bioRxiv preprint doi: https://doi.org/10.1101/573063; this version posted March 11, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC 4.0 International license.

Title Page
Title: Quantitative Analysis of Trans-synaptic Protein Alignment
Authors:  Jia-Hui Chen? ThomasA Blanpied®, Ai-Hui Tang™

Author affiliation:

& CAS Key Laboratory of Brain Function and Disease and Hefei National Laboratory for
Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and
Medicine, University of Science and Technology of China, Hefei 230026, China

® Program in Neuroscience and Department of Physiology, University of Maryland School of
Medicine, Baltimore, Maryland 21201, USA

Corresponding author:

Ai-Hui Tang, Ph.D,

School of Life Sciences, University of Science and Technology of China, Hefei.
Tel: (+86)551-63603792 .

E-mail address: tangah@ustc.edu.cn



https://doi.org/10.1101/573063
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/573063; this version posted March 11, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC 4.0 International license.

Abstract

Nanoscale distribution of proteins and their relative positioning within a defined subcel lular
region are key to their physiological functions. Thanks to the super-resolution imaging
methods, especially the single-molecule localization microscopy (SMLM), mapping the
three-dimensional digtribution of multiple proteins has been easier and more efficient than
ever. In spite of the many tools available for efficient localization detection and image
rendering, it has been a challenge to quantitatively analyze the 3D distribution and relative
positioning of proteinsin these SMLM data. Here, using the heterogeneoudy distributed
synaptic proteins as examples, we describe in detail a series of analytical methods including
detection of nanoscale density clusters, quantification of the trans-synaptic alignment between
these protein densities, and automatic enface projection and averaging. These analyses were
performed within customized Matlab routines and we make the full scripts available. The
concepts behind these analytical methods and the scripts can be adapted for quantitative
analysis of spatial organization of other macromolecular complexes.

Keywords:
Nanoclugter, Stochastic Optical Reconstruction Microscopy (STORM), Localization
microscopy, three-dimensional, nanocolumns, protein enrichment

Highlights:

® | ocalization microscopy provides sufficient data for precise quantitative analyss.

® Analgorithm toidentify local density peakswithin a 3D localization cluster.

® New methods for quantitative analysis of trans-synaptic proteins alignment and
enrichment.

® These algorithms can be easlly adapted to analysis of other subcelular
or ganizations.
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1. Introduction

Neuronal communication via synaptic transmission is a complex biological process that
must coordinate specialized protein structures within connected cells. Proteins in the
presynaptic active zone mediate the release of neurotransmitters which diffuse within the
synaptic cleft and activate postsynaptic receptorqd 1]. In spite of their significant impacts on
synaptic transmission[2-5], subsynaptic structure and protein interactions are still unclear.
Thisis chiefly because synapses are too small (hundreds of nanometers in diameter), existing
beyond the limitation of optical diffraction of the conventional light microscope. Electron
microscopy provides high enough resolution[6], but it is difficult to specifically mark and
accurately recognize particular protein species, and cannot be applied in living cells. Recently
developed methods of single molecule localization microscopy (SMLM) [7-9] provides the
best opportunity for visualizing the protein distribution at structures such as synapses.

SMLM includes a variety of super-resolution imaging techniques that localize isolated
fluorescent molecules with precision well beyond the diffraction limit by fitting their images
with a version of the microscope’s point spread function. Application of these methods,
especialy stochastic optical reconstruction microscopy (STORM)[9,10], photoactivated
localization microscopy (PALM)[8,11] and point accumulation for imaging in nanoscale
topography (PAINT)[12], has led to series of discoveries of new biological structures and
processes[ 13-18]. Specifically in neuroscience, these methods have revealed a new layer of
protein organization at nanometer scale that are critical for modulation of synaptic functions.
Postsynaptic scaffolding proteins are organized in nanoclusters enriched with AMPA
receptorg[19,20], while the presynaptic vesicle fusion sites are guided by nanoclusters of
active zone proteins RIM [21] and Muncl3[22]. Most surprisingly, nanoclusters of
postsynaptic scaffolds and receptors were found to spatially aligned with presynaptic RIM
nanoclusters, suggesting a trans-synaptic nanocolumn structure] 21] that couples presynaptic
transmitter release to the densities of postsynaptic receptors and optimizes the synaptic
transmission[4,5,19,23]. The reorganization of nanocolumns in synapses may underlie the
tuning of synaptic strength during plasticity and pathological conditiong4,24].

