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Abstract- Cryo-electron microscopy (cryo-EM) has become a leading technology for
determining protein structures. Recent advances in this field have allowed for atomic
resolution. However, predicting the backbone trace of a protein has remained a challenge
on all but the most pristine density maps (< 2.5A resolution). Here we introduce a deep
learning model that uses a set of cascaded convolutional neural networks (CNNs) to predict
Ca atoms along a protein’s backbone structure. The cascaded-CNN (C-CNN) is a novel
deep learning architecture comprised of multiple CNNs, each predicting a specific aspect of
a protein’s structure. This model predicts secondary structure elements (SSEs), backbone
structure, and Ca atoms, combining the results of each to produce a complete prediction
map. The cascaded-CNN is a semantic segmentation image classifier and was trained using
thousands of simulated density maps. This method is largely automatic and only requires a
recommended threshold value for each evaluated protein. A specialized tabu-search path
walking algorithm was used to produce an initial backbone trace with Ca placements. A
helix-refinement algorithm made further improvements to the a-helix SSEs of the
backbone trace. Finally, a novel quality assessment-based combinatorial algorithm was
used to effectively map Ca traces to obtain full-atom protein structures. This method was
tested on 50 experimental maps between 2.6A and 4.4A resolution. It outperformed several
state-of-the-art prediction methods including RosettaES, MAINMAST, and a Phenix based
method by producing the most complete prediction models, as measured by percentage of
found Ca atoms. This method accurately predicted 88.5% (mean) of the Ca atoms within
3A of a protein’s backbone structure surpassing the 66.8% mark achieved by the leading
alternate method (Phenix based fully automatic method) on the same set of density maps.
The C-CNN also achieved an average RMSD of 1.23A for all 50 experimental density maps
which is similar to the Phenix based fully automatic method. The source code and demo of
this research has been published at https://github.com/DrDongSi/Ca-Backbone-Prediction.
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I. Introduction.

Proteins perform a vast array of functions within organisms. From molecule transportation, to
mechanical cellular support, to immune protection, proteins are the central building blocks of life
in the universe [1]. Despite each protein being composed from a combination of the same 20
naturally occurring amino acids, a protein’s functionality is mainly derived from its unique three-
dimensional (3D) shape. Therefore, learning the details of a protein’s 3D structure is a prerequisite

to understanding its biological function.

A. Cryogenic Electronic Microscopy (Cryo-EM)

Currently, one of the leading techniques for determining the atomic structure of proteins is cryo-
electron microscopy (cryo-EM). Cryo-EM is a relatively new technique which uses a high-energy
electron beam to image vitrified biological specimens. In the past five years, more than 1,000
protein structures have been imaged at 4A resolution or better in the EM databank using cryo-
Electron Microscopy (cryo-EM). Among them, many are of detergent-solubilized membrane
proteins [2] [3] [4] [5] [6] [7]. These high-resolution images make it possible to produce atomic

level 3D models from the density maps.

B. Protein Backbone Structure

From clean, high-resolution EM density maps (< 5A) it is possible to distinguish the backbone
structure of a protein [8] [9] [10]. A protein’s backbone is a continuous chain of atoms that runs
throughout the length of a protein, see Fig. 1A. The backbone structure consists of a repeated
sequence of three atom (carbon, nitrogen, alpha-carbon). Of these three atoms, the alpha-carbon
(Ca) is particularly important as it is the central point for each amino acid residue within the
protein. Therefore, predicting not only a protein’s backbone but also the locations of each Ca along
that backbone can help determine where specific amino acids are located throughout the protein

structure.
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Fig. 1 Simulated Density Maps from protein lagh at different resolutions. (A) shows a high-
resolution map with underlying backbone trace. (B) shows a medium-resolution map with
underlying ribbon structure. a-helix structures are colored red, f-sheets are colored blue, and
the loops/turns are colored yellow.

C. Protein Secondary Structure Detection

In addition to the backbone features of a protein, some of the most visually dominate features of
cryo-EM density maps are the secondary structure elements (SSEs), see Fig. 1B. The three SSEs
are a-helices, B-sheets, and turns/loops. At medium resolution, a-helices appear as long cylinders
with a radius of approximately 2.3A. B-sheets consist of multiple parallel beta strands that connect
laterally by hydrogen bonds. While only distinguishable at 6A resolution or better, -sheets appear
as flat or slightly wavy sheets. Turns/Loops are the final SSE. They occur in locations where the
polypeptide chain of the protein reverses its overall direction. When imaged with cryo-EM,
turns/loops often appear faint due to their relatively low electron density. This makes them one of
the most challenging SSE to classify.

There are many methods for identifying SSEs at medium resolutions [11] [12] [13] [14] [15]
[16] [17]. However, at higher resolution (< 2.5A), the classic a-helix and p-sheet structures are not
easily recognizable to the human eye. This is due to the large number of side chains that protrude
off the backbone chain in high-resolution data. This makes predicting the SSEs at high-resolution

potentially more difficult than at medium resolution.

D. Current Protein Prediction Models

Ever since the first experimental density maps were released for protein structures, researchers
have been developing software models to predict the various structural elements from each map.
Some of the leading software models are now able to predict the atomic structure of a protein from

its electron density map.
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Phenix is a widely used molecular prediction software suite that has often been used in research
since its initial release in 2010 [18]. A recent 2018 paper introduced a new molecular prediction
method that combined the Phenix prediction software along with advanced post-processing
techniques [19]. This method, henceforth referred to as the Phenix method, produced some of the
most-complete prediction models. As a result, we used this method as a metrics benchmark for
this research.

The Phenix method is a fully-autonomous prediction method which only requires a density map
and a nominal resolution value as input. This method first sharpens the input density map using an
automated map sharpening algorithm which aims to maximize the connectivity of high-density
regions [20]. Then, for each part of the structure, various atomic models are generated using several
independent prediction models, including one for SSEs and one for backbone tracing, among
others [21] [22] [23]. The results from these predictions are ensembled and used to produce an
initial predicted structure. This structure is then refined using any symmetry that is present in the
protein. The Phenix method was tested on 476 experimental density maps and has, to date,
produced the most complete prediction maps. This method also uses a unique set of metrics to
measure the effectiveness of the prediction method. The RMSD method uses a one-to-one mapping
of predicted to ground-truth Ca atom but only includes atoms that are within 3A of the ground
truth model. To measure prediction model completeness, the Phenix method calculates the
percentage of matching Ca atoms between the predicted and ground-truth model within the same
3A space. We use the same metrics when evaluating our deep-learning prediction technique.

RosettaES is a protein modeling software tool first developed at the University of Washington.
RosettaES employs a modeling technique which consists of two general components:
conformation sampling and energy evaluation [24]. Conformational sampling uses well-
established physical characteristics of molecular structure as guides for model prediction.
Examples of such characteristics include: the common torsion angles of atoms in the backbone
structure, or the radius of a-helix secondary structures. Each of these structures has a very narrow
band of potential values making them excellent constants to use when modeling protein structure.
The energy evaluation process calculates the total energy of a predicted protein based on each
predicted atom position along with each bonding angle between them. This value is compared to
the expected lowest-energy state, which can be calculated from sequence information. Given that

the lowest-energy state is likely closest to the native state of the protein, slight adjustments are
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made to the predicted protein structure to minimize the energy within its atomic structure thereby
optimizing the prediction map for the protein.

