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Abstract: Neurodevelopmental disorders are highly heritable and associated with
spatially-selective disruptions of brain anatomy. The logic that translates genetic risks
into spatially patterned brain vulnerabilities remains unclear but is a fundamental
guestion in disease pathogenesis. Here, we approach this question by integrating (i) in
vivo neuroimaging data from patient subgroups with known causal genomic copy
number variations (CNVs), and (ii) bulk and single-cell gene expression data from
healthy cortex. First, for each of six different CNV disorders, we show that spatial
patterns of cortical anatomy change in youth are correlated with spatial patterns of
expression for CNV region genes in bulk cortical tissue from typically-developing adults.
Next, by transforming normative bulk-tissue cortical expression data into cell-type
expression maps, we further link each disorder’s anatomical change map to specific cell
classes and specific CNV-region genes that these cells express. Finally, we establish
convergent validity of this “transcriptional vulnerability model” by inter-relating patient
neuroimaging data with measures of altered gene expression in both brain and blood-
derived patient tissue. Our work clarifies general biological principles that govern the
mapping of genetic risks onto regional brain disruption in neurodevelopmental
disorders. We present new methods that can harness these principles to screen for
potential cellular and molecular determinants of disease from readily available patient
neuroimaging data.
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Introduction

Neurodevelopmental disorders such as autism and schizophrenia are highly heritable,
and associated with spatially selective changes in brain structure and function' which
remain poorly understood in mechanistic terms. In particular, it remains unclear how
genetic risks translate into the spatially-distributed patterns of altered brain anatomy
that have been reported in neurodevelopmental disorders. Clarifying factors that shape
regional brain vulnerability would represent a major step forward for the translational
medicine of neurodevelopmental disorders. However, progress in this area is
complicated by several issues including (i) the etiological heterogeneity of behaviorally-
defined neurodevelopmental disorders®, (i) the vast search space of candidate
biological features that could determine regional brain vulnerability®, and (iii) lack of
access to spatiotemporally-comprehensive postmortem brain tissue from patients.

Recent experimental work in mice has suggested an organizing principle for regional
brain vulnerability that may apply in human neurodevelopmental disorders. Specifically,
the spatial patterning of neuroanatomical changes in MRI brain scans from mutant
mouse models with disruptions of neurodevelopmental genes can be predicted by
intrinsic expression gradients of those genes in the brains of wild-type mice®’.
Strikingly, this coupling between anatomical changes in mutant mice and intrinsic
patterns of gene expression in wild-type brains was recovered using expression data
from adult wildtype mice — despite the likely operation of mutant allele effects much
earlier in development. These murine data therefore propose a “transcriptional
vulnerability model” for the spatial patterning of altered brain anatomy in genetically-
determined disorders of brain development and further suggest that evidence for this
model could be recovered even if intrinsic expression gradients are being measured in
adulthood. To date, however, tests of the transcriptional vulnerability model in humans
have only been available from studies of brain anatomy patients with idiopathic autism
and schizophrenia®*'. Because the genetic basis of disease is unknown in idiopathic
cases, it is not possible to determine if observed spatial patterns of neuroanatomical
change are related to normative expression gradients for the causal genes.

Here, we conduct the first genetically-informed tests of the transcriptional vulnerability
model in human neurodevelopmental disorders. To achieve this test, we study youth
with known genomic dosage variations that are associated with increased risk for one or
more adverse neurodevelopmental outcomes such as intellectual disability, specific
learning disabilty, autism spectrum disorder, attention deficit hyperactivity disorder and
schizophrenia: Down syndrome®? (trisomy 21), sex chromosome aneuploidies® (XO,
XXX, XXY, XYY, XXYY), Velocardiofacial syndrome** (del22q11) and WAGR
syndrome® (del11p13). These diverse genetically-defined disorders encompass both
gains and losses of genetic material, and dosage variations that range in size from sub-
chromosomal copy number variations (CNVs) to full chromosomal aneuploidies
(henceforth collectively referred to as “CNVs”). Inclusion of such diverse CNVs provides
a powerful opportunity to test the generalizability of the transcriptional vulnerability
model across several independent genetically-defined disorders. We also seek to refine
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and apply this transcriptional vulnerability model, by testing if the intrinsic gene
expression gradients hypothesized to guide neuroanatomical disruptions can
themselves be routed in spatial patterning of the human brain by different cell-types.
Such grounding of regional transcriptional vulnerability in cell-type composition could
provide a principled framework for nominating specific genes within specific cell-types
that may account for altered anatomy in a given brain region to a given
neurodevelopmental disorders.

Results
Mapping altered cortical anatomy in 6 different CNV conditions

We first assembled a total of 518 structural magnetic resonance imaging (SMRI) brain
scans from matched case-control cohorts spanning 8 different neurogenetic disorders:
XXX, XXY, XYY, XXYY, trisomy 21 (Down syndrome), X-monosomy (Turner syndrome),
del22q11.2 (velocardiofacial syndrome, VCFS) and del11p13 (Wilms Tumor-Aniridia
syndrome, WAGR) (Table S1; Total N = 231 patients, 287 controls). Because the
distinct gene sets defining each of these CNV disorders is known, we were able to
conduct a series of strict, independent tests of the transcriptional vulnerability model in
humans. Specifically, we asked if the map of cortical anatomy change in each of the 6
CNV states represented by these disorders (+X, +Y, +21, -X, del22qll, delllpl3) was
preferentially correlated with spatial patterns of expression for the known genes that
defined that disorder. Each case-control pair was scanned on the same MRI machine
using the same image-acquisition parameters.

A map of cortical anatomy change was made for each of the 6 CNV states (henceforth
“CNVs”) vs. matched controls using Morphometric Similarity (MS) mapping. Rather than
considering individual anatomical features such as cortical thickness, area, and
curvature, MS mapping combines information across multiple cortical features to
estimate a network of morphometric similarity between pairs of cortical regions within an
individual brain. This network can be summarized as a person-specific map of mean MS
for each cortical region (relative to all other cortical regions). Group-level comparisons
of these person-level MS maps were used to determine the unique spatial patterning of
cortical MS change associated with each CNV (Fig. 1a, Fig. S1, Methods). Our use of
MS mapping in this study was motivated by two key considerations. First, we have
previously shown that CNV disorders have dissociable impacts on different anatomical
features of the cortical sheet!, and MS mapping provides a means of integrating this
rich information. Second, we have previously shown that cortical MS gradients are
strongly aligned with the molecular and cytological aspects of cortical patterning that we
sought to probe in our test of the transcriptional vulnerability model*®. Further
information on topological and network features of MSNs provided in the original
paper®.Nevertheless, to allow direct comparison between results from use of MSNs
and those from use of classical single-feature approaches to cortical morphometry, we
also generated supplementary maps of anatomical change in each CNV for all of the
individual cortical features that are combined in MS mapping (Fig. S3).
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FIGURE 1 HERE

Each of the 6 CNVs studied induced a distinct spatial pattern of MS change across the
cortex, with regionally-specific MS increases (red) and decreases (blue) relative to
healthy control participants (Fig. 1b). Supplementary analyses confirmed that the
distinctiveness of MS change in each CNV was not an artifact of differences between
the cohorts of healthy individuals against which each CNV was being compared (Fig.
S2a). Moreover, we ensured these regional differences were not driven by a global
influence of total brain size differences, by comparing the maps with and without the
inclusion of total surface area as a covariate in the linear models (correlation across
regions N=152: SCAx r=0.99; SCAy r=0.98; Turner r=0.98; Downs r=0.99; VCFS
r=0.97; WAGR r=0.98). Furthermore, “edge-level” analyses (i.e. examining CNV effects
on inter-regional MS) were able to detail the distinct patterns of anatomical disruption
which underlay regional MS increases vs. decreases in patients relative to controls
(Methods, Fig. S2a). Finally, to provide a functional annotation for each MS-change
map, we tested for and found large-scale differences in average MS-change in each of
seven canonical functional classes, using the functional atlas from Yeo and colleagues®’
(Fig. S2c; ANOVA (MS~Group+Class+Group*Class; F(6)ciass=6.323, P=1.6x10®;
F(30)Group*class=3.466, P=2x10"®). For example MS increases in participants with Down
syndrome relative to controls were significantly enriched within a well-defined ventral
attentional network®’.

