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Abstract

Objective

Current explanatory concepts suggest seizures emerge from ongoing dynamics of brain
networks. It is unclear how brain network properties determine focal or generalised
seizure onset, or how network properties can be described in a clinically-useful manner.
Understanding network properties would cast light on seizure-generating mechanisms

and allow to quantify in the clinic the extent to which a seizure is focal or generalised.

Methods

68 people with epilepsy and 38 healthy controls underwent 19 channel scalp EEG
recording. Functional brain networks were estimated in each subject using phase-locking
between EEG channels in the 6-9Hz band from segments of 20s without interictal
discharges. Simplified brain dynamics were simulated using a computer model. We
introduce three concepts: Critical Coupling (C.), the ability of a network to generate
seizures; Onset Index (OI), the tendency of a region to generate seizures; and

Participation Index (PI), the tendency of a region to become involved in seizures.

Results

C. was lower in both patient groups compared with controls. OI and PI were more
variable in focal-onset than generalised-onset cases. No regions showed higher OI and PI
in generalised-onset cases than in healthy controls; in focal cases, the regions with

highest OI and PI corresponded to the side of seizure onset.

Conclusions
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Properties of interictal functional networks from scalp EEG can be estimated using a
computer model and used to predict seizure likelihood and onset patterns. Our
framework, consisting of three clinically-meaningful measures, could be implemented in

the clinic to quantify the diagnosis and seizure onset pattern.
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Introduction
Brain function is increasingly understood in terms of large-scale brain networks.
Disruptions to these networks can lead to a range of neurological conditions, including

seizure disorders and epilepsy.!

In focal epilepsy, the conventional concept is that a single abnormal brain region
generates seizures. However, this concept does not explain the re-emergence of seizures
after apparently successful surgical resection of the presumed seizure focus,? or that
failure of epilepsy surgery can be predicted by features of an extended brain network
beyond the seizure focus.’”’ In generalised epilepsy, the conventional concept is that
seizures emerge without focal onset. However, this concept does not explain focal driving
nodes in animal models of generalised spike-wave discharges.® We previously proposed a
theoretical framework that could reconcile these observations, showing the interplay
between dynamics in localised brain regions and the pattern of connections between them
is fundamental to whether a brain network can generate seizures, and whether seizures

appear focal or generalised.’

Recognising that the historic dichotomy or either focal or generalised onsets does not
reflect the richness of epilepsies presenting clinically, classification schemes have been
evolving to reflect this new understanding of large-scale network mechanisms.!%1! A
rigorous, quantitative, framework is required to underpin these new classifications of
focal, generalised, combined focal and generalised and unknown epilepsies, in particular

to quantify: (i) the propensity of a brain to generate seizures; (ii) how localised is the
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generation of a seizure; and (iii) how seizure activity propagates through large-scale brain

networks.

In the epilepsy clinic, EEG is ubiquitous and provides a means to observe large-scale
brain networks, and observing seizures and interictal discharges in EEG underpins the
diagnosis and classification of epilepsy. Under the assumption that the properties of
large-scale brain networks are a critical component of the onset of seizures and interictal
discharges, alterations in network properties should be an enduring feature of the seizure
prone brain and thus reflected within EEG regardless of whether seizures or interictal
discharges are present. In support of this concept, we have developed methods for
extracting functional network properties from 20s segments of resting-state EEG,!%!3 and
shown how properties of these networks are altered in people with idiopathic generalised

epilepsy (IGE).'

Here we provide an objective method to quantify large-scale brain network features,
using short epochs of apparently normal resting-state EEG. We introduce the onset index
(OI), as a measure of the ability of a brain region to drive seizure onset, and the
participation index (PI), as a measure of the ability of a brain region to become involved
in ongoing seizures. We use these measures to test whether the pattern of interictal brain
network connections is a major determinant of the capacity of a brain to generate
seizures, and quantify the degree to which the pattern of seizure dynamics appears focal

or generalised.
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Methods

Subject Recruitment and Data Collection

We recruited 38 healthy subjects with no history of neurological or psychiatric disorders,
and 68 subjects who had an established diagnosis of epilepsy (in accordance with
International League Against Epilepsy guidelines and criteria): 25 with idiopathic
generalised epilepsy, 23 with left focal epilepsy, and 20 with right focal epilepsy. People
with epilepsy were recruited between March 2011 and October 2014 from the epilepsy
clinics at King's College Hospital, London UK, and were a consecutive series who fitted
the inclusion and exclusion criteria and were able to participate. Adult patients over 18
years of age were recruited, with epilepsy currently treated with AEDs, ongoing seizures
(at least one per year), and no other neurological or psychiatric disorders (see
Supplementary Materials). Healthy subjects were recruited from a local volunteer
database. The outcomes in this study were a functional network derived from the
interictal EEG of each subject, and a model-derived prediction of the pattern of seizure
onset based on this network. We compared the model predictions with clinical

classification of seizure onset (focal or generalised).

All EEG recordings were collected in the Department of Clinical Neurophysiology at
King's College Hospital. Ag-AgClI (10 mm) disc electrodes were fixed at scalp positions
in the modified Maudsley configuration.'®> Ground and reference electrodes were placed
between Pz and Cz and Cz and Fz, respectively. EEGs were recorded using Nicolet

amplifiers (Viasys Healthcare, San Diego, California, USA). Data were collected at a
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sampling rate of 256Hz with filters set at 0.5 and 70Hz. Impedances did not exceed

5kOhms.