Another leading backbone prediction model is the MAINMAST algorithm developed by
researchers at Purdue University [25]. MAINMAST produces a backbone trace, consisting of a set
of Ca atoms, from high density regions of an electron density map. This algorithm first identifies
regions of high-density (high-density points are likely to be backbone structure) using mean
shifting and then transforms them into a minimum spanning tree (MST). A Tabu search algorithm
is applied to find a few thousand possible MSTs. For each MST, the amino acid sequence is
mapped on the longest path in the tree using areas of high density as likely Ca atom locations.
Each MST is rated based on the best fit. The highest scoring tree is chosen as the final prediction
of the model.

In designing our experimental method, we leveraged techniques from each of these leading
prediction methods. We employed a new conformational sampling technique similar to the
RosettaES method. Our technique used constants such as: standardized distance between Ca.
atoms, mean a-helix radius, and common torsion angles between backbone atoms. Using these
constants, we also invented a new Tabu-search scoring algorithm, similar to the one used in the
MAINMAST method. Our Tabu-search was primarily used as a backbone path-walking algorithm.
Finally, we employed the multi-prediction model approach of the Phenix method by creating a
different CNN to predict the SSEs, backbone, and Ca atoms of each density map before stitching
them together to form a final prediction map.

E. Deep Learning Semantic Segmentation

This research aimed to use deep learning to create a predictive model capable of detecting the
SSEs, backbone structure, and Ca atoms from electron density maps. The field of deep learning
has proven to be very successful in the fields of image recognition and image classification [26]
[27] [28]. This research used a specific image classification method known as semantic
segmentation. With semantic segmentation each 2D-pixel or 3D-voxel of an image is classified
independently rather than the entire image as a whole.

Until recently, semantic segmentation was accomplished through patch classification. Patch
classification takes a slice of the input data and runs it through a convolution neural network
(CNN). However, patch classification only classifies the center pixel of each patch meaning that
the CNN would have to process a new patch for each pixel in the image. This technique is preferred
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when computing resources are limited because processing a small patch is much less
computationally expensive than processing a full image.

However, with the recent advances in GPU technology, fully connected end-to-end networks are
now able to perform semantic segmentation on full images in one pass. In 2014, research at UC
Berkley used a Fully Convolutional Network (FCN) to perform semantic segmentation on the
PASCAL-Context dataset [29]. Their method used an encoder-decoder architecture that removed
the need for patch classification by essentially combining the calculations of the overlapping patch
regions into a single end-to-end network. In 2015, the network Segnet aimed to improve the
encoder-decoder architecture by forwarding the max-pooling indices from the encoder layer to the
decoder layer to prevent the loss of global information in the image [30]. Later that year,
researchers at Princeton University used a technique called dilated convolution which made it
possible to perform semantic segmentation without the encoder-decoder architecture [31]. Dilated
convolutions are preferred when a convolution needs to increase the field of view without reducing
the resolution of the image.

In this paper, we leveraged the architecture of each of these semantic segmentation classifiers.
Previous deep learning methods that were used for SSE prediction used patch classification [12].
Our model levered the Fully Connected Network design to eliminate the need for patch
classification and instead use semantic segmentation to classify a full 3D image in a single pass. It
also used data forwarding, inspired by Segnet, to allow for segregated learning. Finally, this model
used dilated convolutions to increase the field of view while maintaining the input image
dimensionality.

Il. Methods
A. Data Collection/Generation

Predictive models are only successful if they are trained with representative data. Since, high-
resolution cryo-EM maps are still somewhat scarce we trained our model using simulated cryo-
EM maps instead of experimental maps. This design decision allowed us to save all the
experimental maps for verification.

Simulated cryo-EM maps can be generated from protein databank (PDB) files® using a script
from the EMANZ2 package called pdb2mrc [32]. This script takes each atom in a PDB file and

produces a 3D Gaussian electron density. It then sums the Gaussian density of all the simulated

! https://www.rcsh.org/
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atoms on a 3D grid to produce a complete electron density map for the entire protein. This
simulation method produces electron density maps that are very representative of their
experimental counterparts with the primary difference being that a simulated map has no
experimental inaccuracies.

To produce a large enough dataset for training, we used over 7,000 PDB files to generate
simulated density maps using the pdb2mrc script. Each map was simulated at a different resolution
to produce a higher amount of variance in the training set and prevent overfitting in the model. In
addition to simulating the full PDB structure, we also had to simulate the labeled data for each
map. This step involved editing the PDB file to retain only atoms that were part of the predicted
structure and running pdb2mrc to produce a labeled map for each structure being predicted. When
selecting PDB files, we selected maps with a sequence structure that was at least 50% unique
relative to all other maps in the training set. This ensured that our training data was diverse and
well-representative of the large range of protein structure found in nature.

The data generation pipeline is outlined in Fig. 2. The output of this pipeline was two HDF5
files: one training file and one testing file. The training file consisted of approximately 24,000
simulated density maps? along with the corresponding SSE, backbone, and Ca labeled maps for
each protein. The testing HDF5 file, which was generated to measure the accuracy of the neural
network as it trained, consisted of 1,024 maps along with the same configuration of labeled maps.
All testing maps were unique, and no map rotation was performed to increase the testing data size.

To ensure uniformity among each electron density map, extensive data normalization was used
to produce a common input data format. There were five data normalization steps, see Fig. 2. First,
all voxels with an electron density less than a resolution dependent threshold were zeroed out®.
This removed low intensity areas of the simulated maps which differed significantly from their
experimental counterparts. It also allowed the neural network to exclusively train with voxels of
high-intensity, which are often more representative of protein structures. After this step all voxel
intensity values were reduced by a threshold value so that the spectrum of electron densities within
each map started at zero. The third step of data normalization involved dividing all voxels by the

median voxel value in the electron density map. This step normalized the voxel values and ensured

2 Approximately 6000 unique maps were used for training. Each was rotated by 0°, 90°, 180° and 270° to increase
the training data size by 4x.

3 A cutoff threshold was selected for each simulated resolution. At each resolution all voxels less than the threshold
were set to zero in order to remove low intensity noise from the density map.


https://doi.org/10.1101/572990
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/572990; this version posted March 12, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

that each map had a similar data range. After this, data outliers were removed by capping all voxels
at the 98th-percentile voxel intensity. Finally, each training map was copied and rotated by a varied

angle to increase the total training data size.

Read PDB File Data Normalization
!
Generate Category Zero out voxels below
PDB Files threshold
1 ¥
Simulate MRC Files at 7 Translatg Voxels so
various Resolutions m"l' 0
! ! Divide Voxels by
Median
- ¥
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I \
: N Rotate Maps to
Package. Maps in HDF5 T Increase Data Size
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Fig. 2 Simulated Data Generation Pipeline including details about the data normalization
process. The output of this pipeline was an HDFS5 file containing all the data used to train the
prediction model.

B. Cascaded Convolutional Neural Network

Building off the previous semantic segmentation convolutional neural networks, we designed a
cascaded convolutional neural network (C-CNN) consisting of three feedforward dilated neural
networks. The high-level architecture is shown in Fig. 3. This design allowed us to train all the
neural networks simultaneously. The input to the C-CNN was a 64x64x64 tensor representing the
3D electron density of a protein. However, because density maps vary greatly in size across each
dimension, an extra step was required before the model could process maps of a different size.
Each map was split into 64x64x64 cubes that overlapped by 7 voxels on each face. Each cube was
evaluated by the C-CNN independently and then the resulting output cubes were stitched back
together to reconstruct the full image. However, only the center 50x50x50 voxels were used to

reconstruct the image. At each face the 7-voxel overlap region was disregarded. This method
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allowed us to process density maps of any size without losing spatial information at each cube’s
boundary.

