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Abstract 
The epithelial lining of the small intestine consists of multiple cell types, including Paneth cells and 
goblet cells, that work in cohort to maintain gut health. 3D in vitro cultures of human primary epithelial 
cells, called organoids, have become a key model to study the functions of Paneth cells and goblet cells 
in normal and diseased conditions. Advances in these models include the ability to skew differentiation 
to particular lineages, providing a useful tool to study cell type specific function/dysfunction in the 
context of the epithelium. Here, we use comprehensive profiling of mRNA, microRNA and long non-
coding RNA expression to confirm that Paneth cell and goblet cell enrichment of murine small intestinal 
organoids (enteroids) establishes a physiologically accurate model. We employ network analysis to 
infer the regulatory landscape altered by skewing differentiation, and using knowledge of cell type 
specific markers, we predict key regulators of cell type specific functions: Cebpa, Jun, Nr1d1 and Rxra 
specific to Paneth cells, Gfi1b and Myc specific for goblet cells and Ets1, Nr3c1 and Vdr shared between 
them. Links identified between these regulators and cellular phenotypes of inflammatory bowel disease 
(IBD) suggest that global regulatory rewiring during or after differentiation of Paneth cells and goblet 
cells could contribute to IBD aetiology. Future application of cell type enriched enteroids combined with 
the presented computational workflow can be used to disentangle multifactorial mechanisms of these 
cell types and propose regulators whose pharmacological targeting could be advantageous in treating 
IBD patients with Crohn’s disease or ulcerative colitis. 
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Table of contents 
We demonstrate the application of network biology techniques to increase understanding of intestinal 
dysbiosis through studying transcriptomics data from Paneth and goblet cell enriched enteroids. 
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Introduction 
Gut barrier integrity is critically important for efficient nutrient absorption and maintenance of intestinal 
homeostasis (1) and is maintained by the combined action of the various cell types lining the intestinal 
epithelium (2). These intestinal epithelial cells serve to mediate signals between the gut microbiota and 
the host innate/adaptive immune systems (3,4). Disruption of epithelial homeostasis along with 
dysregulated immune responses are some of the underlying reasons behind the development of 
inflammatory bowel disease (IBD) such as Crohn’s disease (CD) and ulcerative colitis (UC) (5). 
Therefore, a greater insight into the functions of intestinal cells will further our understanding of the 
aetiology of inflammatory gut conditions. 
 
To date, various cell types have been identified in the intestinal epithelium based on specific functional 
and gene expression signatures. Paneth cells residing in the small intestinal crypts of Lieberkühn help 
to maintain the balance of the gut microbiota by secreting anti-microbial peptides, cytokines and other 
trophic factors (6). Located further up the intestinal crypts, goblet cells secrete mucin, which aggregates 
to form the mucus layer, which acts as a chemical and physical barrier between the intestinal lumen 
and the epithelial lining (7). Both of these cell populations have documented roles in gut-related 
diseases (8,9). Dysfunctional Paneth cells with reduced secretion of anti-microbial peptides have been 
shown to contribute to the pathogenesis of CD (10), while reduction in goblet cell numbers and defective 
goblet cell function has been associated with UC in humans (11). 
 
Recent studies have employed single cell transcriptomics sequencing of tissue samples to characterise 
the proportion and signatures of different epithelial cell types in the intestines of healthy and IBD patients 
(12–14). However, to provide deeper insights into the role of specific cell populations (such as Paneth 
cells and goblet cells) in IBD, in vitro models are required for in depth testing and manipulation. Such 
models can be used to study specific mechanisms of action, host-microbe interactions, intercellular 
communication, patient specific therapeutic responses and to develop new diagnostic approaches. Due 
to ease of manipulation, observation and analysis, organoid models, including small intestinal models 
(enteroids), are increasingly used in the IBD field (15–17). Enteroid cell culture systems employ growth 
factors to expand and differentiate Lgr5+ stem cells into spherical models of the small intestinal epithelia 
which recapitulate features of the in vivo intestinal tissue (18–20). It has been shown that these 
enteroids contain all the major cell types of the intestinal epithelium, and exhibit normal in vivo functions 
(21). These models, generated using intestinal tissue from mice, from human patient biopsies or from 
induced pluripotent stem cells (iPSCs), have proven particularly valuable for the study of complex 
diseases which lack other realistic models and exhibit large patient variability, such as IBD (22,23). 
Small molecule treatments have been developed that skew the differentiation of enteroids towards 
Paneth cell or goblet cell lineages, improving representation of these cells within the enteroid cell 
population (24,25). Specifically, differentiation can be directed towards the Paneth cell lineage through 
the addition of DAPT, which inhibits notch signaling, and CHIR99021, which inhibits GSK3β-mediated 
β-catenin degradation. Enteroid cultures enriched in goblet cells can be generated through the addition 
of DAPT and IWP-2, an inhibitor of Wnt signaling (25). Whilst these methods do not present single cell 
type resolution, they provide useful tools to study Paneth cell and goblet cell populations in the context 
of the other major epithelial cell types (26). A recent study by Mead et al. found that Paneth cells from 
enriched enteroids more closely represent their in vivo counterparts than those isolated from 
conventionally differentiated enteroids, based on transcriptomics, proteomics and morphologic data 
(27). Furthermore, we have shown that enteroids enriched for Paneth cells and goblet cells recapitulate 
in vivo characteristics on the proteomics level (28,29) and that they are a useful tool for the investigation 
of health and disease related processes in specific intestinal cell types (29).  
 
Nevertheless, the effect of Paneth cell and goblet cell enrichment of enteroids on key regulatory 
landscapes has not been extensively characterised. In this study, we comprehensively profiled mRNAs, 
miRNAs and lncRNAs from mouse derived, 3D conventionally differentiated enteroids (control), Paneth 
cell enriched enteroids (PCeE) and goblet cell enriched enteroids (GCeE) to determine the extent to 
which these enteroids display increased Paneth cell and goblet cell signatures. We applied a systems-
level analysis of regulatory interactions within the PCeEs and GCeEs to further characterise the effect 
of cell type enrichment and to predict key molecular regulators involved with Paneth cell and goblet cell 
specific functions. This analysis was carried out using interactions networks, which are a primary 
method to collate, visualise and analyse biological systems. These networks are a type of systems 
biology data representation, which aids the interpretation of -omics read-outs by contextualising 
genes/molecules of interest and identifying relevant signalling and regulatory pathways (30,31). In the 
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presented analysis, the nodes of the interaction networks represent genes/molecules of interest from 
the transcriptomics data and the edges represent regulatory connections (molecular interactions) 
between the nodes inferred from databases. Studying regulatory interactions using interaction networks 
has been proved useful to uncover how cells respond to changing environments at a transcriptional 
level, to prioritise drug targets and to investigate the downstream effects of gene mutations and 
knockouts (32–34). 
 
We used network approaches to interpret the PCeE and GCeE transcriptomic data by integrating 
directed regulatory connections from resources containing transcriptional and post-transcriptional 
interactions. This integrative strategy led us to define regulatory network landscapes altered by Paneth 
cell and goblet cell enrichment of enteroids, termed as PCeE network and GCeE network, respectively 
(Figure 1). By incorporating known Paneth cell and goblet cell markers, we used these networks to 
predict master regulators of Paneth cell and goblet cell differentiation and/or maintenance in the 
enriched enteroids. Furthermore, we highlighted varying downstream actions of shared regulators 
between the cell types. This phenomenon, called regulatory rewiring, highlights the importance of 
changes in regulatory connections in the function and differentiation of specific cell types. Taken 
together, we show that cell type enriched enteroids combined with the presented network biology 
workflow have potential for application to the study of epithelial dysfunction and mechanisms of action 
of multifactorial diseases such as IBD. 
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Figure 1: Schematic representation of the workflow used to infer and analyse regulatory network 
landscapes altered by Paneth cell and goblet cell enrichment of enteroids  PCeE/GCeE network 
- Paneth cell enriched enteroid / goblet cell enriched enteroid network; TF- transcription factor; lncRNA- 
long non-coding RNA; miRNA- microRNA; mRNA- messenger RNA; UC - ulcerative colitis; CD - 
Crohn’s disease. 
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Results 