Despite the magnificent details SMLM has provided, performing quantitative analysis on
this data has proven to be a challenge. This has become a barrier for the efficient application
of SMLM in the biomedical field, especially since more sophisticated and customized
analyses are often required to meet the demands of most specific projects than the image
processing capabilities of most general software packageq25]. Indeed, many reports rely
heavily simply on presenting images rather than exploiting the wealth of information present
in them. Here, we describe detailed analytical methods on quantification of trans-synaptic
alignment on three-dimensional STORM data with the full Matlab script attached. Some of
the methods could be easily adapted to anaysis of other biological structures.

2. Result

To begin, we assume that all the three-dimensional coordinates of localized fluorophores
labeling the proteins of interest were previously determined, using Gaussian fitting or other
methods. Numerous prior works and reviews cover details of the localization process, and we
will not address it here[10,26]. Synapses are structurally unique, with presynaptic active zone
(AZ) and postsynaptic density (PSD) always symmetrically aligned across the synaptic cleft,
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as is clearly visible under the eectron microscope]27]. Therefore, when one AZ protein and
one PSD protein are separately labeled, synapses can be efficiently identified as
sandwich-shaped structures in the scatter plot of localizationg 13]. The boundary of all the
localizations of a protein in one synapse (which we term the “synaptic cluster”) can be
defined with the DB-SCAN method[28].

2.1 The detection of high-density nanaoclusters.

Basic strategy

Within the synaptic cluster are frequently found further smaller clusters of protein, which
we term “nanoclusters’[21] or nanodomaing 19,20]. To automatically identify nanoclusters,
we segmented the localizations within a cluster based on their local density, thus defining
nanoclusters as groupings of particularly high-density localizations. Thus, accurately
calculating the density threshold of nanoclusters is the most critical step. This is made more
difficult because although the border of the synaptic cluster is often abrupt and steep, most
synaptic proteins are not distributed with a high density contrast between nanoclusters and the
background within the synaptic cluster, and the finite imaging resolution blurs apparent
nanocluster borders. We took a strategy similar to the DB-SCAN method[28] to calculate the
local density (LD) of localizations by counting the number of localizations within a certain
distance (d) from each localization. To account for the variation in localization density across
different synaptic clusters, we defined d as T 1 MNND instead of afixed valug][19,21], where
MNND is the mean nearest neighboring distance of al localizations within the synaptic
cluster, and T is a scalar multiplying factor. The appropriate value for T was determined
empirically, as shown below. The threshold of local density for nanocluster detection was
defined as Mean(LDOQ) + 4 x Sd(LDO), where LDO isthe local density of arandomized cluster
with the same overall density as the synaptic cluster. This threshold represents the 99.95%
confidence that the measured density differs from chance, and all localizations with a local
density larger than this threshold were considered within nanoclusters. These localizations
were then divided into sub-clusters with a “top-down” divisve strategy with a minimal
peak-to-peak distance of 80 nm which is roughly the average size of synaptic
nanoclusterg 21]. Finally, to be counted as nanocluster, those sub-clusters had to meet a set of
criteria, including number of localizations >8 localizations, which was derived empirically
based on tests on our measured and simulated synapses to reduce the fal se-positives arising
from repeated localizations of the same molecule.

