

1 **Title:** Ten-year retrospective analysis of *Acinetobacter baumannii* clinical isolates reveals a
2 proportionately large, non-nosocomial, multidrug-resistant endemic reservoir
3

4 **Authors:**

5 **Juan J Calix, MD, PhD.** Division of Infectious Diseases, Department of Medicine, Washington University
6 School of Medicine, St. Louis, MO. **Jason P Burnham, MD.** Division of Infectious Diseases, Department
7 of Medicine, Washington University School of Medicine, St. Louis, MO. **Mario F Feldman, PhD.**
8 Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO.

9

10 **Key words:** *Acinetobacter baumannii*, multidrug resistance, hospital-acquired infections

11 **Running title:** *A. baumannii* community reservoir

12 **Corresponding author:** Juan Calix, MD, PhD.

13 Washington University in St. Louis School of Medicine

14 Division of Infectious Diseases

15 4523 Clayton Avenue, Campus Box 8051,

16 Saint Louis, Missouri 63110

17 jjcalix@wustl.edu Tel: 314-747-4473

18 **Alternative author:** Mario Feldman, PhD.

19 Washington University in St. Louis School of Medicine

20 Department of Molecular Microbiology

21 660 S. Euclid Avenue, Campus Box 8230,

22 Saint Louis, Missouri 63110

23 mariofeldman@wustl.edu Tel: 314-747-4473

24 **Summary:**

25 We compared hospital-acquired and community-acquired *Acinetobacter baumannii* in a large U.S.
26 healthcare system through a ten-year retrospective ecological analysis. Community-acquired isolates
27 composed over 60% of total *A. baumannii* isolates, were primarily from non-respiratory sources and
28 exhibited carbapenem resistance rates of 35-40%.

29

30 **Abstract:**

31 **Background:** *Acinetobacter baumannii* (*Ab*) is a global health threat notorious for causing hospital-
32 acquired (HA) infections, though many *Ab* infections are community-acquired (CA). Investigations
33 describing contemporaneous, clinically-relevant CA and HA *Ab* populations, are lacking.

34 **Methods:** We conducted a retrospective ecological analysis of 2042 *Ab* clinical isolates identified from
35 2007 to 2017 in the BJC HealthCare System (BJC), a multi-hospital system located in and around the
36 greater metropolitan area in St. Louis, Missouri. We described basic clinical characteristics and antibiotic
37 susceptibility rates of CA and HA *Ab* isolates in comparative and longitudinal analyses.

38 **Results:** 62.1% of all *Ab* isolates were CA, i.e., isolated in ambulatory settings or <48 hours following
39 hospital admission. Though HA isolates initially predominated in the largest BJC hospital, implementation
40 of infection control efforts resulted in a disproportionate reduction in annual HA isolate occurrence. This
41 revealed a stable, baseline occurrence of CA isolates. In all other hospitals, the annual proportion of
42 isolates that were CA averaged 78.7% (95%CI=74.5-83.0). 42.9% and 30.4% of total CA isolates were
43 from skin and soft tissue/musculoskeletal (SST/MSK) and urinary sources, respectively, while HA isolates
44 were primarily respiratory (55.6%). Rates of carbapenem resistance, a surrogate for multidrug resistant
45 (MDR) phenotypes, were higher among respiratory and HA cases (~60%) compared to contemporaneous
46 non-respiratory CA counterparts (~40%).

47 **Conclusions:** MDR *Ab* reservoirs associated with SST/MSK and urinary niches persist outside of
48 hospital environments in a large U.S. healthcare system, even after the implementation of effective
49 hospital infection control measures.

50

51

52 **Abbreviations:** *Ab*, *Acinetobacter baumannii*; BJC, BJC HealthCare System; BJH, Barnes-Jewish
53 Hospital; CA, community-acquired; CDR, Clinical Data Repository; CRAb, carbapenem-resistant *A.*
54 *baumannii*; HA, hospital-acquired; HCA, healthcare-associated; MDR, multidrug-resistant; SST/MSK, skin
55 and soft tissue/musculoskeletal
56

57 **Text:**

58 **Introduction**

59 The gram-negative bacterium *Acinetobacter baumannii* (*Ab*) can survive in multiple host and abiotic
60 environments and exhibits a propensity to acquire resistance to most antibiotics, including carbapenems
61 [1, 2]. In response to the global impact of multidrug resistant (MDR) *Ab* infections, the World Health
62 Organization and U.S. Centers for Disease Control and Prevention have recognized *Ab* as an urgent
63 threat requiring the development of novel interventions [3, 4]. However, the epidemiology and
64 pathogenesis of clinically-relevant *Ab* remain incompletely characterized.

65

66 *Ab* is widely regarded as an opportunistic pathogen that rarely causes community-acquired (CA)
67 infections, but instead causes hospital-acquired (HA) infections, namely nosocomial pneumonia and
68 bacteremia, in critically ill or immunocompromised patients [2, 5-7]. Thus, *Ab*-related research has almost
69 exclusively focused on hospital-associated bacterial populations [8-14]. However, recent studies suggest
70 that *Ab* isolates are routinely acquired in outpatient settings [15-18]. Therefore, research biased towards
71 HA cases may fail to describe the full spectrum of clinically-relevant *Ab* reservoirs. Specifically, there is a
72 paucity of investigations comparing contemporaneous *Ab* populations with differing epidemiological traits,
73 such as CA versus HA isolates, or isolates from large academic versus community hospitals. Defining
74 these potentially divergent *Ab* populations is especially important for accurately gauging the impact of
75 interventions designed against HA infections.

76

77 Here, we characterized different *Ab* populations through a retrospective longitudinal analysis of *Ab*
78 isolates identified over ten years in a large, multi-hospital system in St. Louis, Missouri. Notably, an
79 effective campaign against nosocomial *Ab* infections, which included the 2012 relocation of an ICU
80 implicated in multiple *Ab* outbreaks, occurred during this period, allowing us to observe the impact of
81 these interventions on different *Ab* populations. In this study, we did not investigate clinical outcomes or
82 patient-specific risk factors, instead focusing on comparing isolate-associated clinical features to better
83 understand the ecology of clinically-relevant *Ab* populations. Using this approach, we identified clinical
84 features distinguishing *Ab* populations and confirmed the emerging impact of CA *Ab*.

85

86 **Methods:**

87 *Study Location and Period.* Following approval from our local Institutional Review Board, we performed a
88 retrospective analysis of isolates identified in the BJC HealthCare System (BJC) from January 2007 to
89 September 2017. BJC is a large integrated inpatient and outpatient healthcare system in and around the
90 Greater Metropolitan Area of St. Louis, Missouri, USA. It includes nine community hospitals, an academic
91 pediatric hospital and a 1250-bed academic adult medical center (Barnes-Jewish Hospital, BJH), which
92 all combine for a total of over 3200 inpatient beds and >140 000 admissions annually (**Table S1**). For
93 longitudinal analyses we used data only from 2007 to 2016, given that 2017 data was limited to January
94 through August, at time of analysis.

95

96 *Isolate Identification and Definitions.* Using the BJC Clinical Data Repository (CDR), which is maintained
97 by the BJC Center for Clinical Excellence, we identified all instances in which *Acinetobacter* was isolated
98 during the course of regular medical care from adult patients age ≥ 18 years. Surveillance cultures
99 obtained during suspected nosocomial outbreaks were excluded. Only isolates from the first isolation
100 event per patient (“index culture”) was eligible for inclusion. Isolates were identified using either
101 automated biochemical methods or matrix-assisted laser desorption/ionization and time of flight
102 spectroscopy. The number of *Acinetobacter* index cultures and their microbial identification are listed in
103 **Table S2.** Only cases identified as “*Acinetobacter baumannii*” (n=990) or “*Acinetobacter calcoaceticus- baumannii* complex” (n=1052) were combined for the current analysis. Basic patient demographic
105 information, isolate tissue source, hospital day of index culture (if applicable), and antibiotic susceptibility
106 data for each isolate was obtained from the BJC CDR and by review of electronic charts, as needed.
107 Isolates were classified into one of five anatomical categories according to isolate tissue source:
108 “respiratory”, “skin and soft tissue/musculoskeletal” (SST/MSK), “urinary”, “endovascular”, or “other.”
109 They were defined as “hospital-acquired” (HA) if index culture was performed ≥ 48 hours after hospital
110 admission and prior to discharge, while all other isolates were defined as “community-acquired” (CA).
111 Isolates were also classified as “multi-isolate” if >1 co-isolated microbial species was reported in index
112 culture, or “sole isolate” if only a single *Acinetobacter* isolate was reported in the index culture.

113

114 *Antibiotic susceptibility reporting.* Antibiotic susceptibility testing was performed using the Vitek 2 system
115 or Kirby-Bauer disk diffusion on Mueller-Hinton Agar, and interpreted per CLSI guidelines [19]. Due to
116 temporal and geographical variation in susceptibility testing practices, antibiotic susceptibility profiles
117 were incomplete for many isolates. Isolates lacking susceptibility reporting for an antibiotic were excluded
118 from respective susceptibility-associated analyses. Non-susceptible isolates (i.e., isolates reported as
119 “resistant” or “intermediate”) were classified as “resistant” for analyses. Lastly, if an isolate was non-
120 susceptible to any for the following antibiotics in a class, it was labeled “resistant” for that class:
121 imipenem or meropenem for “carbapenems”; ciprofloxacin or levofloxacin for “fluoroquinolones”;
122 piperacillin-tazobactam or ticarcillin-clavulanic acid for “antipseudomonal penicillins plus β -lactamase
123 inhibitor”; and tetracycline or doxycycline for “tetracyclines” (**Table S3**).

124

125 *Statistical Methods.* All analyses were performed with SPSS v25 (IBM, USA). Chi-squared test or
126 independent t-test was performed for comparing categorical or continuous variables, respectively. *P*
127 values <0.05 were considered statistically significant.

128

129

130 **Results:**

131 **Isolates from different hospitals exhibit separate longitudinal trends**

132 Of the 2042 eligible *Ab* isolates obtained in BJC hospitals from January 2007 through September of 2017,
133 48.3% (n=987) were obtained at BJH (Table S1). The remaining isolates were identified in various
134 smaller hospitals (herein, referred to as “non-BJH” hospitals). As seen in **Figure 1A**, annual *Ab*
135 occurrence at BJH increased from 2007 to 2009, and steadily decreased over the remainder of the study
136 period. In contrast, annual occurrence of non-BJH isolates was relatively constant. Given this differential
137 pattern, we grouped isolates as “BJH” and “non-BJH” in our longitudinal analyses.

138

139 **Adult *Ab* isolates were derived from various anatomical sources**

140 Contrary to the prevalent notion that *Ab* is predominantly a respiratory pathogen [2, 5], 692 isolates
141 (33.9% of all adult isolates) were from skin and soft tissue/musculoskeletal (SST/MSK) sources, while 626
142 (30.7%), 487 (23.8%), 214 (10.5%), and 23 (1.1%) isolates were from respiratory, urinary, endovascular,
143 and “other” sources, respectively (Table 1). Proportion of “sole isolate” cases, where *Ab* was the only
144 isolate in index culture, differed across anatomic sources ($p<0.001$), with endovascular and SST/MSK
145 compartments having the highest and lowest proportions (83.2% and 51.5%, respectively). In
146 longitudinal analysis, annual BJH respiratory, urinary, and endovascular isolates peaked in 2009 and
147 subsequently decreased ~70% by 2016 (**Figure 1B**), with the largest year-over-year decrease happening
148 in 2012 (**Figure 1B, arrow**). In contrast, annual BJH SST/MSK isolates and non-BJH isolates from all
149 sources remained relatively stable (**Figures 1B and 1C**). Thus, isolates from different anatomic sources
150 and different hospitals exhibited varying epidemiologic features.

151

152 **HA and CA isolates exhibited divergent epidemiology**

153 Of all adult *Ab* isolates, 37.9% (n=774) were HA and 62.1% (n=1268) were CA (**Table 1**). The percent of
154 all adult isolates that were CA (“CA ratio”) increased over the study period (**Figure 2A**) and varied among
155 hospitals (**Table S1**). Notably, the decline in annual BJH *Ab* isolates over the study period (**Figure 1A**)
156 was largely due to a >10-fold decrease in annual HA isolates from 2009 to 2016 (**Figure 2B**). Though
157 annual BJH CA isolates also exhibited a ~3-fold decrease from 2009 levels, they remained relatively
158 stable after 2012. The decline of HA *Ab* occurrence resulted in the BJH annual CA ratio increasing from
159 39.2% to 74.3% over the study period (**Figure 2B and Table S1**). In contrast, annual CA ratios among
160 non-BJH isolates remained largely unchanged (mean= 78.7%; 95%CI=74.5-83.0) (**Figure 2C**).

