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Abstract 
Simple stimuli have been critical to understanding neural population codes in sensory systems. 

Yet it remains necessary to determine the extent to which this understanding generalizes to more 

complex conditions. To explore this problem, we measured how populations of direction-selective 

ganglion cells (DSGCs) from mouse retina respond to a global motion stimulus with its direction 

and speed changing dynamically. We then examined the encoding and decoding of motion 

direction in both individual and populations of DSGCs. Individual cells integrated global motion 

over ~200 ms, and responses were tuned to direction. However, responses were sparse and 

broadly tuned, which severely limited decoding performance from small DSGC populations. In 

contrast, larger populations compensated for response sparsity, enabling decoding with high 

temporal precision (<100 ms).  At these timescales, correlated spiking was minimal and had little 

impact on decoding performance, unlike results obtained using simpler local motion stimuli 

decoded over longer timescales. We use these data to define different DSGC population decoding 

regimes that utilize or mitigate correlated spiking to achieve high spatial versus high temporal 

resolution.  
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Introduction 
Sensory systems encode and decode information across populations of neurons.  

Understanding such population codes is fundamental to understanding the function of neural 

circuits and sensory processing (Pouget et al., 2000; Panzeri et al., 2015).  Population codes are 

likely optimized for natural sensory stimuli but they are often probed using simple and artificial 

stimuli (Felsen et al., 2005; Fitzgerald and Clark, 2015).  Such simplifications may limit an 

understanding of population codes and neural function in ethological contexts.  In this paper, we 

examine a canonical population code, direction coding in mammalian ON-OFF (oo)DSGCs, in the 

context of global motion of a natural scene.    

In the mammalian retina, there are four types of ooDSGCs, each tiling space with their 

dendritic and receptive fields (Barlow et al., 1964; Devries and Baylor, 1997; Demb, 2007; Vaney 

et al., 2012; Morrie and Feller, 2016).  These types differ primarily in their preferred direction of 

motion, which are organized along four cardinal axes (Oyster and Barlow, 1967; Vaney, 1994; 

Kay et al., 2011; Trenholm et al., 2013; Yao et al., 2018).  Direction is encoded across the four 

types by their relative firing rates. This produces a population code for direction that is relatively 

invariant to object speed and contrast (Nowak et al., 2011; Zylberberg et al., 2016).  ooDSGCs 

have been largely considered responsible for signaling local motion, because global motion 

attenuates (but does not eliminate) their responses (Vaney et al., 2001; Chiao and Masland, 2003; 

Olveczky et al., 2003; Hoggarth et al., 2015). A separate class of DSGCs, so-called ON DSGCs 

(oDSGCs), are minimally attenuated by global motion, and have thus been assumed to play a 

dominant role in signaling global motion (Oyster, 1968; Simpson et al., 1988).  Correspondingly, 

previous studies examining the fidelity and accuracy of the ooDSGC population code have 

focused on local motion and artificial stimuli that are decoded at relatively long timescales 

(Fiscella et al., 2015; Zylberberg et al., 2016).  These studies largely pointed toward a high-fidelity 

code that utilizes correlated activity in nearby ooDSGCs to signal the direction of local motion. 

However, recent work indicates that ooDSGCs may be organized to encode self-motion, a global 

motion signal (Kay et al., 2011; Dhande et al., 2013; Sabbah et al., 2017).  This motivates an 

examination of ooDSGC individual and population responses under conditions in which the 

stimulus is a natural scene moving globally and dynamically on the retina. It also motivates 

understanding how the direction of global motion can be decoded from populations of mammalian 

DSGCs and the extent to which concepts applicable to decoding local motion at long timescales 

apply to decoding global motion at shorter, and perhaps more behaviorally-relevant, timescales. 

To study DSGC responses, we recorded simultaneously the spiking activity from hundreds 

of retinal ganglion cells (RGCs) using a large-scale multielectrode array (MEA). We distinguished 
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DSGCs from other RGCs based on their responses to drifting gratings (Elstrott et al., 2008; Yao 

et al., 2018). We then projected dynamically moving natural images onto the retina: the motion is 

‘dynamic’ because the direction and speed are not constant. Individual ooDSGCs and oDSGCs 

exhibited similar encoding of dynamic global motion stimuli: they both integrated and low-pass 

filtered direction signals over a timescale of ~200 ms; they were both broadly tuned; and they 

both exhibited similar spike rates. Importantly, both ooDSGC and oDSGCs exhibited little trial-to-

trial variability in their responses to dynamic global motion, indicating that while the responses 

were sparse, they were reliable.  

We then utilized our more complete populations of ooDSGCs to examine the limitations 

inherent in decoding dynamic global motion signals from small and large ooDSGC populations. 

For a local quartet of ooDSGCs (each with a different preferred direction), determining the 

direction of global motion was marginally better than chance at short timescales (~100 ms). 

Decoding accuracy was improved by longer temporal integration of ooDSGC signals, however 

this is only an effective decoding strategy when changes in motion direction are infrequent and 

when the animal does not need to rapidly respond to a change in the motion signal. When motion 

direction changes frequently, large populations of ooDSGCs are needed to accurately and rapidly 

(< 100 ms) decode the direction of global motion. Large populations of ooDSGCs are available 

for decoding at no cost to spatial resolution because the nature of the motion signal is global. 

Furthermore, the short integration times used when decoding large populations result in largely 

uncorrelated population activity, which is counter to previous results decoding local motion at long 

timescales (Franke et al., 2016; Zylberberg et al., 2016). This limits the impact of correlated 

spiking on decoding accuracy in a dynamic global motion context.  Thus, large populations of 

nearly-independent ooDSGC signals integrated over short timescales enables rapid decoding of 

direction.  We generalize these findings to illustrate the tradeoffs inherent in decoding visual 

signals that vary in space versus time.  

 

Results  
Visually driven responses of retinal ganglion cells (RGCs) were measured ex vivo using a 

multi-electrode array (MEA) (Elstrott et al., 2008; Yao et al., 2018).  Responses to drifting gratings 

distinguished ooDSGCs and oDSGCs from other RGCs over the MEA (see Methods). To 

measure the responses of DSGCs to dynamic global motion (Fig 1A), a natural scene from the 

Van Hateren image database (van Hateren and van der Schaaf, 1998) was dynamically moved 

over the retina. This paradigm drove the responses of dozens of identified and simultaneously 

recorded ooDSGCs and oDSGCs.      
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Individual ooDSGCs encode direction via integration of dynamic global motion  
 Examining responses during direction changes can reveal how DSGCs integrate over 

motion direction history - an important factor in their response to global motion of a natural scene. 

