

[Click here to view linked References](#)

[Click here to access/download Manuscript Final manuscript](#)

1 A high-throughput delayed fluorescence method reveals underlying differences in the
2 control of circadian rhythms in *Triticum aestivum* and *Brassica napus*
3
4
5 Hannah Rees^{1,2}, Susan Duncan¹, Peter Gould², Rachel Wells³, Mark Greenwood^{4,5}, Thomas
6
7 Brabbs¹, Anthony Hall^{1*}
8
9
10 5
11
12
13 6 ¹Earlham Institute, Norwich Research Park, Norwich, NR4 7UG, UK
14
15 7 ²Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool, L69 7ZB,
16
17 8 UK
18
19
20 9 ³John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
21
22
23 10 ⁴Sainsbury Laboratory, University of Cambridge, Cambridge, CB2 1LR, UK
24
25
26 11 ⁵Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QW, UK
27
28 12
29
30
31 13 Email
32
33
34 14 Anthony Hall (corresponding) anthony.hall@earlham.ac.uk*
35
36 15 Hannah Rees: hannah.rees@earlham.ac.uk
37
38 16 Susan Duncan: susan.duncan@earlham.ac.uk
39
40 17 Peter Gould: peter.gould@liverpool.ac.uk
41
42
43 18 Rachel Wells: rachel.wells@jic.ac.uk
44
45
46 19 Mark Greenwood: mark.greenwood@slcu.cam.ac.uk
47
48
49 20 Thomas Brabbs: thomas.brabbs@earlham.ac.uk
50
51
52 21
53
54
55 22
56
57 23 List of Abbreviations:
58
59
60 24 DF: Delayed Fluorescence
61
62
63
64
65

25 FFT-NLLS: Fast Fourier Transform Non-Linear Least Squares

1
2 26 RAE: Relative Amplitude Error

3
4 27 PSII: Photosystem II

5
6 28 L:L: Constant light

7
8 29 L:D: Light-dark cycles

9
10 30 D:D: Constant Dark

11
12 31 BnDFFS: *Brassica napus* Diversity Fixed Foundation Set

13
14 32 ZT: Zeitgeber time

15
16 33 Baseline and amplitude (BAMP)

17
18 34 CV: coefficient of variation

19
20 35

21
22 36 **Abstract**

23
24 37 **Background**

25
26 38 A robust circadian clock has been implicated in plant resilience, resource-use efficiency,

27
28 39 competitive growth and yield. A huge number of physiological processes are under circadian

29
30 40 control in plants including: responses to biotic and abiotic stresses; flowering time; plant

31
32 41 metabolism; and mineral uptake. Understanding how the clock functions in crops such as

33
34 42 *Triticum aestivum* (bread wheat) and *Brassica napus* (oilseed rape) therefore has great

35
36 43 agricultural potential. Delayed fluorescence (DF) imaging has been shown to be applicable

37
38 44 to a wide range of plant species and requires no genetic transformation. Although DF has

39
40 45 been used to measure period length of both mutants and wild ecotypes of *Arabidopsis*, this

41
42 46 assay has never been systematically optimised for crop plants. The physical size of both *B.*

43
44 47 *napus* and *T. aestivum* led us to develop a representative sampling strategy which enables

45
46 48 high-throughput imaging of these crops.

49

1

50 Results

2

51 In this study, we describe the plant-specific optimisation of DF imaging to obtain reliable
6
7 circadian phenotypes with the robustness and reproducibility to detect diverging periods
8
9 between cultivars of the same species. We find that the age of plant material, light regime
10
11 and temperature conditions all significantly effect DF rhythms and describe the optimal
12
13 conditions for measuring robust rhythms in each species. We also show that sections of leaf
14
15 can be used to obtain period estimates with improved throughput for larger sample size
16
17 experiments.

21

57

22

58
24
25
26 Conclusions

27

60 We present an optimized protocol for high-throughput phenotyping of circadian period
29
30 specific to two economically valuable crop plants. Application of this method revealed
31
32 significant differences between the periods of several widely grown elite cultivars.
33
34 This method also identified intriguing differential responses of circadian rhythms in *T.*
35
36 *aestivum* compared to *B. napus*; specifically the dramatic change to rhythm robustness
37
38 when plants were imaged under constant light versus constant darkness. This points
39
40 towards diverging networks underlying circadian control in these two species.

41

67

42

68 Keywords: Circadian period, delayed fluorescence, free-running conditions, Hexaploid
50
51 wheat, oilseed rape, aging, L:L, D:D, temperature, rhythm robustness

52

70

55

56

71

58

72 Background

60

61

62

63

64

65

1 73 A circadian clock is an endogenous oscillator entrained by external temporal cues. Circadian
2 74 control of gene expression is a ubiquitous feature which appears to have arisen
3 75 independently in bacteria, fungi, plants and animals(1). Since the discovery of the first
4 76 *Arabidopsis* circadian mutant in 1995(2), the significance of the circadian clock in plants has
5 77 become increasingly evident. Approximately 30% of genes in *Arabidopsis* are predicted to
6 78 be under circadian control, regulating photosynthetic, metabolic and developmental
7 79 pathways(3,4). Moreover, a selective advantage resulting from a clock which is matched to
8 80 the exogenous day-length has been demonstrated in mammals, insects, bacteria and
9 81 plants(5–9).

10 82 The most recent model for the molecular control of the *Arabidopsis* clock is comprised of a
11 83 series of interlocking negative transcriptional feedback loops regulated by key activators
12 84 which control the oscillation of clock gene expression(10). To ascertain the underlying
13 85 nature of circadian rhythms, a clock-controlled output representing the pace of the clock
14 86 must be measured in constant (free-running) conditions. Previously this research has been
15 87 conducted by studying leaf movement rhythms or by following luciferase gene expression
16 88 under the control of a circadian regulated promoter(11–13). Delayed fluorescence (DF)
17 89 imaging provides an alternative to these methods that does not require plant
18 90 transformation. It has previously been shown to work in a variety of plants for which leaf
19 91 movement assays are not feasible(14,15). Delayed fluorescence occurs when excited
20 92 electrons in photosystem II (PSII) undergo spin-conversion to a triplet excited state before
21 93 charge recombination allows them to return to their ground state releasing light energy(16).
22 94 Measurements of DF have been correlated with the photosynthetic state of PSII(17) and the
23 95 amount of DF production is regulated by the circadian clock. DF can be measured with a
24 96 low-light imaging system identical to that used for luciferase imaging and output rhythms

97 have been shown to oscillate with a comparable period to those estimated from luciferase
1 reporter experiments(14). The output from a DF experiment is a waveform which has
2 parameters that can be mathematically defined and therefore quantified. These parameters
3 include 'period' (the time taken to complete one cycle), 'phase' (the time of day at which
4 this peaks) and 'amplitude' (the distance between the peak and the baseline of the
5 oscillation). Important to circadian dynamics is also the idea of 'rhythm robustness' i.e.
6 whether these parameters change over time. In this paper, rhythm robustness was assessed
7 by: the percentage of samples classified as rhythmic; the relative amplitude error (RAE); the
8 period coefficient of variation (CV) and the average period error threshold (all defined in
9 Supplementary Materials). Together, these parameters allow the effects of different
10 imaging conditions to be quantified.

11 As DF measurement is correlated with the oscillations in photosynthetic status of PSII, leaf
12 material is the logical choice for a representative sample. Rhythms have been shown to
13 persist in excised leaves in several species(18–22). However, previous research has
14 demonstrated that independent clocks run at different periods throughout the plant under
15 constant conditions, coordinated by a degree of intercellular coupling(23–27). The extent to
16 which the clock is affected by dissecting leaf material into small segments is investigated in
17 this paper.

18 Alongside these spatial differences, the clock has also been shown to be temporally dynamic
19 and is affected by the life history of the plant. Both the systemic age of the plant and the
20 'emergence age' of the individual leaves on a plant have been reported to effect the clock in
21 *Arabidopsis*, with increasing age associated with period reduction(28). Conversely, the
22 timing of leaf senescence has also been shown to be directly regulated by core circadian
23 genes(29).

121 In addition to this endogenous entrainment, the clock is also responsive to external stimuli;
1
122 the most well characterized of which are light and temperature cues. Increasing light
2
123 intensity causes a shortening of period in free-running conditions(30–32) and these rhythms
3
124 rapidly dampen in amplitude under continuous darkness(33). Circadian systems are
4
125 relatively buffered against temperature changes compared to other biochemical reactions
5
126 but are not completely independent of it(34). Period shortening of 1.8–4.2h have been
6
127 reported following temperature increases from 17°C to 27°C determined by both leaf-
7
128 movement assays and luciferase reporters under circadian regulation in
8
129 *Arabidopsis*(31,35,36). Seedlings grown at 17°C also have rhythms with lower period
9
130 variability and RAE values than plants grown at 27°C(35,37). The extent to which rhythms
10
131 are temperature compensated is described using the inverse of the temperature coefficient
11
132 Q10; the change in the rate of a process over a temperature change of 10°C(38).
12
133 Here we present an optimized protocol for high-throughput phenotyping of circadian period
13
134 using two crop plant models; *Triticum aestivum* (bread wheat) and *Brassica napus* (oilseed
14
135 rape). *B. napus* (AACC) and *T. aestivum* (AABBDD) are both recent polyploids still undergoing
15
136 genomic rearrangements. The contribution of each genome to clock function remains to be
16
137 investigated. *B. napus* is a dicot recently diverged from *Arabidopsis*(39) and so is likely to
17
138 have clock homologs with similar functions. *T. aestivum* is a monocot with an incompletely
18
139 understood clock mechanism(40). These species therefore provide interesting insights into
19
140 two genetically diverse families. Both *T. aestivum* and *B. napus* have been influenced by
20
141 human domestication, genome duplication events and geographical speciation as the use of
21
142 these crops became globalized. The specific and combined effects of these factors on the
22
143 control of the clock is yet to be investigated.

144 Within this paper we show that both the age of the plant and the developmental age of
1
145 leaves have significant effects on period with older material displaying shorter rhythms. To
2
146 make our method high-throughput whilst still providing reliable rhythms, tissues were
3
147 segmented into various sizes and compared to whole leaf samples. We identify regions of
4
148 the plant leaves which are the most robustly rhythmic and give the most consistent period
5
149 estimates. Both the light regime and temperature conditions also had large effects on
6
150 period estimation and we describe conditions optimal for each species.
7
151 Finally, we applied our optimized, high-throughput DF method to investigate differences
8
152 between elite cultivars in both *B. napus* and *T. aestivum* and demonstrate it to be a useful
9
153 tool for assaying circadian rhythms in these crop species.
10
154
11
155 **Results**
12
156 Circadian variability due to leaf development and age of plant
13
157 We tested the effect of both plant and leaf aging on period estimates from *Brassica* and
14
158 wheat seedlings. Previous studies in *Arabidopsis* have reported that the pace of the clock
15
159 increases as the plant ages and that earlier emerged leaves have a shorter period than those
16
160 which emerge later within the same individual(28). Our results mirror these findings for
17
161 young wheat and *Brassica* plants, however this association was lost for older material
18
162 (Figure 1A). For wheat we calculated period estimates from the second leaf of plants at 18,
19
163 25, 32 and 39 days after sowing and show that between 18-32 days period decreases
20
164 linearly at a rate of approximately half an hour per week while maintaining a near constant
21
165 relative amplitude error (RAE) (Figure 1A and B). However, in leaves from 39 day old plants
22
166 there was an increase in both average period and relative amplitude error, potentially due
23
167 to metabolic changes as a leaf changes from a source to a sink tissue or due to the onset of
24
168
25
169
26
170
27
171
28
172
29
173
30
174
31
175
32
176
33
177
34
178
35
179
36
180
37
181
38
182
39
183
40
184
41
185
42
186
43
187
44
188
45
189
46
190
47
191
48
192
49
193
50
194
51
195
52
196
53
197
54
198
55
199
56
200
57
201
58
202
59
203
60
204
61
205
62
206
63
207
64
208
65