 
Secretory lineages are over-represented in cell type enriched enteroids 
compared to conventionally differentiated controls  
We generated 3D self-organising enteroid cultures in vitro from murine small intestinal crypts (Figure 
S1) (18–20). In addition to conventionally differentiated enteroids, we generated enteroids enriched for 
Paneth cells and goblet cells using well-established and published protocols, presented in detail in the 
Methods (20,25). Bulk transcriptomics data was obtained from each set of enteroids to determine genes 
with differential expression resulting from enteroid skewing protocols. Differentially expressed genes 
were calculated by comparing the RNA expression levels (including protein coding genes, lncRNAs and 
miRNAs) of enteroids enriched for Paneth cells or goblet cells to those of conventionally differentiated 
enteroids. 4,135 genes were differentially expressed (absolute log2 fold change ≥ 1 and false discovery 
rate ≤ 0.05) in the PCeE dataset, and 2,889 were differentially expressed in the GCeE dataset (Figure 
2A-C, Table S1). The larger number of differentially expressed genes (DEGs) in the PCeE data could 
be attributed to the highly specialised nature of Paneth cells (35,36). The majority of the DEGs were 
annotated as protein coding: 79% in the PCeE dataset and 84% in the GCeE dataset. In addition, we 
identified lncRNAs (PCeE, 11%; GCeE, 9%) and miRNAs (PCeE, 4%; GCeE, 2%) among the DEGs 
(Figure 2B). Some of these DEGs were identified in both the PCeE and the GCeE datasets, exhibiting 
the same direction of change compared to the conventionally differentiated enteroid data. In total, 1,363 
genes were found upregulated in both the PCeE and the GCeE data, while 442 genes were found 
downregulated in both datasets (Figure 2C). This result highlights considerable overlap between the 
results of skewing enteroids towards Paneth cells and goblet cells, and can be explained by the shared 
differentiation history and secretory function of both Paneth cells and goblet cells. 
 
Pathway analysis was employed to study functional associations of the DEGs (Figure 2D). The PCeE-
specific DEGs were associated with a number of metabolic pathways, including Metabolism of vitamins 
and cofactors, Pyruvate metabolism and Citric Acid (TCA) cycle and Cholesterol biosynthesis. On the 
other hand, GCeE-specific DEGs were associated with the cell cycle through pathways such as Cell 
Cycle Checkpoints, DNA replication and G1/S transition. Pathways associated with the shared DEGs 
included Transmission across Chemical Synapses, Integration of energy metabolism and a number of 
pathways linked to hormones. As hormone functions are characteristic of enteroendocrine cells, this 
analysis suggests that enteroendocrine cells are enriched in both the PCeEs and the GCeEs. 
 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted October 10, 2019. ; https://doi.org/10.1101/575845doi: bioRxiv preprint 

https://doi.org/10.1101/575845
http://creativecommons.org/licenses/by/4.0/


8 
 

 
Figure 2: Differentially expressed genes in Paneth cell enriched enteroids (PCeEs) and goblet 
cell enriched enteroids (GCeEs) (compared to conventionally differentiated enteroids). A:  
Volcano plots showing log2 fold change and adjusted p value for each gene following differential 
expression analysis of PCeEs (left) and GCeEs (right). Horizontal and vertical lines indicate the 
differential expression criteria cut offs (q value ≤ 0.05 and log2 fold change ≥|1|). B: Number of 
differentially expressed genes (DEGs). miRNA = microRNA; lncRNA = long non-coding RNA; Genes 
annotated as ‘other’ include pseudogenes and antisense genes. C: Venn diagrams indicating the 
number of DEGs (passing the cut off criteria). D: Top 10 Reactome pathways of the 50 most significant 
DEGs (by q value). E: Enrichment of cell type specific marker genes in the DEG lists. Higher significance 
scores indicate greater enrichment. Number of markers in DEG list out of the total number of markers 
shown below significance score. Also see Table S1,4. 
 
To validate the cell types present in the enteroids, the expression of five previously reported major cell 
type specific markers were investigated across the enteroids using transcript abundances and RNA 
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differential expression results (Table S2, Figure S2). The control enteroids and the cell type enriched 
enteroids expressed all five investigated markers: Lgr5 (stem cells), ChgA (enteroendocrine cells), 
Muc2 (goblet cells), Lyz1 (Paneth cells) and Vil1 (epithelial cells). We observed an upregulation of 
Muc2, Lyz1 and ChgA and a downregulation of Lgr5 in PCeEs and GCeEs compared to the control 
enteroids, confirming the more pronounced differentiated status of the enteroids. In addition, a number 
of Paneth cell specific antimicrobial peptide genes were differentially expressed in the PCeE dataset, 
including Ang4, Reg3Ɣ, Pla2g2a and Defa2 (Table S3). Some of these genes were also differentially 
expressed in the GCeE dataset but with smaller log fold change values, e.g. Lyz1 and Ang4. 
Conversely, a number of goblet cell mucin related genes (including Muc2 and Tff3) were differentially 
expressed in both datasets although all genes exhibited a smaller increase in the PCeEs (Table S2). 
Therefore, using primary cell type specific markers, antimicrobial peptide genes and mucin-related 
genes, we show that the enteroids contain all major cell types, and that Paneth cell are most upregulated 
in the PCeEs, while goblet cells are most upregulated in the GCeEs. We also note that both 
differentiation methods resulted in increases of other secretory cell types as well.  
 
To further investigate secretory cell type specific signatures of the enteroids, we measured enrichment 
of secretory lineages in the upregulated DEG lists using additional marker genes of Paneth cells, goblet 
cells and enteroendocrine cells. While all tests were significant (hypergeometric model, q value ≤ 0.05), 
we identified greater enrichment of Paneth cell markers in the PCeE DEG list and goblet markers in the 
GCeE DEG list (Figure 2E). This confirms that both enteroid enrichment protocols were successful in 
increasing the proportion of their target cell type, but also increased proportions of other secretory 
lineages, albeit to a lesser extent (Table S4). This observation confirms previous studies that these 
enteroid differentiation protocols result in enteroendocrine enrichment in addition to Paneth cell and 
goblet cell enrichment (25,28). 
 
In conclusion, we have used image-based validation, pathway analysis and marker gene investigation 
to show successful enrichment of target cell types in the PCeE’s and GCeE’s. We also highlighted an 
additional increase in other secretory lineages, particularly enteroendocrine cells, as a result of both 
enrichment protocols.  

Reconstruction of regulatory networks altered by enteroid differentiation 
skewing 
To gain an understanding of the regulatory changes occuring when enteroids development is skewed, 
we applied a network biology approach, and identified regulator-target relationships within the DEG 
lists. First, we generated a large network of non-specific molecular interactions known to occur in mice, 
by collating lists of published data (Table S6). The resulting network (termed the universal network) 
consisted of 1,383,897 unique regulatory interactions connecting 23,801 molecular entities. All 
interactions within the network represent one of the following types of regulation, where every node is 
a DEG: TF-TG, TF-lncRNA, TF-miRNA, miRNA-mRNA or lncRNA-miRNA. TF-TGs and TF-lncRNAs 
make up the majority of the network at 77% and 11% of all interactions, respectively. Due to its non-
specific nature, this universal network contains many interactions not relevant for the current biological 
context. In order to get a clearer and valid picture of regulatory interactions occurring in our enteroids, 
we used the universal network to annotate the PCeE DEGs and GCeE DEGs with regulatory 
connections. Combining these connections, we generated specific regulatory networks for PCeEs and 
GCeEs, where every node is a DEG and every interaction has been observed in mice previously.  
 
In total, the PCeE network, generated using differential expression data from the PCeEs compared to 
the conventionally differentiated enteroids, contained 37,062 interactions connecting 208 unique 
regulators with 3,023 unique targets (Figure 3A, Item S1). The GCeE network, generated using 
differential expression data from the GCeEs compared to the conventionally differentiated enteroids, 
contained 19,171 interactions connecting 124 unique regulators with 2,095 unique targets (Figure 3A, 
Item S1). 15.7% of all interactions (8,856 out of 56,234) were shared between the PCeE and GCeE 
networks, however the interacting molecular entities in these interactions (termed nodes) did not all 
exhibit the same direction of differential expression between the networks (comparing PCeE or the 
GCeE data to the conventionally differentiated enteroid data). In each of the enriched enteroid 
regulatory networks, a particular gene was represented (as a node in the network) only once, but may 
have been involved in multiple different interactions. In different interactions, a single node could act 
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either as a regulator or as a target and in different molecular forms, for example, as a lncRNA in one 
interaction and as a target gene in another. 
 
To further investigate the makeup of these networks, we employed cluster analysis to identify highly 
interconnected regions (possible regulatory modules) in the PCeE and GCeE regulatory networks. 
Using the MCODE software (37), we identified five distinct clusters in the PCeE network and seven 
distinct clusters in the GCeE networks. A total or 1314 nodes are present in the PCeE network clusters 
and 698 in the GCeE network clusters. Functional analysis identified Reactome pathways (38) 
associated with each of the modules. Significant pathways (q val ≤ 0.05) were identified only for the 
highest ranked three modules from each network, with a total of 12 pathways shared between the PCeE 
and GCeE associated clusters (out of 32 associated with the PCeE clusters and 42 with the GCeE 
clusters) (Figure 3B-D). Of particular note, the first cluster of the GCeE network has associations with 
the endosomal/vacuolar pathway and antigen presentation, the second cluster is associated with the 
cell cycle. Of the PCeE clusters, the first cluster is associated with a range of functions including nuclear 
receptor transcription pathway, regulation of lipid metabolism and senescence. The second is 
associated with response to metal ions and endosomal/vacuolar pathway and the third with G alpha (i) 
signalling events (Table S5). 
 
