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Abstract

Because of recent technological developments, single-cell assays such as single-cell RNA
sequencing (scRNA-seq) have become much more widely available and have achieved
unprecedented resolution in revealing cell heterogeneity. The extent of intrinsic cell-to-cell
variability in gene expression, or single cell expression variability (scEV), has thus been
increasingly appreciated. However, it remains unclear whether this variability is functionally
important and, if so, what its implications are for multi-cellular organisms. We therefore
analyzed multiple scRNA-seq data sets from lymphoblastoid cell lines (LCLs), lung airway
epithelial cells (LAECs), and dermal fibroblasts (DFs). For each of the three cell types, we
estimated scEV in homogeneous populations of cells; we identified 465, 466, and 291 highly
variable genes (HVGs), respectively. These HVGs were enriched with specific functions precisely
relevant to the cell types, from which the scRNA-seq data used to identify HVGs were
generated—e.g., HVGs identified in lymphoblastoid cells were enriched in cytokine signaling
pathways, LAECs collagen formation, and DFs keratinization. HVGs were deeply embedded in

gene regulatory networks specific to corresponding cell types. We also found that scEV is a


https://doi.org/10.1101/574426
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/574426; this version posted March 28, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-ND 4.0 International license.

heritable trait, partially determined by cell donors’ genetic makeups. Furthermore, across genes,
especially immune genes, levels of scEV and between-individual variability in gene expression
were positively correlated, suggesting a potential link between the two variabilities measured at
different organizational levels. Taken together, our results support the “variation is function”
hypothesis, which postulates that scEV is required for higher-level system function. Thus, we
argue that quantifying and characterizing scEV in relevant cell types may deepen our

understating of normal as well as pathological cellular processes.

Intfroduction

Cells are fundamental units of cellular function. Cells in multi-cellular organisms can be
organized into groups, or cell types, based on shared features that are quantifiable. A
multicellular organism is usually composed of cells of many different types—each is a distinct
functional entity differing from the other. Within the same cell type, cells are nearly identical

and are considered to carry the same function.

The recent development of single cell RNA sequencing (scRNA-seq) technologies has brought
the increasingly high-resolution measurements of gene expression in single cells (Zhang et al.
2019). This power has been widely adopted to refine the categories of known cell types and
analyze complex tissues systematically and reproducibly (Buettner et al. 2015). The power of
scRNA-seq has also been harnessed to identify novel cellular states among the same type of cells

(Trapnell 2015).

Cells of the same type and the same state may still show marked intrinsic cell-to-cell variability
in gene expression or single cell expression variability (scEV), even under the same
environmental conditions (Ko 1992; Fiering et al. 2000; Raj and van Oudenaarden 2008). The
importance of this intrinsic variability is increasingly appreciated (Eldar and Elowitz 2010;
Pelkmans 2012). Changes in the magnitude of scEV have been associated with development
(Wernet et al. 2006; Chang et al. 2008; Faure et al. 2017; Kumar et al. 2017), aging (Martinez-
Jimenez et al. 2017; Wiley et al. 2017), and pathological processes (Segerstolpe et al. 2016; Azizi
et al. 2018).

Dueck and colleagues (Dueck et al. 2016) put forward the so-called “variation is function”
hypothesis, saying that scEV per se might be crucial for population-level function. They used the
term “single cell variation or variability” to refer to diversity within an ensemble that has been
previously defined as being generally homogeneous, rather than diversity of cell types that are
clearly distinct and already recognized. The main focus of their question is to ask how the

individual cells with different gene expression levels may interact to causally generate higher-
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level function. If the hypothesis turns out to be true, it means that the intrinsic cell-to-cell
variability is an indicator of a diversity of hidden functional capacities, which facilitate the
collective behavior of cells. This collective behavior is essential for the function and normal
development of cells and tissues (Raj et al. 2010; Tay et al. 2010). The loss of this collective
cellular behavior may result in disease. Thus, investigation of the intrinsic cell-to-cell variability
may contribute to the understanding of pathological processes associated with disease

development.

It is worth noting that the level of intrinsic cell-to-cell variability needs to be measured within a
highly homogenous population of cells. This is because many micro-environmental
perturbations and stochastic factors at the cellular level are known to change the scEV. These
factors may include local cell density, cell size, shape and rate of proliferation, cell cycle, and so
on (Snijder et al. 2009; McDavid et al. 2014; Kernfeld et al. 2018; Miragaia et al. 2018; Mitchell
et al. 2018). To work on the cell-to-cell variability, these confounding factors have to be

controlled.

Exponential scaling of scRNA-seq made it feasible to study scEV across thousands of cells
(Svensson et al. 2018), and quantify scEV based on measures of statistical dispersion such as the
coefficient of variation (CV)(Geiler-Samerotte et al. 2013; Mar 2019). The sheer number of cells
sequenced in a “typical” droplet-based scRNA-seq experiment allows us to filter out for a sizable
number of highly homogeneous cells, based on the similarity between their global
transcriptional profiles. With these selected cells, we are able to test the “variation is function”
hypothesis systematically. Furthermore, using established statistical methods, we are able to
control for many sources of technical variation that may confound the measurement of scEV to
obtain an unbiased estimate. For instance, single-molecule capture efficiency, 3’ end bias due to
single-cell RNA library preparation protocol, and low expression of genes are examples of
known sources of technical variation (Marinov et al. 2014), which should be controlled for using

statistical means.

