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1 Abstract

Understanding the relatedness of individuals within or between populations is a common goal in
biology. Increasingly, relatedness features in genetic epidemiology studies of pathogens. These
studies are relatively new compared to those in humans and other organisms, but are important for
designing interventions and understanding pathogen transmission. Only recently have researchers
begun to routinely apply relatedness to apicomplexan eukaryotic malaria parasites, and to date have
used a range of different approaches on an ad hoc basis. It remains unclear how to compare different
studies, therefore, and which measures to use. Here, we systematically compare measures based
on identity-by-state and identity-by-descent using a globally diverse data set of malaria parasites,
Plasmodium falciparum and Plasmodium vivax, and provide marker requirements for estimates
based on identity-by-descent. We formally show that the informativeness of polyallelic markers for
relatedness inference is maximised when alleles are equifrequent. Estimates based on identity-by-
state are sensitive to allele frequencies, which vary across populations and by experimental design.
For portability across studies, we thus recommend estimates based on identity-by-descent. To
generate reliable estimates, we recommend approximately 200 biallelic or 100 polyallelic markers.
Confidence intervals illuminate inference across studies based on different sets of markers. These
marker requirements, unlike many thus far reported, are immediately applicable to haploid malaria
parasites and other haploid eukaryotes. This is the first attempt to provide rigorous analysis of the
reliability of, and requirements for, relatedness inference in malaria genetic epidemiology, and will
provide a basis for statistically informed prospective study design and surveillance strategies.

Keywords: identity-by-state, identity-by-descent, relatedness, independence model, hidden Markov
model, malaria, Plasmodium falciparum, Plasmodium vivax, genetic epidemiology

2 Introduction

Genetic relatedness is a measure of recent shared ancestry (reviewed in [1, 2]). It ranges from
zero between two unrelated individuals to one between clones, and in the absence of inbreeding is
broken down by recombination [3]. Since the early 20th century, estimates of relatedness have been
used across a wide variety of fields: archaeology, agriculture, forensic science, paternity testing,
human disease gene mapping, conservation, and ecology [1, 4]. Nevertheless, studies of relatedness
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are both new and niche in infectious disease molecular epidemiology: new because the field itself
is [5], and niche because only a subset of pathogens are eukaryotes, e.g. helmiths and parasitic
protoza, which include malaria parasites (reviewed in [6], but without reference to relatedness).
Because relatedness is broken down by outbreeding, it can change with each generation [7]. On a
population-level, studies of malaria parasite relatedness thus provide a sensitive measure of recent
gene flow [8], generating insight on an operationally relevant scale for disease control efforts [9].

Malaria parasites are haploid during the human stage of their life cycle. One measure of relat-
edness between haploid genotypes is equivalent to the diploid coefficient of inbreeding, defined by
Malécot as a probability of identity-by-descent (IBD) [10]. Two alleles are identical by descent (also
IBD hereafter) if they are descended from a common ancestor in some ancestral reference popula-
tion, whose members are assumed unrelated [11, 7, 2].1 For pedigrees, the reference is the founder
population; more generally, it is a population at some arbitrary time-depth (reviewed in [7, 2]). Two
alleles that share the same allelic type are identical by state (IBS) and include those that are both
IBD and not IBD [11, 1, 12, 7, 13, 2]. identity-by-state (also IBS hereafter) is observed, whereas
IBD is hidden. Though hidden, relatedness based on IBD can be inferred from genetic data. Many
estimators exist, some assuming independence between hidden IBD states [1, 11], others not (e.g.
[14] and subsequent models - see [15] and references therein). Those assuming independence have
fewer parameters but impaired power in the presence of dependence [16]. Estimators that do not
assume independence are often based on hidden Markov models (HMMs, reviewed in [17]). Mea-
sures of relatedness used in studies of malaria include those estimated under HMMs (hmmIBD [18],
used in e.g. [19, 20, 21, 22]; isoRelate [23], extension of XIBD [24]; DEploidIBD [25], extension
of DEploid [26]). Measures based on IBS (e.g. proportions of alleles shared or counts of allele
differences) require only simple calculation and are thus popular also as a proxy for measuring
relatedness between malaria parasites (e.g. [27, 28, 19, 29, 30, 31, 32]).

Despite many malaria genetic epidemiology studies using IBD and IBS based analyses, there
are few systematic comparisons applicable to malaria studies. Questions also remain about optimal
marker requirements for pairwise relatedness inference. To enable comparison between studies of
malaria epidemiology, we compare and assess measures based on IBD and IBS using simulated data;
various data sets of Plasmodium falciparum, the parasite responsible for the most deadly type of
human malaria; and a data set of Plasmodium vivax, the parasite most commonly responsible for
recurrent malaria. We use a model framework encompassing two simple models assuming indepen-
dence and not. It is an error-modified version of [14] and thus at the core of many probabilistic IBD
models (see review in [15]), including those specifically designed for comparison across malaria par-
asites [18, 23]. To guide future relatedness studies of monoclonal haploid malaria parasite samples
and haploid eukaryotes more generally, we explore marker count and number of alleles for related-
ness inference with specified error. Simulated data illustrate how IBS is sensitive to marker panels,
making conclusions non-portable across studies. Concrete recommendations on marker require-
ments depend on specified error. Increasing the number of alleles per marker genotyped reduces
error, especially when markers are few, but with diminishing returns.

1IBD was first defined it terms of mutation: ‘pairs of alleles at a locus are mutation-sense IBD if there has
been no mutation since their MRCA’, where MRCA stands for most recent common ancestor [2]. It can also be
interpreted in terms of IBD segments: shared genomic regions unbroken by recombination since their MRCA [7, 2].
This interpretation, referred to as ‘recombination-sense’ in [2], circumvents the problem of a specifying a reference
population but presents the problem of specifying some small segment length [7, 2].
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3 Methods and Theory

3.1 Relatedness

For the purpose of this study, relatedness r is defined as the probability that, at any locus on
the genome, the allele sampled from one individual is IBD to the allele sampled from the other
individual. This is referred to as the pointwise pairwise probability of IBD in [15]. We denote by m
the number of genotyped markers. Each of them has a locus on the genome. We index these loci by
t = 1, . . . ,m. We denote by ct the index of the chromosome of the t-th locus, and by pt its position
on that chromosome. For two indices t1, t2 with t1 < t2, we either have ct1 < ct2 , or ct1 = ct2 and
pt1 < pt2 . For the t-th locus we denote by IBDt the binary variable indicating whether the two
individuals are IBD at that locus; IBDt = 1 indicates IBD, otherwise IBDt = 0.2 We assume that
r, the marginal probability that IBDt = 1, is constant across the genome:

∀t = 1, . . . ,m r = P(IBDt = 1). (3.1)

The sequence (IBDt)t=1,...,m could be made of independent Bernoulli variables with parameter r,
or more generally a Markov chain with a Bernoulli invariant distribution with parameter r. For the
Markov chain model, we write the transition probabilities at locus t,

A(t) =

(
a00(t) a01(t)
a10(t) a11(t)

)
=

(
1− r(1− exp(−kρdt)) r(1− exp(−kρdt))

(1− r)(1− exp(−kρdt)) 1− (1− r)(1− exp(−kρdt))

)
.

In the above, aj`(t) refers to the probability of IBDt = ` given that IBDt−1 = j, dt denotes a
genetic distance in base pairs (bp) between sites t − 1 and t (i.e. all markers are treated as point
polymorphisms). If the locus t−1 and t are on different chromosomes (ct−1 6= ct) the distance is set
to +∞; in that case the variables IBDt−1 and IBDt are independent. The value k > 0 parameterizes
the switching rate of the Markov chain and ρ is a constant equal to the recombination rate, assumed
known and fixed across both haploid genotypes with value 7.4 × 10−7M bp−1 for P. falciparum
parasites [33].

We now describe how the model connects the quantity of interest r to the data. At each locus
t, we assume that the set of possible alleles is denoted by Gt = {g1, . . . , gKt

}, where Kt ≥ 2 denotes
the cardinality of Gt (allelic richness of the t-th marker). For individuals i, j in the population

and at locus t we observe the pair Y
(i)
t , Y

(j)
t ∈ Gt. We assume that alleles occur with frequencies

(ft(g))g∈Gt , with ft(g) ≥ 0 for all g ∈ Gt and
∑Kt

l=1 ft(gl) = 1. The data comprise Y
(i)
t , Y

(j)
t , the

distances (dt) and the frequencies (ft(g))g∈Gt at m loci. A simple observation model relates the data

to IBDt by assuming that, if IBDt = 0, then Y
(i)
t and Y

(j)
t are independent categorical variables

taking values in Gt with probabilities (ft(g))g∈Gt . If IBDt = 1, then Y
(i)
t is such a categorical

variable and Y
(j)
t = Y

(i)
t with probability one. A more realistic model accounting for observation

error is described in Appendix B.
Combining the Markov model for (IBDt) with an observation model as above leads to a hidden

Markov model (Figure 1) with a likelihood function (r, k) 7→ L1:m(r, k). Note that, as mentioned in
the introduction, this model is essentially an error-modified version of [14], and thus at the core of
the many subsequent probabilistic IBD models (see [15]), including all those specifically designed for
comparison across haploid malaria parasites [18, 23]. An independence model can be retrieved by

2For reasons outlined at the end of this section (3.1), we purposely omit reference to either an ancestral population
or segment unbroken by recombination; IBDt is simply a binary variable in {0, 1}.
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e.g. setting all distances to +∞. In either case we can maximize the likelihood over the parameter
space and we denote by r̂m the maximum likelihood estimator of r, that can be computed using
numerical optimization.

Under some assumptions on the data-generating process, the maximum likelihood estimate r̂m
could be shown to be consistent for r as the sample size m goes to infinity. However these asymptotic
considerations are intricate in the present setting of Mendelian sampling [34]. Indeed, the degree of
dependencies between successive observations increases with the sample size m: the more sites are
sampled, the closer to one another they become. This departs from the standard asymptotic setting,
where the observations are not increasingly dependent as m → ∞ [35, 36, 37]; this is discussed in
more details in Appendix B.

