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Abstract

Simple stimuli have been critical to understanding neural population codes in sensory systems.
Yet it remains necessary to determine the extent to which this understanding generalizes to more
complex conditions. To explore this problem, we measured how populations of direction-selective
ganglion cells (DSGCs) from mouse retina respond to a global motion stimulus with its direction
and speed changing dynamically. We then examined the encoding and decoding of motion
direction in both individual and populations of DSGCs. Individual cells integrated global motion
over ~200 ms, and responses were tuned to direction. However, responses were sparse and
broadly tuned, which severely limited decoding performance from small DSGC populations. In
contrast, larger populations compensated for response sparsity, enabling decoding with high
temporal precision (<100 ms). At these timescales, correlated spiking was minimal and had little
impact on decoding performance, unlike results obtained using simpler local motion stimuli
decoded over longer timescales. We use these data to define different DSGC population decoding
regimes that utilize or mitigate correlated spiking to achieve high spatial versus high temporal

resolution.
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Introduction

Sensory systems encode and decode information across populations of neurons.
Understanding such population codes is fundamental to understanding the function of neural
circuits and sensory processing (Pouget et al., 2000; Panzeri et al., 2015). Population codes are
likely optimized for natural sensory stimuli but they are often probed using simple and artificial
stimuli (Felsen et al., 2005; Fitzgerald and Clark, 2015). Such simplifications may limit an
understanding of population codes and neural function in ethological contexts. In this paper, we
examine a canonical population code, direction coding in mammalian ON-OFF (00)DSGCs, in the
context of global motion of a natural scene.

In the mammalian retina, there are four types of 00DSGCs, each tiling space with their
dendritic and receptive fields (Barlow et al., 1964; Devries and Baylor, 1997; Demb, 2007; Vaney
et al., 2012; Morrie and Feller, 2016). These types differ primarily in their preferred direction of
motion, which are organized along four cardinal axes (Oyster and Barlow, 1967; Vaney, 1994;
Kay et al., 2011; Trenholm et al., 2013; Yao et al., 2018). Direction is encoded across the four
types by their relative firing rates. This produces a population code for direction that is relatively
invariant to object speed and contrast (Nowak et al., 2011; Zylberberg et al., 2016). 0oDSGCs
have been largely considered responsible for signaling local motion, because global motion
attenuates (but does not eliminate) their responses (Vaney et al., 2001; Chiao and Masland, 2003;
Olveczky et al., 2003; Hoggarth et al., 2015). A separate class of DSGCs, so-called ON DSGCs
(oDSGCs), are minimally attenuated by global motion, and have thus been assumed to play a
dominant role in signaling global motion (Oyster, 1968; Simpson et al., 1988). Correspondingly,
previous studies examining the fidelity and accuracy of the 0oDSGC population code have
focused on local motion and artificial stimuli that are decoded at relatively long timescales
(Fiscella et al., 2015; Zylberberg et al., 2016). These studies largely pointed toward a high-fidelity
code that utilizes correlated activity in nearby 0oDSGCs to signal the direction of local motion.
However, recent work indicates that ooDSGCs may be organized to encode self-motion, a global
motion signal (Kay et al., 2011; Dhande et al., 2013; Sabbah et al., 2017). This motivates an
examination of ooDSGC individual and population responses under conditions in which the
stimulus is a natural scene moving globally and dynamically on the retina. It also motivates
understanding how the direction of global motion can be decoded from populations of mammalian
DSGCs and the extent to which concepts applicable to decoding local motion at long timescales
apply to decoding global motion at shorter, and perhaps more behaviorally-relevant, timescales.

To study DSGC responses, we recorded simultaneously the spiking activity from hundreds

of retinal ganglion cells (RGCs) using a large-scale multielectrode array (MEA). We distinguished


https://doi.org/10.1101/572438
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/572438; this version posted July 9, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

DSGCs from other RGCs based on their responses to drifting gratings (Elstrott et al., 2008; Yao
et al., 2018). We then projected dynamically moving natural images onto the retina: the motion is
‘dynamic’ because the direction and speed are not constant. Individual ooDSGCs and oDSGCs
exhibited similar encoding of dynamic global motion stimuli: they both integrated and low-pass
filtered direction signals over a timescale of ~200 ms; they were both broadly tuned; and they
both exhibited similar spike rates. Importantly, both 0oDSGC and oDSGCs exhibited little trial-to-
trial variability in their responses to dynamic global motion, indicating that while the responses
were sparse, they were reliable.

We then utilized our more complete populations of 0o0DSGCs to examine the limitations
inherent in decoding dynamic global motion signals from small and large 0oDSGC populations.
For a local quartet of 0oDSGCs (each with a different preferred direction), determining the
direction of global motion was marginally better than chance at short timescales (~100 ms).
Decoding accuracy was improved by longer temporal integration of 00DSGC signals, however
this is only an effective decoding strategy when changes in motion direction are infrequent and
when the animal does not need to rapidly respond to a change in the motion signal. When motion
direction changes frequently, large populations of 0oDSGCs are needed to accurately and rapidly
(< 100 ms) decode the direction of global motion. Large populations of 00oDSGCs are available
for decoding at no cost to spatial resolution because the nature of the motion signal is global.
Furthermore, the short integration times used when decoding large populations result in largely
uncorrelated population activity, which is counter to previous results decoding local motion at long
timescales (Franke et al., 2016; Zylberberg et al., 2016). This limits the impact of correlated
spiking on decoding accuracy in a dynamic global motion context. Thus, large populations of
nearly-independent coDSGC signals integrated over short timescales enables rapid decoding of
direction. We generalize these findings to illustrate the tradeoffs inherent in decoding visual

signals that vary in space versus time.

