

3D spatially-resolved geometrical and functional models of human liver tissue reveal new aspects of NAFLD progression

Fabián Segovia-Miranda¹, Hernán Morales-Navarrete¹, Michael Kücken², Vincent Moser³, Sarah Seifert¹, Urska Repnik¹, Fabian Rost^{2,4}, Alexander Hendriks⁵, Sebastian Hinz⁵, Christoph Röcken⁵, Dieter Lüthjohann⁶, Yannis Kalaidzidis¹, Clemens Schafmayer⁵, Lutz Brusch², Jochen Hampe³ and Marino Zerial^{1*}.

¹Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.

²Center for Information Services and High Performance Computing, Technische Universität Dresden, Dresden, Germany.

³Medical Department 1, University Hospital of the Technical University Dresden, Dresden, Germany.

⁴Max Planck Institute for the Physics of Complex Systems, Dresden, Germany.

⁵University Hospital Schleswig-Holstein, Kiel, Germany.

⁶Institute of Clinical Chemistry and Clinical Pharmacology, University of Bonn, Bonn, Germany.

*Correspondence: zerial@mpi-cbg.de; Jochen.Hampe@uniklinikum-dresden.de

24 **Abstract**

25

26 Early disease diagnosis is key for the effective treatment of diseases. It relies on the
27 identification of biomarkers and morphological inspection of organs and tissues.
28 Histopathological analysis of human biopsies is the gold standard to diagnose tissue
29 alterations. However, this approach has low resolution and overlooks 3D structural changes
30 that are consequence of functional alterations. Here, we applied multiphoton imaging, 3D
31 digital reconstructions and computational simulations to generate spatially-resolved
32 geometrical and functional models of human liver tissue at different stages of non-alcoholic
33 fatty liver disease (NAFLD). We identified a set of new morphometric cellular parameters
34 correlated with disease progression. Moreover, we found profound topological defects in the
35 3D bile canaliculi (BC) network. Personalized biliary fluid dynamic simulations predicted an
36 increased pericentral biliary pressure and zonated cholestasis, consistent with elevated
37 cholestatic biomarkers in patients' sera. Our spatially-resolved models of human liver tissue
38 can contribute to high-definition medicine by identifying quantitative multi-parametric cellular
39 and tissue signatures to define disease progression and provide new insights into NAFLD
40 pathophysiology.

41 **Introduction**

42

43 High definition medicine is emerging as an integrated approach to profile and restore
44 the health of an individual using a pipeline of multi-parametric analytical and therapeutic
45 technologies¹. High-definition medicine relies on large data sets, e.g. genomics,
46 metabolomics, to characterize human health at the molecular level. It also relies on imaging,
47 image analysis and computational modelling approaches to identify structural and functional
48 abnormalities in organs and tissues associated with a disease state. Histology has been
49 classically used to characterize tissue structure and remains the method of choice to
50 describe and monitor a large variety of pathologies². However, this technique has several
51 disadvantages, e.g. it is subjective (depends on the pathologist's skills), is often semi-
52 quantitative and provides only two-dimensional (2D) information, i.e. does not account for
53 the three-dimensional (3D) complexity of tissues³. In recent years, an increasing number of
54 studies have highlighted the importance of considering 3D information for the
55 histopathological examination of tissues⁴⁻⁷. This is particularly crucial for the analysis of 3D
56 structures. The liver is a pertinent example of an organ with a complex 3D tissue
57 organization⁸. It consists of functional units, the liver lobule^{9,10}, containing two intertwined
58 networks, the sinusoids for blood flow and the bile canaliculi (BC) for bile secretion and flux⁹.
59 Sinusoids and BC run antiparallel along the central vein (CV)-portal vein (PV) axis. The
60 hepatocytes are the major parenchymal cells and display a peculiar and unique type of cell
61 polarity distinct from that of simple epithelia¹¹. Whereas in epithelia all cells share the same
62 orientation with their apical surface facing the lumen of the organ, hepatocytes are
63 sandwiched between the sinusoidal endothelial cells and share the apical surface with
64 multiple neighbouring hepatocytes to form a 3D BC network^{12,13}. Such an architecture makes
65 it difficult to grasp the 3D organization of cells and tissue from 2D histological sections.
66 Recent advances in tissue staining, optical clearing and multi-photon microscopy allow
67 imaging thick sections of tissues such that 3D information can be captured^{14,15}. Computer
68 software process the images to generate 3D digital reconstructions of tissues, i.e.
69 geometrical models⁸, with single-cell resolution. These provide a detailed quantitative
70 description of the different cells and structures forming the tissue. The geometrical
71 information extracted from the 3D reconstruction can also be used to generate predictive
72 models of tissue function e.g. biliary fluid dynamic¹⁶, thus gaining novel insights into liver
73 tissue organization and function. Thereby, geometrical models can be used to quantitatively

74 describe the tissue architecture and function, improving our understanding of liver biology
75 and pathobiology.

76 Non-alcoholic fatty liver disease (NAFLD), defined as an accumulation of
77 triglycerides and lipid droplets (LD) in the liver in absence of alcohol intake (infiltration in >
78 5% of hepatocytes), is rising to the most common chronic liver disease worldwide¹⁷. NAFLD
79 includes a spectrum of liver diseases, ranging from simple steatosis to non-alcoholic
80 steatohepatitis (NASH)¹⁷. Whereas steatosis is considered as a “non-progressive” status of
81 the disease, NASH has the potential to progress to more severe stages, such as cirrhosis
82 or hepatocellular carcinoma, leading eventually to liver failure and transplantation^{3,17}. Thus,
83 the understanding of the transition from steatosis to NASH as a disease-defining moment
84 for NAFLD prognosis is key to a deeper understanding of disease pathophysiology. Liver
85 biopsy and histological inspection of thin tissue slices (< 10 µm) constitute the current gold
86 standard for the diagnosis of steatosis and NASH^{2,17,18}. Unfortunately, due to the limitations
87 in providing 3D information, alterations in 3D tissue structures such as BC^{3,17}, have been
88 overlooked. Therefore, new approaches are required to gain a more complete
89 understanding of NAFLD establishment and its progression to NASH. In this study, we
90 generated 3D spatially resolved geometrical and functional models of human liver tissue for
91 different stages of NAFLD to contribute to a high definition medical diagnosis of disease
92 establishment and progression.

93 **Results**

94

95 **Tri-dimensional geometrical models of human liver tissue**

96 To identify parameters that can quantitatively discriminate the transition from simple
97 steatosis to early NASH (eNASH) we stained, imaged and digitally reconstructed human
98 liver tissue in 3D. We focused on cell and nuclear morphology, LD, and tissue features such
99 as BC and sinusoidal networks, and their spatial distribution along the CV-PV axis. For this
100 we tested 26 antibodies combinatorially with dyes and antigen retrieval protocols
101 (Supplementary Table 2). Our final pipeline (see Methods for details) includes the following
102 steps. First, 100 μ m liver sections were heated and antigen retrieved using citric acid buffer
103 (CAAR). Second, we stained for BC (CD13), sinusoids (fibronectin), nuclei (DAPI), lipid
104 droplets LD (BODIPY) and cell borders (LDLR), optically cleared with SeeDB¹⁹ and imaged
105 at high resolution using multiphoton microscopy (0.3 μ m x 0.3 μ m x 0.3 μ m per voxel)
106 (Extended Data Fig. 1). Because this protocol did not provide a good cell border staining of
107 the pericentral hepatocytes in STEA and eNASH, for cell-based measurements (see below
108 Fig. 3), we used an alternative protocol without antigen retrieval enabling the staining of
109 sinusoids (fibronectin), nuclei (DAPI), LD (BODIPY) and cell borders (phalloidin). We applied
110 this pipeline to biopsies from twenty-two patients classified into four groups: normal control
111 (NC, n = 6), healthy obese (HO, n = 4), steatosis (STEA, n = 5) and early NASH (eNASH, n
112 = 7). The demographic, clinical and histological details of the samples are summarized in
113 the Supplementary Table 1. All images cover one complete CV-PV axis within a liver lobule.
114 Finally, we reconstructed the various stained components of the tissue using our open-
115 source software Motion Tracking (<http://motiontracking.mpi-cbg.de>) as described⁸ (Fig. 1
116 and Supplementary Video 1-2). The generation of geometrical models constituted the basis
117 for the quantitative and structural characterization of the different components forming the
118 liver tissue in the NAFLD biopsies.

