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Abstract

Recent pollinator population declines threaten pollination services and greatly impact plant-
pollinator coevolution. We investigate how such evolutionary effects affect plant-pollinator
coexistence. Using eco-evolutionary dynamics, we study the evolution of plant attractiveness
in a simple pollinator-plant model, assuming an allocation trade-off between attractiveness
(e.g. nectar production, flower shape and size) and plant intrinsic growth rates. First, we
investigated how attractiveness evolution changes species persistence, biomass production,
and the intensity of the mutualism (as a proxy for pollination services). We show that the
shape of the allocation trade-off is key in determining the outcome of the eco-evolutionary
dynamics and that concave trade-offs allow convergence to stable plant-pollinator
coexistence. Then we analyse the effect of pollinator population declines on the eco-
evolutionary dynamics. Decreasing intrinsic growth rates of pollinator population results in a
plant-evolution driven disappearance of the mutualistic interaction, eventually leading to
pollinator extinction. With asymmetric mutualism favouring the pollinator, the evolutionary
disappearance of the mutualistic interaction is delayed. Our results suggest that evolution
may account for the current collapse of pollination systems and that restoration attempts

should be enforced early enough to prevent potential negative effects driven by plant
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1 Introduction

Recently observed severe declines in pollinator populations have been associated with that of
insect-pollinated plants [1]. Understanding the future of pollinator and plant populations and
proposing measures to mitigate this deterioration are essential given its strong impact on
conservation and ecosystem services [2]. The global pollination crisis has been linked to
habitat degradation, destruction, and fragmentation [3], but also to intensive agriculture, e.g.
the use of herbicide and pesticides [4], overgrazing, and selective harvesting [5]. Increasing
fire frequency [6], invasive animal and plant species [7], as well as diseases [8] are also
natural threats to several pollinators. Finally, climate change is also predicted to have a strong
impact on plant-pollinator interactions, as phenological shifts may weaken interactions

between plants and pollinators [9].

Plants have been shown to evolve rapidly to changing pollinator populations [10-12]. A
recent study from Gervasi and Schiestl [13] experimentally shown that changes in pollinator
communities already affect plant trait evolution after only eleven generations. Exposed to
bumblebees, which are very efficient pollinators of Brassica rapa, the plants evolved toward
more attractive traits to those pollinators (e.g. traits attracting pollinators such as volatile
organic compounds, flora size, or plant high). Moreover, hoverflies, which are less efficient
pollinators of B. rapa, caused a 15-fold increase in self-reproduction and a reduction in plant
attractiveness. Given these experimental results, the current deterioration and reshaping of
pollinator communities may affect the evolution of plant species, which in turn could
influence coexistence with their interacting pollinators, i.e., an eco-evolutionary feedback

loop.
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Theoretical studies have investigated the ecological (seminal article by Goh in 1979 [14])
[15-17] and evolutionary dynamics [18-22] of plant-pollinated communities. In particular,
evolution of plant selfing with changing pollinator communities has been studied in several
papers [23-25]. Here we focus on the consequence of declining pollinator populations on the
eco-evolutionary process within a plant-pollinator community with evolving plant
attractiveness. We study this question in a system made of one plant species and one
pollinator species. We investigate the evolution of plant attractiveness using an adaptive
dynamics framework. This framework explicitly accounts for the eco-evolutionary feedback
loop between the plant and the pollinator species. Using this model, we clarify when the plant
species evolves to high or low attractiveness and determine the conditions under which
evolution leads to coexistence of the whole system. We then show that a declining pollinator
population often results in a counterselection of plant attractiveness, eventually enhancing

pollinator declines.