Without standard asymptotic results, such as the asymptotic normality of the maximum likeli-
hood estimator, we do not have a simple formula relating the sample size m to the variance of the
estimator r̂m, which would have been useful for sample size determination. The distribution of the
r̂m can still be approximately normal because the log-likelihood can be approximately quadratic
[38]. If that is the case, confidence intervals can be obtained through the second derivative of the
log-likelihood at the MLE. The present setting poses an additional difficulty since the MLE can
be located on the boundary of the parameter space, e.g. r̂m = 0 or r̂m = 1. This suggests that
the distribution of the MLE might not always be normal [39]. We therefore rely on the parametric
bootstrap [Chapter 9 of 40] to construct confidence intervals around r̂m (note that we cannot use
the nonparametric bootstrap since we cannot sample positions with replacement). Unless other-
wise stated, we use 500 bootstrap draws throughout. Note that even when assuming the absence of

genotyping error, if Y
(i)
t 6= Y

(j)
t for some t = 1, . . . ,m, the confidence interval around r̂m > 0 can

contain one, since data simulated with r̂m > 0 may have identical genotype calls for all t = 1, . . . ,m
(especially if m is small), which leads to a bootstrapped estimate of r equal to one.

Under the model framework (Figure 1) no explicit mention is made of ancestors, be they most
recent or at some arbitrary time-depth. In the introduction we refer to IBD relative to either
some reference population or some small segment length (‘recombination-sense’ [2]). Akin to many
existing IBD models (see catalogue in [15, 41, 42]) and some related imputation methods (see
catelogue in [43, 44, 45]), IBD segments can be estimated within the HMM framework (e.g. using
the most likely path of hidden states [17], posterior probabilities of IBD at each marker position
[42, 46], or a posterior predictive draw of IBD segments [46]). These segments underpin many
applications from disease mapping (e.g. [47]) to P. falciparum selection detection [23]. They can
also be used to generate a recombination-sense IBD estimate [2]. However, like [15] we do not tune
the parameter which relates to segment length, k. As such the pointwise estimate r̂m, averages
over all IBD segments, however small, and thus is liable to reflect some antecedent population-level
relatedness, i.e. linkage disequilibrium (LD) [48]).

3.2 Fraction IBS

For a pair of samples i and j, we define the fraction IBS as a proportion of m markers that are
identical across both samples,

ÎBSm =
1

m

m∑
t=1

IBSt, (3.2)

where IBSt = 1 if Y
(i)
t = Y

(j)
t and zero otherwise. The fraction IBS can also be derived from

counts of marker differences; e.g.
∑m
t=1(1 − IBSt) = m(1 − ÎBSm) where 1 − IBSt = 1 denotes

4

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 12, 2019. ; https://doi.org/10.1101/575985doi: bioRxiv preprint 

https://doi.org/10.1101/575985
http://creativecommons.org/licenses/by/4.0/


a marker difference (equation (3.2) rearranged). Note that ÎBSm is the haploid equivalent of the
‘allele-sharing coefficient’ referred to in [2].

We can relate the IBS estimator (equation (3.2)) to r by specifying a relationship between IBDt

and IBSt. For illustration, in the case with no genotyping error, the expectation of IBSt is the
following linear function of relatedness (derivation, equation (A.1)),

E
[
ÎBSm

]
= h̄m + (1− h̄m)r, (3.3)

where

h̄m =
1

m

m∑
t=1

ht and ht =

Kt∑
l=1

ft(gl)
2. (3.4)

Here ht and 1 − ht are equivalent to Nei’s ‘gene identity’ and ‘gene diversity’, respectively [49].
Considering an outbred diploid, these terms equate to homozygosity and heterozygosity, respectively
[49].

Equation (3.3) might suggest that ÎBSm could converge to h̄+(1− h̄)r (where h̄ = limm→∞ h̄m)
as the number of markers m goes to infinity, under assumptions on the data-generating process such
as independent loci; see section A.2. Under this setup, the estimator ÎBSm would not be consistent
for r, but could be corrected; see Appendix A. In the Results section we numerically demonstrate
how equation (3.3) is a problematic estimator of r using simulated and real data (see details below).

3.3 Plasmodium data

Throughout, we illustrate results using Plasmodium and simulated data. P. falciparum data com-
prise biallelic (i.e. Kt = 2 ∀t = 1, . . . ,m) single nucleotide polymorphism (SNP) data from mono-
clonal P. falciparum samples (Table 1). All data are published [50, 51, 29, 30, 52, 8]. They were
obtained either from sparse genome-wide panels of select markers, called barcodes, or from dense
whole genome sequencing (WGS) data sets (reviewed in [53]); full details of sample collection and
data generation can be found via the citations above and references therein. Additional steps we
took to process the data are as follows.

Besides mapping SNP positions to the P. falciparum 3d7 v3 reference genome and recoding
heteroallelic calls as missing (since all samples with fewer than 10 heteroallelic SNP calls were
classified monoclonal by [50]), we did not post-process the Colombian data in any way. Thailand
93-SNP and WGS samples were used exactly as described in [8]. Data derived from [29, 30] (i.e. all
African data) were processed using steps described in ‘Sample and SNP cut-off selection criteria’
of [29]. In addition, we removed samples with duplicate SNP calls; removed samples classified
as not monoclonal using a ≤ 5% heteroallelic SNP call rate to classify monoclonal samples, akin
to [51]; and, among monoclonal samples, treated heteroallelic SNP calls as missing and removed
monomorphic SNPs.

For each processed data set of monoclonal P. falciparum samples, allele frequencies were esti-

mated by simple proportions: ft(gj) = n−1∗
∑n∗
i=1 1(Y

(i)
t = gj) for all j = 1, 2 and each locus t,

where n∗ ≤ n denotes the number of monoclonal parasite samples whose data were not missing at
the t-th locus. Minor allele frequencies (i.e. min(ft(g1), ft(g2)) ∀ t = 1, . . .m) vary considerably by
design (i.e. different marker panels) and due to variation among parasite populations over space
and time (Figure 2).

In addition to the aforementioned P. falciparum data, we generated results for a single P. vivax
data set, freely available online [54]. The P. vivax data were collected between 2010 and 2014 from
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ε

r

IBD1 IBD2 · · · IBDm

(f1(g))g∈G1 (f2(g))g∈G2 · · · (fm(g))g∈Gm

Y
(i)
1Y

(j)
1 Y

(i)
2Y

(j)
2

· · · · · · Y
(i)
m Y

(j)
m

kρ ×

d2 . . . dm

Figure 1: Models relating genetic data to genetic relatedness. Input data are depicted by

green circles. They include genotype calls, Y
(i)
1 , . . . , Y

(i)
m and Y

(j)
1 , . . . , Y

(j)
m , allele frequencies,

(f1(g))g∈G1 , . . . , (fm(g))g∈Gm , and distances between genotyped markers, d2, . . . , dm. Parame-
ters considered fixed (the genotyping error, ε, and the constant, ρ) are depicted by red cir-
cles. Unobserved quantities are depicted by gray squares. They include the hidden IBD states,
IBD1, . . . , IBDm, and the estimands (genetic relatedness, r, and k). Solid arrows depict dependen-
cies under both the independence model and the HMM. Dashed arrows depict dependencies under
the HMM only. Distances, ρ and k feature in the HMM only.
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Data set and citation/s Collection region and years n mmax h̄mmax K̄′
mmax

Colombia [50] Colombian Pacific region, 1993-2007 325 250 0.66 1.57
Thailand 93-SNP [51, 8] Thailand-Myanmar border, 2001-2010 1173 93 0.57 1.77
Thailand WGS [52, 8] Thailand-Myanmar border, 2001-2014 178 34911 0.89 1.17
The Gambia [29] Kombo coastal districts, 2007–2008 71 31 0.77 1.37
Kilifi [29] Coastal Kenya, 1998-2010 628 127 0.87 1.19
Western Kenya [30] Western Kenya, 2008-2010 182 59 0.73 1.43

Table 1: A summary of globally diverse data sets of monoclonal P. falciparum samples. All data
are published. Full details of sample collection and data generation can be found via the citations
above and references therein. Additional steps we took to process the data for use in this study
are described in section 3.3. For each processed data set, n denotes the number of monoclonal
P. falciparum samples; mmax denotes the maximum number of successfully genotyped SNPs per
sample; h̄mmax

denotes the expected homozygosity (equation (3.4)) averaged over mmax SNPs; and
K̄ ′mmax

denotes the average effective cardinality (defined below, equation (3.8)).

two clinical trails on the Thailand-Myanmar border [55, 56]. The data were genotyped at three to
nine highly polyallelic microsatellites (MS). In this study, we analyse samples genotyped at nine
MSs that have no evidence of multiclonality (detection of two or more alleles at one or more MS).
We estimate relatedness between pairs of samples from n = 204 different people, selecting one
episode per person uniformly at random from all episodes per person. We use the allele frequencies
reported in [54]. They have average expected homozygosity h̄mmax

= 0.10 (equation (3.4)) and
average effective cardinality (defined below, equation (3.8)) K̄ ′mmax

= 13.03. Since there are only
nine markers, we analyse these data under the independence model.

3.4 Simulated data

3.4.1 Biallelic markers:

Unless otherwise stated, biallelic marker data (i.e. data with Kt = 2 ∀t = 1, . . . ,m) were simulated
under the HMM with ε = 0.001 using marker loci positions and allele frequency estimates sampled
from the Thailand WGS data set. Positions were sampled uniformly at random. Frequencies were
sampled separately using one of two approaches: either they were sampled uniformly at random,
or, to compensate for the skew towards rare alleles in WGS data set, frequencies were sampled
separately with probability proportional to minor allele frequency estimates.