For this study one 20-second segment of eyes closed, resting-state EEG (subjects awake,
eyes closed, no interictal discharges or seizures, minimal artefacts) was extracted for each
subject by an EEG trained clinician (FAC and SJ). The epoch duration of 20 seconds is a
compromise between availability of artefact-free segments in routinely collected EEG in
clinics, and robustness of functional network properties.!®!” The interictal EEG segments
were band-stop filtered between 48-52Hz to exclude power line interferences. We then
computed the average power across all channels and used this value to normalise the time
series from each channel, rather than normalising each channel individually. This has the
advantage that relative differences in power between channel locations are preserved.
Finally, we used a bandpass filter to extract data in the low alpha (6-9Hz) frequency
band.'® This choice of frequency band has been demonstrated previously to be at the
basis of significant differences between generalised epilepsies and healthy controls in
resting-state EEG.!#!4!1° We emphasise here that our analysis of EEG was based entirely
on apparently normal, resting-state EEG free from interictal discharges, seizures or
artefacts. This is a critical point. Seizures emerge from non-seizure brain states, therefore
understanding the ability of non-seizure brain states to support transitions to seizure is

crucial.

Extraction of Functional Networks from EEG
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Following (Schmidt et al., 2014), we derived a functional network for each subject from
their segment of resting state EEG, using a correlation-based method called the Phase

Locking Factor (PLF).2

PLF;; =

N
lz (8 (m-61tw)
n
n=1

The PLF is a measure of the level of synchrony between two EEG channels and was

computed by finding the maximum level of pairwise correlation between the
instantaneous phases of these two channels (6}, 6y ). By applying this method to all
possible combinations of channel pairs, we obtained a weighted functional network
consisting of 19 nodes and connectivity strengths between the nodes defined by the
corresponding values of the PLF. Contributions at zero phase-lag were rejected in order

to minimise the problem of common sources and volume conduction.?!

In order to detect and reject spurious connections between nodes (i.e. significantly
different than noisy uncorrelated time-series), we additionally carried out a surrogate-
analysis. We created 99 surrogate networks for each segment of resting-state EEG, using
a Fourier-based method which preserved the autocorrelation and spectrum of the original
time.?? A connection from the original functional network was rejected (i.e. the
connectivity strength set to 0) if the corresponding connection was found to be

significantly stronger in the surrogate networks.

Dynamic Network Model of Seizure-like Activity in the Brain
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With increasing interest in functional networks over recent years, a new approach has
emerged — which we term a ‘dynamic network model” — that places a mathematical
description of critical features of brain dynamics (e.g. seizures or the transition to seizure)
on each node, with connection strengths between nodes governed by an overall functional
network. Herein, a Kuramoto model,?* which describes the dynamics of a single
population of N identically coupled phase oscillators, was used for each node. Phase
oscillator models have been increasingly used in a neuroscience setting.!>?426 We extend
the standard model for a single population of N phase oscillators, to a network consisting

of M populations:

N
K
i z sin(6; — 6))
Ny
=1

d M
- (07) = of + Z
y=1

with phase 6, natural frequency w, and coupling strengths K,. Here the number of
populations M is equal to the number of ‘sensors’ (i.e. M=19 (EEG channels)) and the
number of phase oscillators N in population y is assumed to be very large, since a single

EEG channel measures the collective electrical activity of a large neuronal population.

By carrying out a standard transformation, the order parameter r. of a population of
Kuramoto oscillators can be calculated. r. takes values between 0 and 1, where 0
represents an asynchronous, low-amplitude (non-seizure) state and 1 corresponds to a
fully synchronised, high-amplitude (seizure-like) state throughout the population. For r.
between 0 and 1, the levels of coherence and amplitude increase. Finally, by averaging

across all the values of r, we obtain a global order network parameter rg, which quantifies
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the amount of synchronisation over the network of M populations. Stationary solutions

for these equations can be computed numerically and analytically.!?

Global Mechanism of Seizure Onset
To characterise the contribution of network connectivity to the ability of a network to
generate seizures, we introduce an additional global coupling parameter C which scales

the adjacency matrix of PLF values:

N

N M
d K. : PLF, .Y
a(ef) = w; + W,{Z sin(6 — 0;) + Czl N z sin(6;, — 6;)
= y:

k=1

Note there are two types of coupling in this model: K. governs the coupling within a
separate population ¢, whereas the PLF-values determine the coupling between
populations. As C increases, individual regions within the network may make the
transition to their synchronous state. We term the value of C for which the network
transitions to its synchronised state the critical coupling value (C.). In previous work, we
found this critical coupling value to be significantly lower in a cohort of subjects with
IGE in comparison to healthy controls.!?!* This indicates that the resting state functional
networks of people with IGE support transitions to seizures more readily than those from
healthy controls. Here, we can regard the critical coupling value as a generic marker of
the propensity of a brain to generate seizures of any type (focal or generalised). We
calculated the critical coupling value C. for every subject and performed pairwise

comparisons at the group-level.

