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Abstract

Purpose: A major challenge in genomic medicine is how to best predict risk of disease from rare
variants discovered in Mendelian disease genes but with limited phenotypic data. We have
recently used Bayesian methods to show that in vitro functional measurements and
computational pathogenicity classification of variants in the cardiac gene SCN5A correlate with
rare arrhythmia penetrance. We hypothesized that similar predictors could be used to impute

variant-specific penetrance prior probabilities.

Methods: From a review of 756 publications, we developed a pattern mixture algorithm, based
on a Bayesian Beta-Binomial model, to generate SCN5A variant-specific penetrance priors for

the heart arrhythmia Brugada syndrome (BrS).

Results: The resulting priors correlate with mean BrS penetrance posteriors (cross validated R?
= 0.41). SCN5A variant function and structural context provide the most information predictive of
BrS penetrance. The resulting priors are interpretable as equivalent to the observation of

affected and unaffected carriers.

Conclusions: Bayesian estimates of penetrance can efficiently integrate variant-specific data
(e.g. functional, structural, and sequence) to accurately estimate disease risk attributable to
individual variants. We suggest this formulation of penetrance is quantitative, probabilistic, and

more precise than, but consistent with, discrete pathogenicity classification approaches.

Journal Subject Terms: Penetrance, Genetics, Bayesian prediction, Arrhythmias, SCN5A,

Brugada syndrome
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Introduction
A major challenge to integrating genotype information into clinical care is accurately linking
genetic variants to disease. As cheap whole genome, exome, and gene panel sequencing
become more widely used, the genetics community is frequently observing novel, ultra-rare
variants—ones carried by a single or few (often related) individuals. Indeed, most variants found
in large genome sequencing efforts are novel or ultra rare;" * and the majority of these variants
will never be observed in a sufficient number of carriers to ascertain a strong statistical
association with disease. In addition, with recent large-scale genetic sequencing efforts taking
place around the world, the genetics community is identifying greater numbers of individuals,
ostensibly unaffected, who carry variants previously thought to be disease-inducing.** As a
consequence, both insufficient carrier counts and increasing conflict of annotations are causing
many diagnostic laboratories that previously confidently annotated genetic variants as “Likely
Pathogenic” or “Pathogenic”, to annotate increasingly more conservatively, now calling most
variants “Variants of Uncertain Significance” (VUS).>®

To help assess the significance of variants, the American College of Medical Genetics
and Genomics (ACMG) suggests criteria to integrate population, functional, computational, and
segregation data using several described heuristics to classify variants.® *° While this
classification yields a common scale by which variants can be interpreted and compared, for the
majority of variants, only a subset of those data is known (computed or experimentally
determined). Additionally, the annotation framework suggests classifications ranging from
“pathogenic/likely pathogenic” to “likely benign/benign”, with variants not confidently placed into
either of these categories classified as VUS, emphasizing the overall degree of uncertainty in
classification instead of degree of pathogenicity. We suggest incorporating both degree of
uncertainty and degree of pathogenicity will enable the increased use of genetics in medicine.

Bayesian methods are a promising approach to address the rare, novel variant

annotation opportunity described above given their ability to estimate the likelihood of an
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outcome, even when data are sparse, by integrating multiple lines of evidence. In this study, we
built a Bayesian model to estimate the probability a variant will cause a disease outcome; here,
this probability is interpreted as the penetrance of the variant. Our goals of the analyses are: 1)
to produce a high-quality estimate of penetrance that can be applied to variants for which carrier
data are limited or unavailable; and 2) to develop a method for generating a data-driven prior
distribution of penetrance which can be updated as new data become available for previously
observed or unobserved variants. The first goal relies on statistical methods of “borrowing
strength” or sharing information across variants. The second goal will produce variant-specific,
guantitative penetrance priors—especially informative for rare variants—even in the absence of
a large number of carriers.