In conclusion, we have generated regulatory interaction networks, including transcriptional and post-
transcriptional interactions, which illustrate the effect of skewing enteroid differentiation towards Paneth 
cell and goblet cell lineages. 
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Figure 3:  Summary and cluster analysis of regulatory network for Paneth cell enriched enteroid 
(PCeE) and goblet cell enriched enteroid (GCeE) datasets. A: Summary of number of nodes and 
interactions in the whole PCeE (left) and GCeE (right) networks. Total number of each regulator type 
shown in red, number of each target type shown in blue. In the targets pie-chart, mRNAs also represent 
protein coding genes and proteins, miRNAs also represent miRNAs genes and lncRNAs also represent 
lncRNA genes. Size of circles represents log10(total unique regulators/targets). Bar chart represents 
the distribution of interaction types in the networks (log10 scale). B: Heatplot of Reactome pathways 
significantly associated (q val ≤ 0.05) with each cluster of the PCeE (orange) and GCeE (purple) 
networks. Only the top 5 pathways shown for each group (or more where equal q values). Only the top 
3 clusters had significantly associated pathways. Clusters labelled with rank and cell type and colours 
match the colour of the cluster shown in C and D. C, D : Visualisation of the PCeE and GCeE regulatory 
networks with their associated clusters. The cluster rank and score is given next to each cluster. Black 
nodes in the whole networks represent nodes which were not found in any cluster, whereas coloured 
nodes represent the cluster which they are part of. TF- transcription factor; miRNA- microRNA; lncRNA- 
long non-coding RNA. See Items S1, S2 and Table S5. 
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Identification of potential cell type specific master regulators 
Through pathway and marker analysis we predicted that our PCeE and GCeE datasets (i.e. DEG lists), 
and consequently our regulatory networks, contain signatures from the cell type of interest as well as 
additional noise from other secretory lineages. To focus specifically on the cell type specific elements 
of the networks, we used previously identified cell type specific markers to extract predicted Paneth cell 
and goblet cell regulators from our PCeE and GCeE networks. As cell type specific markers represent 
genes performing functions specific to a particular cell type, we expected that the regulators of these 
marker genes will have an important role in determining the function of said cell type. To identify these 
regulators, we extracted from the PCeE and GCeE networks, all relevant cell type specific markers and 
their direct regulators. These new networks were termed the Paneth cell subnetwork and goblet cell 
subnetwork respectively. The Paneth cell subnetwork contained 33 markers specific for Paneth cells 
with 62 possible regulators. The goblet cell subnework contained 150 markers with 63 possible 
regulators (Figure 4, Table S7). Observing the ratio of regulators and markers, the Paneth cell 
subnetwork had, on average, 1.88 regulators for each marker. On the other hand, the goblet cell 
subnetwork exhibited only 0.42 regulators for each marker. The quantity of markers identified in each 
subnetwork (33 in the Paneth network and 150 in the goblet network) correlates with the number of 
marker genes identified by Haber et al. (12). However, far fewer regulators were identified in the goblet 
cell subnetwork per marker than for the Paneth cell subnetwork. Whilst the underlying reason for this 
discrepancy is unknown, it could potentially be evidence of the complex regulatory environment required 
to integrate and respond to the arsenal of signals recognised by Paneth cells in comparison to goblet 
cells (35). 
 

 
Figure 4:  Regulator-marker subnetworks for Paneth cell and goblet cell datasets. A, B: Paneth 
cell (A) and goblet cell (B) subnetworks. Nodes represent genes, transcription factors or RNAs and 
edges represent directed physical regulatory connections. Regulators are shown in red and pink. Cell 
type specific markers are shown in blue. C: Summary of the number of nodes present in both the 
subnetworks. Paneth cell data above and goblet cell data below. Total number of each regulator type 
shown in red, number of each target type shown in blue. Regulators have been categorised based on 
their membership in the two subnetworks - shared regulators are present in both networks. In the targets 
pie-chart, mRNAs also represent protein coding genes. Size of circles represents log10 (total unique 
regulators/targets). TF- transcription factor; miRNA- microRNA; lncRNA- long non-coding RNA. 
 
Of the 95 marker regulators, we identified approximately one-third (30/95) as present in both 
subnetworks (Figure 4C). Given that the markers are different between the cell types, a regulator shared 
between the Paneth cell and goblet cell subnetworks must show an altered pattern of regulatory 
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targeting in the two cell types. This phenomenon, referred to as regulatory rewiring, often results in 
functional differences of shared regulators in different environments (39) - for example, in this case, 
between the Paneth cells and goblet cells. 
 
Further investigation of the distinct regulator-marker interactions highlighted a gradient of regulator 
specificity. We generated matrices to visualise the markers controlled by each regulator in the goblet 
cell (Figure 5A) and the Paneth cell (Figure 5B,C) subnetworks. Each coloured square indicates that a 
marker (shown on the y-axis) is regulated by the corresponding regulator (shown on the x-axis). 
Squares are coloured green if the associated regulator is shared between the Paneth cell and goblet 
cell subnetworks and orange if they are specific to one subnetwork. A collection of regulators (both 
subnetwork specific and shared) appear to regulate large proportions of the markers. For example, 
Ets1, Nr3c1 and Vdr regulate >50% of the markers in both the Paneth cell and the goblet cell 
subnetworks. Specific to the Paneth cell subnetwork, Cebpa, Jun, Nr1d1 and Rxra regulate >50% of 
the markers. Specific to the goblet cell subnetwork, Gfi1b and Myc regulate >50% of the markers. These 
regulators represent potential master regulators of differentiation or maintenance of the given cell types 
in the enriched enteroids. Referring back to the highly-interconnected clusters identified in the PCeE 
and GCeE networks (Figure 3C-D), we find these predicted master regulators in different clusters. In 
the PCeE network, Cebpa, Nr1d1, Nr3c1 and Rxra are in cluster 1, Vdr is in cluster 2, Jun is in cluster 
3 and Ets1 is unclustered. In the GCeE network, Ets1 and Myc are in cluster 1, Nr3c1 and Vdr are in 
cluster 2 and Gfi1b is in cluster 3. This suggests a wide range of central functions are carried out by 
this group of regulators, with possible divergence of roles between the Paneth cell and the goblet cell. 
In contrast to the predicted master regulators, regulators such as Mafk in the Paneth cell subnetwork 
and Spdef in the goblet cell subnetwork regulate only one marker. These regulators likely have more 
functionally specific roles.  
 
Together, these results highlight potential regulators which likely play key roles in specification and 
maintenance of Paneth and goblet cells and their functions in cell type enriched enteroids. 
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Figure 5: Matrices of interactions between markers and their regulators in the Paneth cell and 
goblet cell subnetworks. Regulators on y-axis, markers (regulator targets) on y-axis. Orange boxes 
indicate the interaction of a regulator and a marker where the regulator is only found in one of the two 
subnetworks. Blue boxes signify that the regulator is found in both the Paneth cell and the goblet cell 
subnetworks. A: All goblet cell markers (12) and their regulators in the goblet cell subnetwork. B: All 
Paneth cell markers (12) and their regulators in the Paneth cell subnetwork. C: Sub-section of A 
showing the markers (and their regulators) which have the most regulatory connections. Interactions in 
Table S7. 

 
 
Regulators of cell type specific markers exhibit rewiring between Paneth cells 
and goblet cells  

Cell type specific markers, which carry out cell type specific functions, are inherently different between 
the Paneth cell and goblet cell subnetworks (mutually exclusive). Therefore, the regulators observed in 
both Paneth cell and goblet cell subnetworks (shared regulators) are expected to target different marker 
genes. To do this, the regulators must have different regulatory connections in the different cell types, 
a phenomenon termed ‘rewiring’ (40). We extended the analysis to the original regulatory networks 
(PCeE and GCeE networks) to investigate whether any of the 30 identified shared regulators are 
rewired between the whole PCeE and the GCeE networks, and thus are highly likely to have different 
functions in the two types of enriched enteroids as well as between Paneth and goblet cells. To quantify 
rewiring of each of these regulators, we observed their targets in the PCeE and GCeE networks using 
the Cytoscape application, DyNet. DyNet assigns each regulator a rewiring score depending on how 
different their targets are between the two regulatory networks (Table S8). Using these rewiring scores, 
we identified the five most rewired regulators (of 30) as Etv4, let-7e-5p, miR-151-3p, Myb and Rora. 
Functional enrichment analysis was carried out on the targets of these regulators to test whether the 
targets specific to the PCeE and GCeE networks have different functions (hypergeometric model, q 
value ≤ 0.1) (Table S9). Across all five regulators the general trend indicated that targets specific to the 
PCeE network are associated with metabolism; targets specific to the GCeE network are associated 
with cell cycle and DNA repair. As pathway analysis carried out on the enteroid DEGs (Figure 2D) 
identified the same phenomenon, this suggests that the rewired regulators could be key drivers of 
transcriptional changes during the skewing of enteroid differentiation towards Paneth cell or goblet cell 
lineages. In addition, given that the strongest signal of enriched enteroids represents their enriched cell 
type, we predict that these functions are key features of Paneth cells and goblet cells in the enteroids, 
and that the rewired regulators are important drivers of cell type specific functions.  
 
