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Visual neurons respond selectively to specific features that become increasingly complex in 

their form and dynamics from the eyes to the cortex. Retinal neurons prefer localized flashing 

spots of light, primary visual cortical (V1) neurons moving bars, and those in higher cortical 

areas, such as middle temporal (MT) cortex, favor complex features like moving textures. 

Whether there are general computational principles behind this diversity of response 

properties remains unclear. To date, no single normative model has been able to account for 

the hierarchy of tuning to dynamic inputs along the visual pathway. Here we show that 

hierarchical application of temporal prediction - representing features that efficiently predict 

future sensory input from past sensory input - can explain how neuronal tuning properties, 

particularly those relating to motion, change from retina to higher visual cortex. This suggests 

that the brain may not have evolved to efficiently represent all incoming information, as implied 

by some leading theories. Instead, the selective representation of sensory inputs that help in 

predicting the future may be a general neural coding principle, which when applied 

hierarchically extracts temporally-structured features that depend on increasingly high-level 

statistics of the sensory input. 

 

Introduction  

The temporal prediction [1] framework posits that sensory systems are optimized to represent features 

in natural stimuli that enable prediction of future sensory input. This would be useful for guiding 

future action, uncovering underlying variables, and discarding irrelevant information [1,2].Temporal 

prediction relates to a class of principles, such as the predictive information bottleneck [2–4] and slow 

feature analysis [5], that similarly involve selectively encoding only features that are efficiently 

predictive of the future. This class of principles differs from others that are more typically used to 

explain sensory coding – efficient coding [6,7], sparse coding [8] and predictive coding [9,10] – that 
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aim instead to efficiently represent all current and perhaps past input. Although these principles have 

been successful in accounting for various visual receptive field (RF) properties in V1 [1,3,5,7–9], no 

single principle has so far been able to explain the diverse spatiotemporal tuning that emerges along 

the dorsal visual stream, which is responsible for the processing of object motion.  

 Any general principle of visual encoding needs to explain temporal aspects of neural tuning 

– the encoding of visual scenes in motion rather than static images. It is also important that any general 

principle is largely unsupervised. Some features of the visual system have been reproduced by deep 

supervised network models optimized for image classification using large labelled datasets (e.g. 

images labelled as cat, dog, car) [11]. While these models can help to explain the RF properties of 

the likely hard-wired retina [12], they are less informative if neuronal tuning is influenced by 

experience, as in cortex, since most sensory input is unlabeled except for sporadic reinforcement 

signals. The temporal prediction approach is unsupervised (i.e., it requires no labelled data), and 

inherently applies to the temporal domain. Furthermore, we have previously shown that a simple non-

hierarchical model instantiating temporal prediction can account for temporal aspects of V1 simple 

cell RFs [1]. However, it is not known whether hierarchical application of the temporal prediction 

principle – an essential requirement for comparison with the organization of sensory pathways in the 

brain – can account for the emergence of motion processing along the visual pathway, from retina to 

higher visual cortex. 

Here we have developed a hierarchical form of the temporal prediction model that predicts 

increasingly high-level statistics of natural dynamic visual input. It accounts not only for linear tuning 

properties of V1 simple cells, as in previous non-hierarchical temporal prediction models [1,3], but 

also for the diversity of linear and non-linear spatiotemporal tuning properties that emerge along the 

visual pathway. In particular, the temporal tuning properties in successive hierarchical stages of the 

model progress from those that distinguish magnocellular and parvocellular neurons at early levels 

of visual processing, to direction-selective simple and complex cells in V1, and finally to units that 

are sensitive to two-dimensional features of motion, as seen in end-stopping and pattern-selective 

cells in the cortex. The capacity of this model to explain tuning properties at multiple levels of the 

visual motion pathway using iterated application of a single process, suggests that optimization for 

temporal prediction may be a fundamental principle of sensory neural processing.  
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Results  
 

The hierarchical temporal prediction model 
We instantiated temporal prediction as a hierarchical model consisting of stacked feedforward single-

hidden-layer convolutional neural networks (Fig. 1). The first stack was trained to predict the 

immediate future frame (40 ms) of unfiltered natural video inputs from the previous 5 frames (200 

ms). Each subsequent stack was then trained to predict the future hidden-unit activity of the stack 

below it from the past activity in response to the natural video inputs. The four stacks contained 50, 

100, 200 and 400 hidden units, respectively. L1 regularization was applied to the weights of each 

stack, akin to a constraint on neural wiring. 