Results

Visually driven responses of retinal ganglion cells (RGCs) were measured ex vivo using a
multi-electrode array (MEA) (Elstrott et al., 2008; Yao et al., 2018). Responses to drifting gratings
distinguished 0oDSGCs and oDSGCs from other RGCs over the MEA (see Methods). To
measure the responses of DSGCs to dynamic global motion (Fig 1A), a natural scene from the
Van Hateren image database (van Hateren and van der Schaaf, 1998) was dynamically moved
over the retina. This paradigm drove the responses of dozens of identified and simultaneously
recorded ooDSGCs and oDSGCs.
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Individual ooDSGCs encode direction via integration of dynamic global motion

Examining responses during direction changes can reveal how DSGCs integrate over
motion direction history - an important factor in their response to global motion of a natural scene.
Thus, we begin by focusing on 0oDSGCs, and analyzing the relationship between their spiking
and dynamic global motion of a natural scene. We randomly and iteratively translated a natural
scene on the retina while recording 0oDSGC spikes (see Methods). The, X and Y positions of
the image were shifted in each frame of the video display by AX(t) and AY(t). Image position
shifts were sampled independently from a Gaussian distribution, generating an approximately
‘white noise’ motion stimulus (Fig 1A; see Methods). The image shift distribution had a zero mean
with a standard deviation ~20 um/frame (~25 deg/s). This value was chosen to maximize
responses from 0oDSGCs and fall within the range of eye movement velocities in freely moving
rats (Wallace et al., 2013) and retinal image motion in rabbits (Van der Steen and Collewijn, 1984).
We calculated the correlation between AX and AY values and spike rate, yielding a spike-
triggered average (STA) of the displacements in X and Y for each cell (Fig 1B)(Borghuis et al.,
2003; Perge et al., 2005; Kuhn and Gollisch, 2019). Translating these Cartesian to polar
coordinates facilitated visualizing the STA-directions of all 00DSGCs simultaneously (Fig 1C).
Approximately 500 ms preceding a spike, the average motion direction fluctuated randomly for
every ooDSGC (Fig 1Ci). However, between 300 to 100 ms preceding a spike, the motion
direction coalesced to one of four cardinal directions. These results indicate that each ooDSGC
encodes global motion along one of four directions and that spiking depends on the motion
direction over ~200 ms temporal window, with ~100 ms latency to spiking (Fig 1C).

There are two possible strategies by which 0oDSGCs may encode this motion. First,
00DSGCs may simply integrate motion signals over a temporal window. Alternatively, they may
signal a change in direction by differentiating the motion trajectory. Differentiation is a common
computation performed by the receptive fields of most RGCs (e.g. center-surround antagonism
(Kuffler, 1953; Perge et al., 2005; Schwartz et al., 2007)). Pure integration requires a monophasic
dependence on motion trajectories preceding spikes, while differentiation (in the case of direction
changes >90 degrees) requires a biphasic dependence on motion trajectories. Every ooDSGC
exhibited a monophasic direction STA (peak/trough ratios at 14.2 + 2.7; Fig 1B), with a mean half
width of 111 £ 2 ms (Fig 1Cii). Thus, 0oDSGCs encoding appears more related to the integration
of direction for global motion stimuli within relatively short time windows preceding their spikes;

they do not appear to explicitly signal changes (differentiation) in the motion direction. Below we
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explore the implications of needing to decode 0oDSGC signals that are updated continuously

over short (200 ms) time windows.

Individual 0oDSGCs generate sparse and broadly tuned responses to naturalistic global
motion.

The analyses above reveal the average
motion kinetics and directions that precede 0oDSGC spiking for global motion in a natural scene.
However, the fidelity of encoding, and the accuracy of decoding, will depend strongly on the

spiking dynamics elicited by these stimuli. Spiking was infrequent in coDSGCs to natural scene
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Figure 1: DSGCs integrate the direction of global motion over time and respond sparsely with broad
tuning to natural images. A. Natural image presented (top) and displaced according to AX and AY
(bottom). B. Spike triggered average of AX and AY for single example 0oDSGC and an oDSGC (inset). C.
Direction (Ci) and magnitude (Cii) of motion calculated from spike triggered average (STA) for all ooDSGCs
in a single retinal recording. Color coded according to preferred direction in grating stimulus. D. Spike times
during five seconds of dynamic global motion stimulus in (e.g. A) for all 0oDSGCs in a single retinal
recording; color indicates preferred direction determined form a drifting grating. E. Probability distributions
for DSGCs in a single retinal recording using a jittered image (Ei) and for ooDSGC and oDSGCs in 2
different retinal recordings using 2 different jittered images and 2 different natural movies (Eii). Movies
included video from a camera mounted on a mouse (Movie 1) and a cat (Movie 2). F. Spike raster of a
single 0oDSGC (Fi) or oDSGC (Fii) simultaneously recorded over several repeated presentations of the
same jittered image. G. Difference between preferred direction from STA (panel Ci) at time of peak
magnitude (panel Cii) and direction preceding each spike. Histogram includes data from all ooDSGC cells
and all spikes from a single retina (n = 49); similar results were observed in a second retinal recording. The
inset shows the same analysis for all oDSGCs in the same recording.
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global motion (Fig 1D,E), consistent with other measures of RGC activity during natural movie
presentations (Koch et al., 2006). For the global motion stimulus, firing rates ranged from 0.8 to
8.5 Hz, with one or more spikes occurring in a single neuron on less than 8% of the video frames
(40 Hz frame rate). This result was replicated with several different images and natural movies
from cameras that were head mounted to animals (Fig 1Eii; See Methods), demonstrating that
global motion in natural scenes typically evokes sparse responses across 0oDSGCs.

One question that arises is whether or not these stimuli were reliably driving spikes in
00DSGCs, given the low spike rates. Repeated presentations of the same stimulus produced
stereotyped 0oDSGC responses (Fig 1Fi), indicating that the response sparsity is not simply a
result of presenting a stimulus that is incapable of evoking a response. Instead, these stimuli
generated sparse responses that were reliable from trial to trial — within each response frame the
spike count mean was approximately equal to the variance (mean fano factor + SEM = 1.1 +
0.05). However, the motion direction ~200 ms preceding individual spikes was highly variable (Fig
1G). To quantify the variability in motion direction preceding spikes, we calculated the difference
between the direction of motion preceding each spike and the STA direction (evaluated at the
peak of the STA magnitude). This distribution is broad and on average the direction preceding a
spike differs from the mean (preferred) direction by ~70 degrees (Fig 1G, dashed line). This
variability will limit decoding performance, because the presence of a spike poorly constrains the
preceding motion direction.

