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Abstract 

Purpose: A major challenge in genomic medicine is how to best predict risk of disease from rare 

variants discovered in Mendelian disease genes but with limited phenotypic data. We have 

recently used Bayesian methods to show that in vitro functional measurements and 

computational pathogenicity classification of variants in the cardiac gene SCN5A correlate with 

rare arrhythmia penetrance. We hypothesized that similar predictors could be used to impute 

variant-specific penetrance prior probabilities. 

Methods: From a review of 756 publications, we developed a pattern mixture algorithm, based 

on a Bayesian Beta-Binomial model, to generate SCN5A variant-specific penetrance priors for 

the heart arrhythmia Brugada syndrome (BrS).  

Results: The resulting priors correlate with mean BrS penetrance posteriors (cross validated R2 

= 0.41). SCN5A variant function and structural context provide the most information predictive of 

BrS penetrance. The resulting priors are interpretable as equivalent to the observation of 

affected and unaffected carriers.  

Conclusions: Bayesian estimates of penetrance can efficiently integrate variant-specific data 

(e.g. functional, structural, and sequence) to accurately estimate disease risk attributable to 

individual variants. We suggest this formulation of penetrance is quantitative, probabilistic, and 

more precise than, but consistent with, discrete pathogenicity classification approaches. 

 

Journal Subject Terms: Penetrance, Genetics, Bayesian prediction, Arrhythmias, SCN5A, 

Brugada syndrome 
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Introduction 

A major challenge to integrating genotype information into clinical care is accurately linking 

genetic variants to disease. As cheap whole genome, exome, and gene panel sequencing 

become more widely used, the genetics community is frequently observing novel, ultra-rare 

variants—ones carried by a single or few (often related) individuals. Indeed, most variants found 

in large genome sequencing efforts are novel or ultra rare;1, 2 and the majority of these variants 

will never be observed in a sufficient number of carriers to ascertain a strong statistical 

association with disease. In addition, with recent large-scale genetic sequencing efforts taking 

place around the world, the genetics community is identifying greater numbers of individuals, 

ostensibly unaffected, who carry variants previously thought to be disease-inducing.3, 4 As a 

consequence, both insufficient carrier counts and increasing conflict of annotations are causing 

many diagnostic laboratories that previously confidently annotated genetic variants as “Likely 

Pathogenic” or “Pathogenic”, to annotate increasingly more conservatively, now calling most 

variants “Variants of Uncertain Significance” (VUS).5-8  

To help assess the significance of variants, the American College of Medical Genetics 

and Genomics (ACMG) suggests criteria to integrate population, functional, computational, and 

segregation data using several described heuristics to classify variants.9, 10 While this 

classification yields a common scale by which variants can be interpreted and compared, for the 

majority of variants, only a subset of those data is known (computed or experimentally 

determined). Additionally, the annotation framework suggests classifications ranging from 

“pathogenic/likely pathogenic” to “likely benign/benign”, with variants not confidently placed into 

either of these categories classified as VUS, emphasizing the overall degree of uncertainty in 

classification instead of degree of pathogenicity. We suggest incorporating both degree of 

uncertainty and degree of pathogenicity will enable the increased use of genetics in medicine.  

Bayesian methods are a promising approach to address the rare, novel variant 

annotation opportunity described above given their ability to estimate the likelihood of an 
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outcome, even when data are sparse, by integrating multiple lines of evidence. In this study, we 

built a Bayesian model to estimate the probability a variant will cause a disease outcome; here, 

this probability is interpreted as the penetrance of the variant. Our goals of the analyses are: 1) 

to produce a high-quality estimate of penetrance that can be applied to variants for which carrier 

data are limited or unavailable; and 2) to develop a method for generating a data-driven prior 

distribution of penetrance which can be updated as new data become available for previously 

observed or unobserved variants. The first goal relies on statistical methods of “borrowing 

strength” or sharing information across variants. The second goal will produce variant-specific, 

quantitative penetrance priors—especially informative for rare variants—even in the absence of 

a large number of carriers. 