161

162 The comparable selective decline in annual BJH HA and respiratory *Ab* isolates (**Figure 1B**), suggested a
163 link between these epidemiologic compartments. Indeed, 56.5% of total HA isolates were from
164 respiratory sources, followed by SST/MSK (19.1%), urinary (13.0%), endovascular (10.5%) and “other”
165 (0.9%). In contrast, CA isolates were primarily SST/MSK (42.9%) and urinary (30.4%), with only 14.9%,
166 10.5% and 1.3% isolated from respiratory, endovascular and “other” sources, respectively. Similarly,
167 79.3%, 78.6%, and 62.1% of total urinary, SST/MSK, and endovascular isolates, respectively, were CA,

168 compared to only 30.2% of respiratory isolates (**Figure 3**). CA ratios were higher among non-BJH
169 isolates in each anatomic source category, but the association between anatomic source and CA ratio
170 was conserved in both BJH and non-BJH isolates (**Figure 3**).

171
172 As seen in **Figure 4**, annual CA ratios were relatively stable over time for non-BJH SST/MSK, urinary and
173 respiratory isolates, with mean CA ratios of 83.3% (95%CI=78.7-87.8), 87.5% (95%CI=82.4-92.6) and
174 46.8% (95%CI=41.2-52.4), respectively. Though annual CA ratios for BJH SST/MSK isolates were also
175 relatively unchanged (mean=60.4%, 95%CI=41.2-52.4), CA ratios changed over time for other BJH
176 isolate types. From 2007-2011, annual CA ratios for BJH respiratory and urinary isolates averaged
177 23.5% (95%CI=20.6-26.4) and 61.8% (95%CI=57.1-66.5), respectively. Annual CA rates varied among
178 BJH respiratory isolates from 2012-2016, averaging 35.6% (95%CI=8.8-62.5). Contemporaneously, there
179 were nine to eleven annual CA isolates from 2012-2016, while annual HA urinary isolates declined to
180 zero. This resulted in BJH urinary isolate CA ratios progressively increasing to 100% in 2016 (**Figure 4**).
181 Both BJH and non-BJH endovascular isolates exhibited gradual increases in CA ratios that began prior to
182 2012 (**Figure 4**), with CA ratios among all endovascular isolates increasing from 44.8% (13 of 29 isolates)
183 in 2007 to 100% in 2014 and 2015 (n=7 and 13, respectively) and 60% in 2016 (6 of 10 isolates). In
184 summary, the BJC clinically-relevant *Ab* population was predominated by CA isolates principally from
185 urinary and SST/MSK sources, and their occurrence was largely independent of HA isolates, which were
186 principally from respiratory sources. Furthermore, a decrease in annual HA isolates overall (**Figure 2A**),
187 coincided with increases in CA ratios among endovascular isolates (**Figure 4**).
188

189 **High prevalence of antibiotic resistance among adult *Ab* isolates**

190 As shown in **Table S3**, adult *Ab* isolates exhibited high rates of antibiotic resistance, with rates ranging
191 from 27.5% for gentamicin to 90.5% for ceftriaxone. Antibiotic resistance was associated with multiple
192 clinical characteristics, including being “sole isolate” in index culture and older patient age. Resistance
193 rates also differed between HA and CA isolates and among isolates from different anatomic sources.
194 However, with the exception of ampicillin-sulbactam, there were less than two-fold differences between
195 the high resistance rates exhibited by HA, respiratory and endovascular isolates, and the lower rates

196 among CA, urinary and SST/MSK isolates (**Table S3**). Therefore, adult *Ab* isolates in all compartments
197 exhibited elevated antibiotic resistance rates.

198

199 **Rate of carbapenem resistance, a marker for *Ab* MDR phenotypes, varied according to**
200 **epidemiologic compartment**

201 Since *Ab* susceptibility testing practices varied in BJC during this period, we could not reliably determine
202 whether an isolate met established MDR definitions [20], i.e., non-susceptibility to ≥ 1 agent in ≥ 3
203 antimicrobial categories (**Table S3, first row**). However, all 867 adult carbapenem resistant *Ab* (CRAb)
204 isolates were resistant to at least two other antibiotic classes, independent of ceftriaxone (data not
205 shown). Thus, as previously observed in other *Acinetobacter* populations [21], carbapenem resistance
206 was a marker of the MDR phenotype. Annual rate of carbapenem resistance (“CRAb-rate”) ranged from
207 34.2% in 2012 to 58.9% in 2009 among total *Ab* isolates. Annual CRAb-rates differed between total HA
208 and CA isolates, averaging 38.1% (95%CI=32.7-43.5) and 56.3% (95%CI=49.0-63.5), respectively
209 (**Figure 5A**). BJH isolate CRAb-rates markedly changed in 2012, with an average of 58.3%
210 (95%CI=51.6-65.1) from 2007-2011, and 36.6% (95%CI=32.2-41.0) from 2012-2016 (**Figure 5B**). In
211 contrast, CRAb-rates among non-BJH adult isolate were stable throughout the study period at 39.3%
212 (95%CI=34.2-44.5) (**Figure 5C**). In summary, HA isolates had stably higher CRAb-rates than CA
213 isolates, and total *Ab* CRAb-rates changed over time, according to the prevalence of HA and CA isolates
214 in the population.

215

216 CRAb-rates were comparable among HA isolates from different anatomic sources (**Figure 6A, black**
217 **bars**). Furthermore, CRAb-rates were indistinguishable between CA and HA respiratory isolates (61.2%
218 and 55.8%, respectively, $p=0.22$). In contrast, CRAb-rates were lower in CA versus HA isolates from
219 SST/MSK (36.7% and 63.4%, respectively), urinary (30.8% and 61.1%), and endovascular (41.2% and
220 65.3%) sources ($p<0.001$ for all comparisons) (**Figure 6A**). The dissimilar CRAb-rates among non-
221 respiratory CA and HA populations were present throughout the period (**Figure S1**), and observed among
222 both BJH and non-BJH isolates (**Figure S2**). Thus, there were two populations according to diverging
223 CRAb-rates (**Figure 6A**) – “highly resistant” populations with CRAb-rates $>55\%$, i.e., all HA isolates and

224 CA respiratory isolates; and “intermediately resistant” populations with CRAb-rates between 20-50%, i.e.,
225 non-respiratory, CA isolates.

226

227 When comparing the proportions of isolates from each anatomic source, there was no difference between
228 CRAb and carbapenem-susceptible HA isolates ($p=0.77$) (**Figure 6B**). Though the proportions differed
229 between susceptible and resistant CA isolates ($p<0.005$), this difference was minimal compared to the
230 dissimilarities between HA and CA isolates, independent of carbapenem susceptibility (**Figure 6B**).

231 Respiratory isolates composed 55.0% of HA CRAb isolates but only 25.8% of total CA CRAb isolates.

232 Conversely, SST/MSK and urinary isolates composed 40.8% and 31.9%, respectively, of the CA CRAb
233 isolate reservoir, while composing only 18.5% and 13.7%, respectively, of the HA CRAb reservoir.

234 Endovascular isolates composed ~10% of all compartments (**Figure 6B**). In summary, CA CRAb/MDR
235 isolates were principally from urinary and SST/MSK sources, while HA CRAb/MDR isolates were
236 principally from respiratory sources.

237

238 **Discussion:**

239 Antibiotic-sparing strategies against MDR *Ab* must target factors facilitating bacterial survival in pertinent
240 reservoirs from where *Ab* infects at-risk hosts. To better characterize the ecology of *Ab* reservoirs, we
241 retrospectively analyzed 2042 temporally- and geographically-associated *Ab* clinical isolates. In contrast
242 to the widely accepted notion that *Ab* is primarily a HA pathogen, we found that 60-80% of *Ab* isolates
243 were CA. This high CA ratio may result from the inclusion of multiple regional community hospitals,
244 resulting in a more comprehensive survey of local *Ab* reservoirs. Indeed, if we had surveyed only our
245 large academic center, BJH, the CA ratio would have been <45% (**Table S1**). Another possible
246 explanation for a high CA ratio may be that multiple CA isolates were obtained through unaccounted
247 healthcare exposures, such as recent hospitalizations or long-term acute care facilities [22]. A limitation
248 to this study is that we could not identify patients who were transferred from non-BJC facilities or who had
249 other risk factors that would classify their cases as “healthcare-associated” (HCA) [23]. However, multiple
250 similar studies have reported that 25-65% of *Ab* clinical isolates are likely acquired in the community [15-
251 18], supporting that a substantial portion of clinically-relevant *Ab* reside in outpatient settings.

252

253 Further affirming the existence of an endemic *Ab* community reservoir, the occurrence of CA isolates
254 persisted even after the near eradication of BJH HA *Ab* cases. Multiple HA isolates identified in 2007-
255 2012 were from patients in a BJH ICU implicated in several MDR *Ab* nosocomial outbreaks starting in late
256 2007 and ending in August 2011 (unpublished findings). The 10-fold decrease of annual BJH HA isolates
257 likely resulted from physical relocation of the suspect ICU ward in 2012 and other aggressive hospital-
258 wide infection control measures. We suspect the accompanying 3-fold decrease in CA isolates was
259 secondary to a reduction of unaccounted HCA cases. While annual HA respiratory, urinary and
260 endovascular isolates decreased to near-zero levels after 2012, there was a steady annual occurrence of
261 CA isolates with epidemiologic features similar to CA isolates from non-BJH hospitals (i.e., intermediately
262 carbapenem resistant isolates from urinary and SST/MSK sources). Thus, the selective decrease of HA
263 *Ab* “unmasked” the impact of CA *Ab* isolates. Similar “unmasking” events may explain other reports of
264 increased proportions of *Ab* infections occurring outside of hospitals over time [24]. A limitation of our
265 ecological study design is that we did not determine whether isolates were associated with clinical
266 disease or asymptomatic colonization, so the impact of this CA reservoir on *Ab* disease remains to be
267 determined. Regardless, as aggressive measures against nosocomial infections are implemented, future
268 investigations should differentiate between outpatient *Ab* reservoirs, a microbial population neglected by
269 investigations that largely focus on HA *Ab* infections, and “classical” nosocomial *Ab*.

270

271 Our comparative analysis begins to define the *Ab* community reservoir. Though there were no
272 differences in patient age or sex between CA and HA cases (**Table 1**), we observed that CA isolates were
273 most often from SST/MSK or urinary sources and that HA isolates were predominately from respiratory
274 sources (**Figure 6B**). This is consistent with observations from a Hong Kong teaching hospital, where
275 32.8% and 25.8% of general ward *Acinetobacter* isolates were from wound or urinary sources, while
276 80.7% of ICU isolates were respiratory [25]. Similar observations were made in *Ab* populations in
277 Spanish hospitals [24]. Though the anatomic source of isolates are probably influenced by the variable
278 culturing practices inherent to different hospital wards, the fact that various international studies reported
279 similar findings supports that these observations reflect real ecological phenomena.

280

281 In contrast to the susceptible *Ab* strains implicated in community-acquired pneumoniae in tropical regions
282 [26], BJC CA *Ab* isolates displayed elevated CRAb/MDR rates (~40%), albeit lower rates than HA isolates
283 (~60%) (**Table S3**). The high but differing resistance rates between BJC CA and HA *Ab* are consistent
284 with rates reported in prior U.S. national studies [16, 18]. However, antibiotic pressures alone may not
285 explain the diverging epidemiology of HA and CA *Ab*, as associations between anatomic source and CA
286 or HA *Ab* were mostly conserved across CRAb and non-CRAb isolates (**Figure 6B**). It has been
287 proposed that *Ab* capable of human colonization compose clonal subsets distinct from *Ab* occupying
288 undefined environmental reservoirs [27]. It is tempting to speculate that clinically-relevant *Ab*
289 subpopulations exhibit diverging capabilities to survive in different epidemiologic compartments or host
290 niches, independent of antibiotic resistance. Examining this hypothesis will require molecular and
291 phenotypic analyses of *Ab* isolated from different epidemiological compartments.

292

293 In summary, we report divergent antibiotic transmission dynamics, anatomic sources, and resistance
294 rates between clinically-relevant CA and HA *Ab* populations. Though our findings are limited to a single
295 regional U.S. healthcare system, similar observations have been reported by multiple groups nationally
296 and internationally. Validating a cutoff of 48 hours post-hospital admission to define HA *Ab* subgroups
297 requires more comprehensive review of *Ab* clinical cases (e.g., identifying HCA cases among CA isolates,
298 clinical outcome analyses, etc.) coupled with molecular characterization of matched isolates. As
299 endemic, non-nosocomial MDR *Ab* reservoirs pose potential threats to ongoing efforts against MDR *Ab*
300 disease, further characterization of CA *Ab* isolates remains crucial.

301

302 **Funding:** This work was supported by the National Institutes of Health (NIH) [grant number T32
303 AI007172 to J.J.C.; and R21 144220 to M.F.F.]; and National Center for Advancing Translational
304 Sciences and NIH Roadmap for Medical Research [grant number UL1 TR002345, Sub-Award KL2
305 TR002346 to J.P.B.]. This manuscript's contents are solely the responsibility of the authors and do not
306 necessarily represent the official view of NIH or NCATS.

307

308 **Conflicts of Interest:** M.F.F. has been a consultant for Entasis Therapeutics. All other authors report no
309 conflict of interests.