Inside the C-CNN, the input map was forwarded to each of the three neural networks. The first
network was the SSE CNN. It predicted voxels as a-helices, B-sheets, or loops/turns and output a
confidence map for each SSE. The three SSE maps along with the input electron density map were
forwarded to the backbone CNN which produced two confidence maps representing whether each
voxel was part of the backbone structure of the protein or not. The final CNN in the C-CNN was
the Ca-Atom CNN. This network took all the previous maps and produced two output maps

representing the confidence of a voxel being part of a Ca atom or not.

Normalized
Input Map
(64x64x64x1)

input

o
Global Input Ui SSE CNN

SSE Maps inputs
(64x64x64x3)

Backbone CNN

Backbone
Maps
(64x64x64x2)

inputsy

Ca-Atom CNN

Ca Atom
Maps
(64x64x64x2)

Global Output

Fig. 3 Cascaded Convolutional Neural Network. The input/output of each stage is shown as a
gray cube with the given dimensions. Each CNN is represented by a tapered salmon rectangle.
Results from each CNN are forwarded along with previous input data to the next CNN.

C. Convolutional Neural Network Architecture
The three neural networks were very similar, each having the same number of layers and same
type of layers. Their detailed structure is illustrated in Fig. 4. Each neural network had four layers.

The first and fourth layers were regular 3-D convolutional layers with a stride of one. The second
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and third layers were dilated convolutions, also with a stride of one. Each dilated convolutional
layer used a dilation rate of two. Following each dilated convolution was a leaky ReL U activation
function. A leaky ReLU was preferred over a standard ReLU activation function to improve back-
propagation and reduce the problem of vanishing gradient decent. Dilated convolutional layers
were used to increase the receptive field while maintaining the image size. This is crucial for
semantic segmentation because it maintains a one-to-one ratio of input voxel to output voxel.
Each of the three neural networks used the same number of filters per layer for the first three
layers: 1st layer: 32 filters, 2nd layer: 64 filters, and 3rd layer: 64 filters. The 4th and final layer
differed for each network, but it was always equal to the number of output classes. Using more
filters usually leads to higher accuracy. However, even a small increase from these numbers greatly
slowed the network training. Therefore, we settled with these values as it was an optimal
compromise between accuracy and speed. Other than the slight difference in filters per layer, the
only other difference among the networks was a small difference in kernel size in the standard
convolutional layers. The kernel size was larger (5x5x5 vs. 4x4x4) in the backbone and SSE CNNs

to account for the need for a larger receptive field to better predict those structural elements.
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Fig. 4 Detailed architecture of each of the 3D convolutional neural networks (CNN). (A)
contains the Secondary Structure Elements (SSE) CNN. (B) contains the Backbone CNN. (C)
contains the Ca-Atom CNN. Each CNN, including all its layers, are shown within the salmon

colored boxes. The input to each CNN is noted by the yellow cubes. The Backbone CNN (B) and
the Ca-Atom CNN (C) take input that is a contamination of various maps. The size of each input
is noted by the dimensions listed at the base of each input cube. Each layer in each CNN is
denoted by its name/function, kernel size (NxNxN), and finally the output number of filters
(inside parenthesis) for that layer. Each leaky ReLU activation function used an alpha value of
0.1. The output of each CNN is noted by the purple cube. The dimensions for each output are
listed at the base of the cube.
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D. End-To-End Model Pipeline

The cascaded convolutional neural network is only a piece of the full backbone prediction model.
The full model is shown in Fig. 5. The primary input to the full model was an MRC file or MAP
file containing a 3D tensor of the electron density of the protein. The only other input was a
manually selected threshold value which was used to zero out low intensity voxel values®.
Selecting a proper threshold is challenging because each density map is very different in intensity.
However, the recommended contour level on the EM Databank website® is a good value to start
with. The final output of the entire prediction model was a PDB file containing a set of traces
where each trace is a set of connected Ca atoms. This PDB file also contains SSE labels for each
Ca atom. These labels are determined from both the SSE output maps and the helix-refinement.
Using the final output map the RMSD and the Percentage of Matched Ca atoms metrics were

calculated.

Pre-Processing Post-Processing

Subtract Ca-Prob

Read EMDB Map Maps
] / ]

Resample Data Path-Walking
on 1A/1A/1A Grid Algorithm
L1 !
Manually Select Graph
Threshold Refinement
' !

Percentile Filter Helix Refinement

] / |
Normalize Data Print Traces/

Calculate Metrics

Fig. 5 Full Backbone Prediction Model. Model includes data preprocessing, the cascaded
convolutional neural network (after training), and post-processing.

E. Pre-Processing
The goal of pre-processing experimental density maps before sending them into the cascaded

convolutional neural network is to make them as similar as possible to the simulated maps that the

4 The manually selected threshold value was determined by viewing the density map in Chimera and selecting a
cutoff value that made the SSEs appear similar in size and structure to the SSEs of the simulated density maps that
were used to train the neural networks.

5 https://www.emdataresource.org/index.html
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C-CNN was trained with. Unlike simulated maps, experimental maps have large variance in local
classified resolutions, electron density values, and molecular shapes. This can be attributed to the
wide range in flexibility of biological molecules, cryo-EM imaging devices, different experimental
procedures, and small natural artifacts that appear as part of the cryo-EM imaging process.
Combined, these issues make experimental maps difficult to normalize.

The first step of preprocessing was to remove any noise or irrelevant electron density data. This
step was accomplished by zeroing out all voxels that were greater than 6A away from the ground
truth structure of the protein map. Once cleaned, the density map was resampled so that each
dimension (X, y, z) had a voxel-size of exactly 1A. There is a wide range of voxel-sizes for each
experimental map and many often have a different value for each axis. Therefore, resampling was
crucial because the C-CNN was trained with simulated maps that had a voxel-size of exactly
1Ax1Ax1A. This step was easily accomplished by using the UCSF Chimera tool along with the
internal Chimera command vop resample.

After resampling, the new map was preprocessed using the same method as outlined in Fig. 2

with the only difference being that the threshold was manually selected for each density map.

F. Network Output

After the C-CNN processed the input map it produced confidence maps for the protein’s SSEs,
backbone, and Ca atom locations. The output maps for EMDB-8410 (chain-A) are shown in Fig.
6. Each voxel in the map was assigned a confidence value by the network. The final classification
of a voxel was determined by the max voxel value of each of the output maps for a given neural

network.
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Fig. 6 Confidence Map Output for EMDB-8410 (Chain-A). (4) is the combination of the a-helix
and f-sheet prediction map after applying the max function, (loops/turns map omitted for
readability). (B) is the backbone confidence map (>40% confidence) with the ground truth

backbone structure shown for reference. (C) is the Ca-Atom confidence map (>50% confidence)

with the ground truth ball and stick representation of EMDB-8410 shown for reference.

G. Path-Walking Algorithm

Although the C-CNN assigns confidence values to specific features of the protein, post-
processing algorithms were required to piece together that information and generate a final
prediction trace. This was accomplished with a path-walking technique that processed the
confidence maps to produce a final PDB file that contained exact Co atom locations along the

protein’s backbone.
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The path-walking technique walked through high-confidence areas of the backbone map and
connected areas of high Co atom confidence using a novel tabu-search algorithm designed
specifically for this research. The tabu-search algorithm scored each potential future movement
based on a location’s local density prediction confidence and distance. Additionally, it also
incorporated the backbone atom torsion angles and common radius of a-helix secondary structures
as weights when finding the optimal next Ca atom.