Thus, we begin by focusing on ooDSGCs, and analyzing the relationship between their spiking 

and dynamic global motion of a natural scene.  We randomly and iteratively translated a natural 

scene on the retina while recording ooDSGC spikes (see Methods).  The, X and Y positions of 

the image were shifted in each frame of the video display by ΔX(t) and ΔY(t).  Image position 

shifts were sampled independently from a Gaussian distribution, generating an approximately 

‘white noise’ motion stimulus (Fig 1A; see Methods).  The image shift distribution had a zero mean 

with a standard deviation ~20 µm/frame (~25 deg/s).  This value was chosen to maximize 

responses from ooDSGCs and fall within the range of eye movement velocities in freely moving 

rats (Wallace et al., 2013) and retinal image motion in rabbits (Van der Steen and Collewijn, 1984).  

We calculated the correlation between ΔX and ΔY values and spike rate, yielding a spike-

triggered average (STA) of the displacements in X and Y for each cell (Fig 1B)(Borghuis et al., 

2003; Perge et al., 2005; Kuhn and Gollisch, 2019). Translating these Cartesian to polar 

coordinates facilitated visualizing the STA-directions of all ooDSGCs simultaneously (Fig 1C).  

Approximately 500 ms preceding a spike, the average motion direction fluctuated randomly for 

every ooDSGC (Fig 1Ci).  However, between 300 to 100 ms preceding a spike, the motion 

direction coalesced to one of four cardinal directions. These results indicate that each ooDSGC 

encodes global motion along one of four directions and that spiking depends on the motion 

direction over ~200 ms temporal window, with ~100 ms latency to spiking (Fig 1C).  

 There are two possible strategies by which ooDSGCs may encode this motion. First, 

ooDSGCs may simply integrate motion signals over a temporal window. Alternatively, they may 

signal a change in direction by differentiating the motion trajectory.  Differentiation is a common 

computation performed by the receptive fields of most RGCs (e.g. center-surround antagonism 

(Kuffler, 1953; Perge et al., 2005; Schwartz et al., 2007)). Pure integration requires a monophasic 

dependence on motion trajectories preceding spikes, while differentiation (in the case of direction 

changes >90 degrees) requires a biphasic dependence on motion trajectories.  Every ooDSGC 

exhibited a monophasic direction STA (peak/trough ratios at 14.2 ± 2.7; Fig 1B), with a mean half 

width of 111 ± 2 ms (Fig 1Cii).  Thus, ooDSGCs encoding appears more related to the integration 

of direction for global motion stimuli within relatively short time windows preceding their spikes; 

they do not appear to explicitly signal changes (differentiation) in the motion direction.  Below we 
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explore the implications of needing to decode ooDSGC signals that are updated continuously 

over short (200 ms) time windows.   

 

Individual ooDSGCs generate sparse and broadly tuned responses to naturalistic global 
motion. 
 The analyses above reveal the average 

motion kinetics and directions that precede ooDSGC spiking for global motion in a natural scene.  

However, the fidelity of encoding, and the accuracy of decoding, will depend strongly on the 

spiking dynamics elicited by these stimuli. Spiking was infrequent in ooDSGCs to natural scene 

Figure 1: DSGCs integrate the direction of global motion over time and respond sparsely with broad 
tuning to natural images. A. Natural image presented (top) and displaced according to ΔX and ΔY 
(bottom). B. Spike triggered average of ΔX and ΔY for single example ooDSGC and an oDSGC (inset). C. 
Direction (Ci) and magnitude (Cii) of motion calculated from spike triggered average (STA) for all ooDSGCs 
in a single retinal recording. Color coded according to preferred direction in grating stimulus. D. Spike times 
during five seconds of dynamic global motion stimulus in (e.g. A) for all ooDSGCs in a single retinal 
recording; color indicates preferred direction determined form a drifting grating. E. Probability distributions 
for DSGCs in a single retinal recording using a jittered image (Ei) and for ooDSGC and oDSGCs in 2 
different retinal recordings using 2 different jittered images and 2 different natural movies (Eii).  Movies 
included video from a camera mounted on a mouse (Movie 1) and a cat (Movie 2). F. Spike raster of a 
single ooDSGC (Fi) or oDSGC (Fii) simultaneously recorded over several repeated presentations of the 
same jittered image. G. Difference between preferred direction from STA (panel Ci) at time of peak 
magnitude (panel Cii) and direction preceding each spike. Histogram includes data from all ooDSGC cells 
and all spikes from a single retina (n = 49); similar results were observed in a second retinal recording. The 
inset shows the same analysis for all oDSGCs in the same recording.   
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global motion (Fig 1D,E), consistent with other measures of RGC activity during natural movie 

presentations (Koch et al., 2006).  For the global motion stimulus, firing rates ranged from 0.8 to 

8.5 Hz, with one or more spikes occurring in a single neuron on less than 8% of the video frames 

(40 Hz frame rate).  This result was replicated with several different images and natural movies 

from cameras that were head mounted to animals (Fig 1Eii; See Methods), demonstrating that 

global motion in natural scenes typically evokes sparse responses across ooDSGCs.   
One question that arises is whether or not these stimuli were reliably driving spikes in 

ooDSGCs, given the low spike rates. Repeated presentations of the same stimulus produced 

stereotyped ooDSGC responses (Fig 1Fi), indicating that the response sparsity is not simply a 

result of presenting a stimulus that is incapable of evoking a response.  Instead, these stimuli 

generated sparse responses that were reliable from trial to trial – within each response frame the 

spike count mean was approximately equal to the variance (mean fano factor ± SEM = 1.1 ± 

0.05). However, the motion direction ~200 ms preceding individual spikes was highly variable (Fig 

1G).  To quantify the variability in motion direction preceding spikes, we calculated the difference 

between the direction of motion preceding each spike and the STA direction (evaluated at the 

peak of the STA magnitude).  This distribution is broad and on average the direction preceding a 

spike differs from the mean (preferred) direction by ~70 degrees (Fig 1G, dashed line).  This 

variability will limit decoding performance, because the presence of a spike poorly constrains the 

preceding motion direction.    

Variability in the pre-spike direction likely reflects several sources including: the tuning 

width of the ooDSGC, different direction trajectories across video frames filling the ooDSGC 

integration time, and aperture effects that allow local orientation to influence apparent direction 

within a receptive field (McDermott et al., 2001; Sung et al., 2009; Kane et al., 2011).  Irrespective 

of the source, the stimulus variability preceding ooDSGC spiking combined with infrequent 

spiking, will limit the accuracy with which direction of global motion can be decoded from ooDSGC 

populations.  Below we assess if the response properties described above are unique to 

ooDSGCs, or whether these observations also apply to oDSGCs.  

