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Abstract	
Here,	 we	 describe	 an	 information-theory-based	 method	 and	 associated	 software	 for	
computationally	 identifying	 sister	 spores	 derived	 from	 the	 same	 meiotic	 tetrad.	 The	
method	 exploits	 specific	 DNA	 sequence	 features	 of	 tetrads	 that	 result	 from	 meiotic	
centromere	 and	 allele	 segregation	 patterns.	 Because	 the	 method	 uses	 only	 the	 genomic	
sequence,	it	alleviates	the	need	for	tetrad-specific	barcodes	or	other	genetic	modifications	
to	 the	 strains.	 Using	 this	method,	 strains	 derived	 from	 randomly	 arrayed	 spores	 can	 be	
efficiently	grouped	back	into	tetrads.	
	

	

Introduction	
In	 many	 eukaryotes,	 including	 the	 genetically	 tractable	 yeasts	 Saccharomyces	 cerevisiae	
and	 Schizosaccharomyces	 pombe,	 the	 filamentous	 fungus	 Neurospora	 crassa,	 and	 the	
unicellular	 green	 alga	Chlamydomonas	reinhardtii,	 it	 is	 possible	 to	 recover	 all	 four	 of	 the	
haploid	 products	 of	 a	 single	 meiosis,	 tetrads.	 	 These	 tetrads	 can	 be	 characterized	
genetically	 and	 phenotypically.	 Tetrad	 analysis	 is	 a	 powerful	 technique	 that	 is	 routinely	
used	 to	make	 associations	 between	 genetic	 variation	 and	 phenotype,	 uncover	 gene-gene	
interactions,	 and	 identify	 non-reciprocal	 meiotic	 recombination	 events	 (e.g.	 gene	
conversions).		

The	manual	processes	of	 isolating,	disrupting,	and	arraying	spores	 in	conventional	 tetrad	
analysis	 have	 limited	 its	 application	 to	 relatively	 small-scale	 studies.	 The	 conventional	
method	 has	 two	 steps	 that	 are	 difficult	 to	 automate,	 isolating	 tetrads	 away	 from	
unsporulated	 cells	 in	 the	 culture	 and	 capturing	 the	 sister	 spore	 relationships	 of	 the	
resulting	 progeny	 strains	 by	 arraying	 the	 spores	 in	 a	 gridded	 pattern.	 We	 previously	
described	a	method,	BEST	(Barcode	Enabled	Sorting	of	Tetrads)	(Ludlow	et	al.	2013;	Scott	
et	 al.	 2014),	 that	 uses	 a	 meiosis-specific	 GFP	 fusion	 protein	 to	 isolate	 tetrads	 by	
fluorescence-activated	 cell	 sorting	 of	 tetrads	 and	 molecular	 barcodes	 to	 identify	 sister	
spores	of	the	same	tetrad	by	DNA	sequencing.		
Although	plasmid-borne	tetrad-specific	molecular	barcodes	are	well	suited	for	 laboratory	
strains	 of	 S.	 cerevisiae,	 they	may	 not	 be	 as	 useful	 for	 organisms	 that	 are	 less	 genetically	
tractable	 (e.g.	 with	 low	 transformation	 efficiency	 or	 poor	 maintenance	 of	
extrachromosomal	 plasmids)	 or	 for	 the	 construction	 of	 non-genetically	modified	 strains.		
The	 problem	 of	 reconstructing	 tetrad	 information	 from	 a	 large	 set	 of	 randomly	 arrayed	
spores	can	be	viewed	as	 two	sub-problems:	 (1)	 finding	a	 reliable	measure	 that	 identifies	
groups	of	four	sister	spores	(a	tetrad);	and	(2)	defining	an	appropriate	search	strategy	to	
efficiently	 traverse	 a	 very	 large	 set	 of	 possible	 spore	 groupings	 while	 applying	 this	
measure.	Here,	we	describe	an	 information-theory-based	metric	 that	solves	 the	 first	sub-
problem	and	software	implementing	a	search	strategy	utilizing	this	metric	that	solves	the	
second.	Because	the	method	uses	only	the	genomic	DNA	sequence	of	the	meiotic	products,	
it	 can	 be	 applied	 to	 strains	 or	 organisms	 for	 which	 genetic	 manipulation	 is	 difficult	 or	
undesirable.	
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Results	

	
The	 mechanisms	 of	 recombination	 and	 chromosome	 segregation	 produce	 unique	
genotypic	signatures	for	each	meiosis	

Meiosis	 is	 a	 process	 in	 which	 a	 diploid	 cell	 undergoes	 one	 round	 of	 DNA	 replication	
followed	 by	 two	 rounds	 of	 chromosome	 segregation	 and	 cell	 division	 to	 produce	 four	
recombinant	 haploid	 progeny.	 In	 the	 first	 meiotic	 division,	 the	 two	 homologs	 of	 each	
chromosome	recombine	and	then	segregate	to	the	opposite	poles	of	the	meiotic	spindle.	In	
the	 second	 meiotic	 division,	 the	 two	 chromatids	 of	 each	 recombinant	 chromosome	
segregate	with	 no	 further	 recombination	 (Figure	 1A).	 Therefore,	 in	 the	 absence	 of	 rare	
gene-conversion	 events,	 at	 each	 position	 that	 is	 heterozygous	 in	 the	 original	 diploid,	
exactly	two	spores	will	inherit	allele	“A”	and	exactly	two	will	inherit	allele	“B”	(Figure	1A).	
Additionally,	 because	 sister	 chromatids	 only	 segregate	 from	 each	 other	 at	 the	 second	
meiotic	 division,	 two	 of	 the	 spores	 will	 have	 identical	 centromeric	 alleles	 for	 every	
chromosome,	while	 the	other	 two	spores	will	both	have	 the	mirror	 image	of	 this	pattern	
(Figure	1B).	Thus,	centromere	allele	segregation	patterns,	constrained	allele	frequencies,	
and	 patterns	 of	 recombination	 breakpoints	 can	 be	 viewed	 as	 genotypic	 signatures	 for	
individual	 meioses.	 These	 signatures	 could,	 in	 principle,	 be	 used	 to	 reconstruct	 tetrads	
computationally	from	the	DNA	sequences	of	randomly	arrayed	spores.	

Here,	we	report	a	 computational	method,	hereafter	 “tetrad	reconstruction”,	 that	uses	 the	
pattern	of	centromere	segregation	and	the	constrained	allele	frequencies	within	a	tetrad	to	
infer	 the	 original	 sister	 spore	 relationships	 of	 recombinant	 progeny.	 Our	 method	 takes	
genotype	data	for	all	of	the	progeny	strains	as	input	and	then	proceeds	in	two	steps.		First,	
the	 centromere	 segregation	 pattern	 is	 used	 to	 reduce	 the	 number	 of	 potential	 spore	
patterns	to	be	searched.	Then,	the	constrained	allele	segregation	patterns	are	used	as	the	
signal	to	identify	members	of	the	same	tetrad.	
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Figure	1.	(A)	Behavior	of	a	single	chromosome	during	meiosis.	In	the	initial	heterozygous	diploid	(top)	there	
are	two	copies	of	the	“A”	haplotype	(blue	chromatids)	and	two	copies	of	the	“B”	haplotypes	(red	chromatids).	
Centromeres	are	shown	as	circles.	The	two	“A”	centromeres	remain	paired	until	the	second	meiotic	division,	
as	do	the	two	“B”	centromeres.	Spores	(haploid	meiotic	products)	are	shown	as	dotted	ovals.	(B)	Segregation	
pattern	shown	for	3	chromosomes.	For	each	chromosome,	segregation	of	the	“red”	or	“blue”	homologs	to	the	
left	or	to	the	right	side	at	the	first	meiotic	division	occurs	at	random,	but	for	each	chromosome	the	two	sister	
“red”	 and	 the	 two	 sister	 “blue”	 centromeres	 always	 remain	 paired	 until	 the	 second	 meiotic	 division.	
Therefore,	at	each	centromere	the	two	leftward	spores	always	share	the	same	allele	and	the	two	rightward	
spores	share	the	other	allele.	
	

	
Using	centromere	segregation	patterns	to	reduce	the	search	space	for	spores	from	
the	same	tetrad	

With	an	appropriate	metric	based	on	allele	frequencies	or	recombination	breakpoints,	it	is	
possible	to	distinguish	a	group	of	spores	from	the	same	tetrad	from	other	groups	of	spores.	
However,	 applying	 this	 metric	 in	 an	 exhaustive,	 brute	 force	 search	 across	 all	 possible	
groups	of	 spores	 in	 a	 large	dataset	 is	 computationally	 demanding.	To	 reduce	 this	 search	
space	 and	 simplify	 the	 computational	 problem,	 we	 implemented	 an	 efficient	 heuristic	
based	on	the	segregation	patterns	of	centromeres	in	tetrads,	i.e.	the	fact	that	two	spores	of	
a	tetrad	harbor	the	same	alleles	at	each	centromere	and	the	other	two	spores	both	share	
the	 opposite	 pattern	 (Figure	 1B).	 Our	 heuristic	 search	 leverages	 this	 property	 by	 first	
attempting	 to	 partition	 the	 set	 of	 all	 spores	 into	 clusters	 of	 spores	 whose	 centromere-
flanking	markers	are	either	a	perfect	match	or	a	complete	mismatch.	Unless	a	polymorphic	
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marker	 is	 present	 at	 the	 centromere	 itself,	 it	 is	 not	 possible	 to	 determine	 the	 haplotype	
origin	 (“A”	 or	 “B”)	 of	 centromeres	 with	 absolute	 certainty.	 Therefore,	 we	 compute	 the	
probability	of	each	centromere	coming	from	haplotype	"A"	or	haplotype	"B"	based	on	the	
alleles	 of	 the	 flanking	 markers	 and	 the	 empirically-estimated	 recombination	 frequency	
between	 them	and	 the	 centromere	 (Appendix	 G).	Given	 these	probabilities,	we	derive	 a	
similarity	 coefficient	 between	 all	 spores	 (Appendix	 B)	 and	 use	 a	 fast	 greedy	 algorithm	
(Clauset	2004)	to	cluster	spores	based	on	these	similarity	coefficients.	
There	 are	 2N	 unique	 segregation	 patterns,	 where	 N	 is	 the	 number	 of	 chromosomes.	
However,	only	half	of	these	patterns	(2N-1)	can	uniquely	identify	a	tetrad,	since	each	tetrad	
contains	two	patterns	opposite	to	one	another	(see	Figure	1B).	Therefore,	 for	organisms	
with	 a	 sufficiently	 large	 number	 of	 chromosomes,	 our	 clustering	 algorithm	based	 on	 the	
centromere	segregation	heuristic	should	produce	small	clusters	that	contain	all	members	
of	a	given	tetrad.	For	example,	in	S.	cerevisiae,	which	has	sixteen	chromosomes,	the	chance	
of	two	tetrads	sharing	a	centromere	segregation	pattern	is	1/215.	However,	in	an	organism	
with	fewer	chromosomes,	such	as	S.	pombe,	which	has	only	three,	more	than	one	tetrad	will	
often	 be	 assigned	 to	 a	 single	 cluster.	 In	 addition,	 factors	 such	 as	 sequencing	 errors,	 or	
crossovers	between	a	centromere	and	its	flanking	markers,	can	also	lead	to	false	positive	or	
false	 negative	 tetrad	 assignments.	 Therefore,	 although	 it	 reduces	 the	 search	 space	 for	
subsequent	steps,	this	heuristic	alone	is	not	sufficient	to	accurately	reconstruct	tetrads.		

