bioRxiv preprint doi: https://doi.org/10.1101/576868; this version posted March 14, 2019. The copyright holder for this preprint (which was not

certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

aCC-BY-NC-ND 4.0 International license.

Title: Ten-year retrospective analysis of Acinetobacter baumannii clinical isolates reveals a

proportionately large, non-nosocomial, multidrug-resistant endemic reservoir

Authors:

Juan J Calix, MD, PhD. Division of Infectious Diseases, Department of Medicine, Washington University
School of Medicine, St. Louis, MO. Jason P Burnham, MD. Division of Infectious Diseases, Department
of Medicine, Washington University School of Medicine, St. Louis, MO. Mario F Feldman, PhD.

Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO.

Key words: Acinetobacter baumannii, multidrug resistance, hospital-acquired infections
Running title: A. baumannii community reservoir
Corresponding author: Juan Calix, MD, PhD.

Washington University in St. Louis School of Medicine

Division of Infectious Diseases

4523 Clayton Avenue, Campus Box 8051,

Saint Louis, Missouri 63110

jicalix@wustl.edu Tel: 314-747-4473
Alternative author: Mario Feldman, PhD.

Washington University in St. Louis School of Medicine

Department of Molecular Microbiology

660 S. Euclid Avenue, Campus Box 8230,

Saint Louis, Missouri 63110

mariofeldman@wustl.edu Tel: 314-747-4473

Summary:


https://doi.org/10.1101/576868
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/576868; this version posted March 14, 2019. The copyright holder for this preprint (which was not

certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

aCC-BY-NC-ND 4.0 International license.

We compared hospital-acquired and community-acquired Acinetobacter baumannii in a large U.S.
healthcare system through a ten-year retrospective ecological analysis. Community-acquired isolates
composed over 60% of total A. baumannii isolates, were primarily from non-respiratory sources and

exhibited carbapenem resistance rates of 35-40%.

Abstract:

Background: Acinetobacter baumannii (Ab) is a global health threat notorious for causing hospital-
acquired (HA) infections, though many Ab infections are community-acquired (CA). Investigations
describing contemporaneous, clinically-relevant CA and HA Ab populations, are lacking.

Methods: We conducted a retrospective ecological analysis of 2042 Ab clinical isolates identified from
2007 to 2017 in the BJC HealthCare System (BJC), a multi-hospital system located in and around the
greater metropolitan area in St. Louis, Missouri. We described basic clinical characteristics and antibiotic
susceptibility rates of CA and HA Ab isolates in comparative and longitudinal analyses.

Results: 62.1% of all Ab isolates were CA, i.e., isolated in ambulatory settings or <48 hours following
hospital admission. Though HA isolates initially predominated in the largest BJC hospital, implementation
of infection control efforts resulted in a disproportionate reduction in annual HA isolate occurrence. This
revealed a stable, baseline occurrence of CA isolates. In all other hospitals, the annual proportion of
isolates that were CA averaged 78.7% (95%CI=74.5-83.0). 42.9% and 30.4% of total CA isolates were
from skin and soft tissue/musculoskeletal (SST/MSK) and urinary sources, respectively, while HA isolates
were primarily respiratory (55.6%). Rates of carbapenem resistance, a surrogate for multidrug resistant
(MDR) phenotypes, were higher among respiratory and HA cases (~60%) compared to contemporaneous
non-respiratory CA counterparts (~40%).

Conclusions: MDR Ab reservoirs associated with SST/MSK and urinary niches persist outside of
hospital environments in a large U.S. healthcare system, even after the implementation of effective

hospital infection control measures.
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Abbreviations: Ab, Acinetobacter baumannii; BJC, BJC HealthCare System; BJH, Barnes-Jewish
Hospital; CA, community-acquired; CDR, Clinical Data Repository; CRAb, carbapenem-resistant A.

baumannii; HA, hospital-acquired; HCA, healthcare-associated; MDR, multidrug-resistant; SST/MSK, skin

and soft tissue/musculoskeletal
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Text:

Introduction

The gram-negative bacterium Acinetobacter baumannii (Ab) can survive in multiple host and abiotic
environments and exhibits a propensity to acquire resistance to most antibiotics, including carbapenems
[1, 2]. Inresponse to the global impact of multidrug resistant (MDR) Ab infections, the World Health
Organization and U.S. Centers for Disease Control and Prevention have recognized Ab as an urgent
threat requiring the development of novel interventions [3, 4]. However, the epidemiology and

pathogenesis of clinically-relevant Ab remain incompletely characterized.

Ab is widely regarded as an opportunistic pathogen that rarely causes community-acquired (CA)
infections, but instead causes hospital-acquired (HA) infections, namely nosocomial pneumonia and
bacteremia, in critically ill or immunocompromised patients [2, 5-7]. Thus, Ab-related research has almost
exclusively focused on hospital-associated bacterial populations [8-14]. However, recent studies suggest
that Ab isolates are routinely acquired in outpatient settings [15-18]. Therefore, research biased towards
HA cases may fail to describe the full spectrum of clinically-relevant Ab reservoirs. Specifically, there is a
paucity of investigations comparing contemporaneous Ab populations with differing epidemiological traits,
such as CA versus HA isolates, or isolates from large academic versus community hospitals. Defining
these potentially divergent Ab populations is especially important for accurately gauging the impact of

interventions designed against HA infections.