119 **Nuclear-based analysis of NAFLD progression**

120 We first quantified properties of hepatocytes nuclei, such as cell nuclearity and
121 ploidy, since hepatocytes are heterogenous in both mouse and human^{8,20}. We quantified
122 nuclear vacuolization/glycogenation given it is a common histological characteristic in
123 NAFLD linked to insulin resistance^{21,22}. Finally, we measured nuclear texture homogeneity,
124 a feature associated with various pathological conditions, such as cancer, inflammation,

125 cardiomyopathy, etc²³⁻²⁶, with methylation and acetylation status²⁷ and, more recently, with
126 transcriptional activity²⁸. We neither observed differences in the proportion of
127 mono/binuclear cells nor in the ploidy between the groups (Extended Data Fig. 2a and b).
128 The average values of several nuclear features showed only modest variations Extended
129 Data Fig. 2). However, many functional and morphological features of the liver change along
130 the CV-PV axis, such as metabolic zonation^{29,30}, ploidy⁸, cell volume⁸, BC¹⁶. Therefore, to
131 account for potential morphological heterogeneities along the CV-PV axis, we
132 computationally divided this axis into ten equidistant zones (Extended Data Fig. 2c)
133 (Methods). We found major differences in nuclear elongation around the CV and
134 vacuolization around the PV between the different groups (Extended Data Fig. 2d,e).
135 Moreover, we identified zoned and progressive differences in nuclear homogeneity as
136 disease progresses (Extended Data Fig. 2f-i). Therefore, our analysis reveals that, in spite
137 of modest changes in the average values, the combined zoned values of nuclear
138 vacuolization and texture homogeneity allow discriminating between all four patient groups.

139 **Morphometric parameters of LD correlate with disease progression**

140 The finding that quantitative spatially-resolved analysis of nuclear parameters can
141 reveal changes that are not evident in an average estimate prompted us to re-evaluate the
142 morphometric characterization of LD. Even though LD are the most typical hallmark of
143 NAFLD, a detailed quantitative description of their size and their spatial localization within
144 the liver lobule has not been achieved yet. Contrary to traditional histology³, immunostaining
145 of thick tissue sections preserved most of the LD (Fig 2a). In agreement with the
146 histopathological description of NAFLD^{3,17}, a major increase in LD was observed in STEA
147 and eNASH, which were concentrated between the second and the fifth zones (Fig. 2b).
148 However, the LD occupy a higher volume of the tissue in eNASH than STEA. It is known
149 that the LD can present massive differences in size^{31,32}. The LD in the human liver samples
150 ranged from $\sim 1 \mu\text{m}^3$ to $20,000 \mu\text{m}^3$ (Fig. 2c). To inquire whether differences in LD size may
151 correlate with the disease state, we performed a population analysis based on their volume
152 distributions (Fig. 2c). We defined three sub-populations of LD, namely, small ($< 14 \mu\text{m}^3$),
153 medium ($14 - 400 \mu\text{m}^3$) and large ($> 400 \mu\text{m}^3$) ones (Fig. 2d-f). Strikingly, we found that the
154 three sub-populations varied between disease conditions. Whereas small LD were evenly
155 distributed along the CV-PV in all conditions, large LD were highly enriched towards the
156 pericentral zone in STEA and eNASH, occupying up to 25% of the tissue volume (Fig. 2f).

157 Most importantly however, medium LD were mostly present in eNASH and spanning the
158 entire liver lobule (Fig. 2e), hence contributing to discriminate between STEA and eNASH
159 in the periportal area (Fig. 2e).

160 The zonated increase in LD size during disease progression is such that some LD in
161 the pericentral zone become even larger than a normal hepatocyte. This leads to global
162 changes in tissue structure. To quantify such changes, we measured the spatial distribution
163 of cell density, cell volume and percentage of cell volume occupied by LD. We found ~50%
164 reduction in the number of hepatocytes located between the CV and the middle zone in
165 STEA and eNASH, when compared with NC and HO samples (Fig. 3a). This reduction was
166 compensated by a massive increase in cell volume (Fig. 3b). Hepatocytes were two times
167 larger than the average size (Fig. 3b), reaching values up to up to ~100,000 μm^3 for STEA
168 and NASH (ten times bigger than a small hepatocyte) (Fig. 3c). A population analysis of the
169 hepatocytes based on their volume revealed a characteristic distribution of different cells
170 populations along the liver lobule (Fig. 3c-f). STEA and eNASH were characterized
171 predominantly by small and large hepatocytes which are anti-correlated along CV-PV axis
172 (Fig. 3d-f). Even though cell density and cell volume were practically indistinguishable
173 between STEA and eNASH, we observed a remarkable phenotype regarding the fraction of
174 cell volume occupied by LD (Fig. 3g-i). In eNASH, hepatocytes accumulated LD even in the
175 periportal zone (Fig. 3h, 3i and Supplementary Video 3), suggesting that LD accumulation
176 progressively extends to the PV as the disease progresses.

177 Altogether, these data reveal profound quantitative morphological disparities in cell
178 size and LD content along the CV-PV axis between NC, HO, STEA and eNASH. Specifically,
179 the percentage of cell volume occupied by LD in the PV and CV zones can serve to
180 discriminate STEA and eNASH.

181 **Alterations in apical protein trafficking**

182 The massive presence of LD that occupy a large portion of the cytoplasm raises the
183 question of whether trafficking of proteins to the apical plasma membrane of hepatocytes is
184 affected. We analysed the localization of four apical proteins, aminopeptidase N (CD13),
185 bile salt export pump (BSEP), multidrug resistant-associated protein (MRP2) and
186 dipeptidylpeptidase 4 (DPPIV). CD13, BSEP and MRP2 were correctly localized to the
187 apical membrane in all conditions (Extended Data Fig. 1, 3a-b). DPPIV was enriched on the
188 apical membrane with a small fraction on the basal membrane in NC and HO (Extended

189 Data Fig. 3c). Strikingly, DPPIV was redistributed to the lateral membrane in pericentral
190 hepatocytes in STEA and eNASH, whereas it retained its normal localization on the
191 periportal zone (Extended Data Fig. 3c). Considering that DPPIV follows the transcytotic
192 route to the apical surface^{33,34} whereas BSEP and MRP2 do not³⁴⁻³⁶, the mislocalization of
193 DPPIV suggests a possible disruption of some stage of endocytosis and transcytosis of this
194 cargo molecule in the pericentral hepatocytes. This supports previous findings regarding the
195 misregulation of membrane protein trafficking in NAFLD³⁷ and prompted us to evaluate
196 whether the integrity of the BC could be affected during the disease progression.

197 **Bile canaliculi network shows geometrical and topological-zonated defects in NAFLD**

198 To determine whether 3D structures such as the BC and sinusoidal networks are
199 affected, we carried out a geometrical and topological characterization of both networks.
200 Even though we observed a slight reduction in the total length of the sinusoidal network in
201 STEA and eNASH (Extended Data Fig. 4e), no major defects in sinusoidal microanatomy
202 were detected (Extended Data Fig. 4a-d, f-g) (volume fraction, radius, branching and
203 connectivity). Next, we analysed the BC network. Contrary to the very packed and
204 homogeneous appearance in NC and HO, the BC in STEA and eNASH displayed clear
205 morphological defects which were more pronounced in the pericentral zone (Fig. 4a, b). A
206 more detailed analysis revealed a sustained increase in BC radius in NASH throughout the
207 CV-PV axis (Fig. 4d). In addition, in both STEA and eNASH, we observed a strong reduction
208 in the total length of the BC towards the pericentral zone (Fig. 4a and f). Other geometrical
209 properties of the BC network, such as volume fraction and junction density were unaffected
210 (Fig. 4c and e).