Variability in the pre-spike direction likely reflects several sources including: the tuning
width of the 0oDSGC, different direction trajectories across video frames filling the 0oDSGC
integration time, and aperture effects that allow local orientation to influence apparent direction
within a receptive field (McDermott et al., 2001; Sung et al., 2009; Kane et al., 2011). Irrespective
of the source, the stimulus variability preceding coDSGC spiking combined with infrequent
spiking, will limit the accuracy with which direction of global motion can be decoded from coDSGC
populations. Below we assess if the response properties described above are unique to

00DSGCs, or whether these observations also apply to oDSGCs.

oDSGCs respond similarly to ooDSGCs

Previous work has suggested that signaling self-motion is performed by oDSGCs while
00DSGCs signal local object motion (Vaney et al., 2001). Thus, we compared the responses of
oDSGCs to 00DSGCs to see if they exhibited distinct response properties to global motion in
natural scenes. First, oDSGCs showed similar monophasic temporal integration to coDSGCs

(Fig 1B inset). Second, oDSGCs showed similar response sparsity to the same global motion
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stimuli (Fig 1Ei). Indeed, all recorded RGCs exhibited similar response sparsity (Fig 1Ei).
oDSGCs also exhibit similarly reliable responses to repeated presentations of the same global
motion sequence for a natural scene (Fig Fii) and similar direction variability preceding a spike as
00DSGCs (Fig 1G, inset). Thus, we did not observe clear differences in the response statistics or
encoding properties between oDSGCs and 00DSGCs to global motion of a natural image.

The analyses below leverage the simultaneously recorded populations of 00DSGCs to
test the ability to decode the direction of global motion from those populations and analyzes the

factors limiting the accuracy of that decoding.

Quartets of 0oDSGCs exhibit limited accuracy in signaling the direction of global motion

To begin to understand how the response properties of 00DSGC impact the decoding of
motion, we applied an optimal linear estimator (OLE) to the responses from quartets of
simultaneously recorded 0oDSGCs. In brief, an OLE assigns a set of weights to each cell which,
when scaled by the response of that cell and summed across cells, will minimize the mean
squared error of the prediction (Fig 2A; see Methods). Each quartet consisted of 0o0DSGCs with
different preferred directions and cells within 200 um of one another (Fig 2B). We begin with
quartets of 0oDSGCs because they form an elementary unit of a population code. Specifically,
spikes from one 0oDSGC poorly constrain motion direction, because of the broad direction range
that can precede a spike. However, spikes distributed across a quartet of 0oDSGCs can, in
principle, be used to more accurately decode motion direction (Georgopoulos et al., 1986). We
begin with an OLE because it is a simple decoder that performs nearly optimally on 0oDSGC
population responses and can be simply implemented by downstream neurons (Salinas and
Abbott, 1994; Fiscella et al., 2015).

The first question we address with this approach is, ‘how accurately can global motion in
a natural scene be decoded from the responses produced by a local quartet of 00DSGCs?’ The
answer is likely to depend on the duration over which the decoder integrates signals from the
00DSGCs, and the dynamics of the motion (e.g. how frequently the velocity changes). First, we
examined the dependence on integration time. When integration time is short, the decoder is
forced to estimate direction from responses produced within single video frames (~25 ms). This
yielded low accuracy estimates of motion direction; the median expected error was ~80 degrees
(Fig 2C-D). Note this analysis allows for a latency between the stimulus direction and 0oDSGC
responses (see Methods). The median error is reported throughout and provides the minimum
error in decoding 50% of the time bins, an appropriate quantity when decoding continuously. For

comparison, chance performance in direction estimation would be 90 degrees, and perfect
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Figure 2: 0oDSGC quartets are limited in their decoding accuracy by response sparsity and dynamic
motion. A. Schematic of the decoder, the optimal linear estimator (OLE). B. Examples of four ooDSGC
quartets. Relative location of each cell is marked from position on array and circles drawn, 300 um diameter,
provide a scale bar near the size of 00DSGC dendritic fields. C. Top: Spike response from an example
quartet during a dynamic global motion stimulus (spike times are uniformly shifted for optimal decoding).
Middle: Decoder provides estimate of direction for each frame change using two different spike integration
times. Bottom: Acute difference between OLE and actual direction for each integration time. D. Median
error over all decoded time points as a function of integration time from one retina (N=15 quartets). E.
Fraction of bins with non-zero spikes in 0-4 cells in each quartet (same retina as in D). F. Median error as
a function of number of cells in quartet with non-zero spikes (same retina as in D). G. Median error for all
decoded time points as a function of integration time when decoding drifting image with direction and speed
held constant (see Methods). Separately recorded retina from panels B-F (7 quartets). Error bars (D-G)
show standard deviation across quartets.
performance would be 0 degrees. A major contributor to this high uncertainty in motion direction

is that within ~25 ms, the most frequent output from the quartet of 00oDSGCs is zero spikes (Fig
2E). When there are no spikes, the decoder assigns a default constant, effectively guessing at
the direction of motion. It is worth noting, that in a stimulus regime with constantly changing
direction, this default is no worse than assuming the direction that was last decoded when spikes
occurred.

To test that the high error at short integration times results from the sparsity of the
population response, we analyzed the frequency with which a given number of coDSGCs

responded within a quartet. For short integration times there is a high probability of zero spikes
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from any 0oDSGC in the quartet (Fig 2E). Furthermore, decoding error depended on the number
of cells responding within a given integration window - the error decreased sub-linearly for
increasing cell numbers (Fig 2F). Errors were high when four cells were responding in the same
bin, which results from cancelation of oppositely tuned neurons.

One path toward improving decoding performance is for the decoder to integrate over
longer time windows. This would allow for a larger fraction of decoded epochs to contain at least
one spike from the quartet of 0oDSGCs. However, increasing the integration time to 125 ms (5
stimulus frames) only modestly decreased the error of direction estimates to ~74 degrees.
Furthermore, for longer integration times, average direction error increased (Fig 2D). Thus,
decoding global motion from local quartets of 00oDSGCs exhibits limited accuracy.

The increase in decoding error at longer integration times is likely a result of the dynamic
stimulus, which frequently changes directions. Thus, integrating for longer periods of time incurs
a cost: the inability to decode frequent changes in direction. To test this hypothesis, we switched
from decoding an image that changed direction and speed dynamically to a drifting natural image
that moved in a constant direction and speed (see Methods). As hypothesized, images moved in
a static direction show only increases in accuracy with increasing integration time (Fig 2G), as the
decoder was afforded the opportunity of accumulating spikes over long periods of time without a
change in direction. Using a 2 s integration window to decode the direction of a drifting natural
image reduced the average error down to ~20 degrees when decoding from a quartet of
00DSGCs.

The analyses above show that quartets of local 00oDSGC provide little information about
global motion direction in a natural scene at short time scales. Their limited decoding accuracy
is largely due to the sparse (infrequent) spiking generated by the stimulus. Furthermore, decoding
is limited to short integration times when motion is dynamic because integrating over longer time
windows fails to track changes in motion direction. This is at least partly a consequence of
00DSGCs integrating, instead of differentiating, motion (Fig 1B). If decoding accuracy is limited
by the sparsity of the population response, do larger populations of 00DSGCs allow for more

accurate decoding of dynamic motion at short integration times?