The path-walking algorithm walked until it either reached an area of the protein that had already
been processed or until it reached an area of the protein where no more suitable Ca atoms could
be found. Upon reaching the end of a single trace, the path-walking algorithm would search the
Ca confidence map for any other areas of the protein that might contain additional untraced Ca
atoms and, if found, would walk each additional trace. This process was repeated until all high-
confidence areas of the Ca prediction map had been explored. The output of the path-walking
algorithm was a PDB file consisting of a series of disconnected traces where each trace contained

a chain of Ca atoms.

H. Graph Refinement

The disconnected traces from the path-walking algorithm represented partial backbone traces in
the protein. However, there were many false positive traces that were the result of side chains and
shortcuts between backbone structures being incorrectly classified as backbone traces. To remedy
this issue, two refinement steps were required to improve the predicted traces: path combination
and backbone refinement. In order to complete these two steps, the backbone traces were converted
from a list of Ca locations and connections into a graph where each Ca atom was represented by
a node and each connection to another Ca atom was represented by an edge.

The goal of the path combination step was to combine a set of disjoint graphs (formerly traces)
into a fully connected graph that is more representative of the protein’s backbone structure. We
used a depth first search to walk from any given Ca atom within a disjoint graph to both end points
of that trace. Using these endpoints, this algorithm would then examine all other Ca nodes in the
protein graph to determine if another Co atom was within 3A of the end point Ca atom. If it was,
then the end point Ca atom’s location was reassigned to be equal to the other Ca atom. This process
helped combine neighboring disjoint graphs (traces) into a fully connected graph.

After path combination, the fully connected graph resembled a protein’s backbone structure, but

it still had many side chain and backbone trace shortcut connections. These false-positive
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connections meant that many Ca nodes in the graph had three or even four edge connections to
other Ca atoms. The next step in the graph refinement process was to remove the false-positive
connections so that the remaining graph only contained true-positive Co node and Ca edge
connections. This refinement process was broken down into three steps: side chain removal, loop
removal, dead-end point removal.

Side chain removal involved examining every Ca node in the graph to determine if it might be
part of a false-positive side chain connection. If a node had three or more edges (trinary node), it
was likely that one of the three edges was a side-chain connection. This algorithm would use a
depth first search (DFS) to walk along each of the three paths leading from a trinary node and stop
once it found either an ending node (only one edge), or another node with three or more edges. It
would compare the total depth reached for each of the three DFS edge walks. If one path had a
depth of three or less while the other two paths both had depths greater than the shortest path, then
the shortest path was considered a side chain connection and removed from the graph. This
algorithm proved to be very effective at removing side chain and false-positive shortcut
connections between true parallel backbone traces.

After removing the side chains from the fully connected graph, it was necessary to remove small
loops within the graph. These loops were the result of false-positive shortcut traces within a-helix
elements of the protein. The goal of this method was to remove the false-positive half of each loop
leaving the true backbone structure in place. The approach was similar to side chain removal. It
would find any Ca nodes that contained three or more edges and then path walk each trace until it
reached an end-node or trinary connection. However, in this case, if two paths terminated in the
same trinary node then the combined two paths were considered a loop. To remove the false-
positive side of the loop, this method would calculate the density along each path using a 1A radius
cylinder and remove the path with the lower average density value. This approach made the
assumption that the backbone structure of the protein had a higher density than another false-
positive path.

The final step of the graph refinement process was to remove dead-end nodes. These resulted
from side-chains that did not connect to another backbone trace of the protein but did nonetheless
protrude off the true backbone structure. Removing these was accomplished by finding all trinary

Ca nodes in the graph and then walking down each trace extending from that node. If any path had
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a depth of two or less and ended in a dead-end node then it was considered a side-chain and

removed from the graph.

I. Helix Refinement

In the final post-processing step, we tackled prediction inaccuracies for a-helix backbone
structures. Due to their geometrical shape, the neural network had, in some cases, difficulties
accurately predicting the location of Ca atoms belonging to an a-helix. In order to improve the
prediction, we exploited the fact that the shape of an a-helix has a general definition which is valid
across proteins [33]. Since the neural network predicted the confidence of secondary structure
elements, as described in Network Output section, we know which Ca atoms belong to an a-helix
based on the confidence of their region in space. We combined this knowledge of a-helix locations
and their shape attributes in order to adjust the appropriate Co atoms to better fit the shape of a
natural a-helix structure.

For an a-helix which centers around the z-axis, we can use Equation 1 to model its shape where
the variables s and r represent the initial shift and rotation of the helix. The values 2.11 and 1.149
are constants that define the radius and pitch of the helix to best match those of an a-helix.

x=2.11Xxsin(1.149 xt) —s+r
y=2.11x%Xcos(1.149 xt) —s+r D
z=1

Equation 1 however, cannot be used to describe an a-helix which does not center around the z-
axis or whose shape is not a straight cylinder. Since this is the case for most a-helices, it is
necessary to adjust the equation in such way that it will address these issues. With the aim of doing
so, we first locate the screw axis, the center line around which the helix winds itself, for each a-
helix. This is achieved by calculating the centroid of consecutive intervals of the a-helix and then
connecting them to approximate the true curve. An example of an a-helix and its calculated screw

axis can be seen in Fig. 7.

\
4 N -~ » b - e

Fig. 7 Alpha-Helix extracted from the backbone prediction of the 5u70 protein map in tan color
and its screw axis in teal color.
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Now that we know the location and shape of the screw axis for the a-helix, we need to
incorporate this information into Equation 1. This is achieved by interpreting t as the distance that
we travelled on the screw axis and use the unit direction vector of the screw axis at a certain point
t as the new z axis. Next, we can find the new y-axis by calculating the cross product of the x-axis
and the new z-axis and then normalizing it. Finally, we can get the new x-axis by calculating the
cross product of the new z and y-axis and normalizing it again. By concatenating the three new
axes we can get a rotation matrix RM with which we can calculate the point of the a-helix for any
value t as shown in Equation 2.

211 x sin(1.149 X t) — s + r)
2

a-helix(t) = screw-axis(t) + RM - (2.11 X sin(1.149 xt) —s+r
0

Now, we need to know the values t at which we have to insert Co atoms. Since we know that an
o-helix has a rise of 1.5A per residue [33] we can increase t in steps of 1.5 and add a new Ca atom
at a-helix(t).

In the final step we minimize the average distance from the Ca atoms of the refined a-helix to
the Co atoms of the original prediction. This is done by applying a minimization algorithm® over
the variables s and r to try different initial shifts and rotations. The final results of the a-helix

refinement step are shown in Fig. 8.

6 https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html
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Fig. 8 Alpha-Helix extracted from the backbone prediction of the 5u70 protein map. (A) Original
prediction before the helix-refinement step. (B) Alpha-Helix after the refinement. (C) Direct
comparison of original prediction in tan color, refined prediction colored in teal, and the ground
truth in pink color. (D) Direct comparison without ribbon.

J. Mapping Protein Sequences onto Ca traces

After an imperfectly reconstructed Ca trace is reconstructed, the next important problem is to
assign amino acids in the protein sequence onto its correct location in the trace. This problem is
non-trivial because a protein may have extra or disordered residues that do not have corresponding
positions in the trace. Additionally, the trace contains noisy, false or missing Co positions that do
not match with residues in the protein well. Therefore, simply copying a protein sequence into a
Ca trace does not work. To address this challenge, we design a quality assessment-based
combinatorial algorithm to map a protein sequence onto each reconstructed Ca trace from the

previous steps.
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A Given Ca trace of the target protein and its true sequence file . N s

: ’\//4‘ Q2 “i:\\r(«w
B Extract Ca segments (length > 50) 2 s S . f

C For each Ca segment, the target protein sequence is decomposed into small fragments
with the same length of the segment.