3.4.2 Polyallelic markers:

Polyallelic marker data (i.e. data with Kt > 2 ∀t = 1, . . . ,m) were simulated under the HMM
with ε = 0.001 using marker loci positions sampled uniformly at random from the Thailand WGS
data set and allele frequency estimates sampled from a Dirichlet distribution. We used a Dirich-
let parameter vector equal to α = (1001, . . . , 100Kt) to generate frequencies such that alleles are
approximately equifrequent, and a concentration parameter vector equal to α = (11, . . . , 1Kt) to
generate frequencies that are uniform over the Kt − 1 simplex. The former approach generates
ideal frequencies (see below), while the latter generates frequencies that for Kt > 2 are increasingly
skewed towards rare alleles, thus more representative of real frequency spectra.
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Figure 2: Minor allele frequency estimates from monoclonal P. falciparum data sets (Table 1).
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3.5 Marker requirements for prospective relatedness inference

3.5.1 Biallelic markers:

For a set of parameters (i.e. number of markers m, relatedness r, switch rate parameter k) we
simulate 1000 pairs of haploid genotype calls and for each pair compute r̂m. We compute the root
mean squared error (RMSE) by taking the square root of the average of the squared difference
between r̂m and r. From the RMSEs computed for different sample sizes m, we derive the number
of markers required for the RMSE to be below a specified value. Unless otherwise stated we use
k = 12 where fixed, the mean estimate of k for r̂m ∈ (0.475, 0.525) from the Thailand WGS data
set.

Comparison between r̂m and r differs from that between r̂m andm−1
∑m
t=1 IBD, which is referred

to as the ‘realised relatedness’ in [2]. The former has the advantage of revealing RMSE due to the
finite length of the genome (i.e. Mendelian sampling [34]), while at the same time revealing the
excess, and thus theoretically avoidable, error due to marker limitations.

3.5.2 Polyallelic markers:

To explore marker requirements for relatedness inference using polyallelic markers we first consider
the impact of increasing Kt beyond two at a single locus. For a given Kt, we measure the in-
formativeness of a set of allele frequencies via the corresponding Fisher information matrix; this
can in turn be related to the precision of the maximum likelihood estimator if the log-likelihood is

approximately quadratic. We define FIMt = E[−∇2
r logP(Y

(i)
t , Y

(j)
t ; r)], where the expectation is

with respect to Y
(i)
t , Y

(j)
t given r and the allele frequencies, and where we consider an observation

model without genotyping error for simplicity; the sign ∇2
r stands for the second order derivative

with respect to r. The Fisher information matrix FIMt depends on the allele frequencies (f(gj))
Kt
j=1

and on r:

FIMt(ft(g1), . . . , ft(gKt
), r) =

1

1− r
+

Kt∑
j=1

{
ft(gj)(1− ft(gj))2

r + ft(gj)(1− r)
− ft(gj)

2

1− r

}
. (3.5)

We show that, for any Kt and r, it is maximized over all (f(gj))
Kt
j=1 by f(gj) = K−1t for all j, i.e.

by equifrequent alleles. This is in agreement with the aforementioned long-established result that
markers with high minor allele frequencies are preferable for relatedness inference [57]. A proof is
provided in Appendix B.3.4. When alleles are equifrequent we obtain

FIMt(Kt, r) =
1

1− r
+

(Kt − 1)2

Kt(1 + (Kt − 1)r)
− 1

Kt(1− r)
, (3.6)

which is an increasing function ofKt such that limKt→∞ FIMt(Kt)→ (1−r)−1+r−1. Equation (3.6)
describes the precision of the MLE, assuming that the log-likelihood is approximately quadratic,
that Kt is the same at each locus and the allele frequencies are equifrequent.

To explore the relative gain of increasing Kt > 2 we calculate the multiplicative increase in
FIMt(Kt ≥ 2, r) relative to FIMt(Kt = 2, r) (Figure 3, left). The informativeness of Kt = 15 is
between approximately two and seven times that of Kt = 2, with increasing returns as r approaches
zero. However the justification of the FIM as a measure of precision breaks at the boundary of the
parameter space. Regardless of r, the biggest increase is obtained upon increasing Kt from 2 to 3

9

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 12, 2019. ; https://doi.org/10.1101/575985doi: bioRxiv preprint 

https://doi.org/10.1101/575985
http://creativecommons.org/licenses/by/4.0/


with diminishing returns thereafter. The plot on the right of Figure 3 shows multiplicative increase
in precision as a function of effective cardinality,

K ′t = 1/ht, (3.7)

which can be interpreted as the non-integer number of equifrequent alleles that would give rise to
the same ht as that based on the allele frequencies (ft(g))g∈Gt (equation (3.4)). For example, K ′t = 2
is the effective cardinality of an ideal biallelic SNP, whereas K ′t < 2 is the effective cardinality of a
realistic biallelic SNP. Precision increases with K ′t as it does with Kt.

To explore the trade-off between increasing m and increasing Kt for a set of parameters (i.e.
various m, Kt, α and r, and k = 12), we simulate 1000 pairs of haploid genotype calls, generate
r̂m for each pair and calculate the RMSE. For simplicity, for a given m, we assume all markers
have the same Kt. To compare on a common scale numerical results for makers with and without
equifrequent alleles, we use the average effective cardinality:

K̄ ′m =
1

m

m∑
t=1

K ′t. (3.8)

Since K̄ ′m is approximately the same for all m, to explore the trade-off between increasing m and
increasing Kt, we average the effective cardinality over all m ∈ {24, 96, 192, 288, 384, 480},

K̄ ′mcum
=

1

mcum

mcum∑
t=1

K ′t, (3.9)

where mcum = 24 + 96 + . . .+ 480.

3.6 Data and code availability

All data used in this study are either simulated or published previously. Additional steps we took to
process the data are described in section 3.3. The processed data and code necessary for confirming
the conclusions of the article are available at github.com/artaylor85/PlasmodiumRelatedness.

4 Results

This section concerns the estimation of r as defined above and is arranged as follows. First we
consider the genomic fraction IBS and show how it is problematic as an estimator of r. Second, we
discuss r estimated using Plasmodium data, and provide marker requirements based on simulated
data with biallelic and polyallelic markers.

4.1 Fraction IBS

Although ÎBSm might not satisfy favorable statistical properties as an estimator of r, its expectation
is indeed related to r (equation (3.3)). As such, many studies have recovered meaningful trends in
r with respect to epidemiological covariates (e.g. geographic distance) using measures related to

ÎBSm [29, 30, 32]. However, since h̄m is a function of the allele frequencies (equation (3.4)), so too

is ÎBSm. This is equivalent to the dependence on MAFs of the allele-sharing coefficients reviewed
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Figure 3: Multiplicative increase in the precision of the MLE with marker cardinality. The left
plot shows the multiplicative increase for equifrequent alleles according to equation (3.6). The
right plot shows the multiplicative increase with K ′t, where precision was calculated according to
equation (3.5) with either ft(gi) = 1/Kt ∀ i = 1, . . . ,Kt (dots) or ft(g1) = 1.75/Kt and ft(gi) =
(1− ft(g1))/(Kt − 1) ∀ i = 2, . . . ,Kt such that K ′t < Kt (triangles).
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in [2]. It means that quantitative trends in ÎBSm (e.g. regression coefficients) and absolute values

of ÎBSm are only comparable across data on markers whose allele frequencies are the same [32].
This is a limitation given that frequencies almost always differ across data sets (e.g. Figure 2).

To illustrate the effect of differing allele frequencies, we generated ÎBSm for data simulated
using allele frequency estimates from published data sets (Figure 4, top). The plot illustrates two

notable results. First, for all biallelic marker data sets, the ÎBSm distribution is far from 0.5, the
value of r used to simulate the data. The expected difference between ÎBSm and r is a linearly
decreasing function of r: h̄m + (1− h̄m)r − r = h̄m − h̄mr. As such, we would expect to see bigger

and smaller distances between ÎBSm distributions and the data generating r were data simulated
using r < 0.5 and r > 0.5, respectively; when r = 1 there is no difference. Second, the locations of
the ÎBSm distributions vary considerably across data sets, centering around h̄m + (1− h̄m)r, which
varies due to h̄m, since r = 0.5 throughout. This variability, despite all parasite pairs having been
simulated with r = 0.5, renders absolute values of ÎBSm non-portable across data sets. In contrast,
distributions of estimates of relatedness based on IBD, r̂m, all centre around r = 0.5 (Figure 4,
bottom). To single out the effect of frequencies, we fixed all parameters besides frequencies across
the data sets, including the number of markers (m = 59) and their positions; see caption, Figure
4. Results generated using all available data show the same trend, but data sets with many SNPs
have tighter distributions.

Figure 5 shows ÎBSm and r̂m distributions based on the real sample pairs from published data
sets. The location and spread of the ÎBSm distributions vary considerably. As Figure 4 exemplified
using simulated data, comparisons of absolute ÎBSm values are non-portable across data sets. It is
thus wrong to interpret the left-most centering of the distribution based on the real 93-SNP data set
from Thailand as evidence that P. falciparum parasites from Thailand are less related than those
from Kenya, or that they represent a different population to that represented by the WGS data
set also from Thailand. Despite very different absolute values of ÎBSm, careful inspection shows all
center around h̄mmax

, which is the expectation of ÎBSm for unrelated parasites pairs whose r = 0
(equation 3.3). We thus conclude that many parasite pairs in these real data sets are unrelated.
Our conclusion is corroborated by estimates of relatedness based on IBD, r̂m (Figure 5, bottom).
Though the vast majority of parasite pairs are unrelated, we see some variation in the mean r̂m.
This variation is caused in part by outliers (parasite pairs with high relatedness). It is also caused
by variation in mmax × K̄ ′mmax

: estimates of r are more error prone when mmax × K̄ ′mmax
is small

and those close to zero (the vast majority) are liable to upward bias due to boundary effects;

see next section. The distribution of ÎBSm based on the P. vivax data set (Thailand MS) most
closely approximates its partner distribution of r̂m due to the highly polymorphic nature of the
microsatellite data whose K̄ ′mmax

= 13.03.