211 Finally, to investigate the topological properties of the BC network, we performed an
212 analysis of network connectivity (see Methods). Surprisingly, we found a pronounced decay
213 in the connectivity in STEA and eNASH towards the pericentral region (Fig. 4a, b, g and h,
214 Supplementary Video 4). One possibility is that the alterations in BC may be the
215 consequence of the spatial constraints arising from the presence of large cells in the tissue
216 (Fig. 3f). To test this, we inspected the connectivity of the sinusoidal network. We found that
217 no defect was observed for the sinusoidal network (Extended Data Fig. 4a, f and g),
218 supporting the idea that the BC network is specifically affected and not an indirect
219 consequence of spatial constraints. Thus, our data point at specific geometrical and
220 topological alterations in the pericentral BC network in both STEA and eNASH.

221 **Personalised model of bile flow predicts increase in bile pressure in the pericentral
222 zone**

223 The observed alterations of BC network architecture are likely to have consequences
224 for liver tissue function, particularly for bile flow. Clearly, information on bile velocity and
225 pressure in disease conditions could be insightful. However, it is not yet possible to measure
226 bile flow in the human liver at the level of BC as in animal models. We recently developed a
227 computational model of bile fluid dynamics, validated its quantitative predictions in mouse
228 models and demonstrated that bile velocity and bile pressure distributions along the liver
229 lobule strongly depend on BC geometry¹⁶. However, this model¹⁶ is not suitable to handle
230 the extreme inhomogeneity of BC density such as the ones encountered in tissue distorted
231 by the presence of large LD (i.e. in STEA and eNASH). Therefore, we addressed this issue
232 and further developed our model in a spatially-resolved fashion (Fig. 5a). Shortly, the refined
233 model is based on conservation of mass for water and osmolytes and Darcy's Law for
234 laminar flow. The proportionality constant in Darcy's Law was derived from the porous media
235 theory. Boundary conditions were set to zero velocity at the outer surface of the central vein,
236 and ambient pressure at the portal outlet. Since we obtained morphometric data for liver
237 tissue from individual patients, we aimed at developing personalised models, i.e.
238 parameterized by individual geometrical measurements (BC volume fraction α_{BC} , BC radius
239 r_{BC} , fraction of connected BC, canaliculi tortuosity τ , apical surface density A , intra-
240 canicular volume fraction occupied by microvilli $1-\alpha$) (Fig. 4c, 4d, 4g, and Extended Data
241 Fig. 5) and previously reported values (viscosity, permeability and osmolyte secretion rate).
242 No free parameters remained and, hence, no parameter fitting was needed (see Methods
243 for details). Next, we applied this model to predict bile velocity, pressure and solute
244 concentration distributions across the liver lobule for individual patients liver tissue 3D
245 reconstructions from all the four groups.

246 The model predicts bile velocities in the periportal area of about $1.2 \pm 0.4 \text{ } \mu\text{m/sec}$ for
247 all patient groups (Fig. 5b-e). Very similar velocities have been reported in mouse¹⁶.
248 However, the predicted pressure in the pericentral area differed significantly between the
249 patient groups. In the NC and HO groups this pressure was predicted to be lower than 1500
250 Pa in all patients ($963.2 \pm 285.2 \text{ Pa}$, mean \pm SD) (Fig. 5b-c). This is consistent with the
251 reported maximum biliary secretion pressure of 1,000–1,500 Pa in the extrahepatic biliary
252 system in rats³⁸. In the STEA and eNASH groups, the model predicted an abrupt increase

253 of bile pressure toward the pericentral zone (Fig. 5d-e). For six STEA and eNASH patients
254 (55%), the pericentral pressure exceeded 1,500 Pa and for four patients (36%) it exceeded
255 twice the maximum pressure predicted for NC (3000 Pa) (Fig. 5d-e). The compensatory
256 effect in bile pressure observed in eNASH is mostly due to the dilation of BC (Fig. 4d).
257 Therefore, our model predicts an increase in pericentral bile pressure in STEA and eNASH
258 conditions ranging from relatively mild to quite severe, depending on the BC geometry of
259 individual patients.

260 We next set out to validate the model predictions. As it is impossible to measure bile
261 flow and pressure in the human liver, we considered possible consequences of changes in
262 bile pressure. Increased bile pressure is a hallmark of cholestasis^{39,40}. Therefore, as readout
263 of increased bile pressure, we analysed the most commonly used cholestatic biomarkers in
264 serum, including bilirubin, gamma glutamyl transpeptidase (GGT), alkaline phosphatase
265 (ALP) and BAs. To increase the statistical power, we analysed additional sera samples for
266 the different groups (NC = 25, HO = 25, STEA = 24 and eNASH = 26 samples). Whereas
267 we found that both bilirubin and GGT were elevated in STEA and eNASH (Extended Data
268 Fig. 6a-b), we did not detect significant changes in the levels of ALP, total BAs and primary
269 BAs between the groups (Extended Data Fig. 6c, 7b,d). Strikingly, when we analysed the
270 correlation between the predicted pericentral bile pressure and the biomarkers for individual
271 patients from all groups, we found a strong correlation for the majority of the cholestatic
272 biomarkers, with GGT having the strongest correlation (Pearson correlation coefficient ALP=
273 0.473, total BAs 0.505, primary BA 0.518 and GGT 0.680; (Extended Data Fig. 8a-e and
274 Fig. 5f). In contrast, aspartate aminotransferase (AST) and alanine aminotransferase (ALT),
275 biomarkers of hepatocellular liver damage which are not increased in cholestasis, showed
276 no correlation (Extended Data Fig. 8f-g). The presence of pericentral cholestasis was also
277 supported by the increase in the predicted pericentral concentration of BAs (proportional to
278 the lumped concentration of all osmolytes. Extended Data Fig. 9), which in combination with
279 high pressure and low flow velocity, are signs of a defective bile flow. Altogether, our model
280 predicts a significant degree of zonated cholestasis as a new component of the NAFLD
281 pathophysiology.

282 **Discussion**

283

284 High definition medicine provides a novel approach to understand human health of
285 individuals with unprecedented precision¹. One of its pillars is the combination of image
286 analysis and computational modelling to uncover tissue alterations at different structural and
287 functional levels during disease progression. During the last years, there has been an
288 enormous interest in getting a better understanding of NAFLD establishment and
289 progression due to its growing impact on public health⁴¹. A lot of attention has been mostly
290 drawn to the role of signalling pathways⁴²⁻⁴⁴, microbiome^{45,46}, metabolism⁴⁷, genetic risk
291 factors⁴⁸, BAs⁴⁴, etc. However, a major challenge is to understand how the molecular
292 alterations detected are expression of the organ dysfunction, manifested as morphological
293 and functional alterations of cells and tissue architecture.

