

1 **Relation of in-utero exposure to antiepileptic drugs**

2 **to pregnancy duration and size at birth**

3 Andrea V Margulis, MD, ScD ¹

4 Sonia Hernandez-Diaz, MD, DPH ²

5 Thomas McElrath, MD, PhD ³

6 Kenneth J Rothman, DrPH ⁴

7 Estel Plana, MSc ¹

8 Catarina Almqvist, MD, PhD ^{5,6}

9 Brian M D'Onofrio, PhD ^{5,7}

10 Anna Sara Oberg, MD, MPH, PhD ^{2,5}

11

12 ¹ RTI Health Solutions, Barcelona, Spain

13 ² Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston,
14 Massachusetts, USA

15 ³ Division of Maternal-Fetal Medicine, Brigham & Women's Hospital, Harvard Medical
16 School, Boston, Massachusetts, USA

17 ⁴ RTI Health Solutions, Waltham, Massachusetts, USA

18 ⁵ Department of Medical Epidemiology and Biostatistics, Karolinska Institutet,
19 Stockholm, Sweden

20 ⁶ Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm,
21 Sweden

22 ⁷ Department of Psychological and Brain Sciences, Indiana University, Bloomington,
23 Indiana, USA

24 **Corresponding Author:**

25 Andrea V Margulis
26 RTI Health Solutions
27 Av. Diagonal, 605, 9-1, 08028
28 Barcelona, Spain
29 Telephone: +34.93.241.7766
30 Fax: +34.93.414.2610
31 amargulis@rti.org

32

33 **Short title/running head:** Antiepileptic drugs and size at birth

34 **Word Count:** approximately 4600

35 **Number of Tables and Figures:** 6 tables and 1 figure

37 **ABSTRACT**

38 **Background:** The associations of individual antiepileptic drugs (AEDs) with pregnancy duration
39 and size at birth, and potential dose relations, are not well characterized.

40 **Methods:** This cohort study used nationwide Swedish register data (1996-2013). Adjusting for
41 smoking, epilepsy and other AED indications, we used linear and quantile regression to explore
42 associations with pregnancy duration, and birth weight, length, and head circumference (the last
43 three operationalized as z-scores). We used logistic regression for preterm delivery, small for
44 gestational age, and microcephaly. Lamotrigine was the reference drug.

45 **Results:** 6,720 infants were exposed to AEDs in utero; AED exposure increased over the study
46 period. Relative to lamotrigine-exposed infants, carbamazepine-exposed infants were born, on
47 average, 1.3 days earlier (mean [95% confidence interval]: -1.3 [-2.3 to -0.3]); were 0.1 standard
48 deviations (SDs) lighter (-0.1 [-0.2 to 0.0]); and had a head circumference that was 0.2 SDs
49 smaller (-0.2 [-0.3 to -0.1]). Pregabalin-exposed infants were born, on average, 1.1 days earlier (-
50 1.1 [-3.0 to 0.8]); were 0.1 SDs lighter (-0.1 [-0.3 to 0.0]); and had the same head circumference.
51 Levetiracetam-exposed infants were born, on average, 0.5 days earlier (-0.5 [-2.6 to 1.6]); were
52 0.1 SDs lighter (-0.1 [-0.3 to 0.0]); and were 0.1 SDs smaller (-0.1 [-0.3 to 0.1]) in head
53 circumference. Valproic acid-exposed infants had, on average, the same duration of gestation
54 and birth weight z-score, but were 0.2 SDs smaller (-0.2 [-0.2 to -0.1]) in head circumference.
55 More negative associations at the left tail of pregnancy duration and birth weight z-score, effect-
56 measure modification, and dose-response relations were noted for some of the associations.
57 Observed associations were generally of smaller magnitude than that of smoking, assessed as a
58 potential confounder in the same models.

59 **Conclusions:** In comparison with lamotrigine, valproic acid and carbamazepine had a more
60 negative association with head circumference than other study AEDs.

62 INTRODUCTION

63 Epilepsy and antiepileptic drugs (AEDs) have been associated with adverse pregnancy, fetal, and
64 neonatal outcomes [1]. AEDs differ in their risk for congenital malformations [2-4], and some
65 associations have been found to be dose dependent [4-6]. Newer AEDs are generally considered
66 safer than the older drugs, with the possible exception of topiramate [7]. Antiepileptic drugs also
67 differ in the magnitude of their associations with adverse neurodevelopmental outcomes in the
68 offspring, which also appear to be dose dependent [8-10]. The exploration of indication and dose
69 is important because confounding by indication has been a concern and AED doses are often
70 higher in epilepsy than in other conditions [11].

71 A meta-analysis has shown elevated point estimates for the association of AEDs, as a group,
72 with shortened pregnancies and reduced birth size [1], but comparative safety evidence for these
73 endpoints is scarce, as demonstrated by a systematic literature search we conducted to inform our
74 decision on which AED to use as a reference drug [12] and to provide context to the present
75 study. We identified 15 papers that provided adjusted comparisons for individual AEDs [13-27],
76 of which 12 used unexposed populations as the reference (details on this literature search are in
77 Supporting Information file 1).

78 Furthermore, previous research has assessed associations with binarized endpoints or
79 associations only at the mean of the continuous distributions. In this study, we sought to explore
80 the comparative safety of individual AEDs on pregnancy duration and birth weight, length, and
81 head circumference and to explore dose relations on these endpoints, adjusting for epilepsy and
82 other indications. To characterize effects thoroughly, we assessed continuous and binary forms
83 of the endpoints and investigated potential AED effects in both tails of the endpoint distributions.
84 Advantages of this comparative safety design, in which we used lamotrigine as the reference

85 instead of no AED use, are that confounding by indication is partially removed and that study
86 results will better inform the choice of patients and clinicians when antiepileptic treatment is
87 needed.

88 **METHODS**

89 **Overview**

90 We conducted a cohort study based on nationwide Swedish register data from 1996 through 2013
91 to explore the association between maternal use of individual AEDs and pregnancy duration and
92 fetal size. Lamotrigine was the reference AED because it is commonly used and has been
93 considered to have fewer adverse fetal effects than other AEDs [2, 12, 28, 29].

94 **Data sources**

95 In Sweden, tax-funded health care is provided to all citizens. Information arising from contacts
96 with the health care system is collected in registries that can be linked through a unique personal
97 registration number assigned to all individuals residing in Sweden. Drugs are coded in the
98 Anatomic Therapeutic Chemical classification system, and diagnoses are coded using the
99 International Classification of Diseases (10th revision since 1997).

100 The Swedish Medical Birth Register [30] collects information from prenatal care, including self-
101 reported medication use at first and subsequent visits, and from standardized delivery charts,
102 including gestational age at birth, birth weight, length, and head circumference. Information on
103 medication use in the first visit is more complete than in subsequent visits. Medications noted
104 only in free-text comments have been coded and incorporated in the structured drug fields. The
105 Prescribed Drug Register records all prescription medications dispensed by pharmacies since 1

106 July 2005. Information available from prescriptions include drug name, drug strength, number of
107 packages dispensed, and number of defined daily doses (DDDs) per package [31]. The National
108 Patient Register includes all discharge records from hospitalizations since 1987 and 75%-80% of
109 visits to specialists, including psychiatric care, since 2001. The Swedish Register of Education
110 contains information on the maximum education level attained per year [32]. The Total
111 Population Register contains demographic and administrative information including nationality
112 and birth and migration dates [33].

113 **Study population**

114 The study population included all women with records for AEDs in pregnancy who delivered a
115 live infant with gestational age of 24 to 42 completed weeks in 1996-2013 and their newborns.
116 Infants born from women who immigrated less than 12 months before pregnancy and infants
117 with chromosomal abnormalities were excluded. Infants with congenital malformations and no
118 chromosomal abnormalities and infants from multiple pregnancies were included. All eligible
119 infants per woman were included.

120 **Exposure**

121 We report on the five AEDs that were most commonly used in pregnancy in the last year of our
122 study period: carbamazepine, valproic acid, pregabalin, levetiracetam, and lamotrigine. We
123 defined three exposure windows for analysis: any time in pregnancy, first trimester (regardless of
124 whether treatment was later discontinued), and first and second/third trimesters (“continuers”).
125 To create the exposure variables, information on first-trimester exposure was obtained from
126 prescriptions dispensed between the first day of the last menstrual period and gestational day 89
127 and from self-report in the first prenatal visit in women who started prenatal care by gestational

128 week 15. Information on second-/third-trimester exposure was obtained from prescriptions
129 dispensed between day 90 and the day before delivery, from self-reports in the first prenatal visit
130 in women who started prenatal care after gestational week 15, and from self-reports in
131 subsequent prenatal visits (self-reports did not allow a clear differentiation of second- versus
132 third-trimester exposure; thus, we combined both periods). Because of incomplete capture of
133 self-reports after the first prenatal visit, exposure in continuers was defined only for the period
134 for which dispensing data were available (deliveries in 2006-2013). Women and infants exposed
135 to more than one AED were considered to be exposed to each of them.

136 Dose was derived from dispensed prescriptions (deliveries in 2006-2013). For each prescription,
137 dose was calculated by multiplying the number of packs dispensed by the number of DDDs per
138 pack and by the number of milligrams in a DDD [31]. The mean daily dose was calculated
139 separately for each AED per infant by dividing the dose in prescriptions dispensed between the
140 first day of the last menstrual period and the day before delivery over the number of days in the
141 same period.

142 **Characteristics of the study population**

143 We extracted medical and obstetric information from the national health registers, which derive
144 their information from prenatal care records, hospitalization records, outpatient specialist care
145 records, and dispensed prescriptions. Codes, source of data, timing of ascertainment,
146 categorization, and other details for medical and other characteristics are presented in Supporting
147 information file 2.

148 **Endpoints**

149 Study endpoints were duration of pregnancy, preterm delivery, birth weight, small for gestational
150 age (SGA), length at birth, head circumference at birth, and microcephaly, all ascertained from
151 the Medical Birth Register. Duration of pregnancy is predominantly based on ultrasound
152 estimation [34] and is recorded in days; preterm delivery was defined as delivery before 37
153 completed weeks. Birth weight, length, and head circumference were operationalized as z-scores
154 to assess size independently from gestational age at birth; the birth weight z-score for each infant
155 is the observed birth weight minus the reference mean birth weight, divided by the reference
156 birth weight standard deviation (SD), where the mean and SD were those for infants born at the
157 same gestational age, using a local standard [35]. Small for gestational age was defined within
158 the Medical Birth Register from standard growth curves based on ultrasound-derived fetal
159 weights for singletons only [36]. Microcephaly was defined within the Medical Birth Register as
160 a head circumference of two or more SDs below the mean for gestational age at birth, using a
161 local standard [35].

162 **Statistical analyses**

163 In the main analysis, continuous endpoints were analyzed using linear regression and quantile
164 regression for the 10th, 50th, and 90th percentiles [37]. Lamotrigine was the reference drug. We
165 produced unadjusted results and results adjusted for maternal age at delivery, education, country
166 of origin, marital status, early pregnancy body mass index, smoking in current pregnancy,
167 alcohol dependence, diabetes, hypertension, epilepsy, depression, bipolar disorder, migraine,
168 chronic pain, other psychiatric disorders, and year of delivery. Variable definitions are presented
169 in Supporting information file 2. Missing values (Table 1) were imputed for analysis as the most

170 commonly observed value in the study population; multiple imputation had been planned for
171 variables with missing values in 10% or more of the observations, but missingness was below
172 that threshold. Binary endpoints were analyzed using logistic regression. We conducted adjusted
173 analyses in comparisons with five or more events in the smallest cell (i.e., exposed cases,
174 exposed noncases, unexposed cases, unexposed noncases), adjusting for the variables listed
175 above. We used the weighted copy method to facilitate the convergence of logistic regression
176 models. With this method, analyses are conducted on an expanded data set that consists of the
177 original data set and a copy of the data with the outcomes reversed; confidence intervals are
178 adjusted by the use of weights in the code [38-40]. We weighted the original data 999 times that
179 of the reversed data. The unit of analysis was pregnancy for the endpoints duration of pregnancy
180 and preterm delivery; for other endpoints, the unit of analysis was infant.