We develop this framework for the rare cardiac arrhythmia disorder Brugada Syndrome
(BrS), which is linked to rare loss-of-function variants in the cardiac sodium channel SCN5A.*
Our proposed approach can efficiently integrate functional and structural data, previously
published variant classifiers, and carrier counts observed in affected and unaffected populations
to estimate the BrS penetrance attributable to individual SCN5A variants. Additionally, our
framework has the flexibility to incorporate more information (e.g. additional variant functional
characteristics, carrier demographics, etc.) as more variant or carrier data are discovered. As
part of this analysis, we produce a structure-based metric to quantitate enrichment in “hotspot”
regions of the protein structure for variants with higher penetrance.* We show herein that we
can leverage the quantitative relationship between predictive features, determinable for all
variants, to impute variant-specific priors for BrS penetrance. We suggest these methodologies
can be extended to other genes and disorders in order to enable quantitative interpretation of

variants, from rare to common, probabilistically and quantitatively.*®
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Materials and Methods

These analyses focus on the SCN5A gene, where individual variants are known to influence the
clinical presentation of the autosomal dominant arrhythmia Brugada Syndrome (BrS).** > We
define cases as individuals with either a spontaneous or drug-induced ECG BrS pattern.*®
Penetrance is generally defined as the fraction of variant carriers who are BrS cases. We define
an estimated BrS penetrance as the average variant-specific posterior penetrance, denoted as

the following:

o+ 0(prior
a+ B + 0(prior + Bprior

Mean Posterior Penetrance =

Where a is the number of BrS cases who are variant carriers and [ is the number of unaffected
carriers of a specific variant. As the total number of carriers increases, the estimated penetrance
converges to the traditional definition. The mean posterior penetrance can be thought of as a
shrunken estimate of the observed penetrance,'” especially for variants with small numbers of
known carriers. The priors can have a large influence on the estimates, and how to select them

is the focus of this paper.

To generate priors from our available data, we use a variation of the expectation maximization
(EM) algorithm.*® Our modified EM algorithm is an iterative technique composed of two steps: 1)
calculate the expected penetrance from an empirical Bayes penetrance model and 2) fit a
regression model of our estimated penetrance on variant-specific characteristics by maximum

likelihood:
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Penetrance Estimate;

= Bo + B;1(Peak Current); + B, (Structure Metric);

+ z Bin (In Silico Classifiers); , + &
n

Here peak current is an in vitro measurement of the maximum current through a channel
(normalized to wild type), structure metric is the penetrance density*? (detailed in the
supplement), and in silico classifiers is a vector populated with commonly used variant
classification servers such as PROVEAN and PolyPhen (see below); all predictors used are
continuous, not categorical or binary. The fitted model is then used to generate an updated prior
distribution and subsequent posterior expected penetrance and this process is iterated until it
converges to the maximum likelihood solution (Figure 1). Resulting models can be used to
generate a variant-specific predicted penetrance and nonparametric variance estimate based on
local averaging. Using a beta-binomial model to estimate penetrance, the prior parameters (Oprior
and Byrior) are identifiable from a predicted penetrance and its associated variance. Note that we
do not observe the actual penetrance for any given variant; the penetrance is a latent variable.
For comparison, we generated predicted penetrance values using a standard empirical Bayes
method which generated a single empirical prior for all variants (called empirical prior
throughout the text, Figure S1). As a result, we compare our EM penetrance predictions to the
posterior mean penetrance derived from the two separate priors: 1) prior derived by the
weighted average penetrance over all variants in the dataset (empirical prior, not variant specific
and a more conservative estimate) and 2) prior imputed by the EM algorithm using pattern
mixture models to accommodate for variants with missing features. Additionally, we generated
priors applying the full dataset or by removing one variant at a time from all stages of prior

generation (leave one out cross validation; LOOCV).
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Collection of the SCN5A variant dataset. The dataset used was curated from 711 papers in a
previous publication,® to which we added an additional 45 papers on SCN5A that had been
published since the previous dataset was constructed. Briefly, we searched publications for the
number of carriers of each variant mentioned, the number of unaffected and affected individuals
with diagnosed BrS, and variant-induced changes in channel function, if reported; all recorded
values were normalized to wild-type values reported in the same publications. We
supplemented this dataset with all SCN5A variants in the gnomAD database of population

variation (http://gnomad.broadinstitute.org/; release 2.0).*° Due to the rarity of BrS (~1 in

10,000),20 carriers found in gnomAD were counted as unaffected. A browsable version of the
dataset, the SCN5A Variant Browser, is available at

http://oates.mc.vanderbilt.edu/vancart/SCN5A/. We further collected in silico pathogenicity

predictions from four commonly used servers: SIFT,?! Polyphen-2,?> CADD,?® and PROVEAN.*
We also include basic local alignment search tool position-specific scoring matrix (BLAST-
PSSM) for SCN5A® and the per residue evolutionary rate,?® previously shown to have
predictive value for predicting functional perturbation for the cardiac potassium channel gene
KCNQ1,%" and point accepted mutation score (PAM).?® Additionally, we leveraged structures of
the SCN5A protein product and derived a penetrance density as previously described in an
application to predict functional perturbation (see supplemental for details).*? We included in-
frame deletions and insertions, but removed nonsense and synonymous variants from the
dataset to avoid complications with the structure-based feature. This process yielded a total of

1,415 variants with at least 1 observed carrier for the analysis described below.