294 The classical histological analysis has provided insights into fundamental aspects of
295 NAFLD. However, a quantitative description of the 3D tissue morphology is indispensable,
296 particularly for the liver which contains intertwined 3D networks enabling the flow of fluids,
297 the sinusoids for blood flow and the BC for bile secretion and flux⁹. Here, we used high
298 resolution multiphoton microscopy and 3D digital reconstructions to generate a comparative
299 dataset of structural changes of human liver tissue from NC, HO, STEA and eNASH patients.
300 We identified a set of zonated morphological alterations that correlate with disease
301 progression, such as a characteristic size distribution of LD and nuclear texture
302 homogeneity, that can be used as tissue biomarkers to distinguish between different stages
303 of NAFLD progression. In addition, the 3D digital reconstruction provided the first evidence
304 that BC integrity is disrupted during NAFLD progression, bringing BC integrity and the
305 mechanisms involved in its maintenance and homeostasis (cell polarity, trafficking, bile flow,
306 BAs turnover, etc.) into focus for NAFLD studies. Based on the geometrical and topological
307 information extracted from the BC, we used a computational personalised model to connect
308 the microanatomy of BC with biliary fluid dynamics within the lobule. Our model predicted
309 high bile pressure in the pericentral area and a significant degree of zonated cholestasis in
310 STEA and eNASH patients, a prediction that was validated by the detection of cholestatic
311 biomarkers in serum. Our data show that geometrical models of human tissues coupled to
312 computational modelling is a powerful strategy to describe human physiology and
313 physiopathology.

314 The spatially-resolved quantitative analysis of the 3D reconstructions of human liver

315 samples revealed a set of unknown morphological features, ranging from the (sub)cellular
316 (nuclear texture, LD content, polarity) to the tissue level (BC integrity), that are perturbed
317 during NAFLD progression. First, we detected changes in nuclear texture, which have been
318 reported in several diseases^{24,25,49}, but have not yet been studied in NAFLD. Indeed,
319 changes in nuclear texture homogeneity in the pericentral hepatocytes may reflect changes
320 in transcriptional activity^{27,28} and could serve as a new component of the histological scores
321 of NAFLD progression. Second, although the accumulation of LD is a characteristic feature
322 of NAFLD, our analysis revealed quantitative changes in their size distribution, with the
323 medium LD mostly present in eNASH and spanning the entire liver lobule. In healthy
324 conditions, the LD number and size are accurately regulated⁵⁰ and changes in LD
325 distribution point at specific alterations in the mechanisms regulating LD biogenesis and
326 catabolism. Third, and most striking, we observed alterations of the apical plasma
327 membrane of hepatocytes and of the BC network. The pericentral hepatocytes showed
328 mislocalization of DPPIV, pointing towards a dysregulation in apical protein trafficking³⁷.
329 Interestingly, not all apical proteins were missorted, suggesting that trafficking defects could
330 be pathway- (transcytosis) and/or cargo-specific. Such defects in protein trafficking
331 correlated with the reduction of BC connectivity in the pericentral zone. This is the first time
332 that geometrical and topological properties of the BC are studied in human liver tissue from
333 NAFLD biopsies. The unaltered architecture of the sinusoidal network along the different
334 stages of NAFLD rules out the possibility that this reduction in BC connectivity is simply due
335 to the spatial constraints imposed by the presence of the large pericentral hepatocytes.
336 These results pose the question of how the alterations in apical surface of the hepatocytes
337 collectively result in the compromised connectivity of the BC network.

338 The altered BC microanatomy and the consequent increase in bile pressure in the
339 pericentral zone suggest that STEA and eNASH livers are affected by a pericentral
340 cholestasis which may contribute to the changes in BA composition observed in
341 NAFLD^{42,44,51}. Unimpaired bile flow is essential for normal liver function. Previous studies
342 have documented that bile accumulation, due to its detergent-like properties, can cause liver
343 damage^{52,53} and bile pressure can affect metabolism⁵⁴. The occurrence of zonated
344 cholestasis is a new piece in the NAFLD physiopathology puzzle that contributes to clarify
345 some aspects of the disease so far without explanation, e.g. increase of GGT levels⁵⁵, bile
346 acids in serum^{56,57}, upregulation of MRP3 in NASH^{58,59} and the beneficial effect of UDCA
347 treatment in NAFLD⁶⁰, all sign of an ongoing cholestasis^{40,61,62}.

348 In recent years, a lot of research has been devoted to the role of BAs and the activity
349 of their receptor FXR, in NAFLD⁴²⁻⁴⁴. However, there is currently no explanation for the
350 alterations in BAs composition in blood, the decreased ratio of secondary/primary BAs
351 observed by us (Extended Data Fig. 7) and others^{42,44,51}, and whether it correlates with
352 changes in tissue morphology⁴⁴. Our data shed new light on this problem. Our results
353 suggest that the altered BC microanatomy leading to increased bile pressure in the
354 pericentral zone may hamper the ongoing bile acid secretion into BC, as apical pumps
355 (BSEP, MRP2) have to operate against elevated luminal BA concentrations (Extended Data
356 Fig. 9). This could lead to back-flux of primary BA into the blood (Extended Data Fig. 8d),
357 reducing the availability of primary bile acids to be converted into secondary bile acids by
358 the microbiota in the intestine (Extended Data Fig. 7e).

359 The combination of experimental data with computational models of tissues has
360 proven successful in elucidating pathogenetic mechanisms using animal models^{16,63,64}.
361 However, animal models very often fail to mimic human diseases⁶⁵, including NAFLD⁶⁶. In
362 this study, the geometrical models of liver tissue from human biopsies combined with
363 spatially-resolved computational simulations revealed new aspects of NAFLD pathology.
364 This approach may help to identify biomarkers for early disease diagnosis and predict the
365 functional status of the tissue with potential applications in high-definition medicine^{1,67,68}.

366

367 **Acknowledgements**

368 We are grateful to Oleksandr Ostrenko, Juan Francisco Miquel Poblete and Sophie Nehring
369 for fruitful discussions, and Sebastian Bundschuh for helping to set up the 2-photon
370 microscope. We thank the Center for Information Services and High Performance
371 Computing (ZIH) of the TU Dresden for the generous provision of computing power. We
372 would also like to thank the following Services and Facilities of the Max Planck Institute of
373 Molecular Cell Biology and Genetics for their support: Light Microscopy Facility (LMF) and
374 the Electron Microscopy Facility.

375 This work was financially supported by the German Federal Ministry of Education and
376 Research (BMBF) (LiSyM: grant #031L0038 to M.Z., grant #031L0033 to L.B., grant
377 #031L0031 to J.H., DYNAFLOW: grant #031L0082B to M.Z., grant #031L008A to L.B. and
378 SYSBIO II: grant #031L0044 to M.Z.), European Research Council (ERC) (grant #695646
379 to M.Z.) and the Max Planck Society (MPG).

380 **Author contributions**

381 F.S-M., J.H. and M.Z. conceived the project. F.S-M., V.M. and S.S. performed the
382 immunofluorescence experiments and imaging. H.M-N. and Y.K. developed the image
383 analysis algorithms. F.S-M., V.M. and H.M-N performed the 3D tissue reconstructions. H.M-
384 N. and F.S-M. performed the data analysis and interpretation of the results. U.R. performed
385 the electron microscopy. A.H., S.H., C.R., and C.S obtained the samples and characterized
386 the patients. D.L. measured bile acids. M.K., F.R., Y.K. and L.B. conceived and developed
387 the mathematical model. M.K and F.R. programmed and simulated the mathematical model
388 and performed statistical analysis. M.K. and L.B. interpreted results and wrote the model
389 description. F.S-M., H.M-N., M.K., Y.K., L.B. and M.Z. wrote the manuscript.