168 senescence in these samples. A one-way analysis of variance yielded a significant effect of
1
169 wheat age on both period and RAE ($F(3,90)=12.13, p<0.001$) and ($F(3,90)=7.018, p<0.001$)
2
170 respectively. Based on our investigation, we recommend using plants between 25 to 32 days
3
171 after sowing. At 25 days 100% of samples were classified as rhythmic and period CV was
4
172 1.52h. 32 day old samples were also robust, having the lowest RAE (0.15) and period error
5
173 (0.43) averages (see Supplementary Materials S1.)
6
174 In a separate experiment, we analyzed 4 leaves from 25 day old wheat plants as is shown in
7
175 Figure 1C, where leaves 1 and 3 were the oldest leaves and leaves 2 and 4 the second oldest
8
176 leaves from the main and secondary tiller, respectively. There was a statistically significant
9
177 difference between the mean periods at each leaf age (one-way ANOVA ($F(3,83)=7.434, p<0.001$).
10
178 Within each tiller pair, the older leaf had a shorter period than the younger leaf
11
179 and had higher RAE averages (Figure 1D and E). The mean period for leaf 4 (24.50h) was
12
180 found to be significantly longer than both leaf 1 (23.15h) and leaf 3 (23.32h) (Tukey HSD).
13
181 We recommend using leaf 2 as it had the best overall circadian robustness with regards to
14
182 the % samples returned (100%), RAE (0.18) and period error (0.50) (Supplementary
15
183 Materials S2).
16
184 For *Brassica* seedlings, plants were grown to 4 different ages: 20, 25, 30 and 35 days after
17
185 sowing and leaf 1, 3 and 5 were sampled in the same experiment with leaf 1 being the
18
186 earliest emerged leaf and leaf 5 the most recently emerged leaf (Figure 2). We conducted a
19
187 nested ANOVA to test the effects of both plant age and within-plant leaf-age on period. We
20
188 found that variation in plant-age had a significant effect on period, with increasing age
21
189 causing a shortening of period ($F(3, 53)=8.48, p<0.001$). The nested effect of leaf age within
22
190 each plant age-group was also found to be significant ($F(8, 53)=5.45, p<0.001$). The largest
23
191 difference between leaves in each age-group was seen for 20 day old plants where a

192 difference of 3.14h was observed between leaf 1 and 5 ($p<0.001$, Tukey HSD) (Figure 2A).
1
2 193 Brassica plant-age was also found to have a significant effect on RAE averages with younger
3
4 194 plants having a lower mean RAE ($F(3,53)=5.953, p<0.01$) (Figure 2B). Supplementary
5
6 195 Materials S3 shows robustness statistics for all plant ages and leaf-ages tested. We
7
8 196 recommend using leaf 1 from 20 day old plants as they had the lowest RAE (0.15) and
9
10 197 period error threshold (0.47).
11
12
13
14
15 198 To approximate the period shortening due to plant aging in *Brassica* we followed the
16
17 199 changes in average period in leaf 5 across plant ages from 20 days after sowing to 30 days
18
19 200 after sowing. Our analysis revealed that period shortened by approximately 3 hours per
20
21
22 201 week from a mean of 26.50h (SD 1.17) to 22.38h (SD 0.62).
23
24
25
26 202
27
28 203 Finding an optimal size of leaf sample
29
30
31 204 We needed to identify representative leaf sections which allowed a sufficient number of
32
33 205 samples to be analyzed on one plate without compromising the robustness of rhythms for
34
35
36 206 period estimation. For wheat, we selected leaf 2 from 25 day old plants and analyzed the
37
38 207 periods and circadian robustness given by whole leaves compared to leaves cut into 10cm
39
40
41 208 sections and leaves cut into 4cm sections as shown in Figure 3A. By taking 4cm samples
42
43
44 209 from 2 regions on the same leaf (5 or 15cm down from the tip) we could investigate changes
45
46 210 in period across the length of the leaf. For *Brassica* seedlings we selected leaf 1 from 21 day
47
48 211 old plants and then kept them whole, took 3cm square samples from the centre or
49
50
51 212 quartered them (Figure 3B). This helped inform whether any changes in circadian
52
53
54 213 characteristics were a result of size reduction or from sub-sectioning regions of the leaf. Our
55
56
57 214 data showed that period and RAE averages were not significantly affected by cutting
58
59 215 samples in wheat (Figure 3C and 3D), ($F(3,75)= 2.066, p>0.1$, one-way ANOVA). However,
60
61
62
63
64
65

1 216 cutting *Brassica* leaves did significantly affect period estimates; quartered segments had a
2 217 slightly longer period than whole samples ($F(2,113)=5.46$, $p<0.01$, one-way ANOVA, Tukey
3 218 HSD (Whole-Quarter $p<0.01$) but RAE means were similar (Figure 3E and 3F) (Supplementary
4 219 Materials S4). From this data we recommend using 10cm segments for wheat and 3cm
5 220 square sections for *Brassica* imaging as these gave similar results to whole leaves and
6 221 increased throughput by 44% for *Brassica* and 100% for wheat.
7
8 222 We next wanted to investigate whether period estimates changed across the axis of the
9 223 leaf. We selected only the whole leaf images and digitally sectioned them into 10 or 5
10 224 regions of interest for wheat and *Brassica* leaves respectively (Figure 3G and 3H). Using this
11 225 approach we observed an average within-leaf variance of 0.45h in wheat and 0.42h in
12 226 *Brassica* leaves. This variation was larger than the leaf-to-leaf variation determined for
13 227 wheat (0.04h) and *Brassica* (0.3h) leaves. The mean period and RAE for each section across
14 228 these leaves was calculated and plotted (Figure 3G and 3H). No significant difference was
15 229 observed between the period of wheat or *Brassica* segments; however the RAE was
16 230 significantly different across wheat leaves ($F(9,139)=6.077$, $p<0.001$, One-way ANOVA). The
17 231 middle segments (4, 5, 6, 7 and 8) had significantly lower RAE averages compared to the tip
18 232 (segment 1) suggesting that this middle region may give the most robust DF rhythms.
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

240 For wheat, periods from leaves under a D:D regime had much lower variance than those
1
241 under the L:L regime (D:D mean =23.29h, SD=0.53; L:L mean =23.54h, SD=3.19). For *Brassica*
3
242 the opposite was observed; rhythms were more accurate under L:L (D:D mean=24.89h,
4
243 SD=2.91; L:L mean=22.92h, SD=0.31). A shortening of period was observed for both *Brassica*
5
244 and wheat under L:L compared to D:D based on median values, however the increased
6
245 variance observed within wheat-L:L and *Brassica*-D:D resulted in these differences having
7
246 low significance (wheat $t(23.16)=-0.38$, $p>0.5$; *Brassica* $t(10.14)=2.24$, $p=0.048$ Welch's t-
8
247 test).
9
248 RAE ratios reflected the accuracy seen in period estimation between the regimes (Figure
10
249 4C). RAE averages were smaller in D:D for wheat (D:D mean=0.20, SD=0.08; L:L mean=0.38,
11
250 SD=0.18) and in L:L for *Brassica* (D:D mean=0.53, SD=0.13; L:L mean=0.13, SD=0.02). RAE
12
251 differences were significant between regimes for both species (Wheat $t(29.23)=-4.38$,
13
252 $p<0.001$; *Brassica* $t(10.39)=9.92$, $p<0.001$ Welch's t-test). Figure 4D and E show mean
14
253 oscillation traces which demonstrate how DF rhythms were sustained in wheat and *Brassica*
15
254 under the different light conditions. Interestingly, DF rhythms also had a dawn-phased peak
16
255 in wheat and a dusk-phased peak in *Brassica* which became shifted as different light
17
256 conditions were applied (Figure 4F).
18
257 Wheat samples under the D:D conditions returned 100% of samples from period estimation
19
258 (L:L=95.83%), an average RAE ratio of 0.20 (L:L=0.38), a period CV of 2.25% (L:L=13.53%) and
20
259 a period error threshold of 0.55 (L:L=1.17). For *Brassica*, rhythms under the L:L regime
21
260 returned 100% from period estimation (D:D=66.67%), a RAE average of 0.13 (D:D=0.53), a
22
261 period CV of 1.34% (D:D= 11.80) and a period error threshold of 0.41 (D:D=1.62). See
23
262 Supplementary Materials S5. We would therefore recommend running wheat DF
24
263 experiments under D:D conditions and *Brassica* DF experiments under L:L.
25
264

264

1

265 Finding an optimum free-running temperature

266

5

267 To investigate the effect of temperature on period and rhythm robustness we tested

7

268 *Brassica* and wheat seedlings at a range of constant temperatures. We used the optimal

10

269 conditions from the variables so far tested and entrained each batch of plants at the

12

270 imaging temperature for four days prior to imaging (see Methods). Both *Brassica* and wheat

14

271 experienced an acceleration of the clock at higher temperatures, with the rate increasing

16

272 most dramatically at lower temperatures (Figure 5A). Periods decreased from 26.40h

18

273 (SD=3.60) at 17°C to 22.48h (SD=0.31) at 32°C in wheat. Periods decreased from 26.28h

20

274 (SD=0.72) at 12°C to 23.16h (SD=0.52) at 22°C in *Brassica*. The temperature coefficient Q10

22

275 was calculated as an average across all temperatures (Supplementary Materials S7). Q10

24

276 was found to be 1.12 for wheat and 1.14 for *Brassica* indicating a degree of thermal

26

277 compensation, but to a lesser extent than has been previously reported in *Arabidopsis* (36).

28

278 We next looked at which temperatures gave the best rhythmicity in each crop. Rhythms

30

279 were most robust in wheat grown at 27°C: 100% of period estimates were returned, the

32

280 average RAE ratio was 0.15, period CV was 2.48% and period error threshold was 0.48

34

281 (Supplementary S6). There was a clear negative trend in period CV as the temperature

36

282 increased in wheat from 13.63% at 17°C to 1.38% at 32°C. Mean RAE at each temperature

38

283 can be seen in Figure 5B.

40

284 Across the temperatures tested *Brassica* rhythm robustness remained consistent; all

42

285 samples were returned from FFT-NLLS and RAE, period CV and Period error were similar

44

286 (Figure 5B, Supplementary Materials S6). We recommend 22°C for DF using *Brassica* as it

46

287 had the lowest period CV of 2.24%.

48

50

52

54

56

58

60

62

64

66

288

1

289 An optimized DF method can be used in circadian analysis for crops

3

290 To see whether the optimized method could be used to investigate circadian differences

4

291 between cultivars of the same species, we looked at circadian rhythms from seven *T.*

5

292 *aestivum* cultivars and three *B. napus* cultivars. For the *B. napus* lines, seeds were obtained

6

293 from 3 different harvest years to see whether period was constant between batches. The

7

294 optimized imaging parameters we used for these elite cultivars is outlined in Table 1

8

295

9

10

Species	Plant age (days after sowing)	Leaf age (1=oldest leaf)	Cut sample	Light regime	Temperature	Throughput (N/imaging cabinet)	% return (from period estimation algorithms)
<i>Brassica</i>	20	1	3cm square	L:L	22°C	36	96.3
<i>Wheat</i>	25	2	10cm section	D:D	27°C	44-48	98.8

295 Table 1. Optimised DF method for circadian phenotyping of *Brassica* and wheat leaves

296

297

298 There was significant variation in the periods of the wheat lines tested as shown in Figure

299

300 6A ($F(6,152)=9.81$, $p<0.001$, one-way ANOVA). A Tukey HSD test showed that Paragon

301

302 (mean=23.48h, SD=0.54) and Norin 61 (mean=23.50h, SD=1.30) both have longer periods

303

304 than Chinese Spring (mean=22.70h, SD=0.40), Claire (mean=22.48, SD=0.54) and Robigus

305

306 (mean=22.32h, SD=0.34) $\alpha=0.01$).