Aligning anatomical changes in CNV disorders with normative gene expression maps

Next, to query the transcriptomic correlates of altered MS in each CNV disorder, we
aligned each CNV’s MS change map to the same publicly-available atlas of gene
expression for ~15k genes in adult human cortex from the Allen Human Brain Atlas
(AHBA dataset)'® (Methods, Fig. 1b, Fig. S1). We used partial least squares (PLS)
regression to rank all ~15k genes in this atlas by their multivariate correlation*®° with
each CNVs MS change map — resulting in one ranked gene list for each CNV disorder
(Fig. 1a, Table S2). In these lists, genes with expression patterns that are more strongly
correlated with the corresponding MS change map have large positive or negative PLS
weights and therefore occupy more extreme ranks. The polarity of these ranked lists
was set so that genes with strongly positive PLS weights occupied extreme low ranks
(i.e., closer to c. -7500, Fig. 1a), and showed positive spatial correlations between their
cortical expression and cortical MS change in patients vs. controls. Conversely, genes
with strongly negative PLS weights were expressed in spatial patterns that correlated
negatively with MS change in patients vs. controls and occupied extreme high ranks
(i.e., closer to c. +7500, Fig. 1a). Using these CNV-specific ranked gene lists, the
degree of spatial correspondence between observed cortical changes in a CNV disorder
and cortical expression of that CNVs gene set in health can be quantified by the median
rank position of genes within the CNV region. Null distributions for this median rank test
statistic can be generated by gene rank permutation (Methods). Thus, for any given
CNV, one can test the transcriptional vulnerability model by asking if the median rank of
genes within the causal CNV region is more extreme than would be expected by
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chance. For sub-chromosomal CNVs, the null distribution was created from 10,000
randomly-sampled gene sets of the same size from the whole genome (Pranp-Trans) @S
well as from the same chromosome (Pranp-cis). For chromosomal aneuploidies we
harnessed the natural comparison gene sets provided by other chromosomes and
primarily asked if the observed median rank of the aneuploidic chromosome was more
extreme than that of all other chromosomal gene sets. Gene rank permutations were
then used to determine the likelihood of seeing the aneuploidic chromosome possess
the most extreme median rank of all chromosomes (Pranp). TO ensure robustness
across the six donors in the AHBA, we performed a leave-one-donor-out PLS analysis
for each syndrome’s brain map, which showed highly consistent PLS loadings across all
permutations relative to the PLS loadings derived from the whole AHBA dataset (SCAXx
mean r=0.98; SCAy mean r=0.84; Turner mean r=0.97; Downs mean r=0.98; VCFS
mean r=0.96; WAGR mean r=0.98; all N=15043 genes).

Anatomical changes in CNVs are spatially coupled to expression of CNV region genes
in health

Our analyses found independent support for the transcriptional vulnerability model in
each of the 6 CNV conditions studied (Fig. 1b, Table S3). The omnibus p-value for this
observation exceeded the limits of our permutation test (i.e. p < 0.0001, Methods). In all
3 CNVs involving abnormal gain of a chromosome (+X, +Y, +21), the relevant
chromosomal gene set showed a higher median rank than all other chromosomal gene
sets. Conversely, in Turner syndrome, which involves the loss of an X-chromosome (-
X), the X-chromosome gene set showed a lower median rank than all other
chromosomal gene sets (e.g., correlation between +/- X PLS scores, r = -0.92).
Furthermore, In the two conditions associated with sub-chromosomal gene losses (-
22911, -11p13), the CNV gene set also showed a lower median rank than null gene set
of the same size drawn from the whole genome. Thus, for these 6 different genetically-
defined neurodevelopmental disorders, brain regions showing relatively high expression
of the causal gene set in health tended to show MS decreases in patients carrying a
duplication of the gene set, and MS increases in patients carrying a deletion of that
gene set. Conversely, brain regions showing relatively low expression of the causal
gene set in health tended to show MS increases in patients with gene set deletion, and
MS increases in gene set duplication. For 5/6 CNVs studied (all but +Y) the above
median rank results were statistically significant at Bonferroni-corrected P < 0.05.
Supplementary analyses clarified that weaker statistical significance of this median rank
permutation test for the +Y CNV condition was a predictable consequence of the small
number of Y-linked genes with available brain expression data (Fig. S3a). Repeating
the above analyses using anatomical change maps for individual MS features (e.g.
cortical thickness, surface area, etc.), indicated that MS change maps performed better
than individual features for recovering the specific relationships between cortical gene
expression and anatomical change in each CNV (Fig. S3b, Table S4). Taken together,
these findings provide strong evidence that the transcriptional vulnerability model is a
relevant general organizing principle for spatial patterning of anatomical changes in
genetically-defined neurodevelopmental disorders.
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Our integration of neuroimaging and transcriptomic data also provided several novel
biological insights into each of the individual CNVs studied. First, we were able to define
those genes within each CNV region that were expressed in spatial patterns which most
closely resembled CNV-induced anatomical changes (Table S2). For example, the
most-extreme ranking CNV region gene relative to anatomical change in each CNV
was; +X: ZCCHC12, +Y: EIF1AY, -X: GABRAS, +21: PCP4, -22g11: MAPK1, -11p13:
TRIM44. This ranking by spatial correspondence provides an especially useful criterion
for prioritization of genes within large chromosomal and sub-chromosomal CNVs.
Second, ranked gene lists also identified genes outside the CNV region with expression
patterns that most closely mirrored observed anatomical changes — suggesting
candidate molecular partners that might interact with altered expression of CNV genes
to shape regional brain vulnerability (Table S2). Third, rank-based GO term enrichment
analyses identified biological process and cellular component annotations that were
overrepresented at extremes of each CNV disorder’s gene list (Table S5). For example,
for +21, genes with spatial expression related to MS increases showed enrichment for
cell communication and synapse composition, whereas genes with spatial expression
related to MS decreases showed enrichment for ion transport and intracellular
structures (Table S5).

Mapping the cell-class organization of gene expression gradients in the adult human
cortex

The above findings indicate that intrinsic transcriptomic differences across the cortical
sheet in adulthood are correlated with regional anatomical vulnerability of the cortical
sheet to genetically-defined neurodevelopmental disorders. However, regional
differences in cortical gene expression across the lifespan are themselves thought to
largely reflect regional differences in cellular composition of the cortical sheet?’. We
therefore reasoned that the spatial correspondence between expression of CNV genes
in health and anatomical changes in CNV carriers (Fig. 1) may be underpinned by
patterned expression of CNV genes across different cell-types with varying spatial
distributions. As there are no spatially-comprehensive maps of cell-type density across
the human brain with which one could test this hypothesis, we generated cell-class
density proxy maps by combining data from single cell gene expression studies with
measures of gene expression in bulk cortical tissue from the AHBA dataset. To
generate this reference set of cell-type maps in the human cortex, we first compiled cell-
specific gene sets (n=58) from all available large-scale single-cell studies of the adult
human cortex (Methods, Table S6). We then calculated the expression of each cell-
type gene set in each of the 152 cortical regions within our MRI-registered projection of
the AHBA dataset (Methods). Unsupervised hierarchical clustering of this cell-by-region
expression matrix using the gap-statistic criterion® distinguished three broad cell groups
with distinct patterns of regional expression (Fig. 2b): (i) oligodendrocytes, (ii) other glial
and endothelial cells, and (ii) excitatory and inhibitory neurons. Further co-clustering of
cells within these three groups by the similarity in their regional expression profiles (Fig.
2b, Methods) recovered all seven canonical cell classes within the central nervous
system: microglia, endothelial cells, oligodendrocyte precursors (OPCs),
oligodendrocytes, astrocytes, excitatory and inhibitory neurons. Thus, independently-
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derived cell-type gene sets from single-cell genomics - reflecting diverse cortical tissue
samples and varying analytic methods from 5 separate studies - could be perfectly
grouped by cell-class using the sole criterion of similarity in their expression gradient
across bulk samples of cortical tissue.

We generated a single omnibus gene set for each of these seven cell classes by
collapsing across study-specific gene sets, and we then visualized the mean expression
for each cell class gene set across the cortex (Fig. 2b, Methods). We were able to
validate these transcriptomic proxy maps for cellular patterning across the human cortex
against several independently-generated maps of cortical microstructure from
neuroimaging and histology (Methods, Fig. S4a). For example, (i) expression gradients
for the oligodendrocyte cell class showed a statistically significant positive coupling with
maps of intracortical myelination as indexed by in vivo magnetization transfer imaging™,
whereas (ii) expression gradients for astrocytes showed significantly positive spatial
coupling with several histological and neuroimaging markers for associative cortices
with expanded supragranular layer thickness*~*°. Furthermore, for two of our cell-class
expression maps, we harnessed available cell class specific markers to test for
convergent validity with available in situ hybridization data (ISH). Specifically, we
examined GFAP and MBP staining intensity as ISH markers for astrocytes and
oligodendrocytes (respectively) in postmortem slices from cortical regions showing
opposite patterns of astrocyte and oligodendrocyte gene expression in our
transcriptomic cell class proxy maps (Fig. 2c). This analysis revealed a close
congruence between regional cell class representation from our deconvolution
approach (Fig. 2c), and cell class representation from direct ISH staining (Fig. S4b).
Our expression-derived cell-class maps are freely available for wider-use online
(https://neurovault.org/).

FIGURE 2 HERE

Anatomical changes in CNVs are coupled to expression gradients of cell-classes that
express CNV region genes

We next used our derived cell-class gene sets — combined with prior knowledge of the
genes within each CNV region - to test if observed cortical anatomy changes in each
CNV disorder were organized with respect to broad cell-class gradients in the human
cortical sheet. Given that cell-density gradients across the cortical sheet are not
independent of each other (Fig. 2 and S4a), we made our test more stringent for each
CNV by only considering cell-classes which included CNV region genes within their
omnibus gene set (Table S6). We achieved this test for each CNV disorder by
screening for cell classes which (i) had a cell-class gene set which possessed a
significantly extreme median rank (Prano < 0.05) in the CNV’s ranked gene list from
AHBA alignment (Table S2), and (ii) included one or more extreme-ranking (i.e.,
top/bottom 5% PLS ranks) genes from the CNV region within their cell-class gene set
(Table S6). These criteria identified several pairwise associations between spatial
patterns of cortical anatomy change in CNVs and expression gradients of cell-classes
expressing genes from within the CNV region. Some of these cell-gene associations
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integrated cellular and molecular findings from prior research - providing (i) evidence of
convergent validity between the results of our novel analytic approach and prior work,
and (ii) a new and parsimonious integration of previously disconnected findings (Fig.
S4c). For example, oligodendrocyte precursor cells and the chromosome 21 gene
NCAM2 have both been separately implicated in the neurobiology of Down syndrome?®
28 _Our analytic method recovered and synthesized these prior associations by showing
that cortical MS increases in Down syndrome are preferentially localized to cortical
regions with a strong expression signature for oligodendrocyte precursor cells (OPCs),
which include NCAM2 in their cell-class gene set (Fig. S4c).