390 **Competing interests**

391
392 Authors declare no competing interests

393 **References**

- 394 1. Torkamani, A., Andersen, K. G., Steinhubl, S. R. & MD, E. J. T. High-Definition
395 Medicine. *Cell* **170**, 828–843 (2017).
- 396 2. Mills, S. E. *Histology for Pathologists*. (Lippincott Williams & Wilkins, 2012).
- 397 3. Nalbantoglu, I. L. K. & Brunt, E. M. Role of liver biopsy in nonalcoholic fatty liver
398 disease. *World J. Gastroenterol.* **20**, 9026–9037 (2014).
- 399 4. Tanaka, N. *et al.* Whole-tissue biopsy phenotyping of three-dimensional tumours
400 reveals patterns of cancer heterogeneity. *Nature Biomedical Engineering* 1–14
401 (2017). doi:10.1038/s41551-017-0139-0
- 402 5. Hägerling, R. *et al.* VIPAR, a quantitative approach to 3D histopathology applied to
403 lymphatic malformations. *JCI Insight* **2**, 1–14 (2017).
- 404 6. Nojima, S. *et al.* CUBIC pathology: three-dimensional imaging for pathological
405 diagnosis. *Sci Rep* 1–14 (2017). doi:10.1038/s41598-017-09117-0
- 406 7. Glaser, A. K. *et al.* Light-sheet microscopy for slide-free non-destructive pathology
407 of large clinical specimens. *Nature Biomedical Engineering* **1**, 0084 (2017).
- 408 8. Morales-Navarrete, H. *et al.* A versatile pipeline for the multi-scale digital
409 reconstruction and quantitative analysis of 3D tissue architecture. *eLife* **4**, 841
410 (2015).
- 411 9. Elias, H. A re-examination of the structure of the mammalian liver; the hepatic lobule
412 and its relation to the vascular and biliary systems. *Am. J. Anat.* **85**, 379–456– 15 pl
413 (1949).
- 414 10. Elias, H. LIVER MORPHOLOGY. *Biological Reviews* **30**, 263–310 (1955).
- 415 11. Morales-Navarrete, H. *et al.* Liquid-crystal organization of liver tissue. *bioRxiv*
416 495952 (2018). doi:10.1101/495952
- 417 12. Elias, H. A re-examination of the structure of the mammalian liver; parenchymal
418 architecture. *Am. J. Anat.* **84**, 311–333 (1949).
- 419 13. Treyer, A. & Müsch, A. *Hepatocyte Polarity*. (John Wiley & Sons, Inc., 2013).
420 doi:10.1002/cphy.c120009
- 421 14. Tainaka, K., Kuno, A., Kubota, S. I., Murakami, T. & Ueda, H. R. Chemical
422 Principles in Tissue Clearing and Staining Protocols for Whole-Body Cell Profiling.
423 *Annu Rev Cell Dev Biol* **32**, 713–741 (2016).
- 424 15. Richardson, D. S. & Lichtman, J. W. Clarifying Tissue Clearing. *Cell* **162**, 246–257
425 (2015).
- 426 16. Meyer, K. *et al.* A Predictive 3D Multi-Scale Model of Biliary Fluid Dynamics in the
427 Liver Lobule. *Cell Systems* **4**, 277–290.e9 (2017).
- 428 17. Hardy, T., Oakley, F., Anstee, Q. M. & Day, C. P. Nonalcoholic Fatty Liver Disease:
429 Pathogenesis and Disease Spectrum. *Annu Rev Pathol* **11**, 451–496 (2016).
- 430 18. Bedossa, P. Pathology of non-alcoholic fatty liver disease. *Liver Int* **37**, 85–89
431 (2017).
- 432 19. Ke, M.-T., Fujimoto, S. & Imai, T. SeeDB: a simple and morphology-preserving
433 optical clearing agent for neuronal circuit reconstruction. *Nature Neuroscience* **16**,
434 1154–1161 (2013).
- 435 20. Wang, M.-J., Chen, F., Lau, J. T. Y. & Hu, Y.-P. Hepatocyte polyploidization and its
436 association with pathophysiological processes. *8*, e2805–7 (2017).
- 437 21. Younossi, Z. M. *et al.* Nonalcoholic fatty liver disease: assessment of variability in
438 pathologic interpretations. *Mod. Pathol.* **11**, 560–565 (1998).

439 22. Levene, A. P. & Goldin, R. D. Physiological hepatic nuclear vacuolation--how long
440 does it persist? *Histopathology* **56**, 426–429 (2010).

441 23. Hamilton, P. W. *et al.* Digital pathology and image analysis in tissue biomarker
442 research. *Methods* **70**, 59–73 (2014).

443 24. Bartels, P. H. *et al.* Chromatin texture signatures in nuclei from prostate lesions.
444 *Anal. Quant. Cytol. Histol.* **20**, 407–416 (1998).

445 25. Jørgensen, T., Yugesan, K., Tveter, K. J., Skjørten, F. & Danielsen, H. E. Nuclear
446 texture analysis: a new prognostic tool in metastatic prostate cancer. *Cytometry* **24**,
447 277–283 (1996).

448 26. Doudkine, A., Macaulay, C., Poulin, N. & Palcic, B. Nuclear texture measurements
449 in image cytometry. *Pathologica* **87**, 286–299 (1995).

450 27. Orr, J. A. & Hamilton, P. W. Histone acetylation and chromatin pattern in cancer. A
451 review. *Anal. Quant. Cytol. Histol.* **29**, 17–31 (2007).

452 28. Ricci, M. A., Cosma, M. P. & Lakadamyali, M. Super resolution imaging of
453 chromatin in pluripotency, differentiation, and reprogramming. *Curr. Opin. Genet.
454 Dev.* **46**, 186–193 (2017).

455 29. Felmlee, D. J., Grün, D. & Baumert, T. F. Zooming in on liver zonation. *Hepatology*
456 **67**, 784–787 (2018).

457 30. Gebhardt, R. & Matz-Soja, M. Liver zonation: Novel aspects of its regulation and its
458 impact on homeostasis. *World J. Gastroenterol.* **20**, 8491–8504 (2014).

459 31. Kleiner, D. E. & Makhlouf, H. R. Histology of Nonalcoholic Fatty Liver Disease and
460 Nonalcoholic Steatohepatitis in Adults and Children. *Clinics in Liver Disease* **20**,
461 293–312 (2016).

462 32. Kochan, K. *et al.* Raman spectroscopy analysis of lipid droplets content, distribution
463 and saturation level in Non-Alcoholic Fatty Liver Disease in mice. *J. Biophotonics* **8**,
464 597–609 (2015).

465 33. Wang, L. & Boyer, J. L. The maintenance and generation of membrane polarity in
466 hepatocytes. *Hepatology* **39**, 892–899 (2004).

467 34. Zeigerer, A. *et al.* Rab5 is necessary for the biogenesis of the endolysosomal
468 system in vivo. *Nature* **485**, 465–470 (2012).

469 35. Wakabayashi, Y., Dutt, P., Lippincott-Schwartz, J. & Arias, I. M. Rab11a and myosin
470 Vb are required for bile canalicular formation in WIF-B9 cells. *Proc Natl Acad Sci
471 USA* **102**, 15087–15092 (2005).

472 36. Kipp, H., Pichetshote, N. & Arias, I. M. Transporters on demand: intrahepatic pools
473 of canalicular ATP binding cassette transporters in rat liver. *J Biol Chem* **276**, 7218–
474 7224 (2001).

475 37. Dzierlenga, A. L. & Cherrington, N. J. Misregulation of membrane trafficking
476 processes in human nonalcoholic steatohepatitis. *J Biochem Mol Toxicol* **37**,
477 e22035–7 (2018).

478 38. Weis, E. E. & Barth, C. A. The extracorporeal bile duct: a new model for
479 determination of bile flow and bile composition in the intact rat. *J. Lipid Res.* **19**,
480 856–862 (1978).

481 39. Jansen, P. L. M. *et al.* The ascending pathophysiology of cholestatic liver disease.
482 *Hepatology* **65**, 722–738 (2017).

483 40. Pollock, G. & Minuk, G. Y. Diagnostic considerations for cholestatic liver disease. *J
484 Gastroenterol Hepatol* **32**, 1303–1309 (2017).

485 41. Friedman, S. L., Neuschwander-Tetri, B. A., Rinella, M. & Sanyal, A. J. Mechanisms
486 of NAFLD development and therapeutic strategies. *Nat Med* **24**, 908–922 (2018).