Practical example

We labeled the postsynaptic scaffold protein PSD-95 in cultured hippocampal neurons with
antibodies conjugated with Alexab47 and used 3D-STORM to map its distribution[10,29].
We integrated all the above processes into one MATLAB function
nanocluster _detection_3d.m and used it to detect nanoclusters by varying the parameter T
(Figure 1A). At the same time, we also randomized the distribution of localizations within the
measured borders of the cluster and used the same function to detect any “false positive’
nanoclusters (figure 1B). When T was small, i.e. local density was calculated within a smaller
radius, the algorithm was too sensitive to the localization distribution within a very close
vicinity and therefore the nanocluster number and their peak positions showed a larger
variation; when T was too large, local densities were more washed out due to a larger
averaging radius and therefore some nanoclusters were missing from the result, and the
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detected peak of a nanocluster (red dots in Figure 1A) did not represent the intuitive peak
(Figure 1A, T = 8). At almost all values of T, the rate of detecting false-positives was very
low (Figure 1C-D). For the example PSD-95 cluster, the nanocluster number was constant
and the result matched our visual expectation with T 1~3 (figure 1C). When results from more
PSD-95 clugters (n = 59) were pooled together, the nanocluster number was stable for T 1~2
and then started reducing with higher T (figurelD). Based on these, we chose T of 2.5 for all
our analysis.
Discusson

The key parameter T was decided 2.5 as a tradeoff between two errors for this binary
classification. First, we would like to reduce the false negative error, therefore we prefer a
larger nanocluster number, which isfavored by a lower T and a lower initial density threshold.
Second, we want to minimize the false positive error, which requires a parameter set in the
opposite direction. In our case, especialy for the following protein enrichment analysis, the
false positives would greatly affect the result by diluting the potential enrichment, while the
impact of false negatives on enrichment result is minimal and the main risk is reducing the
number of observations. Accordingly, we set the parameters to favor a lower false negative
error, and as a result, we may have under-estimated the nanocluster numbers within synapses.
In cases that the false negative is more critical, a lower T and a lower initia density threshold
should be considered.

This method detects high local densities regardless of whether they arise from
non-uniformed protein distribution or repetitive blinking of a single or a few fluorophores.
The over-counting problem should be minimized during the sample preparation, imaging, and
localization detection[30,31]. This algorithm can also obtain some detailed information of the
nanoclusters including volume and the internal localization density. Please note that the
nanocluster is not a discrete structure but a density gradient, and therefore this
threshold-based algorithm would have a certain degree of arbitrariness. However, by applying
the same set of detection parameters to different proteins or treatments, the method is
sensitive enough to pick up differences in nanocluster number, volume or inside localization
density[21].

For subsequent analysis below, it is not criticia what method is used to delineate the
borders of subsynaptic nanoclusters. Indeed, there have been several methods well established
for nanocluster detection in 2D data, including those based on DB-SCAN [19,20] or Voronoi
tessellation [32], and these could be expanded to operate on 3D localizations. Due to the small
synaptic cluster size and the relatively small number of localizations, the boundary effect
around the edge of synaptic clusters would be a mgor challenge. However, the tessellation
method has shown great potential in dealing with similar analysig[33].

2.2 Analysis of trans-synaptic protein alignment

To quantify the alignment of protein distributions across the synapse, we provide two
independent methods: 1) 3D paired cross-correlation function (PCF) analysis to quantify the
overall correlation of protein densities, and 2) a protein enrichment analysis to calculate the
local protein density at positions opposing a given nanocluster on the other side of
synapse[21,30]. Both methods were based on the assumption that the high densities within
two proteins are distributed at similar positions within their own clugter, i.e. if the two
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synaptic clusters are overlapping, the two sets of high densities should be colocalized.
However, the pre- and postsynaptic proteins are distributed at different sides of synaptic cleft
with a distance of 50-200 nm[13]. Therefore, before performing these analyses of alignment,
we firg have to translate one cluster to overlap with the other without bias towards local
densities.

2.2.1 Overlapping pre- and postsynaptic cluster swithout biastowardslocal densties.

Basic strategy

Though in EM images we cannot distinguish the protein identity or local density of specific
proteins within active zones and postsynaptic densities, AZs and PSDs were always aligned
well across the cleft[34], i.e., the AZ and PSD are two disc-shaped structures of the same size,
paralleled with each other. Thus for proteins distributed within these two regions, such as
RIM1/2 in AZ and PSD-95 in PSD, the space they take under 3D STORM should be similar
in volume and shape[13,21]. Therefore, we could translate one cluster along a certain
direction across a certain distance and get a good overlap with the other. Please note that this
overlapping is for the general shape of the two synaptic clusters, as if aligning the edges of
AZ and PSD in EM images. The effect of local high densities within the synaptic border
should be minimized to avoid the circular argument logic fallacy in the following alignment
analysis. Therefore, we set a density ceiling of p/4 for the density matrix of both clusters,
where p is the average localization density within synaptic clusters. The magnitude and
direction of the tranglation were then defined as the vector from the center to the peak in the
cross-correlation space calculated with the density matrix of the two clusterg 21].