Large 0oDSGC populations can encode direction continuously over short time scales

To begin to test the effect of 00DSGC population size on decoding global motion, we
decoded the direction of dynamic global motion using the responses of all 0oDSGCs measured
in an experiment (Fig 3A). While these populations are not complete, due to imperfect sampling
of RGCs over the MEA, this analysis permitted data-based decoding on 43-50 0coDSGCs in
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individual experiments. Furthermore, the population spanned lengths of ~750 um (25° of visual

arc) on the retina.
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Figure 3: Larger populations of 00DSGCs improve decoding accuracy with shorter integration
times. A. Location on array of all ooDSGCs recorded in single retina. Circle provides estimate of the size
of receptive field and colors indicate preferred direction. B. Top: Spike response from recorded 0oDSGC
population during dynamic global motion stimulus. Middle: Decoder provides estimate of direction for each
frame change using two different spike integration times. Bottom: Acute difference between OLE and actual
direction for each integration time. C. Median error for all decoded time points as a function of integration
time. For both the quartets (as in Figure 2D) recorded in 2 different retinas and the entire population for 2
different retinas. No error bars are provided for the estimate across the entire population. D. As in panel C
using an image with a constant direction (see Methods). E. Cross correlation between stimulus image
displacement estimate and actual stimulus (AX=solid or AY=dashed line). F. Schematic showing “single
cell” manipulation of input to OLE. G. Median error using control and “single cell” input to OLE. Results from
two retinas are shown at 3 different spike integration times. H. Same as panel F using image with direction
held constant.
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Larger populations of 0oDSGCs increase the frequency with which one or more cells spike
for a given integration time, relative to quartets. This effectively decreases the sparsity of the
population response to which the decoder has access. As a result, the median error from
decoding these larger population responses was significantly smaller than decoding quartets,
particularly for short integration times (Fig 3B-C). For example, at ~25 ms (a single video frame),
decoding error was reduced to 55-60 degrees for a population of 48 coDSGCs, down from 80
degrees for a quartet. It is notable that decoding direction from a population on a single frame
was so accurate, given that a single frame is much briefer than the integration time of the STA
(Fig 1B).

Similar to the results from 0oDSGC quartets, increasing the integration time also caused
an increase in median errors for larger ooDSGC populations (Fig 3B-C). This increase is because
the global motion is dynamic, causing the decoder to estimate a single direction of motion from
responses that are produced by multiple directions. When the direction of the stimulus was
constant, longer integration times resulted in a monotonic decrease in error for large populations
of 0oDSGcs (Fig 3D). For long integration times (2 s), decoding error fell to ~20 degrees with a
population of 48 00DSGCs. Thus, larger ooDSGC populations allow for more accurate decoding
of global motion in natural scenes within briefer integration times. However, long integration times
limit decoding performance when global motion changes dynamically.

Thus far we have shown that long stimulus integration impairs the ability of 00oDSGC
populations to accurately estimate dynamic motion. Long stimulus integration has an additional
cost, which is to delay the time at which direction estimates are most accurate relative to the
stimulus. To measure this delay, we computed the cross correlation between the actual and
estimated image displacements (in AX and AY). The cross-correlation between these values was
significantly delayed and broader at longer integration times (Fig 3E). Thus, integration over short
timescales allows downstream circuits to decode more rapidly, thereby following more frequent
changes in direction. This is only achievable with large populations of coDSGCs because
quartets perform marginally better than chance within the same integration times.

Increasing the population size could improve decoding in two different ways: 1) by
increasing the number of time points with single responsive cells; and/or 2) increasing the number
of time bins with multiple responsive cells. To measure the extent to which the error depended
on a simultaneous multi-cell response, the OLE was trained on the full response set and tested
on either the full response set, or on a modified response set in which only a single cell response
(the largest response) at each time bin was provided to the decoder (Fig 3F). If direction decoding

is entirely mediated by single cells, then there should be no difference between using the full and
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modified response sets. There was a significant increase in the error when decoding on the
modified response set in both the dynamic (Fig 3G) and static (Fig 3H) direction stimuli. Thus,
the decoding accuracy in larger populations relies on simultaneous activity from multiple
00DSGCs.

The simultaneous activity between ooDSGCs that underlies a population response could
arise purely through independent responses across 00DSGCs or through correlated subsets of
00DSGCs. In the next section we examine the extent to which the accuracy of rapid decoding in

large 00DSGCs populations relies on response correlations within the population.

Rapid-global direction of motion is encoded by large populations of independent
0oDSGCs

Natural scenes have local intensity correlations that result in correlated activity between
nearby RGCs (Simoncelli and Olshausen, 2001; Pitkow and Meister, 2012). Recent work has
indicated that such response correlations promote robust decoding by maintaining the relative
activity between 0oDSGCs with different preferred directions (Franke et al., 2016; Zylberberg et
al., 2016). To what extent are response correlations important to maintaining the accuracy of
rapid decoding of global motion from large coDSGC populations?

To understand how the correlation structure contributes to decoding accuracy, we
measured and manipulated response correlations across the 0oDSGC populations. In this
section we focused entirely on the static direction stimulus, which permitted manipulations that
would be impossible across a dynamic direction stimulus.

First, we examined the correlation structure in the population by mapping the pairwise
correlation coefficients as a function of (1) distance between pairs, (2) relative preferred direction,
and (3) integration time (Fig 4Ai-iii). The correlation coefficients were calculated within a trial and
averaged across all trials and directions. Thus, the response correlations reported here include
signal and noise correlations and measure the tendency of cells to respond to the same image
structure. The correlation coefficient between pairs of 00DSGCs increases with the integration
time used to calculate the responses, as previously noted (Cohen and Kohn, 2011), short
integration times diminish correlations (Fig 4A-note axes scale). Thus, over short integration
times, correlations are small, suggesting they may not influence decoding accuracy to the extent
observed in previous studies that considered longer integration times (Franke et al., 2016;
Zylberberg et al., 2016).

However, for a given integration time, the correlation is higher for cells that are spatially

closer and modulated less prominently by their relative preferred directions (eg. Fig 4Ai) (Pitkow
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and Meister, 2012). This reflects the increased tendency of nearby cells to respond to the same
part of the image as the dominant determinant of correlation structure. This led us to ask if the
higher correlations in nearby cells are important in maintaining the accuracy of decoding from
large 00DSGC populations over short time scales. In other words, are responses to global motion
encoded by many small-local populations of correlated cells?

