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Abstract

Single cell RNA-Seq (scRNA-Seq) profiles gene expression of individ-
ual cells. Recent scRNA-Seq datasets have incorporated unique molecular
identifiers (UMIs). Using negative controls, we show UMI counts follow
multinomial sampling with no zero-inflation. Current normalization pro-
cedures such as log of counts per million and feature selection by highly
variable genes produce false variability in dimension reduction. We pro-
pose simple multinomial methods, including generalized principal com-
ponent analysis (GLM-PCA) for non-normal distributions, and feature
selection using deviance. These methods outperform current practice in
a downstream clustering assessment using ground-truth datasets.

Keywords: gene expression, single cell, RNA-Seq, dimension reduction, vari-
able genes, principal components analysis, GLM-PCA

1 Background

Single cell RNA-Seq (scRNA-Seq) is a powerful tool for profiling gene expression
patterns in individual cells, facilitating a variety of analyses such as identifica-
tion of novel cell types [1, 2]. In a typical protocol, single cells are isolated in
liquid droplets and messenger RNA (mRNA) is captured from each cell, con-
verted to cDNA by reverse transcriptase (RT), then amplified using polymerase
chain reaction (PCR) [3, 4, 5]. Finally, fragments are sequenced and expression
of a gene in a cell is quantified by the number of sequencing reads that mapped
to that gene [6]. A crucial difference between scRNA-Seq and traditional bulk
RNA-Seq is the low quantity of mRNA isolated from individual cells, which re-
quires a larger number of PCR cycles to produce enough material for sequencing
(bulk RNA-Seq comingles thousands of cells per sample). Thus, many of the
reads counted in scRNA-Seq are duplicates of a single mRNA molecule in the
original cell [7]. Early scRNA-Seq studies using protocols such as SMART-Seq2
[8] analyzed these read counts directly, and several methods were developed to
facilitate this [9]. However, newer protocols typically include unique molecu-
lar identifiers (UMIs) which enable computational removal of PCR duplicates
[10], producing UMI counts. Although a zero UMI count is equivalent to a
zero read count, nonzero read counts are larger than their corresponding UMI
counts. In general, all scRNA-Seq data contain large numbers of zero counts
(often > 90% of the data, sometimes called dropouts). Here, we focus on the
analysis of scRNA-Seq data with UMI counts.

Starting from raw counts, a scRNA-Seq data analysis typically includes nor-
malization, feature selection, and dimension reduction steps. Normalization
seeks to adjust for differences in experimental conditions between samples (in-
dividual cells), so that these do not confound true biological differences. For
example, the efficiency of mRNA capture and RT is variable between samples
(technical variation), causing different cells to have different total UMI counts,
even if the number of molecules in the original cells is identical. Feature selection
refers to excluding uninformative genes such as those which exhibit no meaning-
ful biological variation across samples. Since scRNA-Seq experiments usually
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examine cells within a single tissue, only a small fraction of genes are expected
to be informative since many genes are biologically variable only across different
tissues. Dimension reduction aims to embed each cell’s high-dimensional expres-
sion profile into a low-dimensional representation to facilitate visualization and
clustering.

While a plethora of methods [11, 12, 13, 5, 14] have been developed for each
of these steps, here we describe what is considered to be the standard pipeline
[14]. First, raw counts are normalized by scaling of sample-specific size factors,
followed by log-transformation, which attempts to reduce skewness. Next, fea-
ture selection involves identifying the top 500-2,000 genes by computing either
their coefficient of variation (highly variable genes [15, 16]), or average expres-
sion level (highly expressed genes) across all cells [14]. Alternatively, highly
dropout genes may be retained [17]. Principal component analysis (PCA) [18]
is the most popular dimension reduction method (see for example tutorials for
Seurat [16] and Cell Ranger [5]). PCA compresses each cell’s 2,000-dimensional
expression profile into, say, a 10-dimensional vector of principal component co-
ordinates or latent factors. Prior to PCA, data are usually centered and scaled
so that each gene has mean zero and standard deviation one (z-score trans-
formation). Finally, a clustering algorithm can be applied to group cells with
similar representations in the low-dimensional PCA space.

Despite the appealing simplicity of this standard pipeline, the characteristics
of scRNA-Seq UMI counts present difficulties at each stage. Many normaliza-
tion schemes derived from bulk RNA-Seq cannot compute size factors stably in
the presence of large numbers of zeros [19]. A numerically stable and popular
method is to set the size factor for each cell as the total counts divided by 106

(counts per million, CPM). Note that CPM does not alter zeros, which domi-
nate scRNA-Seq data. Log-transformation is not possible for exact zeros so it
is common practice to add a small pseudocount such as one to all normalized
counts prior to taking the log. The choice of pseudocount is arbitrary and can
introduce subtle biases in the transformed data [20]. For a statistical interpre-
tation of the pseudocount see Section 4.2. Similarly, the use of highly variable
genes for feature selection is somewhat arbitrary since the observed variability
will depend on the pseudocount: pseudocounts close to zero arbitrarily increase
the variance of genes with zero counts. Finally, PCA implicitly relies on Eu-
clidean geometry, which may not be appropriate for highly sparse, discrete, and
skewed data, even after normalizations and transformations [21].

Widely used methods for analysis of scRNA-Seq lack statistically rigorous
justification based on a plausible data generating mechanism for UMI counts.
Instead, it appears many of the techniques have been borrowed from the data
analysis pipelines developed for read counts, especially those based on bulk
RNA-Seq [22]. For example, models based on the lognormal distribution cannot
account for exact zeros, motivating the development of zero-inflated lognormal
models for scRNA-Seq read counts [23, 24, 25, 26]. Alternatively, ZINB-WAVE
uses a zero-inflated negative binomial model for dimension reduction of read
counts [27]. However, as shown below, the sampling distribution of UMI counts
differs markedly from read counts, so application of read count models to UMI
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counts needs either theoretical or empirical justification.
We present a unifying statistical foundation for scRNA-Seq with UMI counts

based on the multinomial distribution. The multinomial model adequately de-
scribes negative control data and there is no need to model zero inflation. We
show the mechanism by which PCA on log-normalized UMI counts can lead to
distorted low-dimensional factors and false discoveries. We identify the source of
the frequently observed and undesirable fact that the fraction of zeros reported
in each cell drives the first principal component in most experiments [28]. To
remove these distortions, we propose the use of GLM-PCA, a generalization of
PCA to exponential family likelihoods [29]. GLM-PCA operates on raw counts,
avoiding the pitfalls of normalization. We also demonstrate that applying PCA
to deviance or Pearson residuals provides a useful and fast approximation to
GLM-PCA. We provide a closed-form deviance statistic as a feature selection
method. We systematically compare the performance of all combinations of
methods using three ground-truth datasets and assessment procedures from
[14]. We conclude by suggesting best practices.

2 Results and discussion

2.1 Datasets

We used five public 10x genomics UMI counts datasets from [5] to benchmark
our methods. The first dataset is a highly controlled experiment specifically
designed to understand technical variability. No actual cells were used to gen-
erate this dataset. Instead, each of the 1,015 droplets received the same ratio of
92 synthetic spike-in RNA molecules from External RNA Controls Consortium
(ERCC). We refer to this dataset as the technical replicates negative control as
there is no biological variability whatsoever and, in principle, each expression
profile should be the same.

The second dataset was generated by processing a homogeneous population
of 2,612 monocyte cells. The cells were purified using fluorescence activated
cell sorting (FACS). We refer to this dataset as the biological replicates negative
control. Because these cells were all the same type, we did not expect to observe
any significant differences in unsupervised analysis.

The third dataset consists of 68,579 fresh, unsorted peripheral blood mononu-
clear cells (PBMCs). This dataset was used to compare computational speed
of different dimension reduction algorithms. We refer to it as the PBMC 68K
dataset.

The remaining two datasets were created by [14]. In the Zheng 4eq dataset,
there are 3,994 PBMCs divided equally into four cell types. In the Zheng 8eq
dataset, there are 3,994 PBMCs divided equally into eight cell types. In these
positive control datasets, the cluster identity of all cells was assigned indepen-
dently of gene expression (using FACS), so they served as ground truth labels.
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2.2 UMI count distribution differs from reads

To illustrate the marked difference between UMI count distributions and read
count distributions, we created histograms from individual genes and spike-ins
of the negative control data. Here, the UMI counts are the computationally de-
duplicated versions of the read counts; both measurements are from the same
experiment, so no differences are due to technical or biological variation. The
results suggest that while read counts appear zero-inflated and multimodal,
UMI counts follow a discrete distribution with no zero inflation (Figure S1).
The apparent zero inflation in read counts is a result of PCR duplicates.

2.3 Multinomial sampling distribution for UMI counts

Consider a single cell i containing ti total mRNA transcripts. Let ni be the
total number of UMIs for the same cell. When the cell is processed by a scRNA-
Seq protocol, it is lysed, then some fraction of the transcripts are captured by
beads within the droplets. A series of complex biochemical reactions occur,
including attachment of barcodes and UMIs, and reverse transcription of the
captured mRNA to a cDNA molecule. Finally, the cDNA is sequenced and PCR
duplicates are removed to generate the UMI counts [5]. In each of these stages,
some fraction of the molecules from the previous stage are lost [30, 5, 7]. In
particular, reverse transcriptase is an inefficient and error-prone enzyme [31].
Therefore the number of UMI counts representing the cell is much less than the
number of transcripts in the original cell (ni � ti). Specifically, ni typically
ranges from 1, 000 − 10, 000 while ti is estimated to be approximately 200, 000
for a typical mammalian cell [32]. Furthermore, which molecules are selected
and successfully become UMIs is a random process. Let xij be the true number
of mRNA transcripts of gene j in cell i, and yij be the UMI count for the
same gene and cell. We define the relative abundance πij as the true number of
mRNA transcripts represented by gene j in cell i divided by the total number
of mRNA transcripts in cell i. Relative abundance is given by πij = xij/ti
where total transcripts ti =

∑
j xij . Since ni � ti, there is a “competition

to be counted” [33]; genes with large relative abundance πij in the original
cell are more likely to have nonzero UMI counts, but genes with small relative
abundances may be observed with UMI counts of exact zeros. The UMI counts
yij are a multinomial sample of the true biological counts xij , containing only
relative information about expression patterns in the cell [34, 33].

The multinomial distribution can be approximated by independent Poisson
distributions, and overdispersed multinomials by independent negative binomial
distributions. These approximations are useful for computational tractability.
Details are provided in the Methods.

The multinomial model makes two predictions which we verified using neg-
ative control data. First, the fraction of zeros in a sample (cell or droplet)
is inversely related to the total number of UMIs in that sample. Second, the
probability of an endogenous gene or ERCC spike-in having zero counts is a de-
creasing function of its mean expression (equations provided in Methods). Both
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of these predictions were validated by the negative control data (Figure 1). In
particular, the empirical probability of a gene being zero across droplets was
well calibrated to the theoretical prediction based on the multinomial model.
This also demonstrates that UMI counts are not zero inflated.

These results are consistent with [35], which also found that the relationship
between average expression and zero probability follows the theoretical curve
predicted by a Poisson model using negative control data processed with Indrop
[4] and Dropseq [3] protocols. This suggests our data generating mechanism is
an accurate model of technical noise in real data.

2.4 Normalization and log transformation distorts UMI
data

Standard scRNA-Seq analysis involves normalizing raw counts using size fac-
tors, applying a log transformation with a pseudocount, and then centering and
scaling each gene before dimension reduction. The most popular normalization
is counts per million (CPM). The CPM are defined as (yij/ni) ∗ 106 (i.e. the
size factor is ni/106). This is equivalent to the MLE for relative abundance
π̂ij multiplied by 106. The log-CPM are then log2(c+ π̂ij106) = log2(π̃ij) + C,
where π̃ij is a maximum a posteriori estimator (MAP) for πij (mathematical
justification and interpretation of this approach provided in Methods). The
additive constant C is irrelevant if data are centered for each gene after log
transformation, as is common practice. Thus, normalization of raw counts is
equivalent to using MLEs or MAP estimators of the relative abundances.