307

308 Figure 6B shows the variation in period across three *Brassica* lines taken from three seed

309

310 batches. We conducted a two-way analysis of variance to compare cultivar ID and seed

311

312 batch effects as well as the interaction between the two factors. The cultivar ID was found

313

314 to have a significant effect on period ($F(2,60)=25.47$, $p<0.001$) but batch year did not

315

316 significantly account for any variation in period either as a main effect ($F(2,60)=1.73$, $p>0.1$)

317

318 or as an interaction with the cultivar ID ($F(4,60)=2.27$, $p=0.72$). This suggests that the

319

320

321

322

323

324

308 observed differences in period are due to heritable genetic differences. The *Brassica* cultivar
1
2 309 Norin had the shortest overall period of 22.29h (SD 0.34); shorter than either Cabriolet
3
4 310 (23.32h, SD=0.57) or Chuanyou II (23.18h, SD=0.72) ($p<0.001$, Tukey HSD).
5
6

7 311 DF oscillations in both *Brassica* and wheat remained rhythmic throughout the experiment
8
9 312 allowing confident period estimation over 4 days (24-120h following T_0). The average DF
10
11 313 oscillations for the two most divergent wheat lines is shown in Figure 6C; the other lines
12
13 314 have been omitted for clarity. DF expression from all three years was averaged to make the
14
15 315 oscillation plots for the *Brassica* lines as shown in Figure 6D. The percentage of DF rhythms
16
17 316 returned from period estimation was high for both *Brassica* (96.3%) and wheat (98.8%)
18
19
20 317 proving that the method is both efficient and reliable.
21
22

23 318 The overall throughput of this assay is dependent on the expected exclusion rate from
24
25 319 period analysis and on the number of imaging cabinets available. Designs with 3 replicates
26
27 320 per plate allow 10 independent lines to be assayed per cabinet over one experiment
28
29 321 allowing for an expected 5% loss of samples. If rhythms are expected to be less robust, for
30
31 322 example in a mutant screen, we suggest using a larger number of replicates. The scaling-up
32
33 323 of this imaging assay to multiple cabinets is also becoming increasingly affordable as the
34
35 324 CCD camera technology progresses.
36
37
38
39
40
41
42
43
44
45
46
47

Discussion

48 327 Manipulating the circadian clock has potential for influencing crop productivity, efficiency
49
50 328 and resilience; however research has been hindered by the lack of high-throughput
51
52 329 circadian protocols which can be reliably applied to crop plants. Transcriptional assays,
53
54 330 luciferase constructs and fluorescent markers have been used to investigate circadian
55
56 331 rhythms in tobacco(13), tomato(41), potato(42,43), *Brassica rapa*(44), rice(45–47),
57
58
59
60
61
62
63
64
65

332 barley(48) and wheat(49). However, these approaches are either manually intensive,
1
2
333 technologically expensive or require genetic modification to systematically investigate each
4
5334 component and so are low throughput. We have optimized a delayed fluorescence imaging
6
7335 method for reliable circadian phenotyping of either *Brassica* or wheat seedlings. Several
8
9336 differences between the function of these clocks have been exposed through the factors
10
11337 examined in this paper. The opposing robustness of clocks under D:D or L:L and the fact that
12
13338 DF rhythms peak with distinct phases under each condition is indicative of diverging
14
15339 networks underlying circadian control of each species. Lower temperatures (17°C) also seem
16
17340 to have a detrimental effect on the robustness of the clock in *T. aestivum* but not *B. napus*,
18
19
20341 suggesting that temperature may be a stronger zeitgeber for wheat than for *Brassica* within
21
22
23342 this temperature range. The DF rhythms in both *T. aestivum* and *B. napus* have reduced
24
25
26343 temperature compensation compared to those reported for leaf movement in
27
28
29344 *Arabidopsis*(36,37). However, it is important to recognize that our rhythms were measured
30
31
32345 in dissected sections of leaves and may not be truly analogous to rhythms from whole
33
34
35346 *Arabidopsis* individuals. The difference between intact and excised leaves has been
36
37
38347 previously reported in Hall et al. 2001(22). Our analysis of the homogeneity of periods
39
40
41348 across a single leaf also revealed variability of period robustness across the axis of wheat
42
43
44349 leaves but relatively little variation across *Brassica* leaves.
45
46
47350 In this study, we have shown that in both *Brassica* and wheat there is a strong interaction
48
49
50351 between circadian period and age due to both systemic aging and leaf-specific
51
52
53352 developmental aging. Previous research in *Arabidopsis* has asked whether the onset of
54
55
56353 senescence is a result of a faster running clock or vice versa(28,50). Our results suggest that
57
58
59354 the acceleration of the clock occurs in very young plants before senescence phase, raising
60
61
62
63
64
65

355 the possibility that the clock could be artificially manipulated to moderate senescence and
1
356 control timing of peak productivity in crops.
2
357 Natural variation of circadian phenotypes has been previously demonstrated in wild
3
358 *Arabidopsis* accessions (35,36,51) revealing a selection pressure for circadian traits specific
4
359 to different ecological settings. The extent to which circadian fitness has been selected-for
5
360 in modern crop plants has not yet been investigated. Application of our optimized protocol
6
361 in this study demonstrates that diverging rhythms are present within elite cultivars of the
7
362 same species. This variation in circadian period suggests that some level of circadian
8
363 diversity exists, but the question remains as to whether each cultivar is currently optimized
9
364 to enhance individual plant fitness. Crop plants with 'optimized circadian clocks' may have
10
365 the capacity to improve yield, efficiency and resilience potentially overlooked by traditional
11
366 plant breeding methods.
12
367
13
368 **Conclusions**
14
369 In this study, we investigated several important factors influencing circadian rhythms in
15
370 *Brassica napus* and *Triticum aestivum* and reveal intriguing differences between the two
16
371 crops. We provide an optimized DF methodology which can be reliably used for high-
17
372 throughput measurement of circadian rhythms. This research highlights the considerable
18
373 plasticity of the circadian clock under free-running conditions. It is our hope that these
19
374 results may inform future research by showing the extent to which controllable variables
20
375 can affect period estimation and how these may differ depending on the model species
21
376 being studied.
22
377
23
378 **Method**
24
379
25
380
26
381
27
382
28
383
29
384
30
385
31
386
32
387
33
388
34
389
35
390
36
391
37
392
38
393
39
394
40
395
41
396
42
397
43
398
44
399
45
400
46
401
47
402
48
403
49
404
50
405
51
406
52
407
53
408
54
409
55
410
56
411
57
412
58
413
59
414
60
415
61
416
62
417
63
418
64
419
65

379 Plant material and growth conditions

1
2 380 *Brassica* seedlings used were from the winter varieties Cabriolet and Norin and the semi-
3
4
5 381 winter variety Chuanyou II from the OREGIN *Brassica napus* Diversity Fixed Foundation Set
6
7
8 382 (BnDFFS)(52). Wheat seedlings used were all hexaploid elite cultivars ordered from the
9
10 383 Genome Resource Unit (John Innes Centre) (Supplementary Materials S8).
11
12
13 384 *Brassica* plants were grown in Levington's F2 mix in FP11 pots, spaced 5 plants to a pot.
14
15
16 385 They were grown in controlled greenhouse conditions, (16:8h L:D at 22:20°C). After 17 days,
17
18
19 386 plants were transferred to a plant growth chamber set at 12:12 L:D cycle at 22°C under
20
21 387 approximately 200 μ mol m⁻² s⁻¹ white light for 4 days entrainment (light spectra can be seen
22
23
24 388 in Supplementary Materials S9).
25
26
27 389 Wheat plants were imbibed at 4°C for 6 days before being planted in Petersfield cereal mix
28
29
30 390 in FP9 pots, spaced two to a pot. They were then grown in controlled greenhouse conditions
31
32
33 391 (16:8h L:D 17:12°C). After 21 days plants were transferred to a plant growth chamber set at
34
35
36 392 the cabinet conditions above. For temperature experiments, plants were entrained at the
37
38
39 393 temperatures in which they would be imaged.
40
41
42 395 Image acquisition-standard conditions
43
44
45 396 Leaves were removed just after entrainment dawn and placed face up onto 24cm square
46
47
48 397 petri dishes (Stratlab LTD, cat no. 163-PB-007) containing 0.5% water agar (Sigma-Aldrich,
49
50
51 398 SKU A1296). Unless otherwise stated, 3cm squares were cut from the second true leaf of 21
52
53
54 400 day old *B. napus* seedlings. A segment of 10cm was taken from the second leaf of the main
55
56
57 401 tiller of 25 day old *T. aestivum* seedlings, beginning 5cm down from the tip. A small strip of
58
59
60 402 agar was placed over the ends of wheat sections to prevent leaf curling during the
61
62
63
64
65 experiment. Plates were secured with masking tape around the periphery.

1 403 The imaging set-up is adapted from that described by Southern et al(53). A set-up schematic
2 404 can be seen in Supplementary Materials S10. We use Lumo Reteiga CCD cameras
3 405 (QImaging, Canada), which we have found to have comparable image quality to the Orca II
4 406 (Hamamatsu Photonics, Japan) without the need to run a water-cooling pump. Cameras
5 407 were fitted with a Xenon 0.95/25mm lens (Schneider-Kreuznach, Germany).
6
7 408 A custom built 25x25 red/blue LED rig (approx. 60 $\mu\text{mol m}^{-2} \text{s}^{-1}$) was controlled by $\mu\text{Manager}$
8
9 409 software (v1.4.19, Open Imaging) through an Arduino Uno microcontroller board(54). LED
10 410 spectra for cabinets can be viewed in Supplementary Materials S9. $\mu\text{Manager}$ was used to
11 411 configure both the supplied camera driver software (PVCam v3.7.1.0) and program the
12 412 Arduino after installing the firmware source code available online (55)).
13
14 413 Both camera and LEDs were housed in a temperature controlled growth cabinet (Sanyo
15 414 MIR-553) in a dark room. The temperature was set to 22°C unless otherwise specified
16
17 415 (changed for the temperature experiments (Figure 5) and for the wheat cultivar experiment
18 416 (Figure 6)). Camera properties were kept the same in each experiment (Binning=4, Gain=1,
19
20 417 Readout-Rate=0.650195MHz 16 bit) and camera exposure was initiated 500ms after the
21
22 418 lights were turned off. A 'L:L' script refers to a regime of 59min of light followed by a 1
23
24 419 minute exposure in the dark. A 'D:D' script refers to 54min of darkness followed by 5min
25
26 420 light and then the 1min exposure. BeanShell scripts run by $\mu\text{Manager}$ have been adapted
27
28 421 from scripts used previously(56) and are available to view as Additional files 15 and 16.
29
30 422 Wheat imaging used the D:D script and *Brassica* imaging used the L:L script with the
31
32 423 exception of experiments in Figure 4.
33
34 424
35
36 425 Processing in FIJI and BioDare2 parameters
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

426 Image stacks were imported into FIJI(57) and regions of interest were selected.
1
2 427 Measurements for integrated density were taken for these regions across the stack using
3
4 428 the Multi-measure plugin. Each region was then labeled in Excel and an offset time series
5
6 429 added. The 'offset time' is the difference between the time of the first image (T1) and
7
8 430 entrainment dawn (ZT) in decimal hours. Data can then be uploaded to BioDare2 as
9
10 431 described online(58,59). BioDare2 is an open-access web tool for analyzing timeseries data
11
12 432 and predicting circadian parameters. For our data we found that Baseline and amplitude
13
14 433 (BAMP) de-trending was most appropriate but recommend visual inspection of the
15
16 434 detrending methods available to find the least intrusive method which removes any
17
18 435 baseline trends. Period estimation was done using the Fast Fourier Transform Non-Linear
19
20 436 Least Squares (FFT-NLLS) algorithm(60) on a data window of 24-120h with expected periods
21
22 437 set to 18-34h. Manual inspection of resulting periods ensured that all arrhythmic traces
23
24 438 were excluded from further analysis.
25
26 439
27
28 36 440 Rhythm Robustness analysis
29
30 441 We summarized rhythm robustness metrics based on several BioDare2 outputs. '%
31
32 442 returned' is the number of samples for which periods could be estimated out of the number
33
34 443 of samples originally imaged. The RAE (relative amplitude error) is the ratio of amplitude
35
36 444 error to amplitude and represents amplitude robustness. A RAE of 1 indicates the most
37
38 445 irregular waveform which can still be classified as rhythmic whereas a RAE of 0 indicates a
39
40 446 perfect sine wave with no amplitude error. The period coefficient of variation (CV) is the
41
42 447 standard deviation of period estimates adjusted for the mean period and represents
43
44 448 between sample variation(58,61). Period error is the extent to which the period estimate
45
46 449 could vary and still give a good fit to the model. Error scores close to 0 indicate a tight fit of
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

450 the model to the observed data and a high within sample period robustness. See

1
2 451 Supplementary data S1-6 for statistic tables and further descriptions.