Our method also identified other novel cell-gene associations for regions of MS change
in the CNVs examined (excepting +Y), including: MS decreases in Down syndrome and
the transcriptomic signature for PCP4-expressing oligodendrocytes; MS increases in
WAGR syndrome (-11p13) and PAX6-expressing astrocytes; MS increases in VCFS
syndrome (-22q11) and MAPK1-expressing inhibitory neurons; MS changes in X-
chromosome aneuploidies and expression of oligodendrocytes, endothelial cells and
astrocytes (which possess cell-class gene sets that include neurodevelopmentally-
pertinent X-linked genes such as AMMECRL1, ITM2A and PTCHD1). Importantly, our
analytic approach yielded these highly specific and falsifiable hypotheses regarding cell-
specific drivers of regions of altered brain development in each CNV without reference
to any postmortem brain tissue from patients - but rather from far more readily acquired
clinical neuroimaging data combined with publicly-available maps of gene expression in
the human brain.

Transcriptomic correlates of cortical anatomy change in CNV disorders can be validated
against direct measures of altered gene expression in CNV carriers

Collectively, the above findings provide strong evidence that the spatial patterning of
altered brain anatomy in pathogenic CNV disorders in humans is organized by intrinsic
expression gradients of CNV-region genes in the human brain. We next sought to
provide the first comparisons of this transcriptional vulnerability model against direct
measures of altered gene expression in patients. Specifically, we used measures of
altered gene expression in CNV carriers to test two independent predictions from the
transcriptional vulnerability model. First, we predicted that the ranked gene list for each
CNV disorder from comparison of neuroimaging and AHBA data (Table S2) should
differentiate between (i.e. differently rank at Pranp < 0.05) those CNV region genes that
that do show robust expression changes in patients [i.e. dosage sensitive (DS) genes],
and those that do not (nDS genes). This prediction held for all 3 CNV disorders with
available DS and nDS gene sets from genome-wide comparisons of expression
between patient and control tissues: +21, +X and -X (Methods, Fig. 3b, Table S7)
Strikingly, we observed statistically-significant differential ranking of DS and nDS gene
sets (Pranp<0.05) regardless of whether the gene sets had been defined in postmortem
brain tissue (available for +21), or blood-derived lymphoblastoid cell lines (LCLs,
available for +21, +X and -X). The fact that CNV gene dosage sensitivity in patient LCLs
is predictive of imaging-transcriptomic associations in brain tissue is consistent with the
idea that cis-effects of a CNV on gene expression may be highly reproducible across

29-31
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tissue types (even though normative gene expression profiles vary greatly between
different tissue types*?). This idea of cross-tissue stability in cis-effects of a CNV on
gene expression is supported by prior research in model systems*, and our own
observation of a statistically-significant correlation across genes between the magnitude
of expression change for chromosome 21 genes in brain tissue vs. in LCLs from
patients with Down syndrome (r = 0.34, Pranp = 0.04, Methods).

FIGURE 3 HERE

For all 3 CNVs considered, median rank differences between DS and nDS gene sets
were driven by a small subset of DS genes (DS*®, Fig. 3b,c, rank decile analysis,
Methods). For cortical changes in +21 and +X, DS genes possessed strongly positive
PLS weights, indicating that they are most highly-expressed in cortical regions of MS
increase in patients vs. controls (e.g., +21: insula and cingulate cortex, +X: precuneus,
lateral temporal lobe), and that they are least expressed in regions of MS reduction
(e.g., +21: fronto-parietal areas, +X: anterior cingulate). Conversely, for cortical changes
in -X, DS®° genes possessed strongly negative PLS weights - indicating that
associations between regional DS®>/nDS gene expression and MS changes in Turner
syndrome are a mirror image of those in +X states. Thus, for all 3 CNV conditions
considered, the spatial patterning of cortical MS changes was preferentially correlated
with the patterned expression of CNV genes, but in opposite directions for DS®° vs. nDS
gene sets (i.e., Fig. 1b vs. Fig. 3b, respectively). These observations implied that the
relative expression of DS®° vs. nDS genes should provide a strong predictor of regional
MS change in these neurodevelopmental disorders (this was specific to the DS®®
subset, and was not the case for the overall DS vs. nDS comparisons). This inference
was verified for all three CNVs using a surface-based rotational test to compare the
map of observed anatomical changes in the CNV disorder to that predicted by an index
of DS®° vs, nDS expression from the AHBA (Pspiv < 0.001, Fig. 3d).

Interindividual variation in transcriptomic dysregulation amongst CNV patients predicts
the severity of brain anatomy changes in vivo

We reasoned that if (1) the spatial patterning of MS changes is organized by intrinsic
gradients of gene expression in the human cortex (Fig. 1b and 3d), and (2) there is a
causal relationship between cortical MS changes and altered expression of CNV-region
genes in CNV carriers, then (3) CNV carriers with greater dysregulation of DS genes
should show a more pronounced MS changes along the spatial gradient that coheres
with intrinsic cortical expression of CNV genes. Therefore, we sought to test the
prediction that the spatial gradient of cortical anatomy change associated with a given
CNV (Fig. 1b) would be more pronounced amongst CNV carriers who show greater
dysregulation of DS gene expression. As there are no available cohorts of CNV carriers
that have provided both in vivo neuroimaging and postmortem gene expression data
from brain tissue - we sought to test our hypothesis by leveraging the fact that proximal
effects of a CNV on expression of CNV region genes are known to show good stability
across tissues (see above).
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FIGURE 4 HERE

A subset of 55 patients in our study that carried an extra X-chromosomes had
previously provided a blood sample for gene expression analysis (N=55, karyotypes:
XXX, XXY, XXYY). These blood samples had been used to make LCLs, from which we
had measured expression for 11 DS X-chromosome genes by gPCR? (Methods). To
interrelate peripheral gene expression and cortical MS across individuals we (i) scaled
regional cortical MS and gene expression values within each karyotype group (to
remove potential between-karyotype effects), (ii) used PLS regression to define the
principal component of shared variance between LCL gene expression and cortical MS
(Fig. 4a). This procedure identified a statistically-significant component of shared
variance between MS change and DS gene expression across patients (p=0.0094,
Methods). Strikingly, the cortical region loadings for this component closely
recapitulated the spatial gradient of MS change associated with carriage of an extra X
chromosome (R=0.59, P < 0.0001 by test of random spatial rotation of cortical maps
and by resampling patients, Methods, Fig. 4b). Thus, CNV-induced changes in cortical
anatomy are not only coupled to regional variation in the cortical expression of CNV
genes in health (Fig. 1), but also to inter-individual variation in the degree of altered
expression in CNV region genes amongst CNV carriers (Fig. 4).

Discussion

The methods and results presented above offer several new theoretical and empirical
inroads into the biology of neurogenetic disorders.

First, by studying genetically-defined (rather than behaviorally-defined) patient cohorts,
we test the transcriptional vulnerability model in humans by benchmarking findings
against a “ground-truth” set of genes that are known in advance and define the
disorders studied. In this way, our analyses in humans are analogous to gold-standard
tests of the transcriptional vulnerability model that have so far only been possible in
transgenic mice with experimentally induced CNVs>*. We find that the transcriptional
vulnerability model is indeed an organizing principle for the spatial targeting of genetic
effects on human brain anatomy in neurodevelopmental disorders (Fig. 1). Strikingly - in
humans, as in mice® - these spatial relationships between intrinsic cortical expression
of CNV genes, and cortical anatomy changes in CNV carriers could be recovered
despite reliance on spatially-comprehensive gene expression data that had been
derived from adult brains. Thus, although gene expression landscapes within the brain
show profound spatiotemporal dynamism?, there appears to be sufficient stability in the
topology of gene expression to recover CNV-specific associations over developmental
time.

Second, we show that cellular organization of the human brain provide a biological lens
that can translate disease-related alterations of specific genes into disease-related
alterations of specific distributed brain regions. We exploit this cellular framework to
generate novel and highly-articulated hypotheses about the specific genes and cell-
types that are most likely to underpin regional cortical disruptions in patients with Down,
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VCES, WAGR and sex chromosome aneuploidy syndromes (Fig. 2). Such data-driven
footholds can accelerate biological research into neurodevelopmental disorders by
allowing a new level of precision in the targeting of future mechanistic studies (Table
S2). Critically, we generate these disorder-specific results through on an unbiased
analytic approach that screens many potential brain regions, cell classes and genes
without relying on postmortem tissue from patients or generalization from model
systems. This approach provides a practical advantage given the scarcity of
postmortem brain tissue from patients (especially those with rare genetic disorders),
and also enables us to make predictions regarding the biology of distinctly human
disorders using data from native human tissue. To facilitate wider use of this “cell-map
decoding” approach, we are publishing (i) the cell-class gene sets derived by our novel
spatial integration of prior single-cell gene expression data (Table S3), and (ii) the
spatially comprehensive cortical maps for expression of each cell-class gene set in
standard neuroimaging space (https://neurovault.org/).