181 The Regional Ethical Review Board in Stockholm, Sweden, approved the linkage of registers to
182 perform this type of study (DNR 2013/862-31/5). This study was judged to be exempt from
183 review by the RTI International institutional review board.

Table 1. Characteristics of Study Population and Mean Daily Dose By Antiepileptic Drug

Characteristic	Lamotrigine	Carbamazepine	Pregabalin	Levetiracetam	Valproic acid
Number of exposed women	1,757	1,529	542	245	809
Number of exposed infants	2,254	2,095	562	307	1,137
Age at delivery (years)					
24 or less	427 (18.9%)	249 (11.9%)	119 (21.2%)	52 (16.9%)	206 (18.1%)
25-29	691 (30.7%)	626 (29.9%)	160 (28.5%)	92 (30.0%)	350 (30.8%)
30-34	721 (32.0%)	728 (34.7%)	151 (26.9%)	114 (37.1%)	374 (32.9%)
35 or more	415 (18.4%)	492 (23.5%)	132 (23.5%)	49 (16.0%)	207 (18.2%)
Mother's country of origin					
Nordic countries	2,040 (90.5%)	1,812 (86.5%)	486 (86.5%)	257 (83.7%)	995 (87.5%)
Other European countries	86 (3.8%)	72 (3.4%)	21 (3.7%)	16 (5.2%)	59 (5.2%)
Asia	82 (3.6%)	128 (6.1%)	39 (6.9%)	24 (7.8%)	60 (5.3%)
Others	46 (2.0%)	83 (4.0%)	16 (2.8%)	10 (3.3%)	23 (2.0%)
Maternal education					
Up to 12 years	1,396 (61.9%)	1,340 (64.0%)	461 (82.0%)	182 (59.3%)	759 (66.8%)
13 years or more	826 (36.6%)	717 (34.2%)	96 (17.1%)	115 (37.5%)	364 (32.0%)
No information	32 (1.4%)	38 (1.8%)	5 (0.9%)	10 (3.3%)	14 (1.2%)
Maternal marital status					
Lives with child's father	1,926 (85.4%)	1,854 (88.5%)	382 (68.0%)	275 (89.6%)	1,004 (88.3%)
Does not live with child's father	253 (11.2%)	184 (8.8%)	157 (27.9%)	25 (8.1%)	93 (8.2%)
No information	75 (3.3%)	57 (2.7%)	23 (4.1%)	7 (2.3%)	40 (3.5%)
Early pregnancy BMI (kg/m ²)					
Less than 18.5	44 (2.0%)	33 (1.6%)	9 (1.6%)	8 (2.6%)	22 (1.9%)
18.5 to less than 25	1,097 (48.7%)	1,066 (50.9%)	243 (43.2%)	174 (56.7%)	513 (45.1%)
25 to less than 30	595 (26.4%)	500 (23.9%)	145 (25.8%)	72 (23.5%)	318 (28.0%)
30 or more	341 (15.1%)	287 (13.7%)	120 (21.4%)	36 (11.7%)	179 (15.7%)
Obese (codes for obesity)	2 (0.1%)	2 (0.1%)	2 (0.4%)	0 (0.0%)	2 (0.2%)

Characteristic	Lamotrigine	Carbamazepine	Pregabalin	Levetiracetam	Valproic acid
No information	175 (7.8%)	207 (9.9%)	43 (7.7%)	17 (5.5%)	103 (9.1%)
Smoking during pregnancy					
Smoker	386 (17.1%)	258 (12.3%)	234 (41.6%)	26 (8.5%)	211 (18.6%)
Nonsmoker	1,809 (80.3%)	1,787 (85.3%)	310 (55.2%)	277 (90.2%)	894 (78.6%)
No information	59 (2.6%)	50 (2.4%)	18 (3.2%)	4 (1.3%)	32 (2.8%)
Alcohol dependence	123 (5.5%)	38 (1.8%)	69 (12.3%)	1 (0.3%)	25 (2.2%)
AED indications/uses					
Epilepsy	1,559 (69.2%)	1,774 (84.7%)	37 (6.6%)	303 (98.7%)	939 (82.6%)
Depression	445 (19.7%)	106 (5.1%)	273 (48.6%)	19 (6.2%)	86 (7.6%)
Bipolar disorder	460 (20.4%)	27 (1.3%)	57 (10.1%)	2 (0.7%)	74 (6.5%)
Other psychiatric disorders	645 (28.6%)	179 (8.5%)	371 (66.0%)	37 (12.1%)	162 (14.2%)
Migraine	224 (9.9%)	105 (5.0%)	132 (23.5%)	24 (7.8%)	62 (5.5%)
Chronic pain	575 (25.5%)	283 (13.5%)	387 (68.9%)	78 (25.4%)	172 (15.1%)
Restless legs syndrome	9 (0.4%)	6 (0.3%)	13 (2.3%)	1 (0.3%)	2 (0.2%)
None of the above	63 (2.8%)	222 (10.6%)	30 (5.3%)	3 (1.0%)	93 (8.2%)
Diabetes	76 (3.4%)	56 (2.7%)	24 (4.3%)	10 (3.3%)	43 (3.8%)
Hypertension	100 (4.4%)	100 (4.8%)	48 (8.5%)	12 (3.9%)	65 (5.7%)
Medications in current pregnancy					
AED polytherapy	442 (19.6%)	269 (12.8%)	63 (11.2%)	180 (58.6%)	256 (22.5%)
Antidepressants	458 (20.3%)	107 (5.1%)	284 (50.5%)	15 (4.9%)	117 (10.3%)
Antipsychotics	157 (7.0%)	31 (1.5%)	76 (13.5%)	3 (1.0%)	50 (4.4%)
Migraine treatment	51 (2.3%)	21 (1.0%)	43 (7.7%)	6 (2.0%)	21 (1.8%)
Opioids	165 (7.3%)	79 (3.8%)	195 (34.7%)	27 (8.8%)	55 (4.8%)
Female infant	1,178 (52.3%)	982 (46.9%)	285 (50.7%)	144 (46.9%)	557 (49.0%)
High dose (mean, mg/day) ^a	454	905	384	2,489	1,349
Low dose (mean, mg/day) ^b	41	186	12	402	211

185 AED, antiepileptic drug; BMI, body mass index.

186 Note = The denominator for calculations is the number of infants.

187 ^a Mean dose in top tertile of pregnancy daily dose.

188 ^b Mean dose in bottom tertile of pregnancy daily dose.

189 As secondary and sensitivity analyses, to better understand the influence of the underlying

190 maternal health problem being treated, we repeated the main analysis in mothers with a diagnosis

191 of epilepsy or chronic pain. We also explored the influence of monotherapy versus polytherapy

192 (e.g., carbamazepine in polytherapy [not including lamotrigine] vs. lamotrigine in polytherapy

193 [not including carbamazepine]). To address potential exposure misclassification and biases

194 related to missing data, we conducted analyses on women with definite exposure (women in

195 whom AED use from self-reports and dispensed prescriptions were consistent) and a complete

196 case analysis. Addressing whether associations might be driven by in-utero crowding or

197 malformations, we repeated analyses in singletons with no major congenital malformations. We

198 repeated the analyses in the first pregnancy or infant per woman to gain understanding on any

199 statistical effect of ignoring the correlation among siblings. We also explored associations

200 separately in female and male infants. We explored effect-measure modification separately by

201 smoking and use of selective serotonin reuptake inhibitors (SSRIs) in pregnancy in linear

202 regression analyses by incorporating an appropriate interaction term into the regression models.

203 In dose analyses, we compared the top tertile of mean daily dose with the bottom tertile (which

204 served as the reference) for each individual AED, using linear regression. All models were

205 adjusted as in the main analysis, and the weighted copy method was used for binary endpoints.

206 We present results from a subset of analyses in the body of this paper; others, including analyses

207 on birth weight, length, and head circumference as recorded (in grams or centimeters, as opposed

208 to z-scores), are included in Supporting information file 3 (Tables S1-S9).

209 **RESULTS**

210 **Study population**

211 The study population comprised 6,720 infants born to 5,112 women. Antiepileptic drug use in
212 pregnancy increased from 181 exposed infants in 1996 to 607 in 2013 (Figure 1). In 2013, the
213 most commonly used AEDs were lamotrigine (47%), carbamazepine (16%), pregabalin (16%),
214 levetiracetam (10%), and valproic acid (8%); we present results on these drugs. The prevalences
215 of most maternal characteristics were quite homogeneous across users of individual study AEDs
216 (Table 1), except for the medical conditions for which study AEDs are prescribed.

217 **Figure 1. Use of antiepileptic drugs in pregnancy, Sweden 1996-2013**

218 Note = Year represents year of delivery. The curve labeled "any antiepileptic drug" includes all drugs in chapter N03 of the
219 Anatomical Therapeutic Chemical (ATC) classification system.

220

221 **Carbamazepine**

222 Carbamazepine use decreased over the study period from 63% of AED-exposed infants in 1996
223 to 16% in 2013 (Figure 1); mothers of 85% of carbamazepine-exposed infants had an epilepsy
224 diagnosis, and 13% of infants were exposed to AED polytherapy (Table 1).

225 We observed a pattern of slightly shorter pregnancies with linear regression models (mean [95%
226 confidence interval]: -1.3 [-2.3 to -0.3] days) and smaller infants after exposure to
227 carbamazepine, relative to lamotrigine, with an asymmetrical effect in which the head
228 circumference z-score was somewhat more affected (-0.2 [-0.3 to -0.1] SDs) than birth weight or
229 birth length z-scores (both at -0.1 [-0.2 to 0] SDs) (Table 2 and Supporting information file 3,
230 Table S1). Associations at the 10th percentile of pregnancy duration were generally more
231 negative than associations at the 90th percentile (i.e., regression coefficients from quantile

232 regression models for carbamazepine indicated that exposure to carbamazepine was associated
233 with a shorter pregnancy duration when assessed at the 10th percentile of pregnancy duration
234 than when assessed at the 90th percentile). Most odds ratios (ORs) from logistic regression
235 models for preterm delivery, SGA, and microcephaly ranged between 1.1 and 1.5; observed
236 effects were larger in infants exposed to polytherapy. Odds ratios for SGA and microcephaly in
237 women with chronic pain were also larger. Exposure to SSRIs operated as an effect-measure
238 modifier for duration of gestation, with shorter pregnancies (mean -5.8 [-9.7 to -2.0] days) in
239 women exposed to both carbamazepine and SSRIs (Supporting information file 3, Table S2).
240 High doses of carbamazepine were associated with higher risk for all outcomes relative to low
241 doses of carbamazepine (Table 2 and Supporting information file 3, Table S1).

