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Abstract- Cryo-electron microscopy (cryo-EM) has become a leading technology for 

determining protein structures. Recent advances in this field have allowed for atomic 

resolution. However, predicting the backbone trace of a protein has remained a challenge 

on all but the most pristine density maps (< 2.5Å resolution). Here we introduce a deep 

learning model that uses a set of cascaded convolutional neural networks (CNNs) to predict 

Cα atoms along a protein’s backbone structure. The cascaded-CNN (C-CNN) is a novel 

deep learning architecture comprised of multiple CNNs, each predicting a specific aspect of 

a protein’s structure. This model predicts secondary structure elements (SSEs), backbone 

structure, and Cα atoms, combining the results of each to produce a complete prediction 

map. The cascaded-CNN is a semantic segmentation image classifier and was trained using 

thousands of simulated density maps. This method is largely automatic and only requires a 

recommended threshold value for each evaluated protein. A specialized tabu-search path 

walking algorithm was used to produce an initial backbone trace with Cα placements. A 

helix-refinement algorithm made further improvements to the α-helix SSEs of the 

backbone trace. Finally, a novel quality assessment-based combinatorial algorithm was 

used to effectively map Cα traces to obtain full-atom protein structures. This method was 

tested on 50 experimental maps between 2.6Å and 4.4Å resolution. It outperformed several 

state-of-the-art prediction methods including RosettaES, MAINMAST, and a Phenix based 

method by producing the most complete prediction models, as measured by percentage of 

found Cα atoms. This method accurately predicted 88.5% (mean) of the Cα atoms within 

3Å of a protein’s backbone structure surpassing the 66.8% mark achieved by the leading 

alternate method (Phenix based fully automatic method) on the same set of density maps. 

The C-CNN also achieved an average RMSD of 1.23Å for all 50 experimental density maps 

which is similar to the Phenix based fully automatic method. The source code and demo of 

this research has been published at https://github.com/DrDongSi/Ca-Backbone-Prediction.  
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I.   Introduction. 
 

Proteins perform a vast array of functions within organisms. From molecule transportation, to 

mechanical cellular support, to immune protection, proteins are the central building blocks of life 

in the universe [1]. Despite each protein being composed from a combination of the same 20 

naturally occurring amino acids, a protein’s functionality is mainly derived from its unique three-

dimensional (3D) shape. Therefore, learning the details of a protein’s 3D structure is a prerequisite 

to understanding its biological function. 

A. Cryogenic Electronic Microscopy (Cryo-EM) 

Currently, one of the leading techniques for determining the atomic structure of proteins is cryo-

electron microscopy (cryo-EM). Cryo-EM is a relatively new technique which uses a high-energy 

electron beam to image vitrified biological specimens. In the past five years, more than 1,000 

protein structures have been imaged at 4Å resolution or better in the EM databank using cryo-

Electron Microscopy (cryo-EM). Among them, many are of detergent-solubilized membrane 

proteins [2] [3] [4] [5] [6] [7]. These high-resolution images make it possible to produce atomic 

level 3D models from the density maps. 

B. Protein Backbone Structure 

From clean, high-resolution EM density maps (< 5Å) it is possible to distinguish the backbone 

structure of a protein [8] [9] [10].  A protein’s backbone is a continuous chain of atoms that runs 

throughout the length of a protein, see Fig. 1A. The backbone structure consists of a repeated 

sequence of three atom (carbon, nitrogen, alpha-carbon). Of these three atoms, the alpha-carbon 

(Cα) is particularly important as it is the central point for each amino acid residue within the 

protein. Therefore, predicting not only a protein’s backbone but also the locations of each Cα along 

that backbone can help determine where specific amino acids are located throughout the protein 

structure. 
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Fig. 1 Simulated Density Maps from protein 1aqh at different resolutions. (A) shows a high-

resolution map with underlying backbone trace. (B) shows a medium-resolution map with 

underlying ribbon structure. α-helix structures are colored red, β-sheets are colored blue, and 

the loops/turns are colored yellow. 

C. Protein Secondary Structure Detection 

In addition to the backbone features of a protein, some of the most visually dominate features of 

cryo-EM density maps are the secondary structure elements (SSEs), see Fig. 1B. The three SSEs 

are α-helices, β-sheets, and turns/loops. At medium resolution, α-helices appear as long cylinders 

with a radius of approximately 2.3Å. β-sheets consist of multiple parallel beta strands that connect 

laterally by hydrogen bonds. While only distinguishable at 6Å resolution or better, β-sheets appear 

as flat or slightly wavy sheets. Turns/Loops are the final SSE. They occur in locations where the 

polypeptide chain of the protein reverses its overall direction. When imaged with cryo-EM, 

turns/loops often appear faint due to their relatively low electron density. This makes them one of 

the most challenging SSE to classify. 

There are many methods for identifying SSEs at medium resolutions [11] [12] [13] [14] [15] 

[16] [17]. However, at higher resolution (< 2.5Å), the classic α-helix and β-sheet structures are not 

easily recognizable to the human eye. This is due to the large number of side chains that protrude 

off the backbone chain in high-resolution data. This makes predicting the SSEs at high-resolution 

potentially more difficult than at medium resolution. 

D. Current Protein Prediction Models 

Ever since the first experimental density maps were released for protein structures, researchers 

have been developing software models to predict the various structural elements from each map. 

Some of the leading software models are now able to predict the atomic structure of a protein from 

its electron density map. 
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Phenix is a widely used molecular prediction software suite that has often been used in research 

since its initial release in 2010 [18]. A recent 2018 paper introduced a new molecular prediction 

method that combined the Phenix prediction software along with advanced post-processing 

techniques [19]. This method, henceforth referred to as the Phenix method, produced some of the 

most-complete prediction models. As a result, we used this method as a metrics benchmark for 

this research. 

The Phenix method is a fully-autonomous prediction method which only requires a density map 

and a nominal resolution value as input. This method first sharpens the input density map using an 

automated map sharpening algorithm which aims to maximize the connectivity of high-density 

regions [20]. Then, for each part of the structure, various atomic models are generated using several 

independent prediction models, including one for SSEs and one for backbone tracing, among 

others [21] [22] [23]. The results from these predictions are ensembled and used to produce an 

initial predicted structure. This structure is then refined using any symmetry that is present in the 

protein. The Phenix method was tested on 476 experimental density maps and has, to date, 

produced the most complete prediction maps. This method also uses a unique set of metrics to 

measure the effectiveness of the prediction method. The RMSD method uses a one-to-one mapping 

of predicted to ground-truth Cα atom but only includes atoms that are within 3Å of the ground 

truth model. To measure prediction model completeness, the Phenix method calculates the 

percentage of matching Cα atoms between the predicted and ground-truth model within the same 

3Å space. We use the same metrics when evaluating our deep-learning prediction technique. 

RosettaES is a protein modeling software tool first developed at the University of Washington. 

RosettaES employs a modeling technique which consists of two general components: 

conformation sampling and energy evaluation [24]. Conformational sampling uses well-

established physical characteristics of molecular structure as guides for model prediction. 

Examples of such characteristics include: the common torsion angles of atoms in the backbone 

structure, or the radius of α-helix secondary structures. Each of these structures has a very narrow 

band of potential values making them excellent constants to use when modeling protein structure. 

The energy evaluation process calculates the total energy of a predicted protein based on each 

predicted atom position along with each bonding angle between them. This value is compared to 

the expected lowest-energy state, which can be calculated from sequence information. Given that 

the lowest-energy state is likely closest to the native state of the protein, slight adjustments are 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 12, 2019. ; https://doi.org/10.1101/572990doi: bioRxiv preprint 

https://doi.org/10.1101/572990
http://creativecommons.org/licenses/by/4.0/


made to the predicted protein structure to minimize the energy within its atomic structure thereby 

optimizing the prediction map for the protein. 