Log transformation of MLEs is not possible for UMI counts due to exact
zeros, while log transformation of MAP estimators of πij systematically dis-
torts differences between zero and nonzero UMI counts, depending on the arbi-
trary pseudocount c (derivations provided in Methods). To illustrate this phe-
nomenon, we examined the distribution of an illustrative gene before and after
the log transform with varying normalizations using the biological replicates
negative control data (Figure 2). Consistent with our theoretical predictions,
this artificially caused the distribution to appear zero inflated and exaggerated
differences between cells based on whether the count was zero or nonzero.

Focusing on the entire negative control datasets, we applied PCA to the log
transformed CPMs and observed a strong correlation between the first principal
component (PC) and the fraction of zeros, consistent with [28]. Additionally,
the first PC correlates with the log of total UMI, which is consistent with the
multinomial model (Figure 3). Based on these results, the log transformation is
not necessary and in fact detrimental for analysis of UMI counts. The benefits
of avoiding normalization by instead directly modeling raw counts have been
demonstrated in the context of differential expression [36]. Where normaliza-
tion is unavoidable, we propose the use of approximate multinomial deviance
residuals (defined in Section 4.4) instead of log-transformed CPM.

6

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 11, 2019. ; https://doi.org/10.1101/574574doi: bioRxiv preprint 

https://doi.org/10.1101/574574
http://creativecommons.org/licenses/by-nc-nd/4.0/


F.W. Townes et al 2019 Analysis of Single Cell RNA-Seq

0.40

0.45

0.50

0.55

0.60

0.65

3000 5000 10000

total UMI per droplet

fr
ac

tio
n 

of
 z

er
os

 p
er

 d
ro

pl
et

(a) Technical replicates, per droplet

0.85

0.90

0.95

1000 3000 10000

total UMI per droplet
fr

ac
tio

n 
of

 z
er

os
 p

er
 d

ro
pl

et

(b) Biological replicates, per droplet

●●●●

●

●
●

●●

●

●

●

●

●●
●

●

●

●

●
●

● ●● ●

● ●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●

●

● ●

●

●

●

●

●● ●●

●

●

●

●

●● ●

●

● ●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

−6 −4 −2 0 2 4 6 8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

log of mean expression

fr
ac

tio
n 

of
 z

er
o 

dr
op

le
ts

Multinomial
Poisson

(c) Technical replicates, per spike-in

●●● ●● ●●●● ●

●

●● ●● ●
●

●●● ●● ●● ●● ●

●

●●

●

● ●● ● ●
●

● ●● ●● ●● ● ●● ● ●
●● ●●●

●

● ●●
●

●● ● ●
● ● ●●● ●●●● ●●● ●● ●

●

●

●● ●●●● ● ●●● ●●● ●●●

●

● ● ●●

●

●●● ●●● ●● ● ●●●

●

●●
●

●●● ●●●● ●●
●

●● ●●● ● ●

●

●●● ●●● ●●

●

●● ●●●

●

●●● ●●● ●● ●● ●● ● ● ●●
●●●● ●●● ●● ●

●
● ●● ●● ● ●● ● ● ●●

●

●

●

●●● ● ●● ●
●

●●
●●● ●● ●● ●

●
● ●● ●●● ●●●● ●●

●

●● ● ●● ●●● ●● ● ●●
●

● ●
●

● ●
● ●● ●● ●● ●●●

●
● ●

●

●

●

● ● ● ●●●● ●●
●

●● ●●● ●●
●

● ●

●
●

● ●●
●

●● ●● ●●

●

● ●● ●● ●● ●● ● ●● ●●●● ●

●

● ●● ●● ●●
●●●●●●● ●

●
● ● ● ●● ● ●●● ●● ● ●● ● ● ●● ●●●● ●● ●● ●●

●
●● ●●● ●● ●●●● ● ●

●
●

●

● ● ●● ●● ● ●●● ●●●●● ● ●

●

●● ●●● ● ● ●●
●●

●● ● ●
●

●● ●● ● ●●●● ●●● ●● ●●

●

● ● ●
●● ●● ●● ●● ●●●●●● ●●

●

●● ●● ●● ●

●

●
●● ●●● ●● ●●●●

●●
●● ●●●● ●

●

●● ●●●●● ●●●● ●● ●●● ●● ●● ●● ●● ●● ●● ●●● ● ● ●● ●●●● ●●● ●●
●

● ●●●●● ●● ●●

●

●●● ●●●●● ● ●● ●● ● ●●●●
●

●●
●

● ●●● ●● ● ●●●●●● ●●● ● ●●
●

● ●● ● ●

●

●● ●●●●● ● ●●● ●●●●●● ● ●● ●● ●● ● ●●●●● ● ●

●

● ●●●● ●●● ●●● ●● ●● ●● ●●●● ● ●● ● ●●● ●● ●● ● ● ●●● ●● ●● ●● ●● ● ●
●

● ● ●
●

●● ●● ●● ●●●● ● ●●

●

● ●
●

●● ●●●● ●●● ●
●

●

● ●●●●● ●● ●●● ●● ● ● ●●●●● ●● ●●
●

●●●
●

●● ●●● ●● ●● ●● ●●●● ●● ● ●●●●●● ● ● ● ● ●●●
●

●
●

●●

●

●● ●● ●●●●●● ● ●● ●● ●● ● ●● ● ● ●● ●●● ● ●● ●●●●
●

● ●●
●

●●● ●●

●

●
●

●

● ● ●●● ●●● ●●●● ● ●
●●

●
●● ●●●●

●
●● ● ●●● ●

●
●

●

●

●●

●

●

● ● ●● ●● ●● ●● ●●●●

●

● ●

●

●
●● ●● ●● ● ●●●● ●●● ●● ●●● ●

●
●

● ● ●● ● ●● ●● ●●● ● ●●● ●● ●

●

●

●

●●●
●

●● ●● ● ●● ● ●●● ●● ●●●●●●● ●●● ●● ●
●

●● ●
●

● ●●●

●

● ●●● ●●● ● ●●●

●

●● ●● ● ●●
● ●

●●

●

● ● ● ● ●

●

●●
●●●● ●●● ●●●● ●●

●
● ●●●●● ●● ●●

●
● ●● ●●●●●● ● ●●●● ● ●● ●●● ●● ● ●●●

●
●●●●● ●●●●●● ● ●●● ●● ●● ●

●
●● ●● ●●

●
● ●● ●●●

●●
● ●● ● ●●● ●● ●● ●● ●● ● ●

●

●●● ●●● ● ●●
●

● ●●●● ●● ●●● ●● ● ● ●● ●●● ●● ● ●● ●●●● ● ●● ●● ●●
●

● ●●●● ● ●●● ●
●●● ●● ●● ●● ●● ●●●● ● ●●●●●

●
●

●● ●●● ●●● ●●
●

● ●● ●●●●● ●●●● ● ●● ●● ●●● ●●● ●● ●● ●●● ●● ●●●● ● ● ●● ●●● ● ●●● ● ●●●

●

● ●●● ●● ●●●
●

●

●
●

● ●●● ●● ●● ●●●●● ● ●●●● ● ●●● ●● ●●●● ●●● ● ● ●●
●

●● ●●
●

● ●●●● ●● ● ●● ●● ●● ●● ●● ● ● ●● ● ●●●● ●●●●● ●●●● ●●●● ● ●● ● ●●● ●
●●● ●●
●

● ● ●●

●

●●●

●

●●● ●● ●●● ●●● ● ●● ●●● ●●
●

● ●● ● ●● ●● ●●● ●● ●● ●● ●●●● ● ●● ● ●● ●● ●●
●

●●● ●●●● ●● ● ● ●●● ●● ●●

●

● ●●● ●●
●

●● ●●● ●
●

● ●●● ●● ●● ● ●
● ● ●●● ●● ●● ● ●● ●● ● ●● ● ● ●● ●●● ●● ●● ●● ●●●●● ●● ●●● ●●●●●

●
●●●●● ●●●

●
●● ●● ●

●

●● ●● ●● ●●● ● ● ●●● ● ●
● ●

●

● ● ●● ●● ●● ●● ●● ●● ●

●

● ●● ●●●● ●● ●●● ● ● ●● ●● ● ●
●●● ●●● ●●● ● ●●● ●● ● ●●● ●● ●● ●●

●
● ●● ● ●● ●●● ●●● ●

●

●● ●●
●●●●● ●●

●

● ●●● ●●● ●● ● ●●● ●● ●
●

●●● ●● ● ●● ●● ●● ● ●
●

● ●●● ●
●

●● ●● ●●●

●

●● ●●

●

● ●● ●

●

●●

●

●●

●● ● ●● ●● ● ●● ●● ●● ●●●●
●

●● ●●● ●●● ●● ●
●●●● ● ●

●●●● ●

●

●●● ● ●●●●●● ●● ● ●●●● ●

●

●● ● ●●●●●● ● ●●● ● ●● ●● ● ●●●● ●● ●●● ● ● ●
● ●●● ●●●

●
●●●

●
●●● ●● ●● ●● ●● ●●● ●●

●●●
●

●●● ● ●● ● ● ●● ●●● ●● ●● ●
●

●● ●● ●● ●●●

●

● ● ●
●●

●
● ●● ●● ●●● ● ●

●● ●●● ●●● ●● ● ●● ●● ● ●●● ●● ●● ●● ●● ●●● ● ●● ● ●●●● ● ●● ●● ●● ●● ●● ●●● ●●●● ● ●●●● ●●● ●● ●● ● ●● ●● ●●

●

● ●●
●●●●●● ●●● ●●● ●● ●●● ●●● ● ● ●●● ● ●●● ●● ● ●●●●●● ●● ● ●

●●● ● ● ● ●● ● ●●●●● ●●●● ● ●●●●● ●
●●

●●●●● ● ●●●●●● ●●

●

●●● ●● ●

●

● ●● ● ●●● ●● ● ●●●●●● ● ●●

●

● ●●

●

●● ●
●●

●
●

●● ●● ●●● ● ●● ●●● ●● ●●●● ● ●● ●● ●● ●● ●●● ● ●● ●●●● ●●
●

● ●● ●● ● ●● ●●●
●

●

●●● ●●
●

● ●● ●●
●

●● ●●

●

● ● ●● ●● ●●● ●●● ●

●

● ● ●
● ●●● ●● ●●●● ●● ●●● ●●● ● ● ●●●● ●● ●●● ● ●● ● ●● ●●● ●● ●●

●●
●

● ●● ●● ●●● ●

●

●● ●● ● ●●●●●● ●

●

●●●●● ● ●●● ● ●●●●● ●● ●● ●● ●●● ●● ● ●● ●● ●●● ●●● ●●●

●

● ●●●● ●●● ●●●●
●

●●● ● ●
● ●● ●●● ● ●● ●●● ●●●● ●● ●●

●
●●

●

●●

●

● ●● ●●● ●●●●● ●●●● ● ● ●●● ● ●●●● ●●● ● ● ●●●●●● ●●● ●●● ●●

●
●●● ● ●● ● ●●●●●● ● ●● ●

●

●
●●●●

●
●● ●●● ●● ●● ● ● ●

●
●● ● ●●●● ●● ●

●

●

●●● ● ●● ●● ●● ●● ● ●●●

●

● ●●●● ● ●● ● ●●●● ●●
●

● ●●●●
●●●● ●●●

●

● ● ●●
●

●●●● ●●● ● ●
● ●● ●●

●
●● ●● ●● ● ●

●

●● ●
●●● ● ●● ●● ● ●●● ●●● ●● ●● ●●●●● ●● ●●● ●●● ●●●
●

●● ●● ●● ● ●●● ●●●● ● ●●● ● ●●●●●●● ● ● ●● ●● ●●● ●● ● ●●●

●

●
●

● ●●●●● ●●●●
●

●● ● ●●●●● ● ●●● ●●● ●●●●● ●●●● ●
●

●● ●
●

●●

●

●● ●● ●
●

● ●●● ●●● ●● ●● ●● ●●● ●●● ● ● ●●● ●●● ●●
●

●● ●●● ● ● ●
●● ● ●●

●
●●

●

●● ●●●● ●●●●
●

●● ●●● ● ●● ●●● ●● ●●● ●●●●● ●●● ● ●●●● ●●●●● ●● ●●
●

●● ●●●●● ●●● ● ●●● ●●●●

●

● ●
●

●● ●● ● ●●●● ● ●● ● ●
●

● ●●

●

● ● ●● ● ●●●●●● ● ●● ●●● ●●●●●●
●

●● ● ●●●●● ● ●
● ●●●● ●●● ● ● ● ●● ●●●●●● ● ●●● ●● ●●

●
● ●● ●●● ●● ●●●●●●

●

●●● ● ●● ●●● ●● ●● ●● ●●●● ● ●● ● ●● ●● ● ●● ●●● ●● ●● ● ●●● ●● ● ●●● ●● ●
●

●● ●● ●● ●●

●

●●● ●●●●

●

●● ●● ●●●● ●●● ●● ●●● ●● ●● ● ●●● ●

●

● ● ●● ●● ● ●● ●● ●● ●● ●

●

● ●● ●●● ● ● ●
●

●● ●● ●● ●● ● ●● ●● ●● ● ●●●● ● ●● ●● ● ●●●● ●● ●● ●●●● ●●● ●● ●● ●●●●● ● ● ●● ●● ●●● ●●● ●● ●