	
Using	 information	 theory	 to	 reconstruct	 tetrad	 relationships	 based	 on	 2:2	 allele	
segregation	

The	metric	that	we	chose	to	use	for	unambiguously	identifying	members	of	the	same	tetrad	
is	based	on	the	fact	that	at	each	marker	locus	in	a	tetrad,	two	spores	inherit	the	“A”	allele	
and	two	spores	inherit	the	“B”	allele	(Figure	1).	 	Thus,	the	allele	patterns	within	a	tetrad	
are	 constrained	 and	 knowledge	 of	 the	 genotype	 of	 one	 spore	 changes	 the	 allele	
probabilities	for	the	other	three	spores.	For	example,	at	every	position	where	an	“A”	allele	
is	 observed	 in	 one	 spore,	 the	 probability	 of	 the	 “A”	 allele	 in	 any	 of	 the	 remaining	 three	
spores	 of	 the	 same	 tetrad	 changes	 from	 50%	 to	 33%.	 In	 contrast,	 knowledge	 of	 the	
genotype	of	a	spore	from	one	tetrad	does	not	affect	the	allele	probabilities	in	spores	from	
different	 tetrads.	 As	 such,	 tetrad-specific	 relationships	 can	 be	 viewed	 as	 dependencies	
among	 the	 four	allele	vectors	of	 a	 tetrad	 (one	vector	 for	 each	 spore	genotype),	 and	 such	
dependencies	can	be	detected	using	methods	 from	 information	 theory.	 In	contrast	 to	 the	
centromere	 heuristic,	 this	 constrained	 allele	 frequency	 approach	 uses	 a	 much	 larger	
number	of	genotyped	markers,	making	the	approach	less	sensitive	to	individual	genotyping	
errors	and	more	successful	at	disambiguating	tetrad	assignments.	
Mutual	 information	 is	 a	 well-known	measure	 that	 quantifies	 the	 amount	 of	 dependency	
between	 two	 categorical	 variables	 (Appendix	 A),	 and	 interaction	 information	 (McGill,	
1954)	 is	a	multivariable	generalization	of	 this	measure	(Appendix	A).	 	While	 interaction	
information	has	a	number	of	drawbacks	(Bell,	2003;	Jakulin	and	Bratko,	2004;	Sakhanenko	
and	Galas,	2011),	it	can	be	used	in	principle	to	devise	measures	of	dependency	among	any	
number	of	variables.	Because	the	genotypes	of	a	group	of	spores	from	the	same	tetrad	are	a	
set	of	dependent	variables,	they	should	produce	a	strong	interaction	information	signal.	In	
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contrast,	if	the	genotype	of	a	spore	from	a	different	tetrad	(an	independent	variable)	is	then	
added	 to	 the	 group,	 the	 interaction	 information	 should	 be	 close	 to	 zero.	 Thus,	 an	
interaction	information	approach	might	be	able	to	identify	groups	of	four	strains	that	were	
sister	 spores	 from	 the	 same	 tetrad.	 Furthermore,	 in	 cases	 where	 spores	 are	 missing	 or	
inviable,	the	allele	vectors	of	the	remaining	spores	will	still	show	dependencies	among	one	
another,	detectable	by	mutual	information	between	two	spores	or	interaction	information	
between	three	spores.			
To	 test	 the	 ability	 of	 interaction	 information	 to	 identify	 groups	 of	 spores	 from	 the	 same	
tetrad,	we	generated	a	 simulated	dataset	of	100	S.	cerevisiae	 tetrads	with	1000	markers,	
1%	 noise	 (genotyping	 errors),	 and	 5%	missing	 data	 (Appendix	 F).	 	We	 then	 calculated	
interaction	 information	 for	 the	 real	 tetrads	 and	 for	 groups	 of	 4-spores	 derived	 from	
different	 tetrads.	On	 average,	 true	 tetrads	 scored	highly	 by	 this	metric,	while	 incorrectly	
grouped	 spores	 had	 scores	 centered	 on	 zero.	 However,	 while	 most	 incorrect	 groups	 of	
spores	scored	poorly,	there	were	a	number	of	false	positives,	 i.e.	 incorrect	groupings	that	
scored	as	highly	as	some	of	the	true	tetrad	groups	(Figure	2A).	A	similar	result	was	seen	
with	groups	of	three	spores	from	the	same	tetrad	versus	incorrect	groupings	of	3-spores,	
and	 the	 overlap	 was	 even	 stronger	 in	 this	 case	 (Figure	 2B).	 These	 results	 suggest	 that	
noise	in	the	data	limits	the	ability	of	interaction	information	to	cleanly	distinguish	correct	
groups	of	three	or	four	spores	derived	from	the	same	tetrad	from	incorrect	groupings.	

	

	
Figure	2.	Interaction	Information	computed	on	groups	of	(a)	4	spores	and	(b)	3	spores.	All	measures	were	
computed	on	the	simulated	S.	cerevisiae	data	(1000	markers,	100	tetrads,	1%	noise,	and	5%	missing	data).		
Panel	(a)	distinguishes	four	possible	categories	of	4-spore	groups	based	on	the	number	of	spores	derived	
from	the	same	tetrad	(shown	on	the	x-axis)	and	shows	a	letter-value	(LV)	plot	for	each	category.	The	purple	
LV	plot	shows	the	Interaction	Information	scores	for	all	possible	real	tetrads.	Similarly,	panel	(b)	shows	the	
scores	for	three	different	categories	of	3-spore	groups.	For	the	categories	where	all	spores	are	from	different	
tetrads	(the	red	LV	plots	in	(a)	and	(b)),	only	2	million	randomly	sampled	groups	are	shown.	Note	that	the	
Interaction	Information	signal	associated	with	true	sister	spores	is	negative	at	the	3-spore	level	and	positive	
at	the	4-spore	level,	while	noise	is	clustered	around	zero	in	both	cases.	

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 12, 2019. ; https://doi.org/10.1101/574376doi: bioRxiv preprint 

https://doi.org/10.1101/574376
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 7	

	

To	explore	this	problem	further,	we	considered	the	behavior	of	interaction	information	at	
multiple	levels	of	complexity.	As	expected,	a	real	tetrad	has	strong	interaction	information	
signal	at	the	4-spore	level	as	well	as	at	the	3-spore	level	for	all	subgroups	of	three	spores	
(Figure	3a	and	S7).		In	contrast,	when	an	incorrectly	assembled	tetrad	has	a	relatively	high	
interaction	information	signal	at	the	4-spore	level	due	to	noise,	this	signal	does	not	extend	
to	its	3-spore	subgroups	(Figure	3a,	green	oval),	a	result	that	suggests	that	noise	at	the	3-
spore	and	4-spore	levels	is	not	correlated.		We	also	observed	similar,	but	noisier,	patterns	
between	 the	 2-	 and	 3-spore	 levels	 (Figure	 3b,	 green	 oval).	 Thus,	 we	 hypothesized	 that	
combining	 interaction	 information	at	 the	4-spore	and	3-spore	 levels	or	 from	 the	3-spore	
and	2-spore	levels	should	substantially	strengthen	the	signal	separating	real	4-	and	3-spore	
tetrads	from	false	ones.			
	

	
Figure	3.	Comparison	of	the	amount	of	information	between	(a)	2-spore	and	3-spore	levels	and	between	(b)	
3-spore	and	4-spore	levels	as	measured	by	interaction	information.	All	measures	were	computed	on	the	same	
data	as	 in	Figure	2.	Panel	(a)	shows	the	scatter	plot	of	scores	computed	on	various	groups	of	4	spores	and	
their	3-spore	subsets	while	panel	(b)	shows	the	scores	for	groups	of	3	spores	and	their	2-spore	subsets.	Each	
group	is	colored	red	if	all	spores	of	the	group	came	from	the	same	tetrad	and	blue	if	at	least	two	spores	came	
from	a	different	tetrad.	The	scores	of	the	red	sets	are	plotted	in	their	entirety,	whereas	for	the	blue	sets	we	
randomly	 selected	 2	million	 groups.	 Green	 ovals	 indicate	 the	 situation	when,	 due	 to	 noise,	 the	 interaction	
information	shows	relatively	high	signal	at	one	level	for	a	group	of	spores	derived	from	more	than	one	tetrad.	
Note	that	at	the	level	below,	the	signal	from	these	groups	is	close	to	zero.	

	

To	combine	 interaction	 information	at	different	spore-number	 levels,	we	used	a	measure	
based	on	differential	interaction	information,	called	“delta”	(Galas	et	al.,	2014;	Sakhanenko	
and	 Galas,	 2015;	 Galas	 and	 Sakhanenko,	 2016).	 	 Differential	 interaction	 information	
quantifies	the	change	in	interaction	information	that	occurs	when	a	new	variable	is	added	
to	 a	 set	 of	 existing	 variables.	 Unlike	 the	 interaction	 information	 measure,	 differential	
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interaction	 information	 is	 not	 symmetric,	 but	 is	 specific	 to	 which	 variable	 is	 added.	 	 A	
symmetric	measure	results	from	the	product	of	differential	interaction	information	with	all	
possible	choices	of	the	added	target	variable,	and	this	product	is	“delta”	(Appendix	A).	

Consistent	 with	 our	 hypothesis,	 delta	 performed	 significantly	 better	 than	 interaction	
information	 in	 distinguishing	 groups	 of	 spores	 from	 the	 same	 tetrad	 from	 incorrect	
groupings	(see	Figure	 4,	also	Figures	 S6	and	S7).	By	combining	 information	at	different	
degree	levels,	the	delta	measure	allowed	us	to	distinguish	the	real	tetrads	from	all	other	4-
spore	 groups,	 with	 a	 false	 positive	 rate	 of	 zero	 using	 the	 test	 dataset.	 Furthermore,	 the	
difference	between	real	tetrads	and	incorrect	4-spore	groupings	was	orders	of	magnitude	
larger	when	measured	with	 delta	 as	 opposed	 to	 interaction	 information.	 This	 difference	
can	also	be	 seen	at	 the	3-spore	 level:	 groups	of	3	 sister	 spores	are	 separated	away	 from	
other	3-spore	groups	if	we	use	delta	(see	Figure	4d)	as	opposed	to	interaction	information	
(see	Figure	4c)	where	these	two	distributions	of	3-spore	groups	are	more	ambiguous.		

	

	
Figure	4.	Comparison	of	the	ability	of	Interaction	Information	and	the	delta	measure	to	distinguish	groups	of	
sister	spores	from	all	other	groups.	Panel	(a)	shows	LV	plots	of	Interaction	Information	scores	computed	on	
groups	of	4	spores	 from	the	same	tetrad	(in	blue)	and	on	all	other	groups	of	4	spores	(in	green).	Panel	(b)	
shows	 delta	 scores	 computed	 on	 the	 same	 4-spore	 sets.	 Similarly,	 panels	 (c)	 and	 (d)	 show	 Interaction	
Information	 and	 delta	 scores	 computed	 on	 triplets	 of	 sister	 spores	 (in	 blue)	 and	 triplets	 of	 spores	 from	
different	tetrads	(in	green).	All	measures	were	computed	on	the	same	data	as	in	Figure	2.		
	

Thresholds	 for	 identifying	 spores	 from	 the	 same	 tetrad	 and	 validation	 using	 2:2	
allele	segregation	
To	 construct	 a	 classifier	 that	 uses	 delta	 for	 tetrad	 reconstruction,	 we	 need	 to	 identify	 a	
threshold	that	distinguishes	true-positive	tetrads	from	false-positive	groups	of	spores	with	
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high	 likelihood.	 We	 establish	 this	 threshold	 by	 randomizing	 the	 dataset	 that	 will	 be	
analyzed	 in	 order	 to	 produce	 a	 null	 distribution	 consisting	 of	mostly	 non-tetrad	 groups.		
Computing	delta	scores	for	all	 the	elements	of	the	null	distribution,	the	delta	threshold	is	
then	defined	based	on	a	user-defined	p-value.	 	The	default	for	4-spore	tetrads	is	0.05,	but	
our	software	allows	the	user	to	adjust	this	parameter.		A	group,	whose	delta	score	is	above	
the	threshold,	is	then	identified	as	a	candidate	tetrad	for	validation.		We	note	that	the	null	
distributions	 obtained	 by	 this	 permutation	 also	 include	 a	 small	 proportion	 of	 groups	 of	
spores	from	the	same	tetrad,	so	the	cutoffs	are,	in	practice,	slightly	conservative.	