 

 

Figure 1 | Hierarchical temporal prediction model.  Schematic of model architecture. Each stack is a single 

hidden-layer feedforward convolutional network, which is trained to predict the future time-step of its input 

from the previous 5 time-steps. The first stack is trained to predict future pixels of natural video inputs from 

their past. Subsequent stacks are trained to predict future time-steps of the hidden-layer activity in the stack 

below, based on their past responses to the same natural video inputs.  
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Temporal prediction of natural inputs produces retinal-like units 
After training, we examined the input weights of the units in the first stack. Each hidden unit can be 

viewed as a linear non-linear (LN) model [13,14], as commonly used to describe neuronal RFs. With 

L1 regularization slightly above the optimum for prediction, the RFs of the units showed spatially-

localized center-surround tuning with a decaying temporal envelope, characteristic of retinal and 

lateral geniculate nucleus (LGN) neurons [15–17]. The model units’ RFs have either an excitatory 

(ON) or inhibitory (OFF) blob-like structure at the 0ms time-step, often with a surround of opposing 

sign in the same or previous time-step (Figure 2a). Both ON and OFF units can have either small RFs 

that do not change polarity (Fig. 2a, units 1-4; Fig. 2b, bottom left) over time, or large RFs that switch 

polarity over time (Fig. 2a, units 5-6; Fig. 2b, top right). This is reminiscent of the four main cell 

types in the primate retina and LGN: the parvocellular-pathway ON/OFF neurons and the more 

change-sensitive magnocellular-pathway ON/OFF neurons, respectively [17]. 

 

 

Figure 2 | RFs of trained first stack of the model show retina-like tuning.  a, Example RFs with center-

surround tuning characteristic of neurons in retina and LGN. RFs are small and do not switch polarity over 

time (units 1-4) or large and switch polarity (units 5-6), resembling cells along the parvocellular and 

magnocellular pathways, respectively. b, RF size plotted against proportion of the pixels in the RF that switch 

polarity over the course of the most recent two timesteps. Units in a labelled and shown in orange. c, Effect of 

changing regularization strength on the qualitative properties of RFs.  
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Interestingly, simply decreasing L1-regularization strength causes the model RFs to change 

from center-surround tuning to Gabor-like tuning, resembling localized oriented bars that shift over 

time (Fig. 2c). It is possible that this balance, between a code that is optimal for prediction and one 

that prioritizes efficient wiring, might underlie differences in the retina and LGN of different species. 

The retina of mice and rabbits contains many neurons with oriented and direction-tuned RFs, whereas 

cats and macaques mostly have center-surround RFs [18]. Efficient retinal wiring may be more 

important in some species, due, for example, to different constraints on the width of the optic nerve 

or different impacts of light scattering by superficial retinal cell layers. 

 

Hierarchical temporal prediction produces simple and complex cell tuning 
Using the trained center-surround-tuned network as the first stack, a second stack was added to the 

model and trained. The output of each second stack unit results from a linear-nonlinear-linear-

nonlinear transformation of the visual input, and hence we estimated their RFs by reverse correlation 

with binary noise input. The resulting RFs were Gabor-like over space, resembling those of V1 simple 

cells [19–21]. The RF envelopes decayed into the past, and often showed spatial shifts or polarity 

changes over time, indicating direction or flicker sensitivity, as is also seen in V1 [22] (Fig. 3a,b, I; 

Fig. S1). Using full-field drifting sinusoidal gratings (Fig. 3a,b II), we found that most units were 

selective for stimulus orientation, spatial and temporal frequency (Fig. 3a,b, IV-VI), and some were 

also direction selective (Fig. 3b). Responses to the optimum grating typically oscillate over time 

between a maximum when the grating is in phase with the RF and 0 when the grating is out of phase 

(Fig. 3a,b, III). These response characteristics are typical of V1 simple cells [23]. 

In the third and fourth stack, we followed the same procedures as in the second stack. Most 

of these units are also tuned for orientation, spatial frequency, temporal frequency and in some cases 

for direction (Fig. 3c,d, IV-VI; Figs. S2, S3). However, while some units resembled simple cells, 

most resembled the complex cells of V1 and secondary visual areas (V2/V3) [21]. Complex cells are 

tuned for orientation and spatial and temporal frequency, but are relatively invariant to the phase of 

the optimum grating [24]; each cell’s response to its optimum grating has a high mean value and 

changes little with the grating’s phase (Fig. 3c,d, II,III). Whether a neuron is assigned as simple or 

complex is typically based on the modulation ratio in such plots (<1 indicates complex) [25]. Model 

units with low modulation ratios had little discernible structure in their RFs (Fig. 3c,d, I), another 

characteristic feature of V1 complex cells [26,27]. 
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Figure 3 | Qualitative tuning properties of model units in stacks 2 and 3. a,b, Tuning properties of two 

example units from the 2nd stack of the model, including (I) the linear RF, (II) the drifting grating that best 

stimulates this unit and (III) the amplitude of the unit’s response to this grating over time. (IV) The unit’s mean 

response over time plotted against orientation (in degrees) for gratings presented at its optimal spatial and 

temporal frequency. (V,VI) Tuning curves showing the joint distribution of responses to (V) orientation (in 

degrees) and spatial frequency (in cycles/pixel) at the preferred temporal frequency and to (VI) orientation and 

temporal frequency (in Hz) at the preferred spatial frequency. In V and VI the color represents the mean 

response over time to the grating presented. c,d, As in (a,b) for example units in the 3rd stack. Red line: unit 

response; blue line: best-fitting sinusoid; gray dashed line: response to blank stimulus. See also Figs. S1-S3. 