We develop this framework for the rare cardiac arrhythmia disorder Brugada Syndrome 

(BrS), which is linked to rare loss-of-function variants in the cardiac sodium channel SCN5A.11 

Our proposed approach can efficiently integrate functional and structural data, previously 

published variant classifiers, and carrier counts observed in affected and unaffected populations 

to estimate the BrS penetrance attributable to individual SCN5A variants. Additionally, our 

framework has the flexibility to incorporate more information (e.g. additional variant functional 

characteristics, carrier demographics, etc.) as more variant or carrier data are discovered. As 

part of this analysis, we produce a structure-based metric to quantitate enrichment in “hotspot” 

regions of the protein structure for variants with higher penetrance.12 We show herein that we 

can leverage the quantitative relationship between predictive features, determinable for all 

variants, to impute variant-specific priors for BrS penetrance. We suggest these methodologies 

can be extended to other genes and disorders in order to enable quantitative interpretation of 

variants, from rare to common, probabilistically and quantitatively.13 
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Materials and Methods 

These analyses focus on the SCN5A gene, where individual variants are known to influence the 

clinical presentation of the autosomal dominant arrhythmia Brugada Syndrome (BrS).14, 15 We 

define cases as individuals with either a spontaneous or drug-induced ECG BrS pattern.16 

Penetrance is generally defined as the fraction of variant carriers who are BrS cases. We define 

an estimated BrS penetrance as the average variant-specific posterior penetrance, denoted as 

the following: 

 

���� ���	�
��
 ����	
���� 
 α � α�����

α � β � α����� � β�����

 

 

Where α is the number of BrS cases who are variant carriers and β is the number of unaffected 

carriers of a specific variant. As the total number of carriers increases, the estimated penetrance 

converges to the traditional definition. The mean posterior penetrance can be thought of as a 

shrunken estimate of the observed penetrance,17 especially for variants with small numbers of 

known carriers. The priors can have a large influence on the estimates, and how to select them 

is the focus of this paper. 

 

To generate priors from our available data, we use a variation of the expectation maximization 

(EM) algorithm.18 Our modified EM algorithm is an iterative technique composed of two steps: 1) 

calculate the expected penetrance from an empirical Bayes penetrance model and 2) fit a 

regression model of our estimated penetrance on variant-specific characteristics by maximum 

likelihood:  
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Penetrance Estimate�

 β� � β��Peak Current � �  β� �Structure Metric �  

� # β�,	 �$� %�&��� Classi(iers �,	



� ε� 

 

Here peak current is an in vitro measurement of the maximum current through a channel 

(normalized to wild type), structure metric is the penetrance density12 (detailed in the 

supplement), and in silico classifiers is a vector populated with commonly used variant 

classification servers such as PROVEAN and PolyPhen (see below); all predictors used are 

continuous, not categorical or binary. The fitted model is then used to generate an updated prior 

distribution and subsequent posterior expected penetrance and this process is iterated until it 

converges to the maximum likelihood solution (Figure 1). Resulting models can be used to 

generate a variant-specific predicted penetrance and nonparametric variance estimate based on 

local averaging. Using a beta-binomial model to estimate penetrance, the prior parameters (αprior 

and βprior) are identifiable from a predicted penetrance and its associated variance. Note that we 

do not observe the actual penetrance for any given variant; the penetrance is a latent variable. 