Another leading backbone prediction model is the MAINMAST algorithm developed by 

researchers at Purdue University [25]. MAINMAST produces a backbone trace, consisting of a set 

of Cα atoms, from high density regions of an electron density map. This algorithm first identifies 

regions of high-density (high-density points are likely to be backbone structure) using mean 

shifting and then transforms them into a minimum spanning tree (MST). A Tabu search algorithm 

is applied to find a few thousand possible MSTs. For each MST, the amino acid sequence is 

mapped on the longest path in the tree using areas of high density as likely Cα atom locations. 

Each MST is rated based on the best fit. The highest scoring tree is chosen as the final prediction 

of the model. 

In designing our experimental method, we leveraged techniques from each of these leading 

prediction methods. We employed a new conformational sampling technique similar to the 

RosettaES method. Our technique used constants such as: standardized distance between Cα 

atoms, mean α-helix radius, and common torsion angles between backbone atoms. Using these 

constants, we also invented a new Tabu-search scoring algorithm, similar to the one used in the 

MAINMAST method. Our Tabu-search was primarily used as a backbone path-walking algorithm. 

Finally, we employed the multi-prediction model approach of the Phenix method by creating a 

different CNN to predict the SSEs, backbone, and Cα atoms of each density map before stitching 

them together to form a final prediction map.  

E. Deep Learning Semantic Segmentation 

This research aimed to use deep learning to create a predictive model capable of detecting the 

SSEs, backbone structure, and Cα atoms from electron density maps. The field of deep learning 

has proven to be very successful in the fields of image recognition and image classification [26] 

[27] [28]. This research used a specific image classification method known as semantic 

segmentation. With semantic segmentation each 2D-pixel or 3D-voxel of an image is classified 

independently rather than the entire image as a whole. 

Until recently, semantic segmentation was accomplished through patch classification. Patch 

classification takes a slice of the input data and runs it through a convolution neural network 

(CNN). However, patch classification only classifies the center pixel of each patch meaning that 

the CNN would have to process a new patch for each pixel in the image. This technique is preferred 
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when computing resources are limited because processing a small patch is much less 

computationally expensive than processing a full image. 

However, with the recent advances in GPU technology, fully connected end-to-end networks are 

now able to perform semantic segmentation on full images in one pass. In 2014, research at UC 

Berkley used a Fully Convolutional Network (FCN) to perform semantic segmentation on the 

PASCAL-Context dataset [29]. Their method used an encoder-decoder architecture that removed 

the need for patch classification by essentially combining the calculations of the overlapping patch 

regions into a single end-to-end network. In 2015, the network Segnet aimed to improve the 

encoder-decoder architecture by forwarding the max-pooling indices from the encoder layer to the 

decoder layer to prevent the loss of global information in the image [30]. Later that year, 

researchers at Princeton University used a technique called dilated convolution which made it 

possible to perform semantic segmentation without the encoder-decoder architecture [31]. Dilated 

convolutions are preferred when a convolution needs to increase the field of view without reducing 

the resolution of the image. 

In this paper, we leveraged the architecture of each of these semantic segmentation classifiers. 

Previous deep learning methods that were used for SSE prediction used patch classification [12]. 

Our model levered the Fully Connected Network design to eliminate the need for patch 

classification and instead use semantic segmentation to classify a full 3D image in a single pass. It 

also used data forwarding, inspired by Segnet, to allow for segregated learning. Finally, this model 

used dilated convolutions to increase the field of view while maintaining the input image 

dimensionality. 

II.   Methods 

A. Data Collection/Generation 

Predictive models are only successful if they are trained with representative data. Since, high-

resolution cryo-EM maps are still somewhat scarce we trained our model using simulated cryo-

EM maps instead of experimental maps. This design decision allowed us to save all the 

experimental maps for verification. 

Simulated cryo-EM maps can be generated from protein databank (PDB) files1 using a script 

from the EMAN2 package called pdb2mrc [32]. This script takes each atom in a PDB file and 

produces a 3D Gaussian electron density. It then sums the Gaussian density of all the simulated 

                                                           
1 https://www.rcsb.org/ 
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atoms on a 3D grid to produce a complete electron density map for the entire protein. This 

simulation method produces electron density maps that are very representative of their 

experimental counterparts with the primary difference being that a simulated map has no 

experimental inaccuracies. 

To produce a large enough dataset for training, we used over 7,000 PDB files to generate 

simulated density maps using the pdb2mrc script. Each map was simulated at a different resolution 

to produce a higher amount of variance in the training set and prevent overfitting in the model. In 

addition to simulating the full PDB structure, we also had to simulate the labeled data for each 

map. This step involved editing the PDB file to retain only atoms that were part of the predicted 

structure and running pdb2mrc to produce a labeled map for each structure being predicted. When 

selecting PDB files, we selected maps with a sequence structure that was at least 50% unique 

relative to all other maps in the training set. This ensured that our training data was diverse and 

well-representative of the large range of protein structure found in nature. 

The data generation pipeline is outlined in Fig. 2. The output of this pipeline was two HDF5 

files: one training file and one testing file. The training file consisted of approximately 24,000 

simulated density maps2 along with the corresponding SSE, backbone, and Cα labeled maps for 

each protein. The testing HDF5 file, which was generated to measure the accuracy of the neural 

network as it trained, consisted of 1,024 maps along with the same configuration of labeled maps. 

All testing maps were unique, and no map rotation was performed to increase the testing data size. 

To ensure uniformity among each electron density map, extensive data normalization was used 

to produce a common input data format. There were five data normalization steps, see Fig. 2. First, 

all voxels with an electron density less than a resolution dependent threshold were zeroed out3. 

This removed low intensity areas of the simulated maps which differed significantly from their 

experimental counterparts. It also allowed the neural network to exclusively train with voxels of 

high-intensity, which are often more representative of protein structures. After this step all voxel 

intensity values were reduced by a threshold value so that the spectrum of electron densities within 

each map started at zero. The third step of data normalization involved dividing all voxels by the 

median voxel value in the electron density map. This step normalized the voxel values and ensured 

                                                           
2 Approximately 6000 unique maps were used for training. Each was rotated by 0°, 90°, 180° and 270° to increase 

the training data size by 4x. 
3 A cutoff threshold was selected for each simulated resolution. At each resolution all voxels less than the threshold 

were set to zero in order to remove low intensity noise from the density map. 
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that each map had a similar data range. After this, data outliers were removed by capping all voxels 

at the 98th-percentile voxel intensity. Finally, each training map was copied and rotated by a varied 

angle to increase the total training data size. 

 

Fig. 2 Simulated Data Generation Pipeline including details about the data normalization 

process. The output of this pipeline was an HDF5 file containing all the data used to train the 

prediction model. 

B. Cascaded Convolutional Neural Network 

Building off the previous semantic segmentation convolutional neural networks, we designed a 

cascaded convolutional neural network (C-CNN) consisting of three feedforward dilated neural 

networks. The high-level architecture is shown in Fig. 3. This design allowed us to train all the 

neural networks simultaneously. The input to the C-CNN was a 64x64x64 tensor representing the 

3D electron density of a protein. However, because density maps vary greatly in size across each 

dimension, an extra step was required before the model could process maps of a different size. 