 

oDSGCs respond similarly to ooDSGCs 
 Previous work has suggested that signaling self-motion is performed by oDSGCs while 

ooDSGCs signal local object motion (Vaney et al., 2001).  Thus, we compared the responses of 

oDSGCs to ooDSGCs to see if they exhibited distinct response properties to global motion in 

natural scenes.  First, oDSGCs showed similar monophasic temporal integration to ooDSGCs 

(Fig 1B inset).  Second, oDSGCs showed similar response sparsity to the same global motion 
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stimuli (Fig 1Ei).  Indeed, all recorded RGCs exhibited similar response sparsity (Fig 1Ei). 

oDSGCs also exhibit similarly reliable responses to repeated presentations of the same global 

motion sequence for a natural scene (Fig Fii) and similar direction variability preceding a spike as 

ooDSGCs (Fig 1G, inset). Thus, we did not observe clear differences in the response statistics or 

encoding properties between oDSGCs and ooDSGCs to global motion of a natural image.  

 The analyses below leverage the simultaneously recorded populations of ooDSGCs to 

test the ability to decode the direction of global motion from those populations and analyzes the 

factors limiting the accuracy of that decoding.      

 

Quartets of ooDSGCs exhibit limited accuracy in signaling the direction of global motion  
 To begin to understand how the response properties of ooDSGC impact the decoding of 

motion, we applied an optimal linear estimator (OLE) to the responses from quartets of 

simultaneously recorded ooDSGCs.  In brief, an OLE assigns a set of weights to each cell which, 

when scaled by the response of that cell and summed across cells, will minimize the mean 

squared error of the prediction (Fig 2A; see Methods).  Each quartet consisted of ooDSGCs with 

different preferred directions and cells within 200 µm of one another (Fig 2B). We begin with 

quartets of ooDSGCs because they form an elementary unit of a population code. Specifically, 

spikes from one ooDSGC poorly constrain motion direction, because of the broad direction range 

that can precede a spike.  However, spikes distributed across a quartet of ooDSGCs can, in 

principle, be used to more accurately decode motion direction (Georgopoulos et al., 1986). We 

begin with an OLE because it is a simple decoder that performs nearly optimally on ooDSGC 

population responses and can be simply implemented by downstream neurons (Salinas and 

Abbott, 1994; Fiscella et al., 2015).  

 The first question we address with this approach is, ‘how accurately can global motion in 

a natural scene be decoded from the responses produced by a local quartet of ooDSGCs?’ The 

answer is likely to depend on the duration over which the decoder integrates signals from the 

ooDSGCs, and the dynamics of the motion (e.g. how frequently the velocity changes). First, we 

examined the dependence on integration time. When integration time is short, the decoder is 

forced to estimate direction from responses produced within single video frames (~25 ms). This 

yielded low accuracy estimates of motion direction; the median expected error was ~80 degrees 

(Fig 2C-D). Note this analysis allows for a latency between the stimulus direction and ooDSGC 

responses (see Methods).  The median error is reported throughout and provides the minimum 

error in decoding 50% of the time bins, an appropriate quantity when decoding continuously.  For 

comparison, chance performance in direction estimation would be 90 degrees, and perfect 
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performance would be 0 degrees. A major contributor to this high uncertainty in motion direction 

is that within ~25 ms, the most frequent output from the quartet of ooDSGCs is zero spikes (Fig 

2E).  When there are no spikes, the decoder assigns a default constant, effectively guessing at 

the direction of motion.  It is worth noting, that in a stimulus regime with constantly changing 

direction, this default is no worse than assuming the direction that was last decoded when spikes 

occurred.     

To test that the high error at short integration times results from the sparsity of the 

population response, we analyzed the frequency with which a given number of ooDSGCs 

responded within a quartet.  For short integration times there is a high probability of zero spikes 

Figure 2: ooDSGC quartets are limited in their decoding accuracy by response sparsity and dynamic 
motion. A. Schematic of the decoder, the optimal linear estimator (OLE). B. Examples of four ooDSGC 
quartets. Relative location of each cell is marked from position on array and circles drawn, 300 µm diameter, 
provide a scale bar near the size of ooDSGC dendritic fields. C. Top: Spike response from an example 
quartet during a dynamic global motion stimulus (spike times are uniformly shifted for optimal decoding). 
Middle: Decoder provides estimate of direction for each frame change using two different spike integration 
times. Bottom: Acute difference between OLE and actual direction for each integration time. D. Median 
error over all decoded time points as a function of integration time from one retina (N=15 quartets). E. 
Fraction of bins with non-zero spikes in 0-4 cells in each quartet (same retina as in D). F. Median error as 
a function of number of cells in quartet with non-zero spikes (same retina as in D). G. Median error for all 
decoded time points as a function of integration time when decoding drifting image with direction and speed 
held constant (see Methods). Separately recorded retina from panels B-F (7 quartets).  Error bars (D-G) 
show standard deviation across quartets. 
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from any ooDSGC in the quartet (Fig 2E).  Furthermore, decoding error depended on the number 

of cells responding within a given integration window - the error decreased sub-linearly for 

increasing cell numbers (Fig 2F). Errors were high when four cells were responding in the same 

bin, which results from cancelation of oppositely tuned neurons.  

 One path toward improving decoding performance is for the decoder to integrate over 

longer time windows. This would allow for a larger fraction of decoded epochs to contain at least 

one spike from the quartet of ooDSGCs. However, increasing the integration time to 125 ms (5 

stimulus frames) only modestly decreased the error of direction estimates to ~74 degrees. 

Furthermore, for longer integration times, average direction error increased (Fig 2D). Thus, 

decoding global motion from local quartets of ooDSGCs exhibits limited accuracy. 

The increase in decoding error at longer integration times is likely a result of the dynamic 

stimulus, which frequently changes directions. Thus, integrating for longer periods of time incurs 

a cost: the inability to decode frequent changes in direction. To test this hypothesis, we switched 

from decoding an image that changed direction and speed dynamically to a drifting natural image 

that moved in a constant direction and speed (see Methods). As hypothesized, images moved in 

a static direction show only increases in accuracy with increasing integration time (Fig 2G), as the 

decoder was afforded the opportunity of accumulating spikes over long periods of time without a 

change in direction. Using a 2 s integration window to decode the direction of a drifting natural 

image reduced the average error down to ~20 degrees when decoding from a quartet of 

ooDSGCs.  

The analyses above show that quartets of local ooDSGC provide little information about 

global motion direction in a natural scene at short time scales.  Their limited decoding accuracy 

is largely due to the sparse (infrequent) spiking generated by the stimulus.  Furthermore, decoding 

is limited to short integration times when motion is dynamic because integrating over longer time 

windows fails to track changes in motion direction.  This is at least partly a consequence of 

ooDSGCs integrating, instead of differentiating, motion (Fig 1B).  If decoding accuracy is limited 

by the sparsity of the population response, do larger populations of ooDSGCs allow for more 

accurate decoding of dynamic motion at short integration times?  