 

We quantified the tuning characteristics of units in stacks 2-4 and compared them to published 

V1 data [28] (Fig. 4a-j). The distribution of modulation ratios is bimodal in both V1 [25,28] and our 

model (Fig. 4a). Both model and real neurons were typically orientation selective, but with the model 

units having weaker tuning as measured by orientation bandwidth (median data [28]: 23.5°, model: 

37.5°; Fig 4b) and circular variance (median data [28]: simple cells 0.45, complex cells 0.66; median 

model: simple cells 0.45, complex cells 0.85; Fig 4c,d). Orientation-tuned units (circular variance < 

0.9) in the second stack were exclusively simple (modulation ratios > 1), whereas those in subsequent 

stacks became increasingly complex (Fig. 4a,c-f). In both model and data, circular variance was 

inversely correlated with the modulation ratio (Fig. 4c-e,h). Similarly, orientation bandwidth varied 

with modulation ratio in a similar way in both model and data (Fig. 4f,i). Model units showed a range 

of direction selectivity preferences (Fig. 4g), with simple cell-like units (69% with direction 
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selectivity index, DSI ≥ 0.5; n=155; Fig. 4j) tending to be more direction tuned than complex cell-

like units (20% with DSI ≥ 0.5, n=205; Fig. 4j) as is seen in V1 [29]. 

 

 

Figure 4 | Quantitative tuning properties of model units in stacks 2-4 in response to drifting sinusoidal 

gratings and corresponding measures of macaque V1 neurons. a-d, Histograms showing tuning properties 

of model and macaque V1 neurons as measured using drifting gratings. Units from stacks 2-4 are plotted on 

top of each other to also show the distribution over all stacks; this is because no stack can be uniquely assigned 

to V1. Modulation ratio measures how simple or complex a cell is; orientation bandwidth and circular variance 

are measures of orientation selectivity. e, f, Joint distributions of tuning measures for model units.  g, 

Distribution of direct selectivity for model units. h, i, Joint distributions of tuning measures for V1 data; note 

similarity to e and f. j, Joint distribution of direction selectivity and modulation ratio for model units. 

 

Model units are tuned to two-dimensional features of visual motion 
Simple and complex cells extract many dynamic features from natural scenes. However, their small 

RFs prevent individual neurons from tracking the motion of objects because of the aperture problem; 

the direction of motion of an edge is ambiguous, with only the component of motion perpendicular 
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to the cell’s preferred orientation being represented. Two classes of neurons exist that can recover 2-

dimensional motion information and overcome the aperture problem. End-stopped neurons, found in 

primary and secondary visual areas, respond unambiguously to the direction of motion of endpoints 

of restricted moving contours [30]. Pattern-selective neurons, in MT of primates, solve the problem 

for the more general case, likely by integrating over input from many direction-selective V1 complex 

cells [31–35], and hence respond selectively to the motion of patterns as a whole. 

To investigate end-stopping in our model units, we applied circular masks of different sizes 

to the grating stimuli. Some units displayed end-stopping, responding most strongly to gratings with 

an intermediate mask radius, with the response decreasing as the radius increased beyond this (Fig. 

5a,b). To determine whether these end-stopped units unambiguously represent the direction of motion 

of end-points, we measured two-bar response maps [30], which determine response dependence on 

the horizontal and vertical components of motion (see Methods). Recordings from V1 indicate that 

more strongly end-stopped neurons have a weak tendency for less ambiguous motion tuning in these 

maps [30] (i.e. have less elongated excitatory regions). Consistent with this, our model produces 

examples of end-stopped units with less ambiguous motion tuning (Fig. 5b,c, first two panels) and 

non-end-stopped units with more ambiguous motion tuning (Fig. 5b,c, last panel).  

 

 

Figure 5 | End-stopping. a, Example end-stopped model unit. I-VI as in Figure 3. b, Response as a function 

of bar length for the unit in a (left) and two other example units (middle, right). c, 2-bar maps of units with 

corresponding bar-length tuning plots shown in b.  

 

To investigate pattern selectivity in our model units, we measured their responses to drifting plaids, 

comprising two superimposed drifting sinusoidal gratings with different orientations. The net 

direction of the plaid movement lies midway between these two orientations (Fig. 6a). In V1 and MT, 

component-selective cells respond maximally when the plaid is oriented such that either one of its 

component gratings moves in the preferred direction of the cell (as measured by a drifting grating). 

This results in two peaks in plaid-direction tuning curves [31,34,36]. Conversely, pattern-selective 
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cells (in macaque typically seen in MT and not V1) have a single peak in their direction tuning curves, 

when the plaid’s direction of movement aligns with the preferred direction of the cell [31,34,36]. We 

see examples of both component-selective units (in stacks 2-4) and pattern-selective units (only in 

stack 4) in our model, as indicated by plaid-direction tuning curves (Fig. 6b) and plots of response as 

a function of the directions of each component (Fig. 6c).  

 

 

Figure 6 | Pattern sensitivity a, Example plaid stimuli used to measure pattern selectivity. Black arrow, 

direction of pattern motion. Colored arrows, directions of component motion. b, Direction tuning curves 

showing the response of an example component-selective (left) and pattern-selective (right) unit to grating and 

plaid stimuli. Colored lines, response to plaid stimuli composed of gratings with the indicated angle between 

them. Black solid line, unit’s response to double intensity grating moving in the same direction as plaids. 

Dotted line, response to single intensity grating moving in the same direction. Gray line, response to blank 

stimulus. c, Surface contour plots showing response of units in b to plaids as a function of the direction of the 

grating components. Colored lines denote loci of plaids whose responses are shown in the same colors in b. 