Looking at the regulators in more detail, the GCeE specific targets of miR-151-3p, for example, are 
significantly enriched in functions relating to antigen presentation, cell junction organisation, Notch 
signalling and the calnexin/calreticulin cycle. None of these functions are enriched in the shared or 
PCeE targets. Of particular interest is the calnexin/calreticulin cycle, which is known to play an important 
role in ensuring proteins in the endoplasmic reticulum are correctly folded and assembled (41). 
Dysfunction of protein folding and the presence of endoplasmic reticulum stress are both associated 
with IBD (42–44). Therefore, we predict that miR-151-3p plays a role in the secretory pathway of goblet 
cells and could be an interesting target for IBD research. In addition, different functional profiles were 
also observed for the targets of Rora in the PCeE and GCeE regulatory networks: targets present in 
both networks are significantly associated with mitosis, whereas those specific to the PCeE network are 
associated with metabolism, protein localisation, nuclear receptor transcription pathway, circadian clock 
and hypoxia induced signalling. GCeE specific targets of Rora are connected to Notch signalling, cell 
cycle and signalling by Rho GTPases (associated with cell migration, adhesion and membrane 
trafficking) and interferon.  
 
Altogether these observations show that some of the regulators of both Paneth cell and goblet cell 
marker genes have different targets (with different associated functions) between the PCeE and the 
GCeE networks. This suggests that regulatory rewiring occurs between Paneth cell and goblet cell 
types.  
 
 
Evaluating the disease relevance of the subnetwork specific master regulators  
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To investigate the function and relevance of the predicted master regulators in IBD, we carried out three 
analyses: 1) a literature search to check what is known about the identified master regulators; 2) an 
enrichment analysis to evaluate the disease relevant genes in the PCeE and GCeE networks and 
among the targets of the predicted master regulators; and finally, 3) a comparative analysis with human 
biopsy based single cell dataset to confirm the relevance of the data we identified PCeE and GCeE 
networks. 
 
The literature search was carried out using the three groups of predicted master regulators: those 
specific to the Paneth cell markers (Cebpa, Jun, Nr1d1 and Rxra), those specific to the goblet cell 
markers (Gfi1b and Myc) and those which appear to regulate many of the markers of both cell types 
(Ets1, Nr3c1 and Vdr). We identified five genes (Ets1, Nr1d1, Rxra, Nr3c1 and Vdr) with associations 
to inflammation, autophagy and/or inflammatory bowel disease (IBD), as shown in Table 1. These 
genes correspond to 71% (5/7) of the Paneth cell associated master regulators and 60% (3/5) of the 
goblet cell associated master regulators. Interestingly, four of these genes (all apart from Ets1), encode 
nuclear hormone receptors.  
 

Putative master 
regulator 

Autophagy / inflammation / IBD associations References 

NR1D1 (REV-
ERBa) 

Modulates autophagy and lysosome biogenesis in 
macrophages leading to antimycobacterial effects 

(45) 

SNP rs12946510 which has associations to IBD, 
acts as a cis-eQTL for NR1D1 

(46)  

NR3C1 
(glucocorticoid 

receptor) 

Associations with cellular proliferation and anti-
inflammatory responses 

(47) 

Exogenous glucocorticoids are heavily used as anti-
inflammatory therapy for IBD 

(48,49))  

ATG16L1, an autophagy related gene, was down-
regulated in patients who do not respond to 

glucocorticoid treatment 

(50,51) 

Transcriptionally regulates NFKβ1, a SNP affected 
gene in ulcerative colitis 

(52,53) 

VDR (Vitamin D 
Receptor) 

Regulates autophagy in Paneth cells through 
ATG16L1 – dysfunction of autophagy in Paneth 

cells has been linked to Crohn’s disease 

 (54,55) 

Induces antimicrobial gene expression in other cell 
lines 

(56,57) 

Specific polymorphisms in the VDR genes have 
been connected to increased susceptibility to IDB 

(58)  
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A study looking at colonic biopsies of IBD patients 
observed reduced VDR expression compared to 

healthy biopsies 

(59)  

Interacts with five SNP affected UC genes (60,61) 

RXRa (Retinoid 
X Receptor 

Alpha) 

Heterodimerizes with VDR (see above) (62) 

ETS1 (ETS 
Proto-Oncogene 

1) 

Important role in the development of hematopoietic 
cells and Th1 inflammatory responses 

(63,64) 

Angiogenic factors in the VEGF-Ets-1 cascades are 
upregulated in UC and downregulated in CD 

  

(65)  

IBD susceptibility gene (66)  

 
Table 1: Literature associations relating to autophagy, inflammation and IBD for putative master 
regulators. 
 
Given the possible relationship between the identified master regulators and IBD, we tested the 
potential of the PCeE and GCeE regulatory networks to study the pathomechanisms of CD or UC. We 
checked for the presence of known CD or UC associated genes in the networks, using data from two 
studies of single nucleotide polymorphisms (SNPs) (67,68) and one study of CD expression quantitative 
trait loci (eQTLs) (69). Using hypergeometric significance tests, we found that the PCeE network was 
significantly enriched in all tested lists: Genes with UC associated SNPs (13/47, p < 0.005), genes with 
CD associated SNPs (22/97, p < 0.005) and genes with CD associated eQTLs (290/1607, p < 0.0001) 
(Table S10-12). On the other hand, we found that the GCeE network was significantly enriched in genes 
with UC associated SNPs (10/47, p < 0.005) but regarding CD, the genes with SNP associations were 
not significantly enriched (12/97, p = 0.11) and the genes with qQTL associations were enriched with a 
larger p value (p < 0.05) (Table S10-12).  
 
Next we investigated whether any of the genes with UC or CD associated SNPs acts as regulators in 
the PCeE and GCeE networks. Of the genes with CD associated SNPs, one acts as a regulator in each 
network. Similarly, two genes with UC associated SNPs act as regulators in the networks. Specifically 
regarding CD associated genes, in the PCeE network, the gene Dbp regulates Bik, which encodes the 
BCL2 interacting killer, a pro-apoptotic, death promoting protein. In the  GCeE network, Notch2 
regulates Notch3 and Hes1. Specifically, regarding UC associated genes, in the PCeE network, Hnf4a 
regulates 994 genes/RNAs including nine Paneth cell markers (Cd244a, Fgfrl1, Clps, Habp2, Hspb8, 
Pnliprp1/2, Defb1, Mymx) and one other gene with UC associated SNPs (Tnfsf15). Additionally, a gene 
with UC associated SNPs, Nr5a2, was found in both the PCeE and GCeE networks regulating 389 and 
276 genes/RNAs respectively. In the PCeE network Nr5a2 targets include 6 Paneth cell markers 
(Cd244a, Copz2, Pnliprp1/2, Sntb1, Mymx). Ultimately, the large number of targets of these regulatory 
UC associated genes suggests they have wide ranging effects on the regulatory network of Paneth and 
goblet cells. To further establish the relevance of the inferred PCeE and GCeE networks, we also found 
an over-representation of drug target associated genes in both the PCeE and GCeE networks 
(2683/16223 and 1918/16223 respectively, p < 0.0001), highlighting their potential for the study of 
therapeutic implications (Table S12). 
 
To investigate the link between predicted master regulators and IBD, we observed whether the genes 
with UC and CD associated SNPs are regulated by the predicted master regulators in the PCeE and 
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GCeE networks (Table S13). Given that Paneth cell dysregulation is classically associated with CD and 
goblet cell dysregulation/depletion with UC (70), we focused this analysis only on these pairings, 
examining CD genes amongst targets of Paneth cell predicted master regulators, and UC genes 
amongst targets of goblet cell predicted master regulators. In the PCeE network, we found 21 (of 22) of 
the CD genes were regulated by at least one of the seven Paneth cell predicted master regulators, while 
the targets of these master regulators were significantly enriched with CD genes in the PCeE network 
(p < 0.001). Similarly, we observed that all 10 UC genes in the GCeE network were regulated by at 
least one of the five goblet cell predicted master regulators, while the targets of these master regulators 
were significantly enriched with UC genes (p < 0.005). 
 