In	 a	 real	 tetrad	 with	 no	 gene	 conversions,	 every	 marker	 segregates	 2:2,	 i.e.	 two	 spores	
inherit	 the	 “A”	 allele	 and	 two	 spores	 inherit	 the	 “B”	 allele.	 Since	 this	 information	 is	 not	
explicitly	used	in	calculating	the	delta	scores	(which	reflect	the	dependencies	between	the	
spore	 genotypes,	 but	 not	 the	 exact	 form	 of	 the	 dependencies),	 it	 can	 be	 used	 as	 a	
subsequent	 validation	 test.	 	 For	 a	 candidate	 tetrad	 to	 be	 validated	 and	 labeled	 as	 a	 real	
tetrad,	we	require	the	fraction	of	markers	with	2:2	segregation	to	be	close	to	1	(above	0.9	
by	default).	 	 For	a	partial,	 3-spore	 tetrad	 the	process	 is	 similar,	 but	 the	method	uses	2:1	
segregation	and	a	cutoff	of	0.95.	We	refer	 to	 the	process	of	 identifying	candidate	 tetrads,	
performing	 validation,	 labeling	 real	 tetrads	 and	 removing	 them	 from	 the	 pool	 of	 spores	
used	for	further	consideration	as	tetrad	verification.	
	

Software	implementation	
Our	 software	 implementation	 combines	 the	 previously	 described	 methods	 as	 follows	
(Figure	5).	First,	spore	genotypes	are	preprocessed	to	remove	duplicate	spores	(identified	
using	the	edit-distance	between	allele	vectors)	and	spores	with	a	large	number	of	missing	
values.	 Next,	 the	 remaining	 spores	 are	 clustered	 based	 on	 their	 centromere-flanking	
markers.	Then,	the	software	searches	for	real	tetrads	within	each	cluster	based	on	the	delta	
score	of	each	spore	group.	Afterwards,	all	remaining	spores	that	have	not	been	assigned	to	
a	 tetrad	 are	 analyzed	 to	 identify	 any	 remaining	 tetrads	 and	 then	 any	partial	 tetrads,	 i.e.	
groups	of	three	sister	spores	(with	one	spore	missing	from	the	dataset)	and	groups	of	two	
sister	 spores	 (with	 two	 spores	 missing	 from	 the	 dataset).	 Finally,	 spores	 are	 assigned	
tetrad	 labels	 and	output	 to	 the	user.	 	 A	 detailed	 flow	 chart	 of	 the	 search	 is	 presented	 in	
Appendix	D	(Figure	S4).	

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 12, 2019. ; https://doi.org/10.1101/574376doi: bioRxiv preprint 

https://doi.org/10.1101/574376
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 10	

	
	

Figure	5.	A	general	overview	of	the	flow	of	the	software	for	tetrad	detection.	

	

The	default	method	for	identifying	true	tetrads	within	each	centromere-cluster	is	to	carry	
out	a	direct	search	of	all	possible	combinations	of	4	spores	using	delta.	Any	set	of	4-spore	
combinations	 passing	 the	 delta	 score	 threshold	 then	 undergoes	 the	 tetrad	 verification	
process	and,	if	it	passes,	is	labeled	a	tetrad	and	removed	from	further	analysis.	The	search	
then	 continues	 among	 the	 remaining	 spores.	 However,	 for	 large	 clusters,	 exhaustively	
combing	the	4-spore	search	space	in	this	way	is	computationally	expensive.	Therefore,	for	
clusters	containing	over	five	spores,	tetrads	are	instead	identified	in	an	 indirect,	 two-step	
process.	 First,	 because	 the	 3-spore	 search	 space	 is	much	 smaller	 than	 the	 equivalent	 4-
spore	space,	the	software	computes	the	delta	measure	on	all	possible	3-spore	combinations	
and	detects	those	that	could	be	part	of	true	tetrads	(hereafter	triplets).	Next,	the	remaining	
single	spores	in	the	cluster	are	added	to	each	triplet,	and	the	delta	scores	are	recalculated.	
Any	4-spore	groups	that	pass	the	delta	score	threshold	and	tetrad	verification	process	are	
then	labeled	a	full	tetrad	and	removed	from	further	analysis.	

The	indirect	search	method	described	above	is	an	example	of	a	shadow	search	(Sakhanenko	
and	 Galas,	 2015).	 The	 approach	 leverages	 the	 fact	 that	 a	 functional	 dependency	 of	 N-
variables	 usually	 has	 a	 detectable	 signal	 at	 a	 lower	degree	 (fewer	 variables).	 	 For	 tetrad	
detection	with	the	delta	measure,	this	is	in	fact	the	case,	since	triplets	(3-spore	groups	that	
are	 subsets	 of	 a	 real	 tetrad)	 have	 strong	 delta	 scores	 (Figure	 4d	 and	 Figure	 S6a).		
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Therefore,	full	tetrads	can	be	assembled	by	identifying	high	scoring	3-spore	subsets	within	
each	 cluster	 and	 then	 identifying	which	 of	 the	 remaining	 spores	 belong	 in	 a	 tetrad	with	
each	3-spore	group.	While	 this	method	 is	more	 computationally	 efficient,	 it	 relies	on	 the	
ability	of	the	3-spore	delta	measure	to	distinguish	groups	of	spores	from	the	same	tetrad	
from	 incorrect	 groupings,	 and	 this	discrimination	 is	not	 as	 accurate	 as	 the	one	 that	uses	
delta	calculated	on	4-spores	(Figure	4b	vs	4d).	Thus,	when	computationally	 feasible,	 the	
exhaustive	4-spore	approach	should	be	used.	
After	 the	 direct	 or	 indirect	 identification	 of	 tetrads	 within	 the	 centromere	 clusters,	 the	
software	searches	for	tetrads	in	which	only	three	of	the	four	spores	have	been	placed	in	the	
same	 initial	 cluster	 (likely	due	 to	noise	or	a	 small	number	of	markers).	This	 is	also	done	
using	 the	 shadow	 approach.	 The	 software	 computes	 the	 delta	 measure	 on	 all	 possible	
combinations	of	three	spores	in	the	centromere	cluster.	Then,	3-spore	groups	that	pass	the	
significance	 filter	 are	 combined	 with	 spores	 from	 the	 set	 of	 unclustered	 spores.	 The	
software	computes	the	delta	measure	on	these	new	sets	of	four	spores	and	performs	tetrad	
verification.	
Once	every	cluster	of	spores	from	the	centromere	clusters	has	been	analyzed,	the	software	
moves	 on	 to	 an	 exhaustive	 search	 for	 remaining	 tetrads	 by	 collecting	 all	 the	 unlabeled	
spores	into	a	single	cluster	and	applying	a	combination	of	shadow	and	direct	searches.	If	at	
any	point	 in	 the	search	a	candidate	 tetrad	 fails	 the	verification	step	based	on	2:2	marker	
segregation,	its	spores	are	put	back	into	the	search	space.	This	approach	is	then	repeated	
for	 triplets,	 consisting	 of	 three	 sister	 spores.	 Finally,	 any	 remaining	 pairs	 of	 two	 sister	
spores	 are	 identified	 using	 mutual	 information,	 leaving	 only	 the	 unclassifiable	 single	
spores.	
The	 software	 takes	 as	 an	 input	 a	 tab	 delimited	 text	 file	 containing	 the	 genotype	 of	 each	
spore.	The	parameters	of	the	software	are	defined	in	a	configuration	file	and	preset	to	the	
most	frequently	used	values	by	default.	A	user	can	adjust	these	values	in	the	configuration	
file	to	get	a	better	performance	for	specific	situations.	Some	of	the	parameters	of	 interest	
are	

• CEN_CALLING	controls	whether	to	estimate	the	recombination	frequency	from	the	
data	 or	 skip	 it	 and	 use	 the	 S.	 cerevisiae	 default	 specified	 by	 COS_PER_MEGA.	
Estimating	recombination	frequency	on	large	datasets	could	be	slow,	so	one	might	
want	 to	 skip	 it,	 use	 a	 published	 value,	 or	 estimate	 it	 once	 before	 varying	 other	
parameters.	

• CLUSTERING	controls	whether	we	employ	the	centromere-based	clustering	first,	or	
go	straight	to	the	exhaustive	search.	

• SIMILARITY_COEFFICIENT	 is	 a	 threshold	 for	 centromere	 similarity	 between	 two	
spores,	controlling	when	the	software	calls	two	spores	similar.	Using	the	similarity	
coefficient,	 we	 are	 able	 to	 considerably	 reduce	 the	 search	 space	 speeding	 up	 the	
processing	of	large	data	sets.	Smaller	centromere	similarity	coefficient	cutoffs	result	
in	larger	numbers	of	smaller	clusters.	Increasing	this	cutoff	will	merge	the	clusters	
together	until	they	become	one	cluster	–	the	entire	data	set.	The	user	should	set	the	
cutoff	such	that	there	are	many	medium	size	(under	300	spores)	clusters.	

• D4_PVALUE	 and	D3_PVALUE	 specify	 the	 cutoffs	 for	 the	 p-value	 of	 the	Delta4	 and	
Delta3	scores.	To	avoid	 false	positives,	 the	user	can	 increase	 the	stringency	of	 the	
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search	by	 lowering	 the	p-value	of	 the	Delta4	and	Delta3	scores.	The	user	can	also	
adjust	 the	segregation	cutoffs	 (SEG_CUTOFF_D4	and	SEG_CUTOFF_D3)	 to	 filter	out	
the	false	positives.	

The	 full	 list	 of	 the	 parameters	 with	 their	 descriptions	 is	 given	 in	 the	 readme	 file	 of	 the	
software.	The	software	also	comes	with	the	set	of	examples	described	in	this	paper	and	the	
corresponding	configuration	files	to	process	these	examples.	The	information-theory-based	
dependency	 detection	 is	 implemented	 in	 C,	 whereas	 the	 rest	 of	 the	 software	 is	
implemented	in	Python.	The	software	is	available	for	download	here:	URL	

	

Testing	the	software	on	simulated	and	real	datasets	
We	first	applied	the	software	to	simulated	datasets.		We	generated	three	sets	of	error-free	
S.	cerevisiae	tetrad	genotypes	(see	Appendix	F	for	more	details),	including	recombination	
events	and	recording	spore	relationships:	Small	(100	tetrads	and	1,000	markers),	Medium	
(1,000	tetrads	and	10,000	markers),	and	Large	(1,000	tetrads	and	100,000	markers).	For	
each	of	these	datasets,	we	created	multiple	test	cases	by	reducing	the	number	of	markers	
and	adding	various	amounts	of	missing	values	and	levels	of	noise	(Table	1).		

We	 used	 this	 simulated	 data	 to	 perform	 a	 thorough	 evaluation	 of	 the	 individual	
components	 of	 the	 software	 in	 various	 situations.	 Specifically,	 we	 analyzed	 the	
performance	 of	 allele	 calling	 at	 centromeres,	 spore	 clustering	 based	 on	 similarity	
coefficients,	and	tetrad	verification	using	segregation	scores.	Appendix	C	shows	the	details	
of	the	evaluation	on	the	simulated	dataset	Small.		

In	general,	the	total	number	of	markers	in	the	data	affected	the	estimation	of	the	allele	calls	
at	 centromeres	 and	 consequently	 the	 initial	 clustering	 of	 the	 spores.	 Low	 numbers	 of	
markers	caused	problems	in	clustering	through	several	mechanisms.	These	included	poor	
precision	 in	 estimating	 global	 recombination	 parameters	 and	 difficulties	 in	 accurately	
estimating	 the	 allele	 at	 the	 centromere	due	 to	 a	 lack	 of	 flanking	markers	 or	 because	 the	
flanking	markers	were	too	far	apart.	