2 Plant-pollinator model and ecological dynamics

We consider a simple system with two interacting species; a plant with population density P,

and a pollinator with population density A . The community dynamics are given by a Lotka-

Volterra type model:

Z—AZN(rA—cAAﬂxyPP)
d1t> M
E:P(rp—cpPﬂxyAA)

A schematic view of the system is given in figure 1. The parameters "4 and "» correspond to

the intrinsic growth rate of the pollinator and plant populations, respectively. We assume '»
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to be strictly positive because of other reproduction means, e.g. vegetative reproduction or
autogamy. The intrinsic growth rate of the pollinator ("4 ) can be positive (e.g., interaction

with other plants) or negative. Parameters 4 and “p modulates intraspecific competition for
65 the two species. Mutualistic interactions are given by ¢ ¥4and ¢ ¥r, with Y the energetic
gain provided by the plant (via nectar, pollen and/or other plant exudates) to the pollinator,
and Ya the fertilisation provided by the pollinator to the plant. Parameter ©. represents the
plant attractiveness, largely defined and corresponds to the trait that will be under selection in
the rest of the study. Attractiveness generally encompass traits from both the plant and the
70 pollinator, high attractiveness value indicating a close match and strong interaction between
the two partners. Here we choose to focus only on the plant attractiveness. This plant
attractiveness includes investment in various characters such as the number of flowers, their
shape, their colour, volatile organic compound (VOCs) that attract insects with their odour,

plant height, flowering duration (see part II in Willmer (2011) [26]).

raA —3p  Pollinator A — c.4”

pollinator competition
growth N among pollinators
a’yp PA Oé’)/AAP
energetic gain pollination service

re(@P—3p  Plant P iy . p2
plant growth cgmpetition
among plants

Figure 1: Population variation rates of plant P and pollinator A . Blue arrows indicate
the density variations independent of the mutualistic interaction, green arrows the effects of
the mutualistic interaction, and red arrows the effects of intraspecific competition. The
parameters are described in the main text.
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Extrapolating from previous results [14], coexistence of the two species in time can be

maintained provided:

QYpl'p+Cpl'y
2
CaCp= O YaYp
OLyArA+CArP
2
CaCp= O YaYp

2
O YaYp<C,Cp

>0

>0 )

The first two inequalities give the condition for the existence of an equilibrium point allowing
positive densities (i.e. feasibility conditions). The last inequality ensures the dynamical
stability of the equilibrium. In the case of two interacting species, this local stability condition

implies the global stability of the feasible equilibrium. The globally stable equilibrium is

then:
*__ G'YPrP-'-CPrA
A A Cr— Y, Y
ACp AY¥Yp
3
p— AYAlatQaTp

CACP_(XZyAYP
If the stability condition is not fulfilled, i.e., interspecific mutualism is stronger than
intraspecific competition, the positive feedback loop resulting from interspecific mutualism
may drive the system towards infinite growth. In such cases, other limiting factors (e.g.
pathogen, predators, or new competitors) eventually regulate the populations. Since these
factors are not taken into account in our model assumptions, we define a maximum plant

a

attractiveness “c/ below which stability is warranted:

_ .| CaCp 4
R S “@)

We allow the evolution of o between zero (no investment in attractiveness) and this

maximal level %max<%cr
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90 3 Evolution of plant attractiveness

We study the evolution of plant attractiveness ( @ ), assuming an allocation trade-off affecting

the plant intrinsic growth rate " [27]. The plant has a given quantity of energy, divided into
different functions; some energy is allocated to intrinsic growth and to self-reproduction, and
some to attractiveness [27,28]. We consider different trade-off shapes; linear, concave or

95 convex. The shape of the trade-off is controlled by the parameter s ( s>1 concave;
s=1 linear; s<1 convex). Detailed mathematical formulations of the trade-off

functions are given in the supplementary material.

We follow the evolution of plant attractiveness using adaptive dynamics. This method models
explicitly the evolutionary consequences on species density dynamics, and the feedback of
100 species density on the evolutionary process [29,30]. Evolution occurs via small mutation
steps between which plant and pollinator densities reach the ecological equilibrium. Adaptive
dynamics also assumes clonal reproduction and small phenotypic impact of the mutations.
The differential equation describing the evolution of the phenotypic traits, known as the

canonical equation [29], is given by:

do_1 *p* () ow(a,,a)

de 2H° Ty e )
uo'P(a)
105 The term 2 encapsulates the phenotypic variability brought by the mutation

process on which selection can act; with Y the per individual mutation rate, ¢~ the variance

of the mutation phenotypic effect, and P (@) the plant equilibrium density. The last term is
called the selective gradient. It embodies the effects of natural selection, based on the

variations of the relative fitness of mutants &

m given a resident population of attractiveness
110 o . Therefore, the sign of the selective gradient gives the direction of evolution; a positive

gradient selects larger attractiveness, while a negative gradient selects smaller trait values.
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The relative fitness of a mutant at a very low density is explicitly derived from the ecological

dynamics (equation (1)). It is computed as the per capita growth rate of a rare mutant

population in a resident population at ecological equilibrium (3):