Each map was split into 64x64x64 cubes that overlapped by 7 voxels on each face. Each cube was 

evaluated by the C-CNN independently and then the resulting output cubes were stitched back 

together to reconstruct the full image. However, only the center 50x50x50 voxels were used to 

reconstruct the image. At each face the 7-voxel overlap region was disregarded. This method 
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allowed us to process density maps of any size without losing spatial information at each cube’s 

boundary. 

Inside the C-CNN, the input map was forwarded to each of the three neural networks. The first 

network was the SSE CNN. It predicted voxels as α-helices, β-sheets, or loops/turns and output a 

confidence map for each SSE. The three SSE maps along with the input electron density map were 

forwarded to the backbone CNN which produced two confidence maps representing whether each 

voxel was part of the backbone structure of the protein or not. The final CNN in the C-CNN was 

the Cα-Atom CNN. This network took all the previous maps and produced two output maps 

representing the confidence of a voxel being part of a Cα atom or not. 

 

Fig. 3 Cascaded Convolutional Neural Network. The input/output of each stage is shown as a 

gray cube with the given dimensions. Each CNN is represented by a tapered salmon rectangle. 

Results from each CNN are forwarded along with previous input data to the next CNN. 

C. Convolutional Neural Network Architecture 

The three neural networks were very similar, each having the same number of layers and same 

type of layers. Their detailed structure is illustrated in Fig. 4. Each neural network had four layers. 

The first and fourth layers were regular 3-D convolutional layers with a stride of one. The second 
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and third layers were dilated convolutions, also with a stride of one. Each dilated convolutional 

layer used a dilation rate of two. Following each dilated convolution was a leaky ReLU activation 

function. A leaky ReLU was preferred over a standard ReLU activation function to improve back-

propagation and reduce the problem of vanishing gradient decent. Dilated convolutional layers 

were used to increase the receptive field while maintaining the image size. This is crucial for 

semantic segmentation because it maintains a one-to-one ratio of input voxel to output voxel. 

Each of the three neural networks used the same number of filters per layer for the first three 

layers: 1st layer: 32 filters, 2nd layer: 64 filters, and 3rd layer: 64 filters. The 4th and final layer 

differed for each network, but it was always equal to the number of output classes. Using more 

filters usually leads to higher accuracy. However, even a small increase from these numbers greatly 

slowed the network training. Therefore, we settled with these values as it was an optimal 

compromise between accuracy and speed. Other than the slight difference in filters per layer, the 

only other difference among the networks was a small difference in kernel size in the standard 

convolutional layers. The kernel size was larger (5x5x5 vs. 4x4x4) in the backbone and SSE CNNs 

to account for the need for a larger receptive field to better predict those structural elements. 
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Fig. 4 Detailed architecture of each of the 3D convolutional neural networks (CNN). (A) 

contains the Secondary Structure Elements (SSE) CNN. (B) contains the Backbone CNN. (C) 

contains the Cα-Atom CNN. Each CNN, including all its layers, are shown within the salmon 

colored boxes. The input to each CNN is noted by the yellow cubes. The Backbone CNN (B) and 

the Cα-Atom CNN (C) take input that is a contamination of various maps. The size of each input 

is noted by the dimensions listed at the base of each input cube. Each layer in each CNN is 

denoted by its name/function, kernel size (NxNxN), and finally the output number of filters 

(inside parenthesis) for that layer. Each leaky ReLU activation function used an alpha value of 

0.1. The output of each CNN is noted by the purple cube. The dimensions for each output are 

listed at the base of the cube. 
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D. End-To-End Model Pipeline 

The cascaded convolutional neural network is only a piece of the full backbone prediction model. 

The full model is shown in Fig. 5. The primary input to the full model was an MRC file or MAP 

file containing a 3D tensor of the electron density of the protein. The only other input was a 

manually selected threshold value which was used to zero out low intensity voxel values4. 

Selecting a proper threshold is challenging because each density map is very different in intensity. 

However, the recommended contour level on the EM Databank website5 is a good value to start 

with. The final output of the entire prediction model was a PDB file containing a set of traces 

where each trace is a set of connected Cα atoms. This PDB file also contains SSE labels for each 

Cα atom. These labels are determined from both the SSE output maps and the helix-refinement. 

Using the final output map the RMSD and the Percentage of Matched Cα atoms metrics were 

calculated. 

 

Fig. 5 Full Backbone Prediction Model. Model includes data preprocessing, the cascaded 

convolutional neural network (after training), and post-processing. 

E. Pre-Processing 

The goal of pre-processing experimental density maps before sending them into the cascaded 

convolutional neural network is to make them as similar as possible to the simulated maps that the 

                                                           
4 The manually selected threshold value was determined by viewing the density map in Chimera and selecting a 

cutoff value that made the SSEs appear similar in size and structure to the SSEs of the simulated density maps that 

were used to train the neural networks. 
5 https://www.emdataresource.org/index.html 
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C-CNN was trained with. Unlike simulated maps, experimental maps have large variance in local 

classified resolutions, electron density values, and molecular shapes. This can be attributed to the 

wide range in flexibility of biological molecules, cryo-EM imaging devices, different experimental 

procedures, and small natural artifacts that appear as part of the cryo-EM imaging process. 

Combined, these issues make experimental maps difficult to normalize. 

The first step of preprocessing was to remove any noise or irrelevant electron density data. This 

step was accomplished by zeroing out all voxels that were greater than 6Å away from the ground 

truth structure of the protein map. Once cleaned, the density map was resampled so that each 

dimension (x, y, z) had a voxel-size of exactly 1Å. There is a wide range of voxel-sizes for each 

experimental map and many often have a different value for each axis. Therefore, resampling was 

crucial because the C-CNN was trained with simulated maps that had a voxel-size of exactly 

1Åx1Åx1Å. This step was easily accomplished by using the UCSF Chimera tool along with the 

internal Chimera command vop resample. 

After resampling, the new map was preprocessed using the same method as outlined in Fig. 2 

with the only difference being that the threshold was manually selected for each density map. 

F. Network Output 

After the C-CNN processed the input map it produced confidence maps for the protein’s SSEs, 

backbone, and Cα atom locations. The output maps for EMDB-8410 (chain-A) are shown in Fig. 

6. Each voxel in the map was assigned a confidence value by the network. The final classification 

of a voxel was determined by the max voxel value of each of the output maps for a given neural 

network. 
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Fig. 6 Confidence Map Output for EMDB-8410 (Chain-A). (A) is the combination of the α-helix 

and β-sheet prediction map after applying the max function, (loops/turns map omitted for 

readability). (B) is the backbone confidence map (>40% confidence) with the ground truth 

backbone structure shown for reference. (C) is the Cα-Atom confidence map (>50% confidence) 

with the ground truth ball and stick representation of EMDB-8410 shown for reference. 

G. Path-Walking Algorithm 

Although the C-CNN assigns confidence values to specific features of the protein, post-

processing algorithms were required to piece together that information and generate a final 

prediction trace. This was accomplished with a path-walking technique that processed the 

confidence maps to produce a final PDB file that contained exact Cα atom locations along the 

protein’s backbone. 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 12, 2019. ; https://doi.org/10.1101/572990doi: bioRxiv preprint 

https://doi.org/10.1101/572990
http://creativecommons.org/licenses/by/4.0/


The path-walking technique walked through high-confidence areas of the backbone map and 

connected areas of high Cα atom confidence using a novel tabu-search algorithm designed 

specifically for this research. The tabu-search algorithm scored each potential future movement 

based on a location’s local density prediction confidence and distance. Additionally, it also 

incorporated the backbone atom torsion angles and common radius of α-helix secondary structures 

as weights when finding the optimal next Cα atom. 