3
4 452

5
6

7 453 Normalization for experimental effects

8
9

10 454 After circadian parameters were estimated in BioDare2, data was normalized to account for

11
12

13 455 the following random experimental effects. For the wheat plant age and leaf age

14
15

16 456 experiments (Figure 1), *Brassica* plant-leaf age experiments (Figure 2) and the *Brassica*

17
18

19 457 cultivar experiments (Figure 6B) samples were split between two imaging cabinets run in

20
21

22 458 parallel in a single experiment. The predicted parameters (e.g. period) for each sample from

23
24

25 459 the two cabinets were adjusted so that the cabinet means were then equivalent. This was

26
27

28 460 achieved by dividing the cabinet means by the overall mean to get an adjustment factor for

29
30

31 461 each cabinet and then dividing each individual value by that factor to get a cabinet-

32
33

34 462 normalized value. For the cutting data (Figure 3), the experiments were replicated in two

35
36

37 463 separate imaging weeks and then adjusted for the between-experiment effects. For the

38
39

40 464 wheat cultivar experiments (Figure 6A) data was obtained from two cabinets over two

41
42

43 465 separate experiments and was normalized for both effects in a similar way. The light regime

44
45

46 466 (Figure 4) and the temperature experiments (Figure 5) measured each variable in one

47
48

49 469 Materials S11-14.

50
51

52 470 Statistical analysis was carried out in RStudio v1.1.423 using aov and t.test functions fit with

53
54

55 471 an appropriate linear model in the format specified in the Results.

56
57

58 472

59
60

61 473 Declarations

62
63

64
65

474 Ethics approval and consent to participate

1
2 475 Not applicable
3
4

5 476 Consent for publication
6
7

8 477 Not applicable
9

10 478 Availability of data and materials
11
12

13 479 The datasets generated during the current study are available as additional files and
14
15 480 supplementary materials in the online version of this article. Raw image files are available
16
17 481 from the corresponding author on reasonable request.
18
19

20 482 Competing interests
21
22

23 483 The authors declare that they have no competing interests.
24
25

26 484 Funding
27
28

29 485 This project was supported by the BBSRC via the Earlham institute CSP (BB/P016774/1, AH
30
31 486 SD, HR) and BBSRC Design Future Wheat (BB/P016855/1, AH)
32
33

34 487
35

36 488 Authors' contributions
37
38

39 489 This project was conceptualized by HR and AH. HR designed and conducted experiments,
40
41 490 carried out data processing and analysis and wrote the manuscript with contributions from
42
43 491 AH. All authors read and approved the final manuscript.
44
45

46 492
47
48

49 493 Abbreviations: Hannah Rees (HR), Susan Duncan (SD), Peter Gould (PG), Rachel Wells (RW),
50
51 494 Mark Greenwood (MG), Thomas Brabbs (TB), Anthony Hall (AH)
52
53

54 495
55
56

57 496
58

59 497 **References**
60
61

62
63
64
65

1 498 1. Young MW, Kay SA. Time zones: a comparative genetics of circadian clocks. *Nat Rev Genet.* 2001 Sep 1;2(9):702–15.

2 499

3 500 2. Millar AJ, Straume M, Chory J, Chua NH, Kay SA. The regulation of circadian period by 6 501 phototransduction pathways in *Arabidopsis*. *Science.* 1995 Feb 24;267(5201):1163–6.

7 502 3. Harmer SL, Hogenesch JB, Straume M, Chang HS, Han B, Zhu T, et al. Orchestrated 9 503 transcription of key pathways in *Arabidopsis* by the circadian clock. *Science.* 2000 Dec 10 504 15;290(5499):2110–3.

11 505 4. Covington MF, Maloof JN, Straume M, Kay SA, Harmer SL. Global transcriptome 12 506 analysis reveals circadian regulation of key pathways in plant growth and 13 507 development. *Genome Biol.* 2008;9(8):R130.

14 508 5. Dodd AN, Salathia N, Hall A, Kévei E, Tóth R, Nagy F, et al. Plant circadian clocks 15 509 increase photosynthesis, growth, survival, and competitive advantage. *Science.* 16 510 2005;309(5734):630–3.

17 511 6. Ouyang Y, Andersson CR, Kondo T, Golden SS, Johnson CH. Resonating circadian 18 512 clocks enhance fitness in cyanobacteria. *Proc Natl Acad Sci U S A.* 1998 Jul 19 513 21;95(15):8660–4.

20 514 7. DeCoursey PJ, Walker JK, Smith SA. A circadian pacemaker in free-living chipmunks: 21 515 essential for survival? *J Comp Physiol A.* 2000 Feb;186(2):169–80.

22 516 8. von Saint Paul U, Aschoff J. Longevity among blowflies *Phormia terraenovae* R.D. kept 23 517 in non-24-hour light-dark cycles. *J Comp Physiol.* 1978 Sep;127(3):191–5.

24 518 9. Pittendrigh CS, Minis DH. Circadian systems: longevity as a function of circadian 25 519 resonance in *Drosophila melanogaster*. *Proc Natl Acad Sci U S A.* 1972 26 520 Jun;69(6):1537–9.

27 521 10. Hernando CE, Romanowski A, Yanovsky MJ. Transcriptional and post-transcriptional 28 522

29 523

30 524

31 525

32 526

33 527

34 528

35 529

36 530

37 531

38 532

39 533

40 534

41 535

42 536

43 537

44 538

45 539

46 540

47 541

48 542

49 543

50 544

51 545

52 546

53 547

54 548

55 549

56 550

57 551

58 552

59 553

60 554

61 555

62 556

63 557

64 558

65 559

522 control of the plant circadian gene regulatory network. Vol. 1860, *Biochimica et*
1
2
3 523 *Biophysica Acta - Gene Regulatory Mechanisms*. 2017. p. 84–94.
4
5 524 11. Edwards KD, Millar AJ. Analysis of Circadian Leaf Movement Rhythms in *Arabidopsis*
6
7 525 *thaliana*. In: Rosato E, editor. *Circadian Rhythms: Methods and Protocols*. Totowa, NJ:
8
9 526 Humana Press; 2007. p. 103–13.
10
11
12 527 12. Welsh DK, Imaizumi T, Kay SA. Real-Time Reporting of Circadian-Regulated Gene
13
14
15 528 Expression by Luciferase Imaging in Plants and Mammalian Cells. In: *Methods in*
16
17
18 529 *enzymology*. 2005. p. 269–88.
19
20
21 530 13. Millar AJ, Short SR, Chua N-H, Kay SA. A novel circadian phenotype based on firefly
22
23 531 luciferase expression in transgenic plants. *Plant Cell*. 1992;4(9):1075–87.
24
25
26 532 14. Gould PD, Diaz P, Hogben C, Kusakina J, Salem R, Hartwell J, et al. Delayed
27
28 533 fluorescence as a universal tool for the measurement of circadian rhythms in higher
29
30
31 534 plants. *Plant J*. 2009 Jun;58(5):893–901.
32
33
34 535 15. Gawroński P, Ariyadasa R, Himmelbach A, Poursarebani N, Kilian B, Stein N, et al. A
35
36 536 distorted circadian clock causes early flowering and temperature-dependent variation
37
38
39 537 in spike development in the Eps-3Am mutant of einkorn wheat. *Genetics*. 2014
40
41 538 Apr;196(4):1253–61.
42
43
44 539 16. Goltsev V, Zaharieva I, Chernev P, Strasser RJ. Delayed fluorescence in
45
46 540 photosynthesis. *Photosynth Res*. 2009 Sep 23;101(2–3):217–32.
47
48
49 541 17. Kurzbaum E, Eckert W, Yacobi YZ. Delayed fluorescence as a direct indicator of diurnal
50
51
52 542 variation in quantum and radiant energy utilization efficiencies of phytoplankton.
53
54
55 543 *Photosynthetica*. 2007 Dec;45(4):562–7.
56
57
58 544 18. Gould PD, Diaz P, Hogben C, Kusakina J, Salem R, Hartwell J, et al. Delayed
59
60 545 fluorescence as a universal tool for the measurement of circadian rhythms in higher
61
62
63
64
65

546 plants. *Plant J.* 2009;58(5):893–901.

1

547 19. Boxall SF, Dever L V, Kneřová J, Gould PD, Hartwell J. Phosphorylation of

2

548 Phosphoenolpyruvate Carboxylase Is Essential for Maximal and Sustained Dark CO₂

3

549 Fixation and Core Circadian Clock Operation in the Obligate Crassulacean Acid

4

550 Metabolism Species *Kalanchoë fedtschenkoi*. *Plant Cell.* 2017 Oct 1;29(10):2519–36.

5

551 20. Thain SC, Hall A, Millar AJ. Functional independence of circadian clocks that regulate

6

552 plant gene expression. *Curr Biol.* 2000 Aug 14;10(16):951–6.

7

553 21. Takahashi N, Hirata Y, Aihara K, Mas P. A Hierarchical Multi-oscillator Network

8

554 Orchestrates the *Arabidopsis* Circadian System. *Cell.* 2015 Sep 24;163(1):148–59.

9

555 22. Hall A, Kozma-Bognár L, Tóth R, Nagy F, Millar AJ. Conditional circadian regulation of

10

556 PHYTOCHROME A gene expression. *Plant Physiol.* 2001 Dec;127(4):1808–18.

11

557 23. Endo M, Shimizu H, Nohales MA, Araki T, Kay SA. Tissue-specific clocks in *Arabidopsis*

12

558 show asymmetric coupling. *Nature.* 2014 Nov 20;515(7527):419–22.

13

559 24. Thain SC, Murtas G, Lynn JR, McGrath RB, Millar AJ. The circadian clock that controls

14

560 gene expression in *Arabidopsis* is tissue specific. *Plant Physiol.* 2002;130(1):102–10.

15

561 25. James AB, Montreal JA, Nimmo GA, Kelly CL, Herzyk P, Jenkins GI, et al. The circadian

16

562 clock in *Arabidopsis* roots is a simplified slave version of the clock in shoots. *Science.*

17

563 2008 Dec 19;322(5909):1832–5.

18

564 26. Gould PD, Domijan M, Greenwood M, Tokuda IT, Rees H, Kozma-Bognar L, et al.

19

565 Coordination of robust single cell rhythms in the *Arabidopsis* circadian clock via

20

566 spatial waves of gene expression. *Elife.* 2018 Apr 26;7:e31700.

21

567 27. Wenden B, Toner DLK, Hodge SK, Grima R, Millar AJ. Spontaneous spatiotemporal

22

568 waves of gene expression from biological clocks in the leaf. *Proc Natl Acad Sci U S A.*

23

569 2012 Apr 24;109(17):6757–62.

24

60

61

62

63

64

65

570 28. Kim H, Kim Y, Yeom M, Lim J, Nam HG. Age-associated circadian period changes in
1
571 Arabidopsis leaves. *J Exp Bot.* 2016;67(9):2665–73.
2
572 29. Kim H, Kim HJ, Vu QT, Jung S, McClung CR, Hong S, et al. Circadian control of *ORE1* by
3
573 PRR9 positively regulates leaf senescence in *Arabidopsis*. *Proc Natl Acad Sci.*
4
574 2018;201722407.
5
575 30. Harris PJC, Wilkins MB. Light-induced changes in the period of the circadian rhythm of
6
576 carbon dioxide output in *Bryophyllum* leaves. *Planta.* 1976;129(3):253–8.
7
577 31. Somers DE, Webb AA, Pearson M, Kay SA. The short-period mutant, *toc1-1*, alters
8
578 circadian clock regulation of multiple outputs throughout development in *Arabidopsis*
9
579 *thaliana*. *Development.* 1998 Feb;125(3):485–94.
10
580 32. Aschoff J. Circadian Rhythms: Influences of Internal and External Factors on the
11
581 Period Measured in Constant Conditions1. *Z Tierpsychol.* 2010 Apr 26;49(3):225–49.
12
582 33. Salomé PA, Xie Q, McClung CR. Circadian timekeeping during early *Arabidopsis*
13
583 development. *Plant Physiol.* 2008 Jul;147(3):1110–25.
14
584 34. Colin Pittendrigh BS, by N Harvey CE. On temperature independence in the clock-
15
585 system controlling emergence Time in *Drosophila*. Vol. 102, *Proc. Soc. Exptl. Biol.*
16
586 *Med.* 1954.
17
587 35. Kusakina J, Gould PD, Hall A. A fast circadian clock at high temperatures is a
18
588 conserved feature across *Arabidopsis* accessions and likely to be important for
19
589 vegetative yield. *Plant Cell Environ.* 2014 Feb;37(2):327–40.
20
590 36. Edwards KD, Lynn JR, Gyula P, Nagy F, Millar AJ. Natural allelic variation in the
21
591 temperature-compensation mechanisms of the *Arabidopsis thaliana* circadian clock.
22
592 *Genetics.* 2005;170(1):387–400.
23
593 37. Gould PD, Locke JCW, Larue C, Southern MM, Davis SJ, Hanano S, et al. The Molecular
24
594
25
60
61
62
63
64
65

Basis of Temperature Compensation in the *Arabidopsis* Circadian Clock. *Plant Cell*. 2006 May 1;18(5):1177–87.