Local Mechanisms of Seizure Onset and Participation
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To characterise the contribution of individual brain regions to whether seizure patterns
appear focal or generalised, we introduced two new measures for characterising dynamic
network models: the onset index (OI) and the participation index (PI). Both indices can
be calculated directly from the ‘activation matrix ACT” with entries ACT;; € [0,1],
quantifying the amount node j spent in the seizure-like state a result of node k being in
the seizure-like state (see Figure 2). Mathematically we have: ACTjx = Tj/Ttotalx, With T;
the total time node j spent in the seizure-like state and Tiotwl the total time of simulation
where node k was in the seizure-like state at t=0. In particular, ACT;, = 0 means that
node j was not driven into the seizure-like state by the seizure-like activity in node Kk,

whereas node j spent the entire simulation in the seizure-like state if ACTj; = 1.

Averaging across the j-th column of the activation matrix, the OI of node j is obtained: a
measure of the capacity of node j to drive synchronisation across the rest of the network.
The OI is computed numerically by starting with a network where all nodes are in an
asynchronous setting and then increasing the internal coupling strength of the j-th
population of phase oscillators above a critical value such that the j-th population
becomes synchronised and displays seizure-like activity. The response in the remaining
nodes of the network to this localised seizure-like activity is then computed. The Ol is the
mean value of these responses and therefore takes a value between 0 and 1. Zero
corresponds to a ‘disconnected’ node: even if it is in the seizure-like state, there is no
node it was able to influence. In contrast: if a node has an OI equal 1, it recruited all the
other nodes in the network into their seizure-like state. Here, we can regard the Ol as a

specific marker of the tendency of a brain region to generate seizures; we would expect
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that in focal epilepsy, OI would be variable between regions, reflecting that a particular
localised subset of nodes drives seizure onset; whereas in generalised epilepsy we would
expect OI to be less variable between regions, reflecting that in these cases a “seizure

focus” is not expected.

Averaging along the j-th row of the activation matrix, we obtain the Participation Index
(PI) of node j: a measure of the capacity of node j to be synchronised by other nodes in
the network themselves being synchronous. The PI is computed numerically by
calculating the amount of synchronisation in node j in response to increasing the internal
coupling strength K of all other nodes j # k above their critical value such that each
population individually becomes synchronised. As for the OI, the mean value of the
response to all other nodes is calculated and therefore the PI takes a value between 0 and
1. A node with PI equal 0 is classed as ‘disconnected’: none of the other nodes were able
to recruit it into its seizure-like state. In contrast: a node with PI equal 1 is recruited into
its seizure-like state by all other nodes within the network. Here, we can regard the PI as
a specific marker of the tendency of a brain region to become involved in the seizure
network; we would expect that in focal epilepsy, PI would be variable between regions,
reflecting that a localised subset of nodes constitutes the seizure network; whereas in
generalised epilepsy we would expect PI to be less variable between regions, reflecting

that the seizure network is much more widespread.

Identification of Side of Seizure Onset Using OI and PI
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Since we can define the OI and the PI on a region-by-region basis within a functional
network, we hypothesise that regions indicated by the OI and the PI as significantly
different in the focal cohort, correlates with the clinically indicated hemisphere. In
contrast, we hypothesise that within the IGE cohort there would be no regions statistically
different from the control cohort, reflecting the apparent lack of specificity of onset and

spread in generalised seizures.

Statistical Analysis

Statistical analysis was carried out using MATLAB (version 17). Two nonparametric
tests, the Kruskal-Wallis test and the Mann-Whitney U test (two-tailed, medians) were
used throughout to determine statistical significance (p<0.05) between groups of an
independent variable (critical coupling value, variance of OI, variance of PI). In
particular, a Krusal-Wallis test was applied to test for statistical significance (p<0.05)
between groups for an independent variable. If the Kruskal-Wallis test was found to be
significant, then a Mann-Whitney U test was carried out to explicitly test between-group
differences, and a Bonferroni correction was applied to correct for multiple comparisons
(e.g. Control vs Focal, Focal vs IGE). All p-values computed for determining the side of
seizure onset were corrected with a Bonferroni factor of 57: since three group
comparisons were carried out against healthy controls (Left Focal, Right Focal, IGE) for

every brain region (19 in total).

Patient Consent
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The study was approved by Bromley Research Ethics Committee (reference 12/L.0/0230)

and all subjects gave their informed written consent to take part
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Results
We analysed 20s epochs of resting-state EEG collected from 106 subjects: 43 subjects
with focal epilepsy (23 left focal, 20 right focal), 25 subjects with idiopathic generalised

epilepsy, and 38 healthy controls.

Critical Coupling Value

We found that the effect of progressively increasing the global coupling strength between
brain regions ultimately led to widespread synchronised activity. We term the value for
which the first brain region becomes synchronised the critical coupling value. Using a
Kruskal-Wallis test (p<0.05), we found that the critical coupling value differed between
groups (Figure 3, Table 1). We then examined pairs of groups using a MWU-test
(medians, two-tailed, p<0.05, Bonferroni correction: x3): the dynamic network model
when the network was inferred from people with epilepsy was more prone to generate
seizure-like activity than those from healthy controls: that is, the critical coupling values
from people with epilepsy were found to be significantly lower in contrast to the values
from the healthy control cohort. We found no significant difference for the mean critical

coupling value between the focal cohort and the generalised cohort.