Practical example

RIM1/2 and PSD-95 are key proteins in AZ and PSD[18, 47, 48], so we |labeled these two
proteins with antibodies conjugated with Alexab47 and Cy3, respectively, and used STORM
to map their 3D distribution (Figure 2A)[9,10,29]. 3D density matrices were built for each
cluster with avoxel size of 5 nm, and a 3D convolution with kernel size of 11 was applied to
smooth the matrices (Figure 2B). As mentioned above, the maximal density in a matrix was
set to a quarter of the average density to eliminate the major heterogeneity inside the synapse
(Figure 2C). With these largely homogenized matrices, the vector could be calculated, and the
two matrices could be translated to have an optimal overlap based on their general shapes
(Figure 2D). Finaly, the overlapping original protein densities were restored to the state of
measurement for the following quantitative analysis (Figure 2E-F). This part of the process
was coded into the same Matlab script with the following paired cross-correlation function.

Discussion

The trandation was based on the assumption that the two clusters were proteins marking
the AZ or PSD, that is, the protein structures attached to the synaptic membrane and thus
fairly planar. So, extra caution should be taken for synaptic proteins with substantial presence
away from the membrane, such as the protein synapsin which is associated with synaptic
vesicles and thusfills amost the whole bouton[35,36].

In the defined function, we set one parameter to constrain the distance range of the
translation (distance in get_crosscorr_3d.m). For major synaptic protein pairs, the range could
be estimated based on previous STORM study by Dani et al[13]. Depending on the imaging
system, there may be a channel regidtration error. Therefore, the range of trandation distance
should be expanded accordingly. Note that this error would be largely removed after the
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translation.
2.2.2 Paired cross-correation analysis
Basic strategy
Pair correlation function has been used to quantify heterogeneity within an organization or
colocaization between systems[30,37,38]. The pair cross-correlation function, g(r), reports
the increased probability of finding a similar localized signal in system 2 at a distance r away
from agiven localized signal in system 1.

N FFT™Y(FFT(I)Xconj[FFT(I)])
8(r) = Re {plszFT_l(FFT(Wl)xconj[FFT(Wz)D}

The function describes the cross-correlation of the two constructed density matrices (14, 1)
of the two sets of STORM localizations normalized with the cross-correlation of the two
window functions (W;, W;) for 1; and I,, respectively. W has the value of 1 inside the
corresponding cluster and O outside. The cross-correlation is tabulated in Matlab using Fast
Fourier Transforms (FFTSs), conj[] indicates a complex conjugate, p1 and p, are the average
densities of matrix 1, and I, respectively, and Re indicates the real part. This normalization is
critical as it removes al the effects coming from complex boundary shapes and makes the
function account only for the internal density distributions within the two matrices. g(#) =~ 1
represents a random correlation between the two structures, and the colocalization of any
high-density structures would result in g(#) > 1. Since g(#) is theoretically symmetric to
rotations, it can be averaged over all anglesto obtain aone-dimensional g(r).

Practical example

We used the same RIM1/2 and PSD-95 cluster pair as example. Density matrix (I; and 1)
were built with avoxel size of 5 nm and the window functions W, and W, were defined as the
same set of matrices with voxels set to 1 inside the cluster defined with an alpha shape (o =
150 nm). In the three-dimensional g(#) matrix (Figure 3A), the voxels in the center region
showed significant higher values, which was clearer when it was circularly averaged to a
one-dimensional distribution (Figure 3B). The g(r) between the measured proteins was
significantly larger than 1 within a certain radius range (with ANOVA), suggesting the
internal densities of RIM1/2 and PAD-95 at this synapse had a significant alignment.