To confirm the relevance of these predicted master regulators in a human system, a similar analysis 
was carried out using goblet cell differentially expressed genes from a recent single cell study of human 
inflamed UC colon biopsies (13). Using the top 100 differentially expressed genes, following conversion 
to mouse Ensembl identifiers, 20 were found to be targeted by the predicted goblet cell master 
regulators in the GCeE network. This represents a significant enrichment amongst all master regulator 
targets (p < 0.005) (Table S13). 
 
Ultimately, by integrating functional annotations obtained through literature searches, we show that the 
Paneth cell and goblet cell regulatory networks contain genes with direct and indirect associations with 
IBD. Furthermore, we find that the PCEe and GCeE networks and the targets of predicted master 
regulators are enriched with IBD associated genes - this finding is corroborated using human single cell 
data from UC colon biopsies. Consequently, these networks and the workflow to reconstruct and 
analyse them have great potential for the study of IBD pathomechanisms in specific intestinal cell types.  
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Discussion 
 
By generating and integrating cell type enriched enteroid RNAseq datasets with regulatory networks, 
we characterised the regulatory environment altered by differentiation skewing. Through focusing on 
cell type specific markers, we used the regulatory networks to predict master regulators of Paneth cells 
and goblet cells and to highlight the role of regulatory rewiring in cell differentiation. Given the relevance 
of Paneth cell and goblet cell dysfunction in IBD, future application of cell type enriched enteroids 
combined with our network analysis workflow can be used to disentangle multifactorial mechanisms of 
IBD. 
 
Analysis using known cell type specific markers confirmed that skewing differentiation of enteroids 
towards Paneth cells or goblet cells results in an increase in the target cell signatures at the 
transcriptomics level. In addition, signatures of enteroendocrine cells were increased in both 
differentiation protocols, albeit at a lower amount than the target cell type. This finding correlates with 
previous investigations at both the transcriptomic and proteomic levels (25,27–29) and is likely due to 
the shared differentiation pathways of these secretory cells. Nevertheless, as enteroids contain a mixed 
population of cell types by nature and because intercellular communication is key to a functioning 
epithelium (19,71), the increased proportion of non-targeted secretory lineages should not be an issue 
for the application of these models to research. In fact, the enrichment of specific cell types is beneficial 
for enteroid-based research to increase the signal originating from a specific population of cells and to 
provide a larger population of cells of interest for downstream single cell analysis of enteroids, which is 
particularly beneficial when studying rare populations such as Paneth cells. This is valuable due to the 
lack of in vitro models for long-term culture of non-self-renewing small intestinal epithelial cells (72,73). 
Specifically, the comparison of ‘omics data from a cell type enriched enteroid to a conventionally 
differentiated enteroid enables generation of cell type signatures with more specificity than can be 
obtained otherwise - except through single cell sequencing. Single cell sequencing, however, comes at 
a greater financial cost and provides lower coverage which can be problematic for rare cell types and 
lowly expressed RNAs. Furthermore, a number of previous studies have shown that these cell type 
enriched enteroid models, which offer a simplified and manipulatable version of the intestinal 
environment, are useful for the investigation of health and disease related processes (26,28,29). It must 
be considered, however, that through applying chemical inhibitors to enteroids to enrich particular cell 
types, we may observe changes in gene expression which are related to the direct effects of the inhibitor 
but not to differentiation. Due to the nature of the inhibitors, it would be challenging to separate these 
effects. For example, CHIR99021, which is used for enriching Paneth cells, is a direct inhibitor of 
glycogen synthase kinase 3 (GSK-3). GSK-3 has a role in many cellular pathways including cellular 
proliferation and glucose regulation (74). 
 
Using a priori molecular interaction knowledge, we annotated differentially expressed genes (cell type 
enriched enteroids vs. conventionally differentiated enteroids) with regulatory connections. Collecting 
all connections together generated regulatory networks for the Paneth cell enriched enteroid (PCeE) 
and goblet cell enriched enteroid (GCeE) datasets. This approach to collating networks (regulatory or 
otherwise) has been used for a wide variety of research aims, such as the identification of genes 
functioning in a variety of diseases (75,76), the prioritisation of therapeutic targets (77) and for a more 
general understanding of gene regulation in biological systems (78,79). The application of prior 
knowledge avoids the need for reverse engineering / inference of regulatory network connections, which 
is time consuming, computationally expensive and requires large quantities of high quality data (80). To 
investigate the substructure and functional associations of the generated PCeE and GCeE regulatory 
networks we applied a clustering approach. The identified clusters represent collections of highly 
interconnected nodes, which likely form regulatory modules. Functional analysis confirmed distinct 
functional associations between the clusters as well as between the networks. The observation that 
less than half of the network nodes exist in clusters is consistent with the view that regulatory networks 
are hierarchical and scale free with most genes exhibiting low pleiotropy (81,82). 
 
Given the observed additional increase in secretory lineages based on the DEGs of the enriched 
organoids, we chose to use cell type specific markers to extract interactions specific to Paneth cells and 
goblet cells from the generated regulatory networks. This enables further enrichment of Paneth cell and 
goblet cell signatures and reduction in noise in the networks due to the presence of other cell types in 
the enteroids. Using this approach, we identified possible regulators of cell type specific functions in 
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Paneth cells and goblet cells. Some of these regulators were predicted to be important in both cell 
types, but exhibited differential targeting patterns between the PCeE and the GCeE networks, indicating 
rewiring of regulators between the cell types. This highlights apparent redundancy and/or cooperation 
of regulators which control similar cell type specific functions and shows the potential importance of 
regulatory rewiring in the evolution of cell type specific pathways and functions, something which has 
been shown previously to occur (83,84). Functional analysis of the targets of the most rewired regulators 
(Etv4, let-7e-5p, miR-151-3p, Myb and Rora) highlights an overrepresentation of metabolism associated 
targets in the PCeE network and cell cycle associated targets in the GCeE network. A similar result was 
observed when functional analysis was carried out on genes with significantly different expression levels 
between the cell type enriched enteroids and the conventionally differentiated enteroids (Figure 2B). 
This suggests that transcriptional changes during the skewing of enteroid differentiation could be driven 
by rewired regulators and that these functions are key features of Paneth cells and goblet cells in the 
enteroids. The latter is supported by current understanding that Paneth cells rely on high levels of 
protein and lipid biosynthesis for secretory functions (85)important role in metabolically supporting stem 
cells (86). Additionally, as terminally-differentiated cells do not undergo cell division, this result suggests 
that enteroid goblet cell signatures are derived from a large population of semi-differentiated goblet-like 
cells, a phenomenon previously observed in tissue sample based studies (13,87). Extension of our 
workflow to single cell sequencing of enteroid cells could validate these findings by providing greater 
cell type specificity. However, these techniques pose further technical and economic challenges 
(88,89). Specifically, a large number of organoids must be sequenced to mitigate cellular complexity 
and batch heterogeneity and powerful, reproducible and accurate computational pipelines are required 
to analyse such data (90). 
 
We predicted key regulators involved in differentiation or maintenance of Paneth cells and goblet cells 
in the enteroids: Cebpa, Jun, Nr1d1 and Rxra specific to Paneth cells, Gfi1b and Myc specific for goblet 
cells and Ets1, Nr3c1 and Vdr shared between them. Validation of these regulators poses significant 
challenges due to their wide expression and broad function range. If the master regulators are 
controlling differentiation as opposed to cell function maintenance, evaluating lineage arrest or delay 
can be carried out using a gene knockout or knock down. However the effects of pleiotropy will 
significantly hamper the results and such a study would require significant follow-up studies. On the 
other hand, if key regulators were predicted by applying the presented computational workflow to 
condition-specific organoids compared to control organoids (eg. drug treated organoids vs non-treated 
organoids), the validation would be much simpler. Literature investigation highlighted that many of the 
predicted master regulators, particularly those associated with Paneth cells, have connections to 
autophagy, inflammation and IBD (Table 1). While some of these associations are related to different 
cell types, we assume that if a gene can contribute to a specific function in one cell type it may also 
contribute in another. This finding suggests that dysregulation of key cell master regulators could 
contribute to IBD. 
 