The path-walking algorithm walked until it either reached an area of the protein that had already 

been processed or until it reached an area of the protein where no more suitable Cα atoms could 

be found. Upon reaching the end of a single trace, the path-walking algorithm would search the 

Cα confidence map for any other areas of the protein that might contain additional untraced Cα 

atoms and, if found, would walk each additional trace. This process was repeated until all high-

confidence areas of the Cα prediction map had been explored. The output of the path-walking 

algorithm was a PDB file consisting of a series of disconnected traces where each trace contained 

a chain of Cα atoms. 

H. Graph Refinement 

The disconnected traces from the path-walking algorithm represented partial backbone traces in 

the protein. However, there were many false positive traces that were the result of side chains and 

shortcuts between backbone structures being incorrectly classified as backbone traces. To remedy 

this issue, two refinement steps were required to improve the predicted traces: path combination 

and backbone refinement. In order to complete these two steps, the backbone traces were converted 

from a list of Cα locations and connections into a graph where each Cα atom was represented by 

a node and each connection to another Cα atom was represented by an edge.  

The goal of the path combination step was to combine a set of disjoint graphs (formerly traces) 

into a fully connected graph that is more representative of the protein’s backbone structure. We 

used a depth first search to walk from any given Cα atom within a disjoint graph to both end points 

of that trace. Using these endpoints, this algorithm would then examine all other Cα nodes in the 

protein graph to determine if another Cα atom was within 3Å of the end point Cα atom. If it was, 

then the end point Cα atom’s location was reassigned to be equal to the other Cα atom. This process 

helped combine neighboring disjoint graphs (traces) into a fully connected graph. 

After path combination, the fully connected graph resembled a protein’s backbone structure, but 

it still had many side chain and backbone trace shortcut connections. These false-positive 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 12, 2019. ; https://doi.org/10.1101/572990doi: bioRxiv preprint 

https://doi.org/10.1101/572990
http://creativecommons.org/licenses/by/4.0/


connections meant that many Cα nodes in the graph had three or even four edge connections to 

other Cα atoms. The next step in the graph refinement process was to remove the false-positive 

connections so that the remaining graph only contained true-positive Cα node and Cα edge 

connections. This refinement process was broken down into three steps: side chain removal, loop 

removal, dead-end point removal. 

Side chain removal involved examining every Cα node in the graph to determine if it might be 

part of a false-positive side chain connection. If a node had three or more edges (trinary node), it 

was likely that one of the three edges was a side-chain connection. This algorithm would use a 

depth first search (DFS) to walk along each of the three paths leading from a trinary node and stop 

once it found either an ending node (only one edge), or another node with three or more edges. It 

would compare the total depth reached for each of the three DFS edge walks. If one path had a 

depth of three or less while the other two paths both had depths greater than the shortest path, then 

the shortest path was considered a side chain connection and removed from the graph. This 

algorithm proved to be very effective at removing side chain and false-positive shortcut 

connections between true parallel backbone traces. 

After removing the side chains from the fully connected graph, it was necessary to remove small 

loops within the graph. These loops were the result of false-positive shortcut traces within α-helix 

elements of the protein. The goal of this method was to remove the false-positive half of each loop 

leaving the true backbone structure in place. The approach was similar to side chain removal. It 

would find any Cα nodes that contained three or more edges and then path walk each trace until it 

reached an end-node or trinary connection. However, in this case, if two paths terminated in the 

same trinary node then the combined two paths were considered a loop. To remove the false-

positive side of the loop, this method would calculate the density along each path using a 1Å radius 

cylinder and remove the path with the lower average density value. This approach made the 

assumption that the backbone structure of the protein had a higher density than another false-

positive path. 

The final step of the graph refinement process was to remove dead-end nodes. These resulted 

from side-chains that did not connect to another backbone trace of the protein but did nonetheless 

protrude off the true backbone structure. Removing these was accomplished by finding all trinary 

Cα nodes in the graph and then walking down each trace extending from that node. If any path had 
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a depth of two or less and ended in a dead-end node then it was considered a side-chain and 

removed from the graph. 

I. Helix Refinement 

In the final post-processing step, we tackled prediction inaccuracies for α-helix backbone 

structures. Due to their geometrical shape, the neural network had, in some cases, difficulties 

accurately predicting the location of Cα atoms belonging to an α-helix. In order to improve the 

prediction, we exploited the fact that the shape of an α-helix has a general definition which is valid 

across proteins [33]. Since the neural network predicted the confidence of secondary structure 

elements, as described in Network Output section, we know which Cα atoms belong to an α-helix 

based on the confidence of their region in space. We combined this knowledge of α-helix locations 

and their shape attributes in order to adjust the appropriate Cα atoms to better fit the shape of a 

natural α-helix structure.  

For an α-helix which centers around the z-axis, we can use Equation 1 to model its shape where 

the variables s and r represent the initial shift and rotation of the helix. The values 2.11 and 1.149 

are constants that define the radius and pitch of the helix to best match those of an α-helix. 

                                                      𝒙 = 𝟐. 𝟏𝟏 × 𝒔𝒊𝒏(𝟏. 𝟏𝟒𝟗 × 𝒕) − 𝒔 + 𝒓                                                                              
                                                      𝒚 = 𝟐. 𝟏𝟏 × 𝒄𝒐𝒔(𝟏. 𝟏𝟒𝟗 × 𝒕) − 𝒔 + 𝒓                                               (1) 
                                                                                  𝑧 = 𝑡                                                                                                              

Equation 1 however, cannot be used to describe an α-helix which does not center around the z-

axis or whose shape is not a straight cylinder. Since this is the case for most α-helices, it is 

necessary to adjust the equation in such way that it will address these issues. With the aim of doing 

so, we first locate the screw axis, the center line around which the helix winds itself, for each α-

helix. This is achieved by calculating the centroid of consecutive intervals of the α-helix and then 

connecting them to approximate the true curve. An example of an α-helix and its calculated screw 

axis can be seen in Fig. 7. 

 

Fig. 7 Alpha-Helix extracted from the backbone prediction of the 5u70 protein map in tan color 

and its screw axis in teal color. 
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Now that we know the location and shape of the screw axis for the α-helix, we need to 

incorporate this information into Equation 1. This is achieved by interpreting t as the distance that 

we travelled on the screw axis and use the unit direction vector of the screw axis at a certain point 

t as the new z axis. Next, we can find the new y-axis by calculating the cross product of the x-axis 

and the new z-axis and then normalizing it. Finally, we can get the new x-axis by calculating the 

cross product of the new z and y-axis and normalizing it again. By concatenating the three new 

axes we can get a rotation matrix RM with which we can calculate the point of the α-helix for any 

value t as shown in Equation 2. 

                  α-helix(𝑡) = screw-axis(𝑡) + RM ⋅ (
2.11 × 𝑠𝑖𝑛(1.149 × 𝑡) − 𝑠 + 𝑟
2.11 × 𝑠𝑖𝑛(1.149 × 𝑡) − 𝑠 + 𝑟

0

)                   (2) 

Now, we need to know the values t at which we have to insert Cα atoms. Since we know that an 

α-helix has a rise of 1.5Å per residue [33] we can increase t in steps of 1.5 and add a new Cα atom 

at α-helix(t). 

In the final step we minimize the average distance from the Cα atoms of the refined α-helix to 

the Cα atoms of the original prediction. This is done by applying a minimization algorithm6 over 

the variables s and r to try different initial shifts and rotations. The final results of the α-helix 

refinement step are shown in Fig. 8. 

 

 

 

 

 

                                                           
6 https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html  
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Fig. 8 Alpha-Helix extracted from the backbone prediction of the 5u70 protein map. (A) Original 

prediction before the helix-refinement step. (B) Alpha-Helix after the refinement. (C) Direct 

comparison of original prediction in tan color, refined prediction colored in teal, and the ground 

truth in pink color. (D) Direct comparison without ribbon. 