All these computations were incorporated in a defined Matlab function get_crosscorr_3d.m
together with the clugter tranglation in part 2.2.1. Besides the 3D coordinates of the two
localization sets as inputs, the other parameters included voxel size, radius range to calculate
g(r), cluster trandation vector, and distance range of the trandation. If the cluster translation
vector was set as null ([] in Matlab), the function would calculate the vector as described in
2.2.1, which would be skipped if there wasa valid input for cluster translation vector.

Discussion

The application of the paired cross-correlation method is not limited to the analysis of two
neighboring or overlapped protein clusters, but can be expanded to many occasions for
colocdization or alignment analysis such as the three-dimensional distribution of two proteins
in a defined space with varied volumes. However, when distributions over a large volume are
analyzed with a small voxel size, i.e. when there are a large voxel number in the constructed
density matrix, running the function may be extremely memory-intensive in current versions
of Matlab. In this case, an alternate computing strategy should be employed[39].

The paired cross-correlation method determines whether two three-dimensional clusters
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have correlated internal density structures30,37]. It does not rely on the detection of
high-density nanoclusters therefore won't be affected by potential errors during nanocluster
detection as discussed in part 2.1. For the same reason, this method cannot provide any
detailed information about the alignment of individual nanoclusters and therefore it may not
be sensitive enough to detect all potential alignment, especially when there are multiple
high-density peaks. Ideally, we need an analysis that could test the alignment for each
individual nanocluster — therefore, we devel oped the protein enrichment analysis.
2.2.3 Protein enrichment analysis

Basic strategy

This analysis is based on the prediction that if the pre- and postsynaptic hanoclusters align
across the cleft, the presence of a nanocluster on one side will predict a higher local protein
density around its projected point on the other side. To quantitatively test this, we calculated
the average local density of protein A over the distance from the projected peak of a protein B
nanocluster. In case of a positive alignment, this curve would start from a local density
significantly higher than the average at the small distance and then decay to the average.

Practical example

We explored the degree of RIM1/2 enrichment relative to the two PSD-95 nanoclusters in
the same example synapse. The PSD-95 nanoclusters were detected as escribed in 2.1 and the
PSD-95 cluster together with the two nanocluster peaks was projected to have a best overlap
with RIM1/2 clugter as in 2.2.1. The number of RIM1/2 localizations were counted within
binned distance ranges from the projected peaks (Figure 3C). To account for the impact of the
cluster boundary on the density calculation, we randomized the RIM1/2 localizations within
its cluster boundary and used the distribution of randomized localizations along the same
distance to normalize the original distribution. If there was a RIM 1/2 nanocluster aligning to a
given PSD-95 nanocluster, we would expect a normalized density significantly larger than 1
within a certain small range of r, such as for nanocluster b in Figure 3C-D. Thisr range was
determined as r < 60 nm based on pooled enrichment, and an enrichment index could be
defined as the averaged density within the range for further statistical tests [21]. Otherwise,
the normalized density would be around 1, which suggests a random distribution, as can be
seen for nanocluster a in Figure 3C-D, or below 1, which would suggest that molecules are
de-enriched in regions closely aligned with the nanocluster. To simplify the quantification, we
defied an enrichment index by averaging the normalized density within 60 nm from the
projected peak. The radius of 60 nm was chosen based on the fact that most key synaptic
proteins are significantly enriched in the nanocolumn within this radius [21]. Whether
RIM1/2 is enriched to a given PSD-95 nanocluster could be determined via comparison with
the enrichment indices of multiple randomized RIM1/2 clusters. With this, the percentile of
PSD-95 nanoclusters that were enriched with RIM /2 could be quantified [21].

Discussion

Enrichment analysis and paired cross-correlation function are two independent tests on
whether two clusters have spatially correlated internal density structures. While the paired
cross-correlation compares the overall degree of correlation between internal distributions of
two proteins, the enrichment analysis provides more detailed information by quantifying the
local density of protein A relative to a defined B sub-region. While in our case of nanoscale
alignment between high density peaks the sub-region of protein B is the defined nanoclusters,
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the same analysis could be easily adapted to other forms of sub-structures such as hollow
spots or inverse density peaks depending on the demand of specific scientific questions. Since
the enrichment analysis is based on the positions of sub-regions, the false-negatives of the
nanocluster detection would have a great impact by diluting the digtribution profile. Therefore,
the analysis will benefit from stricter criteria on nanocluster detection.