●

●●● ●● ●●●● ●● ●●● ●● ●●●● ● ●● ●●● ●● ● ● ●● ● ●● ●● ●● ●●● ●●● ●● ●● ● ●● ●●● ●● ●● ●● ●● ● ●● ●● ● ●● ●●
●

●● ●● ●
●

●● ● ●● ●● ● ●●
●

● ●●●● ●
●

●●● ●● ●●● ● ●● ●● ●●● ●● ● ●●● ●●● ● ●● ●● ●● ●● ●● ●●●

●
●●● ● ● ● ● ●

● ●●● ●●●● ●●● ●●

●

●● ●●● ●●● ●● ●●
●

●●●

●
●

●●●● ●● ●● ●●●●● ● ● ●
●●● ●● ●●●●● ● ●● ●●● ●● ●● ●●●●●● ●● ●● ●

●

●● ●●● ●● ●●● ● ●● ●●● ●● ●● ● ●●● ● ●●● ●●●● ●● ●● ●● ● ●●●
●

●●● ●●●
●

● ●●● ●●● ●●●●● ●●●● ● ●●● ●● ● ●
● ●● ●● ●●●● ●

●

● ●● ●● ●● ●● ●● ●● ●● ●● ●●● ●●● ●● ●● ●●●●
●

● ●● ●● ●●● ●● ●●●● ●●● ●●
●

● ●● ●

●

● ●● ●●
●●●●●● ●●● ●●●● ●● ● ●● ●● ●● ●●● ●●● ●● ●● ●●● ●●● ●● ●

●
●● ● ●●●● ● ● ●● ● ●● ●●● ● ●●● ●●● ●● ● ●●●● ● ●●●

●

●● ●●●● ● ●●● ●● ●● ●● ●●● ●
●

●●●● ●●●● ●●● ●●● ●● ●● ●●● ●

●

●●
●

●

● ●● ● ●●●● ●● ●●●●●● ● ●●●

●

●
●

●● ●●● ●●●●● ●● ● ●● ●●●●●● ●● ●● ●

●

●●●● ●●●● ●●●●● ● ●●●● ●●● ●● ●●●● ●● ● ●

●

● ●●●●● ●● ●● ●
●

●● ● ●●

●

●● ●●● ●●●
●

●● ●● ● ● ●● ●
●

● ●●●●

●

● ●●
●

●
●

● ● ●● ● ●●●●● ●●● ● ●
●●● ● ●●●●

●
●●

●

●

● ●● ●● ●● ●●● ●● ●● ● ● ●●●●● ●●●● ●●● ● ●●●● ● ●
●

●● ●

●

●

● ● ●●● ●
●●●●●●

●
●● ●● ●●● ●●● ●● ●● ●● ● ●● ●● ● ●●●● ● ●●● ●

●

●
●

●

●

● ● ●

●

●●●●● ●●● ● ●

●

●
● ●● ●●● ●

●
●

●

●
●● ●● ●● ●●●●

●
●● ●

●
●●● ●●● ● ●● ●●●●

●

● ●
●

●● ●
●

●●● ● ●● ●

●

● ● ● ●●●● ●● ●●●
●

● ●
●

● ●● ● ● ●● ● ●● ● ●●●● ● ●● ●●

●

● ● ●● ●●●● ●● ●● ● ●●
● ●●● ●●●●

●
●● ●

●
● ●● ● ●● ●● ●● ●● ●●

●
●●●● ●● ●● ●● ●● ● ●●●● ●● ●● ●●● ●● ●● ●●●●● ●● ●●●●● ●●●● ●●● ●●● ●● ●● ● ●●● ● ●● ●●● ●●● ●●

●
●

●

● ●●●●● ●

●

● ●● ●●●● ● ● ●●●
●●

●
●

●● ●●●● ●●

●

●

● ●● ● ●●
●

●

●

●

● ●● ● ●

●

●● ●

●

●● ●
●●●

●

●● ●● ●●●● ●●●● ● ●● ●

●

●

●
●

●

●
●

●

●

●●●

●

●

●

●

●

●

●
●

●

●

●●● ●● ●

●

● ● ●●
●

● ●● ●

●

● ●● ●● ● ●●

●

● ● ●
●

● ●●● ● ●●●

●

●●● ●● ●● ● ●●
●●

●● ● ●●
●●

●
●● ● ●● ●●● ●●● ●●●

●
● ●●●●● ●

●
●●● ●● ●● ●●●

●

●● ●● ●●●●● ●●●
●

● ●● ●●● ●●● ●●● ●●●
●

●●

●

● ●● ●●●● ●● ●●● ●●● ●● ●● ●●● ●● ●● ●● ● ●● ●●● ●● ●● ●●● ●● ●●

●

●● ●

●

●● ●● ●
●

● ● ●●●●● ●● ● ●●● ●●●● ●● ●● ●

●

●●● ●●● ●● ●●● ●●
●

●● ● ●●● ●● ●●● ●●● ●●● ●
●

● ●●●● ●● ●●● ●● ● ● ● ●
●● ●●● ●● ●●●●●●●

●●
● ●● ● ●● ●● ●● ●●●● ●●●● ●● ●● ●● ● ●● ●●● ●●

●

● ●●● ●● ●●● ●●● ●● ●● ●●● ●● ● ●●
●

● ●●●● ●● ●●●●

●

●●● ●●
●

●● ●●● ●● ●●●
●

●● ●●●●● ●●● ●●● ●● ●●● ●● ● ●
●

● ●● ●● ●● ●
●

●● ● ●●● ●● ● ● ●● ●● ●●●● ●

●

●●● ●● ● ●●●● ● ●

●

● ●● ● ●●● ●● ●●● ●● ●
● ● ●●● ●● ●●● ●●

●
●

●
● ●●● ●●● ● ●●● ●●● ●● ●

●

● ● ●●● ●●●● ●

●

● ●●● ●●● ●●● ● ●●●

●

● ●● ●● ●● ● ●● ●●●●

●

● ● ●● ●●●● ●
●

● ●●

●
●●● ●

●
● ●● ● ●● ●

●

●●●● ●●● ● ●●●● ●● ●● ●● ●● ●●
●

●●● ● ●●● ●●● ● ●●● ●
●

● ●●●
●

● ●●●● ●●●

●

●
● ●●

●●●●● ●●
●

● ●● ●
●

● ●● ● ●● ●●●

●

● ●● ●● ●● ●●● ●●●● ● ●● ● ● ●●●● ● ●● ●● ● ●● ● ●
● ● ●● ● ● ●

●● ●

●

●● ●●● ●●●
●

●● ●●●●
●

●●●●
●

●●● ●●●● ●● ●●● ●● ●●●●● ●● ●● ●●●● ● ●● ● ●● ●● ●● ●●●
●

● ●● ● ●

●

● ●● ● ●

●

●
●

● ●

●

● ●● ● ●● ● ● ●● ●
●●●●● ●

●

●●●●● ●
●

● ●● ●● ●●
● ● ●

●

● ●● ●● ●● ●● ●● ●● ●

●

●

●

● ●● ●●●●
●

●● ●● ● ●● ●●●● ● ●
●

●●● ●● ● ●●●●● ●● ●●● ●● ●●●● ●● ●●● ●●●● ●●● ●● ●● ●●
●

●● ● ●● ●● ●●

●

●● ●● ●●
●

● ●●●● ●●

●

●●●●● ●●●● ●●● ● ●●● ●● ● ●● ●●● ● ●●●● ●●●
●

●
●

●● ●● ●●● ●
●

●●● ● ●●

●

● ●●
●

● ●

●

● ●

●

● ●● ●● ● ●● ●● ● ●● ●● ●●
●

●● ●● ● ●●● ●

●
●● ●

●
●

●

●

● ●● ●●● ●●●● ● ●● ● ●●●● ● ●● ●● ● ●● ●● ●● ●●● ●● ●●● ●●● ●●● ●●

●

● ●● ●●●

●

●● ●● ●● ●● ●●● ●● ●●●●

●

●● ●●●●●● ●
●

●●●● ●● ● ● ●● ●● ●●●

●

●● ●● ●● ●●● ●●●
●

● ●●● ●● ●●● ● ● ●●● ●● ● ●● ●

●

● ●●●●● ●

●●

●

●

● ●● ●● ●● ●●●

●
●

●
● ●

●●
● ● ● ●●● ●●●

●
●● ●●● ●● ●●● ●●●●●

●

●● ● ●● ●● ●●●● ●● ●●● ● ●●●● ●● ●●
●

● ●● ●● ●● ●● ● ●●●● ●●

●

● ●● ●●●● ●● ●●●
●

●
●

● ●●●●
●

● ●● ●●● ●● ● ●

●

● ●●●● ●●● ●● ●●● ● ●●● ●● ● ●● ●

●

●●● ● ●● ● ●● ●● ●● ●●

●

● ●● ●●

●

● ●

●

● ●●● ●● ●● ●●● ●● ●● ●● ●●● ● ●●●● ●●●● ● ●● ●●●● ●●●● ● ●●● ● ●● ●● ●●● ● ●● ●● ●●● ● ●●
●