To further investigate this finding, we identified Crohn’s disease (CD) and ulcerative colitis (UC) genes 
in the PCeE and GCeE networks. We found that CD associated genes are more strongly associated 
with the PCeE network than the GCeE network. Given that Paneth cell dysfunction is classically 
associated with CD, this finding highlights the relevance of the generated networks to the in vivo 
situation. In the PCeE network one SNP associated CD gene, Dbp, acts as a regulator. Dbp, encoding 
the D site binding protein, regulates Bik, which encodes the BCL2 interacting killer, a pro-apoptotic, 
death promoting protein. Interestingly, rate of apoptosis has been implicated in IBD disease 
mechanisms (91) and has been associated with IBD drug response (92). Therefore, this finding 
highlights a possible regulatory connection between CD susceptibility genes and IBD pathology on a 
Paneth cell specific level. In the GCeE network, the SNP associated CD gene Notch2 acts as a regulator 
for Notch3 and Hes1. It has been previously demonstrated that this pathway can block glucocorticoid 
resistance in T-cell acute lymphoblastic leukaemia via NR3C1 (predicted master regulator) (93). This is 
relevant to IBD given that glucocorticoids are a common treatment for IBD patients (49). Furthermore, 
this pathway has been previously associated with goblet cell depletion in humans (94) commonly 
observed in IBD patients. Furthermore, we identified a significant enrichment of UC associated genes 
in both the PCeE and GCeE networks. The majority of UC associated genes identified in the networks 
(9/14) were present in both, suggesting that genetic susceptibilities of UC do not have a Paneth cell or 
goblet cell specific effect. Two of the identified UC associated genes act as regulators in the networks 
(Nr5a2 and Hnf4a), targeting hundreds of genes and thus suggesting a broad ranging effect on the 
networks. Building on the identified literature associations of predicted master regulators, we found that 
the targets of Paneth cell master regulators are enriched with CD associated genes, and the targets of 
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the goblet cell master regulators are enriched with UC associated genes. This finding was further 
illustrated using UC associated goblet cell genes from a human biopsy study (13), highlighting the 
relevance of these findings in a human system. Ultimately, the observation of IBD susceptibility genes 
in the regulatory networks of these enteroids highlights possible application of this model system to 
study disease regulation in specific intestinal cell types, through understanding specific mechanistic 
pathways. 
 
We have shown how network biology techniques can be applied to generate interaction networks 
representing the change in regulatory environments between two sets of enteroids. Here we presented 
this workflow, and by using transcriptomics data we characterised the effect of Paneth cell and goblet 
cell differentiation skewing protocols on enteroids. However. the described workflow could be applied 
to a variety of ‘omics datasets and enteroid conditions. For example, to test the response of enteroids 
to external stimuli, such as bacteria, and on enteroids grown from human-derived biopsies, enabling 
patient-specific experiments. The application of further ‘omics data-types to the described approach 
could generate a more holistic view of cellular molecular mechanisms, including the ability to observe 
post-translational regulation. In this study, we integrated miRNA and lncRNA expression datasets, in 
addition to mRNA data, as these molecules have been shown to perform critical regulatory and 
mediatory functions in maintaining intestinal homeostasis (46,68,95). However, only small proportions 
of the generated PCeE and the GCeE networks contained miRNA and lncRNA interactions (Figure 2B), 
due to lack of published interaction information, particularly from murine studies. Both the application of 
human enteroid data and the future publication of high-throughput interaction studies involving miRNAs 
and lncRNAs will improve the ability to study such interactions. Nevertheless, these network 
approaches are beneficial for contextualising gene lists through annotating relevant signalling and 
regulatory pathways (31) and we can use them to represent and analyse current biological knowledge, 
to generate hypotheses and to guide further research. 
 
In conclusion, we described an integrative systems biology workflow to compare regulatory landscapes 
between enteroids from different conditions, incorporating information on transcriptional and post-
transcriptional regulation. We applied the workflow to compare Paneth cell and goblet cell enriched 
enteroids to conventionally differentiated enteroids and predicted Paneth cell and goblet cell specific 
regulators, which could provide potential targets for further study of IBD mechanisms. Application of 
this workflow to patient derived organoids, genetic knockout and/or microbially challenged enteroids, 
alongside appropriate validation and single cell sequencing if available, will aid discovery of key 
regulators and signalling pathways of healthy and disease associated intestinal cell types.  
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Methods 
Animal handling 

C57BL/6J mice of both sexes were used for enteroid generation. All animals were maintained in 
accordance with the Animals (Scientific Procedures) Act 1986 (ASPA). 
  
Small intestinal organoid culture 

Murine enteroids were generated as described previously (18,20,29). Briefly, the entire small intestine 
was opened longitudinally, washed in cold PBS then cut into ~5mm pieces. The intestinal fragments 
were incubated in 30mM EDTA/PBS for 5 minutes, transferred to PBS for shaking, then returned to 
EDTA for 5 minutes. This process was repeated until five fractions had been generated. The PBS 
supernatant fractions were inspected for released crypts. The crypt suspensions were passed through 
a 70μm filter to remove any villus fragments, then centrifuged at 300xg for 5 minutes. Pellets were 
resuspended in 200μl phenol-red free Matrigel (Corning), seeded in small domes in 24-well plates and 
incubated at 37ᵒC for 20 minutes to allow Matrigel to polymerise. Enteroid media containing EGF, 
Noggin and R-spondin (ENR; (18)) was then overlaid. Enteroids were generated from three separate 
animals for each condition, generating three biological replicates. 
 
To chemically induce differentiation, on days two, five and seven post-crypt isolation, ENR media was 
changed to include additional factors for each cell type specific condition: 3μM CHIR99021 (Tocris) and 
10μM DAPT (Tocris) [Paneth cells]; 2μM IWP-2 (Tocris) and 10μM DAPT [goblet and enteroendocrine 
cells] (25).  
 
Small intestinal organoid immunofluorescence 
 
On day eight post-crypt isolation, enteroids were fixed with 4% paraformaldehyde (PFA; Sigma-Aldrich) 
for 1 hour at 4°C prior to permeabilization with 0.1% triton X-100 (Sigma-Aldrich) and incubation in 
blocking buffer containing 10% goat serum (Sigma-Aldrich). Immunostaining was performed overnight 
at 4°C using primary antibodies: mouse anti-E-cadherin (BD Transduction Laboratories), rabbit anti-
muc2 (Santa Cruz) and rabbit anti-lysozyme (Dako), followed by Alexa Fluor-488 and -594 conjugated 
secondary antibodies (ThermoFisher Scientific). DNA was stained with DAPI (Molecular Probes). 
Images were acquired using a fluorescence microscope (Axioimager.M2, equipped with a Plan-
Apochromat 63x/1.4 oil immersion objective) and analysed using ImageJ/FIJI V1.51. 
 

RNA extraction 

On day eight post-crypt isolation (allowing optimal cell type-enrichment as previously shown; Yin et al., 
2014), enteroids were extracted from Matrigel (Corning, 356237) using Cell Recovery Solution (BD 
Bioscience, 354253), rinsed in PBS and RNA was extracted using miRCURY RNA Isolation Tissue Kit 
(Exiqon, 300115) according to the manufacturer’s protocol. 
 
Stranded RNA library preparation 

The enteroid transcriptomics libraries were constructed using the NEXTflex™ Rapid Directional RNA-
Seq Kit (Perkin Elmer, 5138-07) using the polyA pull down beads from Illumina TruSeq RNA v2 library 
construction kit (Illumina, RS-122-2001) with the NEXTflex™ DNA Barcodes – 48 (Perkin Elmer, 
514104) diluted to 6µM. The library preparation involved an initial QC of the RNA using Qubit DNA (Life 
technologies, Q32854) and RNA (Life technologies, Q32852) assays as well as a quality check using 
the PerkinElmer GX with the RNA assay (CLS960010). Ligated products were subjected to a bead-
based size selection using Beckman Coulter XP beads (A63880). As well as performing a size selection 
this process removed the majority of unligated adapters. Prior to hybridisation to the flow cell the 
samples were amplified to enrich for DNA fragments with adapter molecules on both ends and to amplify 
the amount of DNA in the library. The strand that was sequenced is the cDNA strand. The insert size of 
the libraries was verified by running an aliquot of the DNA library on a PerkinElmer GX using the High 
Sensitivity DNA chip (Perkin Elmer, CLS760672) and the concentration was determined by using a High 
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Sensitivity Qubit assay and q-PCR. Libraries were then equimolar pooled and checked by qPCR to 
ensure the libraries had the necessary sequencing adapters ligated. 
 