Contour lines range from 20% of the maximum response to the maximum in steps of 10%.  For clarity, all 

direction tuning curves are rotated so that the preferred direction of the response to the optimal grating is at 

180˚. Responses are mean amplitudes over time. 
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Discussion 

We have presented a simple model that hierarchically instantiates temporal prediction – the 

hypothesis that sensory neurons are optimized to efficiently predict the immediate future from the 

recent past. This model has several advantages: it is unsupervised; it operates over spatiotemporal 

inputs and its hierarchical implementation is general, allowing the same network model to learn 

features resembling each level of the visual processing hierarchy with little fine-tuning or 

modification to the model structure at each stage. This simple model accounts for many spatial and 

temporal tuning properties of cells in the dorsal visual pathway, from the center-surround tuning of 

cells in the retina and LGN, to the spatiotemporal tuning and direction selectivity of V1 simple and 

complex cells, and the motion processing of end-stopped and pattern selective cells. 

 Although this work suggests that temporal prediction may explain why many features of 

sensory neurons take the form that they do, we are agnostic as to whether the features are hard-wired 

by evolution or learned over the course of development. This is likely to depend on the region in 

question, with retina more hard wired and cortex a mixture of innate tuning and learning from sensory 

input [37,38]. If they are learned, this suggests that while some neurons represent the predictive 

features, a fraction of neurons in the cortex (or elsewhere) might represent the prediction error used 

to train the network. There is evidence that cortical neurons might represent prediction error [39,40]. 

Our model is trained using backpropagation over a single hidden layer for each stack. Although the 

biological plausibility of backpropagation has been questioned, increasingly biologically realistic 

methods for training networks are being developed [41]. There are a number of further developments 

that could be made to our model that may even better capture features of the biology, notably the 

inclusion of recurrent connections within and between layers or using spiking units. Furthermore, 

although we propose that temporal prediction is an important method for extracting potentially useful 

features of natural inputs, additional constraints are likely to further refine those features that are of 

direct relevance to specific behavioral goals.  

There are other normative models of visual processing, based on a range of principles, which 

can account for a number of properties of visual neurons. Prominent theories include predictive 

coding, sparse coding, independent component analysis (ICA) and temporal coherence. The 

predictive coding framework postulates that sensory systems learn the statistical regularities present 

in natural inputs, feeding forward the errors caused by deviations from these regularities to higher 

areas [9,10,42]. In this process, the predictable components of the input signal are removed and only 

unexpected inputs are fed forward through the hierarchy. This should be distinguished from temporal 

prediction, which performs selective coding, where predictive elements of the input are explicitly 

represented in neuronal responses and non-predictable elements are discarded [2–4]. Sparse coding  
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[8,43], which shares similarities with predictive coding [10], is built on the idea that an overcomplete 

set of neurons is optimized to represent inputs as accurately as possible using only few active neurons 

for a given input. ICA [7,44] is a related framework that finds maximally independent features of the 

inputs. Sparse coding and ICA are practically identical in cases where a critically complete code is 

used. In these frameworks, as with predictive coding, the aim is to encode all current or past input, 

whereas in temporal prediction, only features that are predictive of the future are encoded and other 

features are discarded.  

Another set of approaches, slow feature analysis [45] (SFA) and slow subspace analysis [46] 

(SSA),   stem from the idea of temporal coherence [47], which suggests that a key goal of sensory 

processing is to identify slowly varying features of natural inputs. SFA is closely related to temporal 

prediction because features that vary slowly are likely to be predictive of the future. However, SFA 

and temporal prediction may give different weighting to the features that they find [48], and SFA 

could also fail to capture features that do not vary slowly, but are predictive of the future. 

We will focus on unsupervised normative models (i.e. those trained on natural inputs) because 

they are the most relevant to our model. Broadly, these models can be divided into several categories: 

local models, trained to represent features of a specific subset of neurons, such as simple cells in V1, 

and hierarchical models, which attempt to explain features of more than one cell type (such as simple 

and complex cells) in a single model. These two categories can be further divided into models that 

are trained on natural spatial inputs (images) and those that are trained on natural spatiotemporal 

inputs (movies).  

Among local models, sparse coding and ICA are the standard normative models of V1 simple 

cell RFs [7,8,43,44,49,50]. Typically, these models are trained using still natural images and have 

shown remarkable success in accounting for the spatial features of V1 simple cell RFs [7,8,43,44]. 

However, models trained on static images are unable to account for temporal aspects of neuronal RFs, 

such as direction selectivity or two-dimensional motion processing. The ICA and sparse coding 

frameworks have been extended to model features of spatiotemporal inputs [3,49,50]. While these 

models capture many of the spatial tuning properties of simple cells, they tend to produce symmetric 

temporal envelopes that do not match the asymmetric envelopes of real neurons [1]. Capturing 

temporal features is especially important when building a normative model of the dorsal visual 

stream, which is responsible for processing cues related to visual motion. When trained to find slowly 

varying features in natural video inputs, SFA models [5] find features with tuning properties that 

closely resemble those of V1 complex cells, including phase invariance to drifting sinusoidal gratings 

and end- and side-inhibition. A sparse prior must be applied to the activities of the model units in 

order to produce spatial localization – a key feature of V1 complex cells [51]. Although SFA can 
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account for complex cell tuning, on its own this framework does not provide a normative explanation 

for simple cells.  