242 **Table 2. Association Between in-Utero Carbamazepine Exposure and the Endpoints Duration of Pregnancy and**
 243 **Size at Birth**

	Exposed to Carbamazepin e/Reference,	Difference (95% CI)					Odds Ratio (95% CI)	
		n/n	Mean	Percentile				
				10th	50th	90th		
Pregnancy duration (days)								
Use any time in pregnancy, carbamazepine vs. lamotrigine	1,975 / 2,123	-1.3 (-2.3 to -0.3)	-1.1 (-3.1 to 0.9)	-0.9 (-1.8 to 0.1)	-0.1 (-1.3 to 1.0)	1.2 (0.9 to 1.5)		
Use in first trimester, carbamazepine vs. lamotrigine	1,686 / 1,930	-1.6 (-2.7 to -0.5)	-2.3 (-4.5 to -0.1)	-0.9 (-1.8 to 0.0)	-0.5 (-1.5 to 0.6)	1.3 (1.0 to 1.8)		
Continuers, carbamazepine vs. lamotrigine	459 / 1,013	-1.3 (-3.0 to 0.3)	0.0 (-3.8 to 3.8)	-0.3 (-2.0 to 1.3)	-0.5 (-1.9 to 0.9)	1.1 (0.7 to 1.7)		
Mother with epilepsy, carbamazepine vs. lamotrigine	1,665 / 1,447	-1.3 (-2.4 to -0.2)	-1.6 (-3.5 to 0.3)	-0.5 (-1.5 to 0.5)	-0.2 (-1.3 to 0.9)	1.3 (0.9 to 1.7)		
Mother with chronic pain, carbamazepine vs. lamotrigine	259 / 541	-1.5 (-4.2 to 1.1)	-4.5 (-10.5 to 1.5)	-0.7 (-2.7 to 1.4)	0.1 (-2.7 to 2.8)	1.3 (0.7 to 2.3)		
Polytherapy, carbamazepine vs. lamotrigine	167 / 336	-2.4 (-5.8 to 1.0)	-6.1 (-15.1 to 2.8)	-2.0 (-5.4 to 1.4)	-1.5 (-4.0 to 1.0)	1.7 (0.9 to 3.3)		
High vs. low dose of carbamazepine	264 / 275	-4.6 (-7.5 to -1.6)	-6.8 (-12.6 to -0.9)	-3.4 (-5.8 to -0.9)	-2.1 (-4.7 to 0.4)	2.8 (1.3 to 6.0)		
Birth weight z-score								
Use any time in pregnancy, carbamazepine vs. lamotrigine	1,988 / 2,147	-0.1 (-0.2 to -0.0)	-0.0 (-0.1 to 0.1)	-0.1 (-0.2 to -0.0)	-0.2 (-0.3 to -0.1)	1.4 (0.9 to 2.1)		
Use in first trimester, carbamazepine vs. lamotrigine	1,699 / 1,953	-0.1 (-0.2 to -0.0)	-0.1 (-0.2 to 0.1)	-0.1 (-0.2 to -0.0)	-0.2 (-0.3 to -0.1)	1.7 (1.0 to 2.6)		
Continuers, carbamazepine vs. lamotrigine	466 / 1,021	-0.1 (-0.2 to -0.0)	-0.1 (-0.3 to 0.1)	-0.1 (-0.2 to 0.0)	-0.2 (-0.3 to -0.0)	1.3 (0.7 to 2.6)		
Mother with epilepsy, carbamazepine vs. lamotrigine	1,676 / 1,459	-0.1 (-0.2 to -0.0)	0.0 (-0.1 to 0.1)	-0.1 (-0.2 to -0.1)	-0.2 (-0.3 to -0.0)	1.2 (0.8 to 1.9)		
Mother with chronic pain, carbamazepine vs. lamotrigine	263 / 552	-0.2 (-0.3 to 0.0)	-0.1 (-0.4 to 0.3)	-0.1 (-0.3 to 0.1)	-0.1 (-0.4 to 0.1)	1.8 (0.8 to 4.2)		

	Exposed to Carbamazepin e/Reference,	Difference (95% CI)					Odds Ratio (95% CI)	
		Percentile						
		n/n	Mean	10th	50th	90th		
Polytherapy, carbamazepine vs. lamotrigine	167 / 339	-0.5 (-0.7 to -0.3)	-0.6 (-0.9 to -0.3)	-0.5 (-0.7 to -0.2)	-0.3 (-0.8 to 0.1)	4.2 (1.2 to 14.4)		
High vs. low dose of carbamazepine	267 / 275	-0.1 (-0.3 to 0.1)	-0.1 (-0.4 to 0.2)	-0.1 (-0.3 to 0.1)	-0.1 (-0.4 to 0.1)	2.0 (0.7 to 5.6)		
Birth length z-score								
Use any time in pregnancy, carbamazepine vs. lamotrigine	1,963 / 2,119	-0.1 (-0.2 to -0.0)	-0.1 (-0.2 to 0.0)	-0.1 (-0.2 to 0.0)	-0.2 (-0.3 to -0.0)			
Use in first trimester, carbamazepine vs. lamotrigine	1,681 / 1,930	-0.1 (-0.2 to -0.0)	-0.1 (-0.2 to 0.0)	-0.1 (-0.2 to -0.0)	-0.2 (-0.3 to -0.1)			
Continuers, carbamazepine vs. lamotrigine	461 / 1,006	-0.2 (-0.3 to -0.1)	-0.2 (-0.4 to 0.0)	-0.2 (-0.3 to -0.1)	-0.2 (-0.4 to -0.1)			
Mother with epilepsy, carbamazepine vs. lamotrigine	1,655 / 1,441	-0.1 (-0.2 to -0.0)	-0.1 (-0.3 to -0.0)	-0.1 (-0.2 to 0.0)	-0.1 (-0.3 to -0.0)			
Mother with chronic pain, carbamazepine vs. lamotrigine	260 / 542	-0.2 (-0.4 to -0.0)	-0.1 (-0.3 to 0.2)	-0.2 (-0.4 to 0.1)	-0.3 (-0.6 to -0.0)			
Polytherapy, carbamazepine vs. lamotrigine	163 / 331	-0.3 (-0.5 to -0.1)	-0.2 (-0.5 to 0.1)	-0.2 (-0.5 to 0.0)	-0.6 (-0.8 to -0.3)			
High vs. low dose of carbamazepine	260 / 273	-0.1 (-0.3 to 0.0)	-0.1 (-0.4 to 0.1)	-0.2 (-0.4 to -0.0)	-0.0 (-0.3 to 0.2)			
Birth head circumference z-score								
Use any time in pregnancy, carbamazepine vs. lamotrigine	1,883 / 2,096	-0.2 (-0.3 to -0.1)	-0.2 (-0.3 to -0.0)	-0.2 (-0.3 to -0.1)	-0.2 (-0.3 to -0.1)	1.2 (0.7 to 1.9)		
Use in first trimester, carbamazepine vs. lamotrigine	1,605 / 1,906	-0.2 (-0.3 to -0.2)	-0.2 (-0.4 to -0.1)	-0.3 (-0.4 to -0.2)	-0.3 (-0.4 to -0.2)	1.3 (0.8 to 2.1)		
Continuers, carbamazepine vs. lamotrigine	456 / 1,002	-0.3 (-0.4 to -0.2)	-0.3 (-0.5 to -0.1)	-0.4 (-0.5 to -0.2)	-0.4 (-0.6 to -0.2)	1.3 (0.6 to 3.3)		
Mother with epilepsy, carbamazepine vs. lamotrigine	1,585 / 1,421	-0.2 (-0.3 to -0.1)	-0.2 (-0.4 to -0.1)	-0.2 (-0.3 to -0.1)	-0.2 (-0.3 to -0.1)	1.2 (0.7 to 1.9)		
Mother with chronic pain, carbamazepine vs. lamotrigine	256 / 543	-0.2 (-0.4 to -0.0)	-0.2 (-0.6 to 0.1)	-0.2 (-0.4 to -0.1)	0.0 (-0.2 to 0.3)	2.7 (0.8 to 9.1)		
Polytherapy, carbamazepine vs. lamotrigine	155 / 329	-0.6 (-0.8 to -0.4)	-0.5 (-0.8 to -0.2)	-0.6 (-0.8 to -0.3)	-0.7 (-1.0 to -0.4)	2.6 (0.9 to 7.3)		

	Exposed to Carbamazepin e/Reference,	Difference (95% CI)					Odds Ratio (95% CI)	
		Percentile						
		n/n	Mean	10th	50th	90th		
	High vs. low dose of carbamazepine	256 / 271	-0.2 (-0.4 to 0.0)	-0.2 (-0.6 to 0.1)	-0.3 (-0.6 to -0.0)	-0.2 (-0.5 to 0.1)	Not applicable	

244 AED, antiepileptic drug; CI, confidence interval; SGA, small for gestational age.

245 Note = AED use was ascertained at any time in pregnancy, except where noted (indented rows). Analyses on continuers used data from deliveries in 2006-2013. In
 246 analyses of carbamazepine vs. lamotrigine, the reference was lamotrigine in the same exposure window. In dose-response analyses, the reference was the bottom tertile of
 247 mean daily dose of carbamazepine (2006-2013). All results were adjusted for birth year, maternal age at delivery, education, country of origin, marital status, body mass
 248 index, smoking in current pregnancy, alcohol dependence, diabetes, hypertension, epilepsy, depression, bipolar disorder, migraine, chronic pain, and other psychiatric
 249 disorders. When the smallest cell count was < 5, we did not produce adjusted results ("not applicable"). Models restricted to polytherapy compared infants exposed to
 250 carbamazepine and another AED (except lamotrigine) with those exposed to lamotrigine and another AED (except carbamazepine).

251 **Pregabalin**

252 Despite first appearing in 2006, pregabalin was the third most commonly used AED in this
253 cohort in 2013 (16% of infants). Pregabalin users differed from users of other AEDs: pregabalin
254 users were younger (and had fewer years of education), lived less frequently with the infant's
255 father, and were more likely to be obese or smokers. Chronic pain was common among mothers
256 of pregabalin-exposed infants (69% of pregabalin-exposed infants), as were psychiatric
257 conditions comprising psychoses, panic attacks, and other conditions ("other psychiatric
258 disorders" in Table 1, 66%); mothers of 7% of infants had an epilepsy diagnosis, and mothers of
259 11% were on AED polytherapy (Table 1).

260 Pregabalin-exposed pregnancies were slightly shorter than lamotrigine-exposed pregnancies (-
261 1.1 [-3.0 to 0.8] days on average), which was more notable in women with a diagnosis of
262 epilepsy (-5.6 [-10.7 to -0.4] days on average) (Table 3 and Supporting information file 3, Table
263 S3). Birth weight and length z-scores were slightly smaller in pregabalin-exposed than in
264 lamotrigine-exposed infants (-0.1 [-0.3 to 0] and -0.1 [-0.2 to 0] SDs on average, respectively),
265 and head circumference z-score was less affected (0 [-0.1 to 0.1] SDs on average). Among
266 continuers, though, the OR for microcephaly was 5.3 (0.9 to 30.8). The association with
267 pregnancy duration appeared to be more pronounced when the fetus was female, while the
268 opposite was true for head circumference. No clear effect-measure modification with smoking or
269 SSRI use, and no dose-response relation were observed (Supporting information file 3, Table
270 S4).