For comparison, we generated predicted penetrance values using a standard empirical Bayes 

method which generated a single empirical prior for all variants (called empirical prior 

throughout the text, Figure S1). As a result, we compare our EM penetrance predictions to the 

posterior mean penetrance derived from the two separate priors: 1) prior derived by the 

weighted average penetrance over all variants in the dataset (empirical prior, not variant specific 

and a more conservative estimate) and 2) prior imputed by the EM algorithm using pattern 

mixture models to accommodate for variants with missing features. Additionally, we generated 

priors applying the full dataset or by removing one variant at a time from all stages of prior 

generation (leave one out cross validation; LOOCV).  
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Collection of the SCN5A variant dataset. The dataset used was curated from 711 papers in a 

previous publication,16 to which we added an additional 45 papers on SCN5A that had been 

published since the previous dataset was constructed. Briefly, we searched publications for the 

number of carriers of each variant mentioned, the number of unaffected and affected individuals 

with diagnosed BrS, and variant-induced changes in channel function, if reported; all recorded 

values were normalized to wild-type values reported in the same publications. We 

supplemented this dataset with all SCN5A variants in the gnomAD database of population 

variation (http://gnomad.broadinstitute.org/; release 2.0).19 Due to the rarity of BrS (~1 in 

10,000),20 carriers found in gnomAD were counted as unaffected. A browsable version of the 

dataset, the SCN5A Variant Browser, is available at 

http://oates.mc.vanderbilt.edu/vancart/SCN5A/. We further collected in silico pathogenicity 

predictions from four commonly used servers: SIFT,21 Polyphen-2,22 CADD,23 and PROVEAN.24 

We also include basic local alignment search tool position-specific scoring matrix (BLAST-

PSSM) for SCN5A25 and the per residue evolutionary rate,26 previously shown to have 

predictive value for predicting functional perturbation for the cardiac potassium channel gene 

KCNQ1,27 and point accepted mutation score (PAM).28 Additionally, we leveraged structures of 

the SCN5A protein product and derived a penetrance density as previously described in an 

application to predict functional perturbation (see supplemental for details).12 We included in-

frame deletions and insertions, but removed nonsense and synonymous variants from the 

dataset to avoid complications with the structure-based feature. This process yielded a total of 

1,415 variants with at least 1 observed carrier for the analysis described below. 

 

Initial Empirical Bayes beta-binomial prior penetrance calculation. Using the data from the 

aforementioned literature curation,16 we estimated the penetrance for each observed variant 

using a beta-binomial empirical Bayes model. To estimate prior distributions for the penetrance 
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we calculated α and β by finding the weighted mean penetrance over all variants in the dataset 

and estimating the variance. Weighting was done using the equation 

 

* 
 1 , 1
0.01 � �/01�
 �2 ��

��
� 

 

to ensure variants with a greater number of carriers, and therefore greater certainty in 

penetrance, had a greater weight in the preliminary analysis; number of carriers were equal to 

or greater than one. We estimate the variance in penetrance as the mean squared error (MSE) 

in this step. This derived prior distribution for penetrance, αprior and βprior of 0.46 and 2.71, 

respectively, was applied to each observed variant. The variant-specific posterior was derived 

by adding observed carrier counts of affected and unaffected to αprior and βprior, respectively, and 

the resulting posterior mean penetrance was used in development of the subsequent predictive 

model (equation 1), and as one of the final estimates of posterior mean penetrance (empirical) 

for comparison with the EM results described below. 

 

Estimating variance in posterior penetrance. Modeling of estimated penetrance using previously 

published classifiers/predictors by linear regression was used to generate a distribution of 

plausible penetrance values for each variant in the dataset; penetrance predictions were 

truncated at 0 and 1. Penetrance dependent variance was calculated by averaging model MSE 

of the 100 variants with predicted penetrance closest to predicted penetrance of the variant of 

interest (Figure S2). Due to uncertainty in the estimated penetrance, all subsequent models and 

Pearson R2 calculations were weighted by the inverse variance of the estimated posterior beta 

distribution capped at the ninth decile determined in this step.  
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Expectation maximization Bayesian beta-binomial penetrance predictions. The final step of this 

procedure employs a set of models built with a linear regression pattern mixture algorithm, 

updating and predicting posterior mean penetrances iteratively until the resulting αprior, EM and 

βprior, EM parameters combined changed by < 10% from the previous iteration, with a maximum of 

10 iterations to circumvent oscillations. This process typically converged within three to four 

iterations. Some variants were estimated to have a penetrance and penetrance-dependent 

variance incompatible with a beta distribution; we applied the empirical prior (described above) 

in these cases. These final posterior estimates (EM) are used as the conditional prior for when 

new data become available for known variants or new variants discovered in a population. 