To test how decoding error depends on the correlations between 0oDSGCs, the OLE was
tested on either the unmodified (control) response set or a decorrelated (shifted) response set, in
which the response bins were shifted in time during a drifting image (Fig 4B). Shifting responses
in time independently across 0oDSGCs eliminates correlations due to local contrast fluctuations
in the stimulus and noise correlations introduced by retinal circuits. However, this manipulation
maintains correlations due to the direction of motion. Thus, shifting responses in time undermines
the population response structure caused by the particular spatial locations of the cells, and is
similar to selecting populations of 0o0DSGCs randomly in space. Across a range of integration

times, the ‘shifted’ response sets showed little change in continuous decoding error (Fig 4C). This
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result suggests that decoding of direction from large 0oDSGC populations does not depend on
correlations, even when those correlations are relatively large.

These result differ substantially from previous findings where trial-to-trial noise correlations
alone were shown to significantly decrease decoding error by maintaining orthogonality between
signal and noise (Franke et al., 2016; Zylberberg et al., 2016). However, measured populations
of incomplete mosaics under sample overlapping groups of cells, which may undermine the
impact of large correlations measured during long integration times. To better understand how
integration time impacts the decoder’s sensitivity to correlations, we focused on decoding in
quadruplets, which are selected based on their overlap, during times periods when they were
strongly responding. We used the OLE magnitude to select the time bins in which the 0oDSGCs
population was responding most strongly (Fig 2A). The OLE magnitude will be highest when
multiple cells, with similar tuning are responding most strongly. We assess the median error
during the top 10% magnitude responses and term this the “conditional error’ (because it is
conditioned on the OLE magnitude being high). The conditional error in quadruplets was sensitive
to correlation structure at long integration times, increasing the error when correlations were
disrupted (Fig 4D), but not at short integration times. Thus, the impact of correlations on decoding
depends critically on the integration time — correlations being important when decoding large
responses integrated over long time windows. We later extend these results to large modeled

DS populations with complete mosaics (Fig 5).

Non-DS cells do not improve direction decoding over short integration times

The analyses above indicate that correlations between 0oDSGCs are not useful to
account for local image intensity when decoding the direction of motion in short integration times.
However, local image intensity influences the spike rates of non-DS, as well as DSGCs.
Potentially, non-DS RGCs that share substantial receptive field overlap with ooDSGCs could be
used to help decode the direction of motion by discounting local image intensity. Indeed,
correlations between tuned and untuned neurons have been shown to improve decoding from
other neural populations (Leavitt et al., 2017; Zylberberg, 2018).

To assay if non-DS RGCs can help decode the direction of motion we decoded the
direction of motion using both identified 00DSGCs and non-DS cells. Using local groups with
substantial receptive field overlap (~30 neurons), the direction of motion was first decoded using
an OLE. There was not a significant difference between decoding performance with or without
non-DS cells (data not shown). This result is expected, because an OLE, while sensitive to

correlation structure, does not explicitly use correlated activity to decode (Schneidman et al.,
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2003; Shamir and Sompolinsky, 2004). Alternatively, an Optimal Quadratic Estimator (OQE)
explicitly uses correlations between neurons to decode by weighting the synchronous activity
between neurons to estimate the direction of motion (Shamir and Sompolinsky, 2004) (Fig 4E;
see Methods). The OQE accuracy was similar when decoding from DS only versus DS and Non-
DS populations over short integration times (Fig 4F). There is a small decrease in error when
including Non-DS cells when decoding with longer integration times (Fig 4F). Indeed, the OQE
and OLE using DS cells alone provided similar accuracy (Fig 4G), indicating little benefit from this
form of non-linear decoding in these conditions. Thus, decoding of the direction of motion
continuously with short integration bins is effectively performed by a linear decoder that integrates
signals from a large tuned population with little benefit from correlated activity between tuned or
untuned neurons. Note, we are not saying the other classes of decoders, more explicitly
constructed to decode motion from untuned neurons (e.g. Reichardt detectors to calculate

direction of motion de novo) would not be useful for bolstering signals from DSGCs.

Noise and temporal integration dictate spatial decoding constraints in model

The analyses above indicate that large populations of nearly independent 0oDSGCs can
be leveraged to rapidly decode the direction of motion, while temporal integration increases the
importance of spatial correlation structure for accurate decoding. Ostensibly, the relationship
between temporal integration and sensitivity to local correlations could be explained by the
presence of high temporal frequency noise in 00DSGC responses. To better understand how
noise and temporal integration influence population decoding we created a model that simulated
responses from complete 0oDSGC mosaics of various size and organization (see Methods). In
brief, each modeled DS-unit response was generated from a distinct linear-nonlinear model (Fig
5A) with its position and direction orientation determined by one of four modeled mosaics (Fig
5B). The linear filter provides direction tuning and the non-linearity was adjusted to generate on-
off responses with sparsity similar to that in the data. The DS-units were stimulated with a moving
image used on the retina and the direction of motion was decoded at each time point from the
population responses (Fig 5C). Note, decoding performance for the model (Fig 5C) was better
than for the data (Fig 2C), because 532 simulated DS-units (133 for each direction) were used in
the model, compared to just ~50 real DSGCs to decode with data. To test the spatial sensitivity
of the decoder, populations were decoded either from local subsets (Fig 5Bii) or from DS-units
with randomly chosen spatial locations (Fig 5Biii).