271 **Table 3. Association Between in-Utero Pregabalin Exposure and the Endpoints Duration of Pregnancy and Size at**
 272 **Birth**

Exposed to Pregabalin/Ref- erence, n/n	Difference (95% CI)				Odds Ratio (95% CI)	
	Mean	Percentile			Preterm birth	
		10th	50th	90th		
Pregnancy duration (days)						
Use any time in pregnancy, pregabalin vs. lamotrigine	522 / 2,190	-1.1 (-3.0 to 0.8)	-2.7 (-6.7 to 1.2)	-0.5 (-2.5 to 1.4)	0.3 (-1.6 to 2.3)	1.5 (1.0 to 2.4)
Use in first trimester, pregabalin vs. lamotrigine	484 / 1,977	-1.8 (-3.7 to 0.2)	-3.2 (-7.5 to 1.1)	-0.5 (-2.4 to 1.3)	-0.1 (-2.2 to 2.0)	1.9 (1.2 to 3.0)
Continuers, pregabalin vs. lamotrigine	142 / 1,025	-1.2 (-4.7 to 2.3)	-0.5 (-7.2 to 6.2)	0.4 (-3.4 to 4.2)	-0.6 (-4.7 to 3.5)	2.3 (1.0 to 5.3)
Mother with epilepsy, pregabalin vs. lamotrigine	33 / 1,537	-5.6 (-10.7 to -0.4)	-11.2 (-35.7 to 13.3)	-4.2 (-10.0 to 1.6)	3.3 (-4.7 to 11.2)	4.2 (1.6 to 11.4)
Female infants, pregabalin vs. lamotrigine	265 / 1,146	-2.0 (-4.6 to 0.7)	-3.2 (-8.7 to 2.2)	-1.9 (-4.2 to 0.5)	-2.4 (-5.1 to 0.3)	1.9 (1.0 to 3.4)
Male infants, pregabalin vs. lamotrigine	257 / 1,044	-0.2 (-3.1 to 2.6)	0.4 (-4.6 to 5.4)	-0.2 (-3.5 to 3.1)	1.2 (-1.7 to 4.2)	1.2 (0.6 to 2.4)
High vs. low dose of pregabalin	175 / 174	0.6 (-2.7 to 3.9)	0.4 (-7.0 to 7.7)	1.1 (-1.9 to 4.2)	1.2 (-2.3 to 4.7)	1.1 (0.6 to 2.3)
Birth weight z-score						
Use any time in pregnancy, pregabalin vs. lamotrigine	528 / 2,215	-0.1 (-0.3 to 0.0)	-0.0 (-0.3 to 0.2)	-0.2 (-0.3 to 0.0)	-0.2 (-0.4 to 0.0)	1.3 (0.6 to 3.0)
Use in first trimester, pregabalin vs. lamotrigine	489 / 2,001	-0.2 (-0.3 to -0.0)	-0.0 (-0.3 to 0.2)	-0.2 (-0.4 to -0.0)	-0.2 (-0.5 to -0.0)	1.3 (0.6 to 3.1)
Continuers, pregabalin vs. lamotrigine	142 / 1,033	-0.1 (-0.4 to 0.1)	-0.2 (-0.7 to 0.3)	-0.1 (-0.4 to 0.2)	-0.2 (-0.6 to 0.1)	0.6 (0.1 to 3.0)
Mother with epilepsy, pregabalin vs. lamotrigine	33 / 1,550	0.1 (-0.3 to 0.5)	0.2 (-0.9 to 1.2)	0.2 (-0.2 to 0.6)	-0.3 (-0.7 to 0.2)	Not applicable
Female infants, pregabalin vs. lamotrigine	270 / 1,159	-0.1 (-0.3 to 0.1)	0.1 (-0.3 to 0.5)	-0.1 (-0.4 to 0.1)	-0.3 (-0.5 to 0.0)	1.9 (0.4 to 8.3)
Male infants, pregabalin vs. lamotrigine	258 / 1,056	-0.1 (-0.3 to 0.1)	0.0 (-0.3 to 0.3)	-0.2 (-0.4 to 0.0)	-0.1 (-0.5 to 0.2)	1.4 (0.5 to 4.2)

Exposed to Pregabalin/Ref erence, n/n	Difference (95% CI)				Odds Ratio (95% CI)	
	Mean	Percentile			90th	
		10th	50th			
High vs. low dose of pregabalin	177 / 176	0.0 (-0.2 to 0.3)	-0.3 (-0.8 to 0.1)	0.2 (-0.1 to 0.5)	0.2 (-0.1 to 0.6)	1.3 (0.4 to 4.6)
Birth length z-score						
Use any time in pregnancy, pregabalin vs. lamotrigine	521 / 2,186	-0.1 (-0.2 to 0.0)	-0.0 (-0.3 to 0.2)	-0.1 (-0.3 to 0.0)	-0.1 (-0.4 to 0.1)	
Use in first trimester, pregabalin vs. lamotrigine	484 / 1,977	-0.1 (-0.2 to 0.0)	-0.1 (-0.4 to 0.1)	-0.2 (-0.4 to 0.0)	-0.1 (-0.3 to 0.2)	
Continuers, pregabalin vs. lamotrigine	140 / 1,018	-0.1 (-0.4 to 0.1)	-0.1 (-0.5 to 0.4)	-0.1 (-0.4 to 0.3)	-0.2 (-0.7 to 0.2)	
Mother with epilepsy, pregabalin vs. lamotrigine	32 / 1,530	-0.1 (-0.5 to 0.3)	-0.1 (-0.9 to 0.8)	0.1 (-0.3 to 0.6)	-0.1 (-0.7 to 0.5)	
Female infants, pregabalin vs. lamotrigine	266 / 1,144	-0.1 (-0.2 to 0.1)	-0.1 (-0.4 to 0.2)	-0.0 (-0.2 to 0.2)	-0.0 (-0.3 to 0.3)	
Male infants, pregabalin vs. lamotrigine	255 / 1,042	-0.1 (-0.3 to 0.1)	0.1 (-0.2 to 0.3)	-0.2 (-0.5 to 0.1)	-0.3 (-0.7 to 0.1)	
High vs. low dose of pregabalin	172 / 175	0.0 (-0.2 to 0.2)	-0.3 (-0.7 to 0.0)	-0.0 (-0.3 to 0.2)	0.1 (-0.2 to 0.5)	
Birth head circumference z-score						
Use any time in pregnancy, pregabalin vs. lamotrigine	516 / 2,160	-0.0 (-0.1 to 0.1)	0.1 (-0.1 to 0.3)	-0.0 (-0.2 to 0.1)	-0.1 (-0.3 to 0.1)	1.2 (0.5 to 2.9)
Use in first trimester, pregabalin vs. lamotrigine	480 / 1,951	-0.0 (-0.2 to 0.1)	0.1 (-0.1 to 0.4)	-0.1 (-0.2 to 0.1)	0.0 (-0.2 to 0.3)	1.3 (0.5 to 3.4)
Continuers, pregabalin vs. lamotrigine	136 / 1,012	-0.1 (-0.3 to 0.2)	-0.1 (-0.7 to 0.6)	-0.0 (-0.3 to 0.3)	-0.1 (-0.5 to 0.2)	5.3 (0.9 to 30.8)
Mother with epilepsy, pregabalin vs. lamotrigine	32 / 1,508	-0.0 (-0.4 to 0.4)	0.0 (-1.0 to 1.1)	0.1 (-0.3 to 0.4)	0.4 (-0.5 to 1.3)	Not applicable
Female infants, pregabalin vs. lamotrigine	264 / 1,128	0.0 (-0.2 to 0.2)	0.3 (-0.1 to 0.6)	-0.1 (-0.3 to 0.1)	0.0 (-0.3 to 0.3)	1.2 (0.3 to 4.5)
Male infants, pregabalin vs. lamotrigine	252 / 1,032	-0.0 (-0.3 to 0.2)	-0.3 (-0.6 to 0.1)	0.0 (-0.2 to 0.2)	-0.1 (-0.4 to 0.2)	1.6 (0.5 to 5.7)
High vs. low dose of pregabalin	170 / 174	0.0 (-0.2 to 0.2)	0.1 (-0.2 to 0.5)	0.1 (-0.2 to 0.4)	-0.3 (-0.8 to 0.1)	Not applicable

274 AED use was ascertained at any time in pregnancy, except where noted (indented rows). Analyses on continuers are based on data from deliveries in 2006-2013. In
275 analyses of pregabalin vs. lamotrigine, the reference was lamotrigine in the same exposure window. In dose-response analyses, the reference was the bottom tertile of
276 mean daily dose of pregabalin (2006-2013). All results are adjusted for birth year, maternal age at delivery, education, country of origin, marital status, body mass index,
277 smoking in current pregnancy, alcohol dependence, diabetes, hypertension, epilepsy, depression, bipolar disorder, migraine, chronic pain, and other psychiatric disorders.
278 When the smallest cell count was < 5, we did not produce adjusted results ("not applicable").

279 **Levetiracetam**

280 First appearing in this cohort in 2002, levetiracetam use increased to be the fourth most
281 commonly used AED in 2013 (10% of infants, Figure 1). Mothers of 99% of levetiracetam-
282 exposed infants had a diagnosis of epilepsy; 59% of infants were exposed AED polytherapy
283 (Table 1). Common polytherapies involved lamotrigine (91 of 180 infants), carbamazepine (48),
284 and valproic acid (33).

285 On average, pregnancy duration was half a day shorter (-0.5 [-2.6 to 1.6]), birth weight was 0.1
286 SDs lighter (-0.1 [-0.3 to 0.0] SD), length was similar (0.0 [-0.1 to 0.1] SDs), and head
287 circumference was 0.1 SD smaller (-0.1 [-0.3 to 0.1] SD) in pregnancies and infants exposed to
288 levetiracetam than in those exposed to lamotrigine (Table 4 and Supporting information file 3,
289 Table S5). In women with chronic pain, levetiracetam-exposed pregnancies were longer than
290 lamotrigine-exposed pregnancies. Most ORs for preterm delivery were slightly above 1; adjusted
291 ORs for SGA and microcephaly were often not estimable due to cell counts below five. Infants
292 exposed to polytherapy had reduced head circumference (-0.6 [-0.9 to -0.3] SDs on average).
293 Exposure to an SSRI operated as an effect-measure modifier for duration of gestation, with
294 shorter pregnancies (-11.5 [-22.3 to -0.6]) days) in women exposed to both levetiracetam and
295 SSRIs (Supporting information file 3, Table S6). No clear dose-response relations were
296 observed.