Onset Index

The OI measures this ability of a brain region to recruit the rest of the network into the
seizure-like state, and displayed on average higher levels of variance across all brain
regions in the focal cohort in comparison to the generalised cohort. In particular, we

found that the response of an individual brain to the onset of synchronised activity within
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a localised brain region was statistically significantly different between generalised and
focal cohorts (p = 0.0056; U = 319; Figure 4a; MWU-Test, medians, two-tailed, p<0.05).
In networks from the generalised cohort, most brain regions could drive the onset of
seizure-like behaviour. In contrast, we found that in networks from the focal cohort there
was typically only a small number of brain regions that could drive the onset of seizure-
like behaviour. For these networks, the onset of large-amplitude, synchronised activity in

most regions would not significantly affect the activity of the rest of the network.

Participation Index

The PI measures the response of a brain region to seizure-like activity initiated from
another region within the network and showed higher levels of standard deviation in the
focal cohort in comparison to the generalised cohort. In particular, we found that the
response of other brain regions to the onset of abnormally synchronised activity within a
localised brain region was different in generalised and focal networks (p = 0.0206; U =
355; Figure 4b, Mann Whitney U Test, medians, two-tailed, p<0.05). In the generalised
cohort, most brain regions became involved in ongoing seizure-like activity instigated at
some other place within the network, regardless of the location of the localised brain
region. In contrast, we found that for focal networks the response of other brain regions
to the onset of seizure-like activity was heterogeneous. Typically, seizure-like activity

remained confined to a smaller cluster or a subnetwork of the larger global brain network.

Side of Seizure Onset
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Given that the distribution of the OI in the focal epilepsy cohort was non-uniform, we
explored the specific values of the OI on a region-by-region basis, hypothesising that the
hemisphere with highest OI would be concordant with the side of the clinically
determined seizure onset. In particular, we found specific brain regions within the focal
networks that were statistically significant drivers of seizure-like behaviour in
comparison to the control cohort. In the cohort with left focal epilepsies, we found
several regions in both hemispheres that displayed a significant difference in the OI
(Figure 5, Table 2) in contrast to the control cohort. However, the region with the
strongest level of significance was found in the left hemisphere. In the cohort with right
focal epilepsies, we found there was one region in the right hemisphere that displayed a
significant increase in the Ol in contrast to the control cohort. For the cohort of
generalised epilepsies, no such differences were found between OI in any region and OI
in the same region in the control cohort. This was consistent with our previous
observation that most regions could drive the onset of seizure-like behaviour in networks
from the generalised cohort. A similar analysis for the PI revealed that there were several
significantly different regions for the left focal epilepsies, and the region that was most
strongly different was situated on the left side. Similarly, for the subjects with right focal
epilepsies, we found one region in the right hemisphere that displayed a significant
increase in contrast to the control cohort. For the cohort of generalised epilepsies, no
differences were found for any region, which is consistent with our previous observation
that a large set of regions becomes involved in seizure-like behaviour in networks from

the generalised cohort.


https://doi.org/10.1101/576785
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/576785; this version posted March 14, 2019. The copyright holder for this prepriﬂt%Nhich was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

Discussion

The concepts of focal and generalised epilepsy have changed considerably in recent
times, moving towards a conceptual framework based on the manner in which seizures
emerge in and engage localised versus widely distributed brain networks. At the current
time, these network concepts remain qualitative and lack a robust descriptive,
quantitative framework. Here, we provide an approach that allows network origins of
seizures to be described in terms of three parameters: global critical coupling, which
describes the propensity of a brain to generate any seizures; onset index (OI), which
described the tendency of seizures to generate from specific regions; and Participation
Index (PI), which describes the tendency of seizures to engage specific networks. This
simple, intuitive framework provides a robust and highly flexible way to precisely define
the meaning of “focal” and “generalised” in any specific example of epilepsy. We believe
this approach reveals fundamental mechanistic phenomena of epilepsy and provides a

future tool for clinical classification of seizures and epilepsy.

Here, we applied this framework to the most readily-available diagnostic modality in
epilepsy — conventional 19 channel scalp EEG. A computational dynamic network model
with parameters inferred from a 20s segment of interictal, resting-state EEG enabled the
characteristic brain network properties of healthy control, generalised, and focal subjects
to be described. First, we found that resting-state brain networks of people with either
focal or generalised epilepsy are situated closer to a transition between normal activity
and seizure-like activity. This was shown by observing, in both the focal and generalised

cohorts, lower values of the critical coupling - that is the coupling strength of the global
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network for which an individual brain region is driven into a seizure-like state. To
understand mechanistically why the pattern of electrical activity at the level of the EEG
appears focal or generalised, we introduced two new measures - the onset index (OI) and
participation index (PI). The OI characterises the ability of a given brain region to drive a
seizure within an overall brain network. We found that the OI is less uniformly
distributed across regions within brain networks from the focal epilepsy subjects in
comparison to subjects with generalised epilepsy. This confirms a tendency for the onset
of seizure-like activity from resting-state brain networks to be localised in the case of
focal epilepsy but not in the case of generalised epilepsy. Furthermore, when the focal
cohort was considered as subgroups of left focal epilepsies and right focal epilepsies,
higher variability of OI associated with the affected hemisphere. The PI characterises the
tendency for a given brain region to become involved in a seizure driven from another
brain region. As with OI, we found that the PI is less uniformly distributed across regions
within brain networks from the focal epilepsy subjects in comparison to generalised
epilepsy subjects. When the focal cohort was considered as subgroups of left focal
epilepsies and right focal epilepsies, higher variability in PI associated with the affected
hemisphere. Together these results reveal from background activity in scalp EEG that
focal seizures preferentially engage specific localised networks rather than the entire
brain and suggests a tendency for seizures in generalised epilepsy to engage widely
distributed brain networks, in keeping with current concepts and evidence.!??72% In
summary, our findings suggest that brain networks supporting generalised seizures are