1 dP, ) .
w(am)a):P_ dt :rP(am)_CPP (a’)+amYAA (a’)’ (6)
m P, =0

115 with P'(@)and A™(a) given by equation 3. Remember that, due to the allocation costs, the

plant intrinsic growth rate varies with the level of attractiveness ro(a)

Eco-evolutionary dynamic (equation 5) may exhibit equilibrium points, called evolutionary
singular strategies. They correspond to trait values at which the adaptive dynamic (5) is at
equilibrium, i.e., the time derivative is equal to zeros. Since all terms apart from the selective

120 gradient are always positive, the singular strategies occur when the selective gradient is null.
This corresponds to values @ satisfying:

dw(a,,o) _dry(a)

0, oy ava  dO +y,AT(@)=0. @

At singularities, costs in terms of energy dedicated to alternative means of reproduction (

drp(a)/da ) therefore match pollination benefits ( ¥4 A'(a) ). The existence of a singular

strategy is not enough to guarantee that evolutionary dynamics locally lead to it (convergence
125 condition) or that it persists (non-invasibility condition, i.e. resistance to invasion by nearby
mutants). A singular strategy that is both convergent and non-invasible is called a
continuously stable strategy (CSS) [31]. To have long-term coexistence, the evolutionary
process needs to converge to a CSS at which we have ecological coexistence of the plant and
the pollinator. Three other types of singular strategies can arise from the evolutionary
130 process: Garden of Eden (non-convergent and non-invasible), repellor (non-convergent and
invasible), and branching points (convergent and invasible). Calculation of the second and
cross-derivative of the fitness function determines criteria for convergence and invasibility

[32]. The mathematical computation for the existence of singular strategies and their
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convergence and invasibility properties are given in the supplementary material.

135 Equation (7) can be solved analytically for particular set of parameters (see supplementary
material). For other cases, we graphically determine the values and the convergence and
invasibility properties of the singular strategies using the pairwise invasibility plots (figure 2).
Figure 2 illustrates the singular strategies and their properties depending on the trade-off
shape and the pollinator intrinsic growth rate. It is possible to show (supplementary material),

140 as illustrated in figure 2, that only concave allocative trade-offs lead to non-invasible
strategies. Therefore, long-term coexistence needs a concave trade-off function. Then, the
convergence to a singular strategy depends on the pollinator intrinsic growth rate (figure 2c
and 2d). While analytical calculation was intractable for the convergence condition, except
with the linear case for which we always obtain a divergent singular strategy, we could

145 explore the model using sensitivity analysis and the PIPs. For positive pollinator intrinsic
growth rate, we obtain only one convergent stable singular strategies (CSS) at which
ecological coexistence is granted. In that case, long-term coexistence is obtained. For

negative pollinator intrinsic growth rate, the system exhibits a second singular strategy that is

a Garden of Eden. In the following, we will study only concave trade-off function (i.e. S>1).
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Figure 2: Pairwise invasibility plots (PIPs) representing the invasibility potential
of a rare mutant “n within a resident plant population o. at ecological

equilibrium. Grey areas indicates that the mutant relative fitness (o, 0t) g
positive so that it invades and replaces the resident population. In panels a and c,
arrows show the direction of evolutionary trajectories. The system exhibits several
singular strategies depending on the parameter values. Circles represent convergent
strategies, whereas squares are non-convergent. Filled symbols represent invasible
strategy, while not filled symbols are non-invasible. In panel a and b, the singular
strategy is non-convergent and invasible (repellor). In panel c, the singular strategy
is convergent and non-invasible (CSS). Panel d displays two strategies, one CSS and
one which is non-convergent and non-invasible (Garden of Eden). Parameter values
are: CA:CPZYA: YP: 1 s and o(‘max:O'S*a’cl .
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150 4 Consequences of pollinator population decline