 

Assessment of predictions. To assess discrimination of predictors we calculated penetrance 

dependent c-statistics (AUCs) and coefficient of determination (Pearson’s R2); we additionally 

calculated frequencies of posterior mean penetrances (derived from both empirical and EM 

priors) within EM imputed prior 95% credible intervals. To compare the classification 

performance of the various predictors, we compute AUCs for two subsets of variants: all 

predictors are available or structure is available but peak current is not available. The two 

remaining subsets of variants (peak current is available but no structure or neither peak current 

nor structure are available) had few variants with greater than 20% posterior mean penetrance, 

therefore these subsets are not presented. We also report coefficients of determination 

weighted by the inverse variance of the estimated posterior beta distribution as described 

above. We used leave-one-out cross-validation (LOOCV) with the same EM iterative procedure 

as outlined above to further validate coefficients of determination. Furthermore, we report 

coefficients of determination of mean posterior penetrance (derived from either the EM prior or 

empirical prior) explained by the EM prior estimated mean penetrance. The data, analytic 

methods, and study materials have been made available to other researchers for purposes of 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 7, 2019. ; https://doi.org/10.1101/571158doi: bioRxiv preprint 

https://doi.org/10.1101/571158
http://creativecommons.org/licenses/by/4.0/


10 

 

reproducing the results or replicating the procedure.  All analyses were done using the datasets 

provided in supplemental material and at [website to be assigned at time of publication]. 

 

Results 

Using a Bayesian beta-binomial method, we calculated a set of imputed expectation 

maximization priors with an interval of credible penetrance values (Figure S3). Affected and 

unaffected carriers (equivalent to the likelihood function) were then added to the prior to 

generate the posterior penetrance estimate and associated credibility interval. We applied this 

approach to a previously generated dataset of SCN5A features and BrS phenotype counts,16 

supplemented with reports in the literature published within the last year. The penetrance 

estimates generated from predictive features (function, in silico predictions, structural metric) 

have different mean values (low for L1308F and high for R878C) as well as regions of credibility 

(narrow for L1308F and wide for both I1660V and R878C, Figure 2). There was a general trend 

that variants predicted to have relatively low penetrance had relatively narrow credible intervals 

compared to variants with relatively high predicted penetrance. This follows from the estimates 

of predicted penetrance-dependent variance which is greater as the predicted penetrance 

increases (Figure S2).  

 

A modified Bayesian approach to generate priors. A typical Empirical Bayes approach would 

combine information across all variants to estimate a single prior distribution and estimate 

penetrance from that prior. These estimates assume all variant effects have the same prior and 

are therefore shrunk towards a global mean across all variants. Here we put forward a method 

to model the latent penetrance (mean and variance) for each variant from variant-specific 

predictive features to impute a variant-specific prior, which we then use to compute the posterior 

penetrance. 
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Continuous prediction of penetrance: function and structure improve accuracy. We next 

determined which features used to predict estimated penetrance contributed to the variance 

explained. To accomplish this, we used EM priors to predict posterior penetrance generated 

from empirical priors (non-variant specific) or EM priors (variant-specific, imputed priors). The 

subset of all variants where function and structure are known has the highest variance 

explained of any subset in the pattern mixture-predicted models; the subset of variants where 

structure is known and peak current is unknown is similarly well predicted (Tables 1 and 2; 

Figure 3). The Pearson’s R2 is near 0.5 for both of these subsets. Leave One Out Cross 

Validation (LOOCV) estimated optimism is less than 0.10. These performance metrics are much 

improved compared to using sequence-derived predictive features alone (Pearson’s R2 of 0.16). 

Even the most conservative Pearson’s R2, from EM prior predictions compared against 

empirical estimates of mean posterior penetrance, are near 0.4 for the subset of variants where 

function and structure are known (and an estimated optimism of less than 0.1). All these data 

support the use of structure and function in estimating variant-specific penetrance, especially 

structural data.  