The characterization of the impact of scEV on cell function requires the understanding of which
genes show greater or less cell-to-cell variability in their expression. These feature genes may
carry valuable information that can facilitate the elucidation of underlying regulatory networks
(Li and You 2013). Once these genes are identified, a follow-up question is whether they are
tissue- or cell type-specific—i.e., whether the same genes will be identified for different tissues
or cell types. Our working hypothesis is in line with the “variation is function” hypothesis, that

is, different tissues or cell types have different sets of highly variable genes (HVGs), and these
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HVGs should be enriched with functions that reflect the biological functions of respective tissues
or the cell types. To test this, we analyzed three scRNA-seq data sets generated for three
different cell types. Each data set contains thousands of cells. For each cell type, we selected a
highly homogenous population of cells, with the help of a newly developed dimensionality
reduction method, called potential of heat-diffusion for affinity-based trajectory embedding
(PHATE)(Moon et al. 2018). We estimated scEV among selected cells for each of these cell types
and further systematically characterized functions of identified HVGs. We show that HVGs are
highly specific to cell types, i.e., different cell types have different sets of HVGs; functions of
HVGs precisely mirror the functions of the corresponding cell types. We explored both the level
of scEV and potential mechanism behind the variability across cells, allowing us to understand a

previously unexplored aspect of gene regulation in humans.
Results

Single-cell RNA sequencing and selection of highly homogenous cells
In this study, we experimented with three different human cell types, namely, lymphoblastoid
cell line (LCL), lung airway epithelial cell (LAEC), and dermal fibroblast (DF). We estimated

single cell expression variability (scEV) for each of these cell types, individually.

To obtain the scRNA-seq data for LCL, we cultured GM12878, an LCL strain widely used in
genomic research, prepared cells using a 10X Genomics Chromium Controller, and sequenced a
total of 7,045 cells (Osorio et al. 2019). This data has been deposited in the NCBI GEO database
(Accession number GSE126321). For the other two cell types, LAEC and DF, we obtained the
scRNA-seq data for 3,863 and 2,553 cells from the studies of (Habiel et al. 2018) and (Hagai et
al. 2018), respectively (see Data Availability). All scRNA-seq data sets of the three cell types
were produced using 10X Genomics droplet-based solution and made use of unique molecular

identifiers (UMIs)(Kivioja et al. 2011).

For each cell type, we employed a data analysis procedure, a filter pipeline on scRNA-seq data,
to select highly homogenous cells (Materials and Methods). These selected cells are a
representative population of each the cell type. The main steps of the filter pipeline are depicted
in Supplementary Fig. S1. Briefly, we first excluded mitochondrial DNA-encoded genes from
the analysis. We then excluded cells in the S- or G2/M phases and only retained G1-phase cells.
We also excluded cells with library size smaller than 55 percentile or greater than 99 percentile.
Finally, we used PHATE to produce the embedding plot of remaining cells to inspect between-

cell structure driven by heterogeneity in gene expression. PHATE is a visualization method that
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captures both local and global nonlinear structure in data by an information-geometry distance
between data points (Moon et al. 2018). As seen from the PHATE projection (Fig. 1A), several
“arms” of cells show the structure of the cell-to-cell relationship. Based on the observation, we
manually picked one “core” cell, at the root of arms of cells, in the middle of cell cloud where the
majority of cells are clustered. The core cell and 999 nearest cells around the core cell are then

selected to form the final cell population, which is used for subsequent data analyses.

To examine the homogeneity of selected cells, we used t-distributed stochastic neighbor
embedding (t-SNE)(van der Maaten and Hinton 2008) to position all 1,000 selected cells in the
two-dimensional t-SNE space. Compared to PHATE, t-SNE is a more commonly used nonlinear
visualization algorithm for revealing structures in high-dimensional data, emphasizing local
neighborhood structure within the data. When running t-SNE, we experimented with a series of
perplexity values to produce multiple plots for the same population of selected cells. t-SNE is
known to be sensitive to hyperparameters (Becht et al. 2018). In general, when different
parameter values are given, t-SNE tends to produce different cell clustering plots. But, for our
selected cells, no structure is observed in any of these t-SNE embedding plots (Fig. 1B). The
same results were obtained for the other two cell types. Thus, we confirm that cells selected with

our filter pipeline are highly homogenous populations of representative cells for each cell type.

Identification of highly variable genes

Highly variable genes (HVGs) are expressed variably across homogeneous cells of the same type.
For each cell type, we used the method of (Brennecke et al. 2013) to identify HVGs from scRNA-
seq data of the homogeneous population of selected cells. In this method, the relationship
between the squared coefficient of variation (CV2) of genes and their average expression (1) is
considered. The relationship between log-transformed CV2 and log-transformed  is fitted with
a Generalized Linear Model (GLM), and the expected CV2 for a given L is calculated with the
fitted curve. The log-transformed ratio between observed CV2 and expected CV2 [=log(observed
CV2)- log(expected CV2], called “residual variability”, is used as the measurement of scEV. Since
the expected CV2 captures the variability originated from technical noise, the residual variability
is considered to be an unbiased measure of biological variability. In total, we identified 465, 466,
and 291 HVGs for LCL, LAEC, and DF, respectively (Supplementary Tables S1-3), after
controlling for false discovery rate (FDR) at 0.01 (Materials and Methods). To visualize
expression variability of genes, we plot CV2 against , both on the logarithmic scale, for LCL
(Fig. 2A). Each dot represents a gene; all genes together give a characteristic cloud showing the
u and CV2 of gene expression. Genes above the GLM fitting curve, e.g., IGKC, CCL3, LTB, and
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FTL, are more variable than expectation, whereas genes below the curve, e.g., TMEM9B and

RPL17, are less variable (Fig. 2B).