●●● ●●● ●●●●
●

●
●

●

●●●●● ●●

●

●

●

● ● ●●
●

●
●

●● ● ●● ●● ●● ●
●

● ● ●● ●● ●● ●● ●●●●●● ●●● ●●● ●● ●●● ●● ●●●● ●●

●
● ●● ● ●●● ●

●
● ●● ●●● ●●

●

●● ● ●● ● ●● ● ●● ●● ●● ● ●●● ● ● ●● ●● ●● ● ●●●
●

● ●●● ● ●● ●● ●●
●

●● ●
●●●● ●●● ●●● ●● ●●●●

●
●

●● ●●● ● ●●●● ●●●● ● ●●●● ●●● ●●● ● ●● ●● ●● ● ●●● ●●

●

●● ●●● ● ● ●●●● ● ● ●

●

●● ●● ●●● ●● ●●●● ●● ● ●●●●● ●● ●●● ●● ●● ●● ●● ● ●●● ●●● ●

●

●● ●●●● ●●● ●●● ●● ● ●● ●●● ●● ●●● ●● ● ● ●● ●●● ●● ●●●●● ●● ●● ●●●●● ●
●

● ●● ●●

●

●

●

●● ●●●●● ●●

●

●●●●

●

●
●

●
● ●● ●●● ●●●●● ●●●●● ●● ●● ●

●

● ●●

●

●● ●●● ●● ●● ●●● ●● ●● ●● ●● ●●● ●●● ●●

●

●●●● ●● ● ●● ●● ●●●● ● ● ●●●●●●● ●● ●● ●● ●●●●●● ●●● ● ●●

●

●● ●●● ●●● ●●●
●●

●
●

●

●● ● ●●●● ● ● ●●●
●

● ● ●●
●

●●
● ● ●●● ●●● ●● ●

●

● ●●●●●● ●● ●●

●

● ● ●●● ●● ●●● ●●● ●● ●● ● ●●● ●● ●● ●
●

●● ●● ●● ●●● ●●●

●

● ●●● ●● ●● ●●● ●● ●● ● ● ●
● ● ●● ●●

●
●●●● ●●● ● ●● ● ● ●

●
●●●● ●● ● ●● ●●● ● ●●● ●●

●
● ●

●
●●●● ●

●●●
●

●

●● ● ●
●

●● ●● ●●●●●●● ● ●●● ● ●● ● ●● ● ●● ● ●●●● ● ●
●

●

●

● ● ●
●

● ●● ● ● ●●● ●●● ● ●●
●

● ●●● ●● ●●● ●●● ●● ●●●
●

● ● ●●● ●● ●● ●●●
●●

●●●● ●● ●● ● ●● ●●● ●● ●● ●●

●
●

● ●● ●

●

● ● ●●●● ●● ●● ●● ●● ●● ● ●
●

●● ●
●

● ●● ● ●● ●●●● ●● ●●●
●●●● ●● ● ● ●● ●●
●

● ●
●

●●●● ●●● ● ●●● ●●
●

●● ●●●● ●●●● ● ●● ●● ●
●

●

●

●●● ●●
●

● ●● ● ●●● ●

●

● ● ●●
●●● ●●●● ●● ●● ● ●●● ●

●

●● ● ●● ● ●● ●●● ● ●● ●● ●●
●●●● ●●● ●●● ● ●●● ● ●●●● ●● ●●● ●● ●● ●● ●● ● ●●

●

● ●●●● ●●● ●●● ●● ●● ●●●●●

●

●
●●●● ●●● ●●

●

●

● ●● ●● ●●●●● ● ●●● ●● ●● ●●●
●

●
●●

●

●

●

●
●

● ●●
●

●● ● ●●● ● ●● ●
●

● ●
●

● ●●
●

●●● ●● ●●

●

●● ●● ●●● ●● ●●● ●

●

●● ●●● ●● ●●● ●●● ●●● ●●● ●
●

●● ●● ●● ● ●● ●●●● ●● ●●●●● ●●● ●● ●●● ● ●● ● ●

●

●● ●● ●●● ●● ●●●● ●
●

●● ●● ● ●● ●
●

● ● ●● ●●● ●●● ●●●● ● ●
●● ● ●● ●●● ●●● ●● ●●● ● ●● ● ●● ●● ● ●

●
● ●●●●● ● ● ●●● ●●●●● ●●● ● ●●●● ●● ●● ● ●● ● ●●● ● ●● ●●● ●● ●

●

●● ●● ● ●● ●● ●● ●● ●● ● ●●

●

●

● ●
●

●● ●●●●● ●● ● ●●● ● ● ●● ● ●●● ●●●● ●●● ●● ●
●●● ●● ●●● ●

●

●
●

● ●●● ●●
●

● ●● ●●●●●● ● ●● ●●● ● ●●● ● ●● ●●●●●●● ●●● ●●●● ●● ●●●●● ●●● ● ●● ●● ● ●●● ● ● ●●
●

● ●●●●● ●● ●●●●
●

●● ●●● ●● ●●● ● ●● ●

●

●● ●● ●● ●● ●●● ●●● ●● ●● ●● ●● ● ●●
●

●
● ● ●● ● ●●● ● ●● ●● ● ●

●
●●●●● ●● ●●

●

●●● ●● ●● ●●● ● ●●● ●● ●●●● ●●● ●●● ●●● ●● ●●● ●●

●

●● ● ●● ●●● ●● ●● ●● ●●● ●●●●● ●●●● ●● ● ●●●
●●●●● ●● ●● ●● ●● ●●

●
● ●●

●●●● ● ●● ●● ●● ●

●

●

●

●
●

●

●

●●● ●●
●

● ● ●● ●

●

●●● ●

●

●
● ●

●

●

●●● ●
● ●● ● ●●

●

●

●

●

●

●●●● ●●●● ● ● ●●●● ●● ●●

●

●●●●● ● ●●●●● ●●● ● ●● ●●● ●●

●

●● ●

●

● ●●●● ●● ●● ●●● ●● ● ●● ●● ● ●● ●● ● ●● ●● ●●● ●●● ●

●

● ●● ●●● ●●
●

●● ●●● ● ●●● ● ●● ●● ● ●● ●● ●

●

●● ●● ●●● ●●●● ●●●

●

●●● ●●●● ●● ●● ●● ●● ●●● ●●●●
●●●
●

●●● ●●●● ● ●●●● ●●

●

● ●
●●

●
●

● ● ●●● ● ●●●●
● ●

●● ●●●

●

● ●●● ●●
●

● ●● ● ●● ●●

●

● ●●●● ●● ●● ●
● ● ● ●● ●●●● ●●●

●

●● ●●
●

●

●● ●●

●

● ●
●

●● ●● ●●●
●● ●

●

● ●●●

●

● ●●●
●●

●●
● ●

●
●

●
●

● ●● ●●

●

●
●

● ●
●

●
●●

●

●

●●● ● ●●●

●
●

●
●●●

●
●

●
● ●● ●●● ●● ●●●● ●● ●

●

●● ●● ● ●● ● ●

●

●

●

● ●●●
●●

●

●
●●
●●●

●

●

●

●● ●
●

●

● ●

●

●●

●

●
● ●

●● ●●● ●● ●
●●

●
● ● ● ● ●

●●● ● ● ●●● ●
●

●
●

●

● ●

●

●●● ● ●● ●
●

●

●

●
●●

●
●

●
●

●●● ● ●● ●
●

●●●●● ● ●●●● ●● ● ● ● ●●

●

●●● ●●●●
●

● ●
●

●● ●●●●
●

● ●● ●● ● ●●● ●

●

●● ●● ●●● ●●● ●● ●

●

● ●●●● ●●● ●●● ●● ●●
●

● ●●●●

●

●● ● ●●●● ●●● ●●● ●●● ● ●● ●● ●● ●
●

●●
●

● ●● ●●● ●● ●●
●

●●● ● ●● ●● ●● ● ●●● ● ●
●

●

●

● ● ●● ●●● ● ● ●● ●● ● ●●● ●●● ●● ● ●
●

●●● ●● ● ●●●● ● ● ●● ●●●● ●● ●● ● ●● ●●● ●●● ●
●

●

●● ●● ●

●

●●● ●● ● ●● ●●

●

●●● ●● ●●●● ●●●● ●●● ● ●●● ● ●●●●

●

●●●
●● ● ●

● ●● ●● ●● ●● ● ● ●● ●●●● ●●● ● ●●● ●● ●●

●

●●●● ●● ● ● ●●● ● ●●● ●● ●● ● ●● ● ●●● ●● ●● ●● ●●●● ● ●● ● ●● ●● ●● ●●
●

●

●

● ●● ●● ● ●● ● ●●
●

●● ● ●

●

●●● ●
●

●
●

●
●

●●● ●● ●● ●●●
●

●● ● ●● ●● ●
●

●● ●●●● ●● ● ● ●● ●● ●● ●● ●●●● ●
●

● ● ●●● ●●●● ●● ● ●● ● ●
●●

●
●● ●

●

●●● ●● ●●● ● ●●
●

●●● ●●● ● ●●●● ●● ●●●●● ● ●● ●●● ● ●●●● ●● ●● ●● ●● ●● ●●● ●● ●● ●●●● ●●●● ● ●● ●●