297 **Table 4. Association Between in-Utero Levetiracetam Exposure and the Endpoints Duration of Pregnancy and**
 298 **Size at Birth**

	Exposed to Levetiracetam /Reference, n/n	Difference (95% CI)				Odds Ratio (95% CI)	
		At Percentile					
		Mean	10th	50th	90th		
Pregnancy duration (days)							
Use any time in pregnancy, levetiracetam vs. lamotrigine	213 / 2,133	-0.5 (-2.6 to 1.6)	-1.0 (-6.3 to 4.3)	0.6 (-1.2 to 2.4)	1.6 (-0.2 to 3.3)	1.3 (0.8 to 2.3)	
Use in first trimester, levetiracetam vs. lamotrigine	184 / 1,938	-0.7 (-2.9 to 1.5)	-1.7 (-7.3 to 4.0)	0.3 (-1.8 to 2.5)	1.8 (0.1 to 3.6)	1.6 (0.9 to 2.8)	
Continuers, levetiracetam vs. lamotrigine	144 / 990	-1.1 (-3.5 to 1.4)	-1.0 (-7.7 to 5.7)	1.0 (-1.7 to 3.6)	0.2 (-2.5 to 2.9)	1.3 (0.6 to 2.6)	
Mother with chronic pain, levetiracetam vs. lamotrigine	52 / 536	2.6 (-2.1 to 7.4)	5.3 (-5.3 to 16.0)	2.1 (-1.9 to 6.1)	5.0 (-0.5 to 10.5)	Not applicable	
Polytherapy, levetiracetam vs. lamotrigine	87 / 346	-0.1 (-4.0 to 3.8)	-0.5 (-8.4 to 7.4)	0.3 (-3.7 to 4.2)	-1.1 (-4.4 to 2.3)	1.0 (0.4 to 2.7)	
High vs. low dose of levetiracetam	89 / 89	-0.2 (-4.6 to 4.3)	-5.7 (-18.1 to 6.8)	-0.0 (-4.4 to 4.4)	1.1 (-3.4 to 5.6)	0.4 (0.1 to 1.6)	
Birth weight z-score							
Use any time in pregnancy, levetiracetam vs. lamotrigine	215 / 2,157	-0.1 (-0.3 to 0.0)	-0.1 (-0.4 to 0.1)	0.0 (-0.1 to 0.2)	-0.2 (-0.4 to 0.0)	1.3 (0.5 to 3.0)	
Use in first trimester, levetiracetam vs. lamotrigine	186 / 1,961	-0.1 (-0.3 to 0.0)	-0.2 (-0.5 to 0.0)	0.0 (-0.1 to 0.2)	-0.1 (-0.3 to 0.1)	1.8 (0.7 to 4.3)	
Continuers, levetiracetam vs. lamotrigine	146 / 998	-0.1 (-0.3 to 0.1)	-0.2 (-0.6 to 0.2)	-0.0 (-0.2 to 0.1)	-0.2 (-0.5 to 0.1)	1.7 (0.6 to 4.5)	
Mother with chronic pain, levetiracetam vs. lamotrigine	51 / 546	-0.1 (-0.4 to 0.3)	0.2 (-0.8 to 1.3)	0.2 (-0.2 to 0.5)	-0.4 (-0.9 to 0.1)	Not applicable	
Polytherapy, levetiracetam vs. lamotrigine	88 / 349	-0.5 (-0.7 to -0.2)	-0.5 (-1.0 to 0.0)	-0.5 (-0.9 to -0.1)	-0.4 (-0.8 to 0.1)	Not applicable	
High vs. low dose of levetiracetam	90 / 91	0.1 (-0.1 to 0.4)	0.2 (-0.7 to 1.2)	0.1 (-0.2 to 0.4)	0.4 (-0.1 to 0.9)	Not applicable	
Birth length z-score							

	Exposed to Levetiracetam /Reference, n/n	Difference (95% CI)				Odds Ratio (95% CI)	
		At Percentile					
		Mean	10th	50th	90th		
Use any time in pregnancy, levetiracetam vs. lamotrigine	213 / 2,128	-0.0 (-0.1 to 0.1)	-0.1 (-0.3 to 0.2)	0.1 (-0.0 to 0.3)	-0.1 (-0.4 to 0.2)		
Use in first trimester, levetiracetam vs. lamotrigine	184 / 1,937	-0.0 (-0.2 to 0.1)	-0.0 (-0.3 to 0.3)	0.1 (-0.0 to 0.3)	-0.2 (-0.4 to 0.1)		
Continuers, levetiracetam vs. lamotrigine	144 / 983	0.1 (-0.1 to 0.2)	0.2 (-0.2 to 0.5)	0.1 (-0.0 to 0.3)	-0.2 (-0.4 to 0.1)		
Mother with chronic pain, levetiracetam vs. lamotrigine	51 / 536	0.1 (-0.2 to 0.4)	0.4 (-0.3 to 1.1)	0.3 (0.1 to 0.5)	0.1 (-0.5 to 0.7)		
Polytherapy, levetiracetam vs. lamotrigine	88 / 340	-0.2 (-0.5 to 0.0)	-0.5 (-0.9 to -0.1)	-0.0 (-0.3 to 0.3)	-0.3 (-0.7 to 0.2)		
High vs. low dose of levetiracetam	89 / 90	0.1 (-0.1 to 0.4)	0.1 (-0.5 to 0.7)	0.0 (-0.3 to 0.4)	0.3 (-0.2 to 0.8)		
		Birth head circumference z-score				Microcephaly	
Use any time in pregnancy, levetiracetam vs. lamotrigine	206 / 2,103	-0.1 (-0.3 to 0.1)	-0.1 (-0.4 to 0.2)	-0.1 (-0.3 to 0.1)	-0.1 (-0.4 to 0.1)	1.4 (0.6 to 3.5)	
Use in first trimester, levetiracetam vs. lamotrigine	178 / 1,912	-0.1 (-0.3 to 0.1)	0.0 (-0.4 to 0.4)	-0.1 (-0.3 to 0.1)	-0.1 (-0.4 to 0.1)	1.6 (0.6 to 4.4)	
Continuers, levetiracetam vs. lamotrigine	140 / 978	-0.0 (-0.2 to 0.1)	0.1 (-0.3 to 0.5)	-0.0 (-0.3 to 0.2)	-0.0 (-0.4 to 0.4)	Not applicable	
Mother with chronic pain, levetiracetam vs. lamotrigine	50 / 536	-0.0 (-0.3 to 0.3)	-0.2 (-0.9 to 0.6)	-0.1 (-0.3 to 0.2)	-0.3 (-0.9 to 0.2)	Not applicable	
Polytherapy, levetiracetam vs. lamotrigine	84 / 336	-0.6 (-0.9 to -0.3)	-0.4 (-1.0 to 0.2)	-0.8 (-1.0 to -0.5)	-0.5 (-0.9 to -0.0)	2.7 (0.7 to 9.6)	
High vs. low dose of levetiracetam	87 / 89	-0.0 (-0.3 to 0.3)	0.4 (-0.2 to 1.0)	0.1 (-0.3 to 0.4)	-0.4 (-1.0 to 0.2)	Not applicable	

299

AED, antiepileptic drug; CI, confidence interval; SGA, small for gestational age.

300

AED use was ascertained at any time in pregnancy, except where noted (indented rows). Analyses on continuers used data from deliveries in 2006-2013. In analyses of levetiracetam vs. lamotrigine, the reference was lamotrigine in the same exposure window. In dose-response analyses, the reference was the bottom tertile of mean daily dose of levetiracetam (2006-2013). All results are adjusted for birth year, maternal age at delivery, education, country of origin, marital status, body mass index, smoking in current pregnancy, alcohol dependence, diabetes, hypertension, epilepsy, depression, bipolar disorder, migraine, chronic pain, and other psychiatric disorders. When the smallest cell count was < 5, we did not produce adjusted results ("not applicable").

305 **Valproic acid**

306 Valproic acid exposure decreased from 18% of infants in 1996 to 8% in 2013 (Figure 1).

307 Commonly, mothers of exposed infants had a diagnosis of epilepsy (83%); 23% were on

308 polytherapy (Table 1).

309 On average, valproic acid-exposed pregnancies had a duration similar to lamotrigine-exposed
310 pregnancies (0 [-1.2 to 1.2] days), and infants were born with the same weight for gestational age
311 (0 [-0.1 to 0] SDs) (Table 5 and Supporting information file 3, Table S7). However, we observed
312 a gradient in which effects assessed at the 10th percentile were in the direction of the left tail
313 (i.e., shorter pregnancies, infants lighter for gestational age) and in the direction of the right
314 when assessed at the 90th percentile (i.e., longer pregnancies, infants heavier for gestational age).

315 This was also true for the comparison of high versus low valproic acid doses. The association
316 with pregnancy duration was toward longer pregnancies when the fetus was female, opposite to
317 what was observed in pregnancies with male fetuses: the difference was 5.4 days at the 10th

318 percentile. We observed effect-measure modification for duration of pregnancy by smoking and
319 use of SSRIs, which resulted in valproic acid use and smoking or SSRI use being associated with
320 shorter pregnancies (-3.1 [-6.1 to -0.2] and -3.9 [-7.7 to -0.1] days, respectively; Supporting

321 information file 3, Table S8). Birth length did not seem to be adversely affected. Valproic acid-
322 exposed infants had a smaller head circumference relative to lamotrigine-exposed infants, and

323 continuers were more strongly affected (OR for microcephaly: 3.9 [1.7 to 9.0]). For all endpoints
324 except birth length, polytherapy-exposed infants were more severely affected, with a difference
325 in duration of 10 days at the 10th percentile. Odds ratios were generally higher for valproic acid
326 than for other study AEDs.

327

Table 5. Association Between in-Utero Valproic Acid Exposure and the Endpoints Duration of Pregnancy and

328

Size at Birth

Exposed to Valproic Acid/Reference,	Difference (95% CI)					Odds Ratio (95% CI)	
	n/n	Mean	Percentile				
			10th	50th	90th		
Pregnancy duration (days)							
Use any time in pregnancy, valproic acid vs. lamotrigine	985 / 2,086	-0.0 (-1.2 to 1.2)	-1.9 (-5.3 to 1.4)	1.0 (-0.3 to 2.3)	1.6 (0.4 to 2.8)	1.5 (1.1 to 2.0)	
Use in first trimester, valproic acid vs. lamotrigine	845 / 1,902	-0.1 (-1.3 to 1.2)	-1.3 (-4.9 to 2.2)	0.8 (-0.4 to 2.0)	1.4 (0.3 to 2.5)	1.6 (1.1 to 2.2)	
Continuers, valproic acid vs. lamotrigine	253 / 996	-0.0 (-2.0 to 2.0)	-3.9 (-10.6 to 2.7)	1.8 (-0.4 to 3.9)	2.4 (0.7 to 4.1)	1.7 (1.1 to 2.8)	
Polytherapy, valproic acid vs. lamotrigine	115 / 299	-3.4 (-6.9 to 0.2)	-10.0 (-19.5 to -0.5)	0.1 (-3.4 to 3.5)	2.2 (-1.1 to 5.4)	3.0 (1.5 to 6.2)	
Female infants, valproic acid vs. lamotrigine	480 / 1,094	0.6 (-1.1 to 2.4)	1.6 (-2.3 to 5.5)	1.1 (-0.6 to 2.9)	1.7 (0.2 to 3.3)	1.1 (0.7 to 1.8)	
Male infants, valproic acid vs. lamotrigine	505 / 992	-0.7 (-2.4 to 1.0)	-3.8 (-7.6 to -0.0)	-0.1 (-1.6 to 1.5)	0.9 (-0.6 to 2.4)	1.9 (1.2 to 2.9)	
High vs. low dose of valproic acid	165 / 167	-1.0 (-4.9 to 2.9)	-2.4 (-10.1 to 5.3)	-0.5 (-3.9 to 3.0)	1.0 (-1.4 to 3.5)	1.4 (0.5 to 3.4)	
Birth weight z-score							
Use any time in pregnancy, valproic acid vs. lamotrigine	992 / 2,110	-0.0 (-0.1 to 0.0)	-0.1 (-0.3 to 0.1)	-0.1 (-0.2 to 0.1)	0.1 (-0.1 to 0.2)	1.9 (1.2 to 2.9)	
Use in first trimester, valproic acid vs. lamotrigine	852 / 1,924	-0.1 (-0.2 to 0.0)	-0.1 (-0.3 to 0.1)	-0.0 (-0.2 to 0.1)	0.1 (-0.1 to 0.2)	2.4 (1.5 to 3.8)	
Continuers, valproic acid vs. lamotrigine	257 / 1,004	-0.1 (-0.3 to 0.1)	-0.3 (-0.6 to 0.1)	-0.0 (-0.2 to 0.2)	0.3 (0.0 to 0.5)	2.5 (1.3 to 5.0)	
Polytherapy, valproic acid vs. lamotrigine	116 / 302	-0.2 (-0.5 to 0.0)	-0.2 (-0.6 to 0.2)	-0.1 (-0.4 to 0.1)	-0.4 (-0.7 to -0.1)	2.6 (0.6 to 11.0)	
Female infants, valproic acid vs. lamotrigine	484 / 1,106	-0.1 (-0.2 to 0.0)	-0.0 (-0.3 to 0.2)	-0.1 (-0.2 to 0.0)	0.0 (-0.2 to 0.2)	2.5 (1.3 to 5.0)	
Male infants, valproic acid vs. lamotrigine	508 / 1,004	0.0 (-0.1 to 0.1)	-0.1 (-0.3 to 0.1)	0.0 (-0.1 to 0.2)	0.2 (-0.0 to 0.4)	1.5 (0.8 to 2.9)	
High vs. low dose of valproic acid	169 / 168	-0.1 (-0.3 to 0.2)	-0.4 (-0.9 to 0.1)	-0.1 (-0.4 to 0.2)	0.4 (-0.0 to 0.8)	Not applicable	
Birth length z-score							