A notable hierarchical model, predictive coding [9] provides a powerful framework for 

learning hierarchical structure from visual inputs in an unsupervised learning paradigm. When applied 

to natural images, predictive coding has been used successfully to explain the oriented tuning of 

simple cells in V1 and some nonlinear tuning properties of neurons in this area, such as end-stopping 

[9]. However, it is not clear whether this framework can reproduce the phase-invariant tuning of 

complex cells. Nor has it been shown to account for direction selectivity, end-stopped tuning for 

motion [30], or pattern motion sensitivity [31].  

Hierarchical ICA models (and related models) provide another approach. These consist of 

two-layer networks that are trained on natural images with an independence prior placed on the unit 

activities [52–55]. They have been shown to produce simple cell subunits in the first layer of the 

network and phase-invariant tuning reminiscent of complex cells in the second layer. However, these 

models typically incorporate aspects to specifically encourage complex cell-like characteristics in the 

form of a quadratic nonlinearity resembling the complex cell energy model [56]. In some models  

[57], phase invariance is enforced by requiring the outputs of individual subunits to be uncorrelated 

[58].  This is in contrast to our model where the phase invariance is learned as a consequence of the 

general principle of finding features that can efficiently predict future input. An advantage to learning 

the invariance rather than hand-crafting it is that the identical model architecture can then be applied 

hierarchically to explain features in higher visual areas without changing the form of the model.  

Some hierarchical models based on temporal coherence have been trained on spatiotemporal 

inputs (videos of natural scenes). These models have been shown to capture properties of both simple 

and complex cells [46,58,59]. Typically, these share a similar structure and assumptions with the 

hierarchical ICA models outlined above, consisting of a two-layer model where the outputs of one or 

more simple cell subunits are squared and passed forward to a complex cell layer. Other models have 

combined sparsity/independence priors with a temporal slowness constraint in a hierarchical model 

[60–63]. Since sparsity constraints tend to produce simple cell tuning and slowness constraints result 

in complex cell tuning, these models produce units with both types of selectivity. This contrasts with 

our model which produces both types of selectivity with a single objective and also accounts for 

tuning in higher visual areas. 

Previous studies using principles related to temporal prediction have produced non-

hierarchical models of retina or primary cortex alone and demonstrated retina-like RFs [64], simple-

cell like RFs [1,3], or RFs resembling those found in primary auditory cortex [1]. However, any 

general principle of neural representation should be extendable to a hierarchical form and not tailored 

to the region it is attempting to explain. Here we show that temporal prediction can indeed be made 
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hierarchical and so reproduce the major motion-tuning properties that emerge along the dorsal visual 

pathway from retina to MT. This model captures not only linear tuning features such as those seen in 

center-surround retinal neurons and direction-selective simple cells, but also nonlinear features seen 

in complex cells, end-stopped cells and pattern-sensitive neurons. The capacity of our hierarchical 

temporal prediction model to account for so many tuning features at multiple levels of the visual 

system suggests that the same framework may well explain many more features of the brain than we 

have investigated. Furthermore, iterated application of temporal prediction, as performed by our 

model, could be used to make predictions about the tuning properties of neurons in brain pathways 

that are much less well understood than those of the visual system. Our results suggest that, by 

learning behaviorally-useful features from dynamic unlabeled data, temporal prediction may 

represent a fundamental coding principle in the brain. 
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Methods 

Data used for model training and testing 
Visual inputs 

Videos (grayscale, without sound, sampled at 25 fps) of wildlife in natural settings were used to create 

visual stimuli for training the artificial neural network. The videos were obtained from 

http://www.arkive.org/species, contributed by: BBC Natural History Unit, 

http://www.gettyimages.co.uk/footage/bbcmotiongallery; BBC Natural History Unit & Discovery 

Communications Inc., http://www.bbcmotiongallery.com; Granada Wild, http://www.itnsource.com; 

Mark Deeble & Victoria Stone Flat Dog Productions Ltd., http://www.deeblestone.com; Getty 

Images, http://www.gettyimages.com; National Geographic Digital Motion, 

http://www.ngdigitalmotion.com. The longest dimension of each video frame was clipped to form a 

square image. Each frame was then down-sampled (using bilinear interpolation) over space, to 

provide 180 x 180 pixel frames. The video patches were cut into non-overlapping clips, each of 20 

frames duration (800 ms). We used a training set of N = ~1305 clips from around 17 min of video, 

and a validation set of N = ~145 clips. Finally, each clip was normalized by subtracting the mean and 

dividing by the standard deviation of that clip.  
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Hierarchical temporal prediction model 
The model and cost function 

The hierarchical temporal prediction model consisted of stacked feedforward single-hidden-layer 3D 

convolutional neural networks. Each stack consisted of an input layer, a convolutional hidden layer 

and a ‘transposed convolutional’ output layer. Each unit (convolutional kernel) in the hidden layer 

performed 3D convolution over its inputs (over time and 2D space; Figure 1) and its output was 

determined by passing the result of this operation through a rectified linear function. Following the 

hidden layer there was a ‘transposed convolutional’ output layer, which again performed convolution 

(and dilation for stride >1). Each stack was trained to minimize the difference between its output and 

its target. The target was the input at the immediate future time-step.  