The	 proportion	 of	 missing	 data,	 on	 the	 other	 hand,	 did	 not	 have	 a	 strong	 effect	 on	
centromere	allele	call	predictions	or	spore	clustering,	and	any	effect	was	fully	overcome	by	
using	more	markers.	 The	 noise	 in	 the	 data	 (genotyping	 errors),	 however,	 had	 a	 notable	
impact	 on	 the	 performance	 of	 the	 software.	 	 High	 levels	 of	 noise	 strongly	 affected	 the	
estimation	 of	 the	 alleles	 at	 the	 centromeres	 and	 spore	 clustering	 (Appendix	 C).	 This	
problem	 can,	 however,	 also	 be	 overcome	 by	 increasing	 the	 number	 of	 markers	 used.	
Furthermore,	 the	 noise	 affected	 the	 strength	 of	 the	 true	 tetrad	 signal	 relative	 to	 the	
background,	making	it	harder	to	distinguish	the	true	tetrads	statistically	from	the	other	4-
spore	 sets.	We	note	 that	 this	was	 the	 case	 for	 both	 the	delta	measure	 as	well	 as	 the	2:2	
segregation	measure.	The	quantitation	of	this	effect	is	described	in	Appendix	C.	

After	 testing	 the	 individual	 components	 of	 our	 software	 in	 this	way,	we	 then	 tested	 our	
software	on	a	handful	of	simulated	test	sets	derived	from	the	sets	Small,	Medium,	and	Large	
and	 compared	 the	 final	 tetrad	 assignments	 to	 ground	 truth	 from	 the	 simulations.	All	 the	
tests	were	performed	on	a	desktop	with	Intel	Core	i7-7820X	CPU	@	3.60GHz	(8	cores,	16	
threads)	 and	 64	GB	RAM.	 Table	 1	 summarizes	 these	 tests	 and	 shows	 the	 corresponding	
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optimal	 parameter	 settings	 of	 the	 software	 and	 the	 resulting	 performance.	 A	
comprehensive	list	of	the	tests	performed	is	presented	in	Table	S1	of	Appendix	H.	
	

	
	

	
Test	set	parameters	 Software	parameters	 Performance	

Set	 Nt		 Nm		
Noise	
%	

Missing	
%	

Cent.	
calling	

Sim	
coeff	

2:2	
cutoff	

2:1	
cutoff	

Run	time	
Detected	
tetrads	

%	

Small	 100	

500	
(50%)	

0	 0	 yes	 0.21	 0.9	 0.95	 6.0	 100%	
0	 5	 yes	 0.19	 0.9	 0.95	 5.7	 100%	

0	 10	 yes	 0.2	 0.9	 0.95	 6.2	 100%	
5	 0	 yes	 0.2	 0.75	 0.88	 6.7	 100%	

10	 0	 yes	 0.24	 0.6	 0.83	 8.1	 100%	

984	
(100%)	

0	 0	 yes	 0.13	 0.9	 0.95	 12.9	 100%	

0	 5	 yes	 0.14	 0.9	 0.95	 12.3	 100%	

0	 10	 yes	 0.13	 0.9	 0.95	 12.1	 100%	
5	 0	 yes	 0.2	 0.75	 0.88	 14.3	 100%	

10	 0	 yes	 0.22	 0.6	 0.83	 16.0	 100%	

Medium	 1000	

1000	
(10%)	

0	 0	 no	 0.12	 0.9	 0.95	 02:10.2	 100%	
0	 5	 no	 0.11	 0.9	 0.95	 02:37.4	 100%	

0	 10	 no	 0.12	 0.9	 0.95	 02:27.2	 100%	
5	 0	 no	 0.14	 0.75	 0.88	 27:15.2	 100%	

10	 0	 no	 0.16	 0.6	 0.83	 14:14:47.7	 99.80%	

9984	
(100%)	

0	 0	 no	 0.1	 0.9	 0.95	 03:38.2	 100%	

0	 5	 no	 0.1	 0.9	 0.95	 04:09.1	 100%	

0	 10	 no	 0.09	 0.9	 0.95	 03:32.5	 100%	
5	 0	 no	 0.12	 0.75	 0.88	 17:35.0	 100%	

10	 0	 no	 0.17	 0.6	 0.83	 26:43:15.6	 100%	

Large	 1000	

10000	
(10%)	

0	 0	 no	 0.07	 0.9	 0.95	 03:28.3	 100%	
0	 5	 no	 0.12	 0.9	 0.95	 03:40.0	 100%	

0	 10	 no	 0.09	 0.9	 0.95	 03:35.7	 100%	
5	 0	 no	 0.12	 0.75	 0.88	 18:46.4	 100%	

10	 0	 no	 0.16	 0.6	 0.83	 31:13:42.7	 100%	

50000	
(50%)	

0	 0	 no	 0.07	 0.9	 0.95	 10:45.2	 100%	
0	 5	 no	 0.05	 0.9	 0.95	 08:33.1	 100%	

0	 10	 no	 0.07	 0.9	 0.95	 10:40.6	 100%	
5	 0	 no	 0.12	 0.75	 0.88	 36:59.5	 100%	

10	 0	 no	 0.14	 0.6	 0.83	 93:53:41.7	 100%	
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Table	1.	The	tetrad	detection	software	applied	to	various	simulated	test	sets.	Three	simulated	datasets	are	
shown	 (indicated	 in	 the	 column	Set):	Small	 (in	blue,	 100	 tetrads,	 1000	markers),	Medium	 (in	 yellow,	1000	
tetrads,	 10000	markers),	 and	Large	 (in	 red,	 1000	 tetrads,	 100000	markers).	 The	 first	 four	 columns	 of	 the	
table	show	the	various	parameters	of	the	simulated	data	considered:	Nt	shows	the	number	of	tetrads	in	the	
set,	 Nm	 shows	 the	 number	 of	 randomly	 selected	 markers	 as	 well	 as	 the	 percentage	 of	 the	 original	 set	 of	
markers,	and	columns	Noise	and	Missing	show	the	amount	of	noise	and	missing	values	(in	percent)	added	to	
the	 data.	 The	 software	 was	 run	 on	 these	 test	 sets	 with	 different	 parameters.	 The	 table	 shows	 only	 the	
parameter	settings	that	produced	the	optimal	result.	For	the	results	of	 the	software	with	other	settings	see	
Table	 S1	 in	Appendix	 H.	 Column	 “Cent	 calling”	 shows	whether	 the	 software	 estimates	 the	 recombination	
frequency	 empirically	 or	 uses	 its	 default	 value	 derived	 from	 published	 data	 (Mancerra	 et	 al.	 2008).	 The	
column	“Sim	coeff.”	shows	the	similarity	threshold	being	used.	The	columns	2:2	cutoff	and	2:1	cutoff	show	the	
cutoff	 values	 for	 2:2	 and	 2:1	 segregation	 score	 for	 the	 software	 to	 call	 two	 spores	 sisters.	 The	 last	 two	
columns	show	the	performance	of	the	software,	the	total	runtime	(Intel	Core	i7-7820X	CPU	@	3.60GHz	and	
64	GB	RAM)	and	 the	percent	of	 total	 tetrads	detected	by	 the	 software.	Note	 that	 in	 all	 the	 cases	when	 the	
software	detected	100%	of	 tetrads,	 there	were	no	 false	positives.	 In	 the	 case	when	99.8%	of	 tetrads	were	
detected,	there	was	1	false	positive	tetrad	and	1	false	positive	triplet	(with	1	spore	unassigned).	
	

Table	1	shows	that	the	software	is	able	to	achieve	100%	accuracy	with	no	false	positives	in	
almost	all	the	tests:	only	in	tests	on	the	Medium	set	with	only	10%	of	the	original	marker	
set	and	with	10%	noise	was	the	accuracy	 lower,	albeit	still	99.8%.	In	these	tests	some	4-
spore	groups	scored	as	high	as	the	real	tetrads	due	to	noise	in	the	relatively	small	number	
of	markers,	resulting	in	two	missed	tetrads,	one	false	positive	tetrad	assignment,	and	one	
false	positive	triplet	assignment.		

The	runtime	of	all	the	tests	without	noise	was	very	reasonable:	Small	tests	took	under	12	
seconds,	Medium	 tests	 took	 under	 4	 minutes,	 and	 Large	 tests	 took	 under	 11	 minutes.	
Although	with	the	addition	of	noise,	the	runtime	of	Small	tests	did	not	change	much	due	to	
the	small	size,	it	changed	drastically	for	Medium	and	Large	tests.	At	5%	noise,	Medium	and	
Large	 tests	 took	 under	 28	minutes	 and	 37	minutes	 correspondingly.	 Increasing	 noise	 to	
10%	made	the	runtime	go	up	considerably:	Medium	tests	took	14-27	hours	(depending	on	
the	size)	and	Large	tests	took	31-94	hours.	In	general,	including	more	markers	in	the	test	
sets	increases	the	time	it	takes	to	calculate	each	delta	score.	Without	noise,	the	clustering	of	
spores	 is	 very	 effective,	 allowing	 for	 the	 search	 space	 to	 be	 divided	 into	multiple	 small	
clusters	 fully	 containing	 tetrads,	 thus	 keeping	 the	 number	 of	 delta	 calculations	 low	 and	
resulting	 in	 a	 short	 runtime.	With	noise	however,	 the	 initial	 clustering	does	not	work	 as	
well,	which	inevitably	increases	the	total	number	of	delta	calculations	necessary	and	thus	
increases	the	runtime.	

To	 achieve	 the	 best	 performance,	 we	 varied	 two	 software	 parameters,	 the	 similarity	
coefficient	 threshold	 and	 the	 segregation	 cutoffs.	 In	 test	 cases	 where	 the	 number	 of	
markers	was	large,	the	default	similarity	coefficient	threshold	resulted	in	a	small	number	of	
very	large	clusters,	causing	the	software	to	take	a	considerable	amount	of	time	to	complete	
a	 run	 (Appendix	 C).	 Lowering	 this	 threshold	 increased	 the	 number	 of	 clusters	 while	
reducing	their	size,	which	divided	the	search	space	more	efficiently	and	resulted	in	faster	
processing.	Users	of	this	software	should	consider	these	options,	since	the	level	of	noise	in	
experimental	datasets	is	usually	not	known.	
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When	no	noise	is	present,	clustering	allows	the	software	to	subdivide	the	spores	into	sets	
of	 same-tetrad	 spores,	 identifying	 all	 the	 tetrads	 at	 the	 divide-and-conquer	 phase	 (see	
Figure	5).	 In	 this	 situation,	 keeping	 the	 clusters	 small	 results	 in	 smaller	processing	 time.	
For	the	test	cases	with	noise	however	the	clustering	does	not	work	as	well	and,	as	a	result,	
only	 some	 tetrads	 are	 identified	 at	 the	 divide-and-conquer	 phase	 leading	 to	 more	 time	
spent	in	the	exhaustive	search	phase	(see	Figure	5).	In	this	case	making	the	clusters	larger	
allows	the	software	to	extract	more	tetrads	at	the	divide-and-conquer	phase,	thus	reducing	
the	amount	of	computation	at	the	exhaustive	search	phase	and	the	overall	processing	time.	
Therefore,	for	the	cases	with	noise	(in	particular	when	the	noise	level	is	10%)	the	similarity	
threshold	had	to	be	increased	relative	to	the	same	sized	dataset	without	noise	resulting	in	
larger	clusters.	Furthermore,	in	the	presence	of	noise	the	default	values	of	the	segregation	
cutoffs	 are	 too	 stringent,	 resulting	 in	 poor	 accuracy,	 since	 many	 true	 tetrads	 were	
dismissed.	See	Appendix	 C	 for	more	details	about	 the	effects	of	 the	similarity	coefficient	
and	the	segregation	cutoffs.	

We	then	applied	the	software	to	real	biological	data	from	two	published	datasets.	Dataset	
D1	 consists	 of	 412	 spores	 from	 manually	 dissected	 tetrads	 and	 the	 tetrad	 relationship	
between	spores	was	recorded	by	the	experimenter	(Sirr,	et	al.	2017).	Dataset	D2	consists	of	
3,200	 spores	 that	were	 randomly	 arrayed	 on	 an	 agar	 plate,	 but	 that	 contained	 a	 tetrad-
specific	plasmid	barcode	(Ludlow	et	al.	2013).	 In	both	cases,	 the	genotype	markers	were	
generated	by	RAD-seq	as	described	in	the	original	publications	(Sirr,	et	al.	2017;	Ludlow	et	
al.	2013).	Using	 these	datasets	allowed	us	 to	compare	 the	effectiveness	of	our	method	 to	
the	experimentally	derived	tetrad	assignments,	which	we	treated	as	“ground	truth”	(Table	
2).		