Here, we characterized different Ab populations through a retrospective longitudinal analysis of Ab
isolates identified over ten years in a large, multi-hospital system in St. Louis, Missouri. Notably, an
effective campaign against nosocomial Ab infections, which included the 2012 relocation of an ICU
implicated in multiple Ab outbreaks, occurred during this period, allowing us to observe the impact of
these interventions on different Ab populations. In this study, we did not investigate clinical outcomes or
patient-specific risk factors, instead focusing on comparing isolate-associated clinical features to better
understand the ecology of clinically-relevant Ab populations. Using this approach, we identified clinical

features distinguishing Ab populations and confirmed the emerging impact of CA Ab.
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85
86  Methods:
87 Study Location and Period. Following approval from our local Institutional Review Board, we performed a
88  retrospective analysis of isolates identified in the BJC HealthCare System (BJC) from January 2007 to
89  September 2017. BJC is a large integrated inpatient and outpatient healthcare system in and around the
90  Greater Metropolitan Area of St. Louis, Missouri, USA. It includes nine community hospitals, an academic
91 pediatric hospital and a 1250-bed academic adult medical center (Barnes-Jewish Hospital, BJH), which
92 all combine for a total of over 3200 inpatient beds and >140 000 admissions annually (Table S1). For
93 longitudinal analyses we used data only from 2007 to 2016, given that 2017 data was limited to January
94  through August, at time of analysis.
95
96 Isolate Identification and Definitions. Using the BJC Clinical Data Repository (CDR), which is maintained
97 by the BJC Center for Clinical Excellence, we identified all instances in which Acinetobacter was isolated
98 during the course of regular medical care from adult patients age =218 years. Surveillance cultures
99 obtained during suspected nosocomial outbreaks were excluded. Only isolates from the first isolation
100  event per patient (“index culture”) was eligible for inclusion. Isolates were identified using either
101 automated biochemical methods or matrix-assisted laser desorption/ionization and time of flight
102 spectroscopy. The number of Acinetobacter index cultures and their microbial identification are listed in
103 Table S2. Only cases identified as “Acinetobacter baumannii” (n=990) or “Acinetobacter calcoaceticus-
104 baumannii complex” (h=1052) were combined for the current analysis. Basic patient demographic
105 information, isolate tissue source, hospital day of index culture (if applicable), and antibiotic susceptibility
106  data for each isolate was obtained from the BJC CDR and by review of electronic charts, as needed.
107 Isolates were classified into one of five anatomical categories according to isolate tissue source:
108  “respiratory”, “skin and soft tissue/musculoskeletal” (SST/MSK), “urinary”, “endovascular”, or “other.”
109 They were defined as “hospital-acquired” (HA) if index culture was performed 248 hours after hospital
110  admission and prior to discharge, while all other isolates were defined as “community-acquired” (CA).
111 Isolates were also classified as “multi-isolate” if >1 co-isolated microbial species was reported in index

112 culture, or “sole isolate” if only a single Acinetobacter isolate was reported in the index culture.
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113

114  Antibiotic susceptibility reporting. Antibiotic susceptibility testing was performed using the Vitek 2 system
115 or Kirby-Bauer disk diffusion on Mueller-Hinton Agar, and interpreted per CLSI guidelines [19]. Due to
116  temporal and geographical variation in susceptibility testing practices, antibiotic susceptibility profiles

117  were incomplete for many isolates. Isolates lacking susceptibility reporting for an antibiotic were excluded
118  from respective susceptibility-associated analyses. Non-susceptible isolates (i.e., isolates reported as
119  “resistant” or “intermediate”) were classified as “resistant” for analyses. Lastly, if an isolate was non-

120  susceptible to any for the following antibiotics in a class, it was labeled “resistant” for that class:

121 imipenem or meropenem for “carbapenems”; ciprofloxacin or levofloxacin for “fluoroquinolones”;

122 piperacillin-tazobactam or ticarcillin-clavulanic acid for “antipseudomonal penicillins plus B-lactamase

123 inhibitor”; and tetracycline or doxycycline for “tetracyclines” (Table S3).

124

125 Statistical Methods. All analyses were performed with SPSS v25 (IBM, USA). Chi-squared test or

126 independent t-test was performed for comparing categorical or continuous variables, respectively. P

127  values <0.05 were considered statistically significant.

128

129

130  Results:

131 Isolates from different hospitals exhibit separate longitudinal trends

132 Of the 2042 eligible Ab isolates obtained in BJC hospitals from January 2007 through September of 2017,
133  48.3% (n=987) were obtained at BJH (Table S1). The remaining isolates were identified in various

134  smaller hospitals (herein, referred to as “non-BJH” hospitals). As seen in Figure 1A, annual Ab

135 occurrence at BJH increased from 2007 to 2009, and steadily decreased over the remainder of the study
136  period. In contrast, annual occurrence of non-BJH isolates was relatively constant. Given this differential
137 pattern, we grouped isolates as “BJH” and “non-BJH" in our longitudinal analyses.