Now that we have characterised the eco-evolutionary dynamics of our plant-pollinator
system, we will study how pollinator decline may affect its outcome. We simulate less

favourable environmental conditions for pollinators (e.g. habitat fragmentation, pesticides,
diseases) by a decrease in its intrinsic growth rate ("4) . We illustrate the effects of this

155 disturbance through Ecology-Evolution-Environment ( E’ ) diagrams [33,34]. These
diagrams show the outcome of eco-evolutionary dynamics as function of the environmental
parameter. Figure 3 represents such a diagram for the same concave-trade off and parameters

values (except for variations in pollinator intrinsic growth rate) of figure 2c,d. The X-axis of

the diagram represents the environment (pollinator intrinsic growth rate: "4). The Y-axis

160 represents the evolving trait value relative to its maximum value (attractiveness ratio:

a ). The colour illustrates variations in equilibrium densities for the pollinator (panel a)

amax

and the plant (panel b) populations: white represents extinction, while the intensity of blue

gradient correlates with species densities. This E’ diagram exhibits two types of singular
strategies: a convergent and stable singular strategy (CSS, continuous line), and Garden of
165 Eden (dotted line). The vertical black arrows give the direction of evolution. The Garden of
Eden singular strategy is present only for negative pollinator intrinsic growth rates, which can
be considered as a bad environment for the pollinator. In this case, the system exhibits
evolutionary alternative stable states; for a plant attractiveness above the Garden of Eden
value the evolution converge toward the CSS, while for a plant attractiveness below, selection
170 leads to ever-decreasing attractiveness, weakening the mutualistic interaction and eventually

leading to the extinction of the pollinator (arrow (7) in figure 3a).

For positive pollinator intrinsic growth rates (" a>0 ), the system converges toward a CSS

10
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with intermediate o (arrows (1) and (2) in figure 3a). Now consider the environmental
degradation (red arrow (3) in figure 3a). At this point, in the absence of evolution, both plant
175 and pollinator populations are maintained at positive densities. However, considering
evolution, plant attractiveness decreases as pollinators are being too rare to compensate the
intrinsic costs of attractiveness. Eventually, evolution drives pollinator populations to
extinction; an evolutionary murder depicted by arrow (4) in figure 3a. Faced with the crash of
pollinator populations, restoration plans may be undertaken. Early intervention, depicted by
180 arrow (5), can restore a coexisting system. Yet, a delayed restoration (white arrow (6)), will

not allow such a rescue, as evolutionary trajectories diverge from the Garden of Eden

singularity eventually leading to the extinction of the pollinator (arrow (7)).

11
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Figure 3: Ecology-evolution-environment ( E* ) diagram representing the impact of the
environment on the evolution of plant attractiveness and on pollinator (panel a) and plant
equilibrium densities (panel b). White areas show parameters for which extinction occurs
for either plants or pollinators. The blue intensity correlates with population densities of
pollinators (panel a) or plants (panel b). Black lines show the position of singular strategies;
continuous lines show convergent and non-invasible singular strategies (CSS) , and dashed
lines show Garden of Edens (non-invasible, divergent). Vertical black arrows (1, 2, 4, 7) give
the direction of evolution. Environmental disturbance is represented by a red arrow (3).
White arrows (5, 6) represent restoration attempts at different times along the evolutionary
trajectory .Parameters values are s=2.5 , c,=c,=y,=1 | y,=0.2  and

OLmax:O'8 >kO(’cl
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Figure 4: Influence of trade-off shape and mutualistic gains on E’ diagrams. Columns
differ in trade-off concavity. More concave trade-offs allow a larger coexistence domain.
Lines of panels differ in the asymmetry of mutualistic gains: in the top line (panels a,b , and
c) pollinators benefits more than plants; the middle line (panels d,e, and f) shows equal gains
while in the bottom line plant gains are larger. The red points and dotted lines represent the
lowest r, and ﬁ values for maintaining a CSS, leading to ecological and
evolutionary coexistence. Asymmetry in favour of the pollinator or more concave trade-offs
allow a larger range pollinator intrinsic growth rate T, , i.e. of degraded environment, for
eco-evolutionary coexistence. Colours and lines are the same as in figure 3. The parameter

values are €a=Cp=1 gnd Oma=0-8%0

Finally, we study the impact of trade-off shapes and of the asymmetry between mutualistic
gains on the eco-evolutionary outcome (figure 4). For strong concave trade-offs, s > 2, (figure