 

Large ooDSGC populations can encode direction continuously over short time scales    
To begin to test the effect of ooDSGC population size on decoding global motion, we 

decoded the direction of dynamic global motion using the responses of all ooDSGCs measured 

in an experiment (Fig 3A). While these populations are not complete, due to imperfect sampling 

of RGCs over the MEA, this analysis permitted data-based decoding on 43-50 ooDSGCs in 
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individual experiments. Furthermore, the population spanned lengths of ~750 um (25o of visual 

arc) on the retina. 
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Figure 3: Larger populations of ooDSGCs improve decoding accuracy with shorter integration 
times. A. Location on array of all ooDSGCs recorded in single retina. Circle provides estimate of the size 
of receptive field and colors indicate preferred direction. B. Top: Spike response from recorded ooDSGC 
population during dynamic global motion stimulus. Middle: Decoder provides estimate of direction for each 
frame change using two different spike integration times. Bottom: Acute difference between OLE and actual 
direction for each integration time.  C.  Median error for all decoded time points as a function of integration 
time. For both the quartets (as in Figure 2D) recorded in 2 different retinas and the entire population for 2 
different retinas.  No error bars are provided for the estimate across the entire population. D. As in panel C 
using an image with a constant direction (see Methods). E. Cross correlation between stimulus image 
displacement estimate and actual stimulus (ΔX=solid or ΔY=dashed line). F. Schematic showing “single 
cell” manipulation of input to OLE. G. Median error using control and “single cell” input to OLE. Results from 
two retinas are shown at 3 different spike integration times. H. Same as panel F using image with direction 
held constant. 
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Larger populations of ooDSGCs increase the frequency with which one or more cells spike 

for a given integration time, relative to quartets. This effectively decreases the sparsity of the 

population response to which the decoder has access.  As a result, the median error from 

decoding these larger population responses was significantly smaller than decoding quartets, 

particularly for short integration times (Fig 3B-C). For example, at ~25 ms (a single video frame), 

decoding error was reduced to 55-60 degrees for a population of 48 ooDSGCs, down from 80 

degrees for a quartet.  It is notable that decoding direction from a population on a single frame 

was so accurate, given that a single frame is much briefer than the integration time of the STA 

(Fig 1B).   

Similar to the results from ooDSGC quartets, increasing the integration time also caused 

an increase in median errors for larger ooDSGC populations (Fig 3B-C).  This increase is because 

the global motion is dynamic, causing the decoder to estimate a single direction of motion from 

responses that are produced by multiple directions. When the direction of the stimulus was 

constant, longer integration times resulted in a monotonic decrease in error for large populations 

of ooDSGcs (Fig 3D). For long integration times (2 s), decoding error fell to ~20 degrees with a 

population of 48 ooDSGCs.  Thus, larger ooDSGC populations allow for more accurate decoding 

of global motion in natural scenes within briefer integration times. However, long integration times 

limit decoding performance when global motion changes dynamically.     

Thus far we have shown that long stimulus integration impairs the ability of ooDSGC 

populations to accurately estimate dynamic motion. Long stimulus integration has an additional 

cost, which is to delay the time at which direction estimates are most accurate relative to the 

stimulus. To measure this delay, we computed the cross correlation between the actual and 

estimated image displacements (in ΔX and ΔY).  The cross-correlation between these values was 

significantly delayed and broader at longer integration times (Fig 3E).  Thus, integration over short 

timescales allows downstream circuits to decode more rapidly, thereby following more frequent 

changes in direction.  This is only achievable with large populations of ooDSGCs because 

quartets perform marginally better than chance within the same integration times.  

Increasing the population size could improve decoding in two different ways: 1) by 

increasing the number of time points with single responsive cells; and/or 2) increasing the number 

of time bins with multiple responsive cells.  To measure the extent to which the error depended 

on a simultaneous multi-cell response, the OLE was trained on the full response set and tested 

on either the full response set, or on a modified response set in which only a single cell response 

(the largest response) at each time bin was provided to the decoder (Fig 3F).  If direction decoding 

is entirely mediated by single cells, then there should be no difference between using the full and 
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modified response sets.  There was a significant increase in the error when decoding on the 

modified response set in both the dynamic (Fig 3G) and static (Fig 3H) direction stimuli.  Thus, 

the decoding accuracy in larger populations relies on simultaneous activity from multiple 

ooDSGCs.    

The simultaneous activity between ooDSGCs that underlies a population response could 

arise purely through independent responses across ooDSGCs or through correlated subsets of 

ooDSGCs.  In the next section we examine the extent to which the accuracy of rapid decoding in 

large ooDSGCs populations relies on response correlations within the population. 

 

Rapid-global direction of motion is encoded by large populations of independent 
ooDSGCs  
 Natural scenes have local intensity correlations that result in correlated activity between 

nearby RGCs (Simoncelli and Olshausen, 2001; Pitkow and Meister, 2012).  Recent work has 

indicated that such response correlations promote robust decoding by maintaining the relative 

activity between ooDSGCs with different preferred directions (Franke et al., 2016; Zylberberg et 

al., 2016).  To what extent are response correlations important to maintaining the accuracy of 

rapid decoding of global motion from large ooDSGC populations?  

To understand how the correlation structure contributes to decoding accuracy, we 

measured and manipulated response correlations across the ooDSGC populations.  In this 

section we focused entirely on the static direction stimulus, which permitted manipulations that 

would be impossible across a dynamic direction stimulus.       

First, we examined the correlation structure in the population by mapping the pairwise 

correlation coefficients as a function of (1) distance between pairs, (2) relative preferred direction, 

and (3) integration time (Fig 4Ai-iii).  The correlation coefficients were calculated within a trial and 

averaged across all trials and directions.  Thus, the response correlations reported here include 

signal and noise correlations and measure the tendency of cells to respond to the same image 

structure.  The correlation coefficient between pairs of ooDSGCs increases with the integration 

time used to calculate the responses, as previously noted (Cohen and Kohn, 2011), short 

integration times diminish correlations (Fig 4A-note axes scale).  Thus, over short integration 

times, correlations are small, suggesting they may not influence decoding accuracy to the extent 

observed in previous studies that considered longer integration times (Franke et al., 2016; 

Zylberberg et al., 2016). 

However, for a given integration time, the correlation is higher for cells that are spatially 

closer and modulated less prominently by their relative preferred directions (eg. Fig 4Ai) (Pitkow 
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and Meister, 2012).  This reflects the increased tendency of nearby cells to respond to the same 

part of the image as the dominant determinant of correlation structure.  This led us to ask if the 

higher correlations in nearby cells are important in maintaining the accuracy of decoding from 

large ooDSGC populations over short time scales.  In other words, are responses to global motion 

encoded by many small-local populations of correlated cells?    