138

139 Adult Ab isolates were derived from various anatomical sources
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140  Contrary to the prevalent notion that Ab is predominantly a respiratory pathogen [2, 5], 692 isolates

141 (33.9% of all adult isolates) were from skin and soft tissue/musculoskeletal (SST/MSK) sources, while 626
142 (30.7%), 487 (23.8%), 214 (10.5%), and 23 (1.1%) isolates were from respiratory, urinary, endovascular,
143  and “other” sources, respectively (Table 1). Proportion of “sole isolate” cases, where Ab was the only
144  isolate in index culture, differed across anatomic sources (p<0.001), with endovascular and SST/MSK
145  compartments having the highest and lowest proportions (83.2% and 51.5%, respectively). In

146  longitudinal analysis, annual BJH respiratory, urinary, and endovascular isolates peaked in 2009 and

147  subsequently decreased ~70% by 2016 (Figure 1B), with the largest year-over-year decrease happening
148 in 2012 (Figure 1B, arrow). In contrast, annual BJH SST/MSK isolates and non-BJH isolates from alll
149 sources remained relatively stable (Figures 1B and 1C). Thus, isolates from different anatomic sources
150 and different hospitals exhibited varying epidemiologic features.

151

152 HA and CA isolates exhibited divergent epidemiology

153  Of all adult Ab isolates, 37.9% (n=774) were HA and 62.1% (n=1268) were CA (Table 1). The percent of
154  all adult isolates that were CA (“CA ratio”) increased over the study period (Figure 2A) and varied among
155 hospitals (Table S1). Notably, the decline in annual BJH Ab isolates over the study period (Figure 1A)
156  was largely due to a >10-fold decrease in annual HA isolates from 2009 to 2016 (Figure 2B). Though
157 annual BJH CA isolates also exhibited a ~3-fold decrease from 2009 levels, they remained relatively

158  stable after 2012. The decline of HA Ab occurrence resulted in the BJH annual CA ratio increasing from
159 39.2% to 74.3% over the study period (Figure 2B and Table S1). In contrast, annual CA ratios among
160  non-BJH isolates remained largely unchanged (mean= 78.7%; 95%CI|=74.5-83.0) (Figure 2C).

161

162  The comparable selective decline in annual BJH HA and respiratory Ab isolates (Figure 1B), suggested a
163 link between these epidemiologic compartments. Indeed, 56.5% of total HA isolates were from

164 respiratory sources, followed by SST/MSK (19.1%), urinary (13.0%), endovascular (10.5%) and “other”
165 (0.9%). In contrast, CA isolates were primarily SST/MSK (42.9%) and urinary (30.4%), with only 14.9%,
166 10.5% and 1.3% isolated from respiratory, endovascular and “other” sources, respectively. Similarly,

167 79.3%, 78.6%, and 62.1% of total urinary, SST/MSK, and endovascular isolates, respectively, were CA,
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168 compared to only 30.2% of respiratory isolates (Figure 3). CA ratios were higher among non-BJH

169 isolates in each anatomic source category, but the association between anatomic source and CA ratio
170  was conserved in both BJH and non-BJH isolates (Figure 3).

171

172 Asseenin Figure 4, annual CA ratios were relatively stable over time for non-BJH SST/MSK, urinary and
173 respiratory isolates, with mean CA ratios of 83.3% (95%CI=78.7-87.8), 87.5% (95%CI=82.4-92.6) and
174  46.8% (95%Cl=41.2-52.4), respectively. Though annual CA ratios for BJH SST/MSK isolates were also
175 relatively unchanged (mean=60.4%, 95%CI=41.2-52.4), CA ratios changed over time for other BJH

176 isolate types. From 2007-2011, annual CA ratios for BJH respiratory and urinary isolates averaged

177 23.5% (95%CI1=20.6-26.4) and 61.8% (95%CI=57.1-66.5), respectively. Annual CA rates varied among
178 BJH respiratory isolates from 2012-2016, averaging 35.6% (95%CI|=8.8-62.5). Contemporaneously, there
179  were nine to eleven annual CA isolates from 2012-2016, while annual HA urinary isolates declined to

180  zero. This resulted in BJH urinary isolate CA ratios progressively increasing to 100% in 2016 (Figure 4).
181 Both BJH and non-BJH endovascular isolates exhibited gradual increases in CA ratios that began prior to
182 2012 (Figure 4), with CA ratios among all endovascular isolates increasing from 44.8% (13 of 29 isolates)
183 in 2007 to 100% in 2014 and 2015 (n=7 and 13, respectively) and 60% in 2016 (6 of 10 isolates). In

184  summary, the BJC clinically-relevant Ab population was predominated by CA isolates principally from

185 urinary and SST/MSK sources, and their occurrence was largely independent of HA isolates, which were
186 principally from respiratory sources. Furthermore, a decrease in annual HA isolates overall (Figure 2A),
187 coincided with increases in CA ratios among endovascular isolates (Figure 4).

188

189 High prevalence of antibiotic resistance among adult Ab isolates

190  As shown in Table S3, adult Ab isolates exhibited high rates of antibiotic resistance, with rates ranging
191  from 27.5% for gentamicin to 90.5% for ceftriaxone. Antibiotic resistance was associated with multiple
192 clinical characteristics, including being “sole isolate” in index culture and older patient age. Resistance
193 rates also differed between HA and CA isolates and among isolates from different anatomic sources.