487 42. Chow, M. D., Lee, Y.-H. & Guo, G. L. The role of bile acids in nonalcoholic fatty liver
488 disease and nonalcoholic steatohepatitis. *Molecular Aspects of Medicine* 1–11
489 (2017). doi:10.1016/j.mam.2017.04.004

490 43. Arab, J. P., Karpen, S. J., Dawson, P. A., Arrese, M. & Trauner, M. Bile acids and
491 nonalcoholic fatty liver disease: Molecular insights and therapeutic perspectives.
492 *Hepatology* **65**, 350–362 (2016).

493 44. Jahn, D. & Geier, A. Bile acids in NASH: pathophysiological driving force or
494 innocent bystanders? *Hepatology* 1–8 (2017). doi:10.1002/hep.29543

495 45. Henao-Mejia, J. *et al.* Inflammasome-mediated dysbiosis regulates progression of
496 NAFLD and obesity. *Nature* **482**, 179–185 (2012).

497 46. Betrapally, N. S., Gillevet, P. M. & Bajaj, J. S. Changes in the Intestinal Microbiome
498 and Alcoholic and Nonalcoholic Liver Diseases: Causes or Effects?
499 *Gastroenterology* **150**, 1745–1755.e3 (2016).

500 47. Perla, F. M., Prelati, M., Lavorato, M., Visicchio, D. & Anania, C. The Role of Lipid
501 and Lipoprotein Metabolism in Non-Alcoholic Fatty Liver Disease. *Children (Basel)*
502 **4**, 46 (2017).

503 48. Romeo, S. *et al.* Genetic variation in PNPLA3 confers susceptibility to nonalcoholic
504 fatty liver disease. *Nat Genet* **40**, 1461–1465 (2008).

505 49. Huisman, A. *et al.* Discrimination between benign and malignant prostate tissue
506 using chromatin texture analysis in 3-D by confocal laser scanning microscopy.
507 *Prostate* **67**, 248–254 (2007).

508 50. Walther, T. C., Chung, J. & Farese, R. V., Jr. Lipid Droplet Biogenesis. *Annu Rev
509 Cell Dev Biol* **33**, 491–510 (2017).

510 51. Puri, P. *et al.* The presence and severity of nonalcoholic steatohepatitis is
511 associated with specific changes in circulating bile acids. *Hepatology* **67**, 534–548
512 (2017).

513 52. Trauner, M., Meier, P. J. & Boyer, J. L. Molecular pathogenesis of cholestasis. *N
514 Engl J Med* **339**, 1217–1227 (1998).

515 53. Coleman, R., Iqbal, S., Godfrey, P. P. & Billington, D. Membranes and bile
516 formation. Composition of several mammalian biles and their membrane-damaging
517 properties. *Biochem J* **178**, 201–208 (1979).

518 54. Jansen, P. L. M. Hydrodynamics of bile flow: Lessons from computational modeling.
519 *Hepatology* **67**, 1624–1627 (2018).

520 55. Chan, T. T. & Wong, V. W. S. In search of new biomarkers for nonalcoholic fatty
521 liver disease. *Clinical Liver Disease* **8**, 19–23 (2016).

522 56. Ferslew, B. C. *et al.* Altered Bile Acid Metabolome in Patients with Nonalcoholic
523 Steatohepatitis. *Digestive Diseases and Sciences* **60**, 3318–3328 (2015).

524 57. Mouzaki, M. *et al.* Bile Acids and Dysbiosis in Non-Alcoholic Fatty Liver Disease.
525 *PLoS ONE* **11**, e0151829–13 (2016).

526 58. Canet, M. J. *et al.* Altered Regulation of Hepatic Efflux Transporters Disrupts
527 Acetaminophen Disposition in Pediatric Nonalcoholic Steatohepatitis. *Drug Metab
528 Dispos* **43**, 829–835 (2015).

529 59. Hardwick, R. N., Fisher, C. D., Canet, M. J., Scheffer, G. L. & Cherrington, N. J.
530 Variations in ATP-binding cassette transporter regulation during the progression of
531 human nonalcoholic fatty liver disease. *Drug Metab Dispos* **39**, 2395–2402 (2011).

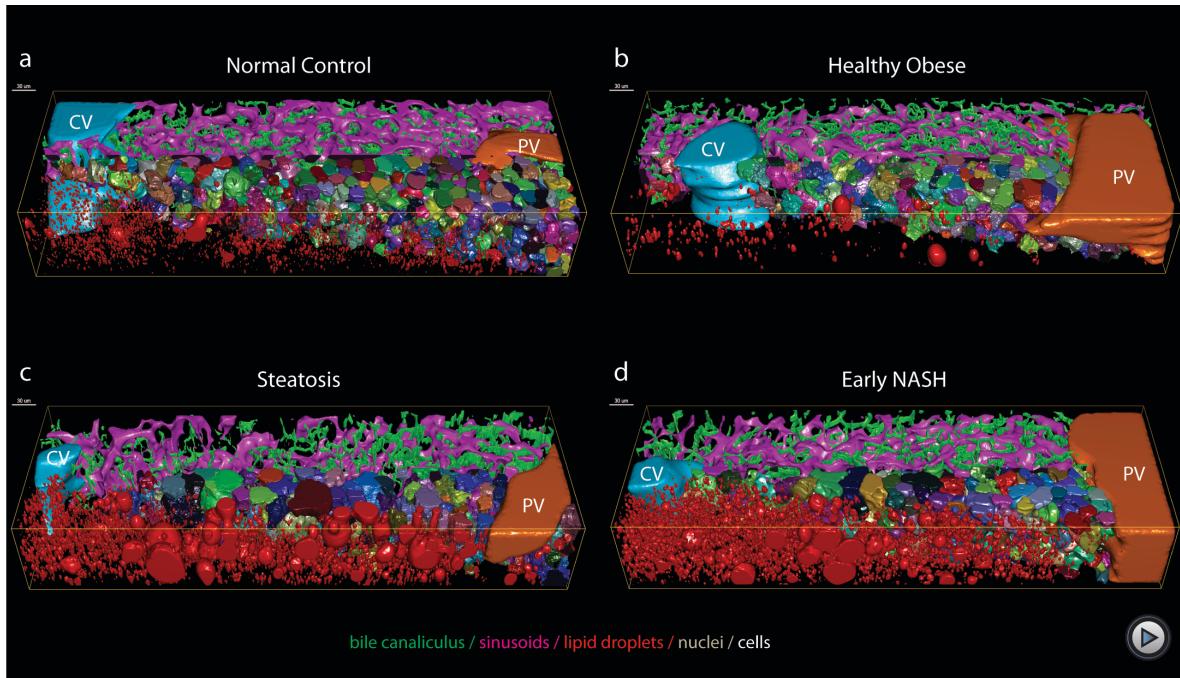
532 60. Steinacher, D., Claudel, T. & Trauner, M. Therapeutic Mechanisms of Bile Acids
533 and Nor-Ursodeoxycholic Acid in Non-Alcoholic Fatty Liver Disease. *Dig Dis* **35**,
534 282–287 (2017).

535 61. Chai, J. *et al.* Elevated hepatic multidrug resistance-associated protein 3/ATP-
536 binding cassette subfamily C 3 expression in human obstructive cholestasis is
537 mediated through tumor necrosis factor alpha and c-Jun NH₂-terminal
538 kinase/stress-activated protein kinase-signaling pathway. *Hepatology* **55**, 1485–
539 1494 (2012).

540 62. Donner, M. G. & Keppler, D. Up-regulation of basolateral multidrug resistance
541 protein 3 (Mrp3) in cholestatic rat liver. *Hepatology* **34**, 351–359 (2001).

542 63. Hoehme, S. *et al.* Model Prediction and Validation of an Order Mechanism
543 Controlling the Spatiotemporal Phenotype of Early Hepatocellular Carcinoma. *Bull
544 Math Biol* 1–38 (2018). doi:10.1007/s11538-017-0375-1

545 64. Menshykau, D. *et al.* Image-based modeling of kidney branching morphogenesis
546 reveals GDNF-RET based Turing-type mechanism and pattern-modulating WNT11
547 feedback. *Nature Communications* **10**, 239 (2019).