Edwards KD, Lynn JR, Gyula P, Nagy F, Millar AJ. Natural allelic variation in the temperature-compensation mechanisms of the *Arabidopsis thaliana* circadian clock. *Genetics*. 2005 May;170(1):387–400.

Yang Y-W, Lai K-N, Tai P-Y, Li W-H. Rates of Nucleotide Substitution in Angiosperm Mitochondrial DNA Sequences and Dates of Divergence Between *Brassica* and Other Angiosperm Lineages. *J Mol Evol*. 1999 May;48(5):597–604.

Campoli C, Shtaya M, Davis SJ, von Korff M. Expression conservation within the circadian clock of a monocot: natural variation at barley Ppd-H1 affects circadian expression of flowering time genes, but not clock orthologs. *BMC Plant Biol*. 2012 Jun 21;12:97.

Facella P, Lopez L, Carbone F, Galbraith DW, Giuliano G, Perrotta G. Diurnal and circadian rhythms in the tomato transcriptome and their modulation by cryptochrome photoreceptors. *PLoS One*. 2008 Jul 30;3(7):e2798.

Kloosterman B, Abelenda JA, Gomez M del MC, Oortwijn M, de Boer JM, Kowitwanich K, et al. Naturally occurring allele diversity allows potato cultivation in northern latitudes. *Nature*. 2013 Mar 6;495(7440):246–50.

Navarro C, Abelenda JA, Cruz-Oró E, Cuéllar CA, Tamaki S, Silva J, et al. Control of flowering and storage organ formation in potato by FLOWERING LOCUS T. *Nature*. 2011 Oct 25;478(7367):119–22.

Xu X, Xie Q, McClung CR. Robust circadian rhythms of gene expression in *Brassica rapa* tissue culture. *Plant Physiol*. 2010 Jun;153(2):841–50.

Izawa T, Mihara M, Suzuki Y, Gupta M, Itoh H, Nagano AJ, et al. Os-GIGANTEA confers

robust diurnal rhythms on the global transcriptome of rice in the field. *Plant Cell*. 2011 May;23(5):1741–55.

Sugiyama N, Izawa T, Oikawa T, Shimamoto K. Light regulation of circadian clock-controlled gene expression in rice. *Plant J*. 2001 Dec 23;26(6):607–15.

Nagano AJ, Sato Y, Mihara M, Antonio BA, Motoyama R, Itoh H, et al. Deciphering and Prediction of Transcriptome Dynamics under Fluctuating Field Conditions. *Cell*. 2012 Dec 7;151(6):1358–69.

Ford B, Deng W, Clausen J, Oliver S, Boden S, Hemming M, et al. Barley (*Hordeum vulgare*) circadian clock genes can respond rapidly to temperature in an EARLY FLOWERING 3-dependent manner. *J Exp Bot*. 2016;67(18):5517–28.

Beales J, Turner A, Griffiths S, Snape JW, Laurie DA. A Pseudo-Response Regulator is misexpressed in the photoperiod insensitive *Ppd-D1a* mutant of wheat (*Triticum aestivum* L.). *Theor Appl Genet*. 2007 Aug 24;115(5):721–33.

Kim H, Kim HJ, Vu T, Jung S, Robertson Mcclung C, Hong S, et al. Circadian control of *ORE1* by *PRR9* positively regulates leaf senescence in *Arabidopsis*. 2018;115(33):8448–53.

Michael TP, Salomé PA, Yu HJ, Spencer TR, Sharp EL, McPeek MA, et al. Enhanced Fitness Conferred by Naturally Occurring Variation in the Circadian Clock. *Science* (80). 2003;302(5647):1049–53.

Pink D, Bailey L, McClement S, Hand P, Mathas E, Buchanan-Wollaston V, et al. Double haploids, markers and QTL analysis in vegetable brassicas. *Euphytica*. 2008 Nov 20;164(2):509–14.

Southern MM, Brown PE, Hall A. Luciferases as Reporter Genes. In: *Arabidopsis Protocols*. New Jersey: Humana Press; 2006. p. 293–306.

1 642 54. Arduino [Internet]. [cited 2018 Nov 14]. Available from: <https://www.arduino.cc/>

2 643 55. uManager-Arduino [Internet]. [cited 2018 Nov 15]. Available from: <https://micro->

3 644 manager.org/wiki/Arduino#Firmware

4 645 56. Litthauer S, Battle MW, Lawson T, Jones MA. Phototropins maintain robust circadian

5 646 oscillation of PSII operating efficiency under blue light. *Plant J.* 2015 Sep

6 647 1;83(6):1034–45.

7 648 57. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al. Fiji: an

8 649 open-source platform for biological-image analysis. *Nat Methods.* 2012 Jul

9 650 1;9(7):676–82.

10 651 58. Zielinski T, Moore AM, Troup E, Halliday KJ, Millar AJ. Strengths and Limitations of

11 652 Period Estimation Methods for Circadian Data. Yamazaki S, editor. *PLoS One.* 2014

12 653 May 8;9(5):e96462.

13 654 59. BioDare2 - circadian period analysis [Internet]. [cited 2018 Nov 14]. Available from:

14 655 <https://biodare2.ed.ac.uk/welcome>

15 656 60. Straume M, Frasier-Cadoret SG, Johnson ML. Least-Squares Analysis of Fluorescence

16 657 Data. In: *Topics in Fluorescence Spectroscopy*. Boston: Kluwer Academic Publishers;

17 658 1991. p. 177–240.

18 659 61. Toth R, Kevei E, Hall A, Millar AJ, Nagy F, Kozma-Bognár L. Circadian Clock-Regulated

19 660 Expression of Phytochrome and Cryptochrome Genes in *Arabidopsis*. *PLANT Physiol.*

20 661 2001 Dec 1;127(4):1607–16.

21 662

22 663

23 664

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

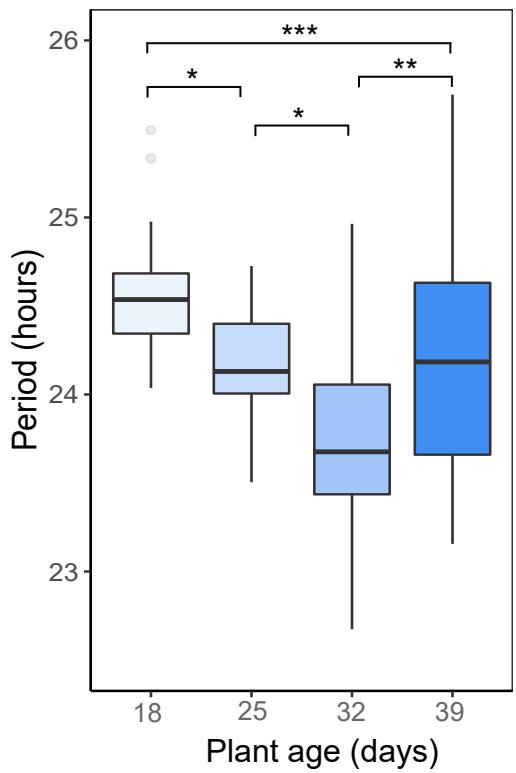
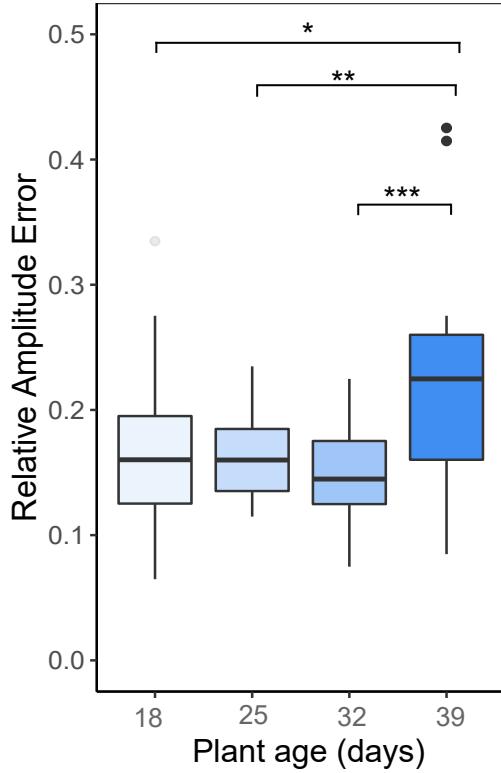
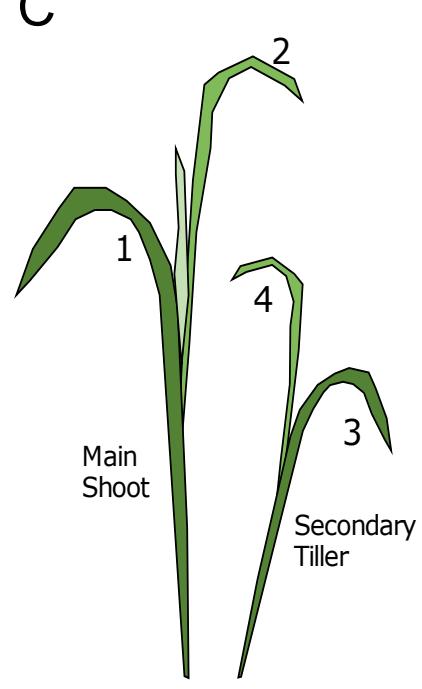
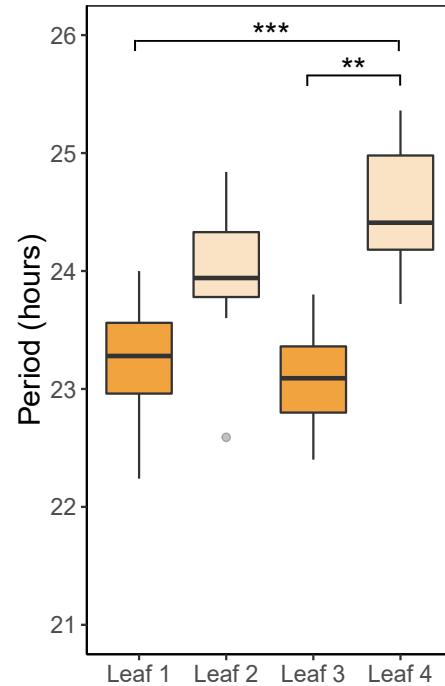
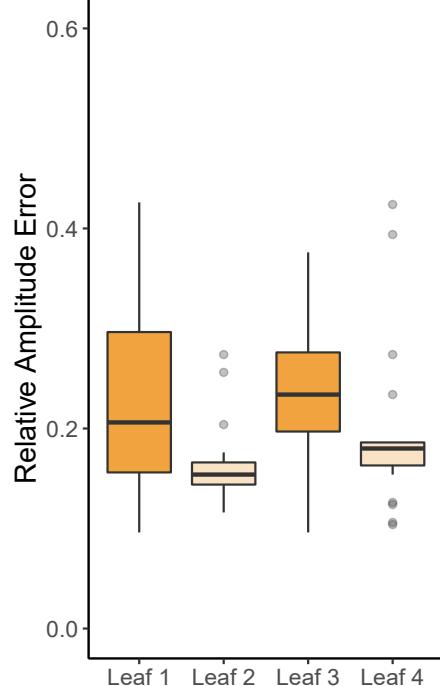
65