194 However, with the exception of ampicillin-sulbactam, there were less than two-fold differences between

195 the high resistance rates exhibited by HA, respiratory and endovascular isolates, and the lower rates
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among CA, urinary and SST/MSK isolates (Table S3). Therefore, adult Ab isolates in all compartments

exhibited elevated antibiotic resistance rates.

Rate of carbapenem resistance, a marker for Ab MDR phenotypes, varied according to
epidemiologic compartment

Since Ab susceptibility testing practices varied in BJC during this period, we could not reliably determine
whether an isolate met established MDR definitions [20], i.e., non-susceptibility to 21 agent in 23
antimicrobial categories (Table S3, first row). However, all 867 adult carbapenem resistant Ab (CRAb)
isolates were resistant to at least two other antibiotic classes, independent of ceftriaxone (data not
shown). Thus, as previously observed in other Acinetobacter populations [21], carbapenem resistance
was a marker of the MDR phenotype. Annual rate of carbapenem resistance (“CRAb-rate”) ranged from
34.2% in 2012 to 58.9% in 2009 among total Ab isolates. Annual CRAb-rates differed between total HA
and CA isolates, averaging 38.1% (95%CI=32.7-43.5) and 56.3% (95%CI=49.0-63.5), respectively
(Figure 5A). BJH isolate CRAb-rates markedly changed in 2012, with an average of 58.3%
(95%CI=51.6-65.1) from 2007-2011, and 36.6% (95%CI=32.2-41.0) from 2012-2016 (Figure 5B). In
contrast, CRAb-rates among non-BJH adult isolate were stable throughout the study period at 39.3%
(95%CI=34.2-44.5) (Figure 5C). In summary, HA isolates had stably higher CRAb-rates than CA
isolates, and total Ab CRAb-rates changed over time, according to the prevalence of HA and CA isolates

in the population.

CRAb-rates were comparable among HA isolates from different anatomic sources (Figure 6A, black
bars). Furthermore, CRAb-rates were indistinguishable between CA and HA respiratory isolates (61.2%
and 55.8%, respectively, p=0.22). In contrast, CRAb-rates were lower in CA versus HA isolates from
SST/MSK (36.7% and 63.4%, respectively), urinary (30.8% and 61.1%), and endovascular (41.2% and
65.3%) sources (p<0.001 for all comparisons) (Figure 6A). The dissimilar CRAb-rates among non-
respiratory CA and HA populations were present throughout the period (Figure S1), and observed among
both BJH and non-BJH isolates (Figure S2). Thus, there were two populations according to diverging

CRADb-rates (Figure 6A) — “highly resistant” populations with CRAb-rates >55%, i.e., all HA isolates and
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224 CArespiratory isolates; and “intermediately resistant” populations with CRAb-rates between 20-50%, i.e.,
225 non-respiratory, CA isolates.

226

227  When comparing the proportions of isolates from each anatomic source, there was no difference between
228  CRAD and carbapenem-susceptible HA isolates (p=0.77) (Figure 6B). Though the proportions differed
229 between susceptible and resistant CA isolates (p<0.005), this difference was minimal compared to the
230  dissimilarities between HA and CA isolates, independent of carbapenem susceptibility (Figure 6B).

231 Respiratory isolates composed 55.0% of HA CRADb isolates but only 25.8% of total CA CRAD isolates.
232 Conversely, SST/MSK and urinary isolates composed 40.8% and 31.9%, respectively, of the CA CRAb
233 isolate reservoir, while composing only 18.5% and 13.7%, respectively, of the HA CRAD reservoir.

234 Endovascular isolates composed ~10% of all compartments (Figure 6B). In summary, CA CRAb/MDR
235 isolates were principally from urinary and SST/MSK sources, while HA CRAb/MDR isolates were

236 principally from respiratory sources.

237

238  Discussion:

239  Antibiotic-sparing strategies against MDR Ab must target factors facilitating bacterial survival in pertinent
240 reservoirs from where Ab infects at-risk hosts. To better characterize the ecology of Ab reservoirs, we
241 retrospectively analyzed 2042 temporally- and geographically-associated Ab clinical isolates. In contrast
242 to the widely accepted notion that Ab is primarily a HA pathogen, we found that 60-80% of Ab isolates
243  were CA. This high CA ratio may result from the inclusion of multiple regional community hospitals,

244 resulting in a more comprehensive survey of local Ab reservoirs. Indeed, if we had surveyed only our
245 large academic center, BJH, the CA ratio would have been <45% (Table S1). Another possible

246  explanation for a high CA ratio may be that multiple CA isolates were obtained through unaccounted

247  healthcare exposures, such as recent hospitalizations or long-term acute care facilities [22]. A limitation
248  to this study is that we could not identify patients who were transferred from non-BJC facilities or who had
249 other risk factors that would classify their cases as “healthcare-associated” (HCA) [23]. However, multiple
250  similar studies have reported that 25-65% of Ab clinical isolates are likely acquired in the community [15-

251 18], supporting that a substantial portion of clinically-relevant Ab reside in outpatient settings.