more homogeneous with similar driving tendency and network engagement responses
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across most regions within a network, whereas networks supporting focal seizure contain

heterogeneity and are typically asymmetric.

From a diagnostic perspective, the presence of epileptiform abnormalities in EEG
remains currently the most useful biomarker of epilepsy. However, even during long-
term video-EEG an individual with epilepsy may not display epileptiform abnormalities,
giving rise to a well-known problem of false-negatives in diagnostic EEG, as well as a
low incidence of false positives in healthy subjects.?® Additionally, over-reading of EEG
is a further cause of misdiagnosis.>* Misdiagnosis and mistreatment of epilepsy is a
serious problem with significant negative consequences for the subjects involved and
carries a significant financial burden.?!*> Consequently, a data-derived biomarker from
interictal EEG recordings offers the potential to significantly support current clinical
practice by providing a quantitative framework for diagnosis of both focal and

generalised epilepsies.

A key feature of our study is the ability to reveal network markers of seizures from short
epochs of interictal, resting-state, 19 channel scalp EEG, which is very commonly
available in epilepsy centres worldwide. We used an established data-driven modelling
approach with minimal assumptions about the underlying properties of the recorded
signals (e.g. stationarity) in order to provide a quantitative account of focal and
generalised epilepsy. Finding evidence for focal and generalised network features in
resting-state interictal EEG suggests that the causal network properties that drive seizure

onset and propagation are observable even in the absence of seizures and interictal
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discharges; in other words, in epilepsy the brain has an enduring trait to produce seizures
of specific types.>* Furthermore, and importantly, revealing these features in a short
segment of normal resting-state interictal 19 channel scalp EEG opens a novel
opportunity to diagnose and classify epilepsies without observing seizures; we do not
claim here to have proven the clinical value of this method, but have provided a key

foundation for future work.

At the same time, our use of 19 channel scalp EEG imposes limitations. Our approach is
intrinsically confined to a ‘sensor space’ analysis and consequently we cannot infer any
causal relations between the processes underlying the recordings. In line with this, it is
important to note that the computer model used is an abstract, phenomenological
description of the recorded EEG signals that has no direct neurobiological interpretation.
Other modalities such as MEG and fMRI have been used to study the network
mechanisms underlying seizure generation, in particular focal seizures.>*3> In the future,
high-density EEG may become more widespread in clinical settings which would justify
more detailed approaches such as source-based reconstruction with a
neurophysiologically detailed computer model. Such approaches hold further potential in
providing support in diagnosing and lateralising epilepsy outside of the standard, clinical
environment.*® Here, we have not attempted to take into account whether the subjects
with focal epilepsy had secondarily generalization or not; a new and larger set of data
would allow us to examine whether these methods are sensitive to differentiating subjects
whose focal seizures generalize secondarily very rapidly from those for who this process

occurs slower. Additionally, useable data for our study was limited by the fact that an
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EEG-trained clinician was required to select the EEG epochs for further analysis. This
might be automated in the future, but in our current analysis could be considered to
provide a risk to the robustness of the presented measures. A further, potential,
confounding influence is the effect of time of day on resting-state EEG. Factors such as
circadian rhythms and environmental changes are known to dynamically influence
cortical excitability.3” Finally, since there is no evidence that one of the patient groups
(focal or generalised) is significantly more affected by AEDs or drug-load, it is unlikely

that this could lead to an unbalanced effect on the outcome measures we present.

Within a brief epoch of normal background EEG we can find imprints of the fundamental
properties related to the overall susceptibility for seizure occurrence. In particular, these
properties are fundamentally different between focal or generalised seizures, which are

characterised objectively using only three features of a simple mathematical model.
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Tables
Table 1: Critical Coupling
Kruskal Wallis: p=0.00002

Group-comparison p-value (MWU)

Con — IGE 0.0014 (U =703)
Con — Focal <0.0001 (U =1261)
Focal — IGE 0.0781 (U =399)

Bonferroni corrected (x3)
0.0041
<0.0001

0.2344

Table 2: Significantly Different Regions in Left Focal, Right Focal, and IGE

Left Focal
Onset Index

Channel p-value (BC: 19x3)

F7 0.030 (U =204)
C3 0.035 (U =207)
T3 0.049 (U =213)
Right Focal
Onset Index

Channel p-value (BC: 19x3)

P4 0.048 (U=176)

Participation Index

Channel p-value (BC: 19x3)

Fp2 0.0181 (U=195)
F3 0.0202 (U=197)
T5 0.0128 (U= 189)

Participation Index
Channel p-value (BC: 19x3)

Fp2 0.0182 (U =160)
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Figure Legends

Figure 1: Schematic of Dynamic Network Model

Schematic drawing of a particular dynamic network model: each individual region is a
model representation of coupled Kuramoto oscillators, and the connectivity between the

regions is determined by the PLF values.