Due to the discrete nature of SMLM data, the boundary effect could dominate the result in
specia occasions, especially when a ratiometric measurement is made. In our case, depending
on the cluster shape and the position of the nanocluster, the valid volumes for some bins may
be very small. Even though we randomized the cluster with a density 10 times the original,
which was equivalent to averaging across 10 simulations, the numbers of randomized
localizations within these volumes were still not representative, which would result in an
extremely large ratio or even an invalid caculation. If a bin showed an infinite ratio, its
neighboring bins usually suffered from this boundary effect. We exclude these bins when
pooling the data to reduce potential contamination.

2.3 Automatic enface projection and aver aging of synapses

While the enrichment analysis provides detailed spatial distribution of one protein along
distances from defined points such as peaks of nanoclusters of the reference protein, it would
be helpful if smilar information can be represented as images. Here we present an automatic
method to make a projection of the three-dimensional synaptic structure to a defined plane
such as synaptic cleft to generate an enface view of the protein distribution. This projection
would make it possible to average the enface profile of protein densities or even analyze the
relative spatial distribution patterns of pre- and postsynaptic nanoclusters.

Basic strategy

With one presynaptic AZ protein and one postsynaptic PSD protein labeled with two
fluorophores, a typical synapse would be a sandwich shape, or a flat disc after one set of
localizations were translated to overlay moved and overlaid with the other (Figure 2). A plane
parallel to the cleft can be defined by fitting all overlaid localizations (least square of the
normal distance to the plane). The two-dimensional enface projection can be achieved with
calculation of the projected coordinates of all localizations along the fitted plane.

Practical example

We use the same synapse as example. After overlaying the two cluster together as in Figure
2, we caculated the enface plane (Figure 4A) with the defined Matlab function
get_ 2D _projection.m based on the affine fit.m function by Adrien Leygue. The same function
also yielded the projected 2D coordinates so we could generate the enface density map. To
rule out the effect of cluster thickness along the projection direction on the local density, we
randomized al localizations within the origina clusters and performed a similar projection to
get a map coding the thickness information. Using this as a normalizing factor, we obtained a
map coding the related local density (Figure 4B).

To visualize the enface digribution of both RIM1/2 and PSD-95 around PSD-95
nanoclusters, we averaged both normalized density maps centered around the projected peaks
of PSD-95 nanoclusters (crosses in Figure 4B-C). To further test whether there are secondary
density structures around the nanoclusters, we performed a free 360-degree rotation around
the nanocluster peak to find the best correlation with atemplate (density map around the first
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nanocluster for the first correlation, and the averaged density map for the following). Note
that this correlation was computed in a similar way as in part 2.1.2 to eliminate the effect of
cluster boundaries border, i.e. only the internal density structures mattered for the correlation.
Meanwhile, to avoid any artifact created by the bordering effect, all values outside the
synaptic cluster were replaced with 1 before averaging was performed. This process was
incorporated in a defined function get_bedtfit_rotatem. While PSD-95 maps were freely
rotated, the rotation angles of RIM1/2 maps were kept the same as that of PSD-95 in the same
synapse to maintain the relative positioning of the two clugters. In the averaged density maps
in Figure 4C, besides the center PSD-95 nanocluster, there was a secondary but weaker
nanocluster, which is a result of freely-rotating averaging across the maps of synapses with 2
or more PSD-95 nanoclusters. The distance of ~120 nm from the image center suggests an
average distance between two neighboring nanoclusters for PSD-95. As expected, the
averaged map of RIM1/2 also showed a significant higher density around the center,
representing the enrichment between the two proteins.

Discussion

Theoretically, the trandation vector should be vertical to the fitted plane and therefore we
could simply use that vector to make projections. However, the vector was often contaminated
by the two-channel registration error, so its direction was not as reliable for projection. The
current method benefited from the fact that the registration error was largely reduced by the
overlapping trandation, and therefore provided not only a more accurate projecting direction
but also less error for the 2D enrichment distribution, as demonstrated by the secondary
PSD-95 nanocluster and the significant enrichment of RIM1/2 around the image center
(Figure 4C).