185 4b, c, e, f, h, i) we observe qualitatively the same dynamics as in figure 3. For less concave

13
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trade-offs, s < 2, only a positive pollinator intrinsic growth rate "4 allows coexistence (figure
4a,d,g). In this case, negative pollinator intrinsic growth rates lead to small benefits of the
mutualistic interaction for the plant, so that attractiveness is counterselected, eventually
leading to the pollinator extinction [35,36]. For more concave trade-offs (s > 2), we notice

190 that an asymmetric mutualistic gain favouring pollinators allows a larger range, including

"a , before attractiveness is counterselected and extinction

negative intrinsic growth rates
occurs. Therefore, an increased mutualistic gain of the pollinator relative to that of plant
facilitates the long term coexistence of the plant-pollinator system. This produces a more
robust system that eases a potential restoration process. Note, however, that favouring
195 pollinators gain over plants leads to lower selected levels of attractiveness. The attractiveness

value at eco-evolutionary equilibrium is lower in figure 4 panels a,b,c favouring pollinator

gain compared to panels g, h, I favouring plant gain.

5 Discussion

The present work highlights how evolution may play a critical role for mutualistic interaction
200 maintenance in time. We show that evolution may actually be detrimental to this persistence.
While we focused on a simple two species plant-pollinator system, this allows us to
mathematically study the eco-evolutionary dynamics and completely investigate the role of
key parameters (e.g. trade-off shapes or mutualistic gains). Other models focus more on plant
evolution and detail further the reproductive implications (e.g. [23,25]). For instance, Lepers
205 et al. [24] explicitly modelled the evolution of plant reproduction system by taking prior
selfing and inbreeding depression into account. In particular, they showed that evolution
toward high prior selfing (for us high plant intrinsic growth rate) leads first to pollinator

extinction (our evolutionary murder). Because they also model the cost resulting from the

14
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inbreeding depression, they show that this evolutionary murder then leads to the evolutionary
210 suicide of the plant. In the present work, we discuss the implications of such evolutionary
dynamics for the maintenance of diversity under various environmental deteriorations. We
uncover how variations in the disturbance intensity and the timing of restoration may
ultimately affect the maintenance of the complete plant-pollinator system. Our results
highlight that far from models suggesting a positive effect of evolution on diversity

215 maintenance (evolutionary rescue, e.g. [37]), evolution within mutualistic systems can

actually be detrimental to the system persistence and undermine restoration attempts.

Interestingly, in this case of a strongly degraded environment (figures 3 and 4), the system
exhibits alternative evolutionary stable states: a state at which the plant and the pollinator
coexist (CSS), and a state where selection goes toward ever-decreasing attractiveness, which

220 eventually leads to the pollinator extinction, i.e. an evolutionary murder of the pollinator by
the plant. These two stable states are separated by a (divergent) Garden-of-Eden evolutionary
singular strategy. When integrating this bi-stability into a degradation of the environment,
figures 3 and 4 show that the system faces a critical transition. This is an example of critical
transition of a stable and convergent evolutionary strategy, for positive pollinator intrinsic

225 growth rate, to evolutionary bistability for negative pollinator intrinsic growth rate.