 

Classification of high or low penetrance variants. One important application of classifying 

variants is to focus resources on variants most likely to cause some pathology or potentially 

explain an existing pathology. To this end, we employed a binary classification (disease-causing 

vs. not disease-causing), selecting multiple penetrance cutoffs. Since variants varied by which 

predictors were available, we divided variants into subgroups and attempted classification within 

those groups. The subgroups were 1) function and structure are known and 2) structure is 

known, but function is unknown. The sharp rise on the left side of the ROC curves in Figure 4, 

suggest function (peak current) and structure are best at discriminating low from high BrS 
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penetrance variants, and that this classification performance is best for variants predicted to be 

most highly penetrant (i.e. those with more severe in vitro phenotype and close in space to other 

variants with high BrS penetrance). The gap between ROC curves for models trained with all 

features (blue) and each feature individually suggests the non-overlap of information contained 

in any one feature, most notable in the upper right figure (structure available but no peak 

current). 

 

Penetrance prediction precision. Our goal is to generate more accurate predictions of variant-

specific penetrance and also to quantify the uncertainty of our predictions to yield an informative 

and interpretable priors and posteriors. One concern with the proposed methodology, indeed 

much of Bayesian prediction, is that posterior mean estimates of penetrance are derived from 

observations of affected and unaffected individuals (likelihood function), but are also influenced 

by priors. We believe the most accurate prior is imputed by variant specific maximized likelihood 

(EM prior); however, for variants with low carrier counts, the resulting posterior mean 

penetrance estimates are determined largely by the prior. To measure the optimism in our 

estimates of precision, we calculated frequency statistics of posterior mean penetrance 

estimates derived from the empirical prior or imputed EM prior falling within 95% credible 

intervals from pattern mixture EM priors. If variant-specific EM priors were overly optimistic in 

precision, we expect the fraction of posterior mean penetrances within 95% credible intervals to 

fall below 95% as we select variants with greater carrier counts (i.e. less influenced by the EM 

prior) for evaluation; the effect would be especially noticeable when using the empirical prior to 

generate posterior mean penetrances. However, we observe the frequency at which posterior 

mean penetrance estimates fall within the 95% credible interval defined by the prior is at or 

exceeds 95% (Figure S4). As expected, the percentage is the lowest for low carrier count 

variants with a posterior mean penetrance derived from an empirical prior, though still nominally 

at 95%.  
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Discussion 

Estimates of penetrance are informed by variant-specific features. A key assumption of the 

methodology proposed here is that variants with similar determinable features, such as function 

and evolutionary sequence conservation, have similar penetrance characteristics—we suggest 

properties extrinsic to SCN5A variant identity are responsible, at least in part, for the BrS 

penetrance observed clinically. As an example, nonsense variants or variants that produce no 

sodium current, result in non-negligible penetrance of BrS.16 At the other extreme, variants that 

have WT characteristics and low sequence conservation lead to negligible BrS penetrance. We 

propose here a Bayesian beta-binomial framework to contain both of these extremes as 

boundary conditions and a continuous estimate between the two. We put forward this 

methodology as a means to compare variants with greater total carrier counts to rare variants 

with less available data along the continuous axis of penetrance. The resulting penetrance and 

uncertainty estimates yield a variant-specific prior interpretable by clinicians and carriers of 

these variants as equivalent to hypothetical observations of affected and unaffected carriers 

(αprior and βprior, respectively).  

 

Estimates of penetrance are more informative than variant classification. Here we develop a 

method to estimate penetrance by quantitatively incorporating variant-specific information into a 

probabilistic framework. While clinical evidence affirms a strong relationship between SCN5A 

variants and BrS, many genetic and environmental factors influence the ultimate presentation of 

BrS in an individual (Figure 5).29-31 Some variants affect almost all known carriers and some 

variants confer only modest increased risk.14, 15 One lesson from our previous analysis of 
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SCN5A function and its influence on penetrance was that, without exception, any well-sampled 

variant (more than 30 carriers) had at least one individual without any known arrhythmia 

phenotype—no variant is 100% penetrant.16 This suggests the categorical ACMG terms (e.g. 