●

● ●●●●● ● ●●● ● ●●●●● ●● ●● ●●● ● ●● ● ●● ●●●● ●●

●
●

●● ● ●● ●

●

●●● ● ●

●

●●● ● ● ●● ●● ●●
●

●
●

● ●●● ●●●
●

●● ●●● ● ● ●●● ●● ●● ●

●

● ●●●

●●

● ● ●● ●

●

●● ●●

●

●●●
●●● ●●● ●●

●

●

●

● ●●●● ●●● ●● ●

●

●

●

● ●● ●

●

●● ●●● ●● ●
●

●● ●● ●● ●

●

●

●

●● ●
●●

● ●●●●
●● ●● ●●

●
●● ● ●●●● ● ●●●● ● ●●●● ●●●● ● ●● ●● ● ●●● ●●●● ●● ●● ● ●

●

●
● ●● ● ●●●● ●●● ●● ●

●
●●

●
● ●●● ●● ● ●● ●● ●

●
●● ●

●

●

●

●●● ●● ●●● ●●● ●●
●

● ● ●●
●

● ●
●

● ●●● ●● ● ●
●

●●●● ●● ● ●●● ●●●●
●

● ●●● ●● ●● ●●● ● ●●●●●● ● ●● ●● ●● ●
●

●
●

●●●● ●●● ● ● ●●● ●● ●● ●● ●●

●

●●
●●● ●●● ●●●●●

●
●●●●

●

● ●●

●

●● ●● ●● ●●● ●●●● ●●● ●●●
●

● ●●●
●●●● ●●

●

● ●

●

●●
●

●

● ● ● ●● ●● ●●●● ● ●● ●● ● ●● ●●●●
●

●● ●● ●●●● ●●● ●●●● ●● ●

●

● ●●●● ●
●

●● ●● ●● ●●● ● ●●

●

● ●● ● ●●

●

● ●●●●●●● ●● ●● ●● ●●●●● ●●● ●

●
●●● ●● ● ●●

●
●

● ● ●● ●●●●●● ●●● ●

●

●
●● ●

●

● ●●
●

● ●●

●

● ●●●● ● ●●●●● ●● ●●● ●● ●● ●●● ●●●
●

●● ●
●

● ●●●● ●

●

●●● ●●●
●

● ● ●●● ●

●

● ●● ●● ●●● ● ●● ● ●● ●●●● ●●●● ●●●● ● ●●● ●●●●● ●● ●●

●

●●●● ●● ●● ● ●●● ●● ●●● ●● ●●●●●● ● ●● ● ● ●●
●

●●●
●

●● ●●● ● ●● ● ●● ● ●●● ●● ●●● ● ●● ● ● ●●●● ●
●

●●● ●● ●●●
●

● ●●● ●●
●

●
●●●

● ●● ●● ● ●●●●● ● ●●
●●●● ●●● ●

●

● ● ● ●●

●

●●

●

● ● ●●● ●

●

●

●

●●● ●●● ● ●● ●● ● ●● ●●●● ●● ●●●● ●● ● ● ●●● ●● ● ●●● ●

●

● ●● ●● ● ● ●● ●●● ● ● ●● ●

●

●●●

●

●● ●● ● ●
●

● ●●● ●● ● ● ●● ●●● ● ●
● ●● ●●● ●●●●● ●●● ●●● ●

●

● ●● ●●● ● ●● ● ●●● ●●●● ●●● ●●●● ●● ●● ● ●● ● ● ●●● ● ●
●●● ●●● ●● ●●●●● ●●●●

●
●● ●●●

●
●● ●

●

●
● ●● ●●● ● ●●● ● ●● ● ●●●●●● ●●● ●

●

●●● ●●●● ●● ●

●

●● ●●● ●● ●●● ●●●● ●●●● ●● ● ●●●
●

●●● ● ●● ● ●●● ● ●●● ●●●

●

● ●● ●●● ● ●

●

●● ●
●

● ●●●●● ● ●● ●●●

●

●

●● ●●●● ● ●●●● ● ●●●● ●● ●● ●●
●

●● ● ●● ●

●

●● ●●●● ●● ●●

●
●●● ●● ●●● ●●

●

●● ●●

●

● ●●● ●●● ●●● ●● ●●

●

● ●●● ●●●● ● ● ●● ●● ●● ●● ●●● ●●● ●●● ●●● ●● ●●

●

●● ●●● ●●● ●● ●

●

● ●●
●

●● ● ●●●● ●● ● ●● ●● ●●● ● ●● ●
●

● ●● ●●● ●●●●● ●●● ●●● ●●●● ● ●●●● ●●●
●

●

●●● ●● ●●●

●

●●● ●●● ● ●●
●

●

●

●● ●● ●● ● ●●●● ●●● ●● ●●● ●● ●●● ● ●●● ●●● ●●● ●●● ● ●● ● ● ●●●● ●●●

●

●● ●● ● ●●● ●● ●● ●●●

●

● ● ●
●

● ●● ●● ●●● ●● ●● ● ●●●●● ●

●

●● ●●● ●● ●●● ●●
●

●●●●

●

● ●● ●●

●

●● ● ●●●● ● ●●●● ●● ●●● ●● ●
●

●
●● ●

●

●● ● ●●● ● ●● ●● ●
●

●● ●● ●● ● ●
●

●● ● ●● ●● ● ●● ● ●

●

●●●●●● ●● ●●● ●●● ●● ● ●●● ●●●
●

●● ●● ● ●●● ●●● ●● ●● ● ●● ●● ●●

●

●

●

●● ●
●

●●●●● ● ●● ●● ●●● ●● ● ●●●●●●●● ●
●●●●● ● ●● ●

●● ●●●
●●●●● ●●●●

●●
● ● ●●

●
●●● ●

●

● ● ●●● ●
●●●● ●● ●● ●●● ●● ●

●●

●
●●

● ●●
●

●

●

●
● ●●● ●●● ● ●●●

●
●● ● ●

● ●●● ● ● ●● ●●●●

●

●

● ●● ●●● ● ●●●● ●●● ●●● ●●● ●●● ●● ●●● ● ●●● ● ● ● ●● ●●● ●● ●●● ●●
●

● ●●●● ●●● ●●● ●● ●● ●● ●● ●●●●●● ●●●● ●
●

●● ● ●●● ● ● ●● ●●●● ●●●● ● ●● ● ●●● ●●

●

● ●●● ●●●● ●● ● ●● ● ●●● ● ●●●
●

●

● ●● ●●●●●● ● ●●● ●
●

● ●● ● ●
●

● ●●● ●
●

● ●● ●● ●● ● ● ●
● ●●

●
● ●● ●

●
●●● ●● ● ●●● ●● ●● ●● ● ●● ●

●●●●
●●●

●

●● ●●

●

●

●
●

● ●

●

●●● ●● ● ●●●● ●● ●● ●
●●● ● ●● ● ● ●● ● ●● ●● ●●● ● ●●● ●●● ●●

●●●●
●

●

●

● ●●
●● ●● ●● ●●●● ●● ●● ●● ● ●●● ●●● ●● ● ●●● ●●●● ●● ●● ●●● ● ●●● ●●●

●
● ●●● ●

● ●● ●● ● ●● ●● ● ●● ● ●●●● ●● ●●●● ●●

●

● ● ●● ●●●

●

●●● ●
●

●● ●● ● ●●●
●

●● ●
●●●

● ●●●● ● ●● ●●● ●●●● ●● ●●●● ●●
●

●

● ●●
●●● ●●●●●●●●● ●●● ●●● ●● ●●● ●●● ●● ●●●● ●●● ●●● ● ● ● ●●● ● ●● ●● ●●

●
●● ● ●● ●●●● ●● ●●

●
● ●●●●● ● ●●●● ● ●● ●● ●● ●●

●
●●● ●●●● ●● ●

●

●●● ●●●● ●●

●

●
●●● ●●●● ●

●
● ● ●● ●● ●●● ●●● ●

●

●● ●
●

● ● ●●

●

●
●

●● ●● ● ●● ●●

●

●● ●● ●●●
●

● ●● ●●● ● ●●● ●● ●● ●●● ●● ● ●
● ●●●●●●●●● ●●● ● ● ● ●● ●●● ●● ●● ●●

●
●

●
●● ●● ●●●●● ● ●●● ●

●

● ●●●

●

● ●●●● ●●

●

●
●

●●● ●● ●● ● ●●● ●●
●

● ●●
●

●
●

●● ●●●●
●●●

●
● ● ●●

●

●
●

● ●

●

●●
● ●●● ●● ●

●
●● ●● ●●●

●

●

● ●● ●

●

●● ●●

●

●●●

●

●●●
●●

●●●●●●● ● ●● ● ●

●

●● ● ●●● ●● ●● ●●●● ●● ●●●● ● ●●● ●●
●● ●●●

●

● ●●●● ● ●●● ●●● ●● ●● ●●● ●● ●● ●● ●●● ●●● ● ●● ●
●

●
●●● ●● ●●● ●●● ●● ● ●● ●

●
● ●● ●● ●

●

●● ● ●● ●●● ●● ●●●● ●● ●●● ●

●

●●● ●● ● ●● ●●● ● ●● ●●● ●● ●●●●●● ● ● ●●● ●●● ●●● ●● ●● ●●●●● ●● ●●●● ●● ●●●●● ●● ●●●●

●

● ●● ●● ●● ●● ●● ●● ●● ●●● ●● ●● ●
●

●

● ●

●

●●●

●

●●●● ●●●● ●●

●

●●● ● ●●●● ●●● ● ●●●● ● ●
●

●● ●

●

● ●● ●●
●●● ●
●

●● ● ●● ● ●●●●● ●●●●●●● ● ●
●

● ●●● ●●

●

●
●●● ●●●● ●●●●● ● ●● ● ●● ●●●● ●

●

●●● ●● ●● ●● ● ●● ●● ●

●

● ●●● ●●●●● ● ●●● ●● ●● ● ●● ●●● ●
●

●●● ●● ●●● ●● ●

●

●
●

●
●

●
●

● ●●●●● ● ● ●●●
●●● ● ●●●● ●●● ●●

●● ●●● ●●● ● ●● ●
● ●● ●●●● ● ●● ●●●●●

●
●

● ●●● ●●● ●● ●●● ●● ●● ●●●● ●● ●●●● ●●● ●●● ● ● ●● ●

●

●● ●●
●

●●●
●

● ●
● ●●

●

●● ●● ● ●●● ●● ●●● ●●●● ●● ● ●● ●● ●

●

● ●● ●
●● ●●
●

● ●● ●●●● ●●●● ●●

●

● ● ●
●●

●● ●●●
●

●●● ●●● ●●

●

● ●●● ●●● ● ●● ●● ●●
●

● ●●● ●● ●● ●● ●
●

●●● ● ●●
●

●● ● ●● ●● ●● ●● ● ● ●● ● ● ●●
●●● ● ●● ●●● ● ●●●● ● ●

●
●

●● ●●

●

● ●●
●

● ●●●
●

● ●

●

● ●
●

●

●

● ●●●●● ● ●
●

●
●●●● ●●

●●●● ● ● ●●● ●
● ●●● ●● ●● ●● ●● ●● ●● ●● ● ●

●●● ●

●

●

●

●● ●●● ●
●

● ●●
●

●●
●

●●
●

● ●● ●● ●● ● ●● ●●● ●● ● ●●
●

●● ●●● ●●● ●● ●●●●● ●● ●● ●● ●● ●●● ●●● ●●● ●● ●●●● ●● ●

●

●●●● ● ●●●● ● ●

●

●● ●●●●● ●●● ●● ● ●●● ●● ●● ●●●
●●
●

● ●● ● ●●● ●●● ●●●● ● ● ● ●●● ●● ●● ● ●● ●● ● ●●
●

●●●● ●●●●
●

● ●● ●●● ●●

●
●●●● ●●●●

●

● ● ●● ●● ●● ●●
●●

●● ●

●

●●● ●● ●●● ● ●● ●● ● ●● ●● ● ●●● ●
●●●● ●●● ●●●●● ●●●● ●

●
●●● ● ● ●●● ●● ●●●

●
● ●

●

● ●●●●●●●● ● ●
●

●

●●

●

●●● ● ●●● ●●● ●●●●●●●
●

●
●●

● ●●
●

●● ● ●● ●● ●●●
●

●
●

●● ●
●

●● ●
●●

●

●

●● ●● ●

●

● ●● ●
●

● ●
●

● ● ●●●●● ● ●●●●
●

●● ● ● ●● ●● ● ●● ●● ●● ●

●

● ● ●● ●● ●●●● ●●● ● ●● ●
●

● ● ●●● ● ● ●● ●● ● ● ● ●● ● ●●●

●

● ●● ●● ● ●

●
●

● ●●● ●● ●●● ●● ●●● ● ●●●● ●●● ●● ●●● ●●● ●● ●
●

● ●
●

●

● ●●● ●●

●

● ●●
●

●

●

●● ●●
●

●● ● ●●●● ●●●

●

● ●● ●●● ●●● ●● ● ●●●● ●●
●

●● ● ●●●

●
●● ●

●
● ●●● ●●●

●

● ●● ●●
●●

● ●
●●

●

● ●

●

●
●

●

●

●

● ● ●

●

● ●● ●● ●

●

●●● ● ●●●●● ●●● ● ●
● ●●

●
●●

●

●●

●●

●
●

● ●●●●●● ●
●

● ●● ●●●● ● ● ●●● ●●
●

● ●

●

●● ● ●●●●● ●● ● ●● ●● ● ●●

●

● ●●● ● ●● ●● ●●

●

●

● ● ●●●

●

● ●●● ●● ● ●

●

● ●●●● ●● ●● ●●● ●● ●●● ● ● ●●

●

●●

●

●
●

●
● ●● ●●●●● ●●

●

●

● ● ●●
●●

●

●

● ●●● ●●●● ●● ● ●

●

●
●● ●●

●

●●
●●● ●● ●●●

●
●

●
● ●●●

●
● ●●● ●●

●
●● ● ●●●● ●

●

●●● ●● ●
●

● ●●● ●● ●● ●●●● ● ●●●● ● ●● ●●

●

●●● ●

●

●●●

●

●
●● ●● ●● ●

●
●

●
●

●
●●

●
●

●

●●●

●

●

●

● ●● ●●● ●● ● ●● ● ●

●

●
●●

● ●●

●

● ●● ●●● ● ●●●● ●● ● ●●● ● ●●●
●

●●● ●●
●

●● ●●●
●●●●

●
● ●

●
●● ●

●

● ●●●

●

● ●● ●●

●

●●● ●●

●

●● ●

●

●
●●

●●● ●

●
●

●

●

●

● ●●

●

● ●●● ●● ●● ● ●●●●●

●

● ● ●●●●●● ●● ●●● ●● ●● ●● ●●●● ●●●

●

●●

●
●● ●● ●●●● ●● ●● ●●● ● ●●● ● ●● ●●● ●● ● ●● ●● ● ●●● ●

●

● ●● ●●● ●● ●
●

●
●●

●

●
●

● ●
●

● ●● ●

●

●

●●● ●●
● ●●

●● ●● ●●● ● ●●●●● ● ●● ● ●●● ●● ●● ●●● ● ●
●

●●
●●●

●
● ●●● ●

●

●● ●
●

● ●● ●●●
●

● ●●

●

● ●● ●

●

●

●

●●●● ●

●

● ●● ● ●● ●●
●

● ●
●

●●

●

●
●● ●● ● ● ●●● ●

●
●

●●● ●● ●●● ● ●●

●

●
●

●

● ●

●

●● ●● ●● ● ●● ●● ●● ● ● ●
●

● ●● ●●
●

●

●●● ●●●●● ●● ● ●●●● ●● ●● ●● ●● ●●●● ●●●
●

● ●● ●
●

●

● ● ●●●●

●

● ●● ●●● ● ●●

●

●● ●● ●

●

●

●

● ● ●● ●●●● ●●● ●●

●

●

●●● ●●●

●

● ●● ●●● ●●

●

● ●●●● ●●

●

●
●

●

●

● ●●
●

●● ●● ●

●

●●●

●

●

●

●

●
●

●● ●●
●● ●●● ●●● ●● ●● ●●●● ●●● ●●● ● ●●●●
●

●

●
●●● ● ●●●

●

●

● ● ●●● ●● ●●
●

●●● ●●● ● ●
● ●●●● ● ●●●● ●●●● ● ●● ●●●● ● ●●

●
● ● ● ●

●
●●● ●●

●●

●

●●●
●

● ●
●● ●● ●●

●
●● ●●●●● ●● ● ●

●● ●● ●● ●

●

●●●● ●● ● ●●● ● ●
● ● ●●● ●●●●● ●● ●●● ●● ● ●●● ●● ●●● ●● ●●●● ● ●● ●●● ● ● ●● ●● ●● ●●● ●●