Exposed to Valproic Acid/Reference, n/n	Difference (95% CI)				Odds Ratio (95% CI)	
	Percentile					
	Mean	10th	50th	90th		
Use any time in pregnancy, valproic acid vs. lamotrigine	966 / 2,083	0.1 (0.0 to 0.2)	0.0 (-0.1 to 0.2)	0.1 (-0.0 to 0.2)	0.2 (0.1 to 0.3)	
Use in first trimester, valproic acid vs. lamotrigine	828 / 1,901	0.1 (-0.0 to 0.2)	0.0 (-0.1 to 0.2)	0.1 (-0.0 to 0.2)	0.2 (0.1 to 0.4)	
Continuers, valproic acid vs. lamotrigine	254 / 989	0.1 (-0.0 to 0.3)	0.0 (-0.3 to 0.4)	0.2 (-0.0 to 0.4)	0.3 (0.0 to 0.5)	
Polytherapy, valproic acid vs. lamotrigine	112 / 295	0.0 (-0.2 to 0.3)	0.2 (-0.2 to 0.5)	0.2 (0.0 to 0.4)	-0.1 (-0.5 to 0.3)	
Female infants, valproic acid vs. lamotrigine	472 / 1,091	0.0 (-0.1 to 0.2)	0.1 (-0.1 to 0.3)	0.0 (-0.1 to 0.2)	-0.0 (-0.2 to 0.2)	
Male infants, valproic acid vs. lamotrigine	494 / 992	0.1 (0.0 to 0.3)	0.0 (-0.2 to 0.2)	0.2 (0.1 to 0.4)	0.2 (0.0 to 0.4)	
High vs. low dose of valproic acid	167 / 167	0.2 (-0.1 to 0.4)	0.3 (-0.2 to 0.8)	0.1 (-0.1 to 0.4)	0.3 (-0.2 to 0.8)	
		Birth head circumference z-score			Microcephaly	
Use any time in pregnancy, valproic acid vs. lamotrigine	931 / 2,059	-0.2 (-0.2 to -0.1)	-0.1 (-0.3 to 0.0)	-0.1 (-0.2 to -0.1)	-0.2 (-0.3 to -0.0)	
Use in first trimester, valproic acid vs. lamotrigine	802 / 1,877	-0.1 (-0.2 to -0.0)	-0.1 (-0.2 to 0.1)	-0.2 (-0.3 to -0.1)	-0.2 (-0.3 to -0.0)	
Continuers, valproic acid vs. lamotrigine	252 / 983	-0.2 (-0.3 to -0.0)	-0.2 (-0.5 to 0.1)	-0.2 (-0.3 to -0.0)	-0.2 (-0.4 to 0.1)	
Polytherapy, valproic acid vs. lamotrigine	107 / 292	-0.5 (-0.7 to -0.2)	-0.5 (-0.9 to -0.1)	-0.4 (-0.6 to -0.1)	-0.4 (-0.9 to 0.0)	
Female infants, valproic acid vs. lamotrigine	458 / 1,078	-0.2 (-0.3 to -0.0)	-0.1 (-0.3 to 0.2)	-0.2 (-0.3 to -0.0)	-0.2 (-0.3 to 0.0)	
Male infants, valproic acid vs. lamotrigine	473 / 981	-0.1 (-0.3 to -0.0)	-0.1 (-0.3 to 0.1)	-0.1 (-0.2 to 0.0)	-0.2 (-0.4 to 0.0)	
High vs. low dose of valproic acid	166 / 162	-0.2 (-0.5 to 0.0)	-0.4 (-1.0 to 0.2)	-0.1 (-0.4 to 0.2)	0.1 (-0.3 to 0.6)	
		Not applicable				

330 AED use was ascertained at any time in pregnancy, except where noted (indented rows). Analyses on continuers used data from deliveries in 2006-2013. In analyses of
331 valproic acid vs. lamotrigine, the reference was lamotrigine in the same exposure window. In dose-response analyses, the reference was the bottom tertile of mean daily
332 dose of valproic acid (2006-2013). All results were adjusted for birth year, maternal age at delivery, education, country of origin, marital status, body mass index, smoking in
333 current pregnancy, alcohol dependence, diabetes, hypertension, epilepsy, depression, bipolar disorder, migraine, chronic pain, and other psychiatric disorders. When the
334 smallest cell count was < 5, we did not produce adjusted results ("not applicable"). Models restricted to polytherapy compared infants exposed to valproic acid and another
335 AED (except lamotrigine) with those exposed to lamotrigine and another AED (except valproic acid).

336 **Lamotrigine**

337 Lamotrigine use in pregnancy increased over the study period from 6% in 1996 to 47% in 2013
338 (Figure 1). Mothers of exposed infants often had a diagnosis of epilepsy (69%); 20% of women
339 were on polytherapy.

340 In dose-response analyses, pregnancies exposed to high doses were, on average, 1.8 days shorter
341 (-1.8 [-3.8 to 0.2]) than those exposed to low doses; the OR for preterm birth was 1.3 (0.7 to 2.2)
342 (Table 6 and Supporting information file 3, Table S7). We did not observe an association
343 between higher doses and smaller z-scores.

344 **Table 6. Association Between in-Utero Lamotrigine Exposure and the Endpoints Duration of Pregnancy and Size**
 345 **at Birth**

Exposed to High/Low Dose, n/n	Difference (95% CI)					Odds Ratio (95% CI)	
	Mean	Percentile					
		10th	50th	90th			
Pregnancy duration (days)							
High vs. low dose of lamotrigine	551 / 547	-1.8 (-3.8 to 0.2)	-0.9 (-5.1 to 3.3)	-0.6 (-2.6 to 1.3)	-1.1 (-3.2 to 1.0)	1.3 (0.7 to 2.2)	
Birth weight z-score							
High vs. low dose of lamotrigine	557 / 557	0.1 (-0.1 to 0.2)	-0.0 (-0.3 to 0.2)	0.1 (-0.0 to 0.3)	0.1 (-0.1 to 0.3)	0.9 (0.3 to 2.1)	
Birth length z-score							
High vs. low dose of lamotrigine	548 / 551	0.1 (-0.1 to 0.2)	-0.1 (-0.3 to 0.2)	-0.0 (-0.2 to 0.1)	0.3 (0.1 to 0.5)		
Birth head circumference z-score							
High vs. low dose of lamotrigine	543 / 550	0.0 (-0.1 to 0.2)	-0.1 (-0.4 to 0.1)	-0.0 (-0.2 to 0.2)	0.0 (-0.2 to 0.3)	0.5 (0.2 to 1.6)	

346 AED, antiepileptic drug; CI, confidence interval; SGA, small for gestational age.

347 AED use was ascertained at any time in pregnancy. The reference was the bottom tertile of mean daily dose of lamotrigine (2006-2013). All results were adjusted for birth
 348 year, maternal age at delivery, education, country of origin, marital status, body mass index, smoking in current pregnancy, alcohol dependence, diabetes, hypertension,
 349 epilepsy, depression, bipolar disorder, migraine, chronic pain, and other psychiatric disorders.

Other key variables: smoking, diabetes, and epilepsy

To put results on individual AEDs in perspective, we considered the size of the point estimates for other variables obtained from the main analysis. In all linear regression analyses for exposure at any time in pregnancy, the estimated effect of smoking was more negative than the estimated effect for all study AEDs on all study outcomes (Supporting information file 3, Table S10). For example, birth weight z-score point estimates for study AEDs were between 0 and -0.1 SDs, while, for smoking, they were between -0.4 and -0.5 SDs. Diabetes was associated with a shorter duration of pregnancy of over 1 week in analyses of all study AEDs, an effect several times larger than that of study AEDs. Point estimates for epilepsy were small or null.

DISCUSSION

In this population-based, comparative safety cohort study involving 6,720 infants exposed to AEDs in pregnancy in Sweden during 1996-2013, we observed an increase in AED use in pregnancy over time and an evolution in preference from older to newer AEDs. With the possible exception of pregabalin, maternal characteristics were comparable across users of individual AEDs, except for the indications or uses for each drug: in the extremes, levetiracetam was used almost exclusively in women with an epilepsy diagnosis, and pregabalin was used mostly in women with chronic pain or psychiatric diagnoses. Analyses comparing individual AEDs to lamotrigine showed generally small associations (e.g., mean changes in duration of pregnancy smaller than 3 days, changes in z-scores mostly up to 0.2 SDs), which were generally milder than those observed for smoking or diabetes. Below, we contextualize our findings within what was previously known about the associations between the study AEDs and size at birth, congenital malformations and cognitive outcomes.

Carbamazepine

On the basis of mean results from the main analysis for AED exposure at any time in pregnancy, carbamazepine-exposed infants were born 1 day earlier, were 0.1 SDs lighter and shorter, and had a head circumference that was 0.2 SDs smaller for their gestational age than infants exposed to lamotrigine; effects were dose dependent. For carbamazepine versus lamotrigine in monotherapy, our literature search identified a relative risk for SGA of 1.3 (1.0 to 1.7) [16] and an OR of 3.1 (0.9 to 10.9) [22], compared with an OR of 1.3 (0.8 to 2.0) from our study. In a myriad of statistical comparisons identified in the literature search, relative to unexposed populations, carbamazepine has been associated with shorter pregnancies and lower birth weight, length, and/or head circumference, sometimes with wide confidence intervals [13, 14, 18-21, 23, 24, 26]. Maternal exposure to carbamazepine has been associated with major congenital malformations [4] in a dose-dependent manner [5]; the association with adverse developmental, cognitive, and behavioral outcomes is less clear [8, 10].

Pregabalin

We observed that pregabalin-exposed infants were born, on average, 1 day earlier; were 0.1 SDs lighter and shorter; and had similar head circumference for their gestational age than infants exposed to lamotrigine; no clear dose effects were seen. Because pregabalin is a relatively new AED, the literature on its safety in pregnancy is limited. Our literature search identified one study that reported elevated risk, with wide confidence intervals, for preterm delivery and SGA based on a small number of pregnancies exposed to pregabalin compared to unexposed pregnancies [41, 42]. Its association with congenital malformations is contested [11, 27, 43], and not much is known on any potential association with adverse neurodevelopmental outcomes [8].

Levetiracetam

In our study, levetiracetam-exposed infants were born, on average, 0.5 days earlier; were 0.1 SDs lighter, with similar length; and were 0.1 SDs smaller in head circumference for their gestational age than those exposed to lamotrigine. One study identified in our literature search reported that the relative risk for the association between levetiracetam versus lamotrigine monotherapy and SGA was 1.3 (1.0 to 1.7)[16], which compares with the OR in our study for monotherapy or polytherapy combined: 1.3 (0.5 to 3.0). Comparisons with women unexposed to AEDs were less clear: one study reported that levetiracetam exposure was associated with shorter pregnancies and lighter infants [14], one reported lighter infants but practically null effects on duration of pregnancy and head circumference [20], and one reported protective effects for SGA and microcephaly [24]. The pooled risk for congenital malformations in subjects exposed to levetiracetam has been reported as similar to that for the unexposed, although some individual studies reported increased risk [4]. Developmental outcomes appear not to be negatively affected based on a single cohort [8, 10].