Bistability and critical transition have been highlighted in a variety of ecological situations
(e.g. [35,38],[39,40] in mutualistic system), and results from a strong positive ecological
feedback loop. Above a critical value, the system will amplify toward a stable state with
higher values, but below, the system will shift to an alternative, degraded, stable state. Here
230 we have a similar phenomenon, but on an eco-evolutionary scale. If plant attractiveness

before pollinator deterioration is above the level of the Garden of Eden singular strategy,
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plant evolution reinforces its attractiveness toward higher values eventually reaching a stable,
coexisting system (CSS). On an ecological scale, the interaction reinforcement increases the
abundance of both plants and pollinators, which in turn favours the evolution of plant
235 attractiveness toward higher value. Below the critical level, evolution decreases plant
attractiveness, which in turn decreases pollinator abundance that feedbacks into an
evolutionary decrease of plant attractiveness. This runaway selection for decreased
attractiveness might, in the case of specialist pollinators, leads to the evolutionary murder of
the pollinator by the plant [36]. Note that the trade-off shape modulates the strength of the

240 positive feedback loop. More concave trade-offs decrease the threshold value above which

the positive feedback loop is maintained, thereby facilitating the persistence of the system.

On a management side, alternative stable states and critical transitions have large
implications, as systems may then shift abruptly, and large restorations are needed to recover
previous states [38]. The eco-evolutionary alternative stable states we describe here have
245 similar implications. Our results show that they make restoration attempts more difficult from
two different points of view. First, as highlighted in figure 3, the timing of the attempt
becomes important. Restoration is only successful when achieved before the threshold
attractiveness is evolved (see figure 3). Second, just as in ecological hysteresis, if the system
becomes degraded, a small restoration attempt will not be sufficient to recover large

250 populations, but large efforts will have to be undertaken.

These results are consistent with the experiment of Gervasi and Schiestl [13]. A decrease in
efficient pollinators indeed leads to less investment in sexual reproduction and attractiveness
from the plant side with an increase in selfing (the reproductive assurance hypothesis). This

trend is consistent with other empirical observations and experiments (e.g. [41,42]). Our
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255 results question the efficiency of restoration policies that would solely focus on ecological or
environmental restoration. Indeed, here, plant evolution hinder restoration attempts that
would have been successful if just ecological dynamics had been considered. Whether
evolution indeed weakens or threaten plant-pollinator interactions in the face of external
disturbances needs further investigation to properly understand the current pollination crisis

260 (e.g. [43] on plant decline but questioned in [44]).
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Electronic Supplementary material

The allocation trade-off

Evolution acts on the plant attractiveness o , that we assume constrained by an allocation trade-off to

the plant intrinsic growth rate 7P [1]. The plant has a given quantity of energy, divided into different
functions: some energy is allocated to intrinsic growth and reproduction, and some to attractiveness [2].

That is why we model " as a decreasing function of the attractiveness o :

=1. (A1)

The plant maximal intrinsic growth rate "Pmax can be fixed to one without loss of generality, by
choosing appropriately the time unit. Using (A1) we can express the plant intrinsic growth rate
depending on the plant attractiveness:

rP:(1—(a0‘ )S)US. (A2)

The S exponent controls the trade-off shape. When S=1 there is a linear relationship between " and

o . When 0<s<1 the trade-off is convex. On the opposite, S>1 will produce a concave trade-off.
Examples of the trade-off variations can be found in figure 1.
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Figure 1: Variation of the attractiveness ratio ®max with the plant intrinsic growth rate "»
depending on the trade-off strength. On panel a, The continuous line represents a convex
trade-off, the dashed line a linear trade-off, and the dashed-dotted line a concave trade-off.
On panel b we represented different curvatures of a concave trade-off function, depending on
the value of the parameter s.

Detailed eco-evolutionary dynamics

Detailed analysis of singular strategies

In this part the symbol * signal the ecological equilibrium and 0 the evolutionary one.

The evolving variable o impact the plant intrinsic growth rate " due to the allocation trade-off (see
appendix A) and the plant and pollinator densities at equilibrium (eq 3, main text). The relative fitness
function of a mutant plant with attractiveness o, compared to a resident plant with attractiveness o

1S:
1 dP,

P_m dt Pm_)O:rP(am)_CPP (a)+amYAA (OL), (B3)

o(a,,o)=

with P the mutant population density. As explained in the main manuscript, evolutionary endpoints
(also called singular strategies) are obtained when trait variation goes to zero. Trait variations are given
by the Canonical equation, into which lies the selection gradient (main text, equation (5). Its sign will
give the direction of the trait evolution. Here the selection gradient corresponds to slope of the fitness
function (B3) at the resident trait o , given a small variation in the trait ( «,, ).