10
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252

253 Further affirming the existence of an endemic Ab community reservoir, the occurrence of CA isolates

254 persisted even after the near eradication of BJH HA Ab cases. Multiple HA isolates identified in 2007-
255 2012 were from patients in a BJH ICU implicated in several MDR Ab nosocomial outbreaks starting in late
256 2007 and ending in August 2011 (unpublished findings). The 10-fold decrease of annual BJH HA isolates
257  likely resulted from physical relocation of the suspect ICU ward in 2012 and other aggressive hospital-
258  wide infection control measures. We suspect the accompanying 3-fold decrease in CA isolates was

259 secondary to a reduction of unaccounted HCA cases. While annual HA respiratory, urinary and

260  endovascular isolates decreased to near-zero levels after 2012, there was a steady annual occurrence of
261 CA isolates with epidemiologic features similar to CA isolates from non-BJH hospitals (i.e., intermediately
262 carbapenem resistant isolates from urinary and SST/MSK sources). Thus, the selective decrease of HA
263  Ab “unmasked” the impact of CA Ab isolates. Similar “unmasking” events may explain other reports of
264  increased proportions of Ab infections occurring outside of hospitals over time [24]. A limitation of our
265 ecological study design is that we did not determine whether isolates were associated with clinical

266  disease or asymptomatic colonization, so the impact of this CA reservoir on Ab disease remains to be
267 determined. Regardless, as aggressive measures against nosocomial infections are implemented, future
268 investigations should differentiate between outpatient Ab reservoirs, a microbial population neglected by
269 investigations that largely focus on HA Ab infections, and “classical’ nosocomial Ab.

270

271 Our comparative analysis begins to define the Ab community reservoir. Though there were no

272  differences in patient age or sex between CA and HA cases (Table 1), we observed that CA isolates were
273 most often from SST/MSK or urinary sources and that HA isolates were predominately from respiratory
274  sources (Figure 6B). This is consistent with observations from a Hong Kong teaching hospital, where
275  32.8% and 25.8% of general ward Acinetobacter isolates were from wound or urinary sources, while

276 80.7% of ICU isolates were respiratory [25]. Similar observations were made in Ab populations in

277 Spanish hospitals [24]. Though the anatomic source of isolates are probably influenced by the variable
278 culturing practices inherent to different hospital wards, the fact that various international studies reported

279 similar findings supports that these observations reflect real ecological phenomena.

11
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280

281 In contrast to the susceptible Ab strains implicated in community-acquired pneumoniae in tropical regions
282 [26], BJC CA Ab isolates displayed elevated CRAb/MDR rates (~40%), albeit lower rates than HA isolates
283 (~60%) (Table S3). The high but differing resistance rates between BJC CA and HA Ab are consistent
284  with rates reported in prior U.S. national studies [16, 18]. However, antibiotic pressures alone may not
285  explain the diverging epidemiology of HA and CA Ab, as associations between anatomic source and CA
286  or HA Ab were mostly conserved across CRAb and non-CRADb isolates (Figure 6B). It has been

287 proposed that Ab capable of human colonization compose clonal subsets distinct from Ab occupying

288 undefined environmental reservoirs [27]. It is tempting to speculate that clinically-relevant Ab

289 subpopulations exhibit diverging capabilities to survive in different epidemiologic compartments or host
290 niches, independent of antibiotic resistance. Examining this hypothesis will require molecular and

291 phenotypic analyses of Ab isolated from different epidemiological compartments.

292

293 In summary, we report divergent antibiotic transmission dynamics, anatomic sources, and resistance

294  rates between clinically-relevant CA and HA Ab populations. Though our findings are limited to a single
295 regional U.S. healthcare system, similar observations have been reported by multiple groups nationally
296 and internationally. Validating a cutoff of 48 hours post-hospital admission to define HA Ab subgroups
297 requires more comprehensive review of Ab clinical cases (e.qg., identifying HCA cases among CA isolates,
298 clinical outcome analyses, etc.) coupled with molecular characterization of matched isolates. As

299 endemic, non-nosocomial MDR Ab reservoirs pose potential threats to ongoing efforts against MDR Ab
300 disease, further characterization of CA Ab isolates remains crucial.

301
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388

389
390

391
392
393

Table 1. General clinical characteristics of all adult A. baumannii isolates, BJC 2007-2017

Isolate Source Isolate Tvbe
Aii iher Respiraion SST/MSK Urinaiy  Endovasciiiar 7 ® CA A jat
% All Isolates {n) n/a (2042) 1.1 {23) J0.7 (826) 33.9(692) 238{487N 105{214) 82.1¢1268) 379 (77f4)
% Female {n] 43.3 (884) 60.9 {14) 39.5(247) 449(311) 429(209) 481 (103) 0050 446 (566) 41.1(318) 0.116
Age, mean 57 1 G663 577 574 557 57.7 575 556.5 0215
Age, B6% ClI 58.4-57.9 54.2-88.4 58.3-50.1 58.1-58.7 53.8-57.5 55.8-58.9 58.5-58.8 b5H5H.3-57.8
% CA{n) 62.1{1268) 69.8 (18) 30.2{189) T8G6(544) 79.3(388) 62.1(133) <0.00 - - -
% Sole isolate ¢ (n) 66.7 (1362) 609 (14) 794 (472) H515(356) 702 (342) 832 (178) <0001 618 (F83) 748 (579) <0001