Small RNA library preparation  

The small RNA libraries were made using the TruSeq Small RNA Library Prep Kits (Illumina, 15004197), 
six-base indexes distinguish samples and allow multiplexed sequencing and analysis using 48 unique 
indexes ((Set A: indexes 1-12 (Illumina, RS-200-0012), Set B: indexes 13–24 (Illumina, RS-200-0024), 
Set C: indexes 25–36 (Illumina, RS-200-0036), Set D: indices 37–48 (Illumina, RS-200-0048)) (TruSeq 
Small RNA Library Prep Kit Reference Guide (Illumina, 15004197 Rev.G)). The TruSeq Small RNA 
Library Prep Kit protocol is optimised for an input of 1µg of total RNA in 5 µl nuclease-free water or 
previously isolated microRNA may be used as starting material (minimum of 10–50 ng of purified small 
RNA). Total RNA is quantified using the Qubit RNA HS Assay kit (ThermoFisher, Q32852) and quality 
of the RNA is established using the Bioanalyzer RNA Nano kit (Agilent Technologies, 5067-1511), it is 
recommended that RNA with an RNA Integrity Number (RIN) value ≥ 8 is used for these libraries as 
samples with degraded mRNA are also likely to contain degraded small RNA. 
  
Library purification combines using BluePippin cassettes (Sage Science Pippin Prep 3% Cassettes 
Dye-Free (CDF3010), set to collection mode range 125-160bp) to extract the library molecules followed 
by a concentration step (Qiagen MinElute PCR Purification, 28004) to produce libraries ready for 
sequencing. Library concentration and size are established using HS DNA Qubit and HS DNA 
Bioanalyser. The resulting libraries were then equimolar pooled and qPCR was performed on the pool 
prior to clustering.  
 
Stranded RNA sequencing on HiSeq 100PE 

The final pool was quantified using a KAPA Library Quant Kit (Roche, 07960140001), denatured in 
NaOH and combined with HT1 plus a 1% PhiX spike at a final running concentration of 10pM.The flow-
cell was clustered using HiSeq PE Cluster Kit v3 (Illumina, PE-401-3001) utilising the Illumina PE HiSeq 
Cluster Kit V3 cBot recipe V8.0 method on the Illumina cBot. Following the clustering procedure, the 
flow-cell was loaded onto the Illumina HiSeq2000 instrument following the manufacturer’s instructions 
with a 101 cycle paired reads and a 7-cycle index read. The sequencing chemistry used was HiSeq 
SBS Kit v3 (Illumina, FC-401-3001) with HiSeq Control Software 2.2.68 and RTA 1.18.66.3. Reads in 
bcl format were demultiplexed based on the 6bp Illumina index by CASAVA 1.8, allowing for a one 
base-pair mismatch per library, and converted to FASTQ format by bcl2fastq. 
 

Small RNA sequencing on HiSeq Rapid 50SE 

The final pool was quantified using a KAPA Library Quant Kit (Roche, 07960140001), denatured in 
NaOH and combined with HT1 plus a PhiX spike at a final running concentration of 20pM. The libraries 
were hybridized to the flow-cell using TruSeq Rapid Duo cBot Sample Loading Kit (Illumina, CT-403-
2001), utilising the Illumina RR_TemplateHyb_FirstExt_VR method on the Illumina cBot. The flow-cell 
was loaded onto the Illumina HiSeq2500 instrument following the manufacturer’s instructions with a 51-
cycle single read and a 7 cycle index read. The sequencing chemistry used was HiSeq SBS Rapid Kit 
v2 (Illumina, FC-402-4022) with a single read cluster kit (Illumina, GD-402-4002), HiSeq Control 
Software 2.2.68 and RTA 1.18.66.3. Reads in bcl format were demultiplexed based on the 6bp Illumina 
index by CASAVA 1.8, allowing for a one base-pair mismatch per library, and converted to FASTQ 
format by bcl2fastq. 
  
Differentially expressed transcripts 

The quality of stranded reads was assessed by FastQC software (version 0.11.4) (96). All reads coming 
from technical repeats were concatenated together and aligned (in stranded mode, i.e. with ‘--rna-
strandness RF’ flag) using HISAT aligner (version 2.0.5) (97). Subsequently, a reference-based de novo 
transcriptome assembly was carried out for each biological repeat and merged together using StringTie 
(version 1.3.2) with following parameters: minimum transcript length of 200 nucleotides, minimum 
FPKM of 0.1 and minimum TPM of 0.1 (98,99). Coding potential of each novel transcript was determined 
with CPC (version 0.9.2) and CPAT (version 1.2.2) (100,101). From the novel transcripts, only non-
coding transcripts (as predicted by both tools) were included in final GTF file. Gene and transcript 
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abundances were estimated with kallisto (version 0.43.0) (102). Sleuth (version 0.28.1) R library was 
used to perform differential gene expression (103). mRNAs and lncRNAs with an absolute log2 fold 
change of 1 and q value ≤ 0.05 were considered to be differentially expressed.  
 
The small RNA reads were analysed using the sRNAbench tool within the sRNAtoolbox suite of tools 
(104) . The barcodes from the 5’ end and adapter sequences from the 3’ end were removed 
respectively. Zero mismatches were allowed in detecting the adapter sequences with a minimum 
adapter length set at 10. Only reads with a minimum length of 16 and a read-count of 2 were considered 
for further analysis. The mice miRNA collection was downloaded from miRBase version 21 (105). The 
trimmed and length filtered reads were then mapped to the mature version of the miRBase miRNAs in 
addition to the annotated version of the mouse genome (version mm10). No mismatches were allowed 
for the mapping. A seed length of 20 was used for the alignment with a maximum number of multiple 
mappings set at 10. Read-counts normalised after multiple-mapping were calculated for all the libraries. 
The multiple-mapping normalised read-counts from the corresponding cell type enriched enteroids were 
compared against the conventionally differentiated enteroids to identify differentially expressed miRNAs 
in a pair-wise manner using edgeR (106). miRNAs with an absolute log2 fold change of 1 and false 
discovery rate ≤ 0.05 were considered to be differentially expressed. 
 
Differentially expressed genes were grouped by their presence in the PCeE dataset, the GCeE dataset 
or in both. Each group of differentially expressed genes was tested for functional enrichment 
(hypergeometric model, q value ≤ 0.1) based on Reactome and KEGG annotations using the 
ReactomePA R package (38,107–109) following conversion from mouse to human identifiers using 
Inparanoid (v8) (110,111). 
 
 
Enrichment of marker genes 

Cell type specific marker gene lists were obtained a mouse single cell sequencing survey (12). The cell 
type specific signature genes for Paneth, goblet and enteroendocrine cell types were obtained from the 
droplet-based and the plate-based methods. Gene symbols were converted to Ensembl gene IDs using 
bioDBnet db2db (112).  
 
Hypergeometric distribution testing was carried out using a custom R script to measure enrichment of 
cell type specific marker genes in the differentially upregulated gene sets. To standardise the universal 
dataset, only markers which are present in the output of the Wald test (genes with variance greater than 
zero among samples) were used. Similarly, to enable fair comparisons, only differentially expressed 
protein coding genes and documented lncRNAs were used from the DEG lists, as was surveyed in the 
cell type specific marker paper. Bonferroni correction was applied to the hypergeometric distribution p 
values to account for multiple testing and significance scores were calculated using -log10(corrected p 
value). For the mapping of marker genes to the interaction networks, no filters were applied. 
 
Reconstruction of molecular networks 

Mice regulatory networks containing directed regulatory layers were retrieved from multiple databases 
(Table S6): miRNA-mRNA (ie., miRNAs regulating mRNAs) and lncRNA-miRNA (ie., lncRNAs 
regulating miRNAs) interactions were downloaded from TarBase v7.0 (113) and LncBase v2.0 (114), 
respectively. Only miRNA-mRNA and lncRNA-miRNA interactions determined using HITS-CLIP (115) 
experiments were considered. Regulatory interactions between transcription factors (TFs) and miRNAs 
(ie. TFs regulating miRNAs) were retrieved from TransmiR v1.2 (116), GTRD (117) and TRRUST v2 
(118,119). Co-expression based inferences were ignored from all the above resources. Transcriptional 
regulatory interactions (ie., TFs regulating target genes) were inferred using data from ORegAnno 3.0 
(61), GTRD and TRUSST. In cases where transcriptional regulatory interactions are derived from high-
throughput datasets such as ChIP-seq, we attributed the regulatory interaction elicited by the bound 
transcription factor to genes which lie within a 10kb window on either side of the ChIP-seq peak 
(ORegAnno) or meta-cluster (in the case of GTRD). TF-lncRNA interactions (ie., TFs regulating 
lncRNAs) were also inferred based on the ChIP-seq binding profiles represented by meta-clusters in 
GTRD. We used only TF-lncRNA interactions within intergenic lncRNAs to avoid assigning false 
regulatory interactions due to the high number of instances where the lncRNAs overlap with protein-
coding genes. In addition, no overlaps were allowed between the coordinates of the ChIP-seq peaks / 
meta-clusters and any gene annotation. Only if the first annotation feature within a 10kb genomic 
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window downstream to the ChIP-seq peak / meta-cluster was designated as an intergenic lncRNA, a 
regulatory interaction between the TF and the lncRNA was assigned. Bedtools (120) was used for the 
custom analyses to look for overlaps between coordinates. All the nodes in the collected interactions 
were represented by their Ensembl gene IDs for standardization. A summary of the interactions 
collected from each resource and the quality control criteria applied is given in Table S6. 
 