310 **Acknowledgments:** The authors would like to thank Dorothy Sinclair and Cherie Hill for their essential
311 and expert contributions in data retrieval for this study.

312 **References**

313 1. Harding CM, Hennon SW, Feldman MF. Uncovering the mechanisms of *Acinetobacter baumannii*
314 virulence. *Nat Rev Microbiol* **2018**; 16(2): 91-102.

315 2. Wong D, Nielsen TB, Bonomo RA, Pantapalangkoor P, Luna B, Spellberg B. Clinical and
316 Pathophysiological Overview of *Acinetobacter* Infections: a Century of Challenges. *Clin Microbiol
317 Rev* **2017**; 30(1): 409-47.

318 3. Tacconelli E, Carrara E, Savoldi A, et al. Discovery, research, and development of new
319 antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. *Lancet Infect Dis*
320 **2018**; 18(3): 318-27.

321 4. Prevention. CfDCa. Antibiotic Resistance Threats in the United States, 2013. Available at:
322 <https://www.cdc.gov/drugresistance/pdf/ar-threats-2013-508.pdf>. Accessed 20 November 2018.

323 5. Peleg AY, Seifert H, Paterson DL. *Acinetobacter baumannii*: emergence of a successful
324 pathogen. *Clin Microbiol Rev* **2008**; 21(3): 538-82.

325 6. Vazquez Guillamet C, Kollef MH. *Acinetobacter* Pneumonia: Improving Outcomes With Early
326 Identification and Appropriate Therapy. *Clin Infect Dis* **2018**; 67(9): 1455-62.

327 7. Davis JS, McMillan M, Swaminathan A, et al. A 16-year prospective study of community-onset
328 bacteremic *Acinetobacter* pneumonia: low mortality with appropriate initial empirical antibiotic
329 protocols. *Chest* **2014**; 146(4): 1038-45.

330 8. Weiner LM, Webb AK, Limbago B, et al. Antimicrobial-Resistant Pathogens Associated With
331 Healthcare-Associated Infections: Summary of Data Reported to the National Healthcare Safety
332 Network at the Centers for Disease Control and Prevention, 2011-2014. *Infect Control Hosp
333 Epidemiol* **2016**; 37(11): 1288-301.

334 9. Ahmed-Bentley J, Chandran AU, Joffe AM, French D, Peirano G, Pitout JD. Gram-negative
335 bacteria that produce carbapenemases causing death attributed to recent foreign hospitalization.
336 *Antimicrob Agents Chemother* **2013**; 57(7): 3085-91.

337 10. Fitzpatrick MA, Ozer EA, Hauser AR. Utility of Whole-Genome Sequencing in Characterizing
338 *Acinetobacter* Epidemiology and Analyzing Hospital Outbreaks. *J Clin Microbiol* **2016**; 54(3): 593-
339 612.

340 11. Jimenez-Guerra G, Heras-Canas V, Gutierrez-Soto M, et al. Urinary tract infection by
341 Acinetobacter baumannii and Pseudomonas aeruginosa: evolution of antimicrobial resistance and
342 therapeutic alternatives. *J Med Microbiol* **2018**.

343 12. Hurley JC. World-wide variation in incidence of Acinetobacter associated ventilator associated
344 pneumonia: a meta-regression. *BMC Infect Dis* **2016**; 16(1): 577.

345 13. Eber MR, Shardell M, Schweizer ML, Laxminarayan R, Perencevich EN. Seasonal and
346 temperature-associated increases in gram-negative bacterial bloodstream infections among
347 hospitalized patients. *PLoS One* **2011**; 6(9): e25298.

348 14. Leao AC, Menezes PR, Oliveira MS, Levin AS. Acinetobacter spp. are associated with a higher
349 mortality in intensive care patients with bacteremia: a survival analysis. *BMC Infect Dis* **2016**; 16:
350 386.

351 15. Kim YA, Kim JJ, Won DJ, Lee K. Seasonal and Temperature-Associated Increase in Community-
352 Onset Acinetobacter baumannii Complex Colonization or Infection. *Ann Lab Med* **2018**; 38(3):
353 266-70.

354 16. Hoffman-Roberts H, Scoble P, Tabak YP, Mohr J, Johannes RS, Gupta V. National Prevalence of
355 Multidrug-Resistant Acinetobacter baumannii Infections in the Ambulatory and Acute Care
356 Settings, Including Carbapenem-Resistant Acinetobacter Infections, in the United States in 2015.
357 *Open Forum Infectious Diseases* **2016**; 3(suppl_1): 1488-.

358 17. Perencevich EN, McGregor JC, Shardell M, et al. Summer Peaks in the Incidences of Gram-
359 Negative Bacterial Infection Among Hospitalized Patients. *Infect Control Hosp Epidemiol* **2008**;
360 29(12): 1124-31.

361 18. Goto M, McDanel JS, Jones MM, et al. Antimicrobial Nonsusceptibility of Gram-Negative
362 Bloodstream Isolates, Veterans Health Administration System, United States, 2003-2013(1).
363 *Emerg Infect Dis* **2017**; 23(11): 1815-25.

364 19. Institute. CaLS. Performance standards for antimicrobial susceptibility testing; 27th edition. CLSI
365 document M100-S27. Wayne, PA: Clinical and Laboratory Standards Institute. . **2017**.

366 20. Magiorakos AP, Srinivasan A, Carey RB, et al. Multidrug-resistant, extensively drug-resistant and
367 pandrug-resistant bacteria: an international expert proposal for interim standard definitions for
368 acquired resistance. *Clin Microbiol Infect* **2012**; 18(3): 268-81.

369 21. Maragakis LL, Perl TM. *Acinetobacter baumannii*: Epidemiology, antimicrobial resistance, and
370 treatment options. *Clinical Infectious Diseases* **2008**; 46(8): 1254-63.

371 22. Marchaim D, Chopra T, Bogan C, et al. The burden of multidrug-resistant organisms on tertiary
372 hospitals posed by patients with recent stays in long-term acute care facilities. *Am J Infect Control*
373 **2012**; 40(8): 760-5.

374 23. Friedman ND, Kaye KS, Stout JE, et al. Health care--associated bloodstream infections in adults:
375 a reason to change the accepted definition of community-acquired infections. *Ann Intern Med*
376 **2002**; 137(10): 791-7.

377 24. Villar M, Cano ME, Gato E, et al. Epidemiologic and clinical impact of *Acinetobacter baumannii*
378 colonization and infection: a reappraisal. *Medicine (Baltimore)* **2014**; 93(5): 202-10.

379 25. Siau H, Yuen KY, Wong SS, Ho PL, Luk WK. The epidemiology of *acinetobacter* infections in
380 Hong Kong. *J Med Microbiol* **1996**; 44(5): 340-7.

381 26. Meumann EM, Anstey NM, Currie BJ, et al. Genomic epidemiology of severe community-onset
382 *Acinetobacter baumannii* infection. *Microb Genom* **2019**.

383 27. Diancourt L, Passet V, Nemec A, Dijkshoorn L, Brisse S. The population structure of
384 *Acinetobacter baumannii*: expanding multiresistant clones from an ancestral susceptible genetic
385 pool. *PLoS One* **2010**; 5(4): e10034.

386

387

388

Table 1. General clinical characteristics of all adult *A. baumannii* isolates, BJC 2007-2017

389

	All	Isolate Source					<i>p</i> ^a	Isolate Type		<i>p</i> ^b
		Other	Respiratory	SST/MSK	Urinary	Endovascular		CA	HA	
% All Isolates (n)	n/a (2042)	1.1 (23)	30.7 (626)	33.9 (692)	23.8 (487)	10.5 (214)		62.1 (1268)	37.9 (774)	
% Female (n)	43.3 (884)	60.9 (14)	39.5 (247)	44.9 (311)	42.9 (209)	48.1 (103)	0.050	44.6 (566)	41.1 (318)	0.116
Age, mean	57.1	60.3	57.7	57.4	55.7	57.7		57.5	56.5	0.219
Age, 95% CI	56.4-57.9	54.2-68.4	56.3-59.1	56.1-58.7	53.8-57.5	55.6-59.9		56.5-58.6	55.3-57.8	
% CA (n)	62.1 (1268)	69.6 (16)	30.2 (189)	78.6 (544)	79.3 (386)	82.1 (133)	<0.001	--	--	--
% Sole isolate ^c (n)	66.7 (1362)	60.9 (14)	75.4 (472)	51.5 (356)	70.2 (342)	83.2 (178)	<0.001	61.8 (783)	74.8 (579)	<0.001

390

^a *p*-value by chi-squared test, compared across all isolate anatomic sources

391

^b *p*-value by chi-squared test, compared between CA and HA isolates

392

^c cases where *A. baumannii* was the only microbial species reported in index culture

393

394

Table S1. Annual amounts of community-acquired (CA) and hospital-acquired (HA) *A. baumannii* isolates per Hospital, BJC 2007-2017

BJC Beds Hospital (n)	2007			2008			2009			2010			2011			2012			2013			2014			2015			2016			2017 ^a			TOTAL							
	CA	HA	%CA	CA	HA	%CA	CA	HA	%CA	CA	HA	%CA	CA	HA	%CA	CA	HA	%CA	CA	HA	%CA	CA	HA	%CA	CA	HA	%CA	CA	HA	%CA	CA	HA	%CA	TOTAL							
Missouri Refrat Hospital- Sullivan	75	2	1	88.7%	2	2	50.0%	1	3	100.0%	2	0	100.0%	4	0	100.0%	3	2	83.0%	2	3	100.0%	3	0	100.0%	6	0	100.0%	3	0	100.0%	2	0	100.0%	30	5	85.7%	25			
Barnes- Jewish Hospital	1250	47	73	39.2%	50	102	36.0%	75	119	36.7%	60	72	45.5%	45	69	39.5%	25	27	48.1%	34	40	45.9%	25	14	64.1%	20	17	62.2%	26	9	74.3%	12	10	54.5%	405	552	44.1%	907			
Barco Jewell West County Hospital	77	0	1	0.0%	8	1	75.0%	2	3	100.0%	1	0	100.0%	2	0	100.0%	1	0	100.0%	4	3	100.0%	0	0	N/A	0	0	N/A	1	0	100.0%	14	2	87.5%	16						
Missouri Baptist Medical Center	409	14	0	82.4%	12	5	70.6%	10	5	72.2%	19	4	82.6%	11	3	73.6%	17	0	100.0%	19	4	82.6%	14	0	24.4%	16	2	96.9%	0	3	72.7%	11	2	84.6%	154	34	81.9%	100			
Parkland Health Center	102	2	0	100.0%	8	1	88.9%	9	5	80.0%	4	2	88.7%	2	1	85.7%	5	2	71.4%	2	3	100.0%	2	0	100.0%	8	0	100.0%	2	0	100.0%	48	12	79.3%	60						
Barnes- Jewish St. Peters Hospital	113	1	0	100.0%	3	0	100.0%	3	1	76.0%	1	0	100.0%	1	1	80.0%	3	0	100.0%	2	0	100.0%	2	0	100.0%	4	0	100.0%	1	0	100.0%	2	0	100.0%	26	2	92.9%	28			
Boozo Hospital Center	397	"	"	"	"	"	"	1	2	99.9%	9	2	81.8%	1	1	91.7%	5	2	71.4%	8	3	100.0%	5	0	100.0%	5	0	100.0%	3	0	100.0%	52	7	88.1%	79						
Atton Memorial Hospital	186	5			5			5			5			5			5			5			5			5			16	0	100.0%	6	3	66.7%	4	0	100.0%	26	3	89.7%	29
St. Louis Childrens Hospital	300	1	0	100.0%	2	0	100.0%	1	3	100.0%	3	2	0.0%	3	0	N/A	0	0	N/A	0	3	N/A	0	0	N/A	1	0	N/A	1	0	N/A	3	0	N/A	4	2	75.0%	8			
Christian Hospital	258	32	15	68.1%	52	15	77.6%	38	20	88.5%	61	15	80.3%	58	17	77.3%	43	17	71.7%	38	12	78.0%	53	7	88.3%	43	17	71.7%	36	10	78.3%	7	8	46.7%	161	153	75.1%	611			
Pinhook West	72	1	0	100.0%	0	0	N/A	0	3	N/A	1	0	100.0%	1	0	100.0%	1	0	100.0%	3	1	75.0%	1	3	100.0%	3	0	100.0%	5	"	63.3%	2	0	100.0%	18	2	93.0%	20			
TOTAL	3319	100	93	51.8%	140	126	52.6%	142	151	48.5%	150	97	60.7%	136	93	59.4%	109	49	69.0%	109	59	64.9%	108	24	81.8%	130	36	78.3%	93	26	78.2%	51	20	71.8%	1268	774	62.1%	2042			

395

396

397

^a Only includes isolates identified from January 1 thru August 31, 2017

398

^b Hospital data not available for that year

399

400

Table S2. Identity and total amount of *Acinetobacter* index cases, BJC 2007-2017