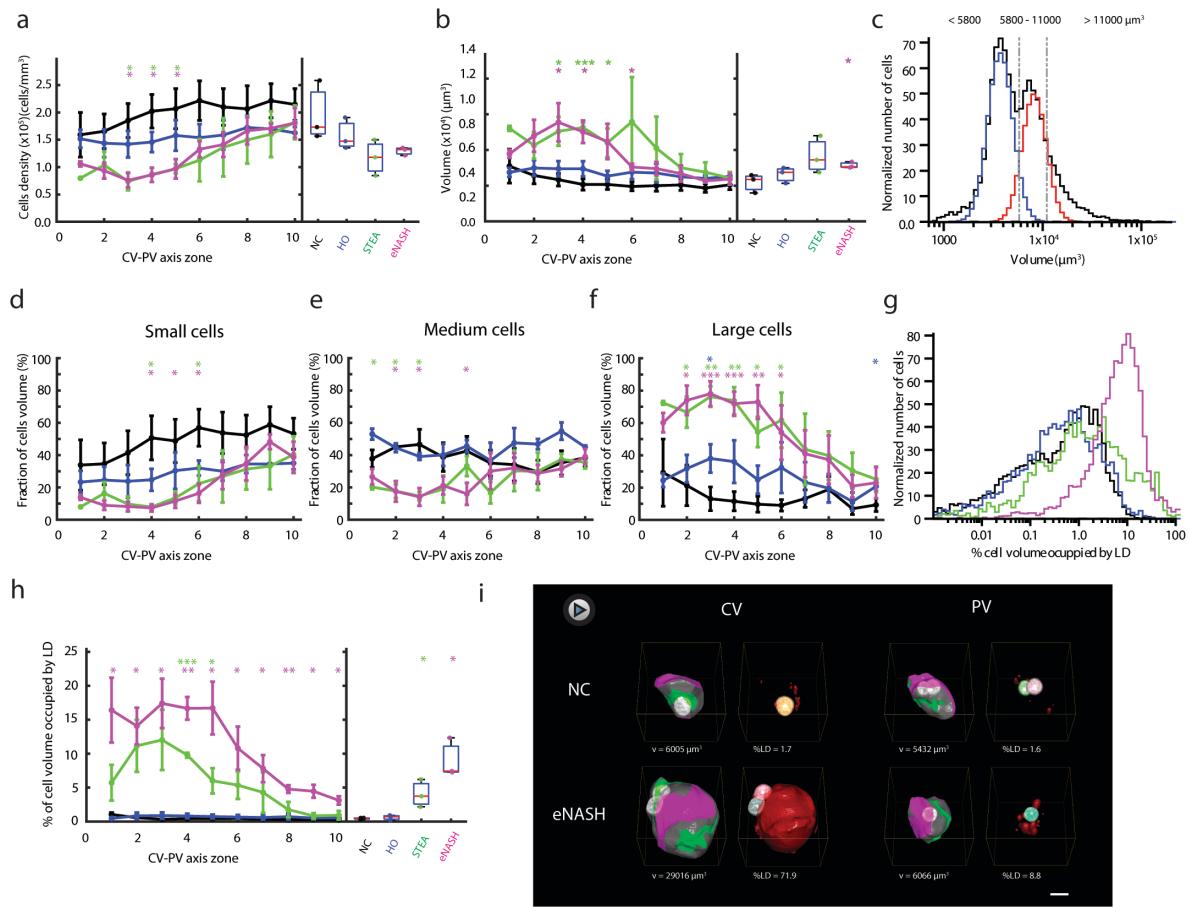

548 65. Uhl, E. W. & Warner, N. J. Mouse Models as Predictors of Human Responses:
549 Evolutionary Medicine. *Curr Pathobiol Rep* **3**, 219–223 (2015).

550 66. Lau, J. K. C., Zhang, X. & Yu, J. Animal models of non-alcoholic fatty liver disease:
551 current perspectives and recent advances. *J. Pathol.* **241**, 36–44 (2017).

552 67. Whitcomb, D. C. What is personalized medicine and what should it replace? *Nat
553 Rev Gastroenterol Hepatol* **9**, 418–424 (2012).

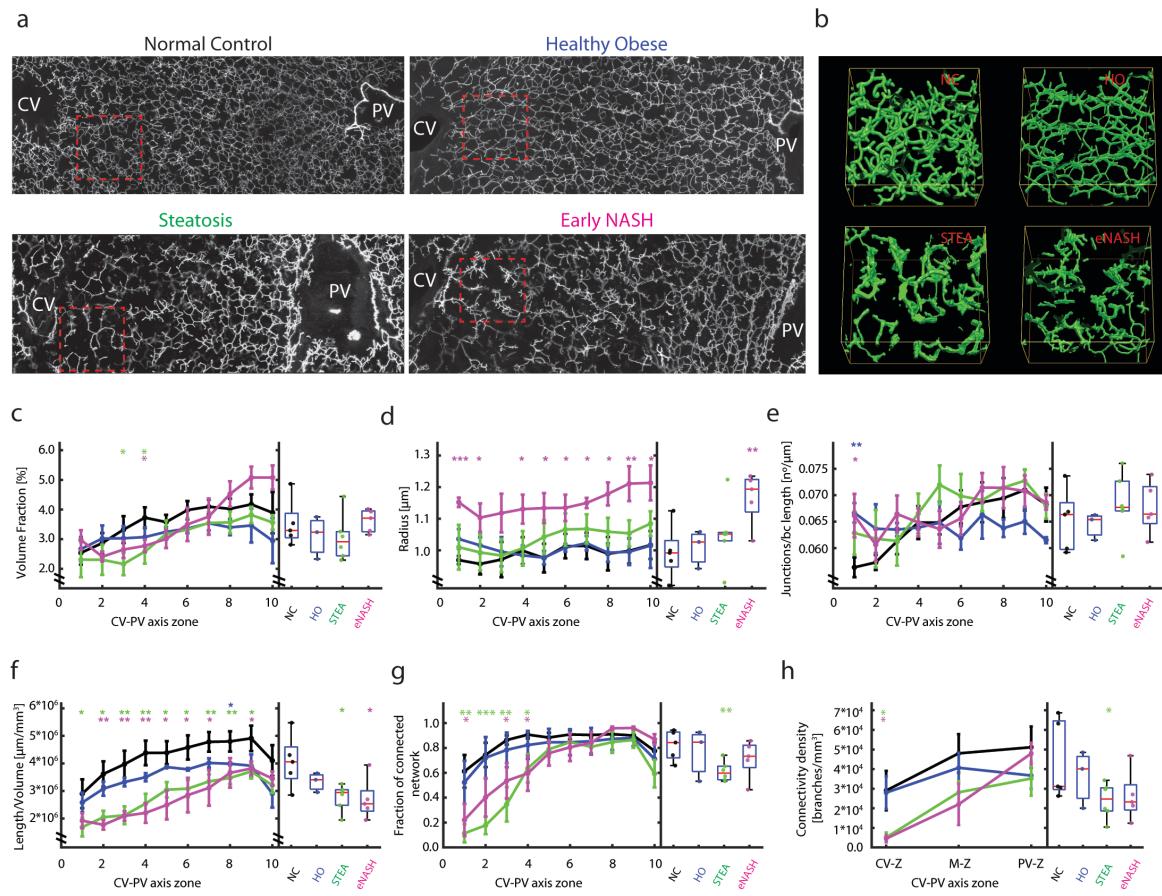
554 68. Amalou, H. & Wood, B. J. Biopsy and personalized medicine. *Nat Rev
555 Gastroenterol Hepatol* **9**, 683–author reply 683 (2012).