}
D Map sequence fragments to the Ca trace segment and rebuild the model
f@) T : , ———————— f ”.;,":'l" :j(."
5 N RN ““‘-
!
E Apply Qprob to assess qualities of rebuilt models
!

F Select the fragment sequence with structure of best score for the Ca segment

Fig. 9 The algorithm of mapping a protein sequence onto a Ca trace.

As shown in Fig. 9, given the Ca trace of a target protein and its whole sequence, the algorithm
first extracts all continuous Co segments with length greater than a threshold (i.e. >50 residues).
For each Ca segment, a search on the whole sequence is performed to identify its best-matching
sequence fragment (sub-sequence) according to the fitness between the Ca segment and the
sequence fragment (i.e. the energy or the structural quality score). Specifically, the target protein
sequence is decomposed into all possible sequence fragments with the same length of the Ca. trace
segment and each sequence fragment is mapped into the trace segment. Based on the Ca coordinate
of each sequence fragment obtained from the mapping, the main chain structure including the
positions of N, Ca, C atoms for the sequence fragment is reconstructed by using Pulchra [34].
Scwrl [35] is then used to add side chains into the main-chain structure of the sequence fragment
to obtain a full-atom structure. The quality of the structure of each sequence fragment, i.e. the
fitness between the Ca trace and the sequence fragment, is assessed by a protein single-model
quality assessment method Qprob [36], which utilizes several structural and physicochemical

features by feature-based probability density functions to predict the structure quality score (GDT-
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TS). Finally, the sequence fragment whose assigned structure has the best structural quality is
selected to map to the Ca trace. All the Ca-trace segments were evaluated one by one according to
the segment size from largest to smallest to identify their best-matching sequence fragments. If the
optimal sequence fragment for current Ca-trace segment has already been assigned to one of
previous segments, the unassigned sequence fragment with the largest quality score was then

selected for the segment.

K. Computation

The C-CNN was trained with 25,000 simulated protein maps, each with a size of 64x64x64
voxels. Training was accomplished with the Python TensorFlow Library on a Nvidia GTX 1070
GPU. Training was stopped after 15 epochs to prevent overfitting and took about 24 hours. Density
Map prediction, which involved running a preprocessed density map through the saved C-CNN
only, was completed using the same GPU and took about 15 seconds to produce the five output
prediction maps (three SSEs, backbone, and Co atoms) for a map size of approximately
100x100x100 voxels. The path-walking algorithm was the most time-consuming aspect of the
prediction process. A map of approximately 1000 Ca atoms took about 20 minutes to compute.
All computation used a machine with an Intel 6 core i7-8700K CPU clocked at 3.7GHz with 16GB
of RAM. To increase throughput, a new process was spawned for each path-walking task (one per

protein, with a maximum of 12 at a time).

I1l. Results

This method was tested with both simulated and experimental maps. Simulated density maps
were generated using the pdb2mrc script from the EMANZ2 package while experimental maps were
downloaded from the EM Databank. Both experimental and simulated maps underwent the same

pre-processing steps as outlined in the Data Collection/Generation section before being evaluated.

A. Metrics

A variety of metrics were used to measure the effectiveness of our method. One primary metric
was the root-mean-squared-deviation (RMSD) which measures the standard deviation of the
distance between atoms in two models. In this case, the two models were the predicted Ca atoms
and the ground truth Ca atoms as defined in the PDB file. The output from our model often
consisted of partial backbone traces when the confidence was not high enough to form a complete

backbone trace. With partial backbone traces it is difficult to use traditional RMSD algorithms to
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measure the effectiveness of a prediction method. As a result, we decided to follow the same
method used by the fully autonomous Phenix method [19] which compares each Ca atom in the
ground truth model to the closest Ca atom in the predicted method using a one-to-one mapping.
This RMSD method walks each predicted backbone trace and pairs it with the closest Ca atom in
the ground truth structure. This produces lower/better RMSD values than other methods [12] [25]
because it allows for Ca skips in the ground truth backbone trace.

Another primary metric that we focus on in this research is the percentage of predicted Ca atoms
within 3A (% Ca in 3A) of the ground truth structure. This metric is a good measure of prediction
map completeness because higher values mean that a higher percentage of the ground truth atoms
were found. This metric is calculated in a similar way to the RMSD metric: by walking down each
predicted trace and pairing each predicted Co atom with its closest ground truth Co atom. This
metric requires a one-to-one mapping. We compare our results for this metric to the Phenix method
which used the exact same metric and metric calculation method.

In addition to these metrics, we also include for each tested density map: the number of predicted

Ca atoms, the number of actual Ca atoms, and the number of false positive Co atoms.

B. Simulated Density Maps

Table 1 shows the results for seven simulated density maps. Each density map was generated
from the pdb2mrc script at 6A. Although 6A is considered medium resolution, pdo2mrc used
inflated resolution values. Therefore, a 6A resolution simulated map was most similar to an

experimental map at 3.5A resolution.

Table 1 Results of simulated data using the script pdb2mrc.py from the EMAN2 package at 6A
resolution.

PDB | Model | Native | RMSD | % Ca | FP%

ID Co Co (A) in 3A
3i2n 351 345 0.91 99.1 0.6
3n2t 328 327 0.90 99.4 0.3
3qc7 165 164 0.97 94.8 0.0
5i68 661 662 0.92 99.4 0.2
6ahv 348 345 0.89 99.7 0.3
Beyw 384 381 0.87 100.0 0.3
6961 112 111 0.84 98.2 0.9
Avg. 0.90 98.7
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The simulated results proved to be very accurate relative to the true protein structure. With an
average RMSD of 0.90A per Ca atom, the predicted backbone structure was almost a perfect match
to the true structure. Additionally, the predicted results produced nearly complete backbone traces
as evident by an average of 98.7% of ground truth Ca atoms being within 3A of a predicted Ca
atom. Finally, the false positive rate was very low for each prediction (no more than 2 false positive
atoms per protein). This translates to a very high sensitivity for each prediction. Fig. 10 shows the
final prediction maps of both the Ca-only backbone structure along with the ribbon representation
of 6eyw.

The low RMSD values, minimal false positive Ca atoms, and high matching percentage of Ca
atoms within 3A of the real structure demonstrates the effectiveness of this method with simulated
density maps. However, these maps have the advantage over experimental maps in that they do
not contain any experimental inaccuracies or real-world noise to distort the image. Additionally,
these simulated maps were generated with the same pdb2mrc script that the training data was
generated with. This means that the C-CNN likely learned features of simulated maps very

accurately and possibly overfit the data thereby leading to the high accuracy metrics.

Fig. 10 Final Backbone Prediction structures from the simulated 6eyw protein map. Ground
Truth is colored teal while the predicted structures are colored tan. (A) contains the Co, only
backbone structures with the input density map overlaid on the image for reference. (B) displays
the final ribbon prediction. The ribbon was enhanced using the secondary structure output maps
from the Cascaded Convolutional Neural Network.

C. Experimental Density Maps
The real test of our backbone prediction model involved experimental density maps.

Experimental maps ranging in resolution from 2.6A to 4.4A were evaluated using the backbone

prediction model. Table 2 tabulates the results for each experimental density map. Each density
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map was downloaded from the EM databank’. In addition to the normal preprocessing steps
outlined in the Pre-Processing section, each density map underwent an additional cleaning step
before being evaluated. To remove artifacts from the cyro-EM imaging process unrelated to the
protein structure, all voxels that were further than approximately 5A from the ground truth
structure were zeroed out using built in Chimera functions. This cleaning step essentially cut the
protein out from the raw density map. However, this step maintained the experimental protein’s
shape and density and did not change or manipulate any voxel data within the protein’s
experimental structure.

