern	completion	deficits	in	older	adults.	Front.	Aging	
Neurosci.	5,	1–6	(2013).	

37.	 Anderson,	M.	C.,	Bjork,	R.	A.	&	Bjork,	E.	L.	Remembering	Can	Cause	Forgetting:	Retrieval	
Dynamics	in	Long-Term	Memory.	J.	Exp.	Psychol.	Learn.	Mem.	Cogn.	20,	1063–1087	(1994).	

38.	 Raaijmakers,	J.	G.	W.	&	Jakab,	E.	Rethinking	inhibition	theory:	On	the	problematic	status	of	
the	inhibition	theory	for	forgetting.	J.	Mem.	Lang.	68,	98–122	(2013).	

39.	 Shohamy,	D.	&	Daw,	N.	D.	Integrating	memories	to	guide	decisions.	Curr.	Opin.	Behav.	Sci.	5,	
85–90	(2015).	

40.	 Peirce,	J.	W.	PsychoPy-Psychophysics	software	in	Python.	J.	Neurosci.	Methods	162,	8–13	
(2007).	

41.	 Bates,	D.,	Mächler,	M.,	Bolker,	B.	&	Walker,	S.	Fitting	Linear	Mixed-Effects	Models	Using	
lme4.	J.	Stat.	Softw.	67,	(2015).	

42.	 R	Development	Core	Team.	R:	A	language	and	environment	for	statistical	computing.	(2008).	
Available	at:	http://www.r-project.org.		

	

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 15, 2019. ; https://doi.org/10.1101/577791doi: bioRxiv preprint 

https://doi.org/10.1101/577791
http://creativecommons.org/licenses/by/4.0/