The first stack of the model was trained to predict the immediate future frame (40 ms) of 

unfiltered natural video inputs from the previous 5 frames (200 ms). Each subsequent stack was then 

trained to predict the immediate future hidden-unit activity of the stack below it from the past hidden-

unit activity in response to the natural video inputs. This process was repeated until 4 stacks had been 

trained. The first stack used 50 hidden units and this number was doubled with each added stack, until 

we had 400 units in the 4th stack.  

More formally, each stack of model can be described by a network of the same form. The 

input to the network has i = 1 to to I input channels. For channel i, for clip n, the input Uin is a rank-

3 tensor spanning time and 2D-space with x = 1 to X and y = 1 to Y spatial positions, and t = 1 to T 

time steps. Throughout the Methods, capital, bold and underlined variables are rank-3 tensors over 

time and 2D-space, otherwise variables are scalars. The first stack has only a single input channel 

(the grayscale input frames, I = 1). Each subsequent stack had as many input channels (I) as the 

number of hidden units (feature maps) in the previous stack.  

The network has a single hidden layer of j = 1 to J convolutional kernels. For clip n and kernel 

j, the output of each kernel is a rank-3 tensor over time and 2D-space, Hjn: 

 

𝐇"# = f &𝑏" +)𝐔+# ∗ 𝐖"+

.

+/0

1 

 (1) 

The parameters in Equation 1 are the connective input weights of kernels Wji (between each input 

channel i and hidden unit j) and the bias bj (of hidden unit j). f( ) is the rectified linear function and * 

is the 3D convolutional operator over the two spatial and one temporal dimensions of the input, with 

stride (s1, s2, s3). Each hidden layer kernel W"+	is 3D with size (X’,Y’,T’). No zero padding is applied 

to the input.  

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted May 21, 2019. ; https://doi.org/10.1101/575464doi: bioRxiv preprint 

https://doi.org/10.1101/575464
http://creativecommons.org/licenses/by/4.0/


 
 

19 

The output of the network predicts the future activity of the input. Hence, the number of input 

channels (I) always equals the number of output channels (K) for each stack.  To ensure that the 

predicted output has the same size as the input when a stride of >1 is used, the hidden layer 

representation is dilated by adding s-1 zeros between adjacent input elements, where s = (s1, s2, s3) is 

the stride of the convolutional operator in the hidden layer. The dilated hidden-unit output is 𝐇"#456. 

When stride=1, 𝐇"#456 = 𝐇"#. 

The activity 𝐕89# of each output channel k is the estimate of the true future 𝐕9# given the past 

𝐔+#. 𝐕9# is simply 𝐔+# shifted one time step into the future, and k = i. This prediction 𝐕89#	is estimated 

from the hidden unit output 𝐇"#456 by:  

𝐕89# = 𝑏9 	+)𝐇"#456 ∗ 𝐖9"

:

"/0

 

(2) 

The parameters in Equation 2 are the connective output kernels 𝐖9" (the weights between each hidden 

unit j and output channel k) and the bias bk. Each output kernel 𝐖9"	is 3D with size (X’,Y’,1), 

predicting a single time-step into the future based on hidden layer activity in that portion of space.  

 The parameters 𝐖"+, 𝐖9", bj, and bk were optimized for the training set by minimizing the cost 

function given by: 

𝐸 =
1

𝑁𝐾𝑋𝑌𝑇))B𝐕89#−𝐕9#BD
D

E

9/0

F

#/0

+ 𝜆 H)	
.

+/0

)B𝐖I5B0

:

"/0

+))B𝐖9"B0

E

9/0

:

"/0

J 

  (3) 

Where ‖		‖L is the entrywise p-norm of the tensor over time and 2D-space, p = 2 is the sqrt of the 

sum of squares of all values in the tensor, and p = 1 is the sum of absolute values. Thus, E is the sum 

of the squared error between the prediction	𝐕89# and the target 𝐕9#, plus an L1-norm regularization 

term, which is proportional to the sum of absolute values of all weights in the network and its strength 

is determined by the hyper-parameter λ. This regularization tends to drive redundant weights to near 

zero and provides a parsimonious network.  

 

Implementation details 

The networks were implemented in Python (https://lasagne.readthedocs.io/en/latest/; 

http://deeplearning.net/software/theano/). The objective function was minimized using 

backpropagation as performed by the Adam optimization method [65] with hyperparameters b1 and 

b2 kept at their default settings of 0.9 and 0.999, respectively, and the learning rate (a) varied as 

detailed below. Training examples were split into minibatches of 32 training examples each.  
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During model network training, several hyperparameters were varied, including the 

regularization strength (λ) and the learning rate (a). For each hyperparameter setting, the training 

algorithm was run for 1000 iterations. The effect of varying λ on the prediction error (the first term 

of Equation 3) and receptive field structure of the first stack is shown in Fig. 2. For all subsequent 

stacks, we varied λ between 10-5 and 10-7 and picked the network with the lowest prediction error 

(mean squared error) on a held-out validation set. We measured the predictive capacity of each 

network by taking the average prediction error on the validation set over the final 50 iterations. The 

settings for each stack are presented in Table 1:  

 

Table 1 | Model parameter settings for each stack. 