Initial Empirical Bayes beta-binomial prior penetrance calculation. Using the data from the
aforementioned literature curation,'® we estimated the penetrance for each observed variant

using a beta-binomial empirical Bayes model. To estimate prior distributions for the penetrance
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we calculated a and 8 by finding the weighted mean penetrance over all variants in the dataset

and estimating the variance. Weighting was done using the equation

1
0.01 + number of carriers

w=1-—

to ensure variants with a greater number of carriers, and therefore greater certainty in
penetrance, had a greater weight in the preliminary analysis; number of carriers were equal to
or greater than one. We estimate the variance in penetrance as the mean squared error (MSE)
in this step. This derived prior distribution for penetrance, Oprior and Bprior 0f 0.46 and 2.71,
respectively, was applied to each observed variant. The variant-specific posterior was derived
by adding observed carrier counts of affected and unaffected to Opior and Bprior, respectively, and
the resulting posterior mean penetrance was used in development of the subsequent predictive
model (equation 1), and as one of the final estimates of posterior mean penetrance (empirical)

for comparison with the EM results described below.

Estimating variance in posterior penetrance. Modeling of estimated penetrance using previously
published classifiers/predictors by linear regression was used to generate a distribution of
plausible penetrance values for each variant in the dataset; penetrance predictions were
truncated at 0 and 1. Penetrance dependent variance was calculated by averaging model MSE
of the 100 variants with predicted penetrance closest to predicted penetrance of the variant of
interest (Figure S2). Due to uncertainty in the estimated penetrance, all subsequent models and
Pearson R? calculations were weighted by the inverse variance of the estimated posterior beta

distribution capped at the ninth decile determined in this step.
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Expectation maximization Bayesian beta-binomial penetrance predictions. The final step of this
procedure employs a set of models built with a linear regression pattern mixture algorithm,
updating and predicting posterior mean penetrances iteratively until the resulting Oprior, em and
Bprior, e Parameters combined changed by < 10% from the previous iteration, with a maximum of
10 iterations to circumvent oscillations. This process typically converged within three to four
iterations. Some variants were estimated to have a penetrance and penetrance-dependent
variance incompatible with a beta distribution; we applied the empirical prior (described above)
in these cases. These final posterior estimates (EM) are used as the conditional prior for when

new data become available for known variants or new variants discovered in a population.

Assessment of predictions. To assess discrimination of predictors we calculated penetrance
dependent c-statistics (AUCs) and coefficient of determination (Pearson’s R?); we additionally
calculated frequencies of posterior mean penetrances (derived from both empirical and EM
priors) within EM imputed prior 95% credible intervals. To compare the classification
performance of the various predictors, we compute AUCs for two subsets of variants: all
predictors are available or structure is available but peak current is not available. The two
remaining subsets of variants (peak current is available but no structure or neither peak current
nor structure are available) had few variants with greater than 20% posterior mean penetrance,
therefore these subsets are not presented. We also report coefficients of determination
weighted by the inverse variance of the estimated posterior beta distribution as described
above. We used leave-one-out cross-validation (LOOCV) with the same EM iterative procedure
as outlined above to further validate coefficients of determination. Furthermore, we report
coefficients of determination of mean posterior penetrance (derived from either the EM prior or
empirical prior) explained by the EM prior estimated mean penetrance. The data, analytic

methods, and study materials have been made available to other researchers for purposes of
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reproducing the results or replicating the procedure. All analyses were done using the datasets

provided in supplemental material and at [website to be assigned at time of publication].