J. Mapping Protein Sequences onto Cα traces 

After an imperfectly reconstructed Cα trace is reconstructed, the next important problem is to 

assign amino acids in the protein sequence onto its correct location in the trace. This problem is 

non-trivial because a protein may have extra or disordered residues that do not have corresponding 

positions in the trace. Additionally, the trace contains noisy, false or missing Cα positions that do 

not match with residues in the protein well. Therefore, simply copying a protein sequence into a 

Cα trace does not work. To address this challenge, we design a quality assessment-based 

combinatorial algorithm to map a protein sequence onto each reconstructed Cα trace from the 

previous steps. 

(A) 

(B) 

(C) 

(D) 
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Fig. 9 The algorithm of mapping a protein sequence onto a Ca trace. 

As shown in Fig. 9, given the Cα trace of a target protein and its whole sequence, the algorithm 

first extracts all continuous Cα segments with length greater than a threshold (i.e. >50 residues). 

For each Ca segment, a search on the whole sequence is performed to identify its best-matching 

sequence fragment (sub-sequence) according to the fitness between the Ca segment and the 

sequence fragment (i.e. the energy or the structural quality score). Specifically, the target protein 

sequence is decomposed into all possible sequence fragments with the same length of the Cα trace 

segment and each sequence fragment is mapped into the trace segment. Based on the Cα coordinate 

of each sequence fragment obtained from the mapping, the main chain structure including the 

positions of N, Cα, C atoms for the sequence fragment is reconstructed by using Pulchra [34]. 

Scwrl [35] is then used to add side chains into the main-chain structure of the sequence fragment 

to obtain a full-atom structure. The quality of the structure of each sequence fragment, i.e. the 

fitness between the Cα trace and the sequence fragment, is assessed by a protein single-model 

quality assessment method Qprob [36], which utilizes several structural and physicochemical 

features by feature-based probability density functions to predict the structure quality score (GDT-
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TS). Finally, the sequence fragment whose assigned structure has the best structural quality is 

selected to map to the Cα trace. All the Ca-trace segments were evaluated one by one according to 

the segment size from largest to smallest to identify their best-matching sequence fragments. If the 

optimal sequence fragment for current Ca-trace segment has already been assigned to one of 

previous segments, the unassigned sequence fragment with the largest quality score was then 

selected for the segment. 

K. Computation 

The C-CNN was trained with 25,000 simulated protein maps, each with a size of 64x64x64 

voxels. Training was accomplished with the Python TensorFlow Library on a Nvidia GTX 1070 

GPU. Training was stopped after 15 epochs to prevent overfitting and took about 24 hours. Density 

Map prediction, which involved running a preprocessed density map through the saved C-CNN 

only, was completed using the same GPU and took about 15 seconds to produce the five output 

prediction maps (three SSEs, backbone, and Cα atoms) for a map size of approximately 

100x100x100 voxels. The path-walking algorithm was the most time-consuming aspect of the 

prediction process. A map of approximately 1000 Cα atoms took about 20 minutes to compute. 

All computation used a machine with an Intel 6 core i7-8700K CPU clocked at 3.7GHz with 16GB 

of RAM. To increase throughput, a new process was spawned for each path-walking task (one per 

protein, with a maximum of 12 at a time). 

III.   Results 
 

This method was tested with both simulated and experimental maps. Simulated density maps 

were generated using the pdb2mrc script from the EMAN2 package while experimental maps were 

downloaded from the EM Databank. Both experimental and simulated maps underwent the same 

pre-processing steps as outlined in the Data Collection/Generation section before being evaluated.  

A. Metrics 

A variety of metrics were used to measure the effectiveness of our method. One primary metric 

was the root-mean-squared-deviation (RMSD) which measures the standard deviation of the 

distance between atoms in two models. In this case, the two models were the predicted Cα atoms 

and the ground truth Cα atoms as defined in the PDB file. The output from our model often 

consisted of partial backbone traces when the confidence was not high enough to form a complete 

backbone trace. With partial backbone traces it is difficult to use traditional RMSD algorithms to 
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measure the effectiveness of a prediction method. As a result, we decided to follow the same 

method used by the fully autonomous Phenix method [19] which compares each Cα atom in the 

ground truth model to the closest Cα atom in the predicted method using a one-to-one mapping. 

This RMSD method walks each predicted backbone trace and pairs it with the closest Cα atom in 

the ground truth structure. This produces lower/better RMSD values than other methods [12] [25] 

because it allows for Cα skips in the ground truth backbone trace. 

Another primary metric that we focus on in this research is the percentage of predicted Cα atoms 

within 3Å (% Cα in 3Å) of the ground truth structure. This metric is a good measure of prediction 

map completeness because higher values mean that a higher percentage of the ground truth atoms 

were found. This metric is calculated in a similar way to the RMSD metric: by walking down each 

predicted trace and pairing each predicted Cα atom with its closest ground truth Cα atom. This 

metric requires a one-to-one mapping. We compare our results for this metric to the Phenix method 

which used the exact same metric and metric calculation method. 

In addition to these metrics, we also include for each tested density map: the number of predicted 

Cα atoms, the number of actual Cα atoms, and the number of false positive Cα atoms. 

B. Simulated Density Maps 

Table 1 shows the results for seven simulated density maps. Each density map was generated 

from the pdb2mrc script at 6Å. Although 6Å is considered medium resolution, pdb2mrc used 

inflated resolution values. Therefore, a 6Å resolution simulated map was most similar to an 

experimental map at 3.5Å resolution. 

Table 1 Results of simulated data using the script pdb2mrc.py from the EMAN2 package at 6Å 

resolution. 

PDB 

ID 

Model 

Cα 

Native 

Cα 

RMSD 

(Å) 

% Cα 

in 3Å 

FP% 

3i2n 351 345 0.91 99.1 0.6 

3n2t 328 327 0.90 99.4 0.3 

3qc7 165 164 0.97 94.8 0.0 

5i68 661 662 0.92 99.4 0.2 

6ahv 348 345 0.89 99.7 0.3 

6eyw 384 381 0.87 100.0 0.3 

6g61 112 111 0.84 98.2 0.9 

Avg.   0.90 98.7  
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The simulated results proved to be very accurate relative to the true protein structure. With an 

average RMSD of 0.90Å per Cα atom, the predicted backbone structure was almost a perfect match 

to the true structure. Additionally, the predicted results produced nearly complete backbone traces 

as evident by an average of 98.7% of ground truth Cα atoms being within 3Å of a predicted Cα 

atom. Finally, the false positive rate was very low for each prediction (no more than 2 false positive 

atoms per protein). This translates to a very high sensitivity for each prediction. Fig. 10 shows the 

final prediction maps of both the Cα-only backbone structure along with the ribbon representation 

of 6eyw. 

The low RMSD values, minimal false positive Cα atoms, and high matching percentage of Cα 

atoms within 3Å of the real structure demonstrates the effectiveness of this method with simulated 

density maps. However, these maps have the advantage over experimental maps in that they do 

not contain any experimental inaccuracies or real-world noise to distort the image. Additionally, 

these simulated maps were generated with the same pdb2mrc script that the training data was 

generated with. This means that the C-CNN likely learned features of simulated maps very 

accurately and possibly overfit the data thereby leading to the high accuracy metrics. 