●
●● ●

●

●● ● ●● ●● ●

●

●● ●●●
●

● ●
●

●
●●

●

●● ● ●● ●●● ●● ● ●●●●● ●

●

● ●● ● ●
●

●
●

● ●● ● ●● ●● ●●●● ●●● ●●
●●

●

●● ● ●●●● ●● ●● ●

●

● ●●●

●

●

●

● ●●● ●
●

●●● ●●● ●● ●● ●● ●● ● ●●
●

●● ●● ●● ● ●● ●● ●

●

●●●● ● ●●●● ● ●●●● ● ●●● ●●● ●●● ●● ● ●●● ●●● ●●●●
●●

●● ● ●●● ● ●
●

●
● ●

● ●
●

●●
●●●●

●

●●

●

●●●● ●

●

●
●

●● ●● ● ●●
●

●●●
●

●● ● ● ● ● ●
● ●● ●●

●

●●●

●●

●● ● ●●●●●
●

●
●

●●● ●●● ● ●●● ●●
●

●

● ●● ● ●●● ●●

●

●
● ●● ● ● ●

●● ●
●

●●● ● ●

●

●● ● ●
●

●● ●● ●●●●● ●●● ●●●●●
●●● ●● ● ●●

●●●
●

● ● ●● ●●
●

●●●● ●●

●

●

●

●

● ●●● ● ●● ●●● ●● ● ●●●

●

● ●● ● ●● ● ●● ●●
●

●●● ●● ●●●●● ● ●● ●●
●

●●
●

● ●●

●

● ●● ●● ●● ●●
●

● ●● ●●● ● ●● ●●● ●●● ●● ● ●●● ●●●●●●● ●●● ● ●●

●

●●
●

●

● ●●● ● ●●● ● ●●
●●●● ●● ●●

●

●● ●●● ● ●● ●●● ●● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●● ● ●

−8 −6 −4 −2 0 2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

log of mean expression

fr
ac

tio
n 

of
 z

er
o 

dr
op

le
ts

Multinomial
Poisson
Negative Binomial
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Figure 1: Multinomial model adequately characterizes sampling distributions of tech-
nical and biological replicates negative control data. a) Fraction of zeros is plotted
against the total number of UMI in each droplet for the technical replicates. b) As a)
but for cells in the biological replicates. c) After down-sampling replicates to 10,000
UMIs per droplet to remove variability due to differences in sequencing depth, the frac-
tion of zeros is computed for each gene and plotted against the log of expression across
all samples for the technical replicates data. The solid curve is theoretical probability
of observing a zero as a function of the expected counts derived from the multinomial
model (blue) and its Poisson approximation (green). d) As c) but for the biological
replicates dataset and after down-sampling to 575 UMIs per cell. Here we also add
the theoretical probability derived from a negative binomial model (red).
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Figure 2: Example of how current approaches to normalization and transformation
artificially distort differences between zero and nonzero counts. a) UMI count distribu-
tion for gene ENSG00000114391 in the biological replicates negative control dataset.
b) Counts per million (CPM) distribution for the exact same count data. c) Distribu-
tion of log2(1 + CPM) values for the exact same count data.

2.5 Zero inflation is an artifact of log-normalization

To see how normalization and log-transformation introduce the appearance of
zero inflation, consider the following example. Let yij be the observed UMI
counts following a multinomial distribution with size ni for each cell and relative
abundance πj for each gene, constant across cells. Focusing on a single gene j,
yij follows a binomial distribution with parameters ni, pj . Assume πj = 10−4

and the ni range from 1, 000 − 3, 000, which is consistent with the biological
replicates negative control data (Figures S1 and 1). Under this assumption we
expect to see about 74-90% zeros, 22-30% ones, and less than 4% values above
one. However, notice that after normalization to CPM and log transformation,
all the zeros remain log 2(1 + 0) = 0, yet the ones turn into values ranging from
log2(1+1/3000∗106) = log2(334) ≈ 8.4 to log2(1001) ≈ 10. The few values that
are 2 will have values ranging from log2(668) ≈ 9.4 to log2(2001) ≈ 11. The
large, artificial gap between zero and nonzero values makes the log-normalized
data appear zero-inflated (Figure 2). The variability in CPM values across cells
is almost completely driven by the variability in ni. Indeed, it shows up as the
primary source of variation in PCA plots (Figure 3).

2.6 Generalized PCA for dimension reduction of sparse
counts

While PCA is a popular dimension reduction method, it is implicitly based
on Euclidean distance, which corresponds to maximizing a Gaussian likelihood.
Since UMI counts are not normally distributed, even when normalized and log
transformed, this distance metric is inappropriate, causing PCA to produce dis-
torted latent factors (Figure 3). We propose the use of PCA for generalized
linear models (GLMs) [29], or GLM-PCA as a more appropriate alternative.
The GLM-PCA framework allows for a wide variety of likelihoods suitable for
data types such as counts and binary values. While the multinomial likelihood
is ideal for modeling technical variability in scRNA-Seq UMI counts (Figure 1),
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Figure 3: Current approaches to normalization and transformation induce variability
in the fraction of zeros across cells to become the largest source of variability which in
turn biases clustering algorithms to produce false positive results based on distorted
latent factors. a) First principal component (PC) from the technical replicates dataset
plotted against fraction of zeros for each cell. A red to blue color scale represents
total UMIs per cell. b) as a) but for the biological replicates data. c) Using the
technical replicates, we applied t-distributed stochastic neighbor embedding (tSNE)
with perplexity 30 to the top 50 PCs computed from log-CPM. The first two tSNE
dimensions are shown with a blue to red color scale representing the fraction of zeros.
d) as c) but for the biological replicates data. Here we do not expect to find differences,
yet we see distorted latent factors being driven by the total UMIs. PCA was applied
to 5,000 random genes.
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in many cases there may be excess biological variability present as well. For
example, if we wish to capture variability due to clusters of different cell types
in a dimension reduction, we may wish to exclude biological variability due to
cell cycle. Biological variability not accounted for by the sampling distribu-
tion may be accomodated by using a Dirichlet-multinomial likelihood, which
is overdispersed relative to the multinomial. In practice, both the multinomial
and Dirichlet-multinomial are computationally intractable, and may be approx-
imated by the Poisson and negative binomial likelihoods, respectively (detailed
derivations provided in Methods). We found that numerical convergence of
GLM-PCA with negative binomial likelihood was unstable, due to the difficulty
of estimating the dispersion parameter, so we focused on the simpler Poisson
likelihood in our assessments. Intuitively, using Poisson instead of negative bi-
nomial implies we assume the biological variability is captured by the factor
model and the unwanted biological variability is small relative to the sampling
variability. We ran Poisson GLM-PCA on the technical and biological replicates
negative control datasets and found it removed the spurious correlation between
the first dimension and the total UMIs and fraction of zeros (Figure 4).

2.7 Deviance residuals provide fast approximation to GLM-
PCA

One disadvantage of GLM-PCA is it depends on an iterative algorithm to obtain
estimates for the latent factors, and is at least ten times slower than PCA.
We therefore propose a fast approximation to GLM-PCA. When using PCA a
common first step is to center and scale the data for each gene as z-scores. This
is equivalent to the following procedure. First, specify a null model of constant
gene expression across cells, assuming a normal distribution. Next, find the
MLEs of its parameters for each gene (the mean and variance). Finally, compute
residuals of the model as the z-scores (derivation provided in Methods). The fact
that scRNA-Seq data are skewed, discrete, and possessing many zeros suggests
the normality assumption may be inappropriate. Further, using z-scores does
not account for variability in total UMIs across cells. Instead, we propose to
replace the normal null model with a multinomial null model as a better match
to the data generating mechanism. The analogs to z-scores under this model
are called deviance and Pearson residuals. Mathematical formulae are presented
in Methods. Use of multinomial residuals enables a fast transformation similar
to z-scores that avoids difficulties of normalization and log-transformation by
directly modeling counts. Additionally, this framework allows straightforward
adjustment for covariates such as cell cycle signatures or batch labels.

2.8 Feature selection using deviance

Feature selection, or identification of informative genes, may be accomplished
by ranking genes using the deviance, which quantifies how well each gene fits a
null model of constant expression across cells. Unlike the competing highly vari-
able or highly expressed genes methods, which are sensitive to normalization,
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Figure 4: GLM-PCA dimension reduction is not affected by unwanted fraction of zeros
variability and avoids false positive results. a) First GLM-PCA dimension (analogous
to first principal component) plotted against the fraction of zeros for the technical
replicates with colors representing the total UMIs. b) as a) but using biological repli-
cates. c) Using the technical replicates, we applied t-distributed stochastic neighbor
embedding (tSNE) with perplexity 30 to the top 50 GLM-PCA dimensions. The first
two tSNE dimensions are shown with a blue to red color scale representing the fraction
of zeros. d) as c) but for the biological replicates data. GLM-PCA using the Poisson
approximation to the multinomial was applied to the same 5,000 random genes as in
Figure 3.
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ranking genes by deviance operates on raw UMI counts. An approximate multi-
nomial deviance statistic can be computed in closed-form (formula provided in
the Methods). We compared gene ranks for all three feature selection meth-
ods (deviance, highly expressed, and highly variable genes) on the 8eq dataset,
which contained eight different known cell types. We found strong concordance
between highly deviant genes and highly expressed genes (Spearman’s rank cor-
relation r = 0.9987), while highly variable genes correlated weakly with both
high expression (r = 0.3835) and deviance (r = 0.3738); see also Figure S2.

2.9 Multinomial models improve unsupervised clustering

Dimension reduction with GLM-PCA or its fast multinomial residuals approxi-
mation improved clustering performance over competing methods (Figure 5a).
Feature selection by multinomial deviance was superior to highly variable genes
(Figure 5b).

Using the two ground-truth datasets described in Section 2.1, we systemati-
cally compared the clustering performance of all combinations of previously de-
scribed methods for normalization, feature selection, and dimension reduction.
In addition, we compared against ZINB-WAVE since it also avoids requiring the
user to pre-process and normalize the UMI count data (e.g. log transformation
of CPM) and accounts for varying total UMIs across cells [27]. After obtaining
latent factors, we used Seurat and k-means to infer clusters, and compared these
to the known cell identities using Adjusted Rand Index (ARI, [37]). We varied
the number of latent dimensions and number of clusters to assess robustness.
Where possible, we used the same combinations of hyperparameters as [14] to
facilitate comparisons to their extensive benchmarking (details are provided in
Methods Section 4.6).

We compared the Seurat clustering performance of GLM-PCA (with Poisson
approximation to multinomial) to running PCA on deviance residuals, which ad-
here more closely to the normal distribution than log-CPM. We found both of
these approximate multinomial methods gave similar results on the 4eq dataset,
and outperformed PCA on log-CPM z-scores. However, GLM-PCA outper-
formed the residuals method on the 8eq dataset. Also, performance on ZINB-
WAVE factors degraded when the number of latent dimensions increased from
10 to 30, whereas GLM-PCA and its fast approximation with deviance residuals
was robust to this change (Figure 5a). The performance of Pearson residuals
was similar to that of deviance residuals (Figure S3).