Results

Using a Bayesian beta-binomial method, we calculated a set of imputed expectation
maximization priors with an interval of credible penetrance values (Figure S3). Affected and
unaffected carriers (equivalent to the likelihood function) were then added to the prior to
generate the posterior penetrance estimate and associated credibility interval. We applied this
approach to a previously generated dataset of SCN5A features and BrS phenotype counts,®
supplemented with reports in the literature published within the last year. The penetrance
estimates generated from predictive features (function, in silico predictions, structural metric)
have different mean values (low for L1308F and high for R878C) as well as regions of credibility
(narrow for L1308F and wide for both 11660V and R878C, Figure 2). There was a general trend
that variants predicted to have relatively low penetrance had relatively narrow credible intervals
compared to variants with relatively high predicted penetrance. This follows from the estimates
of predicted penetrance-dependent variance which is greater as the predicted penetrance

increases (Figure S2).

A modified Bayesian approach to generate priors. A typical Empirical Bayes approach would
combine information across all variants to estimate a single prior distribution and estimate
penetrance from that prior. These estimates assume all variant effects have the same prior and
are therefore shrunk towards a global mean across all variants. Here we put forward a method
to model the latent penetrance (mean and variance) for each variant from variant-specific
predictive features to impute a variant-specific prior, which we then use to compute the posterior

penetrance.
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Continuous prediction of penetrance: function and structure improve accuracy. We next
determined which features used to predict estimated penetrance contributed to the variance
explained. To accomplish this, we used EM priors to predict posterior penetrance generated
from empirical priors (non-variant specific) or EM priors (variant-specific, imputed priors). The
subset of all variants where function and structure are known has the highest variance
explained of any subset in the pattern mixture-predicted models; the subset of variants where
structure is known and peak current is unknown is similarly well predicted (Tables 1 and 2;
Figure 3). The Pearson’s R? is near 0.5 for both of these subsets. Leave One Out Cross
Validation (LOOCYV) estimated optimism is less than 0.10. These performance metrics are much
improved compared to using sequence-derived predictive features alone (Pearson’s R? of 0.16).
Even the most conservative Pearson’s R?, from EM prior predictions compared against
empirical estimates of mean posterior penetrance, are near 0.4 for the subset of variants where
function and structure are known (and an estimated optimism of less than 0.1). All these data
support the use of structure and function in estimating variant-specific penetrance, especially

structural data.

Classification of high or low penetrance variants. One important application of classifying
variants is to focus resources on variants most likely to cause some pathology or potentially
explain an existing pathology. To this end, we employed a binary classification (disease-causing
vS. not disease-causing), selecting multiple penetrance cutoffs. Since variants varied by which
predictors were available, we divided variants into subgroups and attempted classification within
those groups. The subgroups were 1) function and structure are known and 2) structure is
known, but function is unknown. The sharp rise on the left side of the ROC curves in Figure 4,

suggest function (peak current) and structure are best at discriminating low from high BrS
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penetrance variants, and that this classification performance is best for variants predicted to be
most highly penetrant (i.e. those with more severe in vitro phenotype and close in space to other
variants with high BrS penetrance). The gap between ROC curves for models trained with all
features (blue) and each feature individually suggests the non-overlap of information contained
in any one feature, most notable in the upper right figure (structure available but no peak

current).

Penetrance prediction precision. Our goal is to generate more accurate predictions of variant-
specific penetrance and also to quantify the uncertainty of our predictions to yield an informative
and interpretable priors and posteriors. One concern with the proposed methodology, indeed
much of Bayesian prediction, is that posterior mean estimates of penetrance are derived from
observations of affected and unaffected individuals (likelihood function), but are also influenced
by priors. We believe the most accurate prior is imputed by variant specific maximized likelihood
(EM prior); however, for variants with low carrier counts, the resulting posterior mean
penetrance estimates are determined largely by the prior. To measure the optimism in our
estimates of precision, we calculated frequency statistics of posterior mean penetrance
estimates derived from the empirical prior or imputed EM prior falling within 95% credible
intervals from pattern mixture EM priors. If variant-specific EM priors were overly optimistic in
precision, we expect the fraction of posterior mean penetrances within 95% credible intervals to
fall below 95% as we select variants with greater carrier counts (i.e. less influenced by the EM
prior) for evaluation; the effect would be especially noticeable when using the empirical prior to
generate posterior mean penetrances. However, we observe the frequency at which posterior
mean penetrance estimates fall within the 95% credible interval defined by the prior is at or
exceeds 95% (Figure S4). As expected, the percentage is the lowest for low carrier count
variants with a posterior mean penetrance derived from an empirical prior, though still nominally
at 95%.
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Discussion