Cell-type origin determines the function of highly variable genes

To assess the biological functions of HVGs in different cell types, we performed the enrichment
analyses (Materials and Methods). The categories of enriched gene ontology (GO) terms and
pathways of the three cell types are largely distinct and reflect the respective cell functions of
each cell type (Table 1). Two exemplary LCL HVGs are CCL22 and IFI27. Collectively, more
than expected number of LCL HVGs (FDR<0.01) are involved in cytokine- or interferon-
signaling pathways, and also, more generally, innate immune system. LAEC HVGs, including
genes, COL1A1, MMP1, and IL17C, are more likely to be involved in the processes of collagen
formation and extracellular matrix organization (FDR<0.01 for both). DF HVGs, including
KRTi14,ACAN, and FLG, are more likely to be involved in keratinization, regulation of cell
proliferation, as well as extracellular structure organization (FDR<o0.01 for all). DF HVGs also
include SFRP2, DPP4, and LSP1, which are marker genes defining major fibroblast
subpopulations in human skin (Tabib et al. 2018). Taken together, these results show different

cell types have different sets of HVGs, suggesting scEV implies cell function.

If two cell types have shared function, then we expect to see the overlap in their HVG-associated
functions. This indeed is the case: there are overlaps between enriched functions between the
three cell types we examined here. For example, cytokine signaling pathway is enriched for
both LCL and LAEC, and extracellular structure organization is enriched for both LAEC and
DF. Meanwhile, across all three cell types, there are 13 shared HVGs genes: CDC20, CLEC2B,
CLIC3, CTSC, HES1, MT1E, NPW, SOX4, STMN1, TK1, TRIB3, and UCHL1, showing highly

diverse cellular and molecular functions.

HVGs as part of the regulatory network with high cell-type specificity

Next, we set out to test whether HVGs are co-expressed and thus tend to form co-expression
networks (Mantsoki et al. 2016). We first imputed the expression matrix and then constructed
the co-expressed network using the top 50 HVGs for each cell type. For LCLs, the network
contains two main modules centered on NFKBIA and IGHG1, respectively (Fig. 3A).

NFKBIA encodes NF-kB inhibitor that interacts with REL dimers to inhibit NF-kB/Rel
complexes (Courtois et al. 2003; Lopez-Granados et al. 2008). For LAECs, two modules are
centered on IL23A/TNFAIP6 and COL1A1 (Fig. 3B); for DF, KRTAP2-3 and IGFBP7 (Fig. 3C).

Thus, functions of “hub” genes in HVG co-expression networks are closely relevant to the
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function of corresponding cell type. These results are another line of evidence that scEV implies

cell function.

The transcription of multiple HVGs may be involved in the same underlying regulatory
activities, giving rise to the co-expression network as we observed. Thus, we wondered whether
scEV in several different HVGs is driven by activities of one or few common TFs. To address this
question, we searched for upstream regulators of the HVGs defined by our analysis (Materials
and Methods). We identified significant enriched TF binding motifs upstream of HVGs, four
for LCL and five for LAEC (Supplementary Table S4). No significantly enriched motif was
identified for DF. The known motifs of LCL HVGs include that of NF-kB subunit gene, RELA,
and that of BACH2 (Fig. 3A). The known motifs of LAEC HVGs include TATA box and that of
CEBPB (Fig. 3B).

To further explore the involvement of HVGs in cell type-specific regulatory network, we focused
on LCL HVGs in a well-studied gene regulatory network that orchestrates B cell fate dynamics
(Sciammas et al. 2011; Nutt et al. 2015; Roy et al. 2019). This known regulatory network involves
eight genes, including three LCL HVGs: PRDM1 (or Blimp-1), AICDA (or AID), and IRF4, two
key regulatory genes with binding motifs enriched in targeting LCL HVGs (see above): RELA
and BACH2, and three other key regulators: BCL6, PAX5, and REL (cRel)(Fig. 4A). We
examined the inter-relationship between across-cell expressions of three LCL HVGs (Fig. 4B).
The scatter plot shows that the directionality of the correlation between AICDA and IRF4
depends on the expression level of PRDM1. Among cells with relatively low expression of
PRDM1, expressions of AICDA and IRF4 are negatively correlated. Whereas, among cells in
which PRDM1 is highly expressed, expressions of AICDA and IRF4 are positively correlated.
This nonlinear relationship between expressions of HVGs suggests they are embedded in a
tightly regulated expression network. Thus, we examined the all-by-all correlation between
expressions of all eight genes in this regulatory network using the imputed data of the
homogenous LCLs (Fig. 4C). By comparing the sign of correlation coefficient of each pair of
genes with the regulatory directionality of the gene pair in the model network, we found that the
correlation matrix can be used to correctly recover 16 out of 18 direct regulatory relationships.
The result suggests that, even in this highly homogenous population of LCLs, cells retain gene

regulatory network activities that orchestrate cell fate dynamics as in their original B cells.
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Single cell expression variability is more similar between genetically related samples
than unrelated samples

Given that scEV is important for cell function, we thought the level of scEV may be genetically
determined. If true, then we expect that the similarity in scEV between cell lines derived from
two genetically related individuals is higher than that between cell lines derived from two
unrelated individuals. To test this, we performed the scRNA-seq with another LCL—GM18502,
derived from a donor of African ancestry, unrelated to GM12878. We processed GM18502 along
with GM12878 in the same batch (Materials and Methods), along with a technical replicate
sample made from a 1:1 mixture of the two (Osorio et al. 2019). For comparison, we also
obtained scRNA-seq data from the study of (Zhang et al. 2019) for another LCL GM12981. The
donor of GM128091 is the father of GM12878. We estimated the scEV for these two additional
scRNA-seq data sets: one from GM18502 (unrelated) and the other from GM12891 (father),
using the same procedure applied to GM12878. To measure the correlation between scEV of
different samples, we used both the Spearman correlation coefficient (SCC) and Pearson
correlation coefficient (PCC). Across genes, the correlation between residual variability
estimated from GM12878 and that from GM12891 (daughter-father) is p=0.92 (SCC) or r=0.94
(PCC)(Supplementary Fig. S3). That is to say, 85% (=r2) of the variance in scEV across genes
of a daughter can be explained by that of a father. In contrast, only 77% of the variance can be
explained by that of an unrelated individual—the correlation between GM12878 and GM18502
is p=0.87 (SCC) or r=0.89 (PCC)(Supplementary Fig. S3).