Reported identity ^a	Total index cultures (n)
<i>A. baumannii</i> ^b	990
" <i>A. calcoaceticus</i> - <i>baumannii</i> complex" ^b	1052
<i>A. nosocomialis</i>	4
<i>A. pittii</i>	1
" <i>Acinetobacter</i> species"	481
<i>A. lwoffii</i>	317
<i>A. haemolyticus</i>	5
<i>A. ursingii</i>	5
<i>A. johnsonii</i>	2
<i>A. junii</i>	2

401

402

403

404

405

406

^a Isolates identity determined by automated biochemical methods or MALDI-TOF spectroscopy

^b Isolates included in our current analysis

Table S3. Associations between clinical characteristics and antibiotic resistance among all adult *A. baumannii* isolates, BJC 2007-2017

Antibiotic class	Extended spectrum cephalosporin			Antipseudomonal carbapenem	Penicillin + β -lactamase inhibitor	Antipseudomonal penicillin + β -lactamase inhibitor	Aminoglycoside		Fluoroquinolone	Folate pathway inhibitor	Tetracycline
	CRO	CAZ	FEP				IMI/MEM ^a	SAM	TZP/TIM ^a	GM	CIP/LVX ^a
Tested isolates ^b	1985	1805	1900	1868	1166	1331	1972	1995	1723	1172	
Total ^c	90.5 (1797)	59.7 (958)	56.9 (1082)	46.4 (867) [#]	48.8 (596)	62.3 (829)	27.5 (543)	56.8 (1134)	54.9 (946)	45.6 (534)	
Isolate type ^c											
CA	86.6 (1066)	52.7 (494)	49.7 (573)	38.7 (439)	36.1 (257)	54.9 (384)	24.5 (298)	49.3 (611)	49.4 (499)	39.3 (281)	
HA	96.9 (731)	69.6 (484)	68.0 (509)	58.4 (428)	68.6 (312)	70.4 (315)	32.5 (245)	69.2 (523)	62.6 (447)	55.4 (253)	
p ^d	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Isolate source ^c											
Respiratory	97.6 (600)	68.2 (393)	65.4 (398)	57.2 (57.2)	65.8 (252)	69.8 (372)	34.6 (214)	66.5 (411)	61.5 (351)	54.0 (195)	
p ^d	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
SST/MSK	84.4 (568)	54.4 (251)	53.4 (330)	42.5 (256)	32.2 (138)	56.9 (186)	26.0 (172)	52.4 (354)	55.1 (296)	44.5 (185)	
p ^d	<0.001	0.007	0.3	0.018	<0.001	0.02	0.285	0.005	0.903	0.578	
Urinary	88.8 (430)	51.7 (193)	49.4 (230)	37.1 (168)	44.0 (106)	54.9 (163)	20.5 (98)	50.1 (244)	46.9 (199)	37.4 (107)	
p ^d	0.145	<0.001	<0.001	<0.001	0.093	0.003	<0.001	0.001	0.001	0.001	0.001
Endovascular	93.7 (178)	66.7 (116)	63.4 (118)	50.0 (92)	67.3 (70)	66.9 (103)	29.5 (57)	61.7 (119)	55.9 (95)	44.6 (45)	
p ^d	0.118	0.047	0.06	0.304	<0.001	0.21	0.513	0.155	0.787	0.831	
Other	91.3 (21)	23.8 (5)	28.6 (6)	21.7 (5)	33.3 (3)	25.0 (5)	8.7 (2)	27.3 (6)	23.8 (5)	25.0 (2)	
p ^d	0.898	0.001	0.008	0.017	0.351	0.001	0.042	0.005	0.004	0.241	
Sole isolate? ^c											
Yes	92.9 (1237)	63.5 (713)	61.2 (783)	49.8 (623)	53.2 (430)	66.3 (620)	29.1 (387)	60.6 (800)	58.9 (670)	48.2 (371)	
No	85.6 (560)	50.8 (245)	48.2 (300)	39.5 (244)	38.8 (139)	52.8 (209)	24.2 (156)	49.6 (334)	47.2 (276)	40.5 (163)	
p ^d	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	0.022	<0.001	<0.001	0.013	
Patient sex ^c											
Male	91.4 (1025)	59.6 (550)	57.2 (615)	46.7 (498)	49.8 (322)	61.4 (469)	26.5 (298)	56.9 (642)	54.0 (521)	56.7 (303)	
Female	89.5 (772)	59.8 (408)	56.7 (467)	46.0 (369)	47.5 (247)	63.5 (360)	28.8 (247)	56.7 (492)	56.0 (425)	43.3 (231)	
p ^d	0.152	0.924	0.834	0.762	0.426	0.433	0.262	0.94	0.42	0.147	
Age, mean (95% CI) ^e											
Resistant	57.5 (56.7-58.3)	59.2 (58.1-60.3)	60.2 (59.2-61.2)	59.5 (58.4-60.6)	58.8 (57.2-60.1)	58 (56.8-59.1)	59.6 (58.1-61.0)	60.0 (59.1-61.0)	59.2 (58.1-60.3)	59.6 (58.2-61.2)	
Susceptible	53.7 (51.0-56.5)	53.3 (51.8-54.8)	52.7 (51.4-54.0)	54.5 (53.3-55.7)	58.7 (57.3-60.1)	52.6 (50.8-54.3)	56.1 (55.2-57.1)	53.1 (51.9-54.4)	52.9 (51.6-54.3)	55.6 (54.2-57.1)	
p ^f	0.006	<0.001	<0.001	<0.001	0.978	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001

^a If isolates were reported as "resistant" or "intermediate" to any antibiotic in this class, it was classified as "resistant" for the entire class.

^b Amount of all adult isolates for which data was available regarding susceptibility testing against each antibiotic

^c Resistance rate and amount of resistant isolates [% (n)], per category in each row. For example, 86.6% (n=1066) of tested CA isolates were resistant to CRO

^d p-value calculated by chi-squared test. Isolates from each anatomic source were compared to isolates from all other sites, for each calculation.

^e Average age of patients with resistant and susceptible *Ab* isolates

^f p-value calculated by independent-sample t-test

[#] 50.4%, 42.2% and 29.8% of adult carbapenem-resistant isolates were susceptible to GM, TET/DOX and SAM, respectively

CAZ, ceftazidime; CRO, ceftriaxone; FEP, cefepime; IMI/MEM, imipenem/meropenem; SAM, ampicillin-sulbactam; TZP/TIM, piperacillin-tazobactam/ticarcillin-clavulanate; GM, gentamicin; CIP/LVX, ciprofloxacin/levofloxacin; SXT, trimethoprim-sulfamethoxazole; TET/DOX, tetracycline/doxycycline.

418 **Figure legends**

419 **Figure 1. Annual occurrence of adult Ab isolates, BJC 2007-2016.** Panel A depicts annual BJH
420 (black) and non-BJH (gray) Ab isolates. Also depicted are the annual amounts of BJH (panel B) and non-
421 BJH (panel C) adult Ab isolates obtained from each anatomic source. The legend in panel B applies to
422 both panels B and C. Values for BJH respiratory (solid black line) and non-BJH skin and soft
423 tissue/musculoskeletal (SST/MSK, dashed black line) isolates are on the right y-axis in panel B and C,
424 respectively. All other values are on the left y-axis. Arrows depict the year during which a BJH ICU
425 implicated in multiple nosocomial Ab outbreaks was relocated (see text). RESP, respiratory; URI, urinary;
426 VASC, endovascular.

427

428 **Figure 2. Annual amounts of community-acquired (CA, gray) and hospital-acquired (HA, black)**
429 **isolates among all (panel A), BJH (panel B) and non-BJH (panel C) adult isolates.** In all panels,
430 black triangles depict annual percent of isolates that are CA ("CA ratio") and dotted lines are a best-fit
431 trend lines for CA rates (values on right y-axis). Y-axis values are conserved across panels. Arrows depict
432 the year during which a BJH ICU implicated in multiple nosocomial Ab outbreaks was relocated (see text).

433

434 **Figure 3. Percent of total, BJH and non-BJH adult isolates that were CA ("CA ratio").** Isolates are
435 grouped by anatomical source: skin and soft tissue/musculoskeletal (SST/MSK), urinary (URI),
436 endovascular (VASC) or respiratory (RESP). White bars correspond to "total" adult isolates for each
437 group. **, p<0.005 by chi-squared test.

438

439 **Figure 4. Prevalence of community-acquired isolates differs by Ab isolate source.** Annual amounts
440 of hospital-acquired (HA, black lines) and community-acquired (CA, gray lines) Ab isolates in BJH (top
441 row) and non-BJH hospitals (bottom row). Columns correspond to isolates obtained from each anatomic
442 source. Y-axis scale is maintained throughout graphs in a row. In all panels, triangles depict annual
443 percent of isolates that are CA ("CA ratio," values on right y-axis), and dotted lines are a best-fit trend
444 lines for CA ratio values. Arrows depict the year during which a BJH ICU implicated in multiple

445 nosocomial Ab outbreaks was relocated (see text). Isolates from “other” sources are omitted for clarity.

446 SST/MSK, skin and soft tissue/musculoskeletal.

447

448 **Figure 5. Rates of carbapenem resistance (CRAb-rate) among all (panel A), BJH (panel B) and non-**

449 **BJH (panel C) adult Ab isolates, BJC 2007-2016.** Annual CRAb-rates among all (black circles, dashed

450 line), hospital-acquired (black triangles and solid line), and community-acquired (gray diamonds and solid

451 line) Ab isolates. Arrow depicts the year during which a BJH ICU implicated in multiple nosocomial Ab

452 outbreaks was relocated (see text).

453

454 **Figure 6. Rates of carbapenem resistance (CRAb-rate) differ according to Ab isolate type. A)**

455 CRAb-rates among isolates from each anatomic source, grouped by hospital-acquired (HA, black) and

456 community-acquired (CA, gray) cases. CRAb-rate was compared between HA and CA isolates by chi-

457 squared test. B) Proportion of carbapenem-susceptible (S), -resistant (R) or total adult Ab isolates from

458 each anatomic source. Isolates were grouped into HA and CA. The proportion of isolates from each

459 source was compared between compartments by chi-squared test. SST/MSK, skin and soft

460 tissue/musculoskeletal; n.s., not significant; **, $p<0.005$.

461

462 **Figure S1. Rates of carbapenem resistance (CRAb-rate) among Ab isolates from different**

463 **anatomic sources, BJC 2007-2016.** Annual CRAb-rates among total (black circles, gray dashed line),

464 hospital-acquired (HA, darker triangles and solid line), and community-acquired (CA, lighter triangles and

465 solid lines) Ab isolates, grouped by anatomic source. #, no HA endovascular isolates with carbapenem