Estimates of penetrance are informed by variant-specific features. A key assumption of the
methodology proposed here is that variants with similar determinable features, such as function
and evolutionary sequence conservation, have similar penetrance characteristics—we suggest
properties extrinsic to SCN5A variant identity are responsible, at least in part, for the BrS
penetrance observed clinically. As an example, nonsense variants or variants that produce no
sodium current, result in non-negligible penetrance of BrS.* At the other extreme, variants that
have WT characteristics and low sequence conservation lead to negligible BrS penetrance. We
propose here a Bayesian beta-binomial framework to contain both of these extremes as
boundary conditions and a continuous estimate between the two. We put forward this
methodology as a means to compare variants with greater total carrier counts to rare variants
with less available data along the continuous axis of penetrance. The resulting penetrance and
uncertainty estimates yield a variant-specific prior interpretable by clinicians and carriers of
these variants as equivalent to hypothetical observations of affected and unaffected carriers

(aprior and Bprion rESpeCtiver)-

Estimates of penetrance are more informative than variant classification. Here we develop a
method to estimate penetrance by quantitatively incorporating variant-specific information into a
probabilistic framework. While clinical evidence affirms a strong relationship between SCN5A
variants and BrS, many genetic and environmental factors influence the ultimate presentation of
BrS in an individual (Figure 5).>°*" Some variants affect almost all known carriers and some

variants confer only modest increased risk.** > One lesson from our previous analysis of
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SCNB5A function and its influence on penetrance was that, without exception, any well-sampled
variant (more than 30 carriers) had at least one individual without any known arrhythmia
phenotype—no variant is 100% penetrant.'® This suggests the categorical ACMG terms (e.g.
“pathogenic”, “benign”) are not the optimal way to describe the impact of genetic variants on

disease. We instead suggest carrier risk is probabilistic and lies on a continuous range from 0

(impossible) to 1 (certain), mirrored in the estimation of penetrance.

Structure and peak current improve prediction of penetrance. Here we showed that variants with
increased penetrance burden of BrS tend to localize in protein structure (Figure 6 and Tables 1
and 2). Features derived from structure contain information not present in other predictive
features, as can be seen by the improvement in prediction when structure is included, true for all
subsets evaluated (Tables 1 and 2 and Figure 3). The degree of information added by structure
suggests the three-dimensional location in regions enriched for higher penetrance do not also
have functional disruptions or evolutionary constraints, as encoded in peak current and
sequence-based predictive features, respectively. One potential explanation is that the
functional perturbation used, peak current, imperfectly recapitulates the functional defect
responsible for variation in penetrance, or perhaps only a subset of mechanisms that result in
lower peak current have a large influence on BrS clinical presentation (akin to what we have
observed with late current and long QT syndrome®?). Another possible explanation is peak
current contains noise from the variability in measurements from different labs or different model
cell systems which dilutes the otherwise observable relationship between loss of peak current
and BrS penetrance. Whatever the reason, clearly there is a need to include structural

information in variant interpretation.3*%
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Prospects for applications of this method. The methodology described relies upon having a
sufficient number of variants with high carrier counts such that penetrance can be reliably
estimated and also having predictive features with some relationship to the disease (e.g.
changes in function and sequence conservation). This limits the potential application of the
methods described herein to a relatively small subset of genes at present. For example, of the
59 genes the ACMG recommends clinical diagnostic laboratories report secondary variant
discovery, 36 have greater than or equal to 20 missense “pathogenic”/"likely pathogenic”
variants in ClinVar,*® suggesting that many variants are described in the literature and can be
curated in a similar manner to SCN5A.%* The penetrance estimates in our approach will
continue to be refined as additional data become available (i.e. phenotype data from case
reports and large biobank projects, additional in vitro functional studies, and improved

computational and structural predictors).*3 303739

Conclusion. Penetrance, as formulated in a Bayesian beta-binomial framework, allows us to
guantitatively integrate phenotypic data with functional measurements, variant classifiers, and
sequence- and structure-based features to accurately estimate disease risk attributable to
specific variants, even when clinical information is limited. Penetrance more precisely describes
disease risk and uncertainty than categorical pathogenicity classifications. We suggest this
probabilistic penetrance approach can be applied to additional rare Mendelian diseases to

better estimate disease risk and improve the impact and accuracy of genomic medicine.