Note that, the similarity between these two related samples, GM12878 and GM12891 (daughter
and father), might have been underestimated. This is due to the gender difference between the
two samples was not taken into account. Furthermore, the two scRNA-seq data sets of them
were produced in different batches: GM12878 by us in this study and GM12891 by (Zhang et al.
2019). The batch effect could also influence the daughter-father correlation downward.
Nevertheless, we still observed a stronger correlation between the two related samples

compared to that between the two unrelated samples. These results suggest that scEV is likely to
be highly heritable.

When the correlation tests were performed across cell types, much weaker correlations were
observed: the correlation between LCL and LAEC is 0.60 (SCC) or 0.65 (PCC), and that between
LCL and DF is 0.57 (SCC) or 0.70 (PCC).
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Single cell expression variability is positively correlated with between-individual
expression variability

Next, we examined the relationship between scEV and inter-individual expression variability.
We distinguish between the two different types of variabilities at different organizational levels.
Specifically, the former is cell-to-cell variability in a population of cells, and the latter is inter-
individual variability at the human population level. We again focused on LCLs, for which
population-scale gene expression data are available from the Geuvadis RNA-seq project of 1,000
Genomes samples. The bulk RNA-seq data was downloaded as normalized expression matrix of
FPKM values. We retained data for all LCLs of European ancestry (CEU)(Lappalainen et al.
2013). With the residual variability estimated from scRNA-seq of GM12878 and that estimated
from the CEU population, we tested the correlation between the two estimates across genes.
When the test was conducted with all genes (n=8,424), we obtained a significant but weak
positive correlation (SCC, p = 0.19, p = 1.2x109). We wondered whether this positive correlation
was driven by subsets of genes. To identify these gene sets, we conducted the correlation tests
for the GO-defined gene sets one by one. Across all gene sets tested, the average SCC for gene
sets defined by GO biological process (BP) and molecular function (MF) terms are on average
p=0.28 and p=0.23, respectively. Strikingly, we found a small number of gene sets that
produced SCC much higher than averages. The functions of these gene sets include B-cell
activation involved in immune response (GO: 0002322), cytokine receptor activity
(G0O:0004896), cellular response to drug (GO: 0035690) and regulation of tyrosine
phosphorylation of stat protein (GO: 0042509)(Fig. 5), as well as leukocyte chemotaxis (GO:
0030595) and phospholipase activity (GO: 0004620)(for more examples, see Supplementary
Fig. S4). Thus, for these gene sets, scEV may contribute to the establishment of between-

individual expression variability.

No enriched functions associated with HVGs identified in human induced pluripotent
stem cells (iPSCs)

Finally, we argued, if scEV is the indicator of cell type-specific function then scEV in
undifferentiated cells should not be associated with any cellular functions. To test this, we
obtained the scRNA-seq data from the study of (Nguyen et al. 2018)(see Data Availability).
The data was generated from WTC-CRISPRi human iPSCs (Mandegar et al. 2016). Same as
other cell types we examined in this study, these iPSCs were also prepared using the 10X
Genomics Chromium controller. The released data contains five samples. We used the first
batch (sample 1) of the data to perform the HVG detection and function enrichment tests, using
the same procedure applied to other cell types. When plotting the relationship between log-
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transformed CV2 and log-transformed average expression (i), we found almost no genes
showing the deviated CV2 from the regression curve (Supplementary Fig. S5). That is, for the
majority of genes, scEV can be explained by technical noise and sampling stochasticity. Or, in
other words, iPSCs lack biological variability in single cell expression. Accordingly, we found no
significant GO terms or enriched pathways associated with nearly random HVGs in iPSCs. This
negative result is consistent with our prediction, based on the “variation is function” hypothesis,
for iPSCs, which are not expected to be associated with any cellular function found in

differentiated cells.

Discussion

Single cell expression variability (or scEV) is also called gene expression noise, implying the
stochastic nature of transcriptional activities in cells (Kaern et al. 2005; Raser and O'Shea
2005). Interrogating scEV data has provided insights into gene regulatory architecture (Mar et
al. 2011; Chalancon et al. 2012), and manipulating the magnitude of scEV, through using noise
enhancers or scEV-modulating chemicals, has been an approach to achieve drug synergies (Dar
et al. 2014). Understanding the origin and functional implications of scEV has long been

appreciated (Ko 1992; Fiering et al. 2000; Raj and van Oudenaarden 2008; Ecker et al. 2018).

In this study, we focused on scEV in human cells. More specifically, we wanted to characterize
different expression levels of genes within a highly homogeneous population of genetically
identical (or nearly isogenic) cells under the same environmental conditions. To this end, we set
out to quantify scEV in highly homogeneous populations of a sizable number of viable cells.
Working with cells of the same type, for example, LCL, we start by preprocessing data from
thousands of cells. We found that, even though we have firstly preprocessed the data and
retained only cells with similar library size and in the same cell cycle phase, it is not enough.
There are still marked substructures, shown as branches of cells, in the embedding cloud of cells
(Fig. 1A), as revealed by the new embedding algorithm (Moon et al. 2018). Retrospectively, we
applied the trajectory analysis and found out that one of the longest branches contains cells with

elevated expression of immunoglobulin genes (Supplementary Fig. S5).