?p-value by chi-squared test, compared across all isolate anatomic sources

® p-value by chi-squared test, compared between CA and HA isolates

‘cases where A. baumannii was the only microbial species reported in index culture
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394  Table S1. Annual amounts of community-acquired (CA) and hospital-acquired (HA) A. baumannii isolates per Hospital, BJC 2007-2017

2067 2408 200 2610 261 20i2 2613 ZUis 2615 20 20iTe

S DA HA %CA GA HA %GA GA HA %OGA CAHA %CA DA HA %OA DA HA %OCA CA HA %CA CA HA %GA CA HA %OA CAHA %UA GARA %OCA  CA HA %CA 1OIAL

1 87% 2 2 E00% - 2 1000% 2 C 1000% 4 O 1000% 3 2 830% 2 2 1000% 3 D 1000% & O 1000% 3 O 1002% 2 O 1C0C% 30 5 B857% 325

73 A09% Cf 402 T80% 7S 440 DY B0 TR 45CH 45 8O oe b Senaar " Sn Dy Secanc S for My Speany . onp S Seotane d o R Sty Mol S Se e ey

1 0% % 1 7A0% 2 0 10400% 1 C 1000% 2 0 1000% 1 C 1000% 4 13 1060% G 0 MA & 0 Na & ¢ WA 1 0 1CGCS 14 2 BFA% 18

JoB24% 12 5 F06% 13 5 722% 19 4 025% 1° 3 VO&% 17 O 1000% 1€ 4 026% 14 3 024% 16 2 DEOW O 3 V27w 11 2 846% 154 34 81.9% 100

C1000% 8 1 E88% 8 3 300 4 2 88T 2 1 65T § 2 T4% 2 3 100.0% 2 I 1000% 8 O 1000%5 2 0 1000% 2 0 1C0.0% 46 12 7a3% £8

Q

(@]

O

O 32 0 100y 3 01 WM 1 U 1000% 1 1 By 3 0 100 2 0 100% 2 d 10008 1 0 1000% 1 0 100Me 2 0 000N 280 2 929% 48 E

g

* ? 1 72 % 8 2 M 1° 1 87 h 2 M4% B 1 1000% H O 16006% 0 40 100 A 0 1060 &2 7 A31% T8 b

Comer W)
Aton 2 2 b b b = b b »
16 0 1000% 6 3 E67% 4 0 1000% 26 3 837% 29 O

=1

@

1 C1000% 2 0 100X J 10008 2 2 00% I3 0 NA O C N/ 0 3 MNA 0 3 NA 1 0O MA 1 0 KA J 0 YA £ 2 Tl @8 g

I I T I I N B E— I — I U A I S N S N N B P S I O S N I S B B R . O

32 <5 631% £2 15 7T6% 38 20 BE5% 6i <5 B03% 5% °7 F73% 43 o7 TiFk 3 12 FSO0% B3 7 283% 43 7 7i7% 36 90 733% 7 @ 467% 46 153 75i% 6i4 O

=N

1 C1000% 0 0 HMA O 3 HMa 1 C 1000% 1 0 1000% 1 C 1000% 3 1 750% 1 2 1000% 3 0O 1000% 5 B33% 2 0 1C0C% 18 2 910% Z0 §

395 TOTAL 3319 100 93 5i.3% 40 1026 £26% 142 151 48 5% 150 97 60.7% 13 93 50.4% 100 49 63.0% 109 59 64.9% 108 24 218% 30 36 r83% O3 2 782% 51 20 718% 1368774 621% 2042 2
@

396
397 aOnly includes isolates identified from January 1 thru August 31, 2017

398 ’ Hospital data not available for that year
399
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400 Table S2. Identity and total amount of Acinetobacter index cases, BJC 2007-2017
Total indax
Reported identity? cultures (n)
A. baumannii® 280

"A. calc?aeceﬁcus- 1052
baumannii complex” ?

A. nosocomialis 4

A pittii 1
"Acinetobacter species” 481
A. Iwoffii 317

A. hasmolyticus S

A. ursingii 5

A. johsonnil 2

A. junii 2
401
402

403 “Isolates identity determined by automated biochemical methods or MALDI-TOF spectroscopy

404 ’ Isolates included in our current analysis
405
406

9SuaJ|| [euolreusalu] 0’y AN-ON-AG-00¢€
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407