 

 
 

 

Fig. 10 Final Backbone Prediction structures from the simulated 6eyw protein map. Ground 

Truth is colored teal while the predicted structures are colored tan. (A) contains the Cα only 

backbone structures with the input density map overlaid on the image for reference. (B) displays 

the final ribbon prediction. The ribbon was enhanced using the secondary structure output maps 

from the Cascaded Convolutional Neural Network. 

C. Experimental Density Maps 

The real test of our backbone prediction model involved experimental density maps. 

Experimental maps ranging in resolution from 2.6Å to 4.4Å were evaluated using the backbone 

prediction model. Table 2 tabulates the results for each experimental density map. Each density 
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map was downloaded from the EM databank7. In addition to the normal preprocessing steps 

outlined in the Pre-Processing section, each density map underwent an additional cleaning step 

before being evaluated. To remove artifacts from the cyro-EM imaging process unrelated to the 

protein structure, all voxels that were further than approximately 5Å from the ground truth 

structure were zeroed out using built in Chimera functions. This cleaning step essentially cut the 

protein out from the raw density map. However, this step maintained the experimental protein’s 

shape and density and did not change or manipulate any voxel data within the protein’s 

experimental structure. 

Our results were compared to the fully automatic Phenix method [19] in two categories: RMSD 

and % Cα Matching within 3Å. The Phenix method results are listed alongside our results in Table 

2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                           
7 https://www.emdataresource.org/ 
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Table 2 Results from the evaluation of experimental density maps. Results from the Phenix 

method [19] are listed alongside each evaluated map to compare the RMSD and % matching 

metrics of each method. Combined metrics for each method are plotted in Fig. 14 and Fig. 15. 

(Results are continued on the next page) 

EMDB 

ID 

PDB 

ID 

Res. 

(Å) 

Model 

Cα8 

Native 

Cα9 

FP%10 % Cα 

in 3Å 

RMSD 

(Å) 

Phenix % 

Cα in 3Å 

Phenix 

RMSD (Å) 

2513 4ci0 3.36 9634 10716 2.5 83.3 1.32 62.5 1.33 

3061 5a63 3.4 1293 1223 4.0 95.6 1.09 73.9 1.15 

3121 5aco 4.36 2639 2415 10.7 83.8 1.42 57.0 1.63 

3222 5flu 3.8 1895 2119 0.9 82.6 1.59 62.0 1.76 

3238 5fn3 4.1 1313 1318 2.3 83.6 1.51 56.1 1.50 

3601 5n8o 3.9 1431 1433 6.2 86.0 1.38 50.0 1.29 

3785 5odv 4.0 3818 4968 10.9 62.4 1.46 40.1 1.73 

4054 5lij 4.2 169 152 0.6 97.4 1.43 84.2 1.44 

4062 5ljv 3.64 2006 1950 3.4 93.7 1.09 48.3 1.21 

4128 5lzp 3.5 6059 6182 0.5 92.7 1.16 77.1 1.13 

5623 3j9i 3.3 6002 5978 0.6 97.0 1.03 72.4 0.87 

577811 3j5p 3.28 512 592 1.0 78.4 1.32 55.6 1.15 

5995 3j7h 3.2 4028 4088 1.7 93.2 1.09 72.9 1.12 

6224 3j9c 2.9 2959 2961 1.0 94.1 1.02 71.9 0.99 

6239 3j9d 3.3 762 746 2.1 98.3 0.99 74.8 0.99 

6240 3j9e 3.3 445 520 0.7 83.5 0.97 69.4 0.82 

6272 3j9s 2.6 1227 1191 0.3 99.2 0.88 88.9 0.69 

6324 3ja7 3.6 4297 5136 2.0 77.8 1.2 69.4 1.13 

6346 3jaf 3.8 1706 1710 1.7 94.1 1.21 72.8 1.10 

6408 3jb6 3.3 1735 1731 0.8 96.9 0.96 79.3 0.83 

6488 3jby 3.7 1923 1802 13.7 88.8 1.14 57.3 1.18 

6551 3jcf 3.8 1853 1745 1.8 96.0 1.24 74.2 1.15 

6630 3jcz 3.26 2932 2976 1.1 91.7 1.07 66.1 1.05 

6631 3dj0 3.47 2904 2976 2.0 90.3 1.16 59.5 1.07 

6676 5wq8 3.26 5680 7440 1.0 73.4 1.05 54.2 0.93 

6703 5x58 3.2 3091 3159 5.7 85.5 1.28 53.1 1.27 

6744 5xno 3.5 1074 854 24.6 87.7 1.18 55.4 1.22 

6770 5xsy 4.0 1407 1312 7.9 90.3 1.35 68.5 1.21 

7063 6b7n 3.3 3062 2898 4.2 95.4 1.12 71.3 1.21 

8015 5gaq 3.1 2607 2592 0.5 98.8 0.92 79.2 1.1 

8069 5i08 4.04 2843 2874 2.9 88.5 1.32 66.7 1.51 

8072 5i68 3.37 5379 5296 2.8 93.8 1.07 84.6 1.07 

                                                           
8 The number of Cα atoms modeled by our C-CNN method. 
9 The number of Cα atoms in the ground-truth PDB structure. 
10 Percentage of Cα atoms in the predicted model that are more than 3Å away from any ground-truth Cα atom. 
11 EMDB-5778 Chain-A only 
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EMDB 

ID 

PDB 

ID 

Res. 

(Å) 

Model 

Cα8 

Native 

Cα9 

FP%10 % Cα 

in 3Å 

RMSD 

(Å) 

Phenix % 

Cα in 3Å 

Phenix 

RMSD (Å) 

8200 5k47 4.22 2000 1936 1.9 91.9 1.26 71.7 1.29 

8331 5szs 3.4 3716 3531 4.9 94.6 1.08 68.6 1.04 

8405 5tfy 3.4 4041 4264 0.9 92.7 1.09 70.7 1.25 

8410 5tj6 3.5 3706 3560 1.9 96.2 1.13 67.6 1.07 

8515 5u70 3.76 3723 3608 0.7 96.6 1.13 76.5 1.19 

8637 5v6p 4.1 508 540 2.9 83.3 1.6 80 1.37 

8642 5v7v 3.9 807 613 8.3 89.6 1.38 76.3 1.28 

8651 5va2 3.8 2172 2232 2.8 82.7 1.54 69.7 1.43 

8658 5vc7 3.9 2956 3264 3.8 80.9 1.5 68.2 1.49 

8697 5vjh 4.0 2943 3485 3.8 76.5 1.41 72.5 1.39 

8712 5vms 3.7 1869 1936 1.9 90.8 1.17 64.9 1.22 

8764 5w3s 2.94 1694 1940 4.1 79.2 1.07 66.6 0.97 

8767 5w5f 3.4 2953 2934 1.1 97.2 1.36 52.8 1.43 

8782 5w81 3.37 1172 1173 4.7 89.1 1.44 66.7 1.38 

8784 5w9i 3.6 3763 3618 5.1 89.9 1.3 53.8 1.25 

8794 5wc0 4.4 1342 1660 3.1 71.9 1.61 64.3 1.53 

8882 5wpt 3.75 1718 1816 1.9 87.4 1.13 68.5 1.02 

9515 5gjw 3.9 2684 2678 6.5 82.7 1.48 54.6 1.40 

Avg.      88.5 1.23 66.8 1.22 

The results on experimental data show that our method was very similar to the automatic Phenix 

method with respect to RMSD. The C-CNN was able to achieve a mean RMSD of 1.23Å while 

the Phenix method achieve a mean RMSD of 1.22Å. Both methods were tested on the same set of 

50 experimental density maps. Our method was able to produce a much higher average Cα 

percentage matching within 3Å than the Phenix method (88.5% vs. 66.8%). This significant 

improvement is primarily a result of our method’s ability to predict backbone structure in relatively 

low-confident regions while the automatic Phenix made no prediction in these areas. By achieving 

similar RMSD metrics but improved Cα matching percentages our method has clearly 

demonstrated an improvement over the automatic Phenix method in terms of Cα/backbone 

prediction. Fig. 11 shows the final predicted map for three experimental density maps using our 

deep learning method. 
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Fig. 11 Final Backbone Prediction maps for various density maps. (A) EMDB-6272 (chain-A) at 

resolution 2.6Å. (B) EMDB-8410 (chain-A) at resolution 3.5Å (C) EMDB-5778 (chain-A), 

resolution 3.3Å. The left map in each subfigure contains the predicted vs. actual backbone 

structure. The right map in each subfigure contains the predicted vs. actual ribbon structure of 

the protein which specify the SSE classification. The pick trace is the predicted structures while 

the blue trace is the actual structure. 