4.2 Estimating relatedness

Distributions of estimates of relatedness between pairs of Plasmodium monoclonal samples are
plotted in Figure 5 (bottom plot). For each site, r̂m values range from 0 to 1, suggesting presence
of unrelated, partially related and clonal parasites across all data sets. The vast majority, however,
have r̂m < 0.20. For a selection of 100 estimates ranging from 0 to 1, Figure 6 shows 95% parametric-
bootstrap confidence intervals. In general, confidence intervals are tighter around estimates for data
sets with larger mmax × K̄ ′mmax

, a point we shall return to later. Due to the asymmetric nature of
confidence intervals near zero and one, estimates of r close to the boundary are liable to be biased.
Considering the boundaries, intervals around estimates of r close to one are tighter, in general, than
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Figure 4: Measures of relatedness: pairs simulated with relatedness 0.5: Violin plots showing
distributions of ÎBSm (top) and r̂m (bottom) each based on 100 pairs simulated using r = 0.5 and
allele frequency estimates based on P. falciparum data sets with at least 59 SNPs (Table 1). To
single out the effect of frequencies, we fixed all other parameters across the data sets, including the
number of SNPs simulated and their positions. Specifically, we used 59 SNPs whose positions were
extracted from the Western Kenyan data set. Allele frequencies were sampled uniformly at random
from the full set of allele frequency estimates based on each data set. For each set of 59-SNP
allele frequencies, the h̄m values were 0.86, 0.85, 0.73, 0.67, 0.58 (top to bottom row of each plot,
respectively). Data were simulated under the HMM with ε = 0.001, r = 0.5 and k = 1. Black

vertical bars denote h̄m + (1− h̄m)r (top) and triangles denote the mean ÎBSm (top) and mean r̂m
(bottom).
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Figure 5: Measures of relatedness: parasite pairs with unknown relatedness. Violin plots showing
distributions of ÎBSm (top) and r̂m (bottom) based on pairwise comparisons of Plasmodium mon-
oclonal samples from six published P. falciparum biallelic SNP data sets (Table 1) and a single P.
vivax microsatellite data set (Thailand MS). Black vertical bars denote h̄mmax

(top) and triangles

denote the mean ÎBSm (top) and mean r̂m (bottom).
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those for r close to zero.
Considering Figures 5 and 6, we used the HMM to generate r̂m for biallelic marker data sets

whose mmax is greater than 24 (Table 1), and the independence model to generate r̂m for the
polyallelic data set whose mmax = 9, Thai MS. Based on simulated data, the HMM provides
coverage3 close to 0.95 for m > 24, while the independence model provides waning coverage for
m > 24, especially when k, which parameterizes the switching rate of the Markov chain, is small;
for m = 24 both the HMM and the independence model provide similar coverage, above or around
0.85 (Figure 7).

For all data sets biallelic and polyallelic, we construct confidence intervals using the parametric
bootstrap due to the non-quadratic nature of the log-likelihood of r when r̂m is close to either 0 or
1 (e.g. Figure B.3, left top and middle). For r̂m away from 0 and 1, the log-likelihood is quadratic
(e.g. Figure B.3, bottom left plot) and thus normal-approximation confidence intervals could be
constructed.

4.3 Marker requirements for prospective relatedness inference

As Figure 4 exemplified using simulated data, estimates of r̂m concentrate around the value of r
used to simulate the data but with large variability, in part due to the finite length of the genome
and in part due to limited data. We now consider how large m needs to be to estimate r with
specified RMSE using different marker types (i.e. considering Kt = 2 ∀t = 1, . . . ,m and, more
generally, Kt ≥ 2).

4.3.1 Biallelic markers:

First we consider relatedness inference using biallelic markers (e.g. SNPs, the most abundant
polymorphic marker type, commonly used for relatedness inference [1]).

Figure 8 shows the RMSE of r̂m generated under the HMM given allele frequencies drawn with
probability equal to their minor allele frequencies (h̄m ≈ 0.69, K̄ ′m ≈ 1.53) versus allele frequencies
drawn uniformly at random (h̄m ≈ 0.89, K̄ ′m ≈ 1.17). There are three notable results. First, errors
obtained using allele frequencies drawn at uniformly at random are smaller (Figure 8, left). This
is in agreement with the long-established result that higher minor allele frequencies are preferable
for relationship inference [57]. Second, the RMSE is relatively large for 24 markers, decreasing
dramatically upon increasing the marker count to 96. Though less dramatic, the decrease in RMSE
is appreciable up to 288 markers, with diminishing returns thereafter. RMSE does not tend to zero
due to the finite length of the genome. Third, RMSE error decreases with increasing proximity of
the data-generating r to either 0 or 1 (especially the latter). As such, biallelic marker requirements
for inference of r = 0.5 constrain guidelines for inference of r in general (Table 2).

4.3.2 Polyallelic markers:

Highly polyallelic microsatellite length polymorphism markers have long been used for relatedness
inference, and there is growing interest in using microhaplotypes (short highly diverse regions of the
genome) [1, 58]. Neither microsatellite nor microhaplotypes are point polymorphisms. However, to
explore the general utility of polyallelic markers for relatedness inference, we make the simplifying
assumption that they are.

3Coverage is equal to the fraction of confidence intervals that contain the data generating r.
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Figure 6: r̂m with 95% confidence intervals for 100 select pairwise comparisons of monoclonal
Plasmodium samples from P. falciparum data sets list in Table 1 and a single P. vivax data set,
Thai MS.
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Figure 7: Coverage of 95% parametric bootstrap confidence intervals constructed under the HMM
(left) and independence model (right). Coverage is equal to the proportion of 500 r̂m whose 95%
parametric bootstrap confidence intervals contain the value of r used to simulate the data. It was
based on data simulated under the HMM with ε = 0.001. Data were simulated for m biallelic
markers (i.e. Kt = 2 ∀ t = 1, . . . ,m). Plots on the top show coverage for data simulated with
different values of r given fixed k = 12. Plots on the bottom show coverage for data simulated with
different values of k given fixed r = 0.5.
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Figure 8: RMSE of r̂m generated under the HMM. Data were simulated under the HMM using
various r (see legend); allele frequencies with h̄m ≈ 0.69, K̄ ′m ≈ 1.53 (left plot) and h̄m ≈ 0.89,
K̄ ′m ≈ 1.17 (right plot); ε = 0.001, k = 12, Kt = 2∀t.

RMSE r = 0.01 r = 0.50 r = 0.99 Any r ∈ (0, 1)†
0.00 > L > L > L > L
0.05 192-288 >480 <24 >480
0.10 24-96 96-192 <24 192
0.15 24-96 24-96 <24 96
0.20 <24 24-96 <24 96

Table 2: Biallelic marker requirements for specified RMSE around r ∈ {0.01, 0.50, 0.99} and any
r ∈ (0, 1) extracted from Figure 8, left (i.e. given allele frequencies with h̄m ≈ 0.69). The length
of the genome is denoted by L. †Since r = 0.5 has the largest marker requirements in general,
inference of any r ∈ (0, 1) is given by the maximum of the marker requirement interval for r = 0.5.
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Figure 9: RMSE of r̂m around data generating r = 0.5 with number of markers, m, and average
effective cardinality, K̄ ′mcum

.

Figure 9a shows three notable results. First, if only a small number of markers (e.g. 24)
are available, a slight increase in their average effective cardinality markedly reduces RMSE, with
diminishing returns as m grows. Second, to obtain RMSE less than some arbitrary amount, there
may be an option between increasing m and increasing cardinality. For example, to obtain RMSE
< 0.1, our results suggest typing 96 markers with K̄ ′m > 2 or around 192 markers with K̄ ′m = 1.6.
This latter option agrees roughly with the requirements for r = 0.5 in Table 2. Third, within the
range of m values explored here, markers with Kt > 2 are necessary for optimally low RMSE (i.e.
to achieve RMSE comparable with Mendelian sampling and thus negligible RMSE due to marker
limitations).

The results shown in Figure 9a are projected onto a single axis in Figure 9b, showing the
synergistic effect of increasing both m and K ′t. Clearly, larger m× K̄ ′mcum

provides smaller RMSE
with diminishing returns beyond m× K̄ ′mcum

≈ 1000. Informally, this result provides intuition as to
why we obtain, in general, tighter confidence intervals around r̂m based on Plasmodium data sets
with larger m × K̄ ′mmax

(Figure 6). Moreover, it suggests that the confidence intervals around the
Thailand WGS estimates are as small as they can be.

5 Discussion

Using a simple model framework, we call attention to properties of estimates of genetic relatedness,
r, increasingly used in genetic epidemiology of malaria. These results, though articulated around
monoclonal haploid malaria parasites, are applicable more generally to haploid eukaryotes (highly
recombining prokaryotes would require a modified model).

The fraction IBS, which does not distinguish between alleles shared due to ancestry versus

19

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 12, 2019. ; https://doi.org/10.1101/575985doi: bioRxiv preprint 

https://doi.org/10.1101/575985
http://creativecommons.org/licenses/by/4.0/


chance, is not a statistically principled estimator of r. As such, it does not allow calculation of
confidence intervals for r, nor marker requirements. Its expectation is a correlate of r, but absolute
values and quantitative estimates of trends are not portable across studies due to dependence on
allele frequencies, which vary in space and time, and with different marker panels and quality control
procedures [2]. On the contrary, measures based on IBS have the advantage of not depending upon
potentially problematic allele frequency estimates discussed below [2, 4]. By illustrating how the
fraction IBS is expected to change as a function of r and the alleles frequencies, we aid interpretation
across studies using measures based on IBS to investigate relatedness.