408
409

410
411
412
413
414

415
416
417

Table S3. Associations between clinical characteristics and antibiotic resistance among all adult A. baumannii isolates, BJC 2007-2017

o ; A T Pemicillin + .ﬂnﬁpsgug'qmanaf ; ) ; Folate )
Antibiotic class Exiended spectrum cephalosporin B-lactamase penicilin + Aminoglycoside Fluoroguinolone pathway Tetracychne
carbapenem inhibitor  B-lactamase inhibitor inhibitor
CRO CAZ FEF IKI/MER 2 SAM TZPTIM # GM CIP/LvX® SXT TET/DOX
Tested isolates ® 1985 1805 1900 1898 1188 1331 1872 1985 1723 1172
Total = 905 (1797) 597 (958) 569 (1082) 46 4 (867) * 48 8 (596) 62 3 (829) 27 5 (543) 568 (1134) 549 (946) 456 (534)
Isolate type ©
CA 866 (1066) 527 (494) 497 (573) 38.7 (439) 36 1 (257) 54 9 (384) 24 5 (298) 49 3 (611) 49.4 (499) 393 (281)
HA 80.8(731) 09.8(484) 06.0(509) 58.4 {428) 88.8 (312) 70.4 (315) 32.5 (245) 089.2 (523) 028 (447) 55.4(253)
pd <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 =<0.001
Isolate sourcec
Respiratory 97 6 (600) 682 (393) 654 (398) 572 (b1 2) 85 8 (252) 69 8 (372) 346 (214) 66 5 (411) 61.5 (351) 540 (195)
pé <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
SET/MSK 844 (568) 54.4(251) 53.4(330) 42 5 (256) 32.2 (138) 56.9 (186) 26.0(172) 52 .4 (354) 55.1 (296) 445 (185)
pi  <0.001 0.007 0.3 0.018 <0.001 0.02 0.285 0.005 0.903 0.578
Urinary 88.8 (430) 51.7(193) 494 (230) 37.1(168) 44 0 (106) 549 (163) 20.5 (98) 50.1 (244) 489 (199) 374 (107)
pd 0.145 <(0.001 =0.001 <0.001 0.093 0.003 <0.001 0.001 0.001 0.001
Endovascular 93.7 (178) 66.7 (116) 63.4 (118) 50.0(92) 67.3 (70) 66.9 (103) 29.5 (57) 61.7 (119) 55.9 (95) 44 6 (45)
pi 0.118 0.047 0.08 0.304 <0.001 0.21 0.513 0.155 0.787 0.831
Other 91.3(21) 23.8(9) 286 (6) 21.7(5) 33.3(3) 25.0 (9) 8.7 (2) 27.3 (B) 23.8(9) 250 (2)
pd 0.808 0.001 0.008 0.017 0.351 0.001 0.042 0.005 0.004 0.241
Sole isolate? ¢
Yes 92.9(1237) 635(713) 61.2(783) 49.8 (623) 53.2 (430) 66.3 (620) 29.1 (387) 60.6 (800) 589 (67T0) 48.2 (3TN
No 856 (560) 50.8(245) 48.2(300) 39.5(244) 3828 (139) 52.8 (209) 242 (156) 49.6 (334) 47.2 (276)  40.5 (163)
pe <0.001 =0.001 =0.001 <0.001 «0.001 =0.001 0.022 =0.001 =0.001 0.013
Patient sex ¢
Male 91.4 (1025) 59.6(550) 57.2(615) 48.7 (498) 49.8 (322) 61.4 {469) 26.5 (298) 56.9 (642) 54.0 (521) 56.7 (303)
Female 895 (772) 59.8(408) 56.7(467) 46.0 (369) A47.5 (247) 63.5 (360) 28.8 (247) 56.7 (492) 56.0 (425) 43.3 (231)
pe 0.152 0.924 0.834 0.762 0.426 0.433 0.262 0.94 0.42 0.147
Age, mean
(95% CI) =
Resistant 575 582 60.2 59.5 586 58 59.6 60.0 592 59.8
(96.7-58.3) (58.1-60.3) (99.2-61.2) (58.4-60.6) {57.2-60.1) {96.8-59.1) (28.1-61.0) (99.1-61.0) (58.1-60.3) (58.2-61.2)
Susceplible 937 533 [2.7 54.5 28.7 52.6 56.1 931 52.9 556
(51.0-56.5) (51.8-548) (514-54.0) (53.3-565.7) (57.3-60.1) (50.8-54 3) (65.2-57.1) (51.9-544) (51.6-543) (54.2-57.1)
pt 0.006 <0.001 <0.001 <0.001 0.978 <0.001 <0.001 =<0.001 =<0.001 <0.001

:If isolates were reported as "resistant” or “intermediate” to any antibiotic in this class, it was classified as “resistant" for the entire class.
Amount of all adult isolates for which data was available regarding susceptibility testing against each antibiotic
ZResistance rate and amount of resistant isolates [%(n)], per category in each row. For example, 86.6% (n=1066) of tested CA isolates were resistant to CRO
p-value calculated by chi-squared test. Isolates from each anatomic source were compared to isolates from all other sites, for each calculation.
?Average age of patients with resistant and susceptible Ab isolates
p-value calculated by independent-sample t-test

#

50.4%, 42.2% and 29.8% of adult carbapenem-resistant isolates were susceptible to GM, TET/DOX and SAM, respectively
CAZ, ceftazidime; CRO, ceftriaxone; FEP, cefepime; IMI/MEM, imipenem/meropenem; SAM, ampicillin-sulbactam; TZP/TIM, pipercilin-tazobactam/ticarcillin-
clavulanate; GM, gentamicin; CIP/LVX, ciprofloxacin/levofloxacin; SXT, trimethoprim-sulfamethoxazole; TET/DOX, tetracycline/doxycycline.
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418 Figure legends

419 Figure 1. Annual occurrence of adult Ab isolates, BJC 2007-2016. Panel A depicts annual BJH

420 (black) and non-BJH (gray) Ab isolates. Also depicted are the annual amounts of BJH (panel B) and non-
421 BJH (panel C) adult Ab isolates obtained from each anatomic source. The legend in panel B applies to
422 both panels B and C. Values for BJH respiratory (solid black line) and non-BJH skin and soft

423  tissue/musculoskeletal (SST/MSK, dashed black line) isolates are on the right y-axis in panel B and C,
424 respectively. All other values are on the left y-axis. Arrows depict the year during which a BJH ICU

425 implicated in multiple nosocomial Ab outbreaks was relocated (see text). RESP, respiratory; URI, urinary;
426  VASC, endovascular.