(a)	
	

D1_Default	 (b)	
	

D2_Default	 D2_Filter_markers	

	
Spores	 412	 		

	
Spores	 2666	 		 2666	 		

	
Markers	 536	 		

	
Markers	 579	 		 531	 		

	
Run	time	 12s	 		

	
Run	time	 68m23s	 		 54m57s	 		

	
Correct	tetrads	 50	 98.04%	

	
Confirmed	tetrads	 181	 84.98%	 230	 84.56%	

	
Missed	tetrads	 1	 1.96%	

	
Consistent	tetrads	 32	 15.02%	 42	 15.44%	

	
False	tetrads	 1	 1.96%	

	
Incorrect	tetrads	 0	 0.00%	 0	 0.00%	

	
Correct	triplets	 52	 96.30%	

	
Total	tetrads	 213	 		 272	 		

	
Missed	triplets	 2	 3.70%	

	
Confirmed	triplets	 91	 21.67%	 215	 47.36%	

	
False	triplets	 7	 11.86%	

	
Consistent	triplets	 78	 18.57%	 92	 20.26%	

	 	 	 	 	
Incorrect	triplets	 251	 59.76%	 147	 32.38%	

	 	 	 	 	
Total	triplets	 420	 		 454	 		

	
Table	2.	The	tetrad	detection	software	applied	to	real	biological	datasets.	(a)	Evaluation	of	the	software	on	
dataset	D1	using	 the	default	parameter	 setting.	 Since	 all	 the	 spores	 in	D1	are	 already	 labeled	according	 to	
their	tetrad	assignment	(from	manual	dissection),	we	were	able	to	count	the	number	of	tetrads	identified	by	
the	 software	 that	were	either	 in	 agreement	with	 the	data	 labels	 (correct	 tetrads),	 or	not	 (false	 tetrads),	 as	
well	as	the	number	of	tetrads	that	the	software	was	not	able	to	identify	(missed	tetrads).	 	The	triplets	were	
counted	 in	 the	 same	way.	 (b)	Evaluation	of	 the	 software	on	dataset	D2	using	 either	 the	default	 parameter	
setting	or	filtering	markers	with	too	many	missing	values	(corresponding	to	the	second	and	third	columns).	
Although	 there	 is	no	known	 tetrad	assignment	of	 the	 spores	 in	D2,	 the	 spores	were	barcoded,	with	 spores	
derived	from	the	same	tetrad	sharing	a	barcode.	As	a	result	we	counted	the	number	of	tetrads	identified	by	
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the	 software	 comprised	 of	 same-barcode	 spores	 (confirmed	 tetrads).	 We	 also	 counted	 consistent	 tetrads	
comprised	of	either	same-barcode	spores	or	spores	with	no	barcode	and	incorrect	tetrads	whose	spores	have	
different	 barcodes.	 The	 sum	 of	 confirmed,	 consistent	 and	 incorrect	 tetrads	 is	 the	 total	 number	 of	 tetrads	
identified	by	the	software.	The	triplets	were	counted	in	the	same	way.	
	

For	dataset	D1,	using	 the	default	parameters	 the	 software	achieved	over	98%	 full-tetrad	
accuracy	 and	 over	 96%	 accuracy	 of	 identifying	 triplets	 (tetrads	 missing	 1	 spore).	 For	
dataset	D2,	 after	 filtering	out	 the	duplicate	 spores,	 our	 software	with	default	parameters	
showed	100%	agreement	between	identified	tetrads	and	the	barcodes	(sum	of	number	of	
confirmed	and	consistent	tetrads	from	Table	2).	However,	almost	60%	of	triplets	identified	
by	 the	 software	 in	 default	 mode	 were	 in	 disagreement	 with	 the	 barcodes.	 Filtering	 to	
remove	markers	with	large	numbers	of	missing	values	improved	the	3-spore	performance	
on	 dataset	 D2	 by	 almost	 30%.	 Note	 also	 that	 filtering	 markers	 allowed	 identifying	
considerably	more	tetrads	and	triplets.	

	
Data	availability	statement	

Supplemental	 files	 available	 at	 FigShare.	 File	 tetrad_detection_software.rar	 contains	 the	
code	of	the	tetrad	assembly	software,	as	well	as	code	used	to	generate	the	simulated	data,	
the	 information	 files	 and	 the	 test	 data.	 File	 simulated_data.rar	 contains	 all	 the	 simulated	
data	used	in	the	paper	to	test	our	software.	

	
	
	
	

Discussion	
	

We	 have	 described	 a	 computational	 method,	 based	 on	 our	 previously	 developed	
information	theory	dependency	analysis,	that	reconstitutes	tetrads	using	only	information	
from	genome	sequencing	of	the	meiotic	progeny.		This	method	avoids	the	need	for	tetrad-
specific	 barcoding	 and	 or	 genetic	 modification	 of	 any	 kind.	 Instead,	 our	 method	 uses	
information	 associated	 with	 specific	 features	 of	 tetrad	 genome	 sequences,	 features	 that	
result	 from	the	mechanisms	of	meiosis.	The	software	reported	here	 is	both	simple	to	use	
and	highly	effective	 in	reconstituting	tetrads.	This	approach	can	significantly	 increase	the	
power	of	tetrad	analysis	in	several	ways,	most	notably	by	vastly	increasing	the	numbers	of	
tetrads	that	can	be	analyzed	with	minimal	effort.				
Our	 software	 integrates	 a	 heuristic	 method	 for	 clustering,	 using	 centromere	 proximal	
markers,	with	an	information	theory-based	method	for	signal	detection.		On	both	simulated	
and	real	data,	the	software	achieves	a	remarkably	high	success	rate,	even	in	the	presence	of	
lost	spores	and	sources	of	experimental	noise.	The	applications	 for	 this	software	 include,	
the	 analysis	 of	 meiotic	 recombination	 and	 the	 study	 of	 gene	 conversions	 or	 other	 non-
reciprocal	 genetic	 events	 in	 which	 a	 subset	 of	 markers	 deviate	 from	 the	 expected	 2:2	
segregation	pattern.		
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The	software	can	also	be	applied	to	any	organism	in	which	it	is	possible	to	isolate	the	four	
products	of	meiosis.	Our	software	 is	based	on	an	 information	theory	method,	which	does	
not	 make	 any	 assumptions	 about	 the	 data	 and	 its	 underlying	 structure.	 Although	 the	
genome	structure	of	S.	pombe	is	significantly	different	from	that	of	S.	cerevisiae,	the	analysis	
method	described	here	will	work	equally	well	on	this	organism.	Because	the	software	only	
uses	 the	 centromere	allele	patterns	of	 the	organism	 to	 reduce	 the	 search	 space	and	 thus	
decrease	 run	 times,	 it	 can	 be	 effectively	 applied	 to	 organisms	 with	 smaller	 numbers	 of	
chromosomes.	For	example,	 in	S.	pombe,	which	has	only	 three	chromosomes,	 the	method	
would	 still	 produce	 several,	 albeit	 large,	 clusters	of	 spores	and	 thus	productively	divides	
the	search	space.	

	
References	

	
1. Sakhanenko,	N.A.,	and	Galas,	D.J.	2011.	Interaction	information	in	the	discretization	

of	quantitative	phenotype	data,	161-164.	In	Proceedings	of	the	8th	International	
Workshop	on	Computational	Systems	Biology,	Zurich,	Switzerland.		

2. Bell,	A.J.	2003.	The	co-information	lattice,	921-926.	In	Proceedings	of	the	4th	
International	Symposium	on	Independent	Component	Analysis	and	Blind	Source	
Separation	(ICA2003),	Nara,	Japan.		

3. McGill,	W.J.	1954.	Multivariate	information	transmission.	Psychometrika.	19,	97-
116.	

4. Jakulin,	A.,	and	Bratko,	I.	2004.	Quantifying	and	visualizing	attribute	interactions:	an	
approach	based	on	entropy.	Computing	Research	Repository	cs.AI/0308002	v3.	
http://arxiv.org/abs/cs.AI/0308002	

5. Galas,	D.J.,	Sakhanenko,	N.A.,	Skupin,	A.,	Ignac,	T.	2014.	Describing	the	Complexity	of	
Systems:	Multivariable	"Set	Complexity"	and	the	Information	Basis	of	Systems	
Biology.	J.	Comp.	Biol.	21(2),	118-140.	

6. Sakhanenko,	N.A.,	and	Galas,	D.J.	2015.	Biological	data	analysis	as	an	information	
theory	problem:	Multivariable	dependence	measures	and	the	Shadows	algorithm.	J.	
Comp.	Biol.,	22(11),	1005-24,	2015.	

7. Galas,	D.J.,	and	Sakhanenko,	N.A.	2016.	Multivariate	information	measures:	a	
unification	using	Möbius	operators	on	subset	lattices.	arXiv:1601.06780	

8. Clauset,	A.,	Newman,	M.E.J.,	and	Moore,	C.	2004.	Finding	community	structure	in	
very	large	networks.	Phys.	Rev.	E	70,	066111.	

9. Ludlow,	C.L.,	et	al.	2013.	High-throughput	tetrad	analysis.	Nat.	Methods.	10(7):	671-
675.	

10. Sirr,	A.,	et	al.	2017.	Natural	variation	in	SER1	and	ENA6	underlie	condition-specific	
growth	defects	in	Saccharomyces	cerevisiae.	G3	(Bethesda),	8(1):	239-251.	

11. Mancera,	E.,	et	al.	2008.	High-resolution	mapping	of	meiotic	crossovers	and	non-
crossovers	in	yeast.	Nature,	454(7203):	479-85.	 	

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 12, 2019. ; https://doi.org/10.1101/574376doi: bioRxiv preprint 

https://doi.org/10.1101/574376
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 18	

	

	
	

Supplementary	Material	
	

Appendix	A.	
	

In	the	analysis	of	complex	biological	systems	we	need	measures	that	can	detect	synergistic,	
multiple	 variable	 dependencies.	 	 Mutual	 information	 is	 a	 well-known	 measure	 that	
quantifies	the	amount	of	dependency	between	two	variables:	

	

	 	 (1)	

	
Interaction	information	has	been	proposed	(McGill,	1954)	as	a	multivariable	generalization	
of	mutual	 information.	 	 This	measure	 has	 a	 number	 of	 advantages	 and	 drawbacks	 (Bell,	
2003;	 Jakulin	 and	Bratko,	 2004;	 Sakhanenko	and	Galas,	 2011)	but	 can	be	used	 to	devise	
powerful	 measures	 of	 dependency	 for	 any	 number	 of	 variables.	 	 	 The	 interaction	
information	 for	 three	 variables,	 for	 example,	 quantifies	 the	 difference	 between	 the	 two-
variable	interaction	information	(mutual	information),	with	and	without	knowledge	of	the	
third	variable:	

	

	 	 (2)	

	

Here	 	is	 conditional	 mutual	 information,	 	is	 entropy	 of	 variable	 	and	
	is	 a	 joint	 entropy	 of	 the	 three	 variables.	 	 Note	 that	 the	 conditional	 mutual	

information	 is	 actually	 a	 difference	 between	 interaction	 informations	 for	 two	 and	 three	
variables	–	a	differential	interaction	information.		A	general	form	of	interaction	information	
for	the	set	of	νn	variables,	in	terms	of	marginal	entropies	can	be	written	as:	
	

	 	 	 	 (3)	

	

In	this	paper	we	use	a	symmetric	product	of	differential	interaction	information,	which	we	
call	“delta”	(Galas	et	al.,	2014;	Sakhanenko	and	Galas,	2015;	Galas	and	Sakhanenko,	2016).		