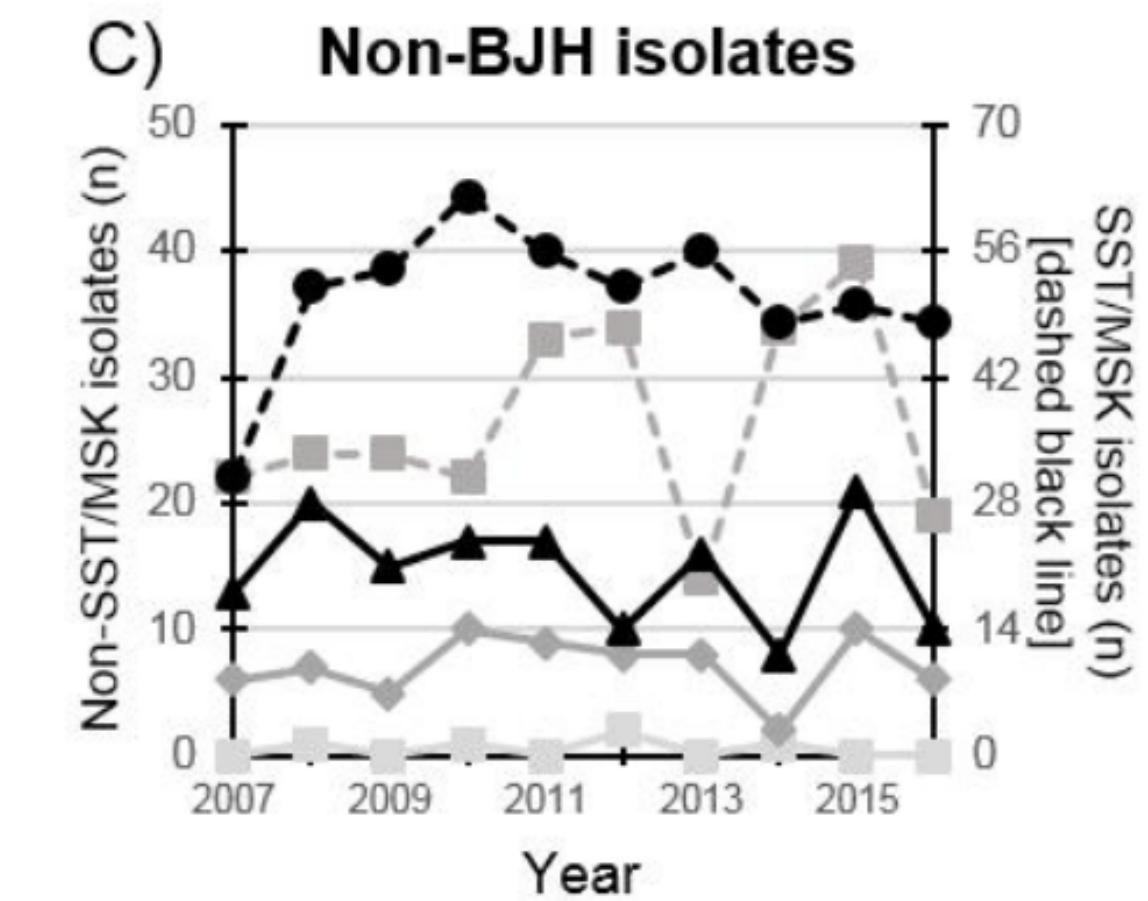
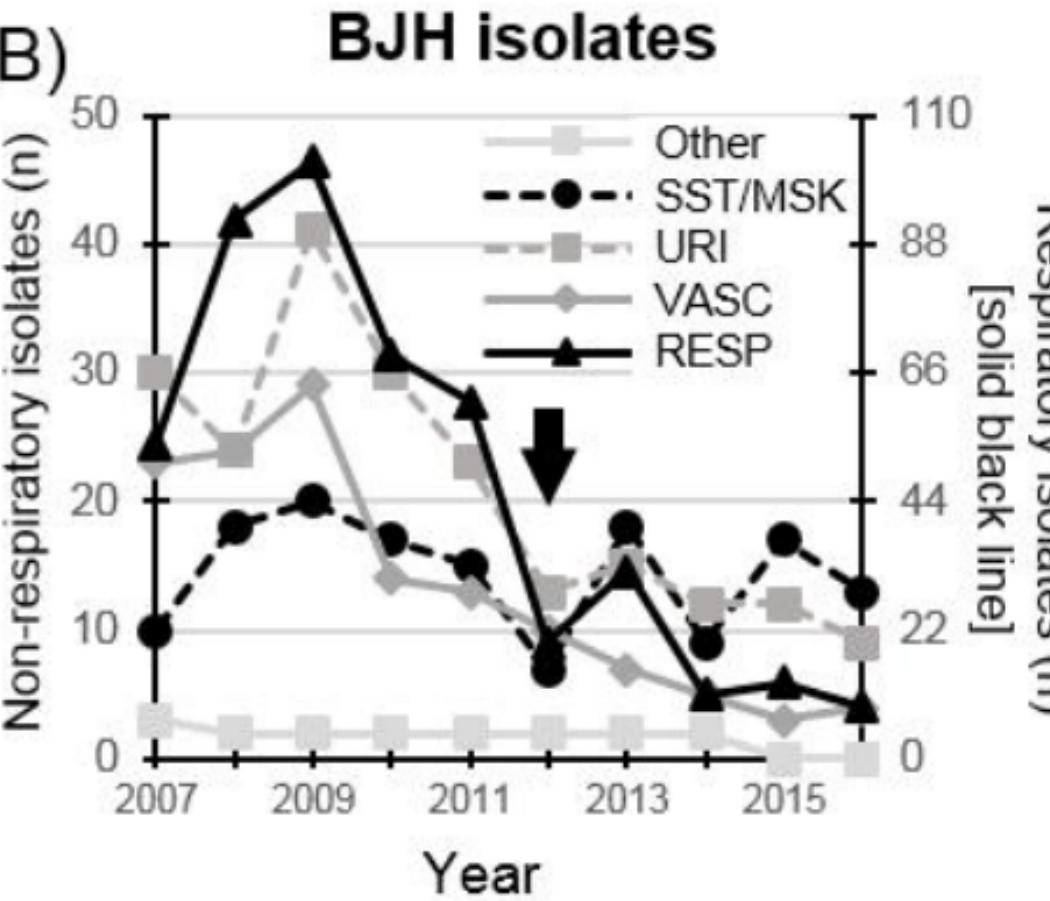
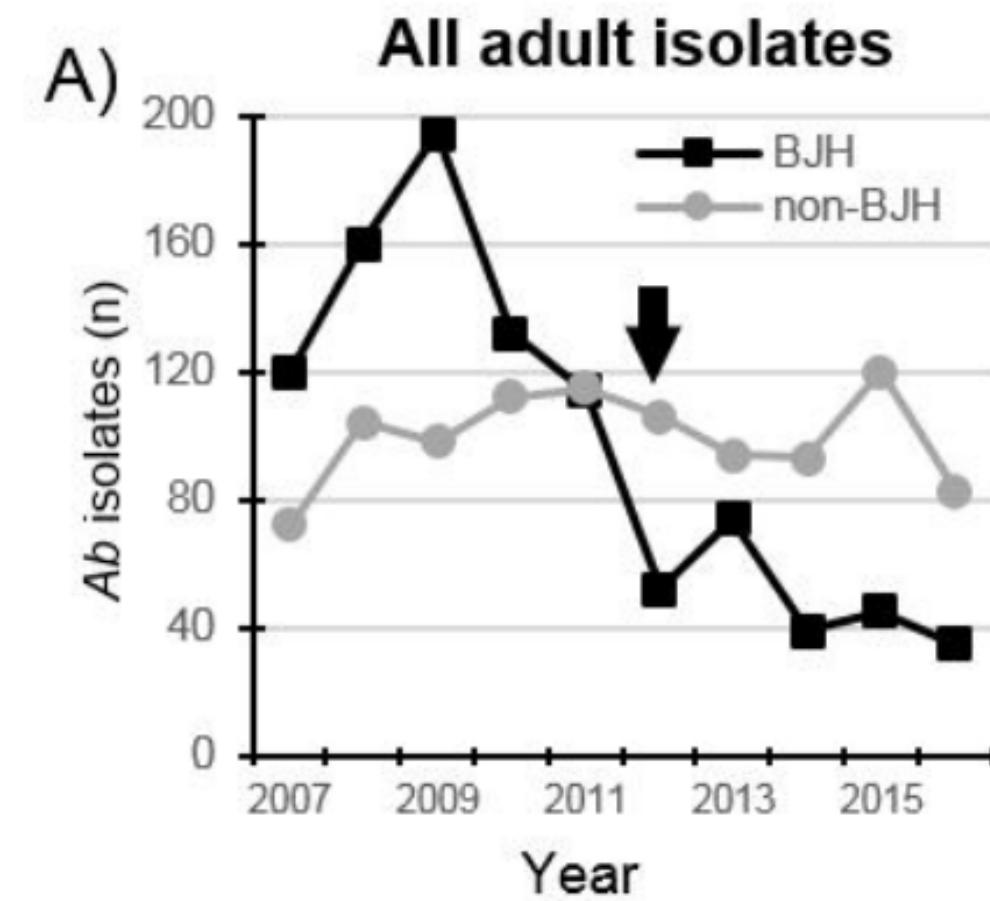
466 susceptibility data were identified in 2014 or 2015.

467

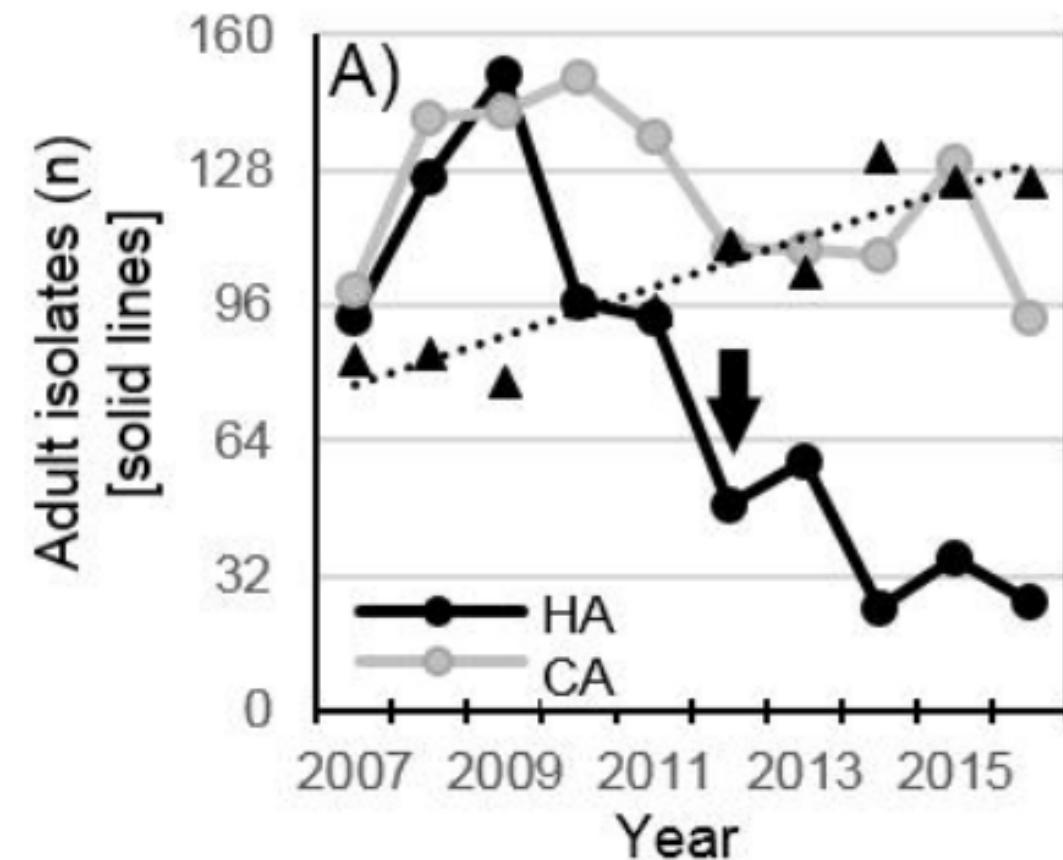
468 **Figure S2. Rates of carbapenem resistance (CRAb-rate) among adult BJH (panel A) and non-BJH**

469 **(panel B) isolates.** CRAb-rates were compared between hospital-acquired (HA, black bars) and

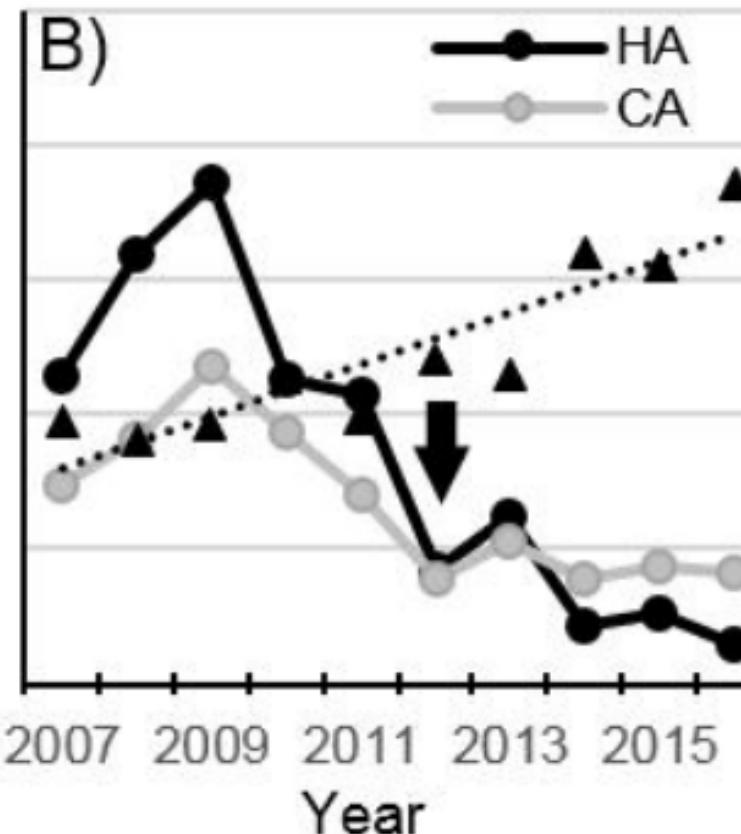
470 community-acquired (CA, gray bars) isolates from each anatomic source by chi-squared test. SST/MSK,