427

428 Figure 2. Annual amounts of community-acquired (CA, gray) and hospital-acquired (HA, black)
429 isolates among all (panel A), BJH (panel B) and non-BJH (panel C) adult isolates. In all panels,

430 black triangles depict annual percent of isolates that are CA (“CA ratio”) and dotted lines are a best-fit
431 trend lines for CA rates (values on right y-axis). Y-axis values are conserved across panels. Arrows depict
432  the year during which a BJH ICU implicated in multiple nosocomial Ab outbreaks was relocated (see text).
433

434 Figure 3. Percent of total, BJH and non-BJH adult isolates that were CA (“CA ratio”). Isolates are
435 grouped by anatomical source: skin and soft tissue/musculoskeletal (SST/MSK), urinary (URI),

436 endovascular (VASC) or respiratory (RESP). White bars correspond to “total” adult isolates for each

437 group. **, p<0.005 by chi-squared test.

438

439 Figure 4. Prevalence of community-acquired isolates differs by Ab isolate source. Annual amounts
440  of hospital-acquired (HA, black lines) and community-acquired (CA, gray lines) Ab isolates in BJH (top
441 row) and non-BJH hospitals (bottom row). Columns correspond to isolates obtained from each anatomic
442 source. Y-axis scale is maintained throughout graphs in a row. In all panels, triangles depict annual

443 percent of isolates that are CA (“CA ratio,” values on right y-axis), and dotted lines are a best-fit trend

444 lines for CA ratio values. Arrows depict the year during which a BJH ICU implicated in multiple
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445 nosocomial Ab outbreaks was relocated (see text). Isolates from “other” sources are omitted for clarity.
446  SST/MSK, skin and soft tissue/musculoskeletal.

447

448  Figure 5. Rates of carbapenem resistance (CRAb-rate) among all (panel A), BJH (panel B) and non-
449 BJH (panel C) adult Ab isolates, BJC 2007-2016. Annual CRAb-rates among all (black circles, dashed
450 line), hospital-acquired (black triangles and solid line), and community-acquired (gray diamonds and solid
451 line) Ab isolates. Arrow depicts the year during which a BJH ICU implicated in multiple nosocomial Ab
452 outbreaks was relocated (see text).

453

454 Figure 6. Rates of carbapenem resistance (CRAb-rate) differ according to Ab isolate type. A)

455 CRAD-rates among isolates from each anatomic source, grouped by hospital-acquired (HA, black) and
456 community-acquired (CA, gray) cases. CRAb-rate was compared between HA and CA isolates by chi-
457  squared test. B) Proportion of carbapenem-susceptible (S), -resistant (R) or total adult Ab isolates from
458 each anatomic source. Isolates were grouped into HA and CA. The proportion of isolates from each

459 source was compared between compartments by chi-squared test. SST/MSK, skin and soft

460  tissue/musculoskeletal; n.s., not significant; **, p<0.005.

461

462 Figure S1. Rates of carbapenem resistance (CRAb-rate) among Ab isolates from different

463 anatomic sources, BJC 2007-2016. Annual CRAb-rates among total (black circles, gray dashed line),
464 hospital-acquired (HA, darker triangles and solid line), and community-acquired (CA, lighter triangles and
465  solid lines) Ab isolates, grouped by anatomic source. #, no HA endovascular isolates with carbapenem
466  susceptibility data were identified in 2014 or 2015.

467

468  Figure S2. Rates of carbapenem resistance (CRAb-rate) among adult BJH (panel A) and non-BJH
469 (panel B) isolates. CRADb-rates were compared between hospital-acquired (HA, black bars) and

470  community-acquired (CA, gray bars) isolates from each anatomic source by chi-squared test. SST/MSK,
471 skin and soft tissue/musculoskeletal; n.s., not significant; *, p<0.05; **, p<0.005. There was no CRADb-rate

472 difference among HA isolates in either panel A or B (p=0.28 and 0.402, respectively).
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473

474 Figure S3. Proportion of carbapenem-susceptible (S), -resistant (R) or total adult isolates from
475 each anatomic source, among BJH (panel A) and non-BJH (panel B) isolates. Graphs depict
476  distributions among hospital-acquired (HA) and community-acquired (CA) isolates. The proportion of
477  isolates from each source was compared between compartments by chi-squared test. SST/MSK, skin
478  and soft tissue/musculoskeletal; n.s., not significant; *, p<0.05; **, p<0.005.

479
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