To test how decoding error depends on the correlations between ooDSGCs, the OLE was 

tested on either the unmodified (control) response set or a decorrelated (shifted) response set, in 

which the response bins were shifted in time during a drifting image (Fig 4B).  Shifting responses 

in time independently across ooDSGCs eliminates correlations due to local contrast fluctuations 

in the stimulus and noise correlations introduced by retinal circuits.  However, this manipulation 

maintains correlations due to the direction of motion.  Thus, shifting responses in time undermines 

the population response structure caused by the particular spatial locations of the cells, and is 

similar to selecting populations of ooDSGCs randomly in space. Across a range of integration 

times, the ‘shifted’ response sets showed little change in continuous decoding error (Fig 4C).  This 
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result suggests that decoding of direction from large ooDSGC populations does not depend on 

correlations, even when those correlations are relatively large.   

These result differ substantially from previous findings where trial-to-trial noise correlations 

alone were shown to significantly decrease decoding error by maintaining orthogonality between 

signal and noise (Franke et al., 2016; Zylberberg et al., 2016).  However, measured populations 

of incomplete mosaics under sample overlapping groups of cells, which may undermine the 

impact of large correlations measured during long integration times.  To better understand how 

integration time impacts the decoder’s sensitivity to correlations, we focused on decoding in 

quadruplets, which are selected based on their overlap, during times periods when they were 

strongly responding.  We used the OLE magnitude to select the time bins in which the ooDSGCs 

population was responding most strongly (Fig 2A).  The OLE magnitude will be highest when 

multiple cells, with similar tuning are responding most strongly.  We assess the median error 

during the top 10% magnitude responses and term this the “conditional error” (because it is 

conditioned on the OLE magnitude being high).  The conditional error in quadruplets was sensitive 

to correlation structure at long integration times, increasing the error when correlations were 

disrupted (Fig 4D), but not at short integration times.  Thus, the impact of correlations on decoding 

depends critically on the integration time – correlations being important when decoding large 

responses integrated over long time windows.  We later extend these results to large modeled 

DS populations with complete mosaics (Fig 5).    

 

Non-DS cells do not improve direction decoding over short integration times 

 The analyses above indicate that correlations between ooDSGCs are not useful to 

account for local image intensity when decoding the direction of motion in short integration times.  

However, local image intensity influences the spike rates of non-DS, as well as DSGCs.  

Potentially, non-DS RGCs that share substantial receptive field overlap with ooDSGCs could be 

used to help decode the direction of motion by discounting local image intensity.  Indeed, 

correlations between tuned and untuned neurons have been shown to improve decoding from 

other neural populations (Leavitt et al., 2017; Zylberberg, 2018). 

 To assay if non-DS RGCs can help decode the direction of motion we decoded the 

direction of motion using both identified ooDSGCs and non-DS cells.  Using local groups with 

substantial receptive field overlap (~30 neurons), the direction of motion was first decoded using 

an OLE.  There was not a significant difference between decoding performance with or without 

non-DS cells (data not shown).  This result is expected, because an OLE, while sensitive to 

correlation structure, does not explicitly use correlated activity to decode (Schneidman et al., 
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2003; Shamir and Sompolinsky, 2004).  Alternatively, an Optimal Quadratic Estimator (OQE) 

explicitly uses correlations between neurons to decode by weighting the synchronous activity 

between neurons to estimate the direction of motion (Shamir and Sompolinsky, 2004) (Fig 4E; 

see Methods).  The OQE accuracy was similar when decoding from DS only versus DS and Non-

DS populations over short integration times (Fig 4F). There is a small decrease in error when 

including Non-DS cells when decoding with longer integration times (Fig 4F).  Indeed, the OQE 

and OLE using DS cells alone provided similar accuracy (Fig 4G), indicating little benefit from this 

form of non-linear decoding in these conditions.  Thus, decoding of the direction of motion 

continuously with short integration bins is effectively performed by a linear decoder that integrates 

signals from a large tuned population with little benefit from correlated activity between tuned or 

untuned neurons. Note, we are not saying the other classes of decoders, more explicitly 

constructed to decode motion from untuned neurons (e.g. Reichardt detectors to calculate 

direction of motion de novo) would not be useful for bolstering signals from DSGCs.                

 

Noise and temporal integration dictate spatial decoding constraints in model 
The analyses above indicate that large populations of nearly independent ooDSGCs can 

be leveraged to rapidly decode the direction of motion, while temporal integration increases the 

importance of spatial correlation structure for accurate decoding.  Ostensibly, the relationship 

between temporal integration and sensitivity to local correlations could be explained by the 

presence of high temporal frequency noise in ooDSGC responses.  To better understand how 

noise and temporal integration influence population decoding we created a model that simulated 

responses from complete ooDSGC mosaics of various size and organization (see Methods).  In 

brief, each modeled DS-unit response was generated from a distinct linear-nonlinear model (Fig 

5A) with its position and direction orientation determined by one of four modeled mosaics (Fig 

5B).  The linear filter provides direction tuning and the non-linearity was adjusted to generate on-

off responses with sparsity similar to that in the data.  The DS-units were stimulated with a moving 

image used on the retina and the direction of motion was decoded at each time point from the 

population responses (Fig 5C).  Note, decoding performance for the model (Fig 5C) was better 

than for the data (Fig 2C), because 532 simulated DS-units (133 for each direction) were used in 

the model, compared to just ~50 real DSGCs to decode with data. To test the spatial sensitivity 

of the decoder, populations were decoded either from local subsets (Fig 5Bii) or from DS-units 

with randomly chosen spatial locations (Fig 5Biii). 

To begin, the response of the DS-units was noiseless.  In this case, correlations between 

nearby DS-units was much higher than that observed in the measured data (Fig 5D, black curve).  
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These correlations are caused by local image statistics and while they are diminished by the non-

linearity that produces the sparse responses, they remain very high between cells with high 

receptive field overlap.  In the absence of noise, decoding error was substantially increased when 

decoding from DS-units with random spatial locations (Fig 5Ei) or shuffled responses (data not 

shown) – supporting previous work illustrating the importance of maintaining correlations in 

decoding direction (Franke et al., 2016; Zylberberg et al., 2016).  Adding independent noise to 

each DS-unit reduced local correlations substantially (Fig 5D red curve) and greatly reduced the 

sensitivity of decoder performance on the spatial arrangement of the DS-units (Fig 5Eii).  Finally, 

temporally integrating the noisy responses partially rescued the correlation structure established 

by the natural image (Fig 5D blue curve) and increased the sensitivity of the decoder to spatial 

structure (Fig 5Eiii).  This model illustrates that temporal integration influences correlation 

structure (at least in this example) and that it also dictates the decoder’s reliance on those 

correlations. This helps to resolve the discrepancy between this study and previous studies which 

have highlighted the importance of correlations for decoding DSGC population responses: Here, 

brief temporal integration was required to decode dynamic global motion, while previous work 

focused long temporal integration because motion stimuli were local and had a static velocity. 