To generate PCeE and GCeE regulatory networks, interactions in this collated universal network were 
filtered using the differential expression data (Figure 1). The assumption was made that if both nodes 
of a particular interaction were expressed in the RNAseq data, the interaction is possible. Furthermore, 
to filter for the interactions of prime interest, only nodes which were differentially expressed and their 
associated interactors were included in the regulatory networks. 
 
Cluster analysis 
 
Clusters of highly interconnected regions within the PCeE and GCeE regulatory networks were 
identified using the MCODE plugin within Cytoscape (37,121). Default settings were applied: degree 
cutoff = 2, haircut = true, node score cutoff = 0.2, k-core = 2 and max depth = 100. Clusters were 
visualised in Cytoscape. 
 
The nodes of each cluster were tested for functional enrichment  (hypergeometric model, q value ≤ 
0.05) based on Reactome annotations using the ReactomePA R package (38,107–109) following 
conversion from mouse to human identifiers using Inparanoid (v8) (110,111). Cases where the number 
of nodes associated with a pathway < 5 were considered not significant regardless of the q value. The 
top 5 significant Reactome pathways associated with each cluster were visualised using a heatplot 
generated in R (Figure 3B). More than 5 pathways were visualised, where multiple Reactome pathways 
had equal q values. 
 
Master regulator analysis 

To identify potential master regulators of the Paneth cell and the goblet cell types, the upstream 
regulators of cell type specific markers (from (12)) were investigated. To do this, all markers were 
mapped to the relevant networks then subnetworks were extracted consisting of markers and their 
regulators (Table S7). 
 
Regulatory rewiring analysis 

To calculate rewiring scores for regulators, sub-networks were extracted (from the PCeE and GCeE 
regulatory networks) containing just the regulator of interest and its downstream targets. For each 
regulator of interest, the subnetworks from the PCeE and GCeE networks were compared using the 
Cytoscape app DyNet (121,122). The degree corrected Dn score was extracted for each regulator and 
used to quantify rewiring of the regulator’s downstream targets between the PCeE and GCeE regulatory 
networks. Functional analysis was carried out on the targets of the top five most rewired regulators. For 
each regulator, the targets were classified based on whether they are present in only the PCeE network, 
only the GCeE network or in both networks. Each group of targets was tested for functional enrichment 
(hypergeometric model, q value ≤ 0.1) based on Reactome and KEGG annotations using the 
ReactomePA R package (38,107–109) following conversion from mouse to human identifiers using 
Inparanoid (v8) (110,111).  
 
IBD and drug target associated genes 
 
Genes associated with UC and CD based on single nucleotide polymorphisms were obtained from two 
studies (67,68). Additionally, the top 100 differentially expressed genes were obtained from goblet cell 
analysis of inflamed UC vs healthy human colonic tissue from (13).  Genes were converted to Mouse 
Ensembl identifiers using Inparanoid (v8) and bioDBnet db2db (110–112). Additionally, to enable 
hypergeometric significant testing with the universal network as the background, only UC and CD genes 
present in the universal network are included in the analyses. eQTL datasets for CD were retrieved 
from (69) while the list of targets related to drug-interactions was downloaded from (123).      
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Quantification and statistical analysis 

Statistical parameters including the exact value of n and statistical significance are reported in the 
Figures and Figure Legends. n represents the number of enteroid biological replicates generated. 
Where relevant, data is judged to be statistically significant when Bonferroni corrected p value ≤ 0.01. 
Genes with absolute log2 fold change of ≥ |1| and false discovery rate ≤ 0.05 were considered to be 
differentially expressed. Based on principal component analysis of transcript expression, one biological 
replicate from the Paneth cell enriched enteroids was identified as an outlier and removed (Figure S3). 
Where stated, the hypergeometric distribution model was used to calculate significance using R. 
 
Data and software availability 
 
Small and stranded RNA-seq data has been deposited in the European Nucleotide Archive (ENA) with 
accession numbers PRJEB32354 and PRJEB32366 respectively. Scripts to analyse the differentially 
expressed genes are available on GitHub: 
https://github.com/korcsmarosgroup/organoid_regulatory_networks. 
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Supplementary items 

 
Table S1: Differentially expressed genes from cell type enriched enteroids vs conventionally 
differentiated organoids (q value ≤ 0.05 and log2 fold change ≥ |1|). Gene annotations included.  
 
Table S2: Expression and differential expression values for primary cell type markers. 
Expression given as mean transcripts per million (TPM) for each enteroid type. Log2 fold changes 
values given where differential expression criteria passed (q value ≤ 0.05 and log2 fold change ≥ |1|). 
Control- normally differentiated enteroids; Paneth- Paneth cell enriched enteroids; goblet- goblet cell 
enriched enteroids. 
 
Table S3: Differentially expressed antimicrobial peptide (AMP) and mucin related genes in 
Paneth cell enriched enteroids and goblet cell enriched enteroids (compared to conventionally 
differentiated enteroids). Only genes which are differentially expressed (log2fc ≥ 1 and false discovery 
rate ≤ 0.05) in at least one of the datasets was included. Lfc = log2 fold change; fdr = false discovery 
rate; DEG = differentially expressed gene; Paneth = Paneth enriched enteroid, goblet = goblet enriched 
enteroid. 
 
Table S4: Hypergeometric distribution testing of cell type specific marker enrichment in 
upregulated differentially expressed gene lists.  
 
Table S5: Functional enrichment analysis of the PCeE and GCeE clusters (q val ≤ 0.1). 
 
Table S6: A summary of the molecular interactions compiled to generate the universal network.  
 
Table S7: Interactions between markers and their regulators in the Paneth cell and the goblet 
cell subnetworks, including regulator specificity.  
 
Table S8: Rewiring analysis results for the marker regulators present in the Paneth cell and the 
goblet cell subnetworks. Dn score generated using Cytoscape app DyNet. 
 
Table S9: Functional enrichment analysis of the top five most rewired (shared) marker regulators 
(q val ≤ 0.1).  
 
Table S10: Crohn’s disease SNP associated genes in the enriched enteroid regulatory networks. 
 
Table S11: Ulcerative colitis SNP associated genes in the enriched enteroid regulatory networks. 
 
Table S12: Crohn’s disease eQTL associated genes and drug target genes in the enriched 
enteroid regulatory networks. 
 
Table S13: IBD associated genes targeted by predicted master regulators in the enriched 
enteroid regulatory networks. Ulcerative colitis (UC) and Crohn’s disease (CD) associated genes 
(from SNP data) targeted by at least one of the master regulators in the relevant networks; list of top 
100 CD differentially expressed genes in human colonic biopsies (CD inflamed vs healthy) which are 
targeted by at least one of the predicted goblet cell master regulators in the GCeE network. 
 
Figure S1: Small intestinal 3D organoid culture. A. Culture of isolated mouse small intestinal 
epithelial crypts in Matrigel matrix and ENR media (conventionally differentiated) for 7 days. Isolated 
crypts form 3D cysts which bud after 2 days of culture to form crypt- and villus-like domains. Paneth 
cells are clearly visible by light microscopy (Black arrows). Mucous and shedding cells accumulate in 
the central lumen of organoids (*). n = 3. B. cell type specific enrichment illustrated by 
immunofluorescence labelling of cultured mouse 3D enteroids, conventionally differentiated (left) and 
enriched for either Paneth cells or goblet cells (right). Lysozyme granules characteristic of Paneth cells 
are indicated with a green arrow. Goblet cells were identified using a specific anti-Muc2 mucin antibody 
(pink). 
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Figure S2: Transcript abundances and differential expression of five major cell type markers. A: 
Mean transcript abundances in the conventionally differentiated, goblet cell enriched and Paneth cell 
enriched enteroids. B: Log2 fold change in the goblet cell enriched enteroid vs conventional enteroid 
analysis and the Paneth cell enriched enteroid vs conventional enteroid analysis. Data only presented 
where the differential expression criteria passed (q value ≤ 0.05 and log2 fold change ≥|1|).  
 
Figure S3: Principal component analysis of Paneth cell enriched enteroid transcriptomics data 
from each biological replicate. 
 
Item S1: Cytoscape file for the Paneth cell enriched enteroid regulatory network, including sub-
clusters. 
 
Item S2: Cytoscape file for the goblet cell enriched enteroid regulatory networks, including sub-
clusters. 
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