Third, we refine and further validate the transcriptional vulnerability model using
independent classifications of CNV genes from direct measures of gene expression in
CNV carriers. Specifically - considering full CNVs of chromosomes X and 21 - we
establish that relationships between cortical expression in health and cortical anatomy
change in CNV carriers are significantly different for CNV region genes with contrasting
dosage sensitivity in patient tissue. As a consequence, both the valance and magnitude
of regional cortical anatomy change in CNV carriers could be predicted from a single
index of regional cortical gene expression in health - which contrasted relative
expression of those CNV genes that do show dosage sensitivity in CNV carriers vs.
those that do not (Fig. 3). Notably, this finding held whether the expression data used to
divide CNV regions genes by their dosage sensitivity status are derived from brain
tissue or from LCL tissue. Thus, we show that there is not only a close correspondence
between the spatial distribution of altered cortical anatomy in CNV carriers and intrinsic
expression of CNV-region genes in the human brain (Fig. 1), but that this
correspondence can itself be further refined by dividing CNV region genes by the extent
to which their expression is altered in CNV carriers (Fig. 3).

Finally, we use paired measures of brain anatomy and gene expression in a large
cohort of patients carrying an extra X-chromosome, we show that CNV carriers with
greater upregulation of dosage sensitive X-chromosome genes in blood-derived LCLs
show more severe profiles of cortical anatomy change in vivo (Fig. 4). This finding uses
the axis of inter-individual variation to provide orthogonal validation of the transcriptional
vulnerability model, but also establishes a potentially useful predictive relationship
between “peripheral” gene expression changes and “central” neuroanatomical changes
in CNV carriers. Importantly, the existence of this predictive relationship is fully
compatible with well-established differences in gene-expression between blood and
brain tissues in health®. Rather, our observations only require cross-tissue stability in
the proximal impact of a CNV on expression of CNV region genes, and this
phenomenon already has good empirical support from studies in different tissues of
aneuploidic plants®, as well as from our own comparison of altered expression of
chromosome 21 genes in brain and LCL tissues from patients with Down syndrome
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(see above). Future work examining the coordinated impact of other CNVs on brain
anatomy and gene expression, as well as in other idiopathic neurodevelopmental
disorders®, will be critical in substantiating the generalizability of these findings. In
general, however, prediction of neuroanatomical phenotypes in CNV carriers from easily
gathered measures of peripheral gene expression represents an important proof-of-
principle that could open up new avenues towards advances in personalized medicine
for CNV-based brain disorders.

Our study leverages genetically-defined neurodevelopmental disorders to test and
refine the transcriptional vulnerability model. Using several distinct cohorts which are
each defined by their own known “ground-truth” set of candidate causal genes provides
a “gquasi-experimental” paradigm in humans which unique benefits for internal validity
and inferential power. This foundation now sets the stage for follow-up studies that can
assess how cellular patterning of the human brain over space and time might refract
other more complex sets of genetic and environmental risks for atypical
neurodevelopment. To that end, one critical resource to developed in future work would
be a comprehensive bulk and single-cell expression dataset from the developing human
brain with accompanying neuroimaging maps. However, this would only be achievable
for high-penetrant variants that can be identified and scanned early, such as CNVs®.

In summary, our study adopts a genetic-first approach to provide the first quasi-
experimental support in humans that the spatial patterning of altered brain anatomy in
neurogenetic disorders is organized by normative expression gradients of disease-
relevant genes in the human brain. We further show that this “transcriptional
vulnerability model” for prediction of regional vulnerability can be linked to cell-type
dependent patterning of gene expression, and validated against direct measures of
gene expression in patients. The methods and results we present provide new
biological insights into several of the specific neurogenetic disorders studied, as well as
a novel framework for transcriptomic and cellular decoding of brain disorders from in
vivo neuroimaging data. Crucially, despite not requiring access to any postmortem brain
tissue from patients, or inference from model systems, the methods we present can
screen the large multidimensional search space of brain regions, cell types, and genes
to propose highly-specific mechanistic targets for neurogenetic disorders of the
developing human brain.
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Methods

Cohorts, Diagnostic Classification, and MRI Acquisition

National Institutes of Health - Bethesda, USA (NIH)

Sex Chromosome Aneuploidies: This dataset has been described in detail previously*”
39 Briefly, we included 297 patients with various supernumerary X- and/or Y-
chromosome counts and 165 healthy controls (79 females) (Table S1). Patients were
recruited through the National Institutes of Health (NIH) website and parent support
groups. The presence of sex chromosome aneuploidy was confirmed by karyotype
testing. Exclusion criteria included a history of head injury, neurological condition
resulting in gross brain abnormalities, and mosaicism (determined by visualization of 50
metaphase spreads in peripheral blood). Healthy controls were enrolled in longitudinal
studies of typical brain development®. Exclusion criteria for controls included the use of
psychiatric medication, enroliment in special education services, history of mental health
treatment, or prior diagnosis of a medical condition that impacts the nervous system.
Full-scale 1Q was measured with the WASI. Subjects were scanned on a 1.5T GE Signa
scanner (axial slices =124 x 1.5 mm, TE =5 ms, TR = 24 ms, flip angle = 45°,
acquisition matrix = 256 x 192, FOV = 24 cm) using a spoiled-gradient recalled echo
(3D-SPGR) imaging sequence. The research protocol was approved by the institutional
review board (IRB) at the National Institute of Mental Health, and informed consent or
assent was obtained from all individuals who participated in the study, as well as
consent from their parents if the child was under the legal age of majority.

Down Syndrome / Trisomy 21: This dataset has been described in detail previously?.
Briefly, we included 26 patients (13 females) with Down Syndrome and 42 healthy
controls (21 females) (Table S1). All participants with DS had a chromosomal diagnosis
of Trisomy 21 according to parent report or direct testing, with no instances of
mosaicism. In addition to the genetic inclusion criteria, participants were also required
be free of any history of acquired head injury or other condition that would cause gross
brain abnormalities. Full-scale 1Q was measured as follows: for participants under the
age of 18, the Differential Ability Scales, Second Edition*! was administered, and for
participants 18 and older, the Kaufman Brief Intelligence Test, Second Edition** was
administered. Imaging was completed without sedation on the same 3-Tesla General
Electric Scanner using an 8-channel head coil. High-resolution (0.94 x 0.94 x 1.2 mm)
T1-weighted images were acquired utilizing an ASSET-calibrated magnetization
prepared rapid gradient echo sequence (128 slices; 224 x 224 acquisition matrix; flip
angle = 12°; field of view [FOV] = 240 mm). The research protocol was approved by the
IRB at the National Institute of Mental Health, and informed consent or assent was
obtained from all individuals who participated in the study, as well as consent from their
parents if the child was under the legal age of majority.

Wilms Tumor-Aniridia Syndrome (WAGR): A total of 31 patients with heterozygous
contiguous gene deletions of incremental variable length on the short arm of
chromosome 11 (11p13 deletion), and 23 healthy controls participated in a
comprehensive genotype/phenotype study approved by the NIH IRB and with the
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informed consent of their parents/legal guardians (Table S1). Healthy controls were
screened and excluded for history of neurological and psychological impairments.
Chromosome deletions were characterized by microsatellite marker analysis and
oligonucleotide array comparative genomic hybridization. Neuropsychological
assessments were conducted using standardized psychological tests. All participants
underwent MRI structural brain imaging. Imaging quality controls included visual
inspection of the raw images for motion artifacts as well as the quality of the surface and
volume segmentations. The image processing results were inspected for surface and
volume segmentation errors by FML and AR. The MRI brain scans were collected at
one cubic millimeter resolution using a 3D TFE T1-weighted sequence ona 3.0 T
Philips Achieva MRI scanner equipped with an 8-channel phased array head coil. The
sequence parameters were as follows: TR =8.3 ms, TE = 3.8 ms, Tl delay = 1031 ms,
160 shots. In total, 171 slices were acquired in the sagittal plane with an acquisition
matrix of 240 by 240 and a FOV of 240 millimeters. Ethical approval was obtained from
the local Ethics Committee. All participants (or their legal guardians) gave informed
consent.

Institute of Psychiatry, Psychology and Neuroscience - London, UK (IoP)

Turner Syndrome (X-monosomy): This cohort and associated data have been described
in depth previously****. We included 20 females with X-monosomic Turner’'s Syndrome
(TS) and 36 healthy controls in this study (Table S1). Briefly, participants with TS were
recruited through a university-based behavioral genetics research program run in
collaboration with the South London and Maudsley NHS Foundation Trust and typically
developing controls through local advertisement. Karyotype was determined for each
participant with TS by analyzing thirty metaphase spreads using conventional
cytogenetic techniques. No participants suffered from any psychiatric or medical
disorders that would grossly affect brain function (e.g. epilepsy, neurosurgery, head
injury, hypertension, schizophrenia) as determined by a structured clinical interview and
examination, as well as review of medical notes. Structural MRI data were acquired
using a GE Signa 1.5T Neuro-optimized MR system (General Electric, Milwaukee,
Wisconsin). Whole head coronal 3D-SPGR images (TR =14 ms, TE = 3 ms, 256 x 192
acquisition matrix, 124 x 1.5 mm slices) were obtained from all subjects. Ethical
approval was obtained from the local Ethics Committee and informed written consent
was obtained from all participants.