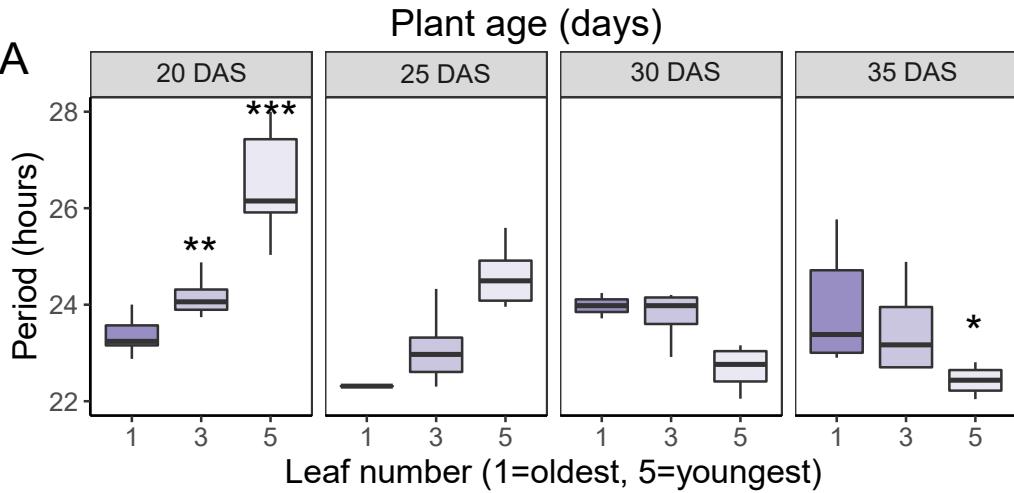
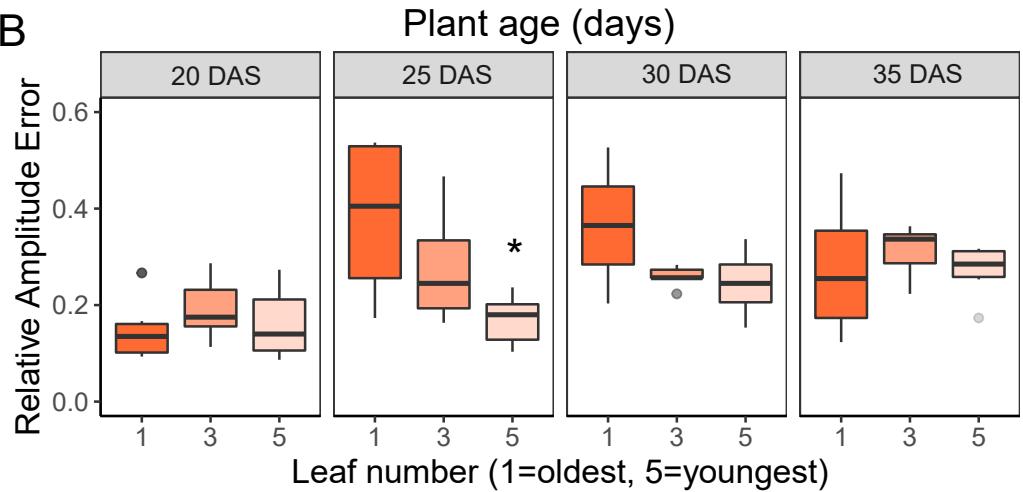
665 **Figure 1.** DF rhythms in wheat change with the age of the plant and between leaves on the
666 same plant. The wheat plant age experiment (A-B) used ‘leaf 2’ from plants grown for 18, 25,
667 32 or 39 days. Blue boxplots show differences in period (A) and RAE (B) at each plant age.
668 The wheat leaf variation experiment used 4 leaves sampled from 25 day old plants following
669 the leaf numbering system described in C. Orange boxplots show differences in period (D)
670 and RAE (E) at each leaf age. Colour scales reflect an ageing gradient with lighter colours
671 representing younger material. Data represents results from two imaging cabinets run in
672 parallel as technical replicates and normalised for the between-cabinet effects. Period
673 estimates were calculated using FFT-NLLS (BAMP de-trended data, 24-120h cut-off). N
674 values reflect the number of samples for which period was estimated out of the total number
675 of individuals sampled. Age 18 (N=26/26), age 25 (N=24/24), age 32 (N=25/26), age 39
676 (N=19/23). Leaf 1 (N=22/22), leaf 2 (N=22/22), leaf 3 (N=22/22), leaf 4 (N=21/22).
677 Significance codes: *** $p<0.001$, ** $p<0.01$ * $p<0.05$.
678

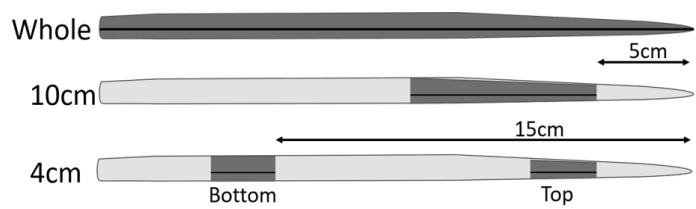
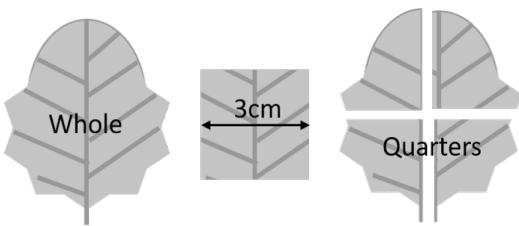
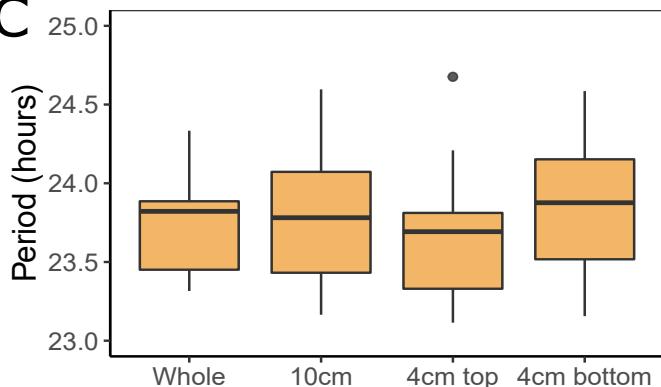
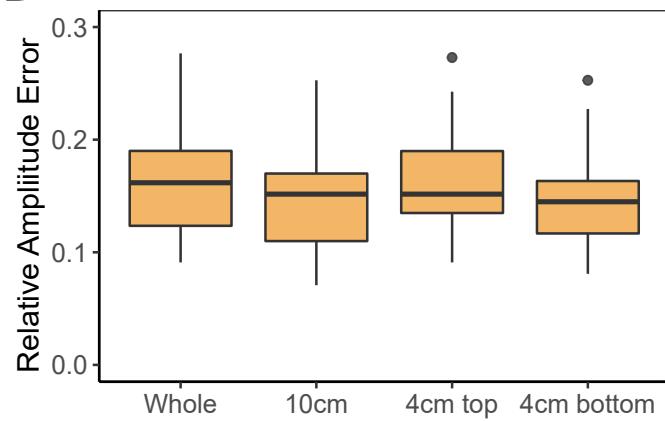
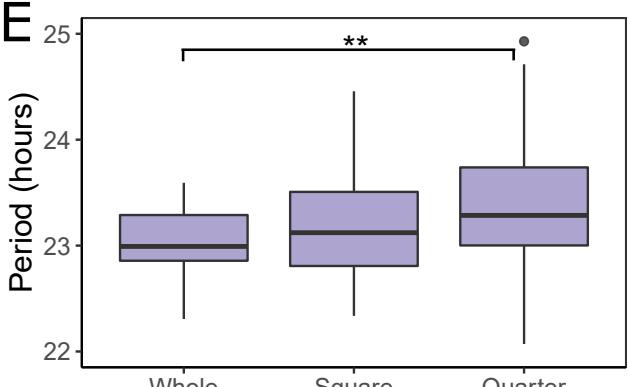
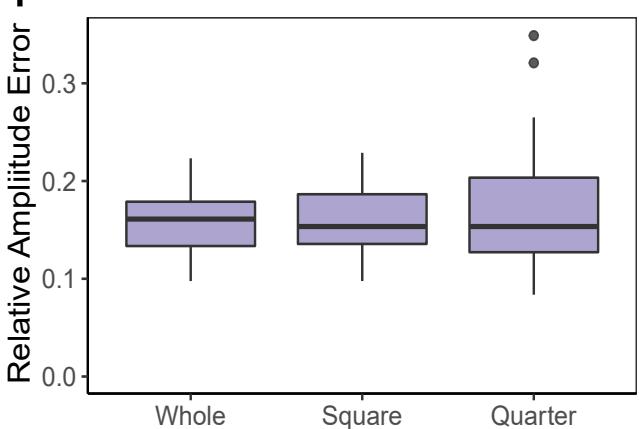
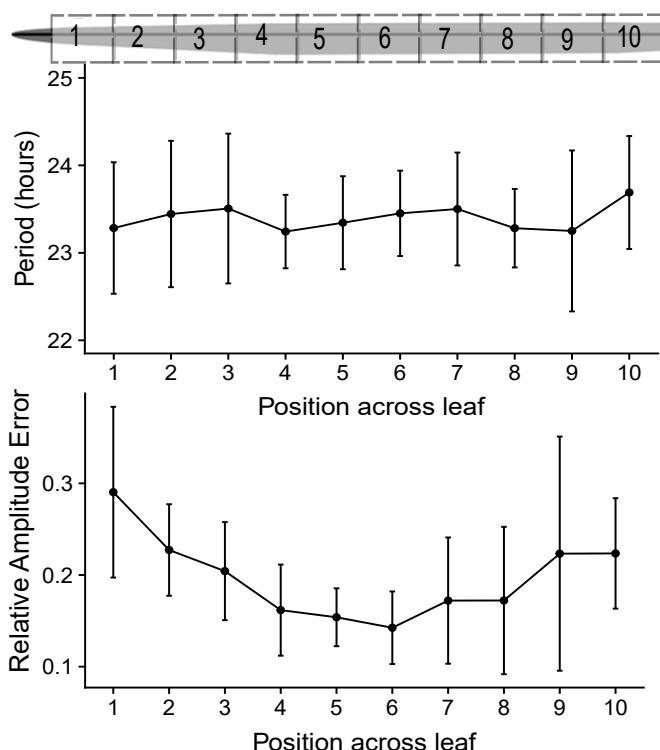
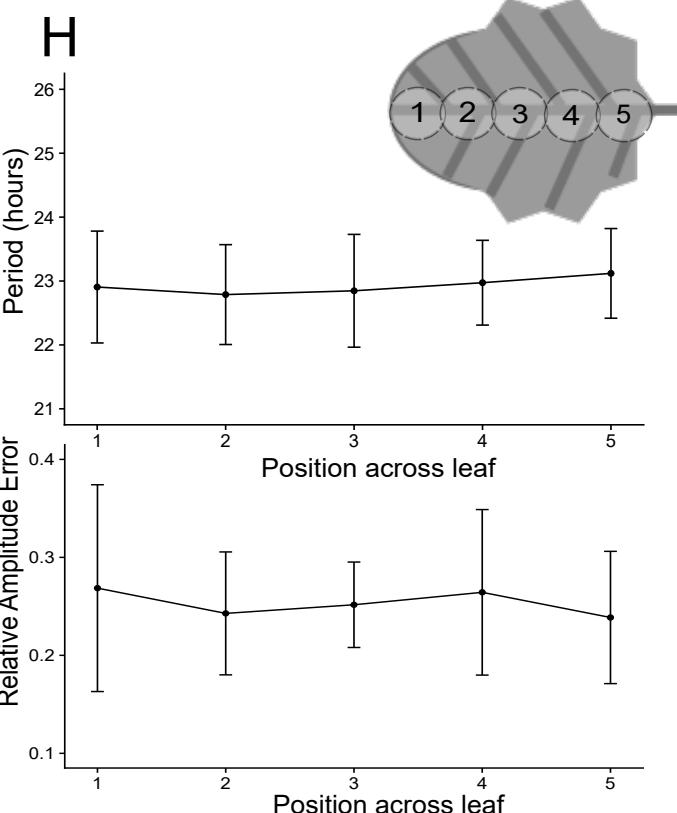
679 **Figure 2.** DF rhythms in *Brassica* change with the age of the plant and between different leaf
680 ages. *Brassica* seedlings were grown to 4 different ages: 20, 25, 30 and 35 days after sowing
681 Leaves 1, 3 and 5 were sampled from each plant in the experiment with leaf 1 being the
682 earliest emerged leaf and leaf 5 the most recently emerged leaf. Boxplots show differences in
683 period (A) and RAE (B) for each leaf age within each plant age. Colour scales reflect an
684 ageing gradient with lighter colours representing younger material. Periods and RAE
685 estimates were calculated using FFT NLLS (BAMP dtr, 24-120h cut-off). Data represents
686 results from two imaging cabinets run in parallel as technical replicates and normalised for
687 the between-cabinet effects. Age 20: leaf 1 (N=6/6), leaf 3 (N=6/6), leaf 5 (N=6/6). Age 25:
688 leaf 1 (N=4/6), leaf 3 (N=6/6), leaf 5 (N=6/6). Age 30: leaf 1 (N=2/6), leaf 3 (N=5/6), leaf 5
689 (N=6/6). Age 35: leaf 1 (N=6/6), leaf 3 (N=6/6), leaf 5 (N=6/6). Significance codes:
690 *** $p<0.001$, ** $p<0.01$ * $p<0.05$, all significance markers are relative to leaf 1 at each age.
691