“pathogenic”, “benign”) are not the optimal way to describe the impact of genetic variants on 

disease. We instead suggest carrier risk is probabilistic and lies on a continuous range from 0 

(impossible) to 1 (certain), mirrored in the estimation of penetrance.  

 

Structure and peak current improve prediction of penetrance. Here we showed that variants with 

increased penetrance burden of BrS tend to localize in protein structure (Figure 6 and Tables 1 

and 2). Features derived from structure contain information not present in other predictive 

features, as can be seen by the improvement in prediction when structure is included, true for all 

subsets evaluated (Tables 1 and 2 and Figure 3). The degree of information added by structure 

suggests the three-dimensional location in regions enriched for higher penetrance do not also 

have functional disruptions or evolutionary constraints, as encoded in peak current and 

sequence-based predictive features, respectively. One potential explanation is that the 

functional perturbation used, peak current, imperfectly recapitulates the functional defect 

responsible for variation in penetrance, or perhaps only a subset of mechanisms that result in 

lower peak current have a large influence on BrS clinical presentation (akin to what we have 

observed with late current and long QT syndrome32). Another possible explanation is peak 

current contains noise from the variability in measurements from different labs or different model 

cell systems which dilutes the otherwise observable relationship between loss of peak current 

and BrS penetrance. Whatever the reason, clearly there is a need to include structural 

information in variant interpretation.33-35  
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Prospects for applications of this method. The methodology described relies upon having a 

sufficient number of variants with high carrier counts such that penetrance can be reliably 

estimated and also having predictive features with some relationship to the disease (e.g. 

changes in function and sequence conservation). This limits the potential application of the 

methods described herein to a relatively small subset of genes at present. For example, of the 

59 genes the ACMG recommends clinical diagnostic laboratories report secondary variant 

discovery, 36 have greater than or equal to 20 missense “pathogenic”/”likely pathogenic” 

variants in ClinVar,36 suggesting that many variants are described in the literature and can be 

curated in a similar manner to SCN5A.36 The penetrance estimates in our approach will 

continue to be refined as additional data become available (i.e. phenotype data from case 

reports and large biobank projects, additional in vitro functional studies, and improved 

computational and structural predictors).13, 30, 37-39 

 

Conclusion. Penetrance, as formulated in a Bayesian beta-binomial framework, allows us to 

quantitatively integrate phenotypic data with functional measurements, variant classifiers, and 

sequence- and structure-based features to accurately estimate disease risk attributable to 

specific variants, even when clinical information is limited. Penetrance more precisely describes 

disease risk and uncertainty than categorical pathogenicity classifications. We suggest this 

probabilistic penetrance approach can be applied to additional rare Mendelian diseases to 

better estimate disease risk and improve the impact and accuracy of genomic medicine. 

 

Collected data are available at the following website: (to be finalized with publication)  
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Tables 

Table 1. Weighted R2 from models built with the subset of variants where peak 
current, in silico predictions, and structure are known, trained and evaluated with 
displayed subsets of features  

Features Empirical† EM† 

Function 0.13 [0.06-0.22; 0.13] 0.16 [0.09-0.26; 0.16] 
Function and Structure 0.35 [0.21-0.51; 0.35] 0.47 [0.32-0.62; 0.47] 
Function, Structure, Seq. 0.39 [0.26-0.52; 0.39] 0.51 [0.38-0.63; 0.51] 
Sequence 0.09 [0.06-0.12; 0.09] 0.15 [0.12-0.19; 0.15] 

†Adj. R2 [95% Confidence Interval; LOOCV] 
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Table 2. Weighted R2 from pattern mixture model evaluating subsets of all 
variants in the database 