Velocardiofacial Syndrome (VCFS): This dataset has been used and described in depth
previously*>*®. Briefly, all patients with VCFS and control subjects were screened for
medical conditions affecting brain function by means of a semi-structured clinical
interview and routine blood tests. Full-scale intelligence was measured by means of the
Canavan et al shortened version of the Wechsler Adult Intelligence Scale—Revised®’.
We included 27 controls (11 females) alongside 29 participants (13 females) with
clinical features of VCFS (Table S1) and a 22g11.2 deletion detected by fluorescence in
situ hybridization (FISH; Oncor Inc, Gaithersburg, MD, USA). Subjects were scanned on
a 1.5T GE Signa scanner at the Maudsley Hospital in London, UK. A whole-head 3D-
SPGR image was acquired for each subject (TR = 11.9 ms; TE = 5.2 ms; 256 x 192
acquisition matrix; 124 x 1.5 mm slices). Ethical approval was obtained from the local
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Ethics Committee. All subjects (or their guardians, when subjects < 16 years old) gave
written informed consent after the procedure was fully explained.

Image Quality Control

Each of the patient/control datasets used in the current manuscript were taken from
previous studies. As such, previous quality control procedures for each dataset can be
found in the original papers (see sections above). In addition, each cortical surface
reconstruction was manually inspected for topological defects, scrambling patients and
controls to avoid bias.

Image Processing and Generation of Morphometric Similarity Networks

All T1-weighted (T1w) scans were processed using the Montreal Neurological Institute’s
CIVET pipeline®® (v1.1.10). Due to the lack of multimodal imaging, only (gray matter)
morphometric features derived from the T1-weighted scans were estimated (CT: cortical
thickness, SA: surface area, GM: gray matter volume, MC: mean curvature, IC: intrinsic
curvature). GM values were estimated using the T1w volumes of each subject. Vertex-
wise CT and SA values were estimated using the resultant pial surface reconstructions
from CIVET, while MC and IC metrics of these surfaces were estimated using the freely
available Caret5 software package®. These surface meshes (~80,000 vertices per
mesh) were down sampled into our regional parcellation (below), where the vertex-wise
estimates of the features were averaged within a given region in the parcellation.
Cortical surface representations were plotted using BrainsForPublication v0.2.1
(https://doi.org/10.5281/zenodo.1069156).

For each subject, regional morphometric features (CT, SA, GM, MC, and IC) were first
scaled (Z-scored, per feature across regions) to account for variation in value
distributions between the features. After normalization, Morphometric Similarity
Networks (MSNs) were generated by computing the regional pairwise Pearson
correlations in morphometric feature sets, yielding an association matrix representing
the strength of morphometric similarity between each pair of cortical areas™®. For all
individuals, regional MS (“nodal similarity”) estimates were calculated as the average
morphometric similarity between a given cortical region and all others. We have
previously demonstrated that there is an extremely high spatial concordance (r=0.91)
between the topography of regional MS derived from T1-weighted MRI data alone, and
regional MS from more modalities (e.g. a combination of T1w and diffusion weighted
imaging®©).

Cortical Parcellation

We generated a 308-region (n=152 LH regions) cortical parcellation using a back-
tracking algorithm to restrict the parcel size to be approximately 500mm?, with the
Desikan-Killiany atlas boundaries as starting points®”**. This parcellation has been used
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in previous structural*®?°3 and functional® imaging studies of connectomes, and was
also used in our first study of MSNs®®.

Statistical Analyses of MSN Differences

For each cohort, group-wise effects of disease on nodal similarity were modeled using
the ‘Im’ base function in R, with sex and age included as covariates. Linear regression
was conducted using the standard ordinary least squares procedure. This model was
fitted for each region, and the two-sided T-statistic (contrast = patient - control) was
extracted (represented in Fig. 2a as a Z-score for plotting purposes). For the SCA
groups, we collectively modeled each chromosome dosage effect as follows:

NS; ~ intercept + Bl(age) + B2(sex) + f3(Xan) + B4(Yan), Q)
Where NS; is the nodal similarity estimate across subjects at region i, and Xan and Yan
are the number of supernumerary X and Y chromosomes (respectively). This was done
after ruling out any significant interactions between Xan and sex, or Xan and Yan for
variation in nodal similarity™.

For the +21, -X, -22q11.2, -11p13 patient-control comparisons in nodal similarity (NS;),
the following model was used:

NS; ~ intercept + B1l(age) + B2(sex) + 3(Dx),
(2)

Where Dx is the binary classification of patients and controls.

These procedures resulted in MS change maps for 6 different CNV conditions, which
were taken into subsequent analyses (+X, +Y, +21, -X, -22g11, -11p13).

Interpretation of Reqgional Morphometric Similarity Differences

Due to the zero-centered nature of the regional morphometric similarity (MS) distribution
(Fig. S2a), we annotated the regional MS change maps (T-statistics) to determine the
underlying effects at the “edge” level (i.e., at the level of inter-regional morphometric
similarity). For each CNV, we first computed the edgewise MS change between patients
and controls (i.e., Egs 1 or 2 for each edge, or pairwise correlation). Then, for the top 10
positive (red in Fig. 1b) and 10 negative (blue in Fig. 1b) regional MS T-statistics we
took the absolute sum of their corresponding edge T-values for each of four possible
types of edge effect:

e “hypercoupling” = an edge with a positive weight in controls, and a positive edge
T-statistic for the CNV effect (i.e. regions which are morphometrically similar in
controls being rendered more similar by the CNV)
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e ‘“dedifferentiation” = an edge with a negative weight in controls, and a positive
edge T-statistic for the CNV effect (i.e. regions which are morphometrically
dissimilar in controls being rendered less dissimilar by the CNV)

e “decoupling” = an edge with a positive weight in controls, and a negative edge T-
statistic for the CNV effect (i.e. regions which are morphometrically similar in
controls being rendered less similar by the CNV)

e ‘“hyperdifferentiation” = an edge with a negative weight in controls, and a negative
edge T-statistic for the CNV effect (i.e. regions which are morphometrically
dissimilar in controls being rendered more dissimilar by the CNV)

These four effects are depicted in the legend of Fig. S2b.

Derivation of Gene Sets for each CNV

Assignments of AHBA genes to chromosome locations were made according to those
from >*. These assignments defined the gene sets used for all chromosome-level
analyses. Gene sets for the two sub-chromosomal CNVs in our study were defined as
follows. The 11pl13-deletion (WAGR) gene set was defined using the known distribution
of proximal and distal breakpoints in the WAGR patient cohort studied (relative to the
NCB136/hg18 genome assembly, references via the USCS Genome Browser). We
used the median proximal and distal breakpoints across patients to define a
representative chromosomal segment for use in analysis, which encompassed 45
AHBA genes in total (Table S2) including both WAGR critical region genes (WT1 and
PAXG6). As patient-specific breakpoint data were not available for the 22g11.2-deletion
(VCFS) cohort, we defined the gene set for this CNV using reference breakpoints for the
most common A-D deletion type (seen in >85% of patients)®, which encompassed 20
genes from the AHBA dataset.

Transcriptomic Alignment of Neuroimaging Data

Methods for the alignment of the microarray gene expression data from 6 adult human
donors, provided by the Allen Human Brain Atlas (AHBA), to the left hemisphere (n =
152 regions) of our parcellation has been described in depth elsewhere®**>? where we
have shown that the gene expression data is robust to leaving a given donor out of the
analysis. Briefly, we used FreeSurfer’s recon-all to reconstruct and parcellate the
cerebral cortex of each AHBA donor using the corresponding T1-weighted volume®®.
Tissue samples were assigned to the nearest parcel centroid of the left hemisphere of
our parcellation in each subject’s native space. For the two subjects with right
hemisphere data, we first reflected the right hemisphere samples’ coordinates and then
performed the mapping. The median regional expression was estimated for each gene
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across participants (N = 6) and then each gene’s regional values were normalized (Z-
scored), resulting in a 152 (regions) x 15043 (genes) matrix of the genome-wide
expression data for the left hemisphere. The code and data underlying the AHBA
alignment is available online at
https://github.com/RafaelRomeroGarcia/geneExpression_Repository.

Partial Least Squares Regression of MS Differences

This method — applied in similar analyses integrating neuroimaging and brain gene
expression data — has been described previously®*® (see also Fig. S1). Here, we
employ PLS regression to rank AHBA genes by their multivariate spatial alignment with
cortical MS changes in each of the 6 different CNV conditions (+X, +Y, +21, -X, -22q11,
-11p13). As detailed below, these ranked gene list for each CNV condition (Table S2)
provide a unifying framework to test for preferential spatial alignment between CNV-
induced MS change and the spatial expression user-defined gene sets of interest (e.g.
genes within vs. without the CNV region, gene sets defining different cell types etc.).

Briefly, partial least squares (PLS) regression is a data reduction technique closely
related to principal component analysis (PCA) and ordinary least squares (OLS)
regression. Here we use the SIMPLS algorithm®’ in R (‘pls’ package®), where the
independent variable matrix (X) and the dependent variable (Y) is centered giving rise to
Xo and Y, respectively. The first component is then weighted by w; and q; to calculate
factor scores (or PLS component scores) T; and Uj;.

This T3 is the weighted sum of the centered independent variable:

T1 = Xow: + Ey, (4)

And U; is the weighted sum of the centered dependent variable:

U1 = Yo0: + E2, (5)

The weights and the factors scores are calculated to ensure the maximum covariance
between T; and U;, which is a departure from regular PCA where the scores and

loadings are calculated to explain the maximum variance in Xo.

The SIMPLS algorithm provides an alternative where the matrices are not deflated by
the weights when calculating the new components, and, as a result, it is easier to
interpret the components based on the original centered matrices.