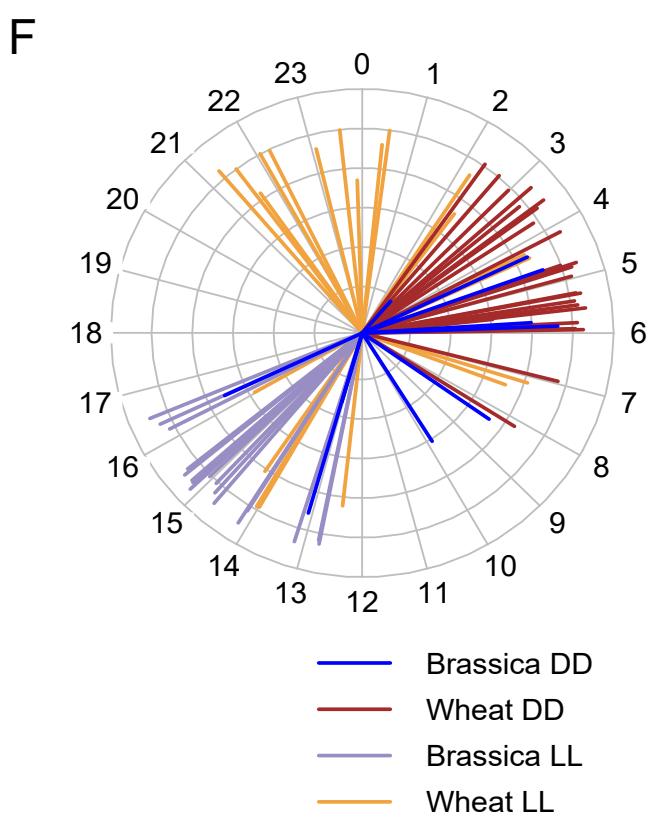
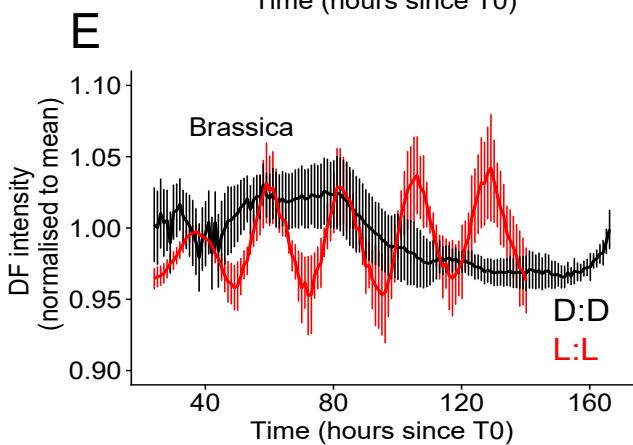
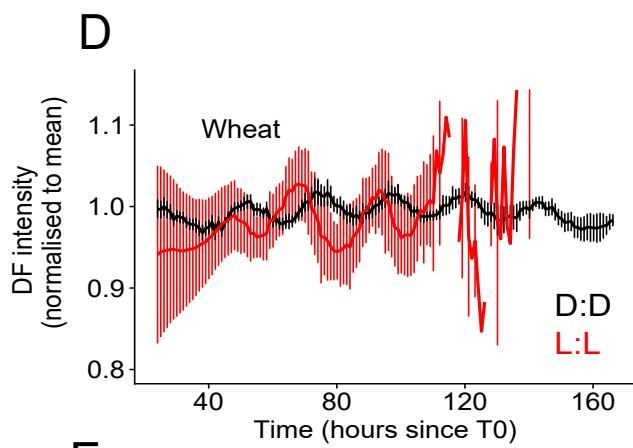
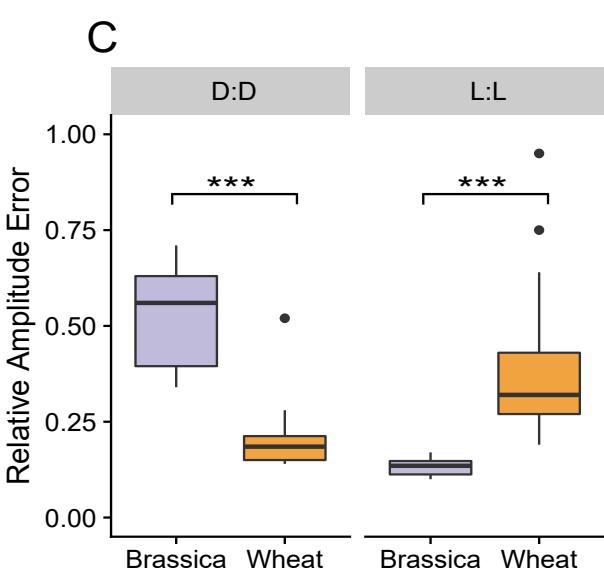
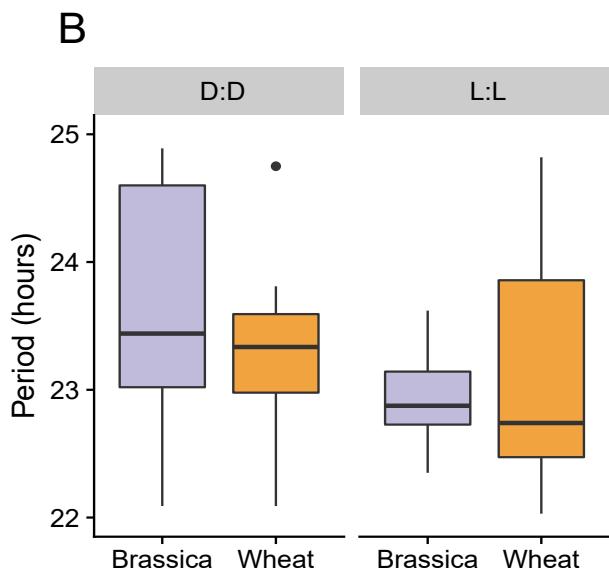
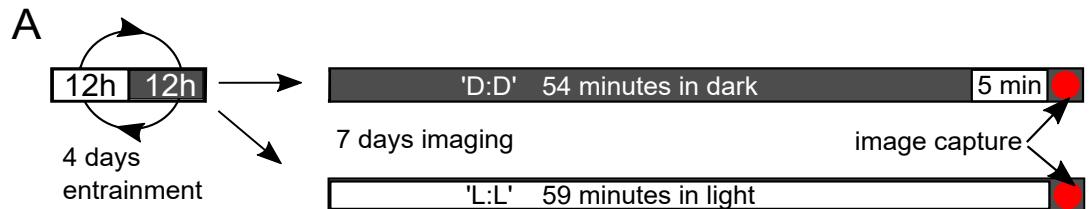
692 **Figure 3.** Cut sections of leaf material can be used to accurately make period estimates. The
693 second leaf from 25 day old wheat seedlings was either left whole or sectioned into 10 cm or
694 4cm fragments cut either 5cm or 15cm from the tip (shown as dark grey sections in A). The
695 first leaf from 21 day old *Brassica* plants was either left whole, sectioned into a 3cm square
696 or quartered (B). Orange boxplots show differences in period (C) and RAE (D) for wheat
697 sections. Purple boxplots show differences in period (E) and RAE (F) for brassica sections.
698 Period and RAE were estimated using FFT NLLS, BAMP dtr, 24-120h cut-off.
699 Whole leaves were digitally sectioned along the axis of the leaf post image-acquisition.
700 *Brassica* period and RAE means for each section are shown in G. *Brassica* period and RAE
701 means are plotted corresponding to the sectioning shown in H. Error bars show standard
702 deviation. Data represents results from two experiments normalised for the between-
703 experiment effects. Wheat: Whole (N=15/15), 10cm (N=23/23), 4cm top (N=20/21), 4cm
704 bottom (N=22/22). *Brassica*: Whole (N=20/20), Square (N=21/21), Quarter (N=75/76).
705 Significance codes: ** $p<0.01$.
706
707
708