Valproic acid

In our study, valproic acid-exposed infants had, on average, the same duration of gestation and birth weight for gestational age but were 0.2 SDs smaller in head circumference for gestational age than infants exposed to lamotrigine. Null mean effects masked opposite results in the two tails of the distributions of pregnancy duration and birth weight z-scores. Outcomes were worse in infants exposed to valproate in polytherapy in pregnancy, which has also been reported for congenital malformations [44]. Our literature search identified studies reporting an association of valproic acid versus lamotrigine monotherapy and SGA (relative risk: 1.5 [1.0 to 2.2] [16] and

OR: 4.1 [1.1 to 15.0] [22]) that compares with that in our study (OR: 1.9 [1.2 to 3.2]). In comparison with unexposed subjects, results have been mixed: exposure to valproic acid has been reported to have a practically null effect on mean pregnancy duration [20], conferring a null [23] or increased risk for preterm delivery [14, 20]; to decrease mean birth weight [19, 20], conferring a null [23] or increased [14, 20] risk for low birth weight but not for very low birth weight [25]; to confer a lower [14, 24] or increased risk for SGA [20]; and to reduce head circumference [13, 20]. Valproic acid is a known teratogen [45], and a dose-response relation has been reported for this association [5], with variations across types of major congenital malformations [46]. In-utero exposure to valproic acid has also been reported to be associated with hearing impairment [47] and to have a dose-response relation with adverse developmental, cognitive, and behavioral effects [8, 10, 48]. In 2014, the European Medicines Agency (EMA) conducted a review on the pregnancy safety of valproic acid, after which it imposed a number of risk minimization activities in Europe [49]. Subsequent studies in France, the first country in which valproic acid was approved to treat epilepsy [50], showed that valproic acid use continued to be high [11, 51]. This triggered a second review by EMA, which then strengthened its risk minimization measures, now including a pregnancy prevention program [52].

Lamotrigine

We observed an association between high doses of lamotrigine and shorter pregnancies (1.8 days on average). In comparisons of women exposed to lamotrigine with those unexposed, published studies reported null or adverse effects on pregnancy duration and birth weight [14, 20, 23], protective or null effects on SGA [14, 20, 24], and null effects on head circumference [13, 20]. A recent systematic review that focused on lamotrigine concluded that there was no association between lamotrigine in monotherapy and congenital malformations, preterm delivery, or SGA

[28, 29]; but a dose dependency was reported for congenital malformations.[5]. Studies assessing neurodevelopmental outcomes have reported outcomes similar to those of the general population, but also a potentially increased risk for some specific deficits [8, 10].

Secondary and sensitivity analyses, strengths, and limitations

We treated all pregnancies as independent observations because statistical models incorporating within-woman correlation would not converge; results from a sensitivity analysis including only the first infant per woman (Supporting information file 3) generally shows, as expected, wider confidence intervals. They also show some variability in point estimates, because this sensitivity analysis excluded fewer infants exposed to pregabalin but more infants exposed to valproic acid than those exposed to lamotrigine. Twelve percent of study infants had missing data, with missingness decreasing over time; the complete case analysis (Supporting information file 3) was consistent with the main analysis. We only ascertained prescriptions dispensed during pregnancy due to the lack of information on duration of use of prescribed medications; while this could have caused under-ascertainment of prescription-based exposure, we expect we captured AED use when it extended into pregnancy, from self-report during prenatal care.

Strengths of this study include our ability to incorporate exposure from both self-reports and dispensed prescriptions. Results from analyses that defined exposure based on concordant self-reports and dispensed prescriptions are consistent with the main analysis. We were able to adjust for multiple AED indications or uses and to explore associations in the tails of study outcomes. We thus identified that a zero association at the mean (i.e., results from linear regression) can mask associations at the tails of the outcome distribution, as was seen in this study for valproic acid, and duration of pregnancy and birth weight z-score using quantile regression. Another

strength of this study is our ability to define our endpoints as z-scores, which we preferred because z-scores enable assessing size independently of any effect on pregnancy duration. Because other researchers may be interested in results on birth weight, length, and head circumference without this transformation, we included those results in Supporting information file 3.

We observed different effects on pregnancies with female and male fetuses for some associations, without a clear pattern. While these may reflect true effects of AEDs, they may also reflect differential fetal survival by sex perhaps in relation to sex-specific congenital malformations [53]. Table 1 shows some variation in the percentage of female infants across AEDs. We hope future research will help clarify this aspect.

The body of evidence on the associations between in-utero exposure to AEDs and maternal, pregnancy, fetal, and infant outcomes argue against combining all AEDs into a single group for safety pregnancy research. The relative prevalence of AED use in pregnancy has evolved over time, and drugs have different safety profiles, making results on the combined AEDs not comparable from one study to another and not reflective of the risk of any specific AED.

Conclusions

We observed that commonly used AEDs have distinct safety profiles regarding duration of pregnancy and size at birth. In comparison with lamotrigine, valproic acid and carbamazepine had a more negative association with head circumference than other study AEDs. Generally, our results were of smaller magnitude for AEDs than for smoking. Associations between valproic acid and the endpoints duration of pregnancy and birth weight for gestational age in the left tail

of the distributions were toward shorter pregnancies and smaller infants, although mean effects were null.

ACKNOWLEDGMENTS

Editorial help was provided by John Forbes, and graphic services were provided by Jason Mathes, both from RTI Health Solutions (RTI-HS). Abenah Harding, from RTI-HS, provided helpful comments on a previous version of this manuscript.

REFERENCES

1. Viale L, Allotey J, Cheong-See F, Arroyo-Manzano D, McCorry D, Bagary M, et al. Epilepsy in pregnancy and reproductive outcomes: a systematic review and meta-analysis. *Lancet*. 2015; 386 (10006): 1845-1852.
2. Veroniki AA, Cogo E, Rios P, Straus SE, Finkelstein Y, Kealey R, et al. Comparative safety of anti-epileptic drugs during pregnancy: a systematic review and network meta-analysis of congenital malformations and prenatal outcomes. *BMC Med*. 2017; 15 (1): 95.
3. Bromley RL, Weston J, Marson AG. Maternal Use of Antiepileptic Agents During Pregnancy and Major Congenital Malformations in Children. *JAMA*. 2017; 318 (17): 1700-1701.
4. Weston J, Bromley R, Jackson CF, Adab N, Clayton-Smith J, Greenhalgh J, et al. Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child. *Cochrane Database Syst Rev*. 2016; 11: CD010224.

5. Tomson T, Battino D, Bonizzoni E, Craig J, Lindhout D, Perucca E, et al. Comparative risk of major congenital malformations with eight different antiepileptic drugs: a prospective cohort study of the EURAP registry. *Lancet Neurol*. 2018; 17 (6): 530-538.
6. Koren G, Berkovitch M, Ornoy A. Dose-Dependent Teratology in Humans: Clinical Implications for Prevention. *Paediatr Drugs*. 2018; 20 (4): 331-335.
7. de Jong J, Garne E, de Jong-van den Berg LT, Wang H. The Risk of Specific Congenital Anomalies in Relation to Newer Antiepileptic Drugs: A Literature Review. *Drugs Real World Outcomes*. 2016; 3 (2): 131-143.
8. Gerard EE, Meador KJ. An Update on Maternal Use of Antiepileptic Medications in Pregnancy and Neurodevelopment Outcomes. *J Pediatr Genet*. 2015; 4 (2): 94-110.
9. Veroniki AA, Rios P, Cogo E, Straus SE, Finkelstein Y, Kealey R, et al. Comparative safety of antiepileptic drugs for neurological development in children exposed during pregnancy and breast feeding: a systematic review and network meta-analysis. *BMJ Open*. 2017; 7 (7): e017248.
10. Bromley RL, Baker GA. Fetal antiepileptic drug exposure and cognitive outcomes. *Seizure*. 2017; 44: 225-231.
11. Raguideau F, Zureik M, Dray-Spira R, Blotière P-O, Weill A, Coste J. Exposition in utero à l'acide valproïque et aux autres traitements de l'épilepsie et des troubles bipolaires et risque de malformations congénitales majeures (MCM) en France. France2017 [cited 2 August 2018]. Available from:

https://ansm.sante.fr/var/ansm_site/storage/original/application/fb3faa8c4a5c5c5dedfc1423213c219d.pdf

12. Margulis AV, Oberg AS, Hernandez-Diaz S. Antiepileptic drugs in pregnancy: searching for a reference drug for comparative safety. *Pharmacoepidemiol Drug Saf*. 2017; 26 (Suppl 2): 408-409.
13. Almgren M, Kallen B, Lavebratt C. Population-based study of antiepileptic drug exposure in utero--influence on head circumference in newborns. *Seizure*. 2009; 18 (10): 672-675.
14. Artama M, Gissler M, Malm H, Ritvanen A. Effects of maternal epilepsy and antiepileptic drug use during pregnancy on perinatal health in offspring: nationwide, retrospective cohort study in Finland. *Drug Saf*. 2013; 36 (5): 359-369.
15. Battino D, Kaneko S, Andermann E, Avanzini G, Canevini MP, Canger R, et al. Intrauterine growth in the offspring of epileptic women: a prospective multicenter study. *Epilepsy Res*. 1999; 36 (1): 53-60.
16. Hernandez-Diaz S, McElrath TF, Pennell PB, Hauser WA, Yerby M, Holmes LB. Fetal growth and premature delivery in pregnant women on antiepileptic drugs. *Ann Neurol*. 2017; 82 (3): 457-465.
17. Hernandez-Diaz S, Mittendorf R, Smith CR, Hauser WA, Yerby M, Holmes LB, et al. Association between topiramate and zonisamide use during pregnancy and low birth weight. *Obstet Gynecol*. 2014; 123 (1): 21-28.

18. Hiilesmaa VK, Teramo K, Granstrom ML, Bardy AH. Fetal head growth retardation associated with maternal antiepileptic drugs. *Lancet*. 1981; 2 (8239): 165-167.
19. Hvas CL, Henriksen TB, Ostergaard JR, Dam M. Epilepsy and pregnancy: effect of antiepileptic drugs and lifestyle on birthweight. *BJOG*. 2000; 107 (7): 896-902.
20. Kilic D, Pedersen H, Kjaersgaard MI, Parner ET, Vestergaard M, Sorensen MJ, et al. Birth outcomes after prenatal exposure to antiepileptic drugs--a population-based study. *Epilepsia*. 2014; 55 (11): 1714-1721.
21. Kolstad E, Veiby G, Gilhus NE, Bjork M. Overweight in epilepsy as a risk factor for pregnancy and delivery complications. *Epilepsia*. 2016; 57 (11): 1849-1857.
22. Pennell PB, Klein AM, Browning N, Baker GA, Clayton-Smith J, Kalayjian LA, et al. Differential effects of antiepileptic drugs on neonatal outcomes. *Epilepsy Behav*. 2012; 24 (4): 449-456.
23. Veiby G, Daltveit AK, Engelsen BA, Gilhus NE. Pregnancy, delivery, and outcome for the child in maternal epilepsy. *Epilepsia*. 2009; 50 (9): 2130-2139.
24. Veiby G, Daltveit AK, Engelsen BA, Gilhus NE. Fetal growth restriction and birth defects with newer and older antiepileptic drugs during pregnancy. *J Neurol*. 2014; 261 (3): 579-588.
25. Wen X, Hartzema A, Delaney JA, Brumback B, Liu X, Egerman R, et al. Combining adverse pregnancy and perinatal outcomes for women exposed to antiepileptic drugs

during pregnancy, using a latent trait model. *BMC Pregnancy Childbirth*. 2017; 17 (1): 10.