Focusing on feature selection methods, deviance outperformed highly vari-
able genes across both datasets and across dimension reduction methods (Figure
5b). Filtering by highly expressed genes led to similar clustering performance
as deviance (Figure S3), because both criteria identified strongly overlapping
gene lists for these data (Figure S2). The combination of feature selection with
deviance and dimension reduction with GLM-PCA also improved clustering per-
formance when k-means was used in place of Seurat (Figure S4). A complete
table of results is publicly available (Section 5).
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Figure 5: Dimension reduction with GLM-PCA and feature selection using deviance
improves Seurat clustering performance. Each column represents a different ground-
truth dataset from [14]. a) Comparison of dimension reduction methods based on
the top 1,500 informative genes identified by approximate multinomial deviance. The
Poisson approximation to the multinomial was used for GLM-PCA. Dev. resid. PCA:
PCA on approximate multinomial deviance residuals. b) Comparison of feature selec-
tion methods. The top 1,500 genes identified by deviance and highly variable genes
were passed to two different dimension reduction methods: GLM-PCA and PCA on
log transformed CPM. Only results with the number of clusters within 25% of the true
number are presented.
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2.10 Computational efficiency of multinomial models

We measured time to convergence for reduction to two latent dimensions of
GLM-PCA, ZINB-WAVE, PCA on log-CPM, PCA on deviance residuals, and
PCA on Pearson residuals. Using the top 600 highly deviant genes, we subsam-
pled the PBMC 68K dataset to 680, 6,800, and 68,000 cells. All methods scaled
approximately linearly with increasing numbers of cells, but GLM-PCA was 23-
63 times faster than ZINB-WAVE across sample sizes (Figure S5). Specifically,
GLM-PCA processed 68,000 cells in less than seven minutes. The deviance and
Pearson residuals methods exhibited speeds comparable to PCA: 9-26 times
faster than GLM-PCA. We also timed dimension reduction of the 8eq dataset
(3,994 cells) from 1,500 highly deviant genes to ten latent dimensions. PCA
(with either log-CPM, deviance, or Pearson residuals) took 7 sec, GLM-PCA
took 4.7 min, and ZINB-WAVE took 86.6 min.

3 Conclusions

We have outlined a statistical framework for analysis of scRNA-Seq data with
UMI counts based on a multinomial model, providing effective and simple to
compute methods for feature selection and dimension reduction. We found that
UMI count distributions differ dramatically from read counts, are well-described
by a multinomial distribution and are not zero-inflated. Log transformation of
normalized UMI counts is detrimental, because it artificially exaggerates differ-
ences between zeros and all other values. For feature selection, or identification
of informative genes, deviance is a more effective criterion than highly variable
genes. Dimension reduction via GLM-PCA, or its fast approximation using
residuals from a multinomial model, leads to better clustering performance than
PCA on z-scores of log-CPM.

Although our methods were inspired by scRNA-Seq UMI counts, they may
be useful for a wider array of data sources. Any high dimensional, sparse dataset
where samples contain only relative information in the form of counts may
conceivably be modeled by the multinomial distribution. Under such scenarios
our methods are likely to be more effective than applying log-transformations
and standard PCA. A possible example is microbiome data.

We have not addressed major topics in the scRNA-Seq literature such as
pseudotime inference [38], differential expression [39], and spatial analysis [40].
However, the statistical ideas outlined here can also be used to improve methods
in these more specialized types of analyses. In addition, adapting the GLM-PCA
model to incorporate covariates such as batch labels or cell cycle signatures
would be straightforward.

Our results have focused on (generalized) linear models for simplicity of expo-
sition. Recently, several promising nonlinear dimension reductions for scRNA-
Seq have been proposed. The variational autoencoder (VAE, a type of neural
network) method scVI [41] utilizes a negative binomial likelihood in the decoder,
while the encoder relies on log-normalized input data for numerical stability.
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The Gaussian process method tGPLVM [42] models log-transformed counts. In
both cases, we suggest replacing log-transformed values with deviance residu-
als to improve performance. Nonlinear dimension reduction methods may also
depend on feature selection to reduce memory consumption and speed compu-
tation; here, our deviance method may be utilized as an alternative to high
variability for screening informative genes.

The statistical approaches described here have not been validated against
scRNA-Seq data without UMIs, such as SMART-Seq2 and other plate protocols
[8], since non-UMI data contain PCR duplicates. To apply the ideas to these
data, one would need to be able to infer the UMI counts for data with PCR
replicates [7].

4 Methods

4.1 Multinomial Model for scRNA-Seq

Let yij be the observed UMI counts for cell or droplet i and gene or spike-in j.
Let ni =

∑
j yij be the total UMIs in the sample, and πij be the unknown true

relative abundance of gene j in cell i. The random vector yi = (yi1, . . . , yiJ)>

with constraint
∑
j yij = ni follows a multinomial distribution with density

function

f(yi) =

(
ni

yi1, . . . , yiJ

)∏
j

π
yij
ij

Focusing on a single gene j at a time, the marginal distribution of yij is binomial
with parameters ni and πij . The marginal mean is E[yij ] = niπij = µij , the
marginal variance is var[yij ] = niπij(1 − πij) = µij − 1

ni
µ2
ij , and the marginal

probability of a zero count is (1−πij)ni =
(

1− µij

ni

)ni

. The correlation between

two genes j, k is

cor[yij , yik] =

√
πijπik√

(1− πij)(1− πik)

The correlation is induced by the sum to ni constraint. As an extreme exam-
ple, if there are only two genes (J = 2), increasing the count of the first gene
automatically reduces the count of the second gene since they must add up
to ni under multinomial sampling. This means when J = 2 there is perfect
anti-correlation between the gene counts which has nothing to do with biology.
More generally, when either J or ni is small, gene counts will be negatively cor-
related independent of biological gene-gene correlations, and it is not possible
to analyze the data on a gene-by-gene basis (for example, by ranking and filter-
ing genes for feature selection). Rather, comparisons are only possible between
pairwise ratios of gene expression values [43]. Yet this type of analysis is diffi-
cult to interpret and computationally expensive for large numbers of genes (i.e.
in high dimensions). Fortunately, under certain assumptions, more tractable
approximations may be substituted for the true multinomial distribution.
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First, note that if correlation is ignored, the multinomial may be approxi-
mated by J independent binomial distributions. Intuitively, this approximation
will be reasonable if all πij are very small, which is likely to be satisfied for
scRNA-Seq if the number of genes J is large, and no single gene constitutes
the majority of mRNAs in the cell. If ni is large and πij small, each bino-
mial distribution can be further approximated by a Poisson with mean niπij .
Alternatively, the multinomial can be constructed by drawing J independent
Poisson random variables and conditioning on their sum. If J and ni are large,
the difference between the conditional, multinomial distribution and the inde-
pendent Poissons becomes negligible. Since in practice ni is large, the Poisson
approximation to the multinomial may be reasonable [44, 45, 46, 47].

The multinomial model does not account for biological variability. As a re-
sult, an overdispersed version of the multinomial model may be necessary. This
can be accommodated with the Dirichlet-multinomial distribution. Let yi be
distributed as a multinomial conditional on the relative abundance parameter
vector πi = (πi1, . . . , πiJ)>. If πi is itself a random variable with symmetric
Dirichlet distribution having shape parameter α, the marginal distribution of
yi is Dirichlet-multinomial. This distribution can itself be approximated by in-
dependent negative binomials. First, note that a symmetric Dirichlet random
vector can be constructed by drawing J independent gamma variates with shape
parameter α and dividing by their sum. Suppose (as above) we approximate the
conditional multinomial distribution of yi such that yij follows an approximate
Poisson distribution with mean niπij . Let λij be a collection of non-negative

random variables such that πij =
λij∑
j λij

. We require that πi follow a symmetric

Dirichlet, which is accomplished by having λij follow indendent Gamma distri-
butions with shape α and mean ni/J . This implies

∑
j λij follows a Gamma

with shape Jα and mean ni. As J → ∞ this distribution converges to a point
mass at ni, so for large J (satisfied by scRNA-Seq),

∑
j λij ≈ ni. This implies

that yij approximately follows a conditional Poisson distribution with mean
λij , where λij is itself a Gamma random variable with mean ni/J and shape
α. If we then integrate out λij we obtain the marginal distribution of yij as
negative binomial with shape α and mean ni/J . Hence a negative binomial
model for count data may be regarded as an approximation to an overdispersed
Dirichlet-multinomial model.

Parameter estimation with multinomial models (and their binomial or Pois-
son approximations) is straightforward. First, suppose we observe replicate
samples yi, i = 1, . . . , I from the same underlying population of molecules,
where the relative abundance of gene j is πj . This is a null model because
it assumes each gene has a constant expected expression level and there is no
biological variation across samples. Regardless of whether one assumes a multi-
nomial, binomial, or Poisson model, the maximum likelihood estimator (MLE)

of πj is π̂j =
∑

i yij∑
i ni

where ni is the total count of sample i. In the more realis-

tic case that relative abundances πij of genes vary across samples, the MLE is
π̂ij =

yij
ni

.
An alternative to the MLE is the maximum a posteriori (MAP) estimator.
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Suppose a symmetric Dirichlet prior with concentration parameter αi is com-
bined with the multinomial likelihood for cell i. The MAP estimator for πij is
given by

π̃ij =
αi + yij
Jαi + ni

= wi
1

J
+ (1− wi)π̂ij

where wi = Jαi/(Jαi + ni), showing that the MAP is a weighted average of
the prior mean that all genes are equally expressed (1/J) and the MLE (π̂ij).
Compared to the MLE, the MAP biases the estimate toward the prior where
all genes have the same expression. Larger values of αi introduce more bias,
while αi → 0 leads to the MLE. If αi > 0, the smallest possible value of π̃ij is
αi/(Jαi + ni) rather than zero for the MLE. When there are many zeros in the
data, MAP can stabilize relative abundance estimates at the cost of introducing
bias.

4.2 Mathematics of distortion from log-normalizing UMIs

Suppose the true counts in cell i are given by xij for genes j = 1, . . . , J . Some
of these may be zero, if a gene is not turned on in the cell. Knowing xij
is equivalent to knowing the total number of transcripts ti =

∑
j xij and the

relative proportions of each gene πij , since xij = tiπij . The total number of UMI
counts ni =

∑
j yij does not estimate ti. However, under multinomial sampling,

the UMI relative abundances π̂ij =
yij
ni

are MLEs for the true proportions
πij . Note that it is possible that π̂ij = 0 even though πij > 0, indicating a
dropout. Because

∑
j π̂ij = 1 regardless of ni, the use of multinomial MLEs

is equivalent to the widespread practice of normalizing each cell by the total
counts. Furthermore, the use of size factors si = ni/m leads to π̂ij ∗ m (if
m = 106 this is CPM).

Traditional bulk RNA-Seq experiments measured gene expression in read
counts of many cells per sample rather than UMI counts of single cells. Gene
counts from bulk RNA-Seq could thus range over several orders of magnitude.
To facilitate comparison of these large numbers many bulk RNA-Seq methods
have relied on a logarithm transformation. This enables interpretation of differ-
ences in normalized counts as fold changes on a relative scale. Prior to the use
of UMIs, scRNA-Seq experiments also produced read counts with wide ranging
values, and a log transform was again employed. However, with single cell data,
more than 90% of the genes might be observed as exact zeros, and log(0) = −∞
which is not useful for data analysis. UMI data also contain large numbers of
zeros, but do not contain very large counts since PCR duplicates have been
removed. Nevertheless, log transformation has been commonly used with UMI
data as well.

The current standard is to transform the UMI counts as log2(c + π̂ij ∗m)
where c is a pseudocount to avoid taking the log of zero, and typically c = 1.
As before, m is some constant such as 106 for CPM. Finally, the data are
centered and scaled so that the mean of each gene across cells is zero, and
the standard deviation is one. This standardization of the data causes any

17

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 11, 2019. ; https://doi.org/10.1101/574574doi: bioRxiv preprint 

https://doi.org/10.1101/574574
http://creativecommons.org/licenses/by-nc-nd/4.0/


F.W. Townes et al 2019 Analysis of Single Cell RNA-Seq

subsequent computation of distances or dimension reduction to be invariant
to constant additive or multiplicative scaling. For example, under Manhattan
distance d(x+c, y+c) = |x+c− (y+c)| = |x−y| = d(x, y). In particular, using
size factors such as CPM instead of relative abundances leads to a rescaling
of the pseudocount, and use of any pseudocount is equivalent to replacing the
MLE with the MAP estimator. Let k = c/m and αi = kni. Then the weight
term in the MAP formula becomes wi = Jk/(1 + Jk) = w which is constant
across all cells i. Furthermore Jk = w/(1− w), showing that

log2(c+ π̂ij ∗m) = log2(k + π̂ij) + log2(m)

= log2

(
w

1− w
1

J
+ π̂ij

)
+ log2(m)

= log2

(
w

1

J
+ (1− w)π̂ij

)
− log2(1− w) + log2(m)

= log2(π̃ij) + C

Where C is a global constant that does not vary across cells or genes. For
illustration, if c = 1 and m = 106 this is equivalent to assuming a prior where
all genes are equally expressed and for cell i, a weight of w = J/(106 + J)
is given to the prior relative to the MLE. Since the number of genes J is on
the order of 104, we have w ≈ .01. The prior sample size for cell i is Jαi =
10−6Jni ≈ .01∗ni where ni is the data sample size. The standard transformation
is therefore equivalent to using a weak prior to obtain a MAP estimate of the
relative abundances, then log-transforming before dimension reduction.