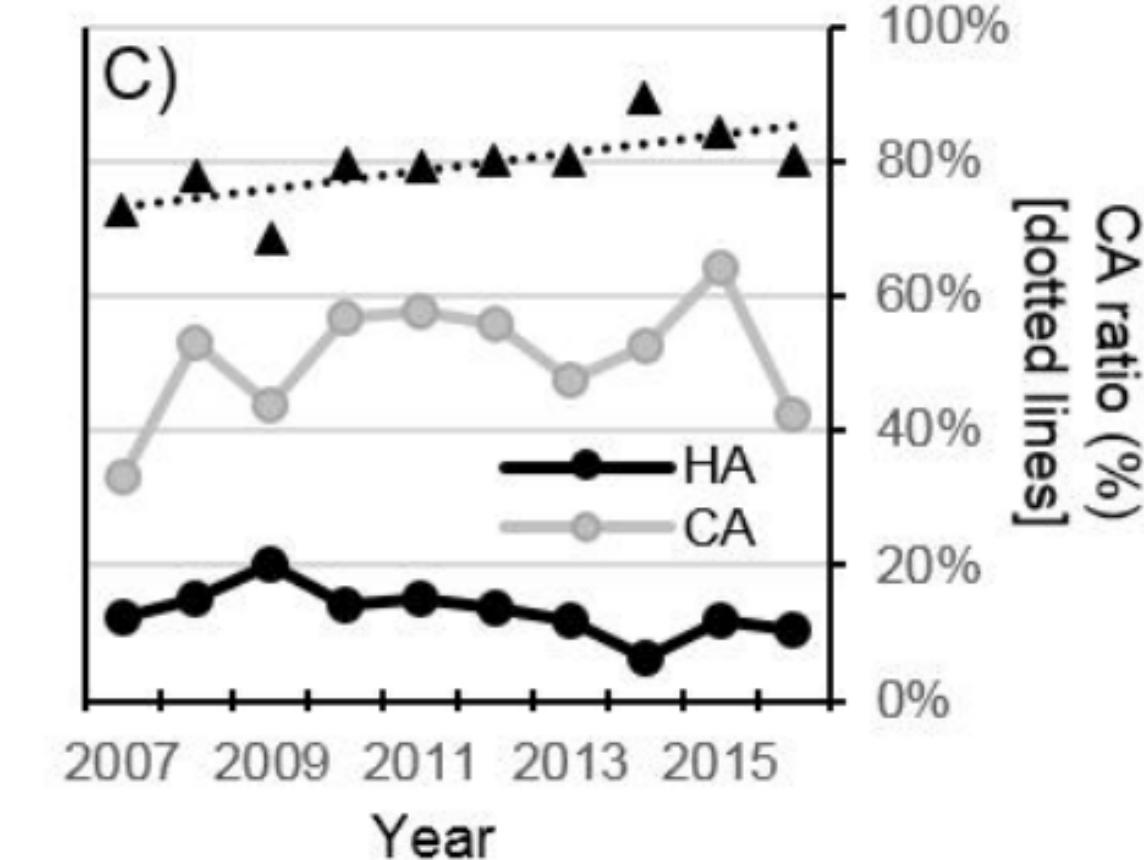



471 skin and soft tissue/musculoskeletal; n.s., not significant; *, $p<0.05$; **, $p<0.005$. There was no CRAb-rate

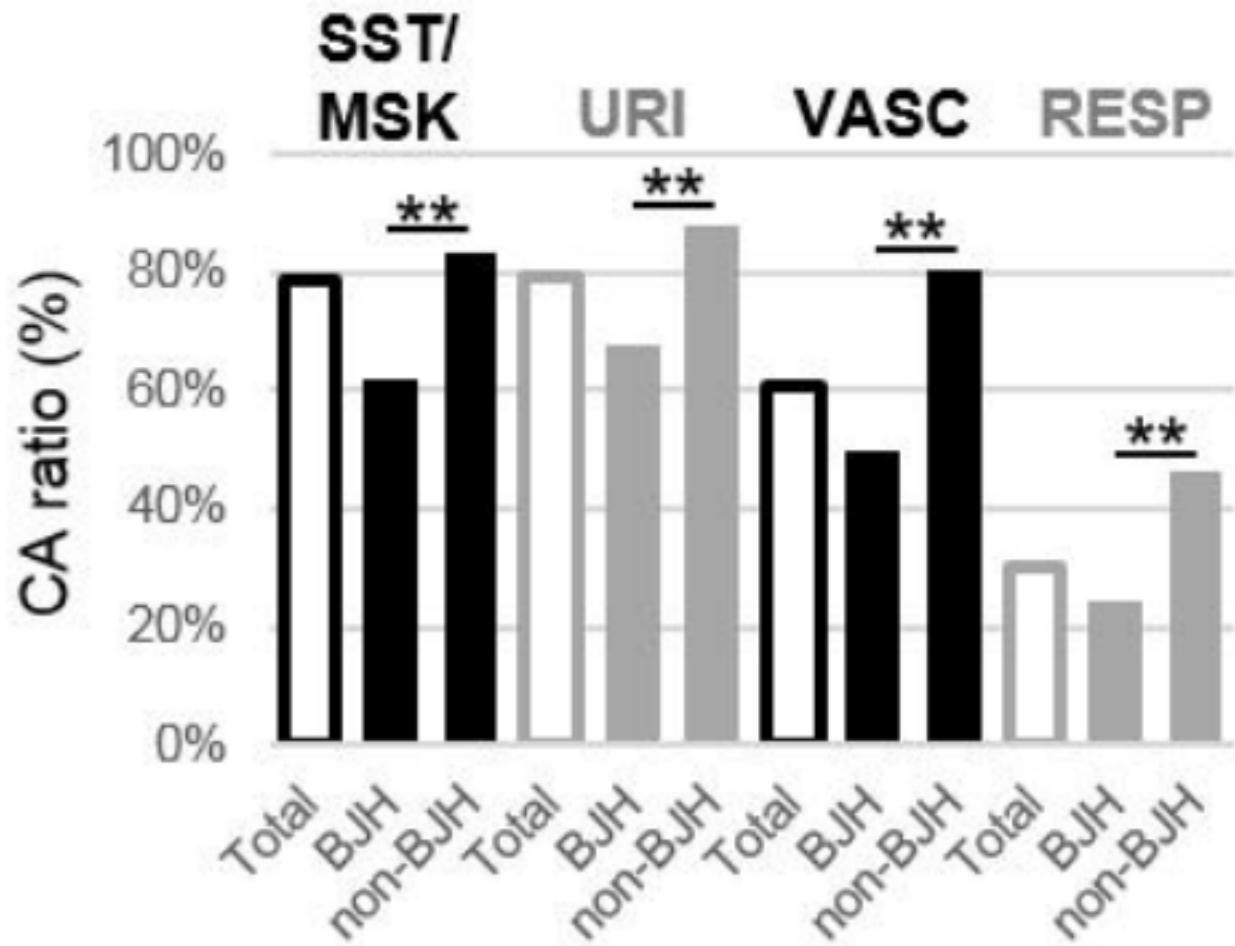
472 difference among HA isolates in either panel A or B ($p=0.28$ and 0.402 , respectively).

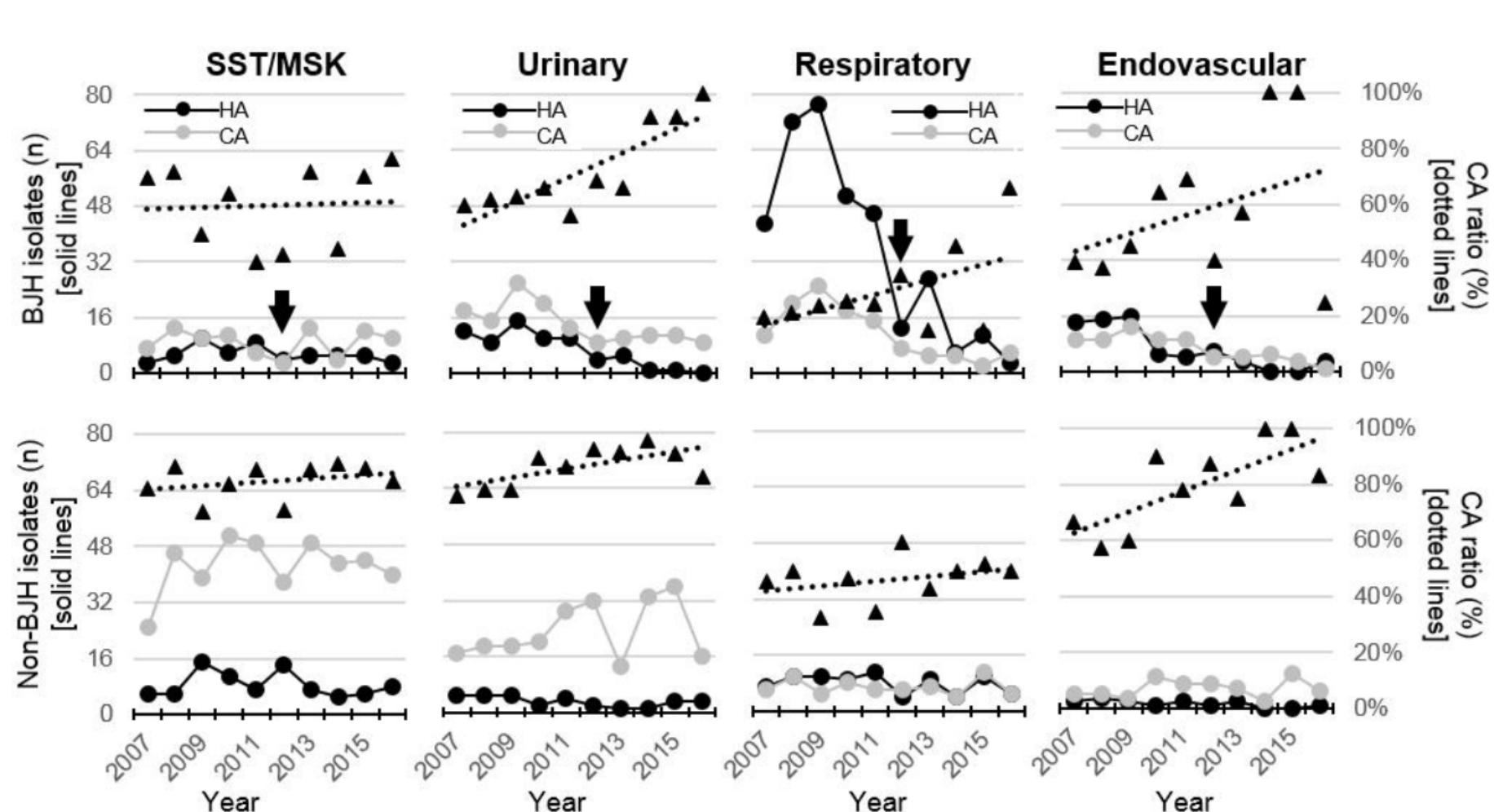

473

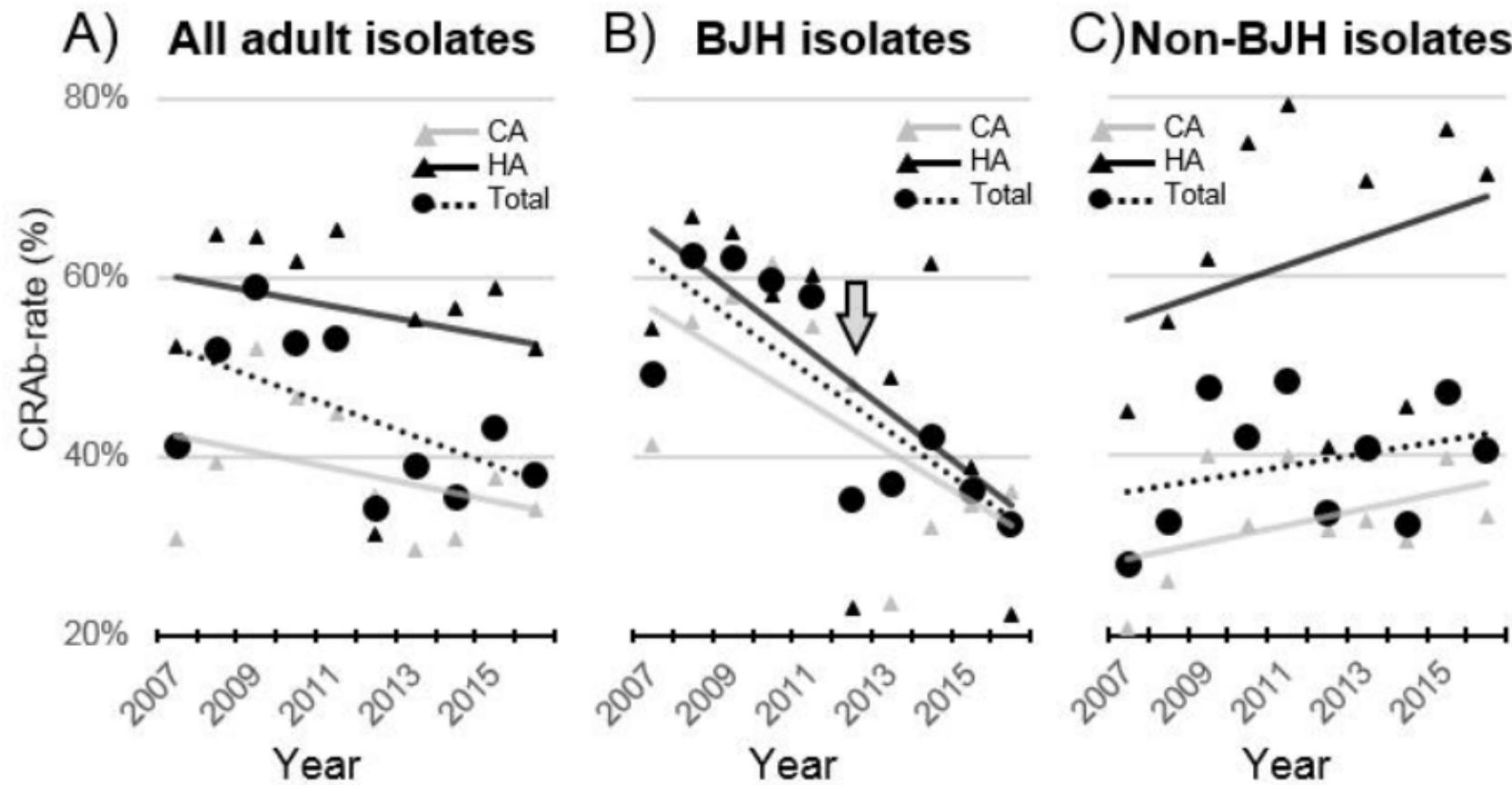
474 **Figure S3. Proportion of carbapenem-susceptible (S), -resistant (R) or total adult isolates from**
475 **each anatomic source, among BJH (panel A) and non-BJH (panel B) isolates.** Graphs depict
476 distributions among hospital-acquired (HA) and community-acquired (CA) isolates. The proportion of
477 isolates from each source was compared between compartments by chi-squared test. SST/MSK, skin
478 and soft tissue/musculoskeletal; n.s., not significant; *, p<0.05; **, p<0.005.