Similarly, marked substructures were observed in the embedding plots of the other two cell
types, LAEC and DF. Genes that were differentially expressed and drove the formation of
branches of LAECs and DFs were different from those in LCL cells. Thus, there is no single or a
small set of marker genes that can be used to capture cellular heterogeneity across different cell

types, making the definition of populations of homogenous cells a tedious task. Our work might

10
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be the first focusing on comparing scEV in highly homogeneous cell populations across cell
types.

We showed that scEV estimated from homogeneous populations of selected cells for different
cell types carries information on cell type-specific function. Information on molecular functions
of cells and biological processes of a given cell type can be extracted from a set of highly variable
genes (HVGs), bearing significant biological meaning [see also (Dueck et al. 2015)]. HVGs
detected in different cell types do not overlap and can reveal the subtle differences in cellar
functions between cell types. These conclusions are reached based on our investigation of three

cell types and their corresponding HVGs.

First, LCLs are usually established by in vitro infection of human peripheral blood lymphocytes
with Epstein-Barr virus. The viral infection selectively immortalizes resting B cells, giving rise to
an actively proliferating B cell population (Neitzel 1986). B cells genetically diversity by
rearranging the immunoglobulin locus to produce diverse antibody repertories that allow the
immune system to recognize foreign molecules and initiate differential immune responses
(Tonegawa 1983; Papavasiliou et al. 1997; Mitchell et al. 2018). LCLs are produced through the
rapid proliferation of few EBV-driven B cells from the blood cell population (Ryan et al. 2006).
Thus, scRNA-seq data sets of LCLs offer a “snapshot” of highly diverse immunoglobulin
rearrangement profiles in a much larger population of polyclonal B cells established in donors of
these cell lines. Therefore, it is not unexpected to see quite a few immunoglobulin genes in the
top list of HVGs identified in LCLs. In addition to these immunoglobulin genes, a number of
other immune genes, especially C-C motif chemokine ligands (CCLs) and C-C motif chemokine
receptors (CCRs), are in the list of HVGs of LCL. These genes play important roles in allowing
the coordination of the activity of individual cells through intercellular communication, essential
for the immune system maintains robustness (Altan-Bonnet and Mukherjee 2019). The HVG co-
expression network analysis revealed the key role of the NF-xB pathway in facilitating
communications between immune cells (Tay et al. 2010; Mitchell et al. 2018). More strikingly,
we were able to reconstruct nearly entire NF-kB regulatory network, underlying differentiation
of activated B cells and antibody-secreting cells, by using the correlation and anti-correlation

relationships between expressions of HVGs and their regulatory genes.

Second, LAEC is a key cell type playing important roles in lung tissue remodeling, and
pulmonary inflammatory and immune responses (Hiemstra et al. 2015). The airway epithelium,
playing a critical role in conducting air to and from the alveoli, is a dynamic tissue that normally

undergoes slow but constant turnover. In the event of mild to moderate injury, the airway
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epithelium responds vigorously to re-establish an epithelial sheet with normal structure and
function. HVGs identified in LAECs, which are enriched with genes involved in collagen
formation, regulation of cell proliferation, and extracellular matrix organization, accurately
elucidate this aspect of functions of the airway epithelium. LAECs are also central to the defense
of the lung against pathogens and particulates that are inhaled from the environment. This

aspect of functions is also reflected in the enriched functionality of LAEC HVGs.

Third, DFs are responsible for generating connective tissue and play a critical role in normal
wound healing (Tracy et al. 2016). DFs are also commonly used in immunological studies (Zhao
et al. 2012; Ivashkiv and Donlin 2014; Hagai et al. 2018). HVGs identified in DFs again
accurately reflect these primary aspects of DF functions, including extracellular matrix
organization, keratinization, and regulation of signaling receptor activity. DF HVGs do have
several categories of enriched functions overlap with those of LAEC, which is not unexpected,

given that DF and LAEC have functional overlaps (Sacco et al. 2004).

Our results support the “variation is function” hypothesis, proposed by (Dueck et al. 2016),
suggesting that the aggregate cellular function may depend on scEV. Dueck and colleagues also
laid down several scenarios, including bet hedging, response distribution, fate plasticity, and so
on, in which the establishment of the relationship between scEV and cell function could be
attained. Our analytical framework using scRNA-seq data may be utilized in appropriate
systems to test the plausibility of these different scenarios. If scEV is an accountable and
credible surrogate of cell function, as we have shown in this study, then quantifying and
characterizing scEV may become a first-line approach for understanding the function of cell
types and tissues. Indeed, when we applied this framework to scRNA-seq data from human
iPSCs, we observed no enriched gene functions and no regulatory pathways/networks associated
with HVGs in iPSCs. This anti-example, showing no variation no function, further validates the

“variation is function” hypothesis.

Through sequencing LCLs from three donors, we were able to compare the overall scEV across
genes between related and unrelated LCL pairs. Our results suggest that scEV is a heritable trait
and its relative magnitude across genes is genetically determined. In theory, the heritability of
scEV can be estimated with more LCL samples from different donors of different levels of
relatedness. A pairwise similarity matrix between LCLs in scEV can be regressed with the
genetic relationship matrix between LCL donors, using a Haseman-Elston regression-type
analysis (Haseman and Elston 1972), to quantify the heritability. The normalization between

data from different LCLs (i.e., batch effect correction) can be achieved using the method of
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mutual nearest neighbors (Haghverdi et al. 2018), canonical correlation analysis (Butler et al.
2018) or manifold alignment (Amodio and Krishnaswamy 2018). With a population-scale
scRNA-seq data set in the future, we will be able to identify mutations associated with increased
scEV. At this moment, we still do not have such a resource of scRNA-seq data for samples from a

sizable number of human individuals.