As the components are calculated to explain the maximum covariance between the
dependent and independent variables, the first component need not explain the
maximum variance in the dependent variable. However, as the number of components
calculated increases, they progressively tend to explain less variance in the dependent
variable. We verified that the first component (U;, used for gene rank analysis) for each
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CNV-specific PLS explained the most relative variance.

For each CNV, we used U; to rank genes by their PLS loadings (from large positive to
large negative PLS loadings, Fig. 1a). The polarity of the PLS components was fixed so
that gene ranks would have the same meaning across all CNVs. Thus, for all CNV-
induced MS change maps, genes with large positive PLS weights had higher than
average expression in cortical regions where MS is increased in CNV carriers relative to
controls (i.e., red regions in Fig. 1b), and lower than average expression in cortical
regions where MS is decreased in CNV carriers relative to controls (i.e., blue regions in
Fig. 1b). Conversely, genes with large negative PLS weights had higher than average
expression in cortical regions where MS is reduced in CNV carriers relative to controls
(i.e. blue regions in Fig. 1b), and lower than average expression in cortical regions
where MS is increased in CNV carriers relative to controls (i.e. red regions in Fig. 1b).
Mid-ranking genes with smaller PLS weights showed expression gradients that are
weakly related to the pattern of cortical MS change.

It is important to note that T1 and U; are the first PLS component weights in the
common dimension of the X and Y variables. Thus, in our analyses comparing AHBA
gene expression to cortical MS change (as in the example interpretation above), the
common dimension is at the level of the nodes. However, in our analyses comparing
individual patient gene expression to individual cortical MS maps, the common
dimension was people rather than brain regions (see below).

Median Rank Gene Enrichment Analysis

The ranked gene lists provided by PLS regression of AHBA expression and MS change
provided a common framework to test if the spatial expression of a given gene set was
non-randomly related to an observed spatial pattern of MS change. Specifically, we
quantified this degree of spatial correspondence or a given gene set using used an
objective and simple measure of median gene set rank. This allowed for interpretation
of “rank enrichment” both relative to the center of the rank distribution, and relative to
the extremes of the list. Statistical significance of observed gene set median ranks was
established by comparison with null median rank distributions from 10000 gene rank
permutations (Pranp)-

For the full chromosome CNVs, median ranks were assessed for chromosomes 1:22, X,
Y, and the pseudoautosomal region (PAR, or “X|Y”). For plotting purposes, results with
full chromosomes are presented in Fig. 1b, and results with all chromosomes and PAR
genes are shown in Table S3. For the sub-chromosomal deletions (-22911.2/VCFS and
-11p13/WAGR), we performed additional variants of our Pranp test (Pranp-cis and Pranp-
Trans), ONly comparing observed median ranks to those for 10000 from gene sets of
equivalent size resampled from relevant chromosome (i.e., chromosome 22 for -
22011.2 and chromosome 11 for -11p13).

Given that CNV gene sets varied greatly in size, and the smallest gene set (+Y), was
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notable for being the only gene set that had an observed median ran that fell below the
nominal Pranp = 0.05 threshold, we conducted supplementary analyses to investigate
the relationship between CNV gene set size and the statistical significance of observed
CNV gene set median ranks relative to the Pranp Null distribution. We decided to nest
these analyses in the context of the X-chromosome, which was the CNV that contained
the greatest number of linked genes in the AHBA. Across different subsamples of the X-
chromosome gene set, ranging from the set size of the Y-chromosome (smallest whole-
chromosome CNV) to the full size of the X-chromosome, we generated 10000 median
gene ranks from the +X PLS-ranked gene list within each subsample, as well as median
gene ranks from random pulls of the entire (AHBA-overlapping) genome of comparable
set size (Fig. S3a). Since pairs of X-chromosome subsets and random subsets were
arbitrarily matched, subsample P-values were calculated by testing the median of the X-
chromosome median gene ranks against the 10000 null median gene ranks generated
by the random pulls. This was performed for each subsample size (Fig. S3a) to
evaluate a “predicted” P-value for median ranks of CNV gene sets sized similarly to the
CNVs (+Y, +21) observed in our study.

Due to the fact that MS change maps integrated information from multiple individual
anatomical metrics (e.g. cortical thickness, surface area, etc.), we tested if anatomical
change maps for each of these individual MS features were also capable of recovering
the preferential relationship between cortical expression gradients for CNV genes in
health, and CNV effects on cortical anatomy in patients. To achieve this, we repeated
the analytic steps detailed above for each CNV, replacing the MS change map with
change maps for every individual metric used as part of our 5-feature MS mapping (Fig.
S3b): gray matter volume, cortical thickness, surface area, mean curvature and intrinsic
curvature. PLS-derived gene ranks from all these analyses were assessed for
statistically-significant extreme ranking of CNV gene sets (Prano < 0.05, Table S4).

Gene Ontology Enrichment Analyses

Functional enrichment was assessed using rank-based gene ontology (GO) enrichment
analysis. First, we subsetted the full PLS-ranked gene lists for each CNV to only contain
genes that were determined as brain-expressed (see below). Then, each refined “brain-
only” CNV gene list was inputted to GOrilla®*®° ordered by PLS score separately in
increasing and decreasing order to obtain enrichments for both tails of the gene list. Full
output can be found in Table S5.

Collation and Anatomical Projection of Single Cell Gene Expression Data

We compiled data from 5 different single-cell studies using postmortem cortical samples
in human postnatal subjects®°, to avoid any bias based on acquisition methodology or
analysis or thresholding.

To obtain gene sets for each cell type, categorical determinations were based on each
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individual study, as per the respective methods and analysis choices in the original
paper. All cell-type gene sets were available as part of the respective papers. For the
Zhang et al. (2016) and Darmanis et al. (2015) papers, these data had already been
reported elsewhere®®, and therefore were re-used in the present study. This approach
led to the initial inclusion of 58 cell classes, many of which were overlapping based on
nomenclature and/or constituent genes. The genes within each of these 58 cell-types
are compiled in Table S6.

We generated spatial maps of expression for each cell type gene set by calculating the
median regional expression score for each gene set in the AHBA bulk microarray
dataset (Fig. 2a). Then we performed hierarchical clustering of this region-by-cell-type
expression matrix, using the gap statistic* criterion. This unsupervised analysis enabled
us to determine if the cell type gene sets from diverse studies could be grouped into
biologically-grounded clusters by their patterned expression across the cortical sheet.
The clustering of study-specific gene sets according to known cell classes was taken to
indicate that gene expression gradients in the cortical sheet are partly organized by cell-

type.

Data-driven Recovery of Canonical Cell Classes based on Expression Topographies

The convergence of cell-type expression topography allowed us to cluster individual
study cell-type gene lists into canonical cell classes. Within the context of the N=3
hierarchical clustering solution from Fig. 2a, we performed post-hoc assignment of each
study-specific cell-type into a cell classes based on the visualization of the t-Distributed
Stochastic Neighborhood Embedding (tSNE) solution (Fig. 2b) on the data from Fig. 2.
This solution clearly organized study-specific cell types into 7 canonical classes, which
were fully nested within the N=3 hierarchical clustering solution from Fig. 2a. These 7
classes were: Astrocytes (Astro), Endothelial cells (Endo), Microglia (Micro), Excitatory
Neurons (Neuro-EX), Inhibitory Neurons (Neuro-In), Oligodendrocytes (Oligo), and
Oligodendrocyte Precursor Cells (OPC).

To derive expression maps for each of these 7 cell classes, we first collapsed across
study-specific gene lists to generate a single omnibus gene list for each cell class, and
then calculated a weighted average expression for each cell class gene set in each
region of our 152 AHBA parcellation (Fig. 2c). Weights for each underlying cell-type
were computed by estimating the Euclidean distance of each cell-type from the centroid
of their respective cell class using principal component analysis. Two studies did not
subset neurons into excitatory and inhibitory, and thus these gene sets were excluded
from this cell class assignment. Additionally, only one study included the annotation of
the “Per” (pericyte) type, and thus this gene set was also excluded.

Cortical Map Comparison of Overall Cell Class Expression

To validate the individual cell class expression maps derived from integration of single
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cell expression studies and AHBA microarray data (Fig. 2c), we computed the spatial
correlation of each cell class expression map to established maps of cortical
microstructure from diverse in vivo neuroimaging and postmortem histological studies,
including maps of cytoarchitecture®” myeloarchitecture®, and gradients of
evolutionary®*, developmental®®, and inter-individual (allometric) anatomical scaling®
(Fig. S4).

For the cytoarchitectonic maps, a 100um resolution volumetric histological
reconstruction of a post mortem human brain from a 65-year-old male was obtained
from the open-access BigBrain®’ repository on February 2, 2018
(https://bigbrain.loris.ca/main.php). Using previously defined surfaces of the layer 1/ 1
boundary, layer IV and white matter®, we divided the cortical mantle in supragranular
(layer 1/ 1l to layer 1V) and infragranular bands (layer IV to white matter). Band thickness
was calculated as the Euclidean distance between the respective surfaces. To
approximate cellular density, we extended upon recent work on BigBrain microstructure
profiles® and generated microstructure profiles within supra- and infra-granular bands.
Intensity profiles using five equivolumetric surfaces within the predefined surfaces of the
BigBrain were then averaged to produce an approximate density value. Calculations
were performed at 163,842 matched vertices per hemisphere, then averaged within
each cortical region in our parcellation.

Methods for generation of comparison myeloarchitecture and anatomical scaling maps
used in these analyses have been detailed previously%?**¢.