To begin, the response of the DS-units was noiseless. In this case, correlations between

nearby DS-units was much higher than that observed in the measured data (Fig 5D, black curve).
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These correlations are caused by local image statistics and while they are diminished by the non-
linearity that produces the sparse responses, they remain very high between cells with high
receptive field overlap. In the absence of noise, decoding error was substantially increased when
decoding from DS-units with random spatial locations (Fig 5Ei) or shuffled responses (data not
shown) — supporting previous work illustrating the importance of maintaining correlations in
decoding direction (Franke et al., 2016; Zylberberg et al., 2016). Adding independent noise to
each DS-unit reduced local correlations substantially (Fig 5D red curve) and greatly reduced the
sensitivity of decoder performance on the spatial arrangement of the DS-units (Fig 5Eii). Finally,
temporally integrating the noisy responses partially rescued the correlation structure established
by the natural image (Fig 5D blue curve) and increased the sensitivity of the decoder to spatial
structure (Fig 5Eiii). This model illustrates that temporal integration influences correlation
structure (at least in this example) and that it also dictates the decoder’s reliance on those
correlations. This helps to resolve the discrepancy between this study and previous studies which
have highlighted the importance of correlations for decoding DSGC population responses: Here,
brief temporal integration was required to decode dynamic global motion, while previous work

focused long temporal integration because motion stimuli were local and had a static velocity.
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Figure 5. Model of 0o0DSGC populations demonstrates how natural images, integration time and
noise influence correlations and decoding. A. Schematic of a single modeled DS-unit. B. Example of
receptive field positions subsampled from complete DS-unit mosaics (Bi- showing 1 of 4 mosaics) when
decoding three spatially local (Bii) or random (Biii) quadruplets. Circles illustrate one standard deviation of
receptive field size. C. Example of image direction and decoded direction estimate at each point in time. D.
Average pairwise correlation coefficient within a large population of modeled DS-units as a function of
distance between pairs. E. Decoding error versus size of DS-unit population in either a noiseless model
(Ei), a noisy model (Eii), or a noisy model with temporal integration (Eiii).
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Discussion

To fully understand neural function, activity must be measured within an appropriate
ecological context. While completely natural stimuli are difficult to produce and parameterize
(Rust and Movshon, 2005), increasing stimulus complexity towards more natural contexts can
help evaluate ideas about neural function derived from using simpler stimuli. In this paper, we
assayed the potential of populations of 00DSGCs to signal the direction of dynamic global motion
of a natural scene. While the stimulus we used falls short of capturing the full complexity of global
motion as a mouse moves through the environment, it offers some features beyond drifting
gratings or moving spots, while also providing more control over the stimulus than natural movies.
For example, this stimulus has naturalistic statistics such as spatial structure that falls off (on
average) as the inverse of the spatial frequency, but with high-contrast edges and ‘object’s not
present in pink noise. Also, the frequency of direction changes can be manipulated to analyze
how decoding performance depends on frequent direction changes (Fig 2D) versus constant
velocity motion (Fig 2G).

Using this stimulus, we found that mammalian coDSGCs integrate motion signals over
~200 ms and respond sparsely, but reliably over repeated presentations. This sparsity
necessitates long integration times to decode accurately using small ooDSGC populations, which
precludes decoding frequent changes in motion direction accurately and rapidly. On the other
hand, large populations of 00DSGCs can be used to accurately and rapidly decode dynamic
changes in the direction of global motion. Below, we discuss these findings in the context of

previous research.

Functional role of 0oDSGCs

Several lines of evidence have supported the role of 00DSGCs in coding local motion.
This is based primarily on three observations: 1) 0oDSGCs exhibit diminished spike rates to global
relative to local motion (so-called surround suppression) (Vaney et al., 2001; Chiao and Masland,
2003; Olveczky et al.,, 2003; Hoggarth et al., 2015); 2) oDSGCs do not exhibit surround
suppression; 3) ooDSGCs have small receptive fields and a high density, which seem
unnecessary for signaling global motion (Vaney et al., 2001).

Regarding ‘1’, recent work shows direction selectivity is maintained in global motion and
that surround suppression may preferentially attenuate luminance responses (Hoggarth et al.,
2015; Im and Fried, 2016). This suggests that the attenuation may emphasize direction
information rather than obscuring it. Regarding ‘2°, oDSGCs exhibit similar response structure to

00DSGCs to dynamic global motion (Fig 1). While the incompleteness of our oDSGC populations
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prevented an analysis of decoding their responses, the similarity in their encoding properties to
00DSGCs suggests similar decoding performance. Regarding ‘3’, we showed that large dense
populations are actually necessary to accurately and rapidly signal dynamic global motion given
the sparsity of ooDSGC responses. Finally, a recent study showed that the cardinal axes formed
by 00DSGCs align with the axes of self-motion on the retina, suggesting that the population is
geared to signal global motion (Sabbah et al., 2017). Thus, we think it is plausible that ooDSGCs
play a significant role in signaling global motion.

None of these arguments rule out a role for ooDSGCs to also encode local motion (see
below). 0oDSGCs clearly respond vigorously to moving spots and bars, which may be reasonable

proxies for local motion in nature.

Challenges and constraints to continuously decoding 0oDSGC population responses

Response sparsity and stimulus variability preceding a spike (i.e. broad tuning) challenges
a downstream decoder that must (nearly) continuously and accurately estimate a dynamic
stimulus. This is a distinct decoding regime from that often investigated: i.e. when stimuli produce
high firing rates (Theunissen and Miller, 1991; Fiscella et al., 2015; Marre et al., 2015; Kuhn and
Gollisch, 2019) in a population of narrowly tuned neurons (Jazayeri and Movshon, 2006).
Previous studies decoding dynamic motion stimuli from retina have utilized the optimal linear filter
approach (Warland et al., 1997)}(Marre et al., 2015; Kuhn and Gollisch, 2019). This approach
temporally integrates spike rates with a fixed filter to provide a continuous optimal linear estimate.
Our approach differs from the optimal linear filter approach because we explored a range of
integration times. Integrating over or under the optimal temporal range will increase the total
mean squared error of the estimate but can decrease the error at specific temporal frequencies.
Thus, this approach can highlight tradeoffs inherent in decoding visual information. While
previous studies have used long temporal integration windows to improve decoding (Fiscella et
al., 2015) we show that such strategies come at a significant cost to temporal resolution for
decoding rapidly changing stimuli (Fig 2D).

To better illustrate the spatial-temporal tradeoff in decoding we constructed a simple
model of signal and noise separation (Fig 6). In this model, noise is separated from signal using
a simple linear filter that integrates over space and time (Fig 6A). As we observed for decoding
00DSGC population responses, temporal integration can improve signal detection by
preferentially attenuating high frequency noise. This noise reduction strategy is limited though by
the presence of a high (temporal) frequency signal, as further integration begins to degrade both

signal and noise (Fig 6B;). The same problem occurs when integrating spatially (Fig 6B).
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However, the greater the spatial integration, the less temporal integration is needed to improve
signal detection, sparing the high frequency temporal signal. A similar trade-off can be made in
the opposite direction, by sacrificing temporal resolution for greater spatial resolution. Thus, in
extracting information, a decoder can choose to focus on spatial or temporal resolution, at a cost
to the temporal or spatial resolution, respectively (Fig 6C). Dynamic global motion requires high
temporal resolution but minimal spatial resolution: We show that the population response of
00DSGCs permits a regime for accurately decoding this stimulus at short timescales with a simple

linear decoder.
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Comparison to salamander DSGCs

This study complements a conceptually similar study recently performed in the
salamander retina (Kuhn and Gollisch, 2019). In that study, textures were presented and
dynamically displaced while recording responses from populations of OFF DSGCs. These OFF
DSGCs may be analogous to mammalian oDSGCs because they exhibit minimal surround
suppression and are organized along three directions (Kuhn and Gollisch, 2016). Like our study,
the authors examined both encoding and decoding performance.