Figure 2: Characterising the Focal or Generalised Nature of a Brain Network

A) Onset index (OI) and participation index (PI) for a "focal" network. a) Network
structure with 6 nodes (A, B, C, D, E, F) and edges describing directed connectivity
between the nodes. b) Activation Matrix for the given network. Each node is set into the
locally synchronised state once, and its response of the remaining nodes calculated
(which constitute the entries of the activation matrix). The OI for a node I corresponds to
the averaged column sum of column i, and the PI for a node i corresponds to the averaged
row sum of row i. The variability in the OI is found by dividing the standard deviation
over all the Onset Indices and dividing this by the mean over all the OI values of the
network, and equivalently for the PI. The normalised standard deviation for the OI and
the PI are shown in the bottom right of the activation matrix (light grey). ¢) The dynamics
of each node corresponds to the collective activity of a subpopulation of Kuramoto
oscillators and can be thought of as a single channel of simulated EEG, where low
amplitude activity represents the non-synchronised state (interictal), and high amplitude
oscillatory activity represents the synchronised state (ictal). In each subpanel, a node is

set into the synchronised state (blue), and the network response simulated. Note that the
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response of the network is variable and depends on the location of seizure initiation,

indicating a high degree of heterogeneity in the network’s behaviour.

B) OI and PI for a "generalised" network. a) Network structure with 6 nodes (A, B, C, D,
E, F) and edges describing directed connectivity between the nodes. b) Activation Matrix
for the given network. Each node is set into the locally synchronised state once, and its
response of the remaining nodes calculated (which constitute the entries of the activation
matrix). The OI for a node I corresponds to the averaged column sum of column i, and
the Participation Index for a node i corresponds to the averaged row sum of row 1. The
variability in the Ol is found by dividing the standard deviation over all the OI values and
dividing this by the mean over all the OI values of the network, and similarly for the PI.
The normalised standard deviation for the OI and the PI are shown in the bottom right of
the activation matrix (light grey). ¢) The dynamics of each node corresponds to the
collective activity of a subpopulation of Kuramoto oscillators and can be thought of as a
single channel of simulated EEG, where low amplitude activity represents the non-
synchronised state (interictal), and high amplitude oscillatory activity represents the
synchronised state (ictal). In each subpanel, a node is set into the synchronised state
(blue), and the network response simulated. Note that the response of the network is
homogeneous throughout, indicating a high degree of similarity across the network’s

behaviour.

Figure 3: Group Comparison for Critical Coupling Value
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Boxplots displaying the distribution of the critical coupling values for the control subjects
(n =38, median = 1.1674, IQR = 0.3055), generalised epilepsies (n = 25, median =
0.9152, IQR = 0.3843) and focal epilepsies (n = 43, median = 0.6520, IQR = 0.6170): the
box is spanned by the first quartile to the third quartile (interquartile range IQR), with the
median (bold line) situated within. Whiskers above and below the box show the location
of the largest and smallest value within 1.5 times the IQR, and suspected outliers are
depicted as stars. Mann-Whitney U tests rejects the null-hypothesis that the critical
coupling for the focal and generalised epilepsies have the same distribution as the
controls (Controls — Generalised: p = 0.0041, U = 703; Controls — Focal: p <0.0001, U =

1261; medians, two-tailed, p<0.05, Bonferroni correction: x3).

Figure 4: Comparing Variability in OI and PI for Focal and Generalised

A) Boxplots displaying the distribution of normalised standard deviation of the OI
comparing focal epilepsies (n = 43, median = 0.0808, IQR =0.06) against generalised
epilepsies (n = 25, median = 0.0573, IQR = 0.0252). Specifically, the normalised
standard deviation is calculated by dividing the standard deviation of the OI across all the
nodes within the network by the mean of the OI across all the nodes within the network:
(0XSE /USEY  (0EQCAL /uEQCALY Mann-Whitney U test rejects the null-hypothesis that the
normalised standard deviation of the OI for the focal and generalised epilepsies have the

same distribution (p = 0.0056, U = 319, medians, two-tailed, p<0.05).

B) Boxplots displaying the distribution of normalised standard deviation of the

Participation Index comparing focal epilepsies (n = 43, median = 0.0905, IQR = 0.0618)
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against generalised epilepsies (n = 25, median = 0.0642, IQR = 0.0273). The normalised
standard deviation is calculated by dividing the standard deviation of the Participation
Index across the nodes within a network by the mean of the Participation Index across the
nodes within that network: (ohE /ulSE), (6EOCAL /| FOCALY Mann-Whitney U test rejects
the null-hypothesis that the normalised standard deviation of the PI for the focal and
generalised epilepsies have the same distribution (p = 0.0206, U = 355, medians, two-

tailed, p<0.05).