26. Wide K, Winbladh B, Tomson T, Kallen B. Body dimensions of infants exposed to antiepileptic drugs in utero: observations spanning 25 years. *Epilepsia*. 2000; 41 (7): 854-861.

27. Winterfeld U, Merlob P, Baud D, Rousson V, Panchaud A, Rothuizen LE, et al. Pregnancy outcome following maternal exposure to pregabalin may call for concern. *Neurology*. 2016; 86 (24): 2251-2257.

28. Pariente G, Leibson T, Shulman T, Adams-Webber T, Barzilay E, Nulman I. Erratum to: Pregnancy Outcomes Following In Utero Exposure to Lamotrigine: A Systematic Review and Meta-Analysis. *CNS Drugs*. 2017; 31 (6): 451.

29. Pariente G, Leibson T, Shulman T, Adams-Webber T, Barzilay E, Nulman I. Pregnancy Outcomes Following In Utero Exposure to Lamotrigine: A Systematic Review and Meta-Analysis. *CNS Drugs*. 2017; 31 (6): 439-450.

30. Källén B, Källén K. The Swedish Medical Birth Register - a summary of content and quality. 2003 [cited 5 June 2016]. Available from: https://www.socialstyrelsen.se/Lists/Artikelkatalog/Attachments/10655/2003-112-3_20031123.pdf.

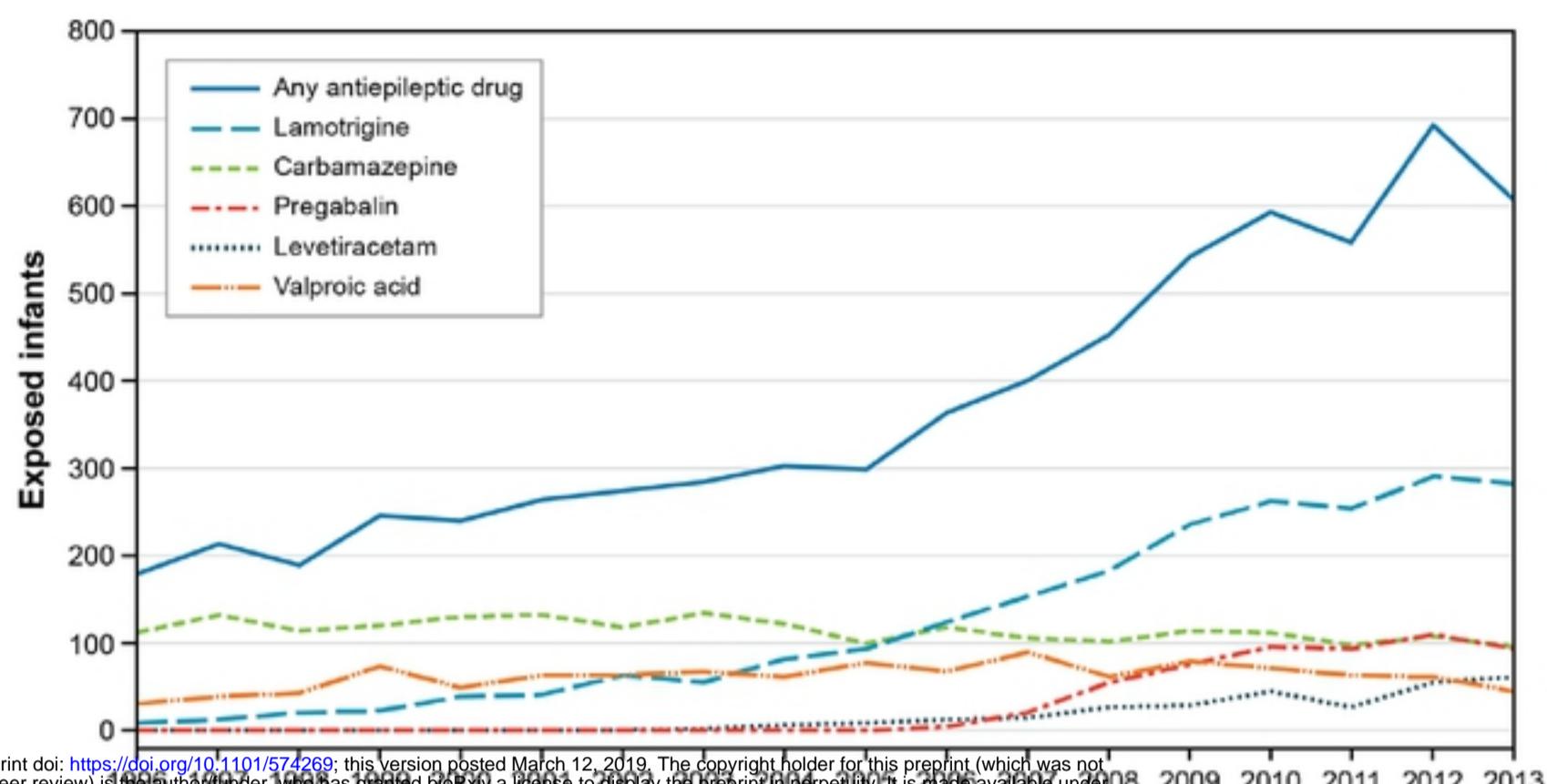
31. WHO Collaborating Center for Drug Statistics Methodology. Defined daily dose, definition and general considerations 2009. Available from: http://www.whocc.no/ddd/definition_and_general_considera/. Cited 14 February 2016.

32. Abrahamsson K. Swedish Register of Education. 2018 [cited 22 July 2018]. Available from: <http://www.jpi-dataproject.eu/Home/Database/348?topicId=4>.
33. Ludvigsson JF, Almqvist C, Bonamy AK, Ljung R, Michaelsson K, Neovius M, et al. Registers of the Swedish total population and their use in medical research. *Eur J Epidemiol.* 2016; 31 (2): 125-136.
34. Hagenfeldt K, Alton V, Axelsson O, Blennow M, Bojö F, Bygdeman M, et al. Routine Ultrasound Examination During Pregnancy [in Swedish]. Stockholm, Sweden1998 [cited 22 July 2018]. Available from: <https://www.sbu.se/en/publications/sbu-assesses/routine-ultrasound-examination-during-pregnancy/>.
35. Niklasson A, Albertsson-Wikland K. Continuous growth reference from 24th week of gestation to 24 months by gender. *BMC Pediatr.* 2008; 8: 8.
36. Marsal K, Persson PH, Larsen T, Lilja H, Selbing A, Sultan B. Intrauterine growth curves based on ultrasonically estimated foetal weights. *Acta Paediatr.* 1996; 85 (7): 843-848.
37. Hao L, Naiman DQ. Quantile Regression: SAGE Publications; 2007. 140 p.
38. McInerney KA, Hahn KA, Hatch EE, Mikkelsen EM, Steiner AZ, Rothman KJ, et al. Lubricant use during intercourse and time to pregnancy: a prospective cohort study. *BJOG.* 2018.
39. Petersen MR, Deddens JA. Re: "Easy SAS calculations for risk or prevalence ratios and differences". *Am J Epidemiol.* 2006; 163 (12): 1158-1159; author reply 1159-1161.

40. Petersen MR, Deddens JA. A comparison of two methods for estimating prevalence ratios. *BMC Med Res Methodol.* 2008; 8: 9.
41. Mostacci B, Poluzzi E, D'Alessandro R, Cocchi G, Tinuper P, Espea Study Group. Correction: Adverse pregnancy outcomes in women exposed to gabapentin and pregabalin: data from a population-based study. *J Neurol Neurosurg Psychiatry.* 2018; 89 (5): e1.
42. Mostacci B, Poluzzi E, D'Alessandro R, Cocchi G, Tinuper P, Espea Study Group. Adverse pregnancy outcomes in women exposed to gabapentin and pregabalin: data from a population-based study. *J Neurol Neurosurg Psychiatry.* 2018; 89 (2): 223-224.
43. Patorno E, Bateman BT, Huybrechts KF, MacDonald SC, Cohen JM, Desai RJ, et al. Pregabalin use early in pregnancy and the risk of major congenital malformations. *Neurology.* 2017; 88 (21): 2020-2025.
44. Vajda FJE, O'Brien TJ, Graham JE, Hitchcock AA, Lander CM, Eadie MJ. Antiepileptic drug polytherapy in pregnant women with epilepsy. *Acta Neurol Scand.* 2018; 138 (2): 115-121.
45. Jentink J, Loane MA, Dolk H, Barisic I, Garne E, Morris JK, et al. Valproic acid monotherapy in pregnancy and major congenital malformations. *N Engl J Med.* 2010; 362 (23): 2185-2193.
46. Vajda FJ, O'Brien TJ, Graham JE, Lander CM, Eadie MJ. Dose dependence of fetal malformations associated with valproate. *Neurology.* 2013; 81 (11): 999-1003.

47. Foch C, Araujo M, Weckel A, Damase-Michel C, Montastruc JL, Benevent J, et al. In utero drug exposure and hearing impairment in 2-year-old children A case-control study using the EFEMERIS database. *Int J Pediatr Otorhinolaryngol.* 2018; 113: 192-197.
48. Elkjaer LS, Bech BH, Sun Y, Laursen TM, Christensen J. Association Between Prenatal Valproate Exposure and Performance on Standardized Language and Mathematics Tests in School-aged Children. *JAMA Neurol.* 2018; 75 (6): 663-671.
49. Pharmacovigilance Risk Assessment Committee. Procedure under Article 31 of Directive 2001/83/EC resulting from pharmacovigilance data: substances related to valproate. 2014 [cited 18 November 2018]. Available from: https://www.ema.europa.eu/documents/referral/valproate-related-substances-article-31-referral-prac-assessment-report_en.pdf.
50. Shorvon SD. Drug treatment of epilepsy in the century of the ILAE: the second 50 years, 1959-2009. *Epilepsia.* 2009; 50 Suppl 3: 93-130.
51. Raguideau F, Ehrhardt C, Dray-Spira R, Zureik M, Blotière P-O, Weill A, et al. Exposition à l'acide valproïque et ses dérivés au cours de la grossesse en France de 2007 à 2014: une étude observationnelle sur les données du SNIIRAM. France2016 [cited 11 August 2018]. Available from: https://ansm.sante.fr/afssaps/content/download/91481/1148883/version/1/file/Rapport_EtudeVPA_24.08-def.pdf.
52. European Medicines Agency. New measures to avoid valproate exposure in pregnancy endorsed. London, UK2018 [cited 11 August 2018]. Available from:

http://www.ema.europa.eu/docs/en_GB/document_library/Referrals_document/Valproate_2017_31/European_Commission_final_decision/WC500250216.pdf


53. Bruckner TA, Karasek D, Yang W, Shaw GM, Catalano RA. Cohort Variation in Selection During Pregnancy and Risk of Selected Birth Defects Among Males. *Epidemiology*. 2017; 28 (4): 580-586.

Supporting information captions:

S1_Systematic_literature_search: Systematic literature search. This is Supporting information file 1.

S2_Variable_definitions: Patient characteristics and other variables - definitions. This is Supporting information file 2.

S3_Result_tables: Result tables S1 to S10. This is Supporting information file 3.

bioRxiv preprint doi: <https://doi.org/10.1101/574269>; this version posted March 12, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.