I(X,Y ) = H (X)+H (Y )−H (X,Y ) = p(x, y)log p(x, y)
p(x)p(y)x∈X,y∈Y

∑

I(X,Y,Z ) = I(X,Y )− I(X,Y | Z )
= H (X)+H (Y )+H (Z )−H (X,Y )−H (X,Z )−H (Y,Z )+H (X,Y,Z )

I(X,Y | Z ) H (X) X
H (X,Y,Z )

I(νn ) = − (−1)τ
τ⊆νn

∑ H (τ )
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Differential	 interaction	 information	 quantifies	 the	 change	 in	 interaction	 information	 that	
occurs	 when	 we	 add	 another	 variable	 to	 a	 set	 of	 variables,	 so	 for	 three	 variables	 it	 is	
defined	as:	

	

	 	 	 (4)	

	

If	 νn	 ={X1,	 X2…	 Xn}	 and	 νi	 = νn	 -{Xn}	 then	 the	 differential	 interaction	 information	 can	 be	
defined	in	general	as	

	

	 	 (5)	

	
Note	 that,	 unlike	 interaction	 information,	 differential	 interaction	 information	 is	 not	
symmetric,	 since	 	in	 equation	 5	 is	 a	 special	 variable.	 	 In	 order	 to	 create	 a	 symmetric	
measure,	 we	 take	 the	 product	 of	 differential	 interaction	 information	 with	 all	 possible	
choices	of	the	target	variable:	

	

	 	 	 	 (6)	

	

We	 refer	 to	 	as	 the	delta	measure,	 for	 	variables.	 	 Although	 this	 is	 a	 general,	multi-
variable	measure,	in	this	paper	we	focus	on	delta	computed	only	on	3-	and	4-variable	sets.		
We	 use	 3	 and	 4-variable	delta,	 as	well	 as	 the	 pair-wise	measure,	mutual	 information,	 to	
scan	 the	data	 from	 large	 sets	of	yeast	 spores	and	detect	 and	assemble	 spore	 tetrads	and	
their	components.	
	

	

Appendix	B	
	

In	order	to	be	able	to	cluster	the	spores,	we	need	to	define	a	measure	of	similarity	of	two	
spores	based	on	allelic	information	at	the	centromeres.	We	first	start	with	a	deterministic	
case,	when	the	alleles	near	the	centromeres	are	known.		

	
Consider	two	vectors	X	and	Y,	whose	elements	are	either	1	or	2,	representing	allele	calls	at	
the	centromere	for	the	two	corresponding	spores.	We	can	then	define	a	vector	𝑑 = 𝑑! !!!! 	

Δ({X,Y};Z ) = −I(X,Y | Z ) = I(X,Y,Z )− I(X,Y )
= H (Z )−H (X,Z )−H (Y,Z )+H (X,Y,Z )

Δ(ν i;Xi ) = I(ν i )− I(V ) = (−1)τ i +1H (τ i )
τ i⊆V |Xi∈τ i

∑

Xi

Δm = Δ(ν i;Xi )
i=1

m

∏

Δm m
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such	 that	𝑑! = 1	if	𝑋! = 𝑌! ,	 and	 0	 otherwise,	where	𝑁	is	 the	 number	 of	 centromeres.	Note	
that	 if	 we	 define	 a	 vector	𝑏 = 𝑏! 	such	 that	𝑏! = 0 	if	𝑋! = 𝑌! ,	 and	 1	 otherwise,	 then	
𝑏 = 1− 𝑑.	

	
Consequently,	we	define	S,	the	coefficient	of	similarity	of	X	and	Y,	as	follows	

𝑆 =
1
𝑁 𝑑!

!

!!!

	

The	coefficient	of	anti-similarity	𝑈	is	defined	similarly	to	𝑆,	but	using	vector	𝑏	instead.	Note	
that	by	definition	𝑈 = 1− 𝑆.	
	

Given	the	allele	calls	at	the	centromeres,	we	can	compute	S	for	all	possible	pairs	of	spores	
and	then	cluster	the	spores	based	on	their	similarity	at	the	centromeres.	In	most	biological	
examples,	 however,	 the	 allele	 values	 at	 the	 centromeres	 are	 unknown.	We	 can	 however	
estimate	what	the	allele	is	at	each	centromere	based	on	the	recombination	frequency	in	a	
given	data	set	and	the	allele	calls	at	the	markers	flanking	the	centromeres	(see	Appendix	
G),	and	consequently	we	can	estimate	the	coefficient	of	similarity	between	spores.	

	
Given	 the	probabilities	𝑃(𝑋! = 𝑎)	and	𝑃(𝑌! = 𝑏)	that	 spores	𝑋	and	𝑌	have	alleles	𝑎	and	𝑏	at	
the	centromere	𝑖,	we	can	define	the	probability	that	𝑋	and	𝑌	are	identical	at	𝑖th	position	as	
𝑝!:	

𝑝! = 𝑃 𝑋! = 𝑌! = 𝑃 𝑋! = 𝑌! = 1 + 𝑃(𝑋! = 𝑌! = 2)	

If	𝑋! 	and	𝑌! 	are	independent,	then	the	definition	above	can	be	simplified	as	
𝑝! = 𝑃 𝑋! = 1 𝑃 𝑌! = 1 + 𝑃(𝑋! = 2)𝑃(𝑌! = 2)	

Since	we	do	not	know	the	values	of	X	and	Y,	we	cannot	compute	the	similarity	coefficient	
directly,	thus	we	need	to	estimate	it.	An	estimated	coefficient	of	similarity	𝑆	is	computed	by	
taking	the	expectation	of	S:	

𝑆 = 𝐸 𝑆 =
1
𝑁 𝑝!

!

!!!

	

Note	that	an	estimated	coefficient	of	anti-similarity	is	𝑈 = 1− 𝐸 𝑆 .	

	

As	an	example,	we	apply	this	similarity	coefficient	to	the	simulated	data	set	of	400	spores	
and	500	markers	with	no	noise	or	missing	values.	For	each	pair	of	spores	we	compute	the	
similarity	 coefficient	 based	 on	 the	 centromere	 allele	 estimates.	 Figure	 S1	 shows	 the	
distributions	of	 coefficients	 for	 the	 spores	 from	 the	 same	 tetrad	and	 for	 the	 spores	 from	
different	tetrads.		
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Supplementary	 Figure	 S1.	Distribution	 of	 estimated	 similarity	 coefficients	 for	 spore	 pairs	 from	
the	same	 tetrad	 (in	 red)	and	 from	different	 tetrads	 (in	blue)	computed	on	 the	simulated	data	set	
(500	markers,	400	spores,	0%	noise,	0%	missing).	

	
This	figure	shows	the	expected	pattern	that,	for	centromeric	alleles,	each	tetrad	consists	of	
two	 pairs	 of	 identical	 spores	 that	 are	 reflections	 of	 one	 another.	 The	 reflected	 spores	 in	
each	 tetrad	 form	 a	 distribution	 near	 0,	 whereas	 the	 completely	 identical	 spores	 form	 a	
distribution	 near	 1.	 On	 the	 other	 hand,	 the	 spores	 from	 different	 tetrads	 form	 a	 normal	
distribution	centered	around	0.5.	

	
Form	 figure	 S1	 it	 is	 clear	 that	we	 can	 use	 the	 similarity	 coefficient	 to	 cluster	 the	 spores	
from	the	same	tetrads.	The	distributions	from	figure	S1	can	be	transformed	by	“folding”	it	
in	on	itself	as	follows,	𝑆’ =  0.5− |0.5− 𝑆|,	such	that	S’	is	close	to	0	when	spores	are	from	
the	same	tetrads	and	around	0.5	when	the	spores	are	from	different	tetrads.	The	scores	in	
between	correspond	to	situations	when	the	allele	call	estimates	at	the	centromere	are	not	
enough	to	identify	the	spores	from	the	same	tetrad	due	to	noise	and	missing	data.	We	need	
to	find	a	threshold	T	that	simultaneously	maximizes	the	number	of	same	tetrad	spores	with	
𝑆’ <  𝑇	as	well	as	the	number	of	spores	from	different	tetrads	with	𝑆’ >  𝑇.	We	determined	
that	𝑇 = 0.2	is	the	optimal	threshold	to	correctly	estimate	the	centromere	allele	calls	when	
the	number	of	markers	is	sufficient	and	the	noise	and	missing	data	is	minimal.	
	

	

Appendix	C	
	

We	 now	 investigate	 how	 the	 noise	 and	 missing	 values	 affect	 the	 components	 of	 the	
software.	We	generated	a	number	of	simulated	data	sets	with	varying	number	of	markers	
and	 spores,	 as	 indicated	 in	 the	 text.	We	 treated	 the	 data	 set	 as	 a	 long	 vector	 and	 added	
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noise	 by	 flipping	 the	 values	 of	 the	 vector	 at	 randomly	 selected	 positions.	 	 Similarly,	 we	
added	missing	values	by	erasing	 the	values	of	 the	vector	 at	 randomly	 selected	positions.	
We	considered	different	levels	of	noise	and	missing	values,	up	to	25%	for	both.	

	
Allele	calling	at	centromeres	

Using	 the	 simulated	 data	 we	 looked	 at	 the	 effects	 of	 noise	 and	 missing	 data	 on	 the	
estimation	 of	 alleles	 at	 the	 centromeres.	 As	 expected,	 increasing	 noise	 makes	 the	
centromere	allele	estimates	worse	(see	Figure	 S10).	On	the	other	hand,	the	estimates	do	
not	seem	to	be	affected	by	the	amount	of	missing	data.		

	
Supplementary	Figure	S10.	Average	(top)	and	standard	deviation	(bottom)	of	the	number	of	incorrect	allele	
calls	 at	 the	 centromeres	 computed	 on	 the	 simulated	 data	 set	 (500	 markers,	 400	 spores).	 The	 x-axis	
corresponds	 to	 the	 fraction	 of	 the	missing	 values	 in	 the	 data	 set.	 Each	 line	 corresponds	 to	 the	 noise	 level,	
ranging	from	0%	to	25%.	

	

We	 also	 observed	 that	 a	 smaller	 number	 of	 markers	makes	 the	 estimate	 worse.	 This	 is	
because	 with	 fewer	 markers,	 some	 chromosomes	 either	 lack	 flanking	 markers	 or	 their	
flanking	markers	are	very	far	apart,	making	predicting	centromere	alleles	difficult.	Figure	
S11	 shows	 that	 as	 the	 distance	 between	 flanking	 markers	 increases,	 the	 number	 of	
incorrect	allele	calls	tends	to	increase.	
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Supplementary	 Figure	 S11.	 The	 distance	 between	 the	 flanking	 markers	 versus	 the	 fraction	 of	 incorrect	
allele	calls	for	each	centromere	computed	on	the	simulated	data	set	(500	markers,	400	spores,	no	noise,	and	
the	fraction	of	the	missing	values	ranging	from	0%	to	25%).		

	
Similarity	coefficients	

We	now	 look	at	 the	 similarity	 coefficients.	 Since	 the	 centromere	allele	 estimates	become	
less	 precise	 when	 too	 few	 markers	 are	 selected,	 it	 is	 expected	 that	 the	 centromere	
similarity	 coefficients	 will	 also	 not	 perform	 well.	 	 Figure	 S12	 shows	 that	 the	 range	 of	
similarity	scores	narrows	when	fewer	markers	are	used	and	the	coefficient	distribution	of	
spores	from	the	same	tetrads	starts	to	overlap	that	of	spores	from	different	tetrads,	making	
it	harder	to	cluster	the	spores.	Note	that,	on	the	one	hand,	a	value	around	0.2	is	optimal	in	
the	case	of	500	markers,	but	on	the	other	hand,	it	is	not	even	nearly	optimal	in	the	case	of	
100	markers.	
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Supplementary	Figure	S12.	Distributions	of	centromere	similarity	coefficients	between	pairs	of	spores	from	
the	 same	 tetrad	 (top	 panels)	 and	 from	 different	 tetrads	 (bottom	 panels).	 Left	 panels	 show	 the	 similarity	
coefficients	 computed	 from	 the	 simulated	 data	 set	 consisting	 of	 400	 spores	 and	 100	 randomly	 selected	
markers,	whereas	500	markers	were	selected	to	compute	the	coefficients	in	the	right	panels.	The	data	set	had	
no	noise	or	missing	values.	