Similar with the overlapping trandation, the fitting of the enface plane assumed that the
clusters were representing the disc shape of AZ or PSD. If one protein had a strong
distribution outside these two specialized compartments, such as presynaptic synapsin and
postsynaptic actin or mGluRg 36,40], it should not be included in fitting process. In this case,
the enface plane could be fitted with only the other protein. Moreover, for large synapses, this
algorithm may fail if complex border structure in the 2D projection of either presynaptic or
postsynaptic shape dominates the projection.

3. Conclusions

Imaging with single molecule localization microscopy provides a wealth of information on
subcellular structures and protein organizations which underly their specialized functions. To
exploit them requires more detailed sophisticated quantitative analyses rather than image
processing that most general software packages provide. We have described a set of detailed
analytical methods on quantification of trans-synaptic alignment on three-dimensional
STORM data and have made all the Matlab scripts available. Some could be easily adapted to
analysis of other biological structures. We hope our methods could be helpful and inspiring
for othersto design automated and quantitative analysis on their SMLM data.
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Figure Legends

Figure 1. The detection of nanocluster and its robustness. A. Detected nanoclusters from
the same PSD-95 cluster with different Tra values as labeled. PSD-95 localizations are shown
in the enface angle, with the thick colored denoting localizations within nanoclusters and the
red representing the peak of a nanocluster, i.e. localization with highest local density within a
nanocluster. Note that the peak of a nanocluster is not necessarily around its center. Red
circles represent the region within which the local density was calculated for nanocluster
detection, with the radius (r) roughly calculated and labeled. Scale 100 nm. B. Typical
example of homogenized cluster of the same one in a, with no nanocluster detected. C.
Pooled results of detected nanocluster number in the example cluster in a from 20 rounds of
computation. D. Pooled results of detected nanocluster number from 59 PSD-95 clusters.
Note that in the full parameter space, the nanocluster number in measured protein was
significantly higher than that of the randomized protein (p < 0.001 at all bins, one-way
ANOVA on ranks with pairwise comparison procedures).

Figure 2. Trandation of synaptic clusters to overlap pre- and postsynaptic clusters
without bias towards local densities. A. Scatter plot of RIM1/2 (red) and PSD-95 (green)
localizations with the side (top) and enface (bottom) view angles. B-E. Volume views of the
original synaptic density matrix (B), matrix with a low density ceiling (C), matrix with
density ceiling after the trandation (D), and matrix with the original density after the
translation (E). The density matrix was constructed with a voxel size of 5 nm and a 13x13
convolution was applied. Images were made with the 3D viewer plugin in Fiji Imagel. F.
Scatter plot of the two clusters fter the translation. Scale 100 nm.

Figure 3. Paired cross-correlation and protein enrichment analysis. A. Two sections of the
3D paired cross-correlation matrix g(7). Inserts on the left represent the sectioning angles,
and the color coded the normalized coefficients of paired correlation between density
matrixes of RIM1/2 and PSD-95 &fter translation. Note the heated color near the center of
matrix. Images were made with the volume viewer plugin in Fiji ImageJ. The color-coded
are divided according to the degree of heat, and the left side shows different
three-dimensional angles. r represents the size of the region between the various angles
deviating from the best correlation value. B. The paired correlation function distribution
g(r) averaged over al angles along distances from the center of matrix g(#), as shown with
the white arrows in A. Note g(r) is significantly higher than 1 in within certain radius. C.
Strategy of the protein enrichment analysis. From the projected peaks of PSD-95 nanoclusters
(dark green), local density of RIM1/2 (red) was averaged over all angles along distances. In
case of a positive alignment, a higher averaged density is expected at distances around 0. D.
Spatial profile of normalized RIM1/2 density along distances from projected peaks of PSD-95
nanocluster a and b. Note the significant enrichment of RIM1/2 to nanocluster b but not to a.