For encoding, salamander OFF DSGCs responded in a manner sensitive to the direction
of global motion and integrated motion over ~200 ms, similar to the results presented here, Itis
interesting to note that the integration was similar despite the difference in species and the
substantial differences in the recording temperatures: 21°C (salamander) and 34°C (mouse).

For decoding, there are several differences between the two studies. First, we used the
OLE (and OQE) while the previous study used the ‘optimal linear filter approach (see previous
section for comment on these approaches) (Warland et al., 1997). Second, the previous study

quantified decoding performance in terms of Shannon information, while we quantified it in terms
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of degrees of visual angle. Third, the previous study focused on the synergy available for decoding
when cells with different preferred directions were used by the decoder, while we focused on how
decoding performance depended on population size, decoding timescale, and correlation
structure. Nevertheless, a few coherent comparisons can be made. First, both studies show that
rapid changes in the direction of global motion are poorly decoded from small populations of
DSGCs. Second, both studies indicate that noise correlations play a minimal role in rapidly
decoding global motion.

Our study departs from previous work by analyzing global motion processing in the mouse
retina. Furthermore, we explicitly show that (1) the encoding and response statistics of oDSGCs
and ooDSGCs are similar for global motion; (2) large populations of 0o0DSGCs can be used to
decode global motion with high temporal resolution; (3) the nature of 0oDSGC population codes
depends on the nature of the stimulus and the constraints of the decoding task, such as the

necessity of high temporal versus high spatial resolution.

The importance of correlation on neural decoding

The role of correlated activity in neural coding is intensely debated in neuroscience
(Schneidman et al., 2003; Latham and Nirenberg, 2005; Averbeck et al., 2006; Shamir, 2014).
Mammalian coDSGCs have provided a useful model system to understand the sources and
impact of correlated activity (Amthor et al., 2005; Franke et al., 2016; Zylberberg et al., 2016).
Those studies largely pointed to correlations exerting a benefit upon DSGC population codes. We
show that this result depends on context. When integrating (or decoding) over long timescales,
correlation strength can be high and can improve decoding performance (Fig 4D). However, when
integrating (or decoding) over short timescales, correlations are small, even over many cells, and
thus decoding performance is independent of the correlations (Fig 4C-D). We also show that
correlations between DSGC and non-DS RGC weakly impacted decoding error over short
integration times (Fig 4G). These observations suggest that shared noise exists at lower temporal
frequencies than independent noise. Thus, as demonstrated in a model (Fig 5), temporal
integration diminishes independent noise and strengthens correlations in local populations,
shifting the decoder’s input from independent to locally correlated populations.

These observations have implications for downstream circuits that process retinal signals.
Circuits that decode local motion stimuli can leverage temporal integration to diminish
independent noise without sacrificing spatial resolution. This favors a decoder utilizing local
correlations, which help maintain a robust population response during a transient stimulus. In

contrast, downstream circuits that decode global motion stimuli can pool over large numbers of
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00DSGC assuming independence to achieve a nearly continuous readout of motion direction.
This suggests distinct decoding regimes - decoders for large, fast visual stimuli relying on
independent inputs and decoders for small and slow stimuli using correlated inputs. This may help
explain why 0oDSGC axons diverge to multiple downstream brain circuits including the lateral
geniculate nucleus and superior colliculus (Kay et al., 2011). Future work may reveal that these
distinct circuits instantiate these distinct decoding regimes. It is also possible that
neuromodulators alter the integration times within a single circuit (Higley et al., 2009), switching

between the two decoding regimes dynamically depending on current task demands.
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Methods

Mice and retina dissection procedures

Retinas were removed and recorded from C57BL/6J and CBA/CaJ x C57BL/6J mice
between the ages of 1 month and 1 year. The strains showed no differences to the results
reported in this study, thus data were pooled. Mice were used in accordance with the Duke
University Institutional Animal Care and Use Committee.

Retina dissection was optimized to maintain response sensitivity. Mice were dark-adapted
overnight, euthanized via decapitation, eyes were enucleated, and a piece of retina (~1-2mm?)
was isolated from the pigmented epithelium (Yao et al., 2018). Retina isolation was performed in
Ames solution (room temperature) bubbled with 95% O. and 5% CO,. All procedures were
performed in the dark under IR light. The retina was isolated from the dorsal half of the eye
(identified from vasculature) to increase the fraction of M-opsin expressed in the cones for better

overlap with the spectrum of the visual display.

Multi-electrode array recording, spike sorting, cell position determination
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Electrical activity was measured from RGCs on a multielectrode array (MEA). Spikes were
identified, sorted into individual cell clusters, and soma positions on the MEA were estimated as
previously described (Litke et al., 2004; Yao et al., 2018). Electrical activity was measured from
RGCs using a hexagonal large-scale MEA, which was ~490 um along an edge with 30 um spacing
between 519 electrodes (Field et al., 2010). Retinas were held against the MEA with a permeable
membrane and were perfused with Ames solution (34 °C) bubbled with 95% O, and 5% CO-.

Electrical activity was analyzed offline to identify and sort spikes into individual cell clusters
(Shlens et al., 2006). Briefly, on each electrode, spikes were identified by a voltage threshold and
voltage waveforms were concatenated across the six surrounding electrodes. These
concatenated waveforms were parameterized with principal components analysis (PCA) and
clustered with a mixture of gaussians model, providing putative cell assignments. Putative cells
were analyzed if their spike time autocorrelation showed less than 10% refractory period violations
and 25% spike time correlation with a cell identified on a nearby electrode, indicating spikes were
from a single and uniquely identified neuron.

Soma position on the array was used to identify quadruplets (Fig 2) and pairwise distances
between cells (Fig 3A). Soma position was estimated from the Electrical Image (El) on the array
(Li et al., 2015; Yao et al., 2018). The EIl consisted of the average voltage on each electrode
preceding a spike(Petrusca et al., 2005; Field et al., 2009). The position of the soma was taken

as the center of mass of the El.