	

A	similar	effect	is	observed	when	we	add	noise	to	the	data	set.	Figure	S13	shows	that	the	
distribution	 of	 similarity	 coefficients	 for	 spores	 from	 the	 same	 tetrads	 gradually	 moves	
from	 the	 extremes	 towards	 the	 middle	 and	 becomes	 indistinguishable	 from	 the	
distribution	 of	 spores	 from	 different	 tetrads.	 	 Note	 that	 the	 0.2	 threshold	 is	 still	 usable	
when	the	noise	level	is	relatively	low,	and	stops	working	when	the	noise	is	over	5%.	

	

	
	

	
	

	
Supplementary	Figure	S13.	Distributions	of	centromere	similarity	coefficients	between	pairs	of	spores	from	
the	 same	 tetrad	 (in	 red)	 and	 from	different	 tetrads	 (in	 blue).	 The	 simulated	data	 of	 500	markers	 and	400	
spores	was	 generated	 at	 4	 different	 levels	 of	 noise,	 0%,	 5%,	20%,	 and	25%.	The	data	 sets	 had	no	missing	
values.	

	

On	the	other	hand,	as	Figure	S14	shows,	missing	data	generally	does	not	have	a	significant	
effect	 on	 the	 similarity	 coefficients.	 Moreover,	 this	 is	 the	 case	 even	 when	 rather	 few	
markers	are	considered	(100	markers).	
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Supplementary	 Figure	 S14.	 Similar	 to	Figure	13,	but	 this	 time	 the	 simulated	data	was	generated	using	4	
different	levels	of	missing	information,	0%,	5%,	20%,	and	25%.,	and	no	noise	was	added.	

	

Segregation	scores	

For	 a	 4-spore	 set,	 the	 2:2	 segregation	 score	 measures	 the	 fraction	 of	 genetic	 positions	
where	two	spores	have	allele	“A”	and	the	other	two	spores	have	allele	“B”.	Therefore,	for	a	
perfect	tetrad	the	2:2	segregation	score	is	1.	This	changes	however	when	we	add	noise	to	
the	 data	 set.	 If	𝑝	is	 the	 probability	 of	 a	 genetic	 position	 having	 noise	 (probability	 of	 a	
flipped	value),	then	the	2:2	segregation	score	of	a	tetrad	is	

	1− 4𝑝! 1− 𝑝 + 2𝑝! 1− 𝑝 ! + 4𝑝 1− 𝑝 ! = 1− 2𝑝(1− 𝑝)(3𝑝! − 3𝑝 + 2).	
	

Similarly,	 for	a	3-spore	subset	of	a	 tetrad,	 the	2:1	segregation	score	decreases	 from	1	 to:	
1− 𝑝! 1− 𝑝 + 𝑝 1− 𝑝 ! = 1− 𝑝(𝑝 − 1).	 Note	 that	 both	 2:2	 and	 2:1	 segregation	 scores	
are	 minimal	 when	𝑝 = 0.5.	 Table	 S1	 shows	 the	 2:2	 and	 2:1	 segregation	 scores	 for	 true	
tetrads	under	different	levels	of	noise.	

	

Noise	 2:2	segregation	 2:1	segregation	

0.01	 1-0.039=0.961	 1-0.0099=0.9901	

0.05	 1-0.1765=0.8235	 1-0.0475=0.9525	

0.1	 1-0.3114=0.6886	 1-0.09=0.91	

0.15	 1-0.4125=0.5875	 1-0.1275=0.8725	

0.2	 1-0.4864=0.5136	 1-0.16=0.84	

0.25	 1-0.5391=0.4609	 1-0.1875=0.8125	
Supplementary	Table	S1.	The	change	of	the	2:2	and	2:1	segregation	values	depending	on	the	noise	level.	
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Appendix	D	
The	 tetrad	 software	 consists	 of	 four	 main	 components:	 the	 preprocessing	 steps,	 the	
heuristic	search,	the	direct	search,	and	the	post-processing	steps	(see	Figure	S4).		

	
	

Supplementary	Figure	S4.	Detailed	view	of	the	software	for	tetrad	detection.	The	flow	is	shown	sequentially	
top	 to	bottom,	 left	 to	 right,	with	 the	 steps	 labeled	with	 a	 letter/number.	 Four	different	 components	 of	 the	
software	are	identified	with	different	colors	(see	the	legend	on	the	top	of	the	figure):	the	preprocessing	is	in	
green,	 the	 heuristic	 search	 is	 in	 red,	 the	 direct	 search	 is	 in	 blue,	 and	 the	 post-processing	 is	 in	 yellow.	 The	
general	functions	are	shown	in	the	boxes	with	their	resulting	sets	of	tuples	shown	in	ovals.	The	thin	arrows	
show	where	the	tuple	sets	are	being	used	as	inputs	to	functions.	Most	of	the	general	functions	shown	are	self-
explanatory.	 Function	 Search(N,Set)	 searches	 for	 N-tuples	 of	 spores	 from	 Set.	 A	 thin	 arrow	 entering	
Search(4,Set)	 function	 indicates	 that	 this	 is	 a	 shadow	 search	 that	 traverses	 all	 possible	 quads	 of	 spores	
consisting	of	a	triplet	identified	by	the	arrow	and	a	spore	from	Set.	Function	Global	Search(N)	corresponds	to	
a	 search	 for	 N-tuples	 among	 all	 the	 remaining	 spores.	 Set	 ClusterN	 in	 the	 argument	 of	 a	 search	 function	
traverses	all	clusters	of	spores	with	size	N=3,	4,	or	5+.	

The	 preprocessing	 component	 (steps	 A-C	 in	 green	 in	 Figure	 S4)	 reads	 the	 data	 in	 and	
cleans	 it	 by	 removing	 spores	 with	 too	 many	 missing	 data	 points,	 while	 flagging	 any	
duplicate	spores.	At	the	next	step,	the	software	pre-computes	the	significance	thresholds	–	
the	 delta	 scores	 that	 correspond	 to	 a	 user-defined	 level	 of	 significance	 (p-value=0.05	 by	
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default	 set	by	 the	 software	parameters	D4_PVALUE,	D3_PVALUE,	D2_PVALUE)	 for	quads,	
triplets,	and	pairs.	These	thresholds	correspond	to	the	minimal	delta	scores	required	for	a	
tuple	to	be	considered	a	real	tetrad	or	part	of	a	real	tetrad.	To	compute	the	thresholds,	the	
software	generates	a	set	of	N	random	tuples	set	by	the	parameter	RANDOM_SAMPLE_SIZE	
(equal	10000	by	default),	calculates	delta	scores,	and	finds	the	score	corresponding	to	the	
preset	p-value.	Finally,	the	preprocessing	component	attempts	to	cluster	the	spores	based	
on	their	centromere	similarity	(the	user	may	choose	to	switch	the	clustering	off	by	setting	
the	parameter	CLUSTERING	 to	0).	 To	 cluster	 the	 spores,	 the	 software	 first	 estimates	 the	
recombination	 frequency	 as	 a	 function	 of	 physical	 distance	 (see	Appendix	 G).	 On	 large	
datasets	this	step	can	take	too	long,	therefore	the	user	can	skip	it	(by	setting	CEN_CALLING	
to	0)	and	use	the	default	value	of	the	conversion	factor	(COS_PER_MEGA=3.7)	derived	from	
(Mancera	 et	 al,	 2008).	 Given	 the	 recombination	 frequency,	 the	 physical	 position	 of	
centromere-flanking	 markers	 and	 the	 alleles	 observed	 there	 (see	 Appendix	 G),	 the	
software	computes	similarity	coefficient	between	all	pairs	of	spores	(see	Appendix	B)	and	
constructs	a	graph	of	spores	such	that	two	spores	represented	by	nodes	are	connected	with	
an	edge	if	their	similarity	coefficient	is	above	the	threshold	SIMILARITY_COEFFICIENT	(the	
default	 value	 is	 0.2).	 Note	 that	 this	 threshold	 can	 be	 adjusted	 by	 the	 user	 for	 better	
performance	 (see	Appendix	 C).	 Given	 the	 graph,	 the	 software	 detects	 clusters	 of	 highly	
connected	spores	using	the	fast	algorithm	for	community	detection	in	large	graphs	(Clauset	
et	al.	2004).	We	used	the	implementation	of	the	algorithm	from	the	python	igraph	 library	
(function	community_fastgreedy).	

If	the	user	chooses	to	use	clustering	of	the	spores,	then	the	software	continues	by	executing	
the	 heuristic	 search	 component	 (steps	 1-13	 in	 red	 in	 Figure	 S4).	 During	 the	 heuristic	
search	the	software	attempts	 to	detect	all	 tetrads	within	each	cluster	either	by	searching	
for	the	tetrads	directly	(step	1)	or	indirectly	using	a	shadow	approach	by	first	computing	
all	triplets	(step	3)	and	then	looking	for	tetrads	as	a	combination	of	a	triplet	with	another	
spore	 from	 the	 cluster	 (step	 4).	 After	 that,	 the	 heuristic	 search	 attempts	 to	 use	 the	
remaining	triplets	detected	within	each	cluster	to	detect	the	tetrads	outside	the	clusters	by	
combining	 each	 triplet	with	 each	 spore	outside	 a	 cluster	 –	 a	 version	of	 a	 shadow	 search	
(steps	6,	9,	and	12).	The	tetrads,	detected	at	each	step	of	the	heuristic	search,	are	removed	
from	the	downstream	analysis,	which	considerably	reduces	the	size	of	 the	search	at	 later	
steps.	

Once	the	heuristic	search	 is	complete,	 the	software	proceeds	to	execute	the	direct	search	
component	(steps	14-22	in	blue	 in	Figure	 S4).	The	search	takes	all	 the	remaining	spores	
and	uses	the	shadow	approach	to	first	find	candidate	triplets	(step	14)	and	then	to	detect	
the	tetrads	that	consist	of	a	triplet	and	another	spore.	Once	the	shadow	search	is	complete,	
the	software	proceeds	to	search	for	tetrads	exhaustively	(step	17).	After	that,	the	software	
extracts	 the	remaining	unused	triplets,	consisting	of	 three	sister	spores,	and	searches	 for	
pairs	of	sister	spores	among	the	remaining	group.		

The	 last	 component	 of	 the	 software	 (step	 D	 in	 yellow	 in	 Figure	 S4)	 assembles	 all	 the	
detected	tuples,	labels	them,	and	outputs	in	a	user-friendly	format.		

	
Appendix	E	
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Figure	 S6.	 Comparison	 of	 delta	with	 interaction	 information	 for	 3-	 and	 4-spore	 cases.	 All	measures	were	
computed	 on	 the	 simulated	 data	 (1000	markers,	 100	 tetrads,	 1%	 noise,	 and	 5%	missing	 data).	 	 Panel	 (a)	
shows	the	scatter	plot	of	Interaction	Information	scores	versus	delta	scores	computed	on	all	possible	groups	
of	3	spores.	Each	group	is	colored	red	if	all	3	spores	of	the	group	came	from	the	same	tetrad,	blue	if	only	2	
spores	came	from	the	same	tetrad,	and	green	if	all	spores	came	from	different	tetrads.	Panel	(b)	shows	the	
scatter	 plot	 of	 the	 scores	 computed	 on	 all	 possible	 groups	 of	 4	 spores.	 Note	 that	 only	 1	million	 randomly	
sampled	tuples	are	shown	for	the	groups	in	green	(all	spores	are	from	different	tetrads).	[note	reversal	of	sign	
for	II]	
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Figure	S7.	Comparison	of	the	amount	of	information	between	2-spore	and	3-spore	levels	(a-b)	and	between	
3-spore	and	4-spore	levels	(c-d)	as	measured	by	interaction	information	(a,	c)	and	delta	(b,	d).	All	measures	
were	computed	on	the	same	data	as	in	Figure	2.	Panels	(a-b)	show	the	scatter	plot	of	scores	computed	on	all	
possible	groups	of	3	spores	and	their	two-spore	subsets	while	panels	(c-d)	show	the	scores	for	groups	of	4	
spores	and	 their	3-spore	 subsets.	Each	group	 is	 colored	 red	 if	 all	 spores	of	 the	group	came	 from	 the	 same	
tetrad,	blue	if	all	spores	except	one	came	from	the	same	tetrad,	and	green	otherwise.	The	scores	of	the	blue	
and	red	sets	are	plotted	in	their	entirety,	whereas	for	the	green	sets	we	randomly	selected	1	million	groups.		