Figure 4. Automatic enface projection and averaging of synapses. A. Calculation of the
enface plane by fitting all overlapped locaizations after translation. RIM1/2 isin red, PSD-95
in green. Top shows the top-view, lower the side-view and middle the elevated view. B. Local
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density distribution after the projection. Crosses present the peaks of two PSD-95
nanoclusters. C. Averaged PSD-95 nanocluster in projection plane and the corresponding
density distribution of RIML1/2 across 103 nanoclusters from 59 synapses. PSD-95
distribution was rotated to get the best fit of the internal distribution to the origina template.
Note the second nanocluster ~120 nm from the center of the averaged nanocluster. RIM1/2
was rotated with the same angle as PSD-95 from the same synapse. Note the significant
higher density around the averaging center.
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Figure 1. The detection of nanocluster and its robustness. A. Detected
nanoclusters from the same PSD-95 cluster with different Tra values as
labeled. PSD-95 localizations are shown in the enface angle, with the
thick colored denoting localizations within nanoclusters and the red
representing the peak of a nanocluster, i.e. localization with highest
local density within a nanocluster. Note that the peak of a nanocluster
is not necessarily around its center. Red circles represent the region
within which the local density was calculated for nanocluster detection,
with the radius (r) roughly calculated and labeled. Scale 100 nm. B.
Typical example of homogenized cluster of the same one in a, with no
nanocluster detected. C. Pooled results of detected nanocluster
number in the example cluster in a from 20 rounds of computation. D.
Pooled results of detected nanocluster number from 59 PSD-95 clusters.
Note that in the full parameter space, the nanocluster number in
measured protein was significantly higher than that of the randomized
protein (p < 0.001 at all bins, one-way ANOVA on ranks with pairwise
comparison procedures).
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Figure 2. Translation of synaptic clusters to overlap pre- and postsynaptic
clusters without bias towards local densities. A. Scatter plot of RiIM1/2
(red) and PSD-95 (green) localizations with the side (top) and enface
(bottom) view angles. B-E. Volume views of the original synaptic density
matrix (B), matrix with a low density ceiling (C), matrix with density ceiling
after the translation (D), and matrix with the original density after the
translation (E). The density matrix was constructed with a voxel size of 5
nm and a 13x13 convolution was applied. Images were made with the 3D
viewer plugin in Fiji Imagel. F. Scatter plot of the two clusters fter the
translation. Scale 100 nm.
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Figure 3. Palrad cross-correlation and protein anrichment analysis. A. Two sectlons of
the 3D palred cross-correlation matrix g(#). Inserts on the left rapresent the sectioning
angles, and the color coded the normalizad coefficlents of paired correlation betweean
density matrixes of RIM1/2 and PSD-95 after translation. Note the heated coler near the
center of matrix. Images were made with the volume viewer plugin In Fljl Image). The
color-coded are divided according to the degree of heat, and the left side shows
different three-dimensicnal angles. r represents the slze of the reglon between the
varlous angles devlating from the best correlatlon value. B. The palred correlation
functlon distributlon g(r) averaged over all angles along distances from the center of
matrix g(7), as shown with the white arrows In A. Note g(r) Is significantly higher than
1 In within certain radius, C. Strategy of the proteln enrichment analysls. From the
projected peaks of PSD-95 nanoclusters (dark green), local density of RIM1/2 (red) was
averaged over all angles along distances. In case of a positive allgnment, a higher
averaged density Is expected at distances around 0. D. Spatlal profile of normallzed
RIM1/2 density along distances from projected peaks of PSD-95 nanacluster a and b.
Note the slgnificant enrlchment of RIM1/2 to nanocluster b but not to a.
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Figure 4. Automatic enface projection and averaging of synapses. A.
Calculation of the enface plane by fitting all overlapped localizations after
translation. RIM1/2 is in red, PSD-95 in green. Top shows the top-view,
lower the side-view and middle the elevated view. B. Local density
distribution after the projection. Crosses present the peaks of two PSD-95
nanoclusters. C. Averaged PSD-95 nanocluster in projection plane and the
corresponding density distribution of RIM1/2 across 103 nanoclusters
from 59 synapses. PSD-95 distribution was rotated to get the best fit of
the internal distribution to the original template. Note the second
nanocluster ~120 nm from the center of the averaged nanocluster.
RIM1/2 was rotated with the same angle as PSD-95 from the same
synapse. Note the significant higher density around the averaging center.
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