Model-based relatedness inference allows construction of confidence intervals and marker re-
quirements. Based on the parameters we explored, we recommend successful genotyping of at least
200 biallelic or 100 polyallelic markers for relatedness inference with RMSE less than 0.1 (if markers
are highly polyallelic, fewer may be required, as in the Thai MS data set). In practice, a chosen set
of makers could combine biallelic SNPs and more polyallelic marker types (e.g. microhaplotypes).
Though not directly comparable, our results roughly agree (are of the same order of magnitude),
with those reported for diploids and polyploids (Table 3). Relatedness inference for polyploids (e.g.
[59, 13]) is comparable to that for polyclonal malaria samples, which arise due co-transmission
and superinfection [60]. However, relatedness inference across polyclonal malaria samples is more
challenging, since the equivalence of ploidy is unknown and variable. Despite these challenges,
methods to infer relatedness within polyclonal malaria samples exist [23, 25], while methods to
infer relatedness across polyclonal malaria samples are under development. It will be interesting
to see how marker requirements, limited here to monoclonal malaria samples, scale in this more
complex setting.

The results presented here are conditional upon an HMM under which various simplifying as-
sumptions were made, the most significant being that of known and fixed allele frequencies. Typ-
ically, allele frequencies are estimated using data intended for relatedness inference yet assuming
independent and identically distributed samples [61, 62]. These data-derived allele frequencies have
been shown to give poor results and lead to underestimation of relatedness since “rare alleles shared
by relatives are not recognized as such” [11]. Improving allele frequency estimates could benefit
inference more than increasing the number of markers [11]. To better estimate allele frequencies of
naturally occurring malaria parasites, for which pedigrees are unattainable, one could jointly model
frequencies and relatedness as in [61]. Joint modelling would benefit inference in other ways also.
For example, by borrowing information across samples and extending the inference framework, one
could theoretically infer the ancestral recombination graph and thus the genetic map (presently
assumed uniform across the malaria genome here and in [18, 23, 25]). That said, details specific
to malaria (e.g. out-crossing versus selfing and their association with transmission) would present
unique challenges (e.g. [63] and references therein). Modular extensions of pairwise methods to
perform multi-way relatedness inference (e.g. [64]) have also been shown to outperform pairwise
methods.

As formally stated in equation (3.6), we find that a highly polyallelic marker can be several
times more informative than a biallelic marker for relatedness inference, comparable to results
reported in population assignment [65]. Despite their superior informativeness, microsatellites are
being superseded by SNPs due to the relative ease and reliability of typing the latter [1]. Recent
interest in microhaplotypes (regions of high SNP diversity, unbroken by recombination) aims to
combine the ease of SNPs with the informativeness of polyallelic markers [58]. Microhaplotypes can
be defined in silico, using a decision theoretic criterion [66, 65], which relates to LD [48]. They can
then be captured in vitro using amplicon sequencing [58, 67] or molecular inversion probes (MIPs),
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which can also be used to genotype microsatellites and SNPs [68, 69, 70]. The amplicon and MIP
approaches are especially valuable for relatedness inference across multiclonal malaria samples,
because amplicons and MIPs can capture within-host densities of different parasite clones as well
as the phase of microhaplotypes in polyclonal infections [67, 70]. A model that accurately reflects
the fact that microsatellites and microhaplotypes are not point polymorphism, while accounting for
their associated mutation and observation error rates, thus merits consideration [71, 72].

Besides motif repeats within microsatellites and SNPs within microhaplotypes (presently over-
looked), it is preferable to minimise dependence between markers. For any given r and k, dependence
is a function of marker position and LD. As such, marker position is an important design consid-
eration. When considering polyallelic markers, we sampled marker positions uniformly at random
from the Thailand WGS data set. For microhaplotypes, a more realistic approach would draw from
genomic intervals whose length is amenable to physical phasing and high LD. Doing so presents a
trade-off between distance and window-wise effective cardinality. This trade-off is critical if diverse
windows are genomically clustered. We do not consider it here, but it can be explored within the
current framework and is the topic of future work. On the other hand, LD is a natural phenomena
over which investigators have no degree of freedom. Some models commonly used in human genet-
ics account for LD [46, 73] (also see [15]). Those designed to estimate relatedness between malaria
parasites account for dependence between IBD states due to their physical proximity but not due
to LD [18, 23, 25]. LD reported in malaria parasite populations (e.g. [74, 50, 75]) is generally lower
than that reported in human populations [76]. Its incorporation into methods for malaria parasite
relatedness inference, both within and between polyallelic markers, warrants further research.

Here and elsewhere marker requirements are based on either down-sampled or simulated data
(Table 3). Standard asymptotic theory for HMMs is problematic in the present setting due to the
finite length of the genome, and the increasing degree of dependencies between markers as their
density grows. Understanding the finite sample properties of the maximum likelihood estimator
in this setting remains an open problem. Another open problem beyond the scope of this study,
is that of sampling individuals for population-level inference (e.g. how many parasite samples are
required to reliably infer gene flow between different geographic locations using relatedness?). Work
is ongoing to address these questions, which are very application-specific and dependent on many
population factors (e.g. transmission intensity, seasonality, asymptomatic reservoir, etc.).

6 Conclusion

For portability, we recommend estimates of relatedness based on IBD for malaria epidemiology. To
generate estimates between monoclonal parasite samples with less than 10% RMSE, approximately
200 biallelic markers or 100 polyallelic markers are required. Where studies inevitably differ in
terms of available genetic data, confidence intervals illuminate inference. Together with anticipated
work on population-level sampling, we hope this work on genetic-level sampling (and extensions
thereof) will aid statistically informed design of prospective molecular epidemiological studies of
malaria.
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Study Result
Relatedness inference for close relatives using
poor quality samples [77]

100 SNPs identified individuals and close rel-
atives

Parentage inference in diploids using likeli-
hood ratio test and numeric approximation of
false positive and negative rates for different
numbers of loci and genotyping error rates [16]

60-100 SNPs sufficient

Parentage and sibship inference in diploids
[58] using method of [16]

96 microhaplotype loci

Ancestry assignment and coefficient inference
in diploids via inverse expected Fisher infor-
mation matrix [65]

4-125,000 biallelic SNPs, depending on allele
frequencies and required precision

Relatedness inference in diploids using a vari-
ety of estimators and sub-sampling of empiri-
cal data on 86 microsatellites, each with 2 to
19 alleles [11]

“In this study a set of 34 polymorphic loci
seemed to be a good balance between perfor-
mance of estimators and marker genotyping
costs”

Relatedness inference in autopolyploids using
a variety of estimators and simulation [13]

Approximately 200 markers, each with 10 al-
leles, for 95% confidence interval of r ± 0.05
around diploids

Joint parentage and sibship inference of poly-
ploids whose genotypes are transformed into
“pseudodiploid-dominant genotypes” to en-
able application of likelihood methods de-
signed for diploids, using both simulated and
empiric data [59]

10-20 microsatellites each having 10 alleles

Connectivity between malaria parasite popu-
lations based on relatedness between mono-
clonal P. falciparum parasite samples by sub-
sampling empiric data [8]

96 SNPs sufficient to recover comparable
trends to those obtained using WGS

Joint sibship inference in diploids and haplo-
diploids using maximum likelihood methods
and simulation [61]

approx. 6-10 markers each with 10 alleles, or
approx. 30-40 biallelic markers, depending on
family size and error inclusion

Relatedness inference for zebra finch and pigs
reviewed in [2]

More than 771 SNPs (for zebra finch) and 2000
SNPs (for pigs)

Table 3: A non-exhaustive selection of studies in which numbers of loci for relatedness and associated
inference are reported. Most of the above studies assume independence between markers because
methods that assume dependence are, in general, designed for marker-rich applications where data
requirements are not an issue.
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Appendix A Estimator based on IBS

For clarity of exposition, here we derive results for ÎBSm under a simple model that assumes no
genotyping error (a more general result that includes genotyping error can be found in Appendix B,
equation (B.9)). The simple model assumes the IBD state at the t-th locus, IBDt, is Bernoulli with

relatedness parameter r ∈ [0, 1]. Given IBDt = 0, we assume that Y
(i)
t and Y

(j)
t are independent

Bernoulli with parameter (ft(g))g∈Gt . Given IBDt = 1, we assume that Y
(i)
t follows a Bernoulli

with parameter (ft(g))g∈Gt and that Y
(j)
t = Y

(i)
t with probability one.

A.1 Expectation of estimator based on IBS

In this section no assumptions are made about dependence between marker loci: equation (A.1)

holds under both independence and dependence. The expectation of the estimator ÎBSm conditional
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on the frequencies (ft(g))g∈Gt∀t = 1, . . . ,m is

E[ÎBSm] =
1

m

m∑
t=1

E [IBSt] ,

=
1

m

m∑
t=1

P (IBSt = 1 | IBDt = 1)P (IBDt = 1) + P (IBSt = 1 | IBDt = 0)P (IBDt = 0) ,

=
1

m

m∑
t=1

{r +

Kt∑
i=1

ft(gi)
2(1− r)},

= r + h̄m(1− r),

= h̄m + (1− h̄m)r, (A.1)

where h̄m = m−1
∑m
t=1

∑Kt

i=1 ft(gi)
2 (equation (3.4)). Under different observation models, we would

still obtain E[ÎBSm] as a linear function of r; see second line above, where P (IBSt = 1 | IBDt = 1)
and P (IBSt = 1 | IBDt = 0) could be anything as long as these expressions do not involve r.