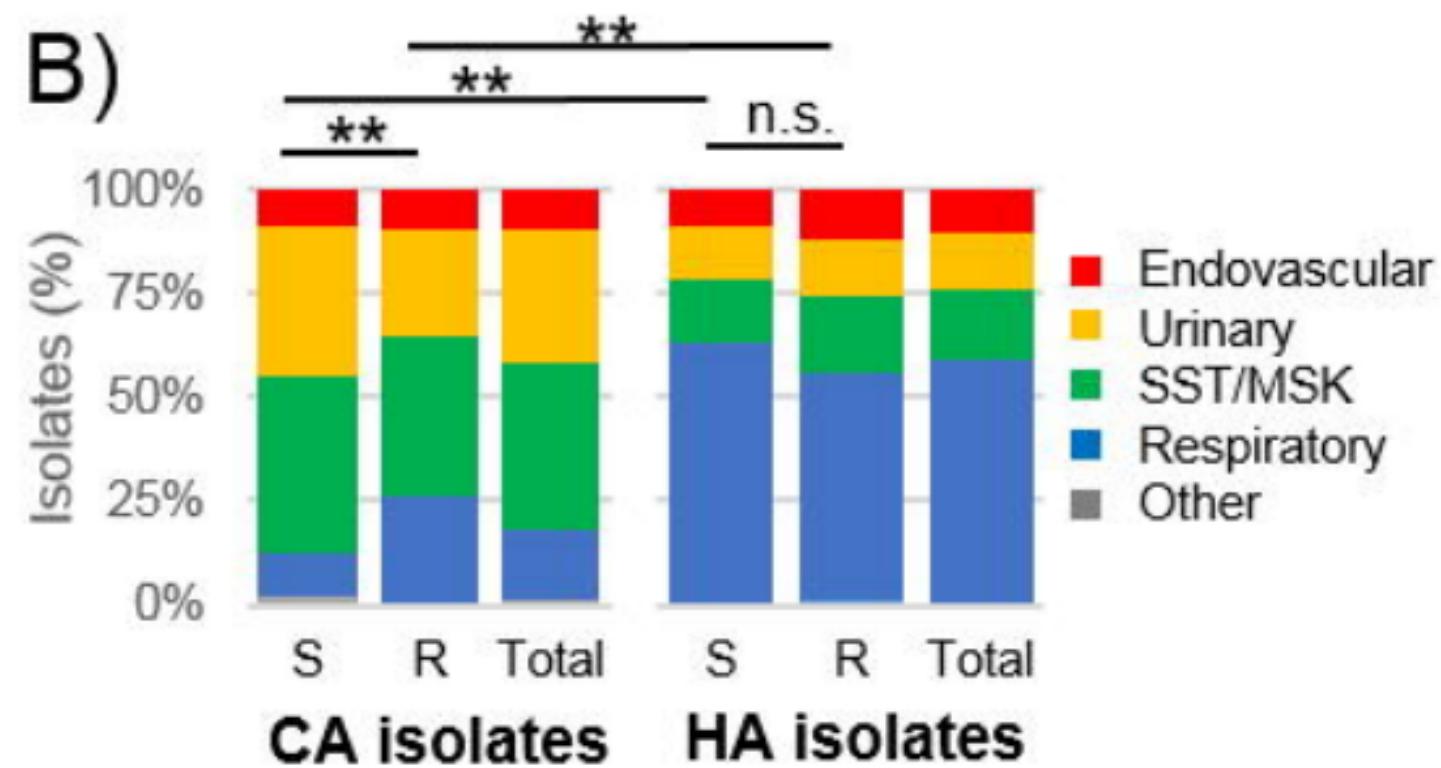
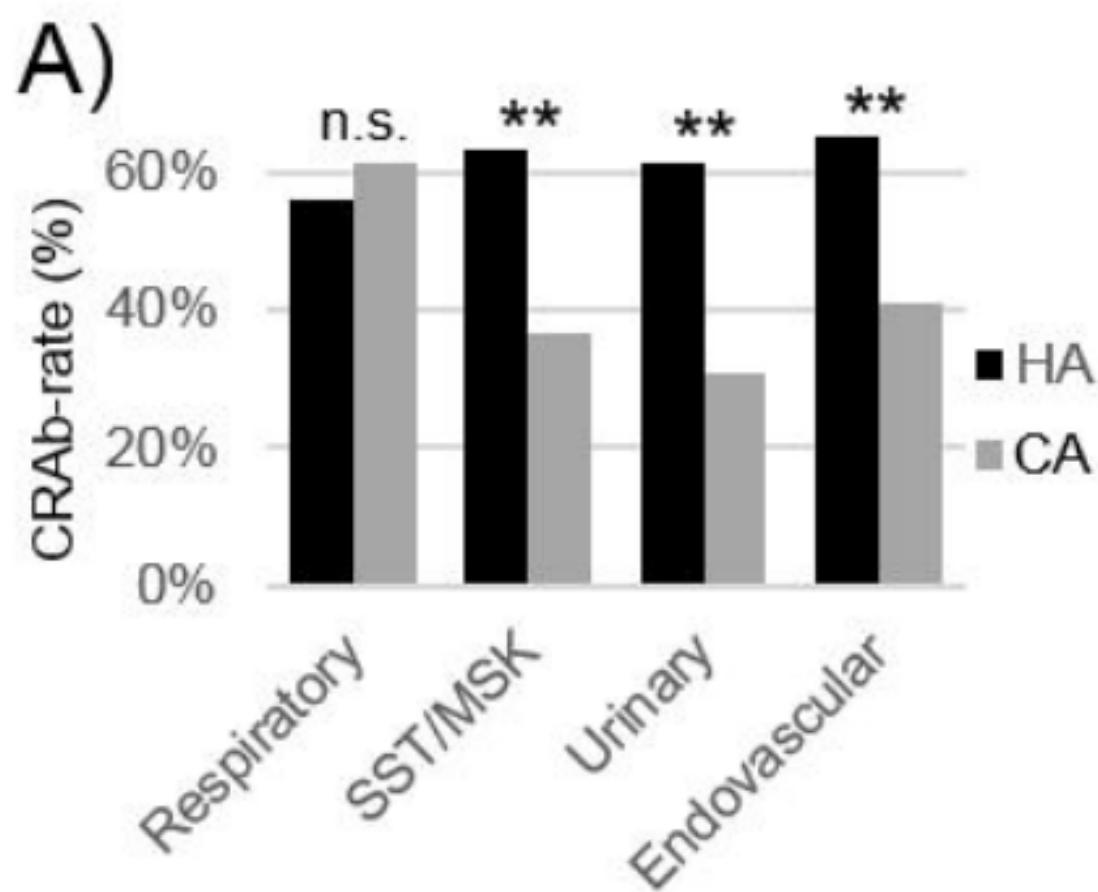