Nevertheless, we have shown that, across certain sets of genes, scEV is positively correlated with
population-level expression variability. This correlation provides a new possibility to design
single cell assays with one sample to approximate the population variability of certain genes’
expression. This new method may be used to study disease-causing expression dysregulation
because it has been a number of cases that increased population-level expression variability has
been linked with diseases (Ho et al. 2008; Li et al. 2010; Ecker et al. 2015; Guan et al. 2016;

Huang et al. 2018).

In a visionary perspective article, Pelkmans (2012) pointed out that “Embracing this cell-to-cell
variability as a fact in our scientific understanding requires a paradigm shift, but it will be
necessary.” Indeed, scRNA-seq technologies have brought revolution to gene expression
analysis. The technical development gives us a new approach beyond the capacity of traditional
methods that rely on experimental measurements of population-average behavior of cells to
conceive regulatory network models and signal processing pathways. More importantly, for
traditional methods, by averaging information across many cells, differences among cells, which
may be important in explaining mechanisms, can be lost. Given the large degree of cell-to-cell
expression variability even between genetically homogeneous cells, conclusions reached as for
such with traditional average-based methods may be of low-resolution, incomplete, and
sometimes misleading (Tay et al. 2010; Bendall and Nolan 2012; Li and You 2013; Trapnell
2015). We have shown that scEV in highly homogeneous populations of human cells is
widespread, is heritable, and implies cell function. We conclude that single cell variability and
the information it contains are the key to a deepened understanding of cells and their functions.
Careful assessment and characterization of cell-to-cell expression variability in relevant cell

types will facilitate the study of normal cell functions as well as pathological cell processes.
Materials and Methods

LCL cell culture and scRNA-seq experiment
Two lymphoblastoid cell lines (LCLs), GM12878 (CEU) and GM18502 (YRI), were purchased
from the Coriell Institute for Medical Research. They were cultured in the RPMI-1640 medium
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supplied with 2mM L-glutamine and 20% of non-inactivated fetal bovine serum, incubated at
37°C under 5% CO2 atmosphere. For maintenance, cells were subcultured every three days by
adding fresh medium. For single cell sequencing, each cell line was subcultured with 200,000
viable cells/mL. To minimize the growth differences between those two cell lines, we plotted the
growth curve by counting the viable cells which are not stained with 0.4% trypan blue every day.
Both cell lines were harvested for single cell sample preparation and sequencing at day four
(stationary phase) following the Sample Preparation Demonstrated Protocol and Single Cell 3’
Reagent Kits v2 User Guide provided by 10X Genomics. Briefly, cells were mixed well in each
flask, and 1 mL of cell suspensions from each cell line were taken out. The cells were washed
three times by centrifuging, suspending and resuspending in 1X PBS with 0.04% BSA. Viable
cells were then counted using an automated cell counter (Thermo Fisher Scientific, Carlsbad,
CA). Cells (~5000 per cell line) were then pelleted and resuspended in the nuclease-free water
based on cell suspension volume calculator table, followed by GEM (Gel Bead-In-Emulsions)
generation and barcoding, the post GEM-RT cleanup, cDNA amplification, and library
construction and sequencing. The experiments were conducted at the Texas A&M Institute for
Genome Sciences and Society. The sequencing was conducted in the North Texas Genome
Center facilities using a Novaseq 6000 sequencer (Illumina, San Diego, CA). Raw reads for each
cell were analyzed using CellRanger (v2.0.0, 10X Genomics) and the outputs were aligned to the

human reference genome (GRCh38) to obtain the counts.

Non-LCL scRNA-seq data sets

The scRNA-seq data for lung airway epithelial cells (LAECs) was downloaded from the GEO
database using accession number GSE115982. The original data was generated in the study of
(Habiel et al. 2018) for CCR10- and CCR10* LAECs. We used the data generated from the
CCR10" cells with the sample identifier GSM3204305. The scRNA-seq data for primary dermal
fibroblasts (DFs) was generated in the study of (Hagai et al. 2018). We downloaded the data for
unstimulated DFs from the ArrayExpress database using accession number E-MTAB-5988. We
also downloaded scRNA-seq data (GEO accession number GSE111912) generated in the study of
(Zhang et al. 2019) for LCL sample GM12891. All of these data sets were produced using the 10X

Genomics scRNA-seq solutions.

Selection of highly homogeneous populations of cells
We used a supervised data analysis method to select highly homogeneous cells based on the
scRNA-seq expression profile of each cell. The procedure is summarized in a flowchart

(Supplementary Fig. S1). The main steps are as follows. We used Seurat (vo.2)(Butler et al.
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2018) to assign each cell into a cell cycle phase and excluded cells that are not considered to be
in G1-phase. We removed genes encoded in the mitochondrial genome from the analysis. We
then selected and retained cells with library size between 50 and 95 percentiles. We used
PHATE (Moon et al. 2018) to generate embedding plot of all remaining cells and inspected the
distributions of cells in the three-dimensional plot, and manually picked one “core” cell. Finally,
an additional 999 cells that are closest to the core cell, according to the Euclidean distances
between cells, were selected to form the final 1,000-cell population. This selection procedure

was applied to each of the three cell types independently.

Identification of HVGs

Highly variable genes (HVG) is based on the assumption that genes with high variance relative
to their mean expression are due to biological effects rather than just technical noise. We used
the method proposed in (Brennecke et al. 2013), which is implemented in function sc_hvg of
the scGEApp package (https://github.com/jamesjcai/scGEApp)(Cai 2019). This method starts
by adjusting the library size and assumes that the observed mean expression (#;) and the

observed CV2 (w;) of gene i among cells have the following relationship:
EWw) ~ a;/f; + ag

and

~

Wi

2
-  ~ _ _1 ,
al/ﬁl’ + ao Am 1/(m )

where m is the number of cells. The values of a, and a, are estimated by generalized linear
regression (GLM). The residual term w;/( @, /i; + d,) for each gene is used to test if the
observed CV2 is significantly larger than the expected CV2 via a chi-squared test. Multiple testing
p-value adjustment was performed by controlling the false discovery rate (FDR)(Benjamini and

Hochberg 1995).