Figure 5: Determining Side of Seizure Unset Using OI and PI

Regions in blue indicate a significant (Mann-Whitney U Test, two-tailed, p<0.05)
difference between the distributions of normalised standard deviations of a group (Left
Focal (n =23), Right Focal (n = 20) or IGE (n = 25)) and the control cohort (n = 38) for
that specific region. Regions in red indicate the strongest significant difference of all
regions in the network. For the regions in black the outcome of the Mann-Whitney U test
was to accept the hypothesis that the distributions are similar for that region. We found
no regions for the generalised epilepsies that were significantly different to the healthy
controls, whereas for focal epilepsies the regions with highest values of normalised

standard deviations of the OI and PI were associated with the affected hemisphere.
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Figure 1
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Supplementary materials: Characteristics of the study participants

Clinical and Demographic Characteristics of Study Participants

Subjects | Female | Age in years | Duration of | Number of
(SD)*; range | epilepsy in AEDs (n)
years (SD);
range
Controls 38 19 29.9 (8.6); - -
(50%) 18-52
IGE 25 15 325 (1L.1); 19.5(14.7); | 1(13),2(9),
(60%) 20-61 1-58 33)
Focal
- Left 23 9 38.7 (16.5); 15.4 (14.4); | 1(9),2(11),
- Right 20 (39%) 20-77 2-55 33)
13 35.9 (13.2); 20.4 (11.2); | 1(6),2(10),
(65%) 18-68 2-40 34)

Caption: Data are presented as integers n, integers n (%), or mean (SD). The Mann-
Whitney U test was used to compare age, duration of epilepsy and drug load between the
groups (all tests failed to reject the null-hypothesis of equal medians of the groups, two-
tailed, p<0.05); Fisher’s exact test was used for comparing gender (all tests failed to

reject the null-hypothesis, p<0.05).
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Control cohort

Subject Gender Age
1 m 30
2 m 22
3 m 24
4 m 26
5 f 29
6 f 26
7 m 30
8 f 30
9 m 28
10 f 31
11 f 19
12 f 46
13 m 27
14 m 20
15 f 18
16 m 26
17 f 30
18 m 23
19 m 22
20 m 23

21 f 30
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22 f 28
23 f 37
24 m 20
25 f 28
26 f 28
27 m 27
28 m 52
29 m 37
30 f 27
31 f 27
32 f 41
33 m 37
34 f 31
35 f 24
36 m 51
37 m 30

38 f 51
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Idiopathic Generalised Epilepsy Cohort

Duration EEG: EEG: EEG: EEG:

Age of disease Background  Focal focal gen.
Subject  Gender (years) (years) Syndrome  Type of AED MRI Slowing Slowing  IEDs IEDs
1 m 31 17 GTCS CBzZ Normal - - - -
2 f 40 31 JAE LTG, VPL Normal - - - -
3 f 31 5 IGE LTG, LEV Normal - - - -
4 f 52 50 IGE VPL, TPM Normal - - Yes -
5 f 47 36 JAE LEV Normal - - - Yes
6 m 25 21 IGE VPL Normal - - - Yes
7 m 25 14 IGE VPL, TPM Normal - - - Yes
8 f 28 8 GTCS CBzZ Normal - - - -
9 f 21 11 JAE LTG, ETX Normal - - - -
10 f 39 31 IGE LEV Normal - Yes - -
11 f 21 15 IGE LTG Normal - - Yes Yes
12 f 20 5 JME LTG, LEV Normal - - Yes Yes
13 m 25 9 IGE VPL Normal - - - -
14 m 50 42 CAE VPL, LEV Normal - - - -
15 m 45 24 CAE VPL,LEV,LTG  Normal - - - Yes
16 m 28 20 IGE VPL Normal - - - Yes
17 f 28 12 IGE LTG Normal - - Yes -
18 f 33 18 IGE VPL Not available - - - -
19 f 28 12 IGE TPM Not available - - - Yes
20 m 27 1 IGE VPL Normal - - - Yes
21 m 27 10 IGE CBZ,LEV,ZNS  Normal - - - Yes
22 f 23 10 IGE VPL, LTG Normal - - - Yes
23 m 20 3 IGE TPM Normal - - - Yes
24 f 38 24 IGE LTG, LEV Not available - - Yes Yes

25 f 61 58 IGE LEV, CLB Not available  Yes - Yes Yes


https://doi.org/10.1101/576785
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/576785; this version posted March 14, 2019. The copyright holder for this prepriﬂt@which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

Left Focal Epilepsy Cohort

Duration
of EEG: EEG: EEG: EEG:
Age disease Type of Background  Focal focal generalised
Subject  Gender (years) (years) Syndrome AED MRI Slowing Slowing  IEDs IEDs
LEV,
1 f 23 16 Left TLE LTG Normal - - Yes -
2 f 22 21 Left TLE TGB Normal - Yes Yes -
CBZ,
3 f 60 55 Left TLE LEV Normal Yes Yes Yes -
Left middle
temporal gyrus
focal cortical
4 m 21 5 Left TLE CBZ dysplasia - - -
5 f 24 9 Left TLE CBZ Left DNET - - Yes -
6 m 77 12 Left TLE LTG Left MTS - - Yes -
CBZ,
LTG Left frontal
7 f 57 14 Left frontal ,LEV encephalomalacia - Yes Yes -
8 m 50 48 Left focal CBzZ Normal - - Yes -
9 f 44 3 Left TLE LEV Left MTS - - Yes -
10 f 31 4 Left frontal LTG - - Yes -
Marginal volume
LTG, loss of central white
11 m 20 4 Left frontal LEV matter - Yes Yes -
12 m 60 2 Left TLE ZNS Normal - Yes - -
Left CBZ,
13 m 46 11 extratemporal ZNS Normal - Yes Yes -
14 m 25 2 Left TLE VPL Normal - - Yes -
CBZ,
15 m 20 5 Left TLE LEV Left MTS - - Yes -
Left medial- CBZ,
16 m 25 5 parietal LAC Normal - - Yes -
CBZ,
17 m 44 21 Left TLE VPL Left DNET - Yes Yes -
CBZ,
18 m 46 8 Left TLE LTG Left MTS - Yes Yes -
LEV,