Collected data are available at the following website: (to be finalized with publication)
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Tables

Table 1. Weighted R? from models built with the subset of variants where peak
current, in silico predictions, and structure are known, trained and evaluated with
displayed subsets of features

Features Empiricalt EM*
Function 0.13 [0.06-0.22; 0.13] 0.16 [0.09-0.26; 0.16]
Function and Structure 0.35[0.21-0.51; 0.35] 0.47 [0.32-0.62; 0.47]
Function, Structure, Seq. 0.39 [0.26-0.52; 0.39] 0.51[0.38-0.63; 0.51]
Sequence 0.09 [0.06-0.12; 0.09] 0.15[0.12-0.19; 0.15]

tAdj. R? [95% Confidence Interval; LOOCV]
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Table 2. Weighted R? from pattern mixture model evaluating subsets of all

variants in the database

Variant Subset

Empiricalt

EMt

Whole dataset

Function, no Structure
Function and Structure
No Function or Structure
Structure, no Function

0.22 [0.15-0.31; 0.20]
0.03 [0.00-0.14; 0.03]
0.41 [0.27-0.55; 0.33]
0.00 [0.00-0.02; 0.00]
0.20 [0.10-0.35; 0.19]

0.44 [0.36-0.51; 0.41]
0.05 [0.00-0.20; 0.05]
0.54 [0.41-0.67; 0.45]
0.16 [0.09-0.25; 0.15]
0.47 [0.35-0.59; 0.46]

tAdj. R% [95% Confidence Interval; LOOCV]
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Figure Legends

Figure 1. Generation of empirical and EM priors. The modified EM algorithm is an iterative
technique composed of two steps: 1) calculate the expected penetrance from an empirical
Bayes penetrance model and 2) fit regression of our estimated penetrance on variant-specific
characteristics by maximum likelihood. The fitted model is then used to generate an updated,
imputed prior and subsequent posterior expected penetrance and this process is iterated until it
converges to the maximum likelihood solution, when the new priors change by less than 10%

from the previous iteration.

Figure 2. Penetrance priors are informed by variant-specific features. Probability density
(y-axis) versus penetrance (x-axis) for three selected SCN5A variants where structure, function,
and in silico classification are known. Numbers of affected and unaffected individuals reported
are presented for each variant. The penetrance posteriors match classification as presented in
ClinVar, in parentheses below variant identity. When variant-specific data are known, the
penetrance estimate is adjusted to reflect the penetrance probability consistent with variants
with similar features. The classification of 11660V is VUS in ClinVar;*® however, as an important
distinction between our proposed methodology and the classification framework commonly
used, we suggest SCN5A 11660V should be classified as a variant with close to 25% BrS

penetrance.

Figure 3. Significant variation in mean posterior BrS penetrance is explained by function
and structure of SCN5A variants. Mean penetrances from the EM pattern mixture model for
all variants before (imputed) and after (posterior) affected/unaffected carrier count was added.

Variants are subsetted according to the text above the figure.
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Figure 4. Function and structure inform variant classification. Above: ROC curves
classifying high versus low penetrance; below: AUCs determined at multiple penetrance cutoffs.
Number of variants in each subgroup are the following (number pathogenic at a cutoff of 20%):
130 (58) and 623 (201) for variants with peak current and structure or variants with structure
and no peak current, respectively. Here in silico models refer to previously published predictive

classifiers, as described in the methods.

Figure 5. Factors influencing disease presentation. The objective of this paper is to
guantitatively address the relationship between variant-specific features and the variation in
penetrance attributable to specific variants. Given the observed relationship between
penetrance and variant-specific features, we suggest BrS penetrance decomposed into variant-

specific features and other contributing factors.

Figure 6. SCN5A pathogenic and benign variants cluster in space. Rate of variants
associated with BrS (blue) or LQT3 (red) or from unaffected populations (control, gold) in a
model of the SCN5A protein product transmembrane domain. Each bar represents a histogram
bundling of variants within a 5A window in three-dimensional space, boxes at each of the four
corners represent residues not modeled (only 31 residues were not modeled in the extracellular
loops). There is a relative paucity of control variants within the structured transmembrane region
and the relative abundance of both BrS and LQT3 in the same region. LQT3 variants are more
frequent in the intracellular half of the model, and BrS variants are more frequent in the
extracellular half. The membrane-flanking, intracellular part of SCN5A controls the inactivation

which, when compromised, frequently results in LQT3. The BrS enrichment near the
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extracellular half is likely due to more compacting of residues in the top half of the pore domain,

more often leading to a destabilizing influence of amino-acid substitution.
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Figure 6
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