Function enrichment analyses

To identify overrepresented biological functions of HVGs in different cell types, we performed
the GO enrichment analysis using Enrichr (Chen et al. 2013; Kuleshov et al. 2016) and GOrilla
(Eden et al. 2009). Enrichr was conducted for HVGs (FDR<0.01) against the rest of the
expressed genes with respect to pathways collected in the Reactome pathway knowledgebase
(Fabregat et al. 2018). GOrilla was performed with the list of genes sorted in descending order of

their residual variability.
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Analyses of Co-expression network and regulatory regions of HVGs

MAGIC (van Dijk et al. 2018) was used to impute the expression matrix. The co-expression
networks were constructed using SBEToolbox (Konganti et al. 2013). The motif analysis of the
regulatory regions associated with the HVGs was performed using the GREAT (McLean et al.
2010). Genomic coordinates for the HVG genes from the Human Reference Genome (hg19) were
downloaded from the Ensembl Biomart (Smedley et al. 2009) and converted into bed format
using an in-house script. Identified motifs were searched against the JASPAR database (Khan et

al. 2018) to match the binding sites of corresponding TFs.

Data availability

The data sets produced in this study and computer code are available:

1. LCLs GM12878 and GM18502 scRNA-seq data in the Gene Expression Omnibus (GEO)
database with accession number GSE126321:
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE126321

2. LCL GM12891 scRNA-seq data in the Gene Expression Omnibus (GEO) database with
accession number GSE111912: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=
GSE111912

3. LAEC scRNA-seq data in the Gene Expression Omnibus (GEO) database with accession
number GSE115982: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE115982

4. DF scRNA-seq data in ArrayExpress database with accession number E-MTAB-5988:
https://www.ebi.ac.uk/arrayexpress/experiments/ E-MTAB-5988

5. Human iPSC scRNA-seq data in ArrayExpress database with accession number E-
MTAB-6687: https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-6687

6. Computer codes used to analyze data: https://github.com/cailab-tamu/LCL_scRNA-seq
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Tables

Table 1. Representative HVGs identified in the three cell types: LCL, LAEC, and DF, and the results of functional enrichment

analyses. Genes are sorted by residual variability. The top 50 genes with the highest residual variability values are selected as

representative HVGs.

TUBB4B WFDCz2

10. response to chemical (GO:0042221)

Cell type Highly variable genes Enriched GO terms, top 10 Enriched Reactome pathways, top 10
(HVGs), top 50

Lymphoblastoid | ANKRD37 ATF3 BIN1 BMP4 | 1. signal transduction (GO:0007165) 1. Immune System (R-HSA-168256)

Cell line (LCL) CAMP CCL22 CCL3 CCL3L3 | 2. response to stimulus (GO:0050896) 2. Chemokine receptors bind chemokines (R-
CCL4 CCL4L2 CCR7 CD69 3. immune response (GO:0006955) HSA-380108)
CD7 CD83 CDKN1A CTSC 4. response to biotic stimulus 3. Interferon alpha/beta signaling (R-HSA-
CYP1B1 DHRS9 DUSP2 (GO:0009607) 909733)
FSCN1 HIST1H1C IER3 5. immune system process 4. Cytokine Signaling in Immune system (R-
IFI27 IGHG1 IGHG3 IGHM (GO:0002376) HSA-1280215)
IGKC ITM2A KCNMA1 6. response to external biotic stimulus 5. Interferon Signaling (R-HSA-913531)
LINCo0176 LINC01588 (G0O:0043207) 6. Peptide ligand-binding receptors (R-HSA-
LMNA LTA LTB MAL 7. response to external stimulus 375276)
MIER2 MIR155HG MYC (GO:0009605) 7. G alpha (i) signalling events (R-HSA-
NFKBIA PMCH PRSS2 RGS1 | 8. cytokine-mediated signaling pathway 418594)
RGS16 RGS2 RP11-291B21.2 (GO:0019221) 8. Innate Immune System (R-HSA-168249)
S100A4 SFN TNFAIP2 9. defense response (GO:0006952) 9. Interferon gamma signaling (R-HSA-

877300)
10. Cell Cycle (R-HSA-1640170)

Lung airway
epithelial cell
(LAEC)

AMTN ANKRD1 AREG CCL2
CCL5 CCL7 COL1A1 COL1A2
COL3A1 COL6A1 COL6A3
CRCT1 CTGF CXCL5 CXCL6
FBX032 GREM1 HAS2
IFNL1 IFNL2 IFNL3 IGFBP5
IGFL1IL17CIL23A KRTi4
KRT6B KRT81 LY6D MEG3
MMP1 MSMB OVOS2 PI3
POSTN PPBP RP11-338121.1
S100A7 S100A8 S100A9
SERPINB2 SERPINB3
SERPINB4 SLC15A2 SPARC
SUGCT SULF1 TEX26-AS1
TNFAIP6 TSLP

1. regulation of multicellular organismal
process (GO:0051239)

2. regulation of signaling receptor
activity (GO:0010469)

3. response to stimulus (GO:0050896)

4. regulation of cell proliferation
(GO:0042127)

5. developmental process
(G0O:0032502)

6. extracellular matrix organization
(GO:0030198)

7. response to chemical (GO:0042221)

8. response to organic substance
(GO:0010033)