Stack 
Input size 
(X,Y,T,I) 

Hidden layer 
size 

Kernel 
size 
(X’,Y’,T’) 

Spatial and 
temporal 
extent 

Stride 
(s1,s2,s3) 

Number 
of kernels 

Learning 
rate (a) 

L1 
Regularization 
strength (λ) 

1 181x181x20x1 17x17x16x50 21x21x5 21x21x5 10x10x1 50 10-2 10-4.5 

2 17x17x16x50 15x15x12x100 3x3x5 41x41x9 1x1x1 100 10-4 10-6 

3 15x15x12x100 13x13x8x200 3x3x5 61x61x13 1x1x1 200 10-4 10-6 

4 13x13x8x200 11x11x4x400 3x3x5 81x81x17 1x1x1 400 10-4 10-6 

 

 

Model unit spatiotemporal extent and receptive fields  
Due to the convolutional form of the hidden layer, each hidden unit can potentially receive from a 

certain span over space and time. We call this the unit’s spatial and temporal extent. For stack 1, this 

this extent is given by the kernel size (21 x 21 x 5, space x space x time). For stack 2, the extent of 

each hidden unit is a function of its kernel size and the kernel size and stride of the hidden units in 

the previous stack, resulting in an extent of 41 x 41 x 9. Similarly, the extent of each hidden unit in 

stack 3 is 61 x 61 x 13 and in stack 4 is 81 x 81 x 17. The RF size of a unit can be considerably smaller 

than the hidden unit’s extent. 

In the first stack of the model, the combination of linear weights and nonlinear activation 

function are similar to the basic linear non-linear (LN) model [13,14] commonly used to describe 

neuronal RFs. Hence, the input weights between the input layer and a hidden unit of the model 

network are taken directly to represent the unit’s RF, indicating the features of the input that are 

important to that unit. The output activities of hidden units in stacks 2-4 are transformations with 

multiple linear and nonlinear stages, and hence we estimated their RFs by applying reverse correlation 

to 100,000 responses to binary noise input with amplitude ±3 to stack 1.  
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In vivo V1 receptive field data 
Responses to drifting gratings measured using recordings from V1 simple and complex cells were 

compared against the model (Fig. 4). The in vivo data were taken from  

http://www.ringachlab.net/lab/Data.html [28].  

 

Receptive field size and polarity 
We measured the size of the RFs of the units in the first stack and examined the relationship between 

the RF size and the proportion of the RFs switching polarity. For each unit, all pixels in the most 

recent time-step with intensities ≥50% of the maximum pixel intensity in that time-step are included 

in the RF. The RF size was determined by counting the number of pixels fitting this criterion. We 

then counted the proportion of pixels included in the RF that changed sign (either positive to negative 

or vice versa) between the two most recent timesteps. The relationship between these two properties 

for the units in the first stack is shown in Fig. 2b. 

 

Drifting sinusoidal gratings 
In order to characterize the tuning properties of the model’s visual RFs, we measured the responses 

of each unit to full-field drifting sinusoidal gratings. For each unit, we measured the response to 

gratings with a wide range of orientations, spatial frequencies and temporal frequencies until we 

found the parameters that maximally stimulated that unit (giving rise to the highest mean response 

over time). We define this as the optimal grating for that unit. In cases where orientation or tuning 

curves were measured, the gratings with optimal spatial and temporal frequency for that unit were 

used and were varied over orientation. Each grating alternated between an amplitude of ±3 on a gray 

(0) background. Some units, especially in higher stacks, had weak or no responses to drifting 

sinusoidal gratings. To account for this, we excluded any units with a mean response (over time) of 

<1% of the maximum mean response of all the units in that stack. As a result of this, 0/100, 88/200 

and 261/400 units were excluded from the 2nd, 3rd and 4th stacks, respectively.  

We measured several aspects of the V1 neuron and model unit responses to the drifting 

gratings. For each unit, we measured the circular variance, orientation bandwidth, modulation ratio 

and direction selectivity.  

As a control, we examined the RFs and responses to drifting gratings of each unit with its 

immediate input weights shuffled. In this case, the receptive fields lacked discernable structure, with 

only patchy spatial frequency and orientation tuning in response to gratings. There were very few 

orientation tuned (circular variance < 0.9) units with modulation ratios <1.    

 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted May 21, 2019. ; https://doi.org/10.1101/575464doi: bioRxiv preprint 

https://doi.org/10.1101/575464
http://creativecommons.org/licenses/by/4.0/


 
 

22 

Circular variance 

Circular variance (CV) is a global measure of orientation selectivity. For a unit with mean response 

over time rq to a grating with angle qq, with angles q spanning the range of 0 to 360˚ in equally spaced 

intervals of 5˚ and measured in radians, the circular variance is defined as [28]: 

 

CV = 1 -  
M(∑ PQ R5STDUQV)XY(Q ∑ PQZ[RTDUQV)X	Q

∑ PQQ
 

            (4) 

Orientation bandwidth 

We also measured the orientation bandwidth [28], which provides a more local measure of orientation 

selectivity. First, we smoothed the direction tuning curve with a Hanning window filter with a half-

width at half-height of 13.5°. We then determined the peak of the orientation tuning curve. The 

orientation angles closest to the peak for which the response was 1/√2 (or 70.7%) of the peak 

response were measured. The orientation bandwidth was defined as half of the difference between 

these two angles. We limited the maximum orientation bandwidth to 180°. 