Variant Subset Empirical†  EM† 

Whole dataset 0.22 [0.15-0.31; 0.20] 0.44 [0.36-0.51; 0.41] 

Function, no Structure 0.03 [0.00-0.14; 0.03] 0.05 [0.00-0.20; 0.05] 

Function and Structure 0.41 [0.27-0.55; 0.33] 0.54 [0.41-0.67; 0.45] 

No Function or Structure 0.00 [0.00-0.02; 0.00] 0.16 [0.09-0.25; 0.15] 

Structure, no Function 0.20 [0.10-0.35; 0.19] 0.47 [0.35-0.59; 0.46] 
†Adj. R2 [95% Confidence Interval; LOOCV] 
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Figure Legends 

Figure 1. Generation of empirical and EM priors. The modified EM algorithm is an iterative 

technique composed of two steps: 1) calculate the expected penetrance from an empirical 

Bayes penetrance model and 2) fit regression of our estimated penetrance on variant-specific 

characteristics by maximum likelihood. The fitted model is then used to generate an updated, 

imputed prior and subsequent posterior expected penetrance and this process is iterated until it 

converges to the maximum likelihood solution, when the new priors change by less than 10% 

from the previous iteration.  

 

Figure 2. Penetrance priors are informed by variant-specific features. Probability density 

(y-axis) versus penetrance (x-axis) for three selected SCN5A variants where structure, function, 

and in silico classification are known. Numbers of affected and unaffected individuals reported 

are presented for each variant. The penetrance posteriors match classification as presented in 

ClinVar, in parentheses below variant identity. When variant-specific data are known, the 

penetrance estimate is adjusted to reflect the penetrance probability consistent with variants 

with similar features. The classification of I1660V is VUS in ClinVar;36 however, as an important 

distinction between our proposed methodology and the classification framework commonly 

used, we suggest SCN5A I1660V should be classified as a variant with close to 25% BrS 

penetrance.  

 

Figure 3. Significant variation in mean posterior BrS penetrance is explained by function 

and structure of SCN5A variants. Mean penetrances from the EM pattern mixture model for 

all variants before (imputed) and after (posterior) affected/unaffected carrier count was added. 

Variants are subsetted according to the text above the figure.  
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Figure 4. Function and structure inform variant classification. Above: ROC curves 

classifying high versus low penetrance; below: AUCs determined at multiple penetrance cutoffs. 

Number of variants in each subgroup are the following (number pathogenic at a cutoff of 20%): 

130 (58) and 623 (201) for variants with peak current and structure or variants with structure 

and no peak current, respectively. Here in silico models refer to previously published predictive 

classifiers, as described in the methods. 

 

Figure 5. Factors influencing disease presentation. The objective of this paper is to 

quantitatively address the relationship between variant-specific features and the variation in 

penetrance attributable to specific variants. Given the observed relationship between 

penetrance and variant-specific features, we suggest BrS penetrance decomposed into variant-

specific features and other contributing factors.  

 

Figure 6. SCN5A pathogenic and benign variants cluster in space. Rate of variants 

associated with BrS (blue) or LQT3 (red) or from unaffected populations (control, gold) in a 

model of the SCN5A protein product transmembrane domain. Each bar represents a histogram 

bundling of variants within a 5Å window in three-dimensional space, boxes at each of the four 

corners represent residues not modeled (only 31 residues were not modeled in the extracellular 

loops). There is a relative paucity of control variants within the structured transmembrane region 

and the relative abundance of both BrS and LQT3 in the same region. LQT3 variants are more 

frequent in the intracellular half of the model, and BrS variants are more frequent in the 

extracellular half. The membrane-flanking, intracellular part of SCN5A controls the inactivation 

which, when compromised, frequently results in LQT3. The BrS enrichment near the 
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extracellular half is likely due to more compacting of residues in the top half of the pore domain, 

more often leading to a destabilizing influence of amino-acid substitution.  
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Figure 3 
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Figure 4 
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Figure 5 
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Figure 6 
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