1. Extracellular matrix organization (R-HSA-
1474244)

2. Assembly of collagen fibrils and other
multimeric structures (R-HSA-2022090)

3. Cytokine Signaling in Immune system (R-
HSA-1280215)

4. Collagen formation (R-HSA-1474290)

5. Signaling by Interleukins (R-HSA-449147)

6. Chemokine receptors bind chemokines (R-
HSA-380108)

7. Peptide ligand-binding receptors (R-HSA-
375276)

8. Collagen biosynthesis and modifying
enzymes (R-HSA-1650814)
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9. regulation of developmental process 9. Integrin cell surface interactions (R-HSA-
(G0O:0050793) 216083)
10. regulation of response to stimulus 10. Class A/1 (Rhodopsin-like receptors) (R-
(GO:0048583) HSA-373076)
Dermal ACAN ACTA2 ACTC1 CEMIP | 1. regulation of signaling receptor 1. Extracellular matrix organization (R-HSA-
fibroblast (DF) | CLU COMP CTSC CXCL1 activity (GO:0010469) 1474244)
DCN DKK1 FLG GoS2 GAL 2. developmental process 2. Regulation of Insulin-like Growth Factor
HIST1H4C IGFBP5 IGFBP7 (GO:0032502) (IGF) transport and uptake by Insulin-like
IL1RL1 KCNMA1 KRT14 3. keratinization (GO:0031424) Growth Factor Binding Proteins (IGFBPs)
KRT17 KRT19 KRT34 KRT81 | 4. anatomical structure development (R-HSA-381426)
KRTAPi1-5 KRTAP2-3 LCE1F (G0O:0048856) 3. ECM proteoglycans (R-HSA-3000178)
LUM MGP MMP1 MMP3 5. regulation of cell proliferation 4. Hemostasis (R-HSA-109582)
MT1X NMB OLFM2 PCP4 (GO:0042127) 5. Platelet degranulation (R-HSA-114608)
PENK PGF PI16 POSTN 6. regulation of multicellular organismal | 6. Dissolution of Fibrin Clot (R-HSA-75205
PPP1Ri4A PTTG1 PTX3 process (GO:0051239) 7. Response to elevated platelet cytosolic Caz2+
RARRES2 RGCC SCG5 7. extracellular matrix organization (R-HSA-76005)
SERPINE2 SFRP2 SFRP4 (G0O:0030198) 8. Negative regulation of TCF-dependent
STMN2 TFPI2 TNFRSF11B 8. extracellular structure organization signaling by WNT ligand antagonists (R-
(G0O:0043062) HSA-3772470)
9. response to oxygen-containing 9. GPCR ligand binding (R-HSA-500792)
compound (GO:1901700) 10. Peptide ligand-binding receptors (R-HSA-
10. multicellular organismal process 375276)

(GO:0032501)
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Figure legends

Fig. 1. Selection of a highly homogenous cell population for variability analysis. (A) Three-
dimensional PHATE embedding plot for Gi-phase cells of GM12878. Each point represents a
single cell in the three-dimensional space. The red circle indicates the approximate positions of
1,000 selected cells. (B) Embedding plots generated for the 1,000 selected cells with t-SNE

algorithm with a series of perplexity values.

Fig. 2. Identification of highly variable genes (HVGs). (A) The relationship between CV2 and
mean expression of genes in LCL. GM12878. The red line shows the trend for the GLM fit curve
between CV2 and mean expression and used to identify HVGs. For each gene, the residual
variability is calculated as the difference between observed CV2 and expected CV2 from the fitted
curve. (B) Expression profiles of selected HVGs and lowly variable genes across cells. Cells are
unsorted and remain a random order. Each vertical line is a cell and the height of line indicates

the level of gene expression (UMI counts) in the cell.

Fig. 3. Co-expression networks of top HVGs. (A) Co-expression network between most-variable
HVGs of LCL and two enriched binding motifs identified in these HVGs. (B) and (C) are for
LAEC and DF, respectively.

Fig. 4. Gene regulatory network and correlation matrix of LCL HVGs. (A) NF-xB regulatory
network model for activated B cell (ABC)-antibody secreting cell (ASC) differentiation, modified
from (Roy et al. 2019). Bold font indicates HVGs; asterisk indicates the upstream TFs targeting
HVGs; solid line dashed line indicates the regulatory relationship supported by the correlation
between two corresponding genes, and the dashed line indicates regulatory relationship not
supported by the expression correlation between genes. (B) Scatter plot of cells, showing the
correlation between expression levels of three HVGs: IRF4, AICDA (AID) and PRDM1 (Blimp-
1). The color bar indicates the expression level of PRDM1 (Blimp-1). (C) Correlation matrix
between expression levels of eight genes involved in the model. Red boxes indicate that the
direction of correlation between two genes is consistent with the direction of the relationship
between the two in the regulatory model. Green boxes indicate inconsistency, while black boxes
indicate no direct relationship according to the model. P-value in red indicated high significance

(p < 0.01 after Bonferroni correction).

Fig. 5. Correlation between scEV (i.e., residual variability estimated from LCL GM12878) and
the population-level expression variability (measured in LCLs derived from unrelated
individuals of European ancestry, CEU) between genes of selected gene sets. More examples can

be found in Supplementary Fig. S3.

19


https://doi.org/10.1101/574426
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/574426; this version posted March 28, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-ND 4.0 International license.

Supplementary figure legends

Fig. S1. Flowchart of selection of a highly homogeneous population of cells.

Fig. S2. Correlation analyses of scEV between two genetically related LCL samples and between

two genetically unrelated LCL samples.

Fig. S3. Correlation between scEV and population-level expression variability across genes of

functional sets.

Fig. S4. PHATE 3-D embedding plot for cells colored according to IGLC2 expression level in

cells.

Fig. S5. The relationship between CV2 and mean expression of genes in human iPSCs.
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Fig. 4.
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Fig. 5.
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