Our results were compared to the fully automatic Phenix method [19] in two categories: RMSD
and % Ca Matching within 3A. The Phenix method results are listed alongside our results in Table
2.

7 https://www.emdataresource.org/
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Table 2 Results from the evaluation of experimental density maps. Results from the Phenix
method [19] are listed alongside each evaluated map to compare the RMSD and % matching
metrics of each method. Combined metrics for each method are plotted in Fig. 14 and Fig. 15.
(Results are continued on the next page)

EMDB | PDB | Res. | Model | Native | FP%1° | % Ca | RMSD | Phenix % Phenix
ID ID | A) | Ca® | C& in3A | (A) | Cain3A | RMSD (A)
2513 4ci0 | 3.36 | 9634 | 10716 2.5 83.3 1.32 62.5 1.33
3061 5a63 | 3.4 1293 1223 4.0 95.6 1.09 73.9 1.15
3121 5aco | 4.36 | 2639 2415 10.7 83.8 1.42 57.0 1.63
3222 5flu 3.8 1895 2119 0.9 82.6 1.59 62.0 1.76
3238 5fn3 41 1313 1318 2.3 83.6 151 56.1 1.50
3601 5n8o0 | 3.9 1431 1433 6.2 86.0 1.38 50.0 1.29
3785 50dv | 4.0 3818 4968 10.9 62.4 1.46 40.1 1.73
4054 5lij 4.2 169 152 0.6 97.4 1.43 84.2 1.44
4062 5ljv | 3.64 | 2006 1950 3.4 93.7 1.09 48.3 1.21
4128 5Izp 3.5 6059 6182 0.5 92.7 1.16 77.1 1.13
5623 3j9i 3.3 6002 5978 0.6 97.0 1.03 72.4 0.87
5778 | 3j5p | 3.28 512 592 1.0 78.4 1.32 55.6 1.15
5995 3j7h 3.2 4028 4088 1.7 93.2 1.09 72.9 1.12
6224 3j9c 2.9 2959 2961 1.0 94.1 1.02 71.9 0.99
6239 3j9d 3.3 762 746 2.1 98.3 0.99 74.8 0.99
6240 3)9e 3.3 445 520 0.7 83.5 0.97 69.4 0.82
6272 3j9s 2.6 1227 1191 0.3 99.2 0.88 88.9 0.69
6324 3ja7 3.6 4297 5136 2.0 77.8 1.2 69.4 1.13
6346 3jaf 3.8 1706 1710 1.7 94.1 1.21 72.8 1.10
6408 3jb6 3.3 1735 1731 0.8 96.9 0.96 79.3 0.83
6488 3jby 3.7 1923 1802 13.7 88.8 1.14 57.3 1.18
6551 3jcf 3.8 1853 1745 1.8 96.0 1.24 74.2 1.15
6630 3jcz | 3.26 | 2932 2976 1.1 91.7 1.07 66.1 1.05
6631 3dj0 | 3.47 | 2904 2976 2.0 90.3 1.16 59.5 1.07
6676 5wq8 | 3.26 | 5680 7440 1.0 73.4 1.05 54.2 0.93
6703 5x58 | 3.2 3091 3159 5.7 85.5 1.28 53.1 1.27
6744 5xno | 3.5 1074 854 24.6 87.7 1.18 55.4 1.22
6770 5xsy | 4.0 1407 1312 7.9 90.3 1.35 68.5 1.21
7063 6b7n | 3.3 3062 2898 4.2 95.4 1.12 71.3 1.21
8015 5gaq 3.1 2607 2592 0.5 98.8 0.92 79.2 1.1
8069 5i08 | 4.04 | 2843 2874 2.9 88.5 1.32 66.7 1.51
8072 5i68 | 3.37 | 5379 5296 2.8 93.8 1.07 84.6 1.07

8 The number of Ca atoms modeled by our C-CNN method.
® The number of Ca atoms in the ground-truth PDB structure.

10 percentage of Ca atoms in the predicted model that are more than 3A away from any ground-truth Ca atom.
1 EMDB-5778 Chain-A only
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EMDB | PDB | Res. | Model | Native | FP% | % Ca | RMSD | Phenix % Phenix
ID ID | A | Ca® | C& in3A | (A) | Cain3A | RMSD (A)
8200 | 5k47 | 4.22 | 2000 | 1936 1.9 91.9 1.26 71.7 1.29
8331 | 5szs | 3.4 | 3716 | 3531 4.9 94.6 1.08 68.6 1.04
8405 | 5tfy | 3.4 | 4041 | 4264 0.9 92.7 1.09 70.7 1.25
8410 | 5tj6 | 3.5 | 3706 | 3560 1.9 96.2 1.13 67.6 1.07
8515 | 5u70 | 3.76 | 3723 | 3608 0.7 96.6 1.13 76.5 1.19
8637 | 5v6p | 4.1 | 508 540 2.9 83.3 1.6 80 1.37
8642 | 5v7v | 3.9 | 807 613 8.3 89.6 1.38 76.3 1.28
8651 | 5va2 | 3.8 | 2172 | 2232 2.8 82.7 1.54 69.7 1.43
8658 | 5vc7 | 3.9 | 2956 | 3264 3.8 80.9 1.5 68.2 1.49
8697 | 5vjh | 4.0 | 2943 | 3485 3.8 76.5 1.41 725 1.39
8712 | 5vms | 3.7 | 1869 | 1936 1.9 90.8 1.17 64.9 1.22
8764 | 5w3s | 2.94 | 1694 | 1940 4.1 79.2 1.07 66.6 0.97
8767 | 5w5f | 3.4 | 2953 | 2934 1.1 97.2 1.36 52.8 1.43
8782 | 5w81 | 3.37 | 1172 | 1173 4.7 89.1 1.44 66.7 1.38
8784 | 5w9i | 3.6 | 3763 | 3618 5.1 89.9 1.3 53.8 1.25
8794 | 5wc0 | 4.4 | 1342 | 1660 3.1 71.9 1.61 64.3 1.53
8882 | 5Swpt | 3.75 | 1718 | 1816 1.9 87.4 1.13 68.5 1.02
9515 | 5gjw | 3.9 | 2684 | 2678 6.5 82.7 1.48 54.6 1.40
Avg. 88.5 1.23 66.8 1.22

The results on experimental data show that our method was very similar to the automatic Phenix
method with respect to RMSD. The C-CNN was able to achieve a mean RMSD of 1.23A while
the Phenix method achieve a mean RMSD of 1.22A. Both methods were tested on the same set of
50 experimental density maps. Our method was able to produce a much higher average Ca
percentage matching within 3A than the Phenix method (88.5% vs. 66.8%). This significant
improvement is primarily a result of our method’s ability to predict backbone structure in relatively
low-confident regions while the automatic Phenix made no prediction in these areas. By achieving
similar RMSD metrics but improved Ca matching percentages our method has clearly
demonstrated an improvement over the automatic Phenix method in terms of Ca/backbone
prediction. Fig. 11 shows the final predicted map for three experimental density maps using our

deep learning method.
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Fig. 11 Final Backbone Prediction maps for various density maps. (A) EMDB-6272 (chain-A) at
resolution 2.6A. (B) EMDB-8410 (chain-A) at resolution 3.5A (C) EMDB-5778 (chain-A),
resolution 3.3A. The left map in each subfigure contains the predicted vs. actual backbone

structure. The right map in each subfigure contains the predicted vs. actual ribbon structure of

the protein which specify the SSE classification. The pick trace is the predicted structures while
the blue trace is the actual structure.