D. Impact of Helix Refinement 

In the Helix Refinement section we discussed the final post-processing step which was 

responsible for adjusting predicted α-helices to fit the true structure of an α-helix. The refinement 

step improved the percentage of Cα atoms predicted within 3Å of their actual location by 1.5% 

while remaining the average RMSD value. In this section we want to highlight specific protein 

maps where the helix refinement yielded significantly improved results. In Table 3 we can see a 

comparison of results before and after the application of the helix refinement. 
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Table 3 Results from the evaluation of experimental density maps before and after the helix 

refinement was applied 

EMDB ID RMSD before 

refinement 

RMSD after 

refinement 

% Cα in 3Å before 

refinement 

% Cα in 3Å after 

refinement 

8637 1.68 1.60 68.5 83.3 

3238 1.54 1.51 80.0 83.6 

6744 1.24 1.18 84.8 87.7 

8200 1.30 1.26 87.9 91.9 

8405 1.12 1.09 89.9 92.7 

From Table 3 we can see that the helix refinement was particularly effective in increasing the 

percentage of Cα atoms predicted within 3Å of their actual location with up to ~15% in the case 

of the EMDB-8637 map. In Fig. 12 we can see a comparison before and after the helix refinement 

step for this map. Improvements in RMSD values were less significant, especially if we consider 

all test results. This can be attributed to the number of Cα atoms originally predicted within α-

helices which is almost always lower than the actual number of Cα atoms. This means that the 

average inaccuracy in α-helices, which is usually high, has less of an impact to the overall average 

RMSD value. In the helix refinement process new Cα atoms are added to the predicted α-helices 

in an attempt to approximate their true structure. As a result, the average RMSD value within the 

α-helix improves. However, since there are now more Cα atoms belonging to the α-helices, their 

average inaccuracy has a larger impact to the overall average RMSD dampening improvements. 

 

Fig. 12 Comparison of predicted map for EMDB-8637 before the helix refinement step in tan 

color and after the refinement in pink color 
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E. Comparison of Prediction Methods 

As introduced in the Current Protein Prediction Models section, there are three other leading 

backbone prediction models: Phenix, MAINMAST, and RosettaES. We compare our deep 

learning method to the other leading prediction models by evaluating EMDB-5778 (chain-A) with 

each method. The prediction maps for each method are shown in Fig. 13. 

 
Fig. 13 Final Prediction Model for EMDB-5778 (chain-A) at 3.28Å resolution. (A) Our C-CNN 

method. (B) automatic Phenix method. (C) MAINMAST. (D) RosettaES. (E) The ground truth 

model. Each figure overlays the input density map on top of the predicted structure. (A) Notes 

five areas where the C-CNN found the true backbone structure while the automatic Phenix 

method did not. 

Table 4 compares the prediction metrics of all four prediction methods. The RosettaES model 

produced the most accurate prediction map but it was only able to predict 7.9% of the Cα Atoms 
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from the ground-truth model. The MAINMAST method, which only predicts backbone structure 

and not SSEs, found the highest percentage of Cα Atoms among the three previous prediction 

methods. However, MAINMAST has a relatively high RMSD of 2.20Å and also produced the 

highest false positive Cα Atom percentage. Among the three former prediction methods the Phenix 

method was arguably the best method for EMDB-5778, producing decent metrics in all three 

categories (Percentage of Matching Cα Atom, RMSD, and false positive Cα Atom percentage). 

However, our deep-learning method was about to achieve a much higher Percent Cα Atom 

Matching and a lower false positive Cα Atom percentage with only a small increase in the RMSD. 

Fig. 13A points out four areas where our prediction model outperformed the Phenix method by 

producing a more-complete prediction map. 

Table 4 Comparison of EMDB-5778 (chain-A) among leading backbone prediction models. Each 

model had specific strengths, however the deep learning C-CNN produced the most complete 

model as measured by the percent Cα matching percentage. 

Method % Cα 

in 3Å 

RMSD 

(Å) 

FP% 

C-CNN 78.4 1.32 1.0 

Phenix 55.6 1.15 3.0 

MAINMAST 59.6 2.20 6.5 

RosettaES 7.9 0.91 0.0 

F. Computation Time of Prediction Models 

While our C-CNN model took about 24 hours to train on a single machine with a GTX 1070 

GPU, after the training had completed, the full end-to-end prediction for a density map with 

approximately 1000 Cα Atoms took about 20 minutes to complete. The C-CNN prediction 

software was running on the same GTX 1070 GPU with a single CPU core. In contrast, the existing 

methods usually required a lot of computing resources and were also very time-consuming. In our 

experiments, RosettaES took 5 days with 20 CPUs to complete, MAINMAST finished in about 18 

hours with 1 CPU, and Phenix method took several hours with 6 CPUs.  

G. Comparison of Deep-Learning C-NN and the Fully Automatic Phenix Method. 

The results for each prediction map in Table 2 are plotted and shown in Fig. 14 and Fig. 15. Fig. 

14 plots the RMSD vs. the labeled resolution for each density map. The mean RMSD of our deep-

learning method was 1.23Å which is similar to the Phenix method’s RMSD of 1.22Å for the same 

set of experimental density maps. Fig. 14 shows that the performance of our deep-learning method 

was very similar to the Phenix method across all resolution values. Fig. 14 also clearly shows how 
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the RMSD for both prediction methods increased as a function of the labeled resolution. This is to 

be expected as higher resolution maps usually have less well-defined structure to aid the prediction 

models. 

 
Fig. 14 Plot of RMSD as a function of resolution for the 50 experimental density maps. This 

compares our deep learning C-CNN method and the fully automatic Phenix Method. 

Fig. 15 plots the percentage of matching Cα atoms vs. labeled resolution of each density map for 

both the C-CNN method and the Phenix method. This figure shows how our deep-learning method 

found a higher percentage of Cα atoms than the Phenix method across all resolutions. Our method 

found a mean of 88.5% of the Cα atoms for the 50 experimental density maps. This is significantly 

better that the Phenix method which only found a mean of 66.8% Cα atoms from the same 50 

experimental maps. 
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Fig. 15. Plot of Percentage of Found Cα atoms as a function of resolution for the 50 

experimental density maps. This compares our deep learning C-CNN method and the fully 

automatic Phenix Method. 