Spatial Permutation Testing of Correspondence Between Cell-Class Expression and
Other Cortical Maps

To assess the specificity of the correspondence between pairs of cortical maps, we
generated 10000 “spins” of the cortical parcellation*®>3. This matching provides a
mapping from the set of regions to itself, and allows any regional measure to be
permuted while controlling for spatial contiguity and hemispheric symmetry.

We first obtained the spherical surface coordinates of each of our 308 regions on the
fsaverage template in Freesurfer. These were then rotated about the three principal
axes at three randomly generated angles. Given the separate left- and right-hemisphere
cortical projections, the rotation was applied to both hemispheres. However, to preserve
symmetry, the same random angles were applied to both hemispheres with the caveat
that the sign of the angles was flipped for the rotation around the y and z axes.

Following each rotation, coordinates of the rotated regions were matched to coordinates
of the initial regions using Euclidean distance, proceeding in descending order of
average Euclidean distance between pairs of regions on the rotated and unrotated
spheres (i.e., starting with the rotated region that is furthest away, on average, from the
unrotated regions).
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Relating Cell-Class Gene Expression Gradients to CNV-induced MS Changes

Our analysis of expression gradients for previously reported single cell expression
signatures (see above) yielded an omnibus gene set for each of seven canonical cell
classes. We assessed the relationship between cortical expression of these cell classes
and cortical MS change in each CNV by considering two complementary features. First,
we identified cell class gene sets that occupied significantly extreme ranks in each
CNV’s ranked gene list from AHBA (Pranp < 0.05). This rank-based criterion provides a
test for the degree of spatial coupling between cortical expression of each cell class and
each CNV change map. Then, amongst the cell classes that met this rank-based
criterion for a given CNV, we examined the expression of CNV genes to identify cell
classes that expressed CNV genes which (i) were independently recorded as being
brain expressed from proteomic data (see below), and (ii) were occupied extreme ranks
(<5th, or >95th centile) alongside the cell class gene list in the relevant CNVs ranked
gene list.

Defining Dosage Sensitive Genes in Down Syndrome (+21) and X-chromosome
Aneuploidies.

Dosage sensitive (DS) genes were defined as those within the CNV region that were
reported to show a statistically-significant fold change in congruence with the genomic
copy number change (i.e., increased in duplication carriers vs. controls or decreased in
deletion carriers vs. controls).

Prior reports enabled us to define DS genes in +21 for two different tissue types: brain®
and blood-derived lymphoblastoid cell lines (LCLs)*. Brain DS genes were defined as
all chromosome 21 genes determined to show developmentally-stable and statistically
significant upregulation in patients vs. controls by authors of a prior study of postmortem
brain tissue (see Table S3 from *°). The LCL DS gene set was defined as all
chromosome 21 genes found to be significantly up-regulated in LCLs from postnatal
+21 CNV carriers relative to controls (see Table 3 from 3%). For each tissue, non-dosage
sensitive (nDS) chromosome 21 genes were defined as those within the AHBA dataset
that did not fall within the respective tissue DS set.

For X-chromosome aneuploidies, DS X-linked genes were defined using a prior
microarray study®® of X-chromosome dosage effects on gene expression in LCLs from
participants with a wide range of X-chromosome complements. X-linked LCL DS genes
were defined as all X-linked genes with expression levels showing a significant positive
association with X-chromosome count variation across a wide karyotype range
spanning X-chromosome monosomy (i.e., -X CNV), euploidy, and X-chromosome
duplication states (i.e., +X CNV). This criterion (see Supplementary Information Text S3
from #) defined 40 DS genes for -X and +X CNVs. Non-dosage sensitive genes for
these CNV conditions were defined as all X-linked genes within the AHBA dataset that
did not fall within the DS gene set.
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We used median rank comparisons to test if DS and nDS genes showed patterns of
cortical expression that were differentially correlated to cortical MS changes in each
CNV (Fig. 3b left). Specifically, the observed difference between median ranks of DS
and nDS sets was compared to the differences of 10000 gene rank permutations
(PrAND).

Decile Score Analysis for Dosage Sensitive Genes

A median rank difference between two gene sets could be driven by a difference in
overall rank distribution between gene sets, or by a subgroup of genes in one or both
sets with extreme ranks. We used rank decile analysis to differentiate between these
two scenarios. Specifically, we (i) computed the difference in the proportion of genes in
the DS vs. nDS gene sets for each decile of the CNV ranked gene lists, and (ii) tested
for deciles with significant differences at Pranp < 0.05 (see Fig. 3b right). For all four
instances of DS-nDS gene set comparison (+21 brain-derived sets ; +21, -X, +X LCL-
derived sets), median rank differences between the DS and nDS gene set were driven
by a small subset of extreme-ranked DS genes (DS*®, Figs. 3b,c, Table S7).

For all three CNVs considered in these analyses (+21, +X, -X) the median rank for
these DS®° CNV genes was of an opposite polarity to that observed for the CNV gene
set as a whole (c.f. Fig. 3c, Fig. 1b). This observation implied that observed cortical MS
changes in +21, +X and -X CNVs could be relating to two opposing cortical gradients of
CNV gene expression: those for DS®° genes vs. those for nDS genes. To verify this
inference, we compared the cortical pattern of MS change for each of these CNVs from
neuroimaging data, to the cortical pattern of differential expression for DS®° vs. nDS
gene sets as calculated from AHBA postmortem data (Fig. 3d).

Linking Peripheral Gene Expression and Brain Anatomy in X-chromosome Aneuploidies

These analyses sought to validate the relationship between CNV gene expression and
cortical MS using the axis of interindividual variation. We could test the relationship
between inter-individual variation of gene expression and cortical MS using a subset of
55 CNV catrriers in our study from whom we had gathered measures of LCL gene
expression as well as sMRI brain scans. These study participants all carried an extra X-
chromosome (11 XXX, 23 XXY, 11 XXYY), and originated from the National Institutes of
Health Sex Chromosome Aneuploidy cohort. Details of SMRI data collection and MS
map calculation for this cohort have already been described above. As part of a
previously-published gene expression study, we had also generated gRT-PCR
(quantitative reverse transcription polymerase chain reaction) measures of gene
expression in LCL tissue from these participants for 11 DS X-linked genes. These 11
genes had been selected based on a genome-wide microarray screen for X-
chromosome dosage effects on LCL gene expression in sex chromosome aneuploidy
conditions®®. The methods for generation, pre-processing and analysis of these qRT-
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PCR data have been detailed previously®. Briefly, RNA was extracted by standard
methods (Qiagen), and qRT-PCR was performed using the Fluidigm platform. For data
processing, an assay with Ct > 23 was deemed to be not expressed. Expression data
were normalized relative to the averaged expression of the two housekeeping genes
ACTB and B2M, which were not differentially expressed across groups in either
microarray or rtPCR data.

Before inter-relating gene expression and cortical MS across these 55 +X carriers, we
first scaled gene expression and MS data across individuals within each karyotype
group to remove between-karyotype group effects. This enabled us to test if, within any
given +X karyotype group, greater disruption of DS gene expression was related to a
cortical MS map that more strongly resembled the +X MS change map (Fig. 1b). To
achieve this we used PLS regression to interrelate interindividual variation in gene
expression and interindividual variation in cortical MS (see above). Partial Least
Squares regression defined a principal component of covariance between gene
expression and cortical MS across patients, and feature loadings onto this component:
one for each gene, and one for each cortical region. The cortical region loadings from
this PLS component were then compared to the +X cortical MS change map in order to
test of those regions which are most sensitive to X chromosome dosage are also those
that vary most with interindividual variation in expression of DS X-linked genes amongst
carriers of an extra X chromosome. This map comparison consisted of computing the
spatial correlation between PLS loadings and the +X MS change map, and comparing
this correlation to the distribution of 10000 correlations given by random spatial rotations
of the +X MS change map (i.e., Pspi).

Defining Brain-Specific Genes

The genes included within the AHBA dataset cannot be assumed to be all brain-
expressed. In our analytic approach of ranking genes based on the multivariate
correlation (via PLS regression) between their brain expression and CNV-induced
anatomical changes, high-ranking genes must show some spatial variation in their
expression such that they have a non-zero expression in at least some brain regions.
Not filtering the GO and single-cell analyses by brain expression would therefore risk
artifactual elevation of GO terms (and cell-type enrichments) relating to brain
expression.