479

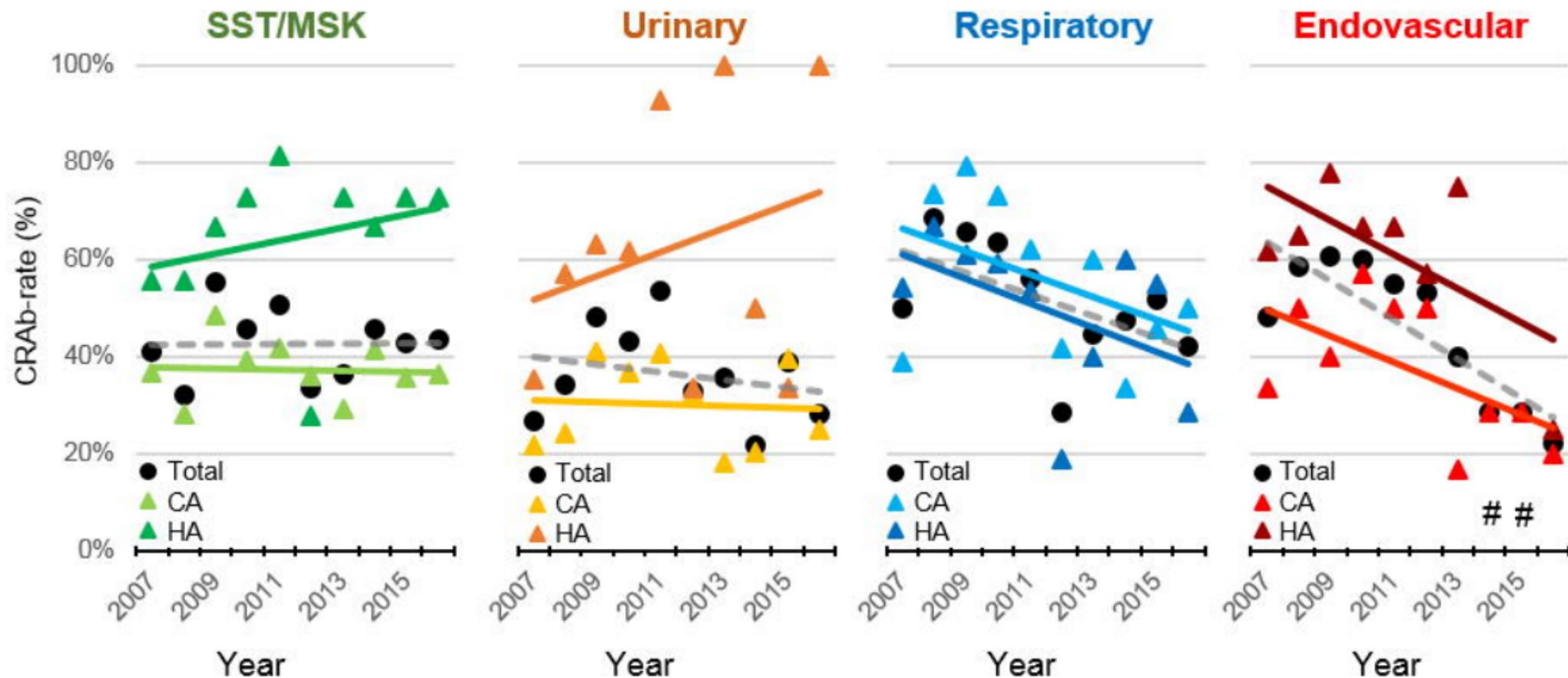

All adult isolates

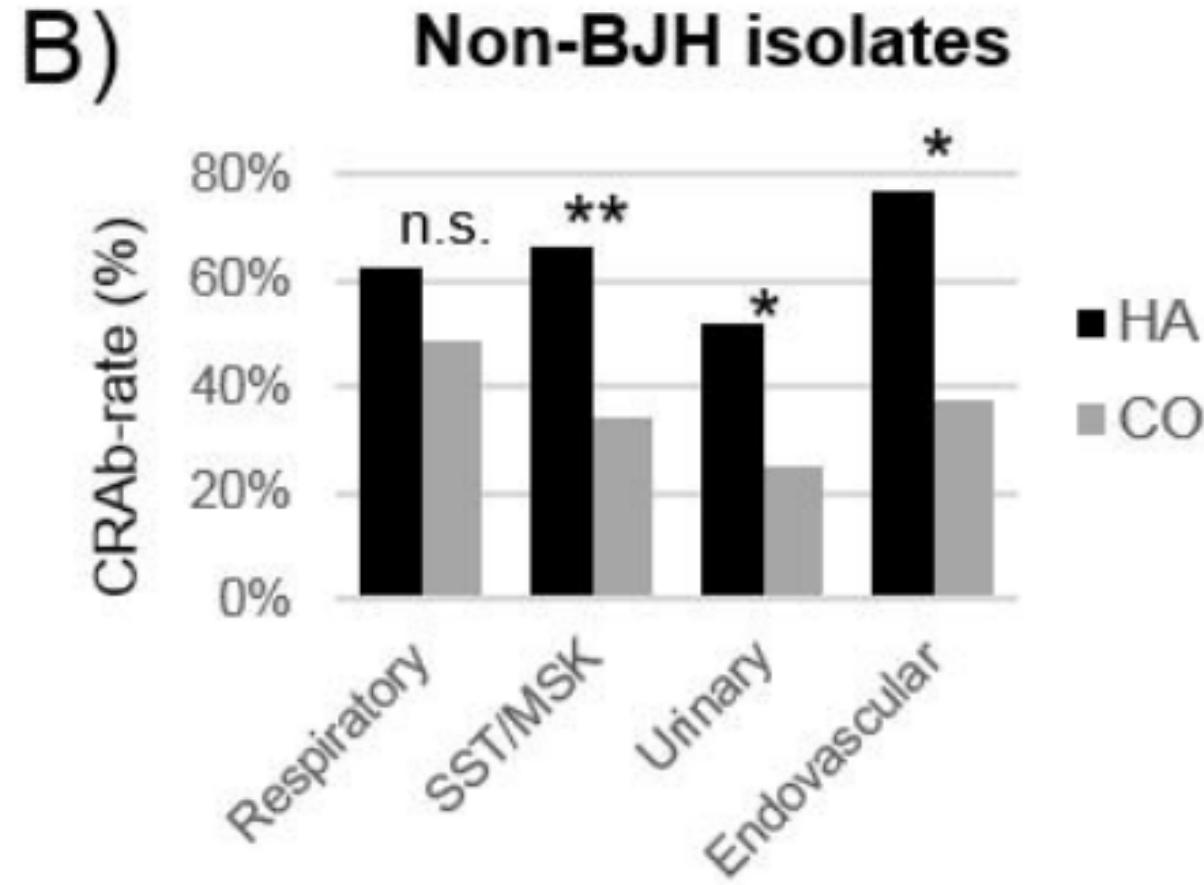
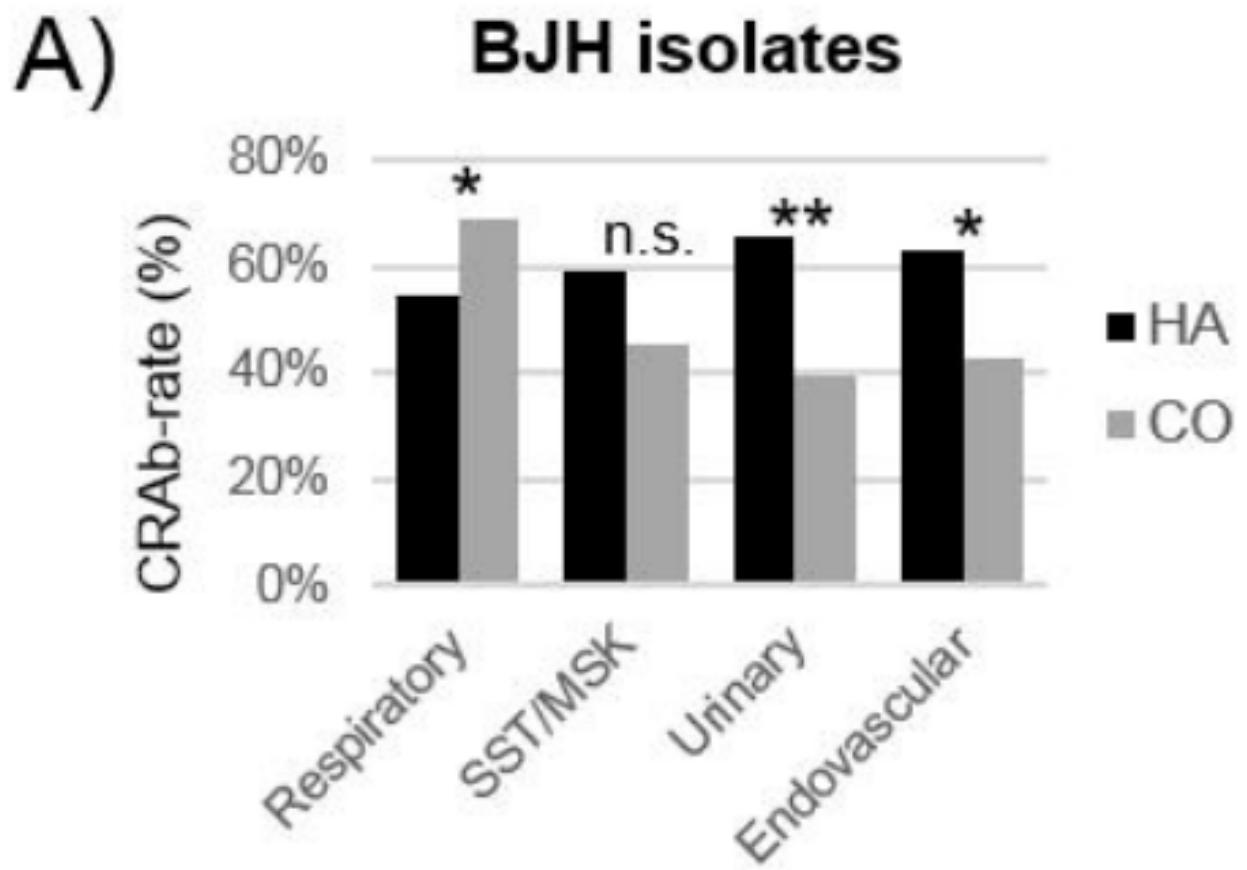


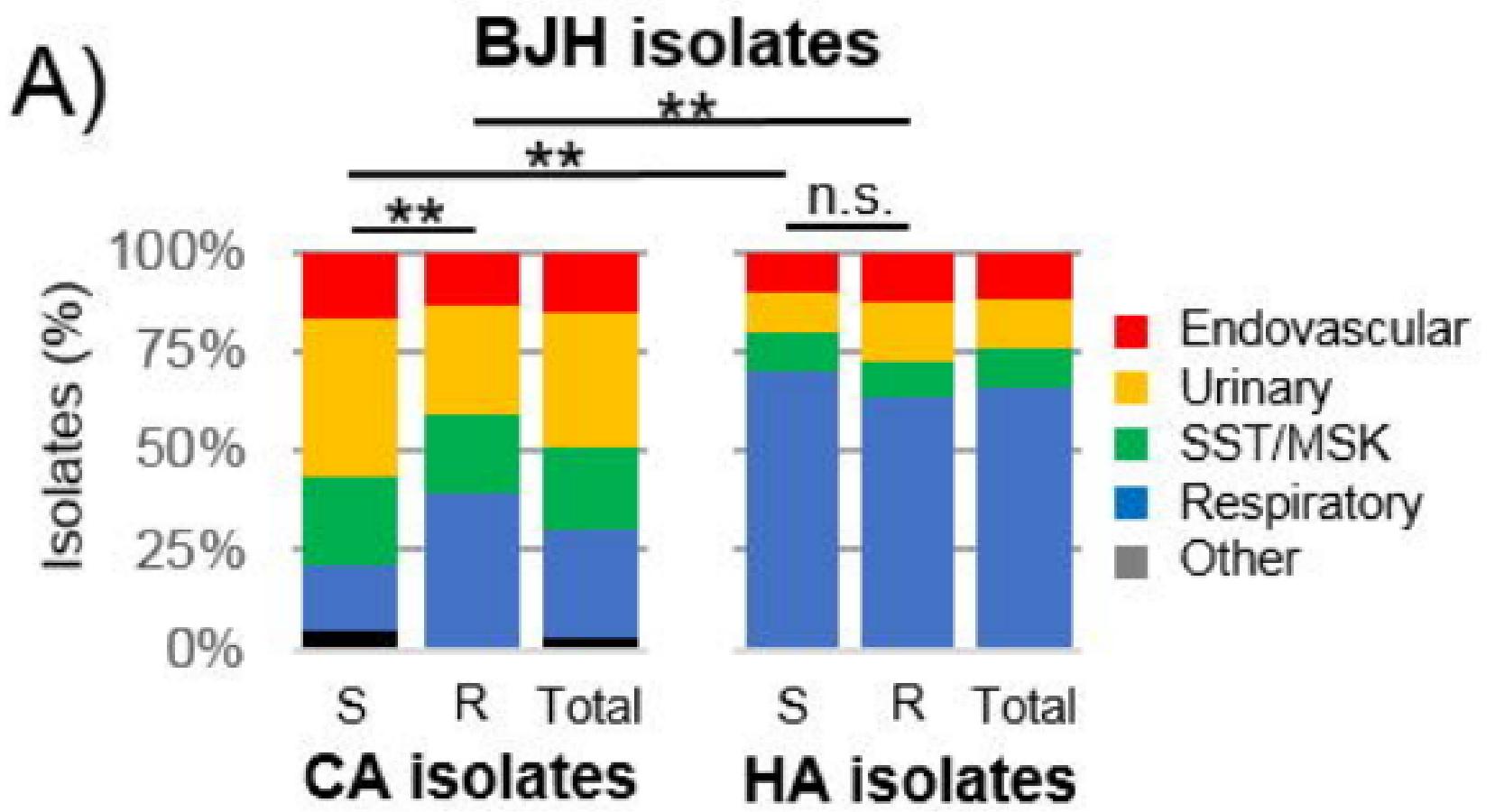
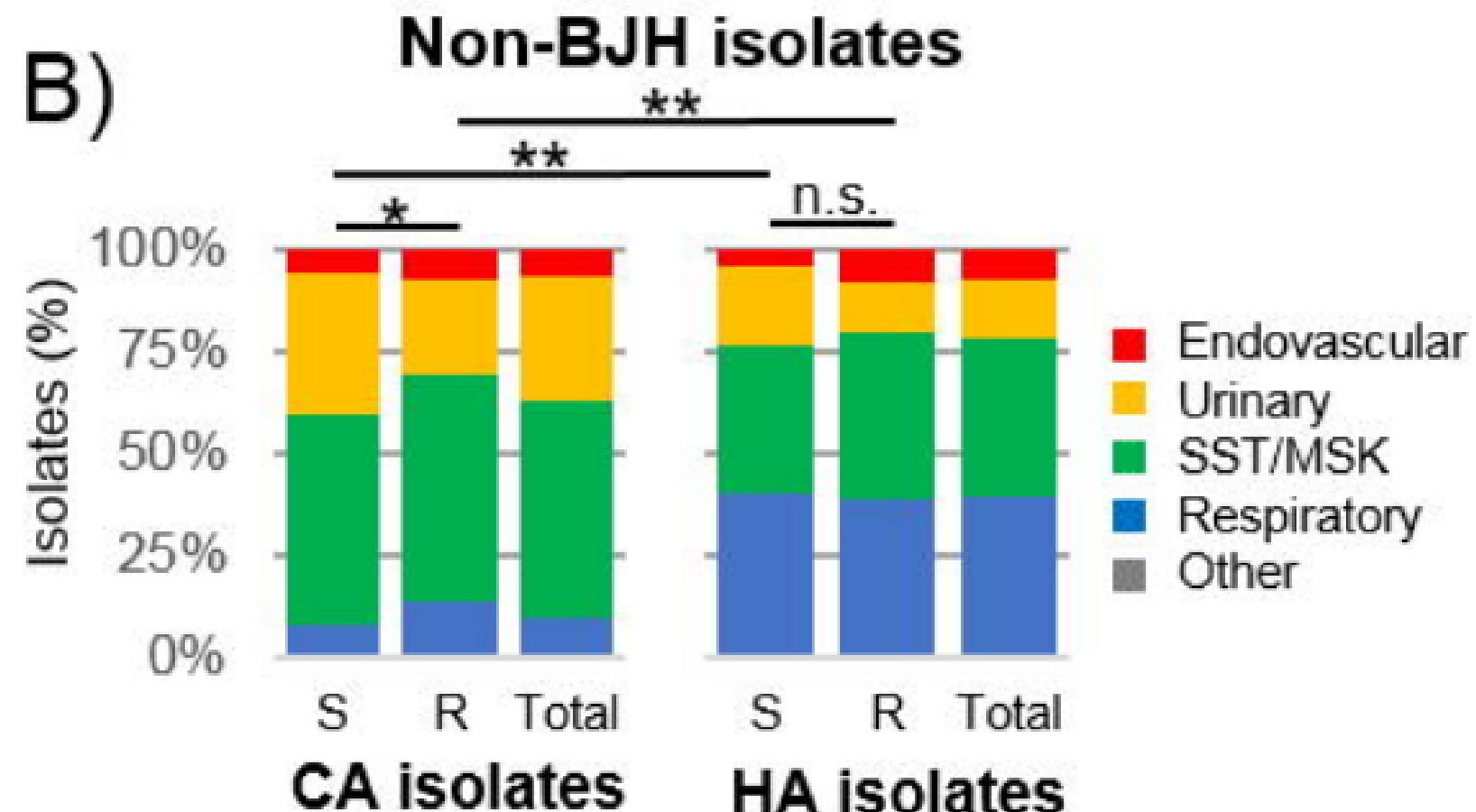

BJH isolates





Non-BJH isolates



A)**B)**