D. Impact of Helix Refinement

In the Helix Refinement section we discussed the final post-processing step which was
responsible for adjusting predicted a-helices to fit the true structure of an a-helix. The refinement
step improved the percentage of Ca atoms predicted within 3A of their actual location by 1.5%
while remaining the average RMSD value. In this section we want to highlight specific protein
maps where the helix refinement yielded significantly improved results. In Table 3 we can see a

comparison of results before and after the application of the helix refinement.
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Table 3 Results from the evaluation of experimental density maps before and after the helix
refinement was applied

EMDB ID | RMSD before | RMSD after |% Ca in 3A before|% Ca in 3A after|
refinement refinement refinement refinement
8637 1.68 1.60 68.5 83.3
3238 1.54 1.51 80.0 83.6
6744 1.24 1.18 84.8 87.7
8200 1.30 1.26 87.9 91.9
8405 1.12 1.09 89.9 92.7

From Table 3 we can see that the helix refinement was particularly effective in increasing the
percentage of Ca atoms predicted within 3A of their actual location with up to ~15% in the case
of the EMDB-8637 map. In Fig. 12 we can see a comparison before and after the helix refinement
step for this map. Improvements in RMSD values were less significant, especially if we consider
all test results. This can be attributed to the number of Ca atoms originally predicted within -
helices which is almost always lower than the actual number of Ca atoms. This means that the
average inaccuracy in a-helices, which is usually high, has less of an impact to the overall average
RMSD value. In the helix refinement process new Ca atoms are added to the predicted a-helices
in an attempt to approximate their true structure. As a result, the average RMSD value within the
a-helix improves. However, since there are now more Ca atoms belonging to the a-helices, their

average inaccuracy has a larger impact to the overall average RMSD dampening improvements.

Fig. 12 Comparison of predicted map for EMDB-8637 before the helix refinement step in tan
color and after the refinement in pink color
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E. Comparison of Prediction Methods

As introduced in the Current Protein Prediction Models section, there are three other leading
backbone prediction models: Phenix, MAINMAST, and RosettaES. We compare our deep
learning method to the other leading prediction models by evaluating EMDB-5778 (chain-A) with

each method. The prediction maps for each method are shown in Fig. 13.

Fig. 13 Final Prediction Model for EMDB-5778 (chain-A) at 3.28A resolution. (A) Our C-CNN
method. (B) automatic Phenix method. (C) MAINMAST. (D) RosettaES. (E) The ground truth
model. Each figure overlays the input density map on top of the predicted structure. (A) Notes

five areas where the C-CNN found the true backbone structure while the automatic Phenix
method did not.

Table 4 compares the prediction metrics of all four prediction methods. The RosettaES model

produced the most accurate prediction map but it was only able to predict 7.9% of the Co. Atoms
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from the ground-truth model. The MAINMAST method, which only predicts backbone structure
and not SSEs, found the highest percentage of Co Atoms among the three previous prediction
methods. However, MAINMAST has a relatively high RMSD of 2.20A and also produced the
highest false positive Ca Atom percentage. Among the three former prediction methods the Phenix
method was arguably the best method for EMDB-5778, producing decent metrics in all three
categories (Percentage of Matching Ca Atom, RMSD, and false positive Ca Atom percentage).
However, our deep-learning method was about to achieve a much higher Percent Co Atom
Matching and a lower false positive Ca. Atom percentage with only a small increase in the RMSD.
Fig. 13A points out four areas where our prediction model outperformed the Phenix method by
producing a more-complete prediction map.

Table 4 Comparison of EMDB-5778 (chain-A) among leading backbone prediction models. Each
model had specific strengths, however the deep learning C-CNN produced the most complete
model as measured by the percent Ca matching percentage.

Method % Ca | RMSD | FP%

in 3A (A)
C-CNN 78.4 1.32 1.0
Phenix 55.6 1.15 3.0

MAINMAST 59.6 2.20 6.5
RosettaES 7.9 0.91 0.0

F. Computation Time of Prediction Models

While our C-CNN model took about 24 hours to train on a single machine with a GTX 1070
GPU, after the training had completed, the full end-to-end prediction for a density map with
approximately 1000 Ca Atoms took about 20 minutes to complete. The C-CNN prediction
software was running on the same GTX 1070 GPU with a single CPU core. In contrast, the existing
methods usually required a lot of computing resources and were also very time-consuming. In our
experiments, RosettakES took 5 days with 20 CPUs to complete, MAINMAST finished in about 18
hours with 1 CPU, and Phenix method took several hours with 6 CPUs.

G. Comparison of Deep-Learning C-NN and the Fully Automatic Phenix Method.

The results for each prediction map in Table 2 are plotted and shown in Fig. 14 and Fig. 15. Fig.
14 plots the RMSD vs. the labeled resolution for each density map. The mean RMSD of our deep-
learning method was 1.23A which is similar to the Phenix method’s RMSD of 1.22A for the same
set of experimental density maps. Fig. 14 shows that the performance of our deep-learning method

was very similar to the Phenix method across all resolution values. Fig. 14 also clearly shows how
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the RMSD for both prediction methods increased as a function of the labeled resolution. This is to

be expected as higher resolution maps usually have less well-defined structure to aid the prediction

models.
RMSD vs. Labeled Resolution
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Fig. 14 Plot of RMSD as a function of resolution for the 50 experimental density maps. This
compares our deep learning C-CNN method and the fully automatic Phenix Method.

Fig. 15 plots the percentage of matching Ca atoms Vvs. labeled resolution of each density map for
both the C-CNN method and the Phenix method. This figure shows how our deep-learning method
found a higher percentage of Ca atoms than the Phenix method across all resolutions. Our method
found a mean of 88.5% of the Ca atoms for the 50 experimental density maps. This is significantly
better that the Phenix method which only found a mean of 66.8% Ca atoms from the same 50

experimental maps.
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Percentage of Found Ca Atoms vs. Labeled Resolution
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Fig. 15. Plot of Percentage of Found Ca atoms as a function of resolution for the 50
experimental density maps. This compares our deep learning C-CNN method and the fully
automatic Phenix Method.

H. Evaluating the Results of Mapping Protein Sequences onto Ca traces

To validate the effectiveness of our sequence-to-trace mapping algorithm, we evaluated the
structural similarity between the predicted structure of the Ca-trace segment and its real structure
for the mapped sequence fragment in the known experimental structure of the protein in terms of
the TM-score and GDT-TS scoring metrics. TM-score [37] and GDT-TS [38] scores are two
structural similarity measurements with values in (0,1], where higher value indicates better
accuracy and 1 means the perfect match between two protein structures. The two metrics measure
the match of the residues with Ca-atom distances within a certain distance cutoff of their positions
in two structures for the same protein sequence, which is suitable for the method evaluation in our
study. A perfect Ca trace segment matched with a completely correct sequence fragment will
match perfectly with its corresponding counterpart in the experimental structure, leading to a
prefect similarity score (TM-score or GDT-TS score) of 1, otherwise a score between O and 1. We
validated our mapping algorithm on two targets, EMDB-5778 and EMDB-8410, and the results
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were summarized in Table 5 and Table 6. For EMDB-5778, the longest Ca trace segment (185
residues) among the three predicted Ca segments is well mapped by the sequence segment and has
a TM-score of 0.9478 and a GDT-TS score of 0.8723. The alignment of the mapped structure of
the segment with its counterpart, which was superimposed by the sequence-dependent alignment
program— TM-score, is illustrated in Fig. 16. The TM-score of the second mapped Ca segment is
0.3947, suggesting its incorrect topology when the TM-score is less than 0.5. For the third mapped
Cao segment, the TM-score for the structural alignment is 0.5978, which suggests the close
topology is predicted for the sequence fragment. The structural errors result from either the noise
in the Ca trace or inaccuracy of the mapping algorithm, or both factors. For EMDB-8410, the
longest Ca trace segment (234 residues) is mapped reasonably well, which has a TM-score of
0.8816. However, the other mapped Ca trace segments have TM-scores below the 0.5 threshold,
indicating the structures are not predicted correctly. The superposition of the mapped structure and
its counterpart for the longest trace of EMDB-8410 is illustrated in Fig. 17. The analysis
demonstrates that our mapping strategy is able to identify the correct sequence fragment for the
Ca trace if the segment is well predicted by C-CNN and long enough for mapping sequence to

structure using quality assessment methods.