Figure 5. Model of ooDSGC populations demonstrates how natural images, integration time and 
noise influence correlations and decoding. A. Schematic of a single modeled DS-unit.  B.  Example of 
receptive field positions subsampled from complete DS-unit mosaics (Bi- showing 1 of 4 mosaics) when 
decoding three spatially local (Bii) or random (Biii) quadruplets. Circles illustrate one standard deviation of 
receptive field size. C. Example of image direction and decoded direction estimate at each point in time. D. 
Average pairwise correlation coefficient within a large population of modeled DS-units as a function of 
distance between pairs. E. Decoding error versus size of DS-unit population in either a noiseless model 
(Ei), a noisy model (Eii), or a noisy model with temporal integration (Eiii).  
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 Discussion 

To fully understand neural function, activity must be measured within an appropriate 

ecological context.  While completely natural stimuli are difficult to produce and parameterize 

(Rust and Movshon, 2005), increasing stimulus complexity towards more natural contexts can 

help evaluate ideas about neural function derived from using simpler stimuli.  In this paper, we 

assayed the potential of populations of ooDSGCs to signal the direction of dynamic global motion 

of a natural scene.  While the stimulus we used falls short of capturing the full complexity of global 

motion as a mouse moves through the environment, it offers some features beyond drifting 

gratings or moving spots, while also providing more control over the stimulus than natural movies. 

For example, this stimulus has naturalistic statistics such as spatial structure that falls off (on 

average) as the inverse of the spatial frequency, but with high-contrast edges and ‘object’s not 

present in pink noise.  Also, the frequency of direction changes can be manipulated to analyze 

how decoding performance depends on frequent direction changes (Fig 2D) versus constant 

velocity motion (Fig 2G).   

Using this stimulus, we found that mammalian ooDSGCs integrate motion signals over 

~200 ms and respond sparsely, but reliably over repeated presentations.  This sparsity 

necessitates long integration times to decode accurately using small ooDSGC populations, which 

precludes decoding frequent changes in motion direction accurately and rapidly.  On the other 

hand, large populations of ooDSGCs can be used to accurately and rapidly decode dynamic 

changes in the direction of global motion.  Below, we discuss these findings in the context of 

previous research. 

 

Functional role of ooDSGCs 
Several lines of evidence have supported the role of ooDSGCs in coding local motion. 

This is based primarily on three observations: 1) ooDSGCs exhibit diminished spike rates to global 

relative to local motion (so-called surround suppression) (Vaney et al., 2001; Chiao and Masland, 

2003; Olveczky et al., 2003; Hoggarth et al., 2015); 2) oDSGCs do not exhibit surround 

suppression; 3) ooDSGCs have small receptive fields and a high density, which seem 

unnecessary for signaling global motion (Vaney et al., 2001). 

Regarding ‘1’, recent work shows direction selectivity is maintained in global motion and 

that surround suppression may preferentially attenuate luminance responses (Hoggarth et al., 

2015; Im and Fried, 2016). This suggests that the attenuation may emphasize direction 

information rather than obscuring it.  Regarding ‘2’, oDSGCs exhibit similar response structure to 

ooDSGCs to dynamic global motion (Fig 1). While the incompleteness of our oDSGC populations 
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prevented an analysis of decoding their responses, the similarity in their encoding properties to 

ooDSGCs suggests similar decoding performance. Regarding ‘3’, we showed that large dense 

populations are actually necessary to accurately and rapidly signal dynamic global motion given 

the sparsity of ooDSGC responses.  Finally, a recent study showed that the cardinal axes formed 

by ooDSGCs align with the axes of self-motion on the retina, suggesting that the population is 

geared to signal global motion (Sabbah et al., 2017). Thus, we think it is plausible that ooDSGCs 

play a significant role in signaling global motion. 

None of these arguments rule out a role for ooDSGCs to also encode local motion (see 

below).  ooDSGCs clearly respond vigorously to moving spots and bars, which may be reasonable 

proxies for local motion in nature.   

 

Challenges and constraints to continuously decoding ooDSGC population responses  

Response sparsity and stimulus variability preceding a spike (i.e. broad tuning) challenges 

a downstream decoder that must (nearly) continuously and accurately estimate a dynamic 

stimulus.  This is a distinct decoding regime from that often investigated: i.e. when stimuli produce 

high firing rates (Theunissen and Miller, 1991; Fiscella et al., 2015; Marre et al., 2015; Kuhn and 

Gollisch, 2019) in a population of narrowly tuned neurons (Jazayeri and Movshon, 2006). 

Previous studies decoding dynamic motion stimuli from retina have utilized the optimal linear filter 

approach (Warland et al., 1997)}(Marre et al., 2015; Kuhn and Gollisch, 2019).  This approach 

temporally integrates spike rates with a fixed filter to provide a continuous optimal linear estimate.  

Our approach differs from the optimal linear filter approach because we explored a range of 

integration times.  Integrating over or under the optimal temporal range will increase the total 

mean squared error of the estimate but can decrease the error at specific temporal frequencies. 

Thus, this approach can highlight tradeoffs inherent in decoding visual information.  While 

previous studies have used long temporal integration windows to improve decoding (Fiscella et 

al., 2015) we show that such strategies come at a significant cost to temporal resolution for 

decoding rapidly changing stimuli (Fig 2D).   

To better illustrate the spatial-temporal tradeoff in decoding we constructed a simple 

model of signal and noise separation (Fig 6).  In this model, noise is separated from signal using 

a simple linear filter that integrates over space and time (Fig 6A).  As we observed for decoding 

ooDSGC population responses, temporal integration can improve signal detection by 

preferentially attenuating high frequency noise.  This noise reduction strategy is limited though by 

the presence of a high (temporal) frequency signal, as further integration begins to degrade both 

signal and noise (Fig 6Bi).  The same problem occurs when integrating spatially (Fig 6Bii).  
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However, the greater the spatial integration, the less temporal integration is needed to improve 

signal detection, sparing the high frequency temporal signal.  A similar trade-off can be made in 

the opposite direction, by sacrificing temporal resolution for greater spatial resolution. Thus, in 

extracting information, a decoder can choose to focus on spatial or temporal resolution, at a cost 

to the temporal or spatial resolution, respectively (Fig 6C).  Dynamic global motion requires high 

temporal resolution but minimal spatial resolution: We show that the population response of 

ooDSGCs permits a regime for accurately decoding this stimulus at short timescales with a simple 

linear decoder.   

                                              
Comparison to salamander DSGCs 
 This study complements a conceptually similar study recently performed in the 

salamander retina (Kuhn and Gollisch, 2019). In that study, textures were presented and 

dynamically displaced while recording responses from populations of OFF DSGCs. These OFF 

DSGCs may be analogous to mammalian oDSGCs because they exhibit minimal surround 

suppression and are organized along three directions (Kuhn and Gollisch, 2016).  Like our study, 

the authors examined both encoding and decoding performance.  