19 m 32 22 Left TLE LTG Left MTS - Yes Yes -
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CBZ,

20 m 36 7 Left TLE LEV Left MTS - - Yes -
CBZ,
LTG,

21 f 63 21 Left TLE PGB Left MTS - Yes Yes -
CBZ,
LEV,

22 m 38 37 Left TLE VPL Left MTS - - Yes -
CBZ,

23 f 26 22 Left TLE LEV Left MTS - Yes Yes Yes
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Right Focal Epilepsy Cohort

Age

Subject  Gender (years)

1 f 47
2 m 26
3 f 20
4 m 31
5 f 18
6 f 21
7 f 39
8 f 24
9 m 68
10 f 37
11 f 41
12 f 26
13 f 52

Duration

of
disease

(years)

35

20

30

40

28

25

38

Syndrome

Right TLE

Right TLE

Right TLE

Right TLE

Right TLE

Right TLE

Right TLE

Right TLE

Right TLE
Right

focal

Right
frontal
Right

temporal

Right TLE

Type of
AED
CBZ,
LTG
CBZ,
LEV,
CLB
CBZ,
TPM
CBZ,
LEV
CBZ,
TPM
LEV,
LTG
CBZ,
TPM

OXC

VPL,
PHT
CBZ,

TPM

LEV,

PHT

LTG

PHT,

TPM,

LAC

MRI

Right MTS

Right MTS

Right MTS

Right MTS

Right MTS

Right MTS

Right MTS

Right MTS

Right
encephalomalacia

of fusiform gyrus

Normal

Right gliosis and
hemosiderin
deposit after
superior frontal
gyrus cavernoma

resection

Normal

Right small focal
cortical
abnormality in
the inferomedial

temporal lobe

EEG: EEG: EEG: EEG:
Background  Focal focal generalised
Slowing Slowing  IEDs IEDs
- Yes Yes -

- - Yes -

- Yes Yes -

- Yes Yes -

- - Yes -

- Yes Yes -

- Yes Yes -

- Yes Yes -

- - Yes -

- Yes Yes Yes
Yes - - -

- - Yes -


https://doi.org/10.1101/576785
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/576785; this version posted March 14, 2019. The copyright holder for this prepriﬂt%Nhich was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

14

15

16

17

18

19

20

38

45

22

48

51

33

31

33

21

23

Right TLE

Right
frontal
Right

frontal

Right

TLE

Right
TLE
Right

TLE

Right

TLE

LTG

VPL,

LAC

LTG
LEV,
VPL,
TPM
VPL,
LTG,

LAC

VPL

TPM

Right
malformation of
brain
development in
the temporal
occipital area and
possible MTS in
addition - - Yes -
Right frontal
meningeoma,
status after

resection of left

temple

meningeoma - Yes Yes -
Normal - - Yes -
Right DNET - - Yes -
Normal - - Yes -
Right MTS - Yes Yes -
Right temporal

lobe

malformation

with dysplastic
malrotate
hippocampus and
diffuse nodular

heterotopia - - Yes -

Abbreviations: m: male; f: female; GTCS: generalised tonic-clonic seizures only; CAE:

childhood absence epilepsy; JAE: juvenile absence epilepsy; IGE: idiopathic generalised

epilepsy (unclassified); TLE: temporal lobe epilepsy; MTS: mesial temporal sclerosis;

DNET: dysembryobastic neuroepithelial tumor; IED: interictal epileptiform discharge;
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CBZ: carbamazepine; CLB: clobazam; ETX: ethosuximide; LAC: Lacosamide; LEV:
levetiracetam; LTG: lamotrigine; OXC: Oxcarbazepine; PGB: Pregabalin; PHT:

Phenytoin; TGB: Tiagabine; TPM: toparimate; VPL: valproate; ZNS: zonisamide.

Table: Group Comparisons

Sex Age Duration | Number of

AEDs

Controls — IGE 0.4341 | 0.4991 - -

Controls — Left 0.4053 | 0.1065 - -

Focal

Controls — Right | 0.4398 | 0.1043 - -

Focal
IGE — Left Focal | 0.1482 | 0.4436 | 0.2075 0.4479
IGE — Right Focal | 0.9999 | 0.3686 | 0.4786 0.1533
Left Focal — Right | 0.1292 | 0.7607 | 0.0902 0.4643
Focal

Caption: The Mann-Whitney U test (two-tailed, p<0.05) was used to compare age,
duration of epilepsy and drug load between the groups. Fisher’s exact test (p<0.05) was
used for comparing sex. All tests failed to reject the null-hypothesis of equal medians of

the groups.
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