Table 5 Similarity between three mapped Ca segments (length > 50) and their true counterparts
on EMDB-5778

EMDB-5778 | # Ca Atoms | TM-score | GDT-TS-score
Seg #1 185 0.9478 0.8723
Seg #2 134 0.3947 0.3601
Seg #3 53 0.5978 0.6981
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Fig. 16 Visualization of superposition between the mapped Ca Segment 1 of EMDB-5778(brown)
and its counterpart in the experimental structure (blue). ":" in the sequence-dependent structure
alignment denotes the residue pairs whose dlstance is < 5.0 Angstrom.

Table 6 Similarity between two mapped Ca. segments (length > 50) and their true counterparts
on EMDB-8410

EMDB-8410 | # Ca Atoms | TM-score | GDT-TS-score
Seg #1 234 0.8816 0.7927
Seg #2 180 0.4226 0.3142
Seg #3 159 0.4234 0.3296

KYGGSYKKERGKRHVVVCGYITFDSVSNFLKDFLHKDREDVDVEIVFLHKGLPGLELEGLLKRHFTQVEYFWGSVMDANDLERVKIQEADACLVLANKYCQDPDQEDAANIMRVISIKNYHSDIKVIVQL
LQYHNKAYLLNIPSWDWKRGDDAVCVAELKLGFIAQSCLAPGFSTLMANLFTMRSYKPTPEMSQWQTDYMRGTGMEMYTEYLSSAFNALTFPEAAELCFSKLKL

KYGGSYKKERGKRHVVVCGYITFDSVSNFLKDFLHKDREDVDVEIVFLHKGLPGLELEGLLKRHFTQVEYFWGSVMDANDLERVKIQEADACLVLANKYCQDPDQEDAANIMRVISIKNYHSDIKVIVQL
LQYHNKAYLLNIPSWDWKRGDDAVCVAELKLGFIAQSCLAPGFSTLMANLFTMRSYKPTPEMSQWQTDYMRGTGMEMYTEYLSSAFNALTFPEAAELCFSKLKL  True sfructure sequence

Fig. 17 Visualization of the superposition between the mapped Ca segment 1 of EMDB-8410
(brown) and its counterpart experimental structure (blue). ":" denotes the residue pairs of
distance < 5.0 Angstrom.
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IV. Discussion

A. False Positive Ca Error Rate

The RMSD metric in conjunction with the percentage of matching Ca metric is useful to
determine the accuracy of Ca atom placements that are in-line with Ca atoms within the ground
truth model. However, as is often the case with backbone prediction, side-chains or other noise in
a density map will appear as backbone structure to a prediction model. This can cause the model
to produce false positive Ca atoms that are clearly not in alignment with the true backbone
structure of the protein, see Fig. 18. An effective prediction model will limit the number of false
positive Ca atoms by correctly distinguishing side-chains or other noise from the true backbone
structure and not place Ca atoms in these areas. In this research, we measure the number of false
positive Ca atom for each density map which is listed in Table 1 and Table 2. A false positive is
defined as any Ca atom that is placed more than 3A from any Ca atom within the ground truth

structure.

Fig. 18 Ball and Stick representation of the prediction map (pink) and the ground truth map
(blue) of EMDB-8642, resolution 3.9A. This map had a relatively low RMSD value of 1.28A
but also had a false positive Ca rate of 8.3%. The expanded areas show examples of side
chains that were incorrectly predicted as backbone structure resulting in false-positive Co
placements.

Normalizing the number of false positive Ca atoms by the size of a protein produces a false
positive rate for Ca atom placement. This is called the Co atom error rate. This metric can be
derived from the number of false-positive Ca atoms and the total number of predicted Ca atoms,

see Equation 3.

# false positive Ca
Error Rate = 2L25¢? 3

total # predicted Ca
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Fig. 19 plots the Co atom error rate as a function of resolution for the 50 experimental density
maps evaluated by our model. The error rate of Ca atom prediction is inversely related to the
labeled resolution of a density map. However, our deep learning model produced a relatively low
error rate (< ~5%) for most density maps with a labeled resolution value of 3.7A or better. The
error rate of density maps with a lower resolution than 3.7A had a high variance and thus had lower

prediction confidence.

False-Positive Ca Error Rate vs. Labeled Resolution
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Fig. 19 Error-Rate vs. resolution for each experimental prediction map with an added
exponential trendline.

I. Future Improvements
We found during development that the biggest improvements in accuracy came as the result of

adding more convolutional neural networks to the C-CNN. Originally, this method used only one
network, the Ca-Atom prediction network. It was only after adding the SSE and Backbone CNNs
that we were able to achieve the results outlined in this paper. Future work might be able to
incorporate other CNNs into the C-CNN such as an Amino Acid network or an individual atom
network. Adding these networks might also help match the sequenced DNA of the protein to the

density map.
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As the number of publicly available experimental density maps continues to grow, it may
become possible to train neural networks using experimental data instead of simulated data. Our
research used simulated data to train our network, but experimental training data may improve
results further. This change would prevent the model from over-fitting the simulated data and give
it a wider, more representative data set to train with. Also, by adding an additional 1x1 scalar input
to the network to denote the resolution of an experimental map, the C-CNN could train to
differentiate between map resolution. This change would allow the network to learn each
resolution with more independence.

This research relied on a manually chosen threshold value to normalize each experimental
density map before evaluating it with the C-CNN. This manual step is not ideal as it requires
subjective input by the user. Further improvements could remove this manual step by adding an
automatic method which use traits such as map surface area or resolution to automatically calculate
a threshold value for each density map. Another effective method could train a CNN, that also uses
deep learning semantic segmentation, to automatically modifies density maps into a preprocessed

state.

V. CONCLUSION

In summary, we presented an effective method for protein backbone prediction from high
resolution cryo-EM density maps using deep learning. This approach used three cascaded
convolutional neural networks to produce confidence maps for some of the major structural
components of proteins. These confidence maps were processed using a variety of novel method
including a tabu-search path-walking algorithm to construct backbone traces and a helix-
refinement step to improve the structure of a-helices. Additionally, a new protein mapping
algorithm was used to build up full atomic models from two of the final prediction maps (EMDB-
5778 and EMDB-8410). Our method out-performed the Phenix based fully automatic model
building method by producing backbone traces that were more complete (88.5% vs. 66.8%) as
measured by percentage of matching Co atoms. Further research may improve this research field
by incorporating other structural aspects of protein molecules within the cascaded convolutional

neural network or training the networks with experimental data.
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