A.2 Convergence of estimator based on IBS

Here we work under the simplest setting: the measurements (Y
(i)
t , Y

(j)
t ) are independent across

t = 1, . . . ,m. In order to discuss convergence we need to imagine an asymptotic regime where
m→∞. We introduce an infinite sequence (ft(gi))t≥1, i = 1, . . . ,Kt, where each ft(g) is in (0, 1),

and we introduce h̄ = limm→∞m−1
∑m
t=1

∑Kt

i=1 ft(gi)
2, assuming the existence of that limit. To

show that ÎBSm is not consistent for r, we show that it is consistent for h̄ + (1 − h̄)r, which is

different to r unless r = 1. Thus we show that ÎBSm satisfies,

ÎBSm
P−−−−→

m→∞
h̄+ (1− h̄)r, (A.2)

where the arrow is interpreted as “convergence in probability”. Since E[ÎBSm] = h̄m+ (1− h̄m)r →
h̄+ (1− h̄)r as m→∞, we can establish (A.2) by showing that for every ε > 0

P
(
| ÎBSm − E

[
ÎBSm

]
|> ε

)
→ 0 as m→∞. (A.3)

We show equation (A.3) by use of Hoeffding’s inequality (see Chapter 4 in [40]). Since ÎBSm is an
average of variables IBSt, which are bounded (IBSt ∈ {0, 1}) and assumed independent, Hoeffding’s
inequality yields

P
(
| ÎBSm − E

[
ÎBSm

]
|≥ ε

)
≤ 2 exp

(
−2mε2

)
. (A.4)

Since 2 exp
(
−2mε2

)
→ 0 as m→∞, equation (A.4) shows that equation (A.3) holds and therefore

that equation (A.2) holds. Note that consistency could also be established in the dependent case,
for instance via the application of a version of Hoeffding’s inequality for dependent processes.

Plots of ÎBSm for data simulated under the independence model (Figure A.1) numerically show

for r = 0 and 0.5 that ÎBSm concentrates on its expectation (equation (A.1)) as more and more
markers (m = 24, 96 and 192) are typed.
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Figure A.1: ÎBSm between pairs of biallelic marker data simulated under the independence model
with different numbers of markers, m, and relatedness, r. The green vertical line marks h̄m + (1−
h̄m)r which is a function of the allele frequencies (equations (3.3) and (3.4)). Allele frequencies
were sampled without replacement from Thai WGS data set with probability proportional to minor
allele frequency estimates.
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(c)

m as a function of ÎBSm for various h̄m (equation (A.6)).

A.3 Corrected estimator based on IBS

A corrected version of the estimator ÎBSm could be consistent for r (equation (A.7)) and is similar to
existing method of moments estimators (reviewed in [11]), which generally underperform compared
to maximum likelihood estimators (Chapter 9 of [40]).

By rearranging equation (A.1),

r =
1

(1− h̄m)

(
E
[
ÎBSm

]
− h̄m

)
, (A.5)

we can propose the following corrected estimator of r,

ÎBS
(c)

m =
1

(1− h̄m)

(
ÎBSm − h̄m

)
, (A.6)

whose expectation is precisely r. The corrected estimator ÎBS
(c)

m is consistent for r, with the same
reasoning as in Appendix A.2 assuming independent observations,

ÎBS
(c)

m =
1

(1− h̄m)

(
ÎBSm − h̄m

)
Probability−−−−−−−→
m→∞

1

(1− h̄)
(h̄+ (1− h̄)r − h̄) = r. (A.7)

Figure A.2 shows a plot of equation (A.6) for different values of h̄m ∈ (0.5, 1). The range of ÎBS
(c)

m

includes negative values. Setting negative estimates to zero can considerably improve results [11],
but can also introduce bias [13]. For the Plasmodium data sets considered in the main text, Figure

A.3 shows ÎBS
(c)

m estimates truncated to [0,1].
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(c)

m for several monoclonal Plasmodium data sets.
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Appendix B Model-based estimation of relatedness

B.1 Framework

In this section we describe models that relate the available data to the objects of interest, in a
self-contained presentation. The data comprise frequencies of alleles denoted by (ft(g))g∈Gt , and

allele indicators Y
(i)
t , where the index t denotes a locus on the genome, and the superscript (i)

refers to the i-th individual. The index t will run from 1 to m, the number of markers genotyped,
and we will be particularly interested in the impact of m and Kt on the precision of the estimators.
Note that m cannot be larger than L, the total length of the genome, which will create difficulties
in making sense of an asymptotic regime where m goes to infinity, as will be discussed below.

We will consider pairs of individuals, i and j, for which we want to estimate the relatedness
denoted by r and taking values in the interval [0, 1]. The models below might involve other param-
eters, and overall the vector of parameters is denoted by θ. We will make the first component of θ
represent the relatedness r, so that r = θ1.

For each pair of individuals, we introduce a sequence of latent binary variables denoted by
(IBDt) for identity-by-descent: IBDt = 1 indicates identity-by-descent at locus t. We view this
sequence as a two-state Markov chain. The case of independent variables for (IBDt) constitutes a
particular case. In any case, the relatedness r ∈ [0, 1] represents the marginal probability that IBDt

is equal to one, assumed to be identical for all t. While we do not observe (IBDt), we observe Y
(i)
t

and Y
(j)
t that are related to IBDt at site t via an observation model, which can take into account the

presence of genotyping errors. Together, the specification of the latent process (IBDt) and of the
observation model fully describes a hidden Markov model, that can be used to estimate r using the
data. Complete model specification is deferred to Appendix B.3, after a description of the general
estimation procedure and some specific issues arising in the present case.

The estimation procedure is here based on the maximum likelihood approach. The likelihood
function can be written as

L1:m(θ) =

m∏
t=1

P(Y
(i)
t , Y

(j)
t |Yt−1, θ),

where Yt−1 represents all the observations from locus 1 to locus t− 1, with the convention that Y0
is the empty set. We can further write each “incremental likelihood term” as

P(Y
(i)
t , Y

(j)
t |Yt−1, θ) =

∑
IBDt∈{0,1}

P(Y
(i)
t , Y

(j)
t |IBDt, θ)P(IBDt|Yt−1, θ).

Since (IBDt) is a Markov chain, the forward algorithm [17] can be used to evaluate each incremental
likelihood term for t = 1, . . . ,m, for a cost of the order of m operations given θ.

We write `1:m(θ) = logL1:m(θ), and `t(θ) = logP(Y
(i)
t , Y

(j)
t |Yt−1, θ). We denote the first and

second derivatives of `t(θ) by `′t(θ) (a vector) and `′′t (θ) (a matrix) respectively. We will use the
maximum likelihood estimator to approximate r, and we define it as

θ̂m = argmaxθ `1:m(θ).

We next review some asymptotic properties of the maximum likelihood estimator (MLE) and detail
how the present setting differs from the one usually considered in asymptotic studies.
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B.2 Distribution of the MLE

B.2.1 Standard asymptotic theory

We first recall what the usual asymptotic reasoning is for the distribution of the MLE in HMMs
[35, 36, 37], in informal terms.

The first step is to imagine that the variables indexed by t (such as IBDt, Y
(i)
t , Y

(j)
t , etc.) are

part of infinite sequences of variables indexed by t ≥ 1. This allows us to consider a regime where
the number of sites considered m can go to ∞. In Appendix B.2.2 we will discuss issues arising
when applying this asymptotic reasoning in the present context of genetic data.

We observe that the log-likelihood and its derivatives are sums of m terms. Dividing by m
yields averages, which might converge to limiting values as m grows large. For instance, the scaled
log-likelihood might satisfy

∀θ m−1`1:m(θ)
P−−−−→

m→∞
¯̀(θ),

where the arrow is to be interpreted as “convergence in probability”, the left hand side of it being
random if we consider the data to be random. Under some assumptions, the maximizer θ̂m of
θ 7→ m−1`1:m(θ) converges to the maximizer θ? of the limiting function θ 7→ ¯̀(θ). By the Taylor

expansion of `′1:m(θ̂m) at θ? we have

`′1:m(θ̂m) = `′1:m(θ?) + `′′1:m(θ?)(θ̂m − θ?) + rest. (B.1)

At the MLE θ̂m, the derivative of the log-likelihood cancels: `′1:m(θ̂m) = 0, at least if the MLE is
in the interior of the parameter space; extra care is required when the MLE is on the boundary
of the parameter space, which occurs in the present setting where r̂m can be exactly zero or one.
Therefore we obtain

0 ≈ `′1:m(θ?) + `′′1:m(θ?)(θ̂m − θ?),

⇔ (θ̂m − θ?) ≈ −`′′1:m(θ?)−1`′1:m(θ?), (B.2)

⇔
√
m(θ̂m − θ?) ≈

(
−m−1`′′1:m(θ?)

)−1
m−1/2`′1:m(θ?), (B.3)

where ⇔ means “equivalently”. We will rely on the two following convergence results (see Chapter
13 in [78]),

m−1/2`′1:m(θ?)
d−−−−→

m→∞
N (0, V ?) , (B.4)

−m−1`′′1:m(θ?)
P−−−−→

m→∞
J?, (B.5)

for some matrices V ?, J?, assumed to be both semi-definite positive and symmetric. The first line
above describes a convergence “in distribution” and can follow from a central limit theorem for the
first derivative of the log-likelihood. The second line can follow from a law of large numbers applied
to the second derivatives, as in Chapter 13 of [78]. We can combine these two convergence results
using Slutsky’s lemma to obtain the asymptotic normality of the MLE:

√
m(θ̂m − θ?)

d−−−−→
m→∞

N
(
0, (J?)−1V ?(J?)−1

)
. (B.6)

This key result can be used for sample size determination and for the construction of confidence
intervals, provided that we can approximate θ?, V ? and J? based on data. The asymptotic variance
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(J?)−1V ?(J?)−1 is sometimes called the sandwich formula, and can be estimated based on samples;
see Doucet and Shephard [79] in the setting of hidden Markov models. If we assume that the model
is well-specified, i.e. that the data actually are generated from the model with the parameter θ?,
then it can be shown that J? = V ? under regularity conditions (Chapter 13 of Douc et al. [78]). In
this case, the asymptotic variance in (B.6) simplifies to (J?)−1. The matrix J? is often termed the
Fisher Information Matrix at θ?.

We briefly discuss the numerical obtention of θ̂m = argmaxθ`1:m(θ). The log-likelihood function
θ 7→ `1:m(θ) can be plugged in a numerical optimizer, such as that implemented in the optim

function of R. Evaluations of the log-likelihood function require runs of the forward algorithm on
the data, for a cost of the order of m operations. Alternatively, one can also run an expectation-
maximization algorithm, which involves calculating expectations with respect to the distribution
of the latent process (IBDt) using the forward-backward algorithm [80], also called Baum-Welch
in the context of HMMs [17]. If the parameter is small-dimensional, e.g. one or two-dimensional,
a simple way of approximating the MLE consists in evaluating the likelihood (using the forward
algorithm) on a grid of parameter values, and selecting the parameter associated with the highest
likelihood.