	

Appendix	F	
	

Error-free	budding	 yeast	 tetrad	 genotypes	were	 simulated	 in	 the	 form	of	 a	 table	using	 a	
custom	R	script	(see	tetrad_sim_1_commented.R	file	in	the	software	package),	with	each	row	
representing	a	single	spore	and	each	column	a	randomly	generated	marker	position.	The	
number	of	marker	positions	and	tetrads	are	specified	by	the	user.	Tetrads	are	encoded	as	
consecutive	 groups	 of	 4	 spores	with	 the	 first	 2	 spore	 rows	 having	 the	 same	 centromere	
alleles	and	the	second	2	having	the	mirror	pattern.	Parental	alleles	are	encoded	as	“1”	and	
“2”.	 In	 every	 tetrad,	 each	 chromosome	 experienced	 one	 randomly	 placed	 obligatory	
crossover,	 plus	 an	 average	 (Poisson)	 of	 6	 further	 randomly	 placed	 crossovers	 per	
megabase	(Mancera	et	al,	2008).	
	

Appendix	G	
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We	 estimated	 the	probability	 that	 each	 centromere	 was	 derived	 from	 the	 “A”	 or	 “B”	
haplotypes	based	on	the	alleles	observed	at	the	markers	flanking	each	centromere	and	the	
probability	of	crossovers	occurring	in	the	centromere-marker	intervals.	These	probabilities	
were	 calculated	 from	 the	 physical	 sizes	 of	 the	 intervals	 (in	 basepairs)	using	 a	 global	
estimate	of	the	relationship	between	physical	and	genetic	distance.	This	estimate	(𝑏)	was	
derived	 by	 fitting	Haldane's	 formula	with	 physical	 distance	 replacing	 genetic	 distance	to	
the	 observed	 recombinant	 fraction	 between	 all	 markers	 within	 250kb	 of	 one	 another.	
Specifically	the	formula	

𝑟 = 1− 𝑒! !! !,	
where	𝑟	is	 a	 recombinant	 fraction,	𝑝	is	 physical	 distance	 in	 bp,	 and	𝑏	is	 the	 conversion	
factor	 between	 genetic	 and	 physical	 distance,	 was	 fit	 using	 the	 nls	 (non-linear	 least	
squares)	command	in	R.	

As	 an	 alternative	 to	 this	 approach,	 the	 estimate	 of	 total	 crossovers	 per	 meiosis	 from	
(Mancera	et	al,	2008)	can	be	used	to	provide	a	coefficient	for	converting	physical	to	genetic	
distances	in	S.	cerevisiae.	

	

Appendix	H	
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0	 0	 yes	 0.2	 0.05	 0.9	 0.95	 6.1	 100%	

small_500_00	 0	 0	 yes	 0.21	 0.05	 0.9	 0.95	 6.0	 100%	

small_default	 0	 0.05	 yes	 0.2	 0.05	 0.9	 0.95	 5.8	 100%	

small_500_m05	 0	 0.05	 yes	 0.19	 0.05	 0.9	 0.95	 5.7	 100%	

small_default	 0	 0.1	 yes	 0.2	 0.05	 0.9	 0.95	 6.2	 100%	

small_500_m10	 0	 0.1	 yes	 0.19	 0.05	 0.9	 0.95	 6.2	 100%	

small_default_n05	 0.05	 0	 yes	 0.2	 0.05	 0.75	 0.88	 6.7	 100%	

small_500_05	 0.05	 0	 yes	 0.21	 0.05	 0.75	 0.88	 6.7	 100%	

small_default_n10	 0.1	 0	 yes	 0.2	 0.05	 0.6	 0.83	 19.0	 100%	

small_500_10	 0.1	 0	 yes	 0.24	 0.05	 0.6	 0.83	 8.1	 100%	

small_default	
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0	 0	 yes	 0.2	 0.05	 0.9	 0.95	 13.6	 100%	

small_984_00_a	 0	 0	 yes	 0.13	 0.05	 0.9	 0.95	 12.9	 100%	

small_984_00_b	 0	 0	 yes	 0.18	 0.05	 0.9	 0.95	 13.3	 100%	

small_default	 0	 0.05	 yes	 0.2	 0.05	 0.9	 0.95	 13.3	 100%	

small_984_m05_a	 0	 0.05	 yes	 0.14	 0.05	 0.9	 0.95	 12.3	 100%	

small_984_m05_b	 0	 0.05	 yes	 0.17	 0.05	 0.9	 0.95	 12.8	 100%	

small_default	 0	 0.1	 yes	 0.2	 0.05	 0.9	 0.95	 13.5	 100%	

small_984_m10_a	 0	 0.1	 yes	 0.13	 0.05	 0.9	 0.95	 12.1	 100%	

small_984_m10_b	 0	 0.1	 yes	 0.18	 0.05	 0.9	 0.95	 13.1	 100%	

small_default_n05	 0.05	 0	 yes	 0.2	 0.05	 0.75	 0.88	 14.3	 100%	

small_984_05	 0.05	 0	 yes	 0.2	 0.05	 0.75	 0.88	 14.4	 100%	
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small_default_n10	 0.1	 0	 yes	 0.2	 0.05	 0.6	 0.83	 18.0	 100%	

small_984_10	 0.1	 0	 yes	 0.22	 0.05	 0.6	 0.83	 16.0	 100%	

medium_default	

M
ed

iu
m
	(1

00
0	
te
tr
ad

s/
10

00
0	
m
ar
ke
rs
)	 10
%
	se

t	(
10

00
	m

ar
ke
rs
)	

0	 0	 no	 0.11	 0.05	 0.9	 0.95	 02:11.1	 100%	

medium_1000_00	 0	 0	 no	 0.12	 0.05	 0.9	 0.95	 02:10.2	 100%	

medium_default	 0	 0.05	 no	 0.11	 0.05	 0.9	 0.95	 02:37.4	 100%	

medium_1000_m05	 0	 0.05	 no	 0.12	 0.05	 0.9	 0.95	 02:48.3	 100%	

medium_default	 0	 0.1	 no	 0.11	 0.05	 0.9	 0.95	 02:54.9	 100%	

medium_1000_m10	 0	 0.1	 no	 0.12	 0.05	 0.9	 0.95	 02:27.2	 100%	

medium_default_n05	 0.05	 0	 no	 0.11	 0.05	 0.75	 0.88	 02:15:16.7	 100%	
medium_1000_05_a	 0.05	 0	 no	 0.14	 0.05	 0.75	 0.88	 27:15.2	 100%	

medium_1000_05_b	 0.05	 0	 no	 0.16	 0.05	 0.75	 0.88	 ???	 ???	

medium_default_n10	 0.1	 0	 no	 0.15	 0.05	 0.6	 0.83	 20:06:24.1	 99.8%	
medium_1000_10_a	 0.1	 0	 no	 0.15	 0.08	 0.6	 0.83	 19:21:00.7	 99.8%	
medium_1000_10_b	 0.1	 0	 no	 0.16	 0.08	 0.6	 0.83	 14:14:47.7	 99.8%	

medium_1000_10_c	 0.1	 0	 no	 0.17	 0.08	 0.6	 0.83	 10:54:27.6	 99.0%	

medium_default	

Fu
ll	
(9
98

4	
m
ar
ke
rs
)	

0	 0	 no	 0.11	 0.05	 0.9	 0.95	 03:39.1	 100%	

medium_9984_00_a	 0	 0	 no	 0.1	 0.05	 0.9	 0.95	 03:38.2	 100%	

medium_9984_00_b	 0	 0	 no	 0.12	 0.05	 0.9	 0.95	 03:42.0	 100%	

medium_default	 0	 0.05	 no	 0.11	 0.05	 0.9	 0.95	 04:12.3	 100%	

medium_9984_m05_a	 0	 0.05	 no	 0.1	 0.05	 0.9	 0.95	 04:09.1	 100%	

medium_9984_m05_b	 0	 0.05	 no	 0.12	 0.05	 0.9	 0.95	 04:13.2	 100%	

medium_default	 0	 0.1	 no	 0.11	 0.05	 0.9	 0.95	 03:38.2	 100%	

medium_9984_m10_a	 0	 0.1	 no	 0.09	 0.05	 0.9	 0.95	 03:32.5	 100%	

medium_9984_m10_b	 0	 0.1	 no	 0.12	 0.05	 0.9	 0.95	 03:36.2	 100%	

medium_default_n05	 0.05	 0	 no	 0.11	 0.05	 0.75	 0.88	 33:42.0	 100%	

medium_9984_05_a	 0.05	 0	 no	 0.12	 0.05	 0.75	 0.88	 17:35.0	 100%	

medium_9984_05_b	 0.05	 0	 no	 0.13	 0.05	 0.75	 0.88	 41:01.2	 100%	

medium_default_n10	 0.1	 0	 no	 0.15	 0.05	 0.6	 0.83	 50:53:33.1	 100%	

medium_9984_10_a	 0.1	 0	 no	 0.16	 0.05	 0.6	 0.83	 39:08:46.5	 100%	

medium_9984_10_b	 0.1	 0	 no	 0.17	 0.05	 0.6	 0.83	 26:43:15.6	 100%	

large_default	
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t	(
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00
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0	 0	 no	 0.12	 0.05	 0.9	 0.95	 03:36.6	 100%	

large_10K_00	 0	 0	 no	 0.07	 0.05	 0.9	 0.95	 03:28.3	 100%	

large_default	 0	 0.05	 no	 0.12	 0.05	 0.9	 0.95	 03:40.0	 100%	

large_10K_m05	 0	 0.05	 no	 0.11	 0.05	 0.9	 0.95	 03:42.3	 100%	

large_default	 0	 0.1	 no	 0.12	 0.05	 0.9	 0.95	 03:45.0	 100%	

large_10K_m10	 0	 0.1	 no	 0.09	 0.05	 0.9	 0.95	 03:35.7	 100%	

large_default_n05	 0.5	 0	 no	 0.12	 0.05	 0.75	 0.88	 18:46.4	 100%	

large_10K_05_a	 0.5	 0	 no	 0.13	 0.05	 0.75	 0.88	 44:50.8	 100%	

large_default_n10	 0.1	 0	 no	 0.14	 0.05	 0.6	 0.83	 48:06:51.2	 100%	

large_10K_10_a	 0.1	 0	 no	 0.16	 0.05	 0.6	 0.83	 31:13:42.7	 100%	
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large_default	

H
al
f	(
50

00
0	
m
ar
ke
rs
)	

0	 0	 no	 0.12	 0.05	 0.9	 0.95	 10:51.9	 100%	

large_50K_00_a	 0	 0	 no	 0.07	 0.05	 0.9	 0.95	 10:45.2	 100%	

large_default	 0	 0.05	 no	 0.12	 0.05	 0.9	 0.95	 10:41.2	 100%	

large_50K_m05_a	 0	 0.05	 no	 0.05	 0.05	 0.9	 0.95	 08:33.1	 100%	

large_default	 0	 0.1	 no	 0.12	 0.05	 0.9	 0.95	 10:43.9	 100%	

large_50K_m10_a	 0	 0.1	 no	 0.07	 0.05	 0.9	 0.95	 10:40.6	 100%	

large_default_n05	 0.5	 0	 no	 0.12	 0.05	 0.75	 0.88	 36:59.5	 100%	

large_50K_05_a	 0.5	 0	 no	 0.14	 0.05	 0.75	 0.88	 03:34:11.0	 100%	

large_default_n10	 0.1	 0	 no	 0.14	 0.05	 0.6	 0.83	 296:17:18.6	 100%	

large_50K_10_a	 0.1	 0	 no	 0.15	 0.05	 0.6	 0.83	 198:09:45.4	 100%	

large_50K_10_b	 0.1	 0	 no	 0.17	 0.05	 0.6	 0.83	 	93:53:41.7	 	100%	
	

Table	 S1.	 The	 tetrad	 detection	 software	 applied	 to	 various	 simulated	 test	 sets	 using	 multiple	 different	
parameter	settings.	
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