Visual stimulus

The retina was stimulated at photopic light levels (8000 Rh*/s) with a gamma-corrected
OLED display (SVGA+XL Rev3 from eMagin). Three types of visual stimuli were presented to
the retina and controlled via custom software written in Matlab utilizing the MGL library
(gru.stanford.edu). First, drifting gratings, at two different temporal frequencies, were used to
identify 0oDSGCs (see RGC classification). Second, natural images, taken from the van Hateren
image database (van Hateren and van der Schaaf, 1998), were presented to probe RGCs
responses to global motion in natural images. Natural images were presented in two different
stimulus protocols; using either dynamic or static velocity. Finally, natural movies from a head
cam mounted mouse (from lab of Thomas Mrsic-Flogel) and cat (Betsch et al., 2004) were used
to further test response sparsity.

In the dynamic velocity protocol, the same image was presented in the same orientation
on every frame at image locations, X and Y. The average frame rate was 40 Hz (~25 ms/frame).

X and Y were drawn randomly from a gaussian distribution and smoothed in time with a sliding
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window ~7.5 seconds. This generated an image that jittered around on the screen with a slow
drift, presenting jitter across different image locations. X and Y were rectified to prevent displaying
the image edge. The change in position between frames, AX(t) and AY(t), was sampled from an
independent gaussian distributions with no temporal correlations (white). The standard deviation
of the displacement distributions was ~20 um - corresponding to ~800 um/s along a single axis.
A single dynamically moving image was presented for 60 minutes.

In the static direction protocol, the image was drifted in a single direction at ~1080 um/s
for ~4 seconds before a new direction or image was presented. The image was reoriented for
each direction with its longer edge parallel to the direction of motion. Six different images were

presented at 8 different directions, spread equally across 360°.

RGC classification

oDSGCs and 0oDSGCs were identified based on their responses to square wave gratings
(960 um/cycle) drifted in 8 different directions and two different speeds (1 and 74 Hz). Responses
to each grating were quantified by total spike number generated during the 8 seconds each grating
was presented. Cells were first clustered as DSGCs, then separated as ON-OFF and ON cells,
and then grouped by their preferred direction (Yao et al., 2018). Direction-selective cells were
clustered by their direction-selective indices (DSI) (Ravi et al., 2018) at each grating speed using
a 2 dimensional gaussian mixture model. This method avoided setting an arbitrary threshold on
DSI. Cells were then clustered by hand using the ratio of their response vector magnitudes for
fast and slow gratings. Cells that maintained or increased their vector magnitudes for faster
gratings were identified as ON-OFF. This process is based on the speed tuning curve differences
between ON and ON-OFF DSGCs in mouse retina (Yao et al., 2018). Finally, ooDSGCs were
clustered by hand based on the direction of their vector sum. Clustering by their preferred
direction was only used to color code Figure 1C and did not contribute to decoding (see Optimal

linear estimator).

Optimal linear and optimal quadratic estimators

An optimal linear estimator (OLE) and optimal quadratic estimator (OQE) were used to
estimate the direction of stimulus motion from a set of RGCs responses (Salinas and Abbott,
1994; Shamir and Sompolinsky, 2004). To do this, the OLE and OQE weight and sum the

responses for each RGC:

Est=r(t+dt)«W
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For the OLE RGC responses, r, were quantified by the number of spikes within a set
number of sequential frames (bins) as indicated by the temporal integration time. rincludes an
added constant that allows for a default (offset) direction weight. For the OQE, rincludes not only
responses of individual cells but also the cross products of all possible cell pairs (Shamir and
Sompolinsky, 2004). dt allows a time delay between response and the stimulus and was
optimized to minimize the mean squared error between the direction estimate and true direction.
The weights, W, were determined during a separate training set using Matlab’s backslash

operation:
W =r(t+d\S

S is the cartesian coordinates of the stimulus direction. Matlab’s backslash operation
returns a least-squares solution to a system of linear equations. Training sets for the dynamic
motion stimulus consisted of the first % time points and it was tested on the last V4 time points.
Training and testing on fully separated data blocks prevents the decoder from leveraging the
PSTH autocorrelation to improve its test error. For the static motion stimulus, the OLE and OQE
were trained on 5 images and tested on a hold-out image. Training and testing were redone for
each image and errors averaged across all images.

To break correlation structures between cells, binned responses within the test data for
the static direction stimulus were circularly shifted by a random amount independently for each
cell. This manipulation maintained the direction selectivity of the response averages but broke

correlations between cells.

00DSGC simulation

A simulation of 0oDSGC receptive fields was used to test the observed results in larger
and more complete mosaics than available from the measured data. The model consisted of four
independent mosaics of modeled receptive fields responding to a moving image. As in the
analysis of the measured data, the responses of the modeled neurons were combined to estimate
the direction of image motion.

The response, R, of an individual model neuron was:

R = N(Fgp = 5)
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Where Fyy, is the linear filter with preferred direction, ¢, and position p. Linear filters consisted of
a set of 10 sinewaves that were phase shifted 8 pix/frame, multiplied by a gaussian with a std of
17 pixels, centered at p and cut off in a square 75 pixel window. S is the stimulus; * indicates
convolution; and N is a nonlinear function. The position, p, of each filter, F, was determined by
an exclusion zone algorithm for generating 2 dimensional spatial mosaics (Galli-Resta et al.,
1999). N was chosen as rectified linear function symmetric about zero — allowing responses to
be ON-OFF with some control of the response sparsity. The threshold of the nonlinearity was
adjusted to provide a similar fraction of spikes as that measured in the 00DSGCs population (90-
95% of the bins had no activity). The density of the simulated mosaics was 30 cells/mm? based

on reported values in coDSGCs in rabbit (Vaney, 1994). The population response, R, was

decoded based on a linear model Est = X (R*$).

To understand how high frequency noise constrained decoding error we added gaussian
white noise with a variance equal to the signal variance. Decoding was performed on the noisy

signals without manipulation or after averaging from 10-frame bins.

Spatial-temporal tradeoff simulation

A simulation of signal estimation was used to understand the tradeoffs inherent in
separating signal from noise through spatial and temporal integration. The signal, S, was
constructed by convolving spatial and temporal gaussian filters with white noise, creating a signal
dominated by low spatial and temporal frequencies. Unfiltered white noise was then added to S.
Then the noisy signal was filtered by convolving spatial and temporal Gaussian filters defined by
their standard deviations, sigma. The mean squared error was calculated between the filtered

output and S.
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