The matrix J? can be estimated by −m−1`′′1:m(θ̂m), itself computed via numerical differentiation

of the log-likelihood function at θ̂m. The estimation of V ? is more complicated and has been the
topic of a rich literature in time series analysis; see for instance Doucet and Shephard [79] and
references therein.

B.2.2 Applicability of the standard asymptotic theory

The law of large numbers and central limit theorems usually employed to carry out the above
reasoning, i.e. to establish (B.4) and (B.5) leading to the asymptotic normality of the MLE in
(B.6), might not be meaningful in the present context. Indeed they usually apply to stationary
processes observed over increasingly long periods of time. In such asymptotic setting, one eventually
observes a realization of a stationary stochastic process over an infinitely long time horizon, which
is enough to learn the invariant distribution of the process. We refer to this setting as standard
asymptotics. Recall that our primary object of interest is the parameter r, which characterizes
indeed the invariant distribution of the Markov chain (IBDt).

In the present setting where data comprise genetic sequences, increasing m means considering
more loci on the genome. The m considered loci are located within the genome whose length is,
however, fixed. Therefore increasing m amounts to increasing the subsampling frequency at which
data are observed. In other words it decreases the distance between successive observed loci. We
refer to this as subsampling asymptotics. To see where this differs from standard asymptotics,
consider a simpler context where (IBDt) would not be hidden but directly observed. In the limit
m→∞ in subsampling asymptotics, we would observe a continuous trajectory of (IBDt), switching
from state 0 to state 1 and back again, over a fixed interval. The maximum likelihood estimate of
r for such a model would be the proportion of time that the trajectory would spend in state 1 [81].
However this would not be exactly equal to r, even if the trajectory was sampled from the Markov
model given r, because the fully-observed realization of (IBDt) would still be of a finite length;
this is well-known, see [34] on the impact of the genome length on relatedness estimates under
Mendelian sampling. On the other hand, in the standard asymptotics m → ∞ we would observe
an infinitely long trajectory of the Markov chain, for which the maximum likelihood estimator of
the transition matrix is consistent. The difference between the two regimes is illustrated in Figure
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Figure B.1: Two different ways of increasing m: in the top row, m refers to the length of the
observation period, while the observations are separated by one unit of time. In the bottom row,
the length of the observation interval is fixed to one, and the observations are placed at distance
1/m of one another; thus an increase in m means that successive observations are closer to one
another, but the length of the observation period is fixed.

The difference in asymptotic regimes has consequences on the estimability of r. In the subsam-
pling asymptotics, it is impossible to arbitrarily decrease the error of r̂m by increasing m: there
is only so much information that can be gathered about r by increasing the number of loci under
consideration; hence the distinction between expected IBD and realised IBD in [2]. A result such
as the asymptotic normality with a

√
m rate of convergence, as in (B.6), is in fact unlikely to hold.

The numerical experiments indeed suggest that the root mean squared error associated with r̂m
does not decrease beyond a certain point, no matter how large m is. The subsampling asymptotic
regime has been formally studied with various applications to financial econometrics [82, 83], but
we are not aware of similar results for hidden Markov models such as the ones considered here.

Despite the standard asymptotic results not holding, we do observe that the distribution of
r̂m is approximately normal for m large enough (Figure B.2). This can be partially explained by
the fact that normality of the MLE depends entirely on the log-likelihood being approximately
quadratic [38], which itself does not have to follow from standard asymptotic arguments. Since the
log-likelihood function is observed to be approximately quadratic providing r̂m is not close to the
boundaries (Figure B.3), we can still quantify the precision of the MLE by considering the second
derivative of the log-likelihood at its maximum. Thus we will rely on the Fisher Information Matrix
as a proxy for the precision of the MLE, in particular for the study of the effect of Kt in Appendix
B.3.4.
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Figure B.2: Empirical distributions of r̂m for different numbers of markers, m. Each distribution
is based on 1000 estimates of r given data simulated and analyzed under the HMM with r = 0.5,
k = 12, Kt = 2 ∀t = 1 . . . ,m and ε = 0.001.

B.3 Models

We now describe a Markov chain model for (IBDt), followed by observation models for Y
(t)
i and

Y
(t)
j given IBDt.

B.3.1 Hidden Markov model

We write the transition probabilities of (IBDt) at a locus t,

A(t) =

(
a00(t) a01(t)
a10(t) a11(t)

)
=

(
1− r(1− exp(−kρdt)) r(1− exp(−kρdt))

(1− r)(1− exp(−kρdt)) 1− (1− r)(1− exp(−kρdt))

)
.

In the above, aj`(t) refers to the probability of IBDt = ` given that IBDt−1 = j.
In the above expression, the relatedness is denoted by r; dt denotes a genetic distance in base

pairs (bp) between sites t− 1 and t; k > 0 parametrizes the switching rate of the Markov chain and
ρ is the recombination rate, assumed known and fixed across both haploid genotypes with value
7.4× 10−7M bp−1 for P. falciparum parasites [33].

We can check that, if P(IBDt−1 = 1) = r, then

P(IBDt = 1) = P(IBDt−1 = 1)a11(t) + P(IBDt−1 = 0)a01(t) = r,

and thus the invariant marginal distribution of the chain is given by P(IBDt = 1) = r.
The above transition probabilities are at the core of many HMMs of relatedness (e.g. [14], where

k × ρ = a and genetic distance dt = tk is measured in centi Morgans (cM), plus many subsequent
models (see [15]), including [18], where r = π1 and 1− r = π2.

We can check that, as the distance increases to infinity, the probabilities in A(t) simplify and
correspond to the i.i.d. Bernoulli model where IBDt is equal to one with probability r, independently
for each site t. In other words, if sites are distant enough, we expect the HMM and the independence
models to give similar results. This will happen in particular when m is small and when the loci
under consideration are well-spread across the genome.
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Figure B.3: The log likelihoods of r for different k (left column) and k for different r (right column)
for three different example sample pairs from the the Colombian data set: a sample pair with
minimum r̂m (top row, m = 248), a sample pair with maximum r̂m (middle row, m = 246), and a
sample pair with r̂m ≈ 0.5 (bottom row, m = 245). Differences in m are due to missing genotype

calls in the data. Vertical black dashed lines mark r̂m (left column) and k̂m (right column). Black

dashed function lines show the log likelihood of r̂m given k̂m (left column) and of k̂ given r̂m (right

column). Coloured function lines show the log likelihood of r̂m given values of k 6= k̂m (left column)

and of k̂ given values of r 6= r̂m (right column).
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B.3.2 Observation model

The observations Y
(i)
t , Y

(j)
t are related to (IBDt) only through IBDt at locus t. The observation

model introduces some true genotypes G
(i)
t , G

(j)
t given IBDt, and then some genotyping error model

defining the distribution of Y
(i)
t , Y

(j)
t given G

(i)
t , G

(j)
t .

First, the variables G
(i)
t , G

(j)
t given IBDt are defined as follows. If IBDt = 0, then G

(i)
t is inde-

pendent of G
(j)
t and both follow a Categorical distribution: for a set of values G = {g(1), . . . , g(Kt)}

and probabilities {ft(g)} for g ∈ G, we have P(G
(i)
t = g) = ft(g), and likewise for G

(j)
t . If there are

only two types (e.g. the case for biallelic SNPs) then it is a Bernoulli distribution. If IBDt = 1,

then P(G
(i)
t = g) = ft(g) and G

(j)
t = G

(i)
t with probability one. Overall we can write the model as

P(G
(i)
t = g(i), G

(j)
t = g(j)|IBDt = 0) = ft(g

(i))ft(g
(j))

P(G
(i)
t = g(i), G

(j)
t = g(j)|IBDt = 1) = ft(g

(i))1(g(i) = g(j)).

Next, we assume that genotyping errors occur independently for both individuals. This differs
to the typical ‘all-or-none’ diploid setting (e.g. [14, 15]), since haploid genotypes in monoclonal

parasite samples are genotyped separately. If they occur, we do not observe Y
(i)
t = G

(i)
t but instead

we observe another genotype taken uniformly among the other possible values (by assumption);
and likewise for the other individual j. This can be written

P(Y
(i)
t = g(i)|G(i)

t = g) =

{
1− (Kt − 1)ε if g(i) = g,

ε if g(i) 6= g.

In the above expression Kt refers to the number of possibilities, which could be different for dif-
ferent sites t, and ε refers to a parameter such that the error rate is (Kt − 1)ε. This is suited to
microsatellites in the sense that the error rate scales with Kt [72]. For biallelic SNPs, it amounts
to a simple miscall.