Thus, for the gene ontology (GO) enrichment analyses and the single-cell enrichment
analyses detailed above, we first thresholded our “whole-genome” gene set (N=15043)
to only contain genes that were determined as brain-expressed via the Human Protein
Atlas (https://www.proteinatlas.org/) database of normal tissue expression. Genes
whose levels of expression were “not-detected” in the cerebral cortex were excluded,
yielding a list of N=7971 genes with detected brain expression (Table S8).
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Fig. 1. Transcriptomic specificity of neuroanatomical effects. a) Schematic outlining
the main imaging-transcriptomic enrichment analyses and statistical tests. b) (left)
Surface projections of T-statistics (z-scored for plotting purposes) for CNV effects on
regional morphometric similarity (MS). Despite some overlap across CNVs, each CNV
induces a distinct profile of MS change. For full chromosome CNVs, neighboring
pointrange plots show the median (point) and standard error (range) rank of each
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chromosomal gene set - based on gene rankings from the PLS analysis (see Fig. l1a).
The chromosomal gene set for each CNV possessed a more extreme median rank than
all other chromosomal gene sets, and the polarity of this effect was opposite for
chromosomal duplications (CNV gene set high ranked) vs. deletion (CNV gene set low
ranked). For sub-chromosomal CNVs (depicted as red in the respective chromosome
ideograms), density plots show median (solid line) and standard error (dashed line)
ranks for the relevant CNV gene set. Observed ranks are shown relative to two null
distributions: Pgranp-trans (black), and Pranp-cis (gray). PRAND was calculated using
10000 gene rank permutations (black). Pranp-cis was calculated similarly to Pranp-rans
but only sampling gene ranks from the respective chromosome of the CNV.
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Fig. 2. Cell type decoding of AHBA microarray and CNV gene ranks. a) Regional
median expression (Z-score) in the AIBS microarray dataset of cell-specific gene sets,
aggregated across 5 single-cell sequencing studies and ordered according to
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hierarchical clustering (n=3 clusters based on gap statistic). Cell type abbreviations are
maintained from the original study (see also Extended Data File 3). b) T-distributed
stochastic neighborhood embedding (tSNE) of cell-specific gene sets based on their
spatial expression profiles distinguishes 7 canonical cell classes (color coded). c)
Regional weighted expression maps (see Methods) of each canonical cell class from
Fig. 2b. d) Significant associations between cell classes and MS change in different
CNVs. Circles indicate cell classes with gene sets that show statistically median rank
enrichment relative to PLS-derived ranked gene lists for each CNV disorder (Pranp <
0.05). Circles color indicates the direction of median rank enrichment: red circled cell
classes show high expression in brain regions where MS is greater in patients that
controls (vice versa for blue circles). Named genes for each cell class are (i) expressed
by the cell, (ii) in the respective CNV, and (iii) highly correlated with regional variation in
MS change for that CNV (i.e. in the top 5% of PLS ranks).
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Fig. 3. CNV gene dosage sensitivity predicts spatial coupling between gene
expression and anatomical change. a) Top dosage sensitive (DS) genes in brain
tissue and blood-derived lymphoblastoid cell lines (LCLs) from CNV carriers (brain: +21.
LCLs: +21,+X,-X, Methods). b) Raincloud plots showing the different distributions of
ranks for DS and non-DS (nDS) genes. Boxplots show the median and interquartile
ranges. Neighboring barplots show decile-specific differences in proportions of DS vs.
nDS genes. The statistically significant (Prano < 0.05) median rank differences between
DS and nDS gene sets are driven by a subset of DS genes (DS°°), which are
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significantly enriched at extreme ranks. c) DS®® gene names highlighted from the DS
gene set. d) Spatial correlations between DS>5-nDS differential gene expression and
both regional PLS scores and regional MS change for each CNV.
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Fig. S1. Schematic overview of methodological pipeline. Morphometric Similarity
Networks (MSNSs) are constructed for each subject with 5 cortical features derived from
structural (T1-weighted) MRI. Regional morphometric similarity (MS) is calculated as the
average of unthresholded edges (correlations). Linear regression (‘Im’ function in R)
yields T-statistics for CNV effects (patients vs. controls) on each region’'s MS estimates.
Partial least squares (PLS) regression is performed to generate a ranked list of genes
with correlations between regional gene expression and regional MS T-statistics
(Methods).
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Fig. S2. Consistency and interpretation of neuroanatomical effects. a) (Left)
Average regional morphometric similarity (MS; mean across edges, or r values) across
all 4 independent cohorts of typically-developing controls. There was relatively high
regional MS in temporal and parietal regions, and relatively low regional MS in
ventromedial prefrontal regions. (Right) Correlation in average regional MS between
each set of controls. There was significantly high positive correspondence between the
topographies of regional MS (median Pearson’s r = 0.85). b) Interpretation of patient-
control MS change. Plots show the sum of the absolute T-statistics of CNV effects on
MS edges (r values) within the four possible classes of effects (y-axis), for the top 10
most positive and negative regional T-statistics (x-axis). The key shows the four
possible outcomes. For each CNV, the regional T-statistics observed (Fig. 1b) arise
from a unique combination of the four effects at the edge level. In general, negative
regional T-statistics tend to reflect morphometric decoupling in CNV patients relative to
controls, whereas positive regional values tend to reflect morphometric de-differentiation
in CNV patients relative to controls (see Methods). ¢) Average morphometric similarity
change (MS change; T-value) for each of seven canonical functional classes®,
compared against spatially-permuted MS change maps (Pspin; Methods). NV = normal
volunteers.
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Fig. S3. Gene set size and constituent features of neuroanatomical effects. a)
Raincloud plot demonstrating consistency of effect-size between size-varying
subsamples of X-chromosome gene ranks for the +X CNV (blue), and random gene
subsamples of similar size (red). Boxplots show the median and interquartile ranges.
Median ranks are highly consistent, but variation in gene rank increases with reducing
gene set size. Black asterisks denote significance of median differences, with a ~100
genes being the smallest gene set size necessary to consistently reach significance at
Pranp = 0.05. Gray annotations denote the +Y and +21 CNVs, showing that they fall
within the expected trend for significance based on gene sets of similar size within the
X-chromosome. b) Regional T-statistics (CNV patients vs. controls) computed using
individual constituent features of the morphometric similarity networks. The CNV gene
set ranks linked to these alternative anatomical change maps are provided in Table S3.
Black outlines denote anatomical change maps which successfully recover the
preferential spatial coupling between anatomical change and expression of CNV region
genes in the human cortex (Pranp < 0.05).
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Fig. S4. Validations of cell class expression maps from bulk tissue
microarray data. a) Pairwise Pearson correlation coefficients (across cortical
regions) are plotted for all map pairs. Asterisks denote correlations with P < 0.05
using null models that preserve the spatial contiguity of the cortical parcellation.
The comparison maps are plotted with the same color scale as the cell class
maps in Fig. 2B. From in vivo: Evo = evolutionary scaling; Devo = developmental
scaling; Allom = allometric scaling; MT = magnetization transfer; From ex vivo
(BigBrain): Supra.CT = supragranular cortical thickness; Infra.CT = infragranular
cortical thickness; Supra.Den = supragranular density; Infra.Den = infragranular
density. Details and references for these maps can be found in the Methods. b)
Double-dissociation validation of cell-specific expression using in situ
hybridization data. Non-normalized slice images show the nearest NIssl
reference slice and staining for two canonical marker genes: GFAP for astrocytes
(Astro) and MBP for oligodendrocytes (Oligo). This data came from the right
hemisphere of donor H0351.1009, one of the six donors for the bulk
transcriptomic dataset (AHBA) and whose left hemisphere was included in the
transcriptomic mapping (Methods). Sagittal slices depict approximate location of
corresponding ISH slab on the MNI152 template. Dotted blue line denotes
manually-drawn white matter/gray matter boundary. c) Barplot of NCAM2
differential expression between Down syndrome (DS) patients and controls (CTL)
from two independent studies using bulk sequencing from brain tissue®®*°. Solid
purple-outlined plot shows NCAM2 expression in DS patients relative to CTL
across developmental windows. Dashed purple-outlined plot shows Module 47
expression®®® across the same windows. This module contained NCAM2, and
was found to be highly enriched for oligodendrocyte progenitor cells (OPCs; see
Figure 2). (bottom) Independent verification of OPC enrichment for the Module
47 gene set®®®® (N=123), as well as the combined OPC gene list (from the
current paper), using Cell-Specific Enrichment Analysis®® (CSEA). The
overlapping gene set contained the gene of interest, NCAM2, identified by the
analyses in Fig2d. Ctx = cortex; PDgfrajd340 = Oligodendrocyte Progenitor Cells;
Etvl ts88 = Immune Cells; Pnoc = Pnoc+ neurons; Ntsr = Ntsr+ neurons;
Glt25d2 = GIt25d2 neurons; Fthfd = Astrocytes; Cort = Cort+ neurons; Cnp =
Myelinating Oligodendrocytes.
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Table S1.
Demaographic Information
Number of Subjects Age (mean, SD)
CNV Syndrome Site* Patients Patients
Controls Controls
KK, XXX, XXXYY 7 106 (20 XXYY) 12.93,5.22
(+X) Aaneuploidy NIR 165 (79 Females) 12.82. 4.83
XYY, XXYY 3 46 (20 XXYY) 13.17,5.16
(+Y) ¥ aneuploidy NIH 165 (79 Females) 12.82, 4.83
Trisomy 21 26 (13 Females) 15.52, 5.67
(+21) Down Syndrome NIH 42 (21 Females) 15.46, 5.76
7 Turner Syndrome 20 Females 24,8.78
e} () (X aneuploidy) e 36 (All Females) 39, 20.26
h ) . 29 (13 Females) 12.10, 3.06
22q11.2 Deletion Velocardiofacial Syndrome loP 27 (11 Females) 1152 2.36
. 24 (10 Females) 13.45, 6.70
11p13 Deletion WAGR Syndrome NIH 17 (8 Females) 16.03. 7.03

* NIH = National Institutes of Health (USA); loP = Institute of Psychiatry (UK)

Table S1. Participant Characteristics.
Table S2. CNV Gene set median ranks for MS change maps.

Table S3. CNV Gene set median ranks for anatomical change maps for individual
cortical features.

Table S4. CNV genes. Ranked gene lists for each CNV from PLS analysis.
Table S5. GO annotations for ranked gene lists.

Table S6. Cell-type gene sets.

Table S7. Dosage sensitive gene sets.

Table S8. List of brain-expressed genes.
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