556

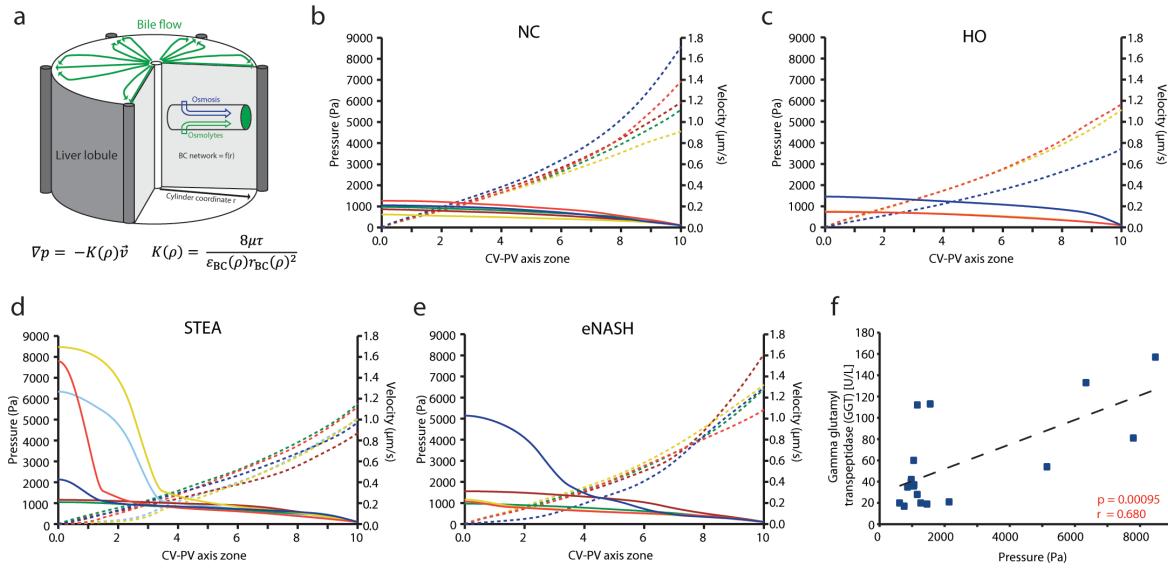


558 **Fig. 1. 3D reconstruction and quantitative analysis of human liver morphology.** Human
559 liver sections obtained by biopsy (~100 μm thick) were stained for bile canaliculi (CD13),
560 sinusoids (fibronectin), nucleus (DAPI), lipid droplets (BODIPY) and cell border (LDLR),
561 optically cleared with SeeDB and imaged at high resolution using multiphoton microscopy
562 (0.3 μm \times 0.3 μm \times 0.3 μm per voxel). For each sample, we reconstructed the central vein
563 (light blue), portal vein (orange), bile canaliculus (green), sinusoids (magenta), lipid droplets
564 (red), nuclei (random colours) and hepatocytes (random colours). **a**, Normal control. **b**,
565 Healthy obese. **c**, Steatosis. **d**, Early NASH.

566



567 **Fig. 2. Quantitative characterization of LD along the CV-PV axis. a**, Representative IF
568 images of fixed human liver tissue sections stained with BODIPY. Shown is a maximum
569 projection of a 60 μm z-stack covering an entire CV-PV axis. **b**, Quantification of the
570 percentage of tissue volume occupied by the LD along the CV-PV axis and the overall values
571 (i.e. over the whole CV-PV axis). **c**, LD volume distribution. LD populations were defined
572 based on the LD volume distribution of the NC group (black line). Three populations of LD
573 were defined based on their volume: small ($< 14 \mu\text{m}^3$), medium ($14 - 400 \mu\text{m}^3$) and large ($>$
574 $400 \mu\text{m}^3$), corresponding to changes in the volume distribution (i.e. drops in the number of
575 LD). Quantification of the percentage of tissue volume occupied by the LD along the CV-PV
576 for **(d)** small, **(e)** medium and **(f)** large LD. NC = 3 samples, HO = 3 samples, STEA = 3
577 samples, eNASH = 3 samples. Spatially-resolved quantification represented by mean \pm SEM
578 per zone and overall quantifications by box-plots. *p-values < 0.05 , **p-values < 0.01 , ***p-
579 values < 0.001 .


580

581 **Figure 3. Cell based analysis of NAFLD.** Quantification of the number of hepatocytes per
 582 tissue volume unit (**a**) and cell volume (**b**) both, along the liver lobule and the overall average.
 583 **c**, Cell volume distribution. For the population analysis, the hepatocytes form all the groups
 584 were pulled together and the populations were defined based on their volume distribution
 585 (**c**). By fitting the volume distribution with two normal distributions (**c**), the volume values
 586 defining three population's boundaries were identified: small ($< 5800 \mu\text{m}^3$) (**d**), medium
 587 ($5800 - 11000 \mu\text{m}^3$) (**e**) and large ($> 11000 \mu\text{m}^3$) (**f**). The fraction of cellular volume occupied
 588 by the different populations is shown in **d**, **e**, and **f**. Percentage of the cell volume occupied
 589 by lipid droplets: distribution (**g**) and statistics along the CV-PV axis and overall (**h**). NC = 3
 590 samples, HO = 3 samples, STEA = 3 samples, eNASH = 3 samples. Spatially-resolved
 591 quantification represented by mean \pm SEM per zone and overall quantifications by box-plots.
 592 *p-values < 0.05, **p-values < 0.01, ***p-values < 0.001. Representative cells reconstructed
 593 in 3D and selected from zone 3 and 8. Apical, basal and lateral surface are shown in green,
 594 magenta and grey respectively. Lipid droplets are shown in red. Scale bar, 10 μm .

595

596 **Figure 4. Structural and topological defects of bile canaliculi revealed by spatial 3D**
597 **analysis. a**, Representative IF images of fixed human liver tissue sections stained with
598 CD13 after citric acid antigen retrieval. Shown is a maximum projection of a 60 μ m z-stack
599 covering an entire CV-PV axis. **b**, Inset showing 3D representation of the bile canaliculus
600 highlighted in **a**. Quantification of the volume fraction of tissue occupied by bile canaliculi(**c**),
601 radius (**d**), number of junctions (**e**), total length per volume (**f**), fraction of connected network
602 (**g**) and connectivity density (**h**) of the BC network along the CV-PV axis and overall (See
603 Methods for details). NC = 5 samples, HO = 3 samples, STEA = 6 samples, eNASH = 5
604 samples. Spatially-resolved quantification represented by mean \pm SEM per zone and overall
605 quantifications by box-plots. *p-values < 0.05, **p-values < 0.01, ***p-values < 0.001.

606

607 **Figure 5. Individual-based model prediction of bile pressure p and flow velocity \vec{v}**
608 **profiles based on measured bile canalicular geometries. a,** Abstraction of liver lobule by
609 cylinder symmetry with radial coordinate ρ . The mechanistic model considers secretion of
610 osmolytes (green) and osmotic water influx (blue) in a porous medium with ρ -dependent
611 properties (see supplemental model description). Darcy's law is assumed with a
612 proportionality constant $K(\rho)$ depending on viscosity μ , tortuosity τ , bile canalicular volume
613 fraction ε_{BC} , bile canalicular radius r_{BC} . All geometric parameters have been measured per
614 patient. **b-e,** Model prediction for bile fluid pressure (solid line, left axis) and bile flow velocity
615 (dashed line, right axis) profiles for individual patients (colour) in for disease groups. NC = 5
616 samples, HO = 3 samples, STEA = 6 samples, eNASH = 5 samples. **f,** Scatter plot of
617 measured Gamma glutamyl transpeptidase (GGT) levels versus predicted pericentral (zone
618 0) bile fluid pressure from individual patients from all groups reveals a statistically significant
619 positive correlation. One-sided t-test. P-values and Pearson correlation coefficient are
620 indicated in the plots.