Overall we can thus think of the observation model as the combination of a model for (Y
(i)
t , Y

(j)
t )

given (G
(i)
t , G

(j)
t ) and a model for (G

(i)
t , G

(j)
t ) given IBDt. We can integrate G

(i)
t , G

(j)
t out to obtain

directly the probabilities of (Y
(i)
t , Y

(j)
t ) given IBDt:

P(Y
(i)
t = g(i), Y

(j)
t = g(j)|IBDt) (B.7)

=
∑
g,g′∈G

P(Y
(i)
t = g(i)|G(i)

t = g)P(Y
(j)
t = g(j)|G(j)

t = g′)P(G
(i)
t = g,G

(j)
t = g′|IBDt). (B.8)

The cost of evaluating this expression is quadratic in the cardinality of G.
This observation model is the same (besides notation) as that for within-population samples

under the HMM of hmmIBD [18] and, if Kt = 2, the same as that of the HMMs of isoRelate [23].
Mutations do not feature in it. However, any that do occur can be absorbed as errors, as they are
considered to be in [61]. That said, it does not take into account microsatellite mutations in the
sense that they scale with both motif size and repeat number [71], nor the inherent ordinal nature
of microsatellites or the bias with regards to their amplification [84]. Bespoke adaptations could be
made for specific data types.
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Digression: expection of fraction IBS considering error Equation (B.8) means that

P(Y
(i)
t = Y

(j)
t |IBDt = 1) = (1− (Kt − 1)ε)2 + ε2(Kt − 1),

P(Y
(i)
t = Y

(j)
t |IBDt = 0) = (1− (Kt − 1)ε)2ht + ε2(Kt − 2 + ht) + 2ε(1− (Kt − 1)ε)(1− ht),

where ht =
∑
g∈G ft(g)2. Consequently, under the present observation model,

E[ÎBSm] =
1

m

m∑
t=1

{
r
(
(1− (Kt − 1)ε)2 + ε2(Kt − 1)

)
+

(1− r)
(
(1− (Kt − 1)ε)2ht + ε2(Kt − 2 + ht) + 2ε(1− (Kt − 1)ε)(1− ht)

)}
,

= r
(
(1− (Kt − 1)ε)2 + ε2(Kt − 1)

)
+

(1− r)
(
(1− (Kt − 1)ε)2h̄m + ε2(Kr − 2 + h̄m) + 2ε(1− (Kt − 1)ε)(1− h̄m)

)
, (B.9)

where h̄m =
1

m

∑m
t=1 ht. Equation (B.9) reduces to (A.1) when ε = 0.

B.3.3 The likelihood under the independence model

This model assumes independent random variables IBDt across loci t ∈ {1, . . . ,m}. It is a particular
case of the above HMM when all dt =∞. Given a relatedness parameter r ∈ [0, 1], IBDt is assumed
Bernoulli with parameter r. Next, we define an observation model: given IBDt = 0, we assume

that Y
(i)
t and Y

(j)
t are independent Bernoulli with parameter ft(g). Given IBDt = 1, we assume

that Y
(i)
t follows a Bernoulli with parameter ft(g) and that Y

(j)
t = Y

(i)
t with probability one. This

defines the observation model. The associated likelihood at site t is

P
(
Y

(i)
t = g(i), Y

(j)
t = g(j)|r

)
=

1∑
IBDt=0

P
(
Y

(i)
t = g(i), Y

(j)
t = g(j)|IBDt

)
P (IBDt | r) .

At this point we can define, for all t,

at =
∑
g,g′∈G

{
1(g(i) = g)(1− (Kt − 1)ε) + 1(g(i) 6= g)ε

}
×

{
1(g(j) = g′)(1− (Kt − 1)ε) + 1(g(j) 6= g′)ε

}
×

{ft(g)1(g = g′)} ,

bt =
∑
g,g′∈G

{
1(g(i) = g)(1− (Kt − 1)ε) + 1(g(i) 6= g)ε

}
×

{
1(g(j) = g′)(1− (Kt − 1)ε) + 1(g(j) 6= g′)ε

}
×

{ft(g)ft(g)(g′)} ,

so that the likelihood reads Lt(r) = atr+ bt(1− r). The full log-likelihood can be simply written as

`1:m(r) =
m∑
t=1

`t(r) =
m∑
t=1

log {atr + bt(1− r)} .

42

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 12, 2019. ; https://doi.org/10.1101/575985doi: bioRxiv preprint 

https://doi.org/10.1101/575985
http://creativecommons.org/licenses/by/4.0/


The gradient of the log-likelihood looks like

`′1:m(r) =
m∑
t=1

`′t(r) =
m∑
t=1

{
at − bt

atr + bt(1− r)

}
.

The second-order derivative of the log-likelihood looks like

`′′1:m(r) =
m∑
t=1

`′′t (r) = −
m∑
t=1

{
(at − bt)2

(atr + bt(1− r))2

}
.

Since both numerator and denominator of each term are positive, `′′1:m(r) is strictly negative for all
r ∈ (0, 1), and thus the function r 7→ `1:m(r) is concave on (0, 1).

For the HMM model, the form of the likelihood is less explicit; we do not have an explicit formula
giving the likelihood as a function of r and of the data. However this is not a real problem as we
can still numerically evaluate the likelihood, using what is usually called the forward algorithm [17].
Being able to numerically evaluate the likelihood leads to being able to optimize it to get the MLE,
and to numerically differentiate it as well.

B.3.4 Maximizing Fisher information

We focus on a single site t, which we suppress from the notation. Let us denote the log-likelihood
by ` and recall the formula

logP
(
Y (i), Y (j); r

)
= `(r) = log (ar + b(1− r)) , `′′(r) = − (a− b)2

(ar + b(1− r))2
.

Assume there is no genotyping error for simplicity. Then a = f(Y (i))1(Y (i) = Y (j)) and b =
f(Y (i))f(Y (j)). From there the Fisher Information Matrix (FIM) is obtained as

FIM = E [−`′′(r)] =
∑

y(i),y(j)

(
f(y(i))1(y(i) = y(j))− f(y(i))f(y(j))

)2
f(y(i))1(y(i) = y(j))r + f(y(i))f(y(j))(1− r)

.

It is a function of r and of the allele frequencies. The FIM is proportional to the inverse of the
asymptotic variance of the MLE, thus if we want precise estimators of r, we want a large FIM. This
leads to the idea of maximizing FIM with respect to f for all r, to see which allele frequencies allow
the best estimation of r. We can split the sum into the case for which y(i) = y(j) and the case for
which y(i) 6= y(j); for simplicity we denote f(y(i)) by fi, which leads to

FIM(f, r) =
K∑
i=1

f2i (1− fi)2

fir + f2i (1− r)
+

K∑
i=1

K∑
j 6=i

f2i f
2
j

fifj(1− r)
,

=
K∑
i=1

fi (1− fi)2

r + fi(1− r)
+

K∑
i=1

K∑
j 6=i

fifj
(1− r)

,

where we recall that K denotes the number of possible alleles. We note that
∑
j 6=i fj = 1 − fi

because
∑K
i=1 fi = 1, therefore we obtain

K∑
i=1

K∑
j 6=i

fifj
(1− r)

=
K∑
i=1

fi(1− fi)
(1− r)

=
1

1− r
−
∑K
i=1 f

2
i

1− r
,
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and thus the simpler form for the FIM:

FIM(f, r) =
1

1− r
+

K∑
i=1

{
fi (1− fi)2

r + fi(1− r)
− f2i

1− r

}
.

The notation FIM(f, r) reflects our consideration of the FIM as a function of f and r. We now
wonder how to maximize FIM over the vector f = (f1, . . . , fK), for any r. This is a constrained
and nonlinear optimization problem since f has to be made of non-negative entries and sums to
one (thus f is in the simplex of dimension K). We restrict our attention to r ∈ (0, 1), that is
r 6= 0 and r 6= 1, since the interpretation of FIM as a measure of the precision of the maximum
likelihood estimator is only valid when r is away from the boundaries of the parameter space [0, 1].
For r ∈ (0, 1), the function f 7→ FIM(f, r) is finite and continuous, on the simplex which is a
compact set, thus it attains a maximum according to the extreme value theorem.

After plotting the contours of the function FIM on the simplex and for different values of r (and
perhaps noticing that f 7→ FIM(f, r) is symmetric with respect to the center of the simplex), we
gather that the maximizer might be f? = (K−1, . . . ,K−1), irrespective of the value of r. We now
prove that this is indeed the case. We do so by considering an f such that f1 < f2. We will see
that we can increase FIM(f, r) by modifying f as follows: define f̃ as f̃1 = f1 + ε, f̃2 = f2 − ε
and f̃j = fj for all j ∈ {3, . . . ,K} (if K ≥ 3). We will see that there exists an ε > 0 such that

FIM(f̃ , r) > FIM(f, r). Since this holds for all f with a pair of non-equal entries, we will be able
to conclude that the unique maximizer of FIM is f? = (K−1, . . . ,K−1).

So let us consider f with f1 < f2. We start by noting that, for all f ∈ (0, 1),

ψ(f + ε) :=
(f + ε) (1− (f + ε))

2

r + (f + ε)(1− r)
− (f + ε)2

1− r

can be expanded as ε→ 0 as

f (1− f)
2

r + f(1− r)
+ ε

{
1− f

r + (1− r)f

(
1− 3f − (1− r)f(1− f)

r + (1− r)f

)}
+O

(
ε2
)
− (f + 2εf + ε2)

1− r

=ψ(f) + ε

{
1− f

r + (1− r)f

(
1− 3f − (1− r)f(1− f)

r + (1− r)f

)
− 2f

1− r

}
+O

(
ε2
)
,

where O(ε2) refers to terms which behave as ε2 when ε→ 0 and thus are negligible in front of the
term in ε. From this we deduce that ψ(f + ε)− ψ(f) = εh(f) +O(ε2) with

h(f) :=
1− f

r + (1− r)f

(
1− 3f − (1− r)f(1− f)

r + (1− r)f

)
− 2f

1− r
.

We now show that f 7→ h(f) is decreasing in f over [0, 1]. We do so by bruteforce differentiation,
yielding

d

df
h(f) = − 2r

(1− r) (r + (1− r)f)
3 .

We see that the above expression is strictly negative for all r and f so that f 7→ h(f) is strictly
decreasing.
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The fact that f 7→ h(f) is strictly decreasing allows us to conclude the proof. Indeed, combined
with the assumption f1 < f2, we have h(f1) > h(f2). Therefore,

FIM(f̃ , r)− FIM(f, r) = ψ(f1 + ε)− ψ(f1) + ψ(f2 − ε)− ψ(f2)

= ε (h(f1)− h(f2)) +O(ε2),

from which we deduce that there is an ε > 0 small enough so that FIM(f̃ , r) − FIM(f, r) > 0.
To summarize, if f is such that one of its components is strictly greater than another component,
then we can increase the objective function FIM. We deduce that the function f 7→ FIM(f, r) is
uniquely maximized at f? = (K−1, . . . ,K−1), for which no component is greater than another one.
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