 For encoding, salamander OFF DSGCs responded in a manner sensitive to the direction 

of global motion and integrated motion over ~200 ms, similar to the results presented here,  It is 

interesting to note that the integration was similar despite the difference in species and the 

substantial differences in the recording temperatures: 21°C (salamander) and 34°C (mouse).  

 For decoding, there are several differences between the two studies.  First, we used the 

OLE (and OQE) while the previous study used the ‘optimal linear filter’ approach (see previous 

section for comment on these approaches) (Warland et al., 1997).  Second, the previous study 

quantified decoding performance in terms of Shannon information, while we quantified it in terms 
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of degrees of visual angle. Third, the previous study focused on the synergy available for decoding 

when cells with different preferred directions were used by the decoder, while we focused on how 

decoding performance depended on population size, decoding timescale, and correlation 

structure. Nevertheless, a few coherent comparisons can be made.  First, both studies show that 

rapid changes in the direction of global motion are poorly decoded from small populations of 

DSGCs. Second, both studies indicate that noise correlations play a minimal role in rapidly 

decoding global motion. 

 Our study departs from previous work by analyzing global motion processing in the mouse 

retina. Furthermore, we explicitly show that (1) the encoding and response statistics of oDSGCs 

and ooDSGCs are similar for global motion; (2) large populations of ooDSGCs can be used to 

decode global motion with high temporal resolution; (3) the nature of ooDSGC population codes 

depends on the nature of the stimulus and the constraints of the decoding task, such as the 

necessity of high temporal versus high spatial resolution.  

 
The importance of correlation on neural decoding  
 The role of correlated activity in neural coding is intensely debated in neuroscience 

(Schneidman et al., 2003; Latham and Nirenberg, 2005; Averbeck et al., 2006; Shamir, 2014).  

Mammalian ooDSGCs have provided a useful model system to understand the sources and 

impact of correlated activity (Amthor et al., 2005; Franke et al., 2016; Zylberberg et al., 2016).  

Those studies largely pointed to correlations exerting a benefit upon DSGC population codes. We 

show that this result depends on context.  When integrating (or decoding) over long timescales, 

correlation strength can be high and can improve decoding performance (Fig 4D). However, when 

integrating (or decoding) over short timescales, correlations are small, even over many cells, and 

thus decoding performance is independent of the correlations (Fig 4C-D).  We also show that 

correlations between DSGC and non-DS RGC weakly impacted decoding error over short 

integration times (Fig 4G).  These observations suggest that shared noise exists at lower temporal 

frequencies than independent noise.  Thus, as demonstrated in a model (Fig 5), temporal 

integration diminishes independent noise and strengthens correlations in local populations, 

shifting the decoder’s input from independent to locally correlated populations. 

 These observations have implications for downstream circuits that process retinal signals. 

Circuits that decode local motion stimuli can leverage temporal integration to diminish 

independent noise without sacrificing spatial resolution.  This favors a decoder utilizing local 

correlations, which help maintain a robust population response during a transient stimulus.  In 

contrast, downstream circuits that decode global motion stimuli can pool over large numbers of 
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ooDSGC assuming independence to achieve a nearly continuous readout of motion direction.  

This suggests distinct decoding regimes - decoders for large, fast visual stimuli relying on 

independent inputs and decoders for small and slow stimuli using correlated inputs. This may help 

explain why ooDSGC axons diverge to multiple downstream brain circuits including the lateral 

geniculate nucleus and superior colliculus (Kay et al., 2011).  Future work may reveal that these 

distinct circuits instantiate these distinct decoding regimes.  It is also possible that 

neuromodulators alter the integration times within a single circuit (Higley et al., 2009), switching 

between the two decoding regimes dynamically depending on current task demands. 
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Methods 
Mice and retina dissection procedures 

Retinas were removed and recorded from C57BL/6J and CBA/CaJ x C57BL/6J mice 

between the ages of 1 month and 1 year.  The strains showed no differences to the results 

reported in this study, thus data were pooled.  Mice were used in accordance with the Duke 

University Institutional Animal Care and Use Committee. 

Retina dissection was optimized to maintain response sensitivity.  Mice were dark-adapted 

overnight, euthanized via decapitation, eyes were enucleated, and a piece of retina (~1-2mm2) 

was isolated from the pigmented epithelium (Yao et al., 2018).  Retina isolation was performed in 

Ames solution (room temperature) bubbled with 95% O2 and 5% CO2.  All procedures were 

performed in the dark under IR light.  The retina was isolated from the dorsal half of the eye 

(identified from vasculature) to increase the fraction of M-opsin expressed in the cones for better 

overlap with the spectrum of the visual display.          

       

Multi-electrode array recording, spike sorting, cell position determination  
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 Electrical activity was measured from RGCs on a multielectrode array (MEA). Spikes were 

identified, sorted into individual cell clusters, and soma positions on the MEA were estimated as 

previously described (Litke et al., 2004; Yao et al., 2018).  Electrical activity was measured from 

RGCs using a hexagonal large-scale MEA, which was ~490 µm along an edge with 30 µm spacing 

between 519 electrodes (Field et al., 2010).  Retinas were held against the MEA with a permeable 

membrane and were perfused with Ames solution (34 oC) bubbled with 95% O2 and 5% CO2. 

 Electrical activity was analyzed offline to identify and sort spikes into individual cell clusters 

(Shlens et al., 2006).  Briefly, on each electrode, spikes were identified by a voltage threshold and 

voltage waveforms were concatenated across the six surrounding electrodes.  These 

concatenated waveforms were parameterized with principal components analysis (PCA) and 

clustered with a mixture of gaussians model, providing putative cell assignments.  Putative cells 

were analyzed if their spike time autocorrelation showed less than 10% refractory period violations 

and 25% spike time correlation with a cell identified on a nearby electrode, indicating spikes were 

from a single and uniquely identified neuron.     

            Soma position on the array was used to identify quadruplets (Fig 2) and pairwise distances 

between cells (Fig 3A).  Soma position was estimated from the Electrical Image (EI) on the array 

(Li et al., 2015; Yao et al., 2018).  The EI consisted of the average voltage on each electrode 

preceding a spike(Petrusca et al., 2005; Field et al., 2009).  The position of the soma was taken 

as the center of mass of the EI.    