 

Modulation ratio 

We measured the modulation ratio of each unit’s response to its optimal sinusoidal grating. The 

modulation ratio is defined as: 

M = F1/F0 

(5) 

where F1 is the amplitude of the best-fitting sinusoid to the unit’s response over time to the drifting 

grating. F0 is the mean response to the grating over time.  

 

Direction selectivity index 

To measure the direction selectivity index, we obtained each unit’s direction tuning curve at its 

optimal spatial and temporal frequency. We measured the peak of the direction tuning curve, 

indicating the unit’s response to gratings presented in the preferred direction (rp) as well as the 

response to the grating presented in the opposite (non-preferred) direction (rnp). The direction 

selectivity index is then defined as:  

DSI = 1 – (rp – rnp)/(rp + rnp) 

(6) 

Measuring end-stopping 
In order to investigate end-stopping, we measured the responses of the hidden units to the same set 

of drifting gratings but with a circular mask applied to the inputs (e.g. Fig 5a, ii). Masks with a range 
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of spatial extents were tested and the response of the units as a function of this spatial extent was 

measured (Fig. 5b).  

 

Sparse noise stimuli and two-bar maps 
We measured the responses of the hidden units to ‘sparse noise’ (moving two-bar) stimuli [30]. Each 

stimulus contained a single oriented bar over the two most recent time-steps and a blank stimulus in 

the preceding time-steps. For each unit, the bar was oriented in the preferred orientation (as measured 

using drifting sinusoidal gratings) of the unit being probed. The length and width of the bar were 

limited to 50% and 10% of the unit’s spatial extent, respectively. This was typically enough for the 

bar to be longer than the unit’s spatial RF. In the first time-step with a bar, the center position of the 

bar (its x and y coordinate) was selected from a dense grid of spatial positions starting from the center 

of visual space and covering 1/3 of the unit’s spatial extent in each direction. In the second time-step, 

another bar position was selected from the same grid. This way, displacement of the bar from each 

grid position to each other grid position was used to stimulate the unit. To generate two-bar response 

maps, we measured the response of the unit as a function of the vertical and horizontal displacement 

(the starting position minus the end position) and then averaged over starting position. This gives a 

map of the unit’s response as a function of the displacement of the stimulus regardless of the starting 

position. We performed this procedure using all combinations of pairs of white (amplitude +3) and 

black (amplitude -3) bars on a gray (amplitude 0) background. This yielded four maps (white-to-

white, black-to-black, white-to-black and black-to-white). We then summed the same contrast maps 

(white-to-white and black-to-black) and subtracted the opposite contrast maps (white-to-black and 

black-to-white) to yield the final two-bar map for each unit. This preserves directional responses 

while eliminating the responses that depend only on the spatial position of the bars in each frame 

[30].   

Examining the two-bar maps, the position (0,0) indicates that the bar was in the same position 

in two successive frames, while the vertical and horizontal axes represent movement in these 

directions. Positive activity means that the unit was excited by movement in that direction, while 

negative activity indicates inhibition of the unit to movement in the given direction. A non-end-

stopped unit will respond to any movement with a component in the preferred direction of the cell. 

This results in an elongated response profile on the two-bar map (Fig. 5c, right). An end-stopped unit 

will only respond to movement in the cell’s preferred direction, resulting in a two-bar map whose 

excitatory activity is limited to a more circumscribed region [30] (Fig. 5c, left). 
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Drifting plaid stimuli 
In order to test whether units were pattern selective, we measured their responses to drifting plaid 

stimuli. Each plaid stimulus was composed of two superimposed half-intensity (amplitude 1.5) 

sinusoidal gratings with different orientations. The net direction of the plaid movement lies midway 

between these two orientations (Fig. 6a). As with the sinusoidal inputs, plaids with a variety of 

orientations, spatial frequencies, temporal frequencies and spatial extents (as defined by the extent of 

a circular mask) were tested. For each unit, the direction tuning curves of the optimal plaid stimulus 

(that giving rise to the largest mean response over time) were measured (Fig. 6b,c).  

 

Code and data availability 

All custom code used in this study was implemented in Python. We will upload the code to a public 

Github repository upon acceptance. The movies used for training the models are all publicly available 

at the websites detailed in the Methods. The V1 data used for comparison is available at 

http://www.ringachlab.net/lab/Data.html [28]. 
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Supplemental figures 

 

 
 
Figure S1 | Tuning properties of example units in stack 2. a-h, I-IV as in Fig. 3a-d.  
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Figure S2 | Tuning properties of example units in stack 3. a-h, I-IV as in Fig. 3a-d.  
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Figure S3 | Tuning properties of example units in stack 4. a-h, I-IV as in Fig. 3a-d. 
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