6w(am,a):drp(ocm)

oo, do +Y, A ((X)’ (B4)

m

Because of the hypothesis of small mutations, this yields:
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ow(a,,a)
oa,

_dry(a,)

a,do dam

+y,A'(a), (B5)

a,>o

Because all other terms of the Canonical Equation (5) are positive, the evolutionary singular strategy (
a ) is found using:

dw(a,,o)
oo,

— drp((xm)

i ety e YA (820 (B6)

o o0
m

with r,(a) defined in annex A by equation (A1) and A" by equation (3) in the main article. This

means that a singularity is obtained only when costs in terms of energy of alternative means of

orp(ay,)

reproduction ( kP

) match the benefits in terms of pollination when changing attractiveness

o, 0> O

(YAA*(&))'

Replacing r, ,we obtain:

dw(a,,o)

G yprp(G)+epra _ (B7)
oo,

b

= & *t¥Ya <2
024 ANOp—€ YnYp

In the linear case (i.e. when s=1 ), the singular strategy formula is:

CP(CA —Olmax YA rA)
O(mux yA yP (B8)

This solution is feasible (i.e. positive and in a plausible range value), with «,,, <o, as defined in
equation (4) of the main text, if and only if 0<c,<a,,.,Yara ;i.e.the intraspecific competitive
losses need to stay below the maximal energetic gain of the animal.

a=

Conditions for invasibility

With the trade-off function defined in appendix (A1) we can differentiate the fitness function a second
time to analyse the convergence and invasibility of the singular strategies, in order to deduce the overall
trait dynamics [3]. The singular strategy ( & ) is non-invasible (ie, an ESS [4]) when:

sl

L, , 0> O

oo’ (a,,o)
(0c,)’

(B9)

Concave trade-offs ( s>1 ) therefore lead to non-invasible singular strategies, while convex trade-offs (
s<1)yield invasible strategies.

In the case of a linear trade-off equation B9 is equal to 0, the strategy is neutral from an invasibility
point of view.
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Conditions for convergence

The previous equation, summed with the crossed derivation of the fitness function gives conditions for
convergence of the singular strategy [3]. The singular strategy is convergent when:

dw’(a,,a)
(0a,)’

2
N ow(a,,,o)

oada,, <0 (B10)

Oy OO

a,,, o> a
The above mentioned formula requires the calculation of the cross-derivation. Using results from

equation B6, it gives:

dw’(a,,a)
oada,

dA"(a)
o)

= B11
o,,a>a d(l ( )

According to the formula of A*(&) given in equation (3) of the main article, the previous equation is
equivalent to:

dw’(a,,a) :YAYP(ZCPYArA"'(CACP"'aZYAYP)rp(a)"'a(cACP_aZYAYP)rP'(a)) (B12)
0ada, o ua (CACP_QZYAYP>2
with r,(@) defined in annex A by equation (A1), and r,’(d)=r,(a) 1A —
et

a->0 )and B9 is

however too complex in the general case to give a simple to understand the convergence condition (as

The sum of equation B12 at the eco-evolutionary equilibrium (i.e. when

max ’

required by equation B10)

In the linear case (i.e. when s=1 ), equation B12 at the eco-evolutionary equilibrium becomes:

~ N C
YAYP(CACP-F(XZYAYP-I-ZCPOL(YArA_(X—A)

6w2(am,a) max (B13)
0000, o aa (CACP_aZyAyP)Z
dw’(a,,o) .
Because W =0 , the convergence condition then depends only on the above cross
O(‘m A, 00> G

derivation B13.
replacing & by the expression from equation B8 gives:
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60)2(0’..,",0’..) _YZAYi’a‘iax
oada = 2 2 2 2 (B14)
m o, ea CP(CACP+CPYArAO(max_CAYAamax(chrA-l-yPamax))
With conditions on the parameter values (i.e. all parameter values are positives, ratesvalues stay below

land o,,<0, )the above derivation is always positive, meaning that a linear trade-off always leads

to a divergent singular strategy.
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