H. Evaluating the Results of Mapping Protein Sequences onto Cα traces 

To validate the effectiveness of our sequence-to-trace mapping algorithm, we evaluated the 

structural similarity between the predicted structure of the Cα-trace segment and its real structure 

for the mapped sequence fragment in the known experimental structure of the protein in terms of 

the TM-score and GDT-TS scoring metrics. TM-score [37] and GDT-TS [38] scores are two 

structural similarity measurements with values in (0,1], where higher value indicates better 

accuracy and 1 means the perfect match between two protein structures. The two metrics measure 

the match of the residues with Ca-atom distances within a certain distance cutoff of their positions 

in two structures for the same protein sequence, which is suitable for the method evaluation in our 

study. A perfect Cα trace segment matched with a completely correct sequence fragment will 

match perfectly with its corresponding counterpart in the experimental structure, leading to a 

prefect similarity score (TM-score or GDT-TS score) of 1, otherwise a score between 0 and 1.  We 

validated our mapping algorithm on two targets, EMDB-5778 and EMDB-8410, and the results 
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were summarized in Table 5 and Table 6.  For EMDB-5778, the longest Cα trace segment (185 

residues) among the three predicted Ca segments is well mapped by the sequence segment and has 

a TM-score of 0.9478 and a GDT-TS score of 0.8723. The alignment of the mapped structure of 

the segment with its counterpart, which was superimposed by the sequence-dependent alignment 

program– TM-score, is illustrated in Fig. 16. The TM-score of the second mapped Cα segment is 

0.3947, suggesting its incorrect topology when the TM-score is less than 0.5. For the third mapped 

Cα segment, the TM-score for the structural alignment is 0.5978, which suggests the close 

topology is predicted for the sequence fragment. The structural errors result from either the noise 

in the Cα trace or inaccuracy of the mapping algorithm, or both factors. For EMDB-8410, the 

longest Cα trace segment (234 residues) is mapped reasonably well, which has a TM-score of 

0.8816. However, the other mapped Cα trace segments have TM-scores below the 0.5 threshold, 

indicating the structures are not predicted correctly. The superposition of the mapped structure and 

its counterpart for the longest trace of EMDB-8410 is illustrated in Fig. 17. The analysis 

demonstrates that our mapping strategy is able to identify the correct sequence fragment for the 

Ca trace if the segment is well predicted by C-CNN and long enough for mapping sequence to 

structure using quality assessment methods.    

 

Table 5 Similarity between three mapped Cα segments (length > 50) and their true counterparts 

on EMDB-5778 

EMDB-5778 # Ca Atoms  TM-score GDT-TS-score 

Seg #1 185 0.9478 0.8723 

Seg #2 134 0.3947 0.3601 

Seg #3 53 0.5978 0.6981 
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Fig. 16 Visualization of superposition between the mapped Cα Segment 1 of EMDB-5778(brown) 

and its counterpart in the experimental structure (blue). ":" in the sequence-dependent structure 

alignment denotes the residue pairs whose distance is < 5.0 Angstrom. 

 

Table 6 Similarity between two mapped Cα segments (length > 50) and their true counterparts 

on EMDB-8410 

EMDB-8410 # Ca Atoms TM-score GDT-TS-score 

Seg #1 234 0.8816 0.7927 

Seg #2 180 0.4226 0.3142 

Seg #3 159 0.4234 0.3296 
 

 
Fig. 17 Visualization of the superposition between the mapped Cα segment 1 of EMDB-8410 

(brown) and its counterpart experimental structure (blue). ":" denotes the residue pairs of 

distance < 5.0 Angstrom. 
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IV.   Discussion 

A. False Positive Cα Error Rate 

The RMSD metric in conjunction with the percentage of matching Cα metric is useful to 

determine the accuracy of Cα atom placements that are in-line with Cα atoms within the ground 

truth model. However, as is often the case with backbone prediction, side-chains or other noise in 

a density map will appear as backbone structure to a prediction model. This can cause the model 

to produce false positive Cα atoms that are clearly not in alignment with the true backbone 

structure of the protein, see Fig. 18. An effective prediction model will limit the number of false 

positive Cα atoms by correctly distinguishing side-chains or other noise from the true backbone 

structure and not place Cα atoms in these areas. In this research, we measure the number of false 

positive Cα atom for each density map which is listed in Table 1 and Table 2. A false positive is 

defined as any Cα atom that is placed more than 3Å from any Cα atom within the ground truth 

structure. 

 
Fig. 18 Ball and Stick representation of the prediction map (pink) and the ground truth map 

(blue) of EMDB-8642, resolution 3.9Å. This map had a relatively low RMSD value of 1.28Å 

but also had a false positive Cα rate of 8.3%. The expanded areas show examples of side 

chains that were incorrectly predicted as backbone structure resulting in false-positive Cα 

placements. 

Normalizing the number of false positive Cα atoms by the size of a protein produces a false 

positive rate for Cα atom placement. This is called the Cα atom error rate. This metric can be 

derived from the number of false-positive Cα atoms and the total number of predicted Cα atoms, 

see Equation 3. 

                                                       𝑬𝒓𝒓𝒐𝒓 𝑹𝒂𝒕𝒆 =
# 𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝐶𝛼

𝑡𝑜𝑡𝑎𝑙 # 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝐶𝛼
                                         (3) 
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Fig. 19 plots the Cα atom error rate as a function of resolution for the 50 experimental density 

maps evaluated by our model. The error rate of Cα atom prediction is inversely related to the 

labeled resolution of a density map. However, our deep learning model produced a relatively low 

error rate (< ~5%) for most density maps with a labeled resolution value of 3.7Å or better. The 

error rate of density maps with a lower resolution than 3.7Å had a high variance and thus had lower 

prediction confidence. 

 
Fig. 19 Error-Rate vs. resolution for each experimental prediction map with an added 

exponential trendline. 

I. Future Improvements 

We found during development that the biggest improvements in accuracy came as the result of 

adding more convolutional neural networks to the C-CNN. Originally, this method used only one 

network, the Cα-Atom prediction network. It was only after adding the SSE and Backbone CNNs 

that we were able to achieve the results outlined in this paper. Future work might be able to 

incorporate other CNNs into the C-CNN such as an Amino Acid network or an individual atom 

network. Adding these networks might also help match the sequenced DNA of the protein to the 

density map. 
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As the number of publicly available experimental density maps continues to grow, it may 

become possible to train neural networks using experimental data instead of simulated data. Our 

research used simulated data to train our network, but experimental training data may improve 

results further. This change would prevent the model from over-fitting the simulated data and give 

it a wider, more representative data set to train with. Also, by adding an additional 1x1 scalar input 

to the network to denote the resolution of an experimental map, the C-CNN could train to 

differentiate between map resolution. This change would allow the network to learn each 

resolution with more independence. 

This research relied on a manually chosen threshold value to normalize each experimental 

density map before evaluating it with the C-CNN. This manual step is not ideal as it requires 

subjective input by the user. Further improvements could remove this manual step by adding an 

automatic method which use traits such as map surface area or resolution to automatically calculate 

a threshold value for each density map. Another effective method could train a CNN, that also uses 

deep learning semantic segmentation, to automatically modifies density maps into a preprocessed 

state.  

 

V. CONCLUSION 
 

In summary, we presented an effective method for protein backbone prediction from high 

resolution cryo-EM density maps using deep learning. This approach used three cascaded 

convolutional neural networks to produce confidence maps for some of the major structural 

components of proteins. These confidence maps were processed using a variety of novel method 

including a tabu-search path-walking algorithm to construct backbone traces and a helix-

refinement step to improve the structure of α-helices. Additionally, a new protein mapping 

algorithm was used to build up full atomic models from two of the final prediction maps (EMDB-

5778 and EMDB-8410). Our method out-performed the Phenix based fully automatic model 

building method by producing backbone traces that were more complete (88.5% vs. 66.8%) as 

measured by percentage of matching Cα atoms. Further research may improve this research field 

by incorporating other structural aspects of protein molecules within the cascaded convolutional 

neural network or training the networks with experimental data. 
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