         

Visual stimulus 

 The retina was stimulated at photopic light levels (8000 Rh*/s) with a gamma-corrected 

OLED display (SVGA+XL Rev3 from eMagin).  Three types of visual stimuli were presented to 

the retina and controlled via custom software written in Matlab utilizing the MGL library 

(gru.stanford.edu).  First, drifting gratings, at two different temporal frequencies, were used to 

identify ooDSGCs (see RGC classification).  Second, natural images, taken from the van Hateren 

image database (van Hateren and van der Schaaf, 1998), were presented to probe RGCs 

responses to global motion in natural images.  Natural images were presented in two different 

stimulus protocols; using either dynamic or static velocity.  Finally, natural movies from a head 

cam mounted mouse (from lab of Thomas Mrsic-Flogel) and cat (Betsch et al., 2004) were used 

to further test response sparsity.       

In the dynamic velocity protocol, the same image was presented in the same orientation 

on every frame at image locations, X and Y.  The average frame rate was 40 Hz (~25 ms/frame). 

X and Y were drawn randomly from a gaussian distribution and smoothed in time with a sliding 
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window ~7.5 seconds.  This generated an image that jittered around on the screen with a slow 

drift, presenting jitter across different image locations.  X and Y were rectified to prevent displaying 

the image edge.  The change in position between frames, ΔX(t) and ΔY(t), was sampled from an 

independent gaussian distributions with no temporal correlations (white).  The standard deviation 

of the displacement distributions was ~20 um - corresponding to ~800 um/s along a single axis.  

A single dynamically moving image was presented for 60 minutes.       

 In the static direction protocol, the image was drifted in a single direction at ~1080 um/s 

for ~4 seconds before a new direction or image was presented.  The image was reoriented for 

each direction with its longer edge parallel to the direction of motion.  Six different images were 

presented at 8 different directions, spread equally across 360o.     

 

RGC classification 

 oDSGCs and ooDSGCs were identified based on their responses to square wave gratings 

(960 µm/cycle) drifted in 8 different directions and two different speeds (1 and ¼ Hz).  Responses 

to each grating were quantified by total spike number generated during the 8 seconds each grating 

was presented.  Cells were first clustered as DSGCs, then separated as ON-OFF and ON cells, 

and then grouped by their preferred direction (Yao et al., 2018).  Direction-selective cells were 

clustered by their direction-selective indices (DSI) (Ravi et al., 2018) at each grating speed using 

a 2 dimensional gaussian mixture model.  This method avoided setting an arbitrary threshold on 

DSI.  Cells were then clustered by hand using the ratio of their response vector magnitudes for 

fast and slow gratings.  Cells that maintained or increased their vector magnitudes for faster 

gratings were identified as ON-OFF.  This process is based on the speed tuning curve differences 

between ON and ON-OFF DSGCs in mouse retina (Yao et al., 2018).  Finally, ooDSGCs were 

clustered by hand based on the direction of their vector sum.  Clustering by their preferred 

direction was only used to color code Figure 1C and did not contribute to decoding (see Optimal 

linear estimator).     
 
Optimal linear and optimal quadratic estimators 

An optimal linear estimator (OLE) and optimal quadratic estimator (OQE) were used to 

estimate the direction of stimulus motion from a set of RGCs responses (Salinas and Abbott, 

1994; Shamir and Sompolinsky, 2004).  To do this, the OLE and OQE weight and sum the 

responses for each RGC:   

 

𝐸𝑠𝑡 = 𝑟(𝑡 + 𝑑𝑡) ∗ 𝑊 
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For the OLE RGC responses, r, were quantified by the number of spikes within a set 

number of sequential frames (bins) as indicated by the temporal integration time.  r includes an 

added constant that allows for a default (offset) direction weight.  For the OQE, r includes not only 

responses of individual cells but also the cross products of all possible cell pairs (Shamir and 

Sompolinsky, 2004).  dt allows a time delay between response and the stimulus and was 

optimized to minimize the mean squared error between the direction estimate and true direction.  

The weights, W, were determined during a separate training set using Matlab’s backslash 

operation: 

 

𝑊 = 𝑟(𝑡 + 𝑑𝑡)\𝑆 

 

S is the cartesian coordinates of the stimulus direction.  Matlab’s backslash operation 

returns a least-squares solution to a system of linear equations.  Training sets for the dynamic 

motion stimulus consisted of the first ¾ time points and it was tested on the last ¼ time points.  

Training and testing on fully separated data blocks prevents the decoder from leveraging the 

PSTH autocorrelation to improve its test error.  For the static motion stimulus, the OLE and OQE 

were trained on 5 images and tested on a hold-out image.  Training and testing were redone for 

each image and errors averaged across all images.   

To break correlation structures between cells, binned responses within the test data for 

the static direction stimulus were circularly shifted by a random amount independently for each 

cell.  This manipulation maintained the direction selectivity of the response averages but broke 

correlations between cells.        

 

ooDSGC simulation 

A simulation of ooDSGC receptive fields was used to test the observed results in larger 

and more complete mosaics than available from the measured data.  The model consisted of four 

independent mosaics of modeled receptive fields responding to a moving image.  As in the 

analysis of the measured data, the responses of the modeled neurons were combined to estimate 

the direction of image motion.   

The response, R, of an individual model neuron was:  

𝑅 = 𝑁0𝐹23 ∗ 𝑆4           
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Where Fɸp, is the linear filter with preferred direction, ɸ, and position p.  Linear filters consisted of 

a set of 10 sinewaves that were phase shifted 8 pix/frame, multiplied by a gaussian with a std of 

17 pixels, centered at p and cut off in a square 75 pixel window.  S is the stimulus; * indicates 

convolution; and N is a nonlinear function.  The position, p, of each filter, F, was determined by 

an exclusion zone algorithm for generating 2 dimensional spatial mosaics (Galli-Resta et al., 

1999).  N was chosen as rectified linear function symmetric about zero – allowing responses to 

be ON-OFF with some control of the response sparsity.  The threshold of the nonlinearity was 

adjusted to provide a similar fraction of spikes as that measured in the ooDSGCs population (90-

95% of the bins had no activity).  The density of the simulated mosaics was 30 cells/mm2 based 

on reported values in ooDSGCs in rabbit (Vaney, 1994).  The population response, 𝑅, was 

decoded based on a linear model Est =  𝛴(𝑅*ɸ). 

 To understand how high frequency noise constrained decoding error we added gaussian 

white noise with a variance equal to the signal variance.  Decoding was performed on the noisy 

signals without manipulation or after averaging from 10-frame bins.     

 

Spatial-temporal tradeoff simulation 

 A simulation of signal estimation was used to understand the tradeoffs inherent in 

separating signal from noise through spatial and temporal integration.  The signal, S, was 

constructed by convolving spatial and temporal gaussian filters with white noise, creating a signal 

dominated by low spatial and temporal frequencies.  Unfiltered white noise was then added to S.  

Then the noisy signal was filtered by convolving spatial and temporal Gaussian filters defined by 

their standard deviations, sigma.  The mean squared error was calculated between the filtered 

output and S.    
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