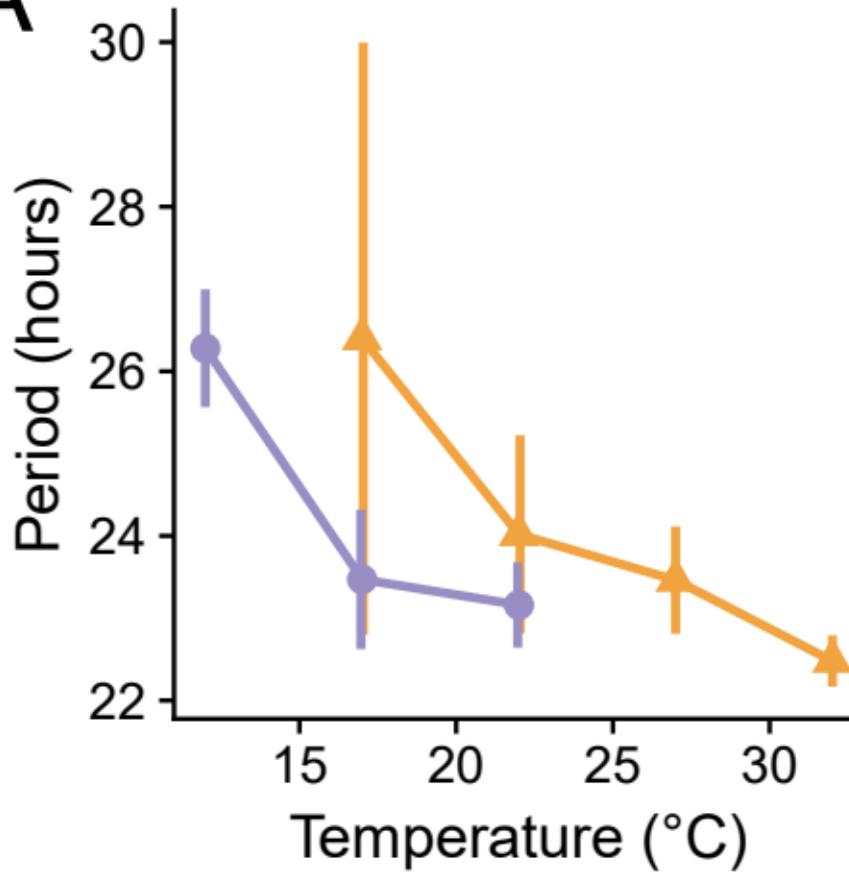
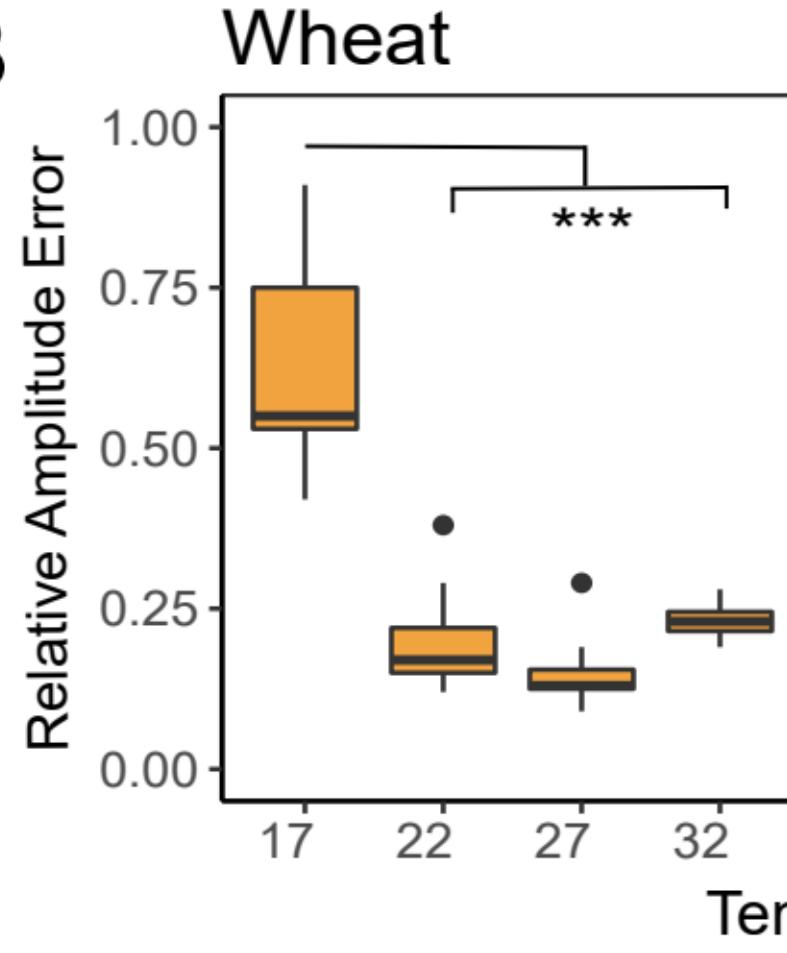
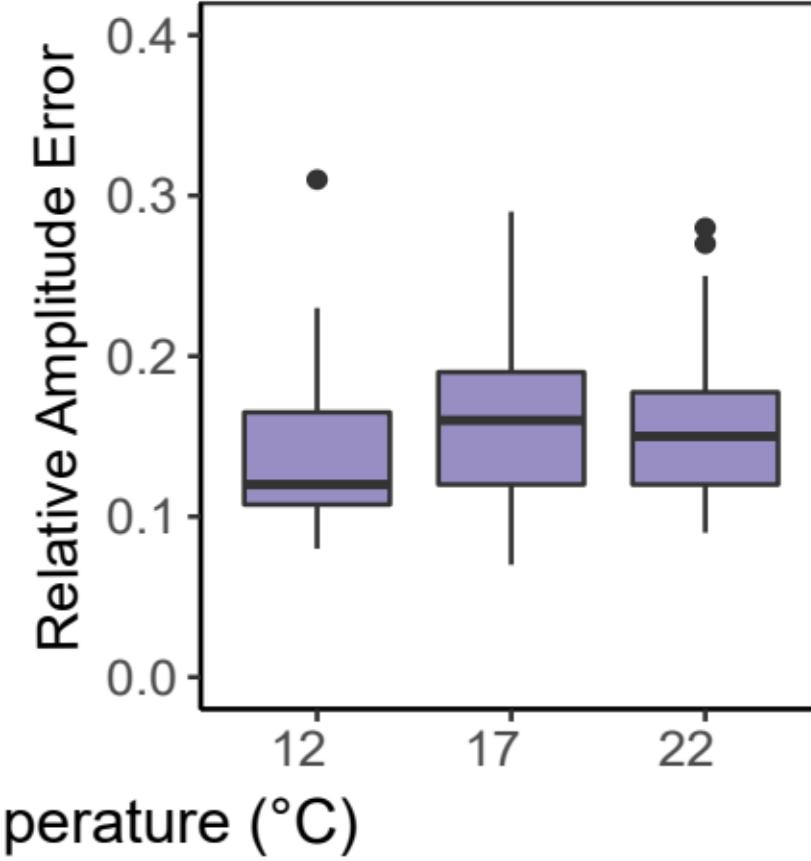
709 **Figure 4.** Effect of either L:L or D:D free-running light conditions on DF rhythms. Wheat
710 and *Brassica* seedlings were entrained for 4 days in L:D at 22°C before sections were cut,
711 plated and imaged. A D:D free run consisted of a loop of 54 minutes of darkness followed by
712 5 minutes of light exposure and then image capture. A L:L free-run consisted of 59 minutes
713 of light exposure before image capture (A). Boxplots of period (B) and RAE (C) are shown
714 for *Brassica* and wheat in D:D and L:L conditions where *Brassica* data is displayed in purple
715

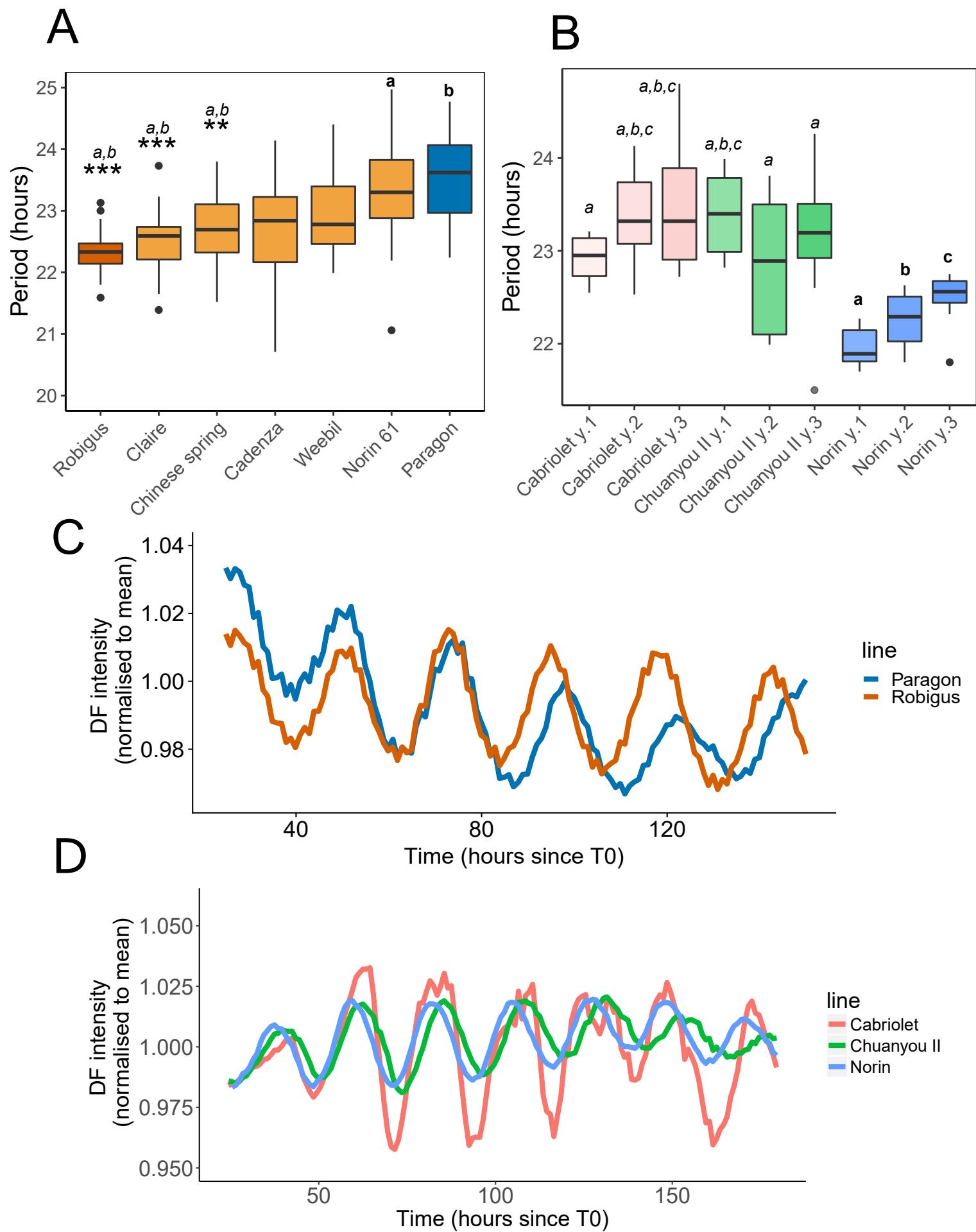





715 and wheat data in orange. Period and RAE were estimated using FFT NLLS, BAMP dtr, 24-
716 120h cut-off. Examples of oscillation traces are shown in D:D (black lines) and L:L (red
717 lines) for wheat (D) and *Brassica* (E). Thick lines represent the mean trace of 6 mean-
718 normalised individuals with error bars representing standard deviations. Estimated individual
719 circadian phases are shown in the clock plot in (F) where the length of the line reflects the
720 inverse circadian phase error (longer lines imply more confidence in the phase prediction).
721 All phase estimates are relative to 0 where 0 represents entrainment dawn and 12 represents
722 dusk.



723 D:D *Brassica* (N=12/18); D:D Wheat (N=24/24); L:L *Brassica* (N=18/18); L:L Wheat
724 (N=23/24). Data is consistent with additional preliminary experiments which can be seen in
725 Supplementary S11 and S12. Significance codes: *** $p<0.001$.









726
727 **Figure 5.** Increasing temperature causes a shortening of period and effects rhythm
728 robustness. Wheat and *Brassica* seedlings were entrained for 4 days in L:D at the temperature
729 being assessed before imaging. Each temperature point represents a separate imaging
730 experiment. Period means decrease with increasing temperatures as is shown in A for
731 *Brassica* (purple circles) or wheat (orange triangles). Error bars represent standard deviation.
732 Box plots show the effect of temperature on RAE for wheat (orange) or *Brassica* (purple)
733 (B). Period and RAE were estimated by FFT NLLS, BAMP dtr, 24-120h cut-off. Wheat:
734 17°C (N=17/23); 22°C (N=32/32); 27°C (N=11/11); 32°C (N=15/15). *Brassica*: 12°C
735 (N=24/24); 17°C (N=35/35); 22°C (N=30/30). An additional preliminary experiment
736 consistent with these observations can be seen in Supplementary S13. Significance codes:
737 *** $p<0.001$.







738
739 **Figure 6.** DF can be used to measure period differences between elite cultivars in *Brassica*
740 and wheat. 10cm sections from the second leaf of 25 day old wheat seedlings were imaged
741 under D:D at 27°C. 3cm square sections from the first leaf of 21 day old *Brassica* seedlings
742 were imaged under L:L at 22°C. Period boxplots based on the DF oscillations from different
743 cultivars are shown for wheat (A) and *Brassica* (B). The three replicates in the *Brassica* data
744 represent different seed batches. Period values were estimated using FFT NLLS, BAMP dtr,
745 24-120h cut-off window. BAMP de-trended DF data was normalised to the mean DF
746 intensity across all cultivars and plotted against time in hours after dawn (C and D). *Brassica*
747 data represents results from two cabinets normalised for between-cabinet effects. Wheat data
748 represents results from two identical experiments with two imaging cabinets run in parallel as
749 technical replicates and normalised for the between-cabinet and experimental-run effects.
750 Wheat: Robigus (N=25/25), Cadenza (N=12/12), Chinese Spring (N=24/25), Claire
751 (N=27/27), Weebil (N=22/24), Paragon (N=24/4), Norin-61 (N=25/25). *Brassica*: for each
752 seed batch of Cabriolet, Chuanyou II, Norin (N=8/8). *Brassica* data is consistent with
753 previous experiments shown in supplementary materials S14. Significance codes: for wheat
754 cultivars (A), *** $p<0.001$, ** $p<0.01$ relative to either a=Norin 61 or b=Paragon. For brassica
755 cultivars (B), significantly different periods ($p<0.05$) are labelled relative to a=Norin Y1,
756 b=Norin Y2 or c=Norin Y3.




51
52
53
54
55
56
57
58
59
60
61
62
63
64
65


A**B****C****D****E**

A**B**

A**B****C****D****E****F****G****H**

A**B****Brassica**