In most scRNA-Seq datasets, the total number of UMIs ni for some cells
may be significantly less than the constant m. For these cells, the size factors
si = ni/m are less than one. Therefore, after normalization (dividing by size
factor), the counts are scaled up to match the target size of m. Due to the
discreteness of counts, this introduces a bias after log transformation, if the
pseudocount is small (or equivalently, if m is large). For example, let c = 1 and
m = 106 (CPM). If ni = 104 for a particular cell, we have si = .01. A raw
count of yij = 1 for this cell is normalized to 1/.01 = 100 and transformed to
log2(1 + 100) = 6.7. For this cell, on the log scale there cannot be any values
between zero and 6.7 because fractional UMI counts cannot be observed, and
log2(1 + 0) = 0. Small pseudocounts and small size factors combined with log
transform arbitrarily exaggerate the difference betwen a zero count and a small
nonzero count. As previously shown, this scenario is equivalent to using MAP
estimation of πij with a weak prior. To combat this distortion, one may attempt
to strengthen the prior to regularize π̃ij estimation at the cost of additional bias,
as advocated by [20]. An extreme case occurs when c = 1 and m = 1. Here, the
prior sample size is Jni so almost all the weight is on the prior. The transform
is then log2(1 + π̂ij). But this function is approximately linear on the domain
0 ≤ π̂ij ≤ 1. After centering and scaling, a linear transformation is vacuous.

To summarize, log transformation with a weak prior (small size factor, such
as CPM) introduces strong artificial distortion between zeros and nonzeros,
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while log tranformation with a strong prior (large size factor) is roughly equiv-
alent to not log transforming the data.

4.3 Generalized PCA

PCA minimizes the mean squared error (MSE) between the data and a low-
rank representation, or embedding. Let yij be the raw counts and zij be the
normalized and transformed version of yij such as centered and scaled log-CPM
(z-scores). The PCA objective function is:

min
u,v

∑
i,j

(zij − u′ivj)
2

where ui,vj ∈ RL for i = 1, . . . , I, j = 1, . . . , J . The ui are called factors
or principal components and the vj are called loadings. The number of latent
dimensions L controls the complexity of the model. Minimization of the MSE is
equivalent to minimizing the Euclidean distance metric between the embedding
and the data. It is also equivalent to maximizing the likelihood of a Gaussian
model

zij ∼ N (u′ivj , σ
2)

If we replace the Gaussian model with a Poisson, which approximates the multi-
nomial, we can directly model the UMI counts as

yij ∼ Poi (ni exp{u′ivj})

or alternatively, in the case of overdispersion, we may approximate the Dirichlet-
multinomial using a negative binomial likelihood

yij ∼ NB (ni exp{u′ivj}; φj)

We define the linear predictor as ηij = log ni + u′ivj . It is clear that the
mean µij = eηij appears in both the Poisson and Negative Binomial model
statements, showing that the latent factors interact with the data only through
the mean. We may then estimate ui,vj (and φj) by maximizing the likelihood
(in practice, adding a small L2 penalty to large parameter values improves
numerical stability). A link function must be used since ui,vj are real valued
whereas the mean of a Poisson or negative binomial must be positive. The
total UMIs ni term is used as an offset since no normalization has taken place;
alternative size factors si such as those from scran [19] could be used in place
of ni. If the first element of each ui is constrained to equal 1, this induces a
gene-specific intercept term in the first position of each vj , which is analogous
to centering. Otherwise, the model is very similar to that of PCA; it is simply
optimizing a different objective function. Unfortunately, MLEs for ui,vj cannot
be expressed in closed form, so an iterative Fisher Scoring procedure is necessary.
We refer to this model as GLM-PCA. Just as PCA minimizes MSE, GLM-PCA
minimizes a generalization of MSE called the deviance [48]. While generalized
PCA has been discovered before by [29], our implementation is novel in that
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it allows for intercept terms, offsets, and non-canonical link functions. We also
use a blockwise update for optimization which we found to be more numerically
stable than that of [29]; we iterate over latent dimensions l rather than rows
or columns. This technique is inspired by non-negative matrix factorization
algorithms such as hierarchical alternating least squares and rank-one residue
iteration, see [49] for a review.

As an illustration, consider GLM-PCA with the Poisson approximation to
a multinomial likelihood. The objective function to be minimized is simply the
overall deviance:

D =
∑
i,j

yij log

(
yij
µij

)
− (yij − µij)

logµij = ηij = log si + u′ivj = log si + vj1 +

L∑
l=2

uilvjl

where si is a fixed size factor such as the total number of UMIs (ni). The
optimization proceeds by taking derivatives with respect to the unknown pa-
rameters: vj1 is a gene-specific intercept term, and the remaining uil, vjl are the
latent factors.

The GLM-PCA method is most concordant to the data generating mecha-
nism since all aspects of the pipeline are integrated into a coherent model rather
than being dealt with through sequential normalizations and transformations.
The interpretation of the ui and vj vectors is the same as in PCA. For example,
suppose we set the number of latent dimensions to two (i.e. L = 3 to account
for the intercept). We can plot ui2 on the horizontal axis and ui3 on the verti-
cal axis for each cell i to visualize relationships between cells such as gradients
or clusters. In this way, the ui and vj capture biological variability such as
differentially expressed genes.

4.4 Residuals and z-scores

Just as mean squared error can be computed by taking the sum of squared resid-
uals under a Gaussian likelihood, the deviance is equal to the sum of squared
deviance residuals [48]. Since deviance residuals are not well-defined for the
multinomial distribution, we adopt the binomial approximation. The deviance
residual for gene j in cell i is given by

r
(d)
ij = sign(yij − µ̂ij)

√
2yij log

yij
µ̂ij

+ 2(ni − yij) log
ni − yij
ni − µ̂ij

where under the null model of constant gene expression across cells, µ̂ij = niπ̂j .
The deviance residuals are the result of regressing away this null model. An
alternative to deviance residuals is the Pearson residual, which is simply the
difference in observed and expected values scaled by an estimate of the standard
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deviation. For the binomial, this is

r
(p)
ij =

yij − µ̂ij√
µ̂ij − 1

ni
µ̂2
ij

According to the theory of generalized linear models (GLM), both types of
residuals follow approximately a normal distribution with mean zero if the null
model is correct [48]. Deviance residuals tend to be more symmetric than Pear-
son residuals. In practice, the residuals may not have mean exactly equal to
zero, and may be standardized by scaling their gene-specific standard deviation
just as in the Gaussian case.

The z-score is simply the Pearson residual where we replace the multinomial
likelihood with a Gaussian (normal) likelihood, and use normalized values in-
stead of raw UMI counts. Let qij be the normalized (possibly log-transformed)
expression of gene j in cell i without centering and scaling. The null model is
that the expression of the gene is constant across all cells:

qij ∼ N (µj , σ
2
j )

The MLEs are µ̂j = 1
I

∑
i qij , σ̂

2
j = 1

I

∑
i(qij − µ̂j)2, and the z-scores equal the

Pearson residuals zij = (qij − µ̂j)/σ̂j .

4.5 Feature selection using deviance

Genes with constant expression across cells are not informative. Such genes may
be described by the multinomial null model where πij = πj . Goodness of fit to
a multinomial distribution can be quantified using deviance, which is twice the
difference in log-likelihoods comparing a saturated model to a fitted model. The
multinomial deviance is a joint deviance across all genes and for this reason is
not helpful for screening informative genes. Instead, one may use the binomial
deviance as an approximation:

Dj = 2
∑
i

[
yij log

yij
niπ̂j

+ (ni − yij) log
(ni − yij)
ni(1− π̂j)

]
A large deviance value indicates the model in question provides a poor fit.
Those genes with biological variation across cells will be poorly fit by the null
model and will have the largest deviances. By ranking genes according to their
deviances, one may thus obtain highly deviant genes as an alternative to highly
variable or highly expressed genes.

4.6 Systematic Comparison of Methods

We considered combinations of the following methods and parameter settings,
following [14]. Italics indicate methods proposed in this manuscript. Feature
selection: highly expressed genes, highly variable genes, and highly deviant
genes. We did not compare against highly dropout genes because [14] found

21

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 11, 2019. ; https://doi.org/10.1101/574574doi: bioRxiv preprint 

https://doi.org/10.1101/574574
http://creativecommons.org/licenses/by-nc-nd/4.0/


F.W. Townes et al 2019 Analysis of Single Cell RNA-Seq

this method to have poor downstream clustering performance for UMI counts
and it is not as widely used in the literature. Number of genes: 60, 300, 1,500.
Normalization, transformation, and dimension reduction: PCA on log-CPM z-
scores, ZINB-WAVE [27], PCA on deviance residuals, PCA on Pearson residu-
als, and GLM-PCA. Number of latent dimensions: 10, 30. Clustering algorithm:
k-means [50], Seurat [16]. Number of clusters: all values from 2-10, inclusive.
Seurat resolution: 0.05, 0.1, 0.2, 0.5, 0.8, 1, 1.2, 1.5, 2.
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Figure S1: Comparing read counts and UMI counts sampling distribution from tech-
nical and biological replicates negative control datasets. a) Read count distribution
for spike-in ERCC-00163 across technical replicates. b) Read count distribution for
gene ENSG00000114391 across biological replicates (purified monocytes). c) as a) but
without PCR duplicates. d) as b) but without PCR duplicates.
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Figure S2: Comparison of top 1,000 genes selected as most informative in the Zheng
8eq dataset. The variance to mean ratio for each gene is plotted against the average
expression. Counts were normalized using scran [19]. Colors represent genes that are in
the top 1,000 ranked by variability (blue, red) and top 1,000 ranked by approximate
multinomial deviance (green, red). Red indicates genes identified by both criteria,
while purple indicates genes identified by neither criteria. Note that highly expressed
genes have large values on the horizontal axis. The number of genes in each category
is shown in parentheses.
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Figure S3: Comparison of Seurat clustering performance for all dimension reduction
and feature selection methods on ground-truth datasets from [14]. The number of
informative genes was fixed at 1,500. The Poisson approximation to the multinomial
was used for GLM-PCA. Only results with the number of clusters within 25% of the
true number are presented. Abbreviations: dimreduce: dimension reduction method,
pca rd: PCA on deviance residuals, pca rp: PCA on Pearson residuals, pca log: PCA
on log-CPM.
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Figure S4: Dimension reduction with GLM-PCA and feature selection using de-
viance improves k-means clustering performance. Each column represents a different
ground-truth dataset from [14]. The top 1,500 informative genes were identified by
approximate multinomial deviance and highly variable genes. The Poisson approxi-
mation to the multinomial was used for GLM-PCA. Only results with the number of
clusters within 25% of the true number are presented.

30

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 11, 2019. ; https://doi.org/10.1101/574574doi: bioRxiv preprint 

https://doi.org/10.1101/574574
http://creativecommons.org/licenses/by-nc-nd/4.0/


F.W. Townes et al 2019 Analysis of Single Cell RNA-Seq

1

10

100

1000

10000

1000 3000 10000 30000

number of cells

el
ap

se
d 

tim
e 

(s
ec

) method

zinbwave

glmpca

pca_rd

pca_log

pca_rp

Figure S5: Computational speed comparison of dimension reduction meth-
ods GLM-PCA (glmpca), ZINB-WAVE (zinbwave), PCA on deviance residuals
(pca rd), PCA on Pearson residuals (pca rp), and PCA on log-CPM (pca log).
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