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ABSTRACT 

 
Independent component analysis has been widely applied to 

brain imaging and genetic data analyses for its ability to 

identify interpretable latent sources. Nevertheless, leveraging 

source sparsity in a more granular way may further improve its 

ability to optimize the solution for certain data types. For this 

purpose, we propose a sparse infomax algorithm based on 

nonlinear Hoyer projection, leveraging both sparsity and 

statistical independence of latent sources. The proposed 

algorithm iteratively updates the unmixing matrix by infomax 

(for independence) and the sources by Hoyer projection (for 

sparsity), feeding the sparse sources back as input data for the 

next iteration. Consequently, sparseness propagates effectively 

through infomax iterations, producing sources with more 

desirable properties. Simulation results on both brain imaging 

and genetic data demonstrate that the proposed algorithm yields 

improved pattern recovery, particularly under low signal-to-

noise ratio conditions, as well as improved sparseness 

compared to traditional infomax. 

Index Terms — Sparse infomax, Hoyer projection, 

Imaging data, SNP data, Pattern recovery. 

 

1. INTRODUCTION 
 

Blind source separation methods, such as independent 

component analysis (ICA), have been widely applied to brain 

magnetic resonance imaging (MRI) and electroencephalogram 

data, as well as genetic data, etc. Infomax, as one of the most 

robust ICA approaches, has shown great ability to recover 

super-Gaussian sources when the signal-to-noise (or -

background) ratio (SNR or SBR) of data is high[1]. Meanwhile, 

improvement is needed for the situation where the SNR or SBR 

is low, such as genetic mutation data, namely single nucleotide 

polymorphisms (SNPs). SNPs are categorical values (0, 1, or 2) 

that indicate the number of minor (usually mutated) alleles at 

each SNP locus. Typically, the variance of SNP independent 

sources of interest (modeling genetic interactions) is similar to 

that of the background (presenting genetic coding for unknown 

or less represented biological processes). In such case, other 

source properties could be leveraged to improve the ICA 

performance. 

Sparsity is one such property that is commonly incorporated 

into ICA approaches. Ge et. al [2] proposed sparse FastICA 

based on the smoothed 𝑙0 norm, which outperformed FastICA 

in terms of source detection and robustness to noise. However, 

its performance was still similar to that of infomax, likely 

because infomax already includes an implicit (non-tunable) 

sparsity prior due to the choice of nonlinear neuronal activation 

function (sigmoid or tanh), which optimizes for super-Gaussian 

distributions. 

In order to add tunable sparsity control to infomax, we consider 

the Hoyer index. Hurley and Rickard [3] have shown that the 

Gini index is the only one satisfying the six axiomatic attributes 

of sparsity measures. But optimizing the Gini index is difficult 

due to its built-in sorting operation. The Hoyer index is a 

sparsity measure second only to the Gini index, and easy to 

optimize. Compared to standard 𝑙1 or 𝑙2 norms, the Hoyer index 

is an extension of the ratio between 𝑙1 and 𝑙2. Also, it is scale 

invariant and has no need for additional normalization, which 

presents great potential in the context of ICA algorithms as the 

scale of source estimates is arbitrary and irrelevant for the 

pursuit of independence.  

In this paper, we propose a sparse infomax algorithm based on 

the nonlinear Hoyer projection. Sparse infomax updates the 

unmixing matrix the same way as infomax optimization, but 

applies the Hoyer projection to the source estimates before 

propagating them as mixed data for the next iteration. 

  

2. METHODS 

 
For a vector 𝐳, its Hoyer index is defined as follows: 

         𝐻𝑜𝑦𝑒𝑟(𝐳) =
√𝑛−‖𝐳‖1 ‖𝐳‖2⁄

√𝑛−1
=  

√𝑛−(∑ |𝑧𝑖|𝑛
𝑖=1 ) √∑ 𝑧𝑖

2𝑛
𝑖=1⁄

√𝑛−1
          (1) 

where 𝑛 is the number of elements in 𝐳. The Hoyer index 

ranges between 0 and 1. A Hoyer index of 0 (least sparse) 

indicates that all elements in 𝐳 are the same, while a Hoyer 

index of 1 (most sparse) means that there is only one non-zero 

element in 𝐳. 

The proposed sparse infomax has the same cost function as 

traditional infomax[1] (i.e. maximizing the differential entropy 

H(𝐲) with respect to the unmixing weight matrix 𝐖) except for 

the additional constraint on the estimated sources 𝐒, calling for 

a 𝐻𝑜𝑦𝑒𝑟(𝐬)  larger or equal than the preset threshold 𝑡; see (2). 

Assume that the observed data 𝐗 is a linear mixture of 

independent sources (𝐗 = 𝐀𝐒), where 𝐀 is the mixing matrix. 

Then the source 𝐒 can be estimated as 𝐖𝐗, where 𝐖 =  𝐀−𝟏. 

Since the Hoyer index[4] constraint is optimized through a 

series of nonlinear projections, 𝐀 cannot be estimated directly 

by 𝐖−𝟏 after convergence. Instead, Tychonov-regularized least 

squares [5] is employed to estimate 𝐀 using the sources 

estimated by sparse infomax. Tychonov-regularized least 

squares takes the data noise into account, providing a better 
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solution than traditional least squares. Its cost function is 

defined in (3), where 𝛿 is the regularization parameter, 𝐚 is a 

row of 𝐀, and 𝐱⊤ represents a row of  𝐗. The overall 

mathematical model of sparse infomax is defined below: 

max𝐖 H(𝐲) = max𝐖 {−𝔼[ln p𝐲(𝐲)]},              (2.a) 

s.t. Hoyer(𝐬) ≥ 𝑡                                       . 

with  𝐲 =
1

1+𝑒−𝐮
, 𝐮 = 𝐬 + 𝐰0, 𝐬 = 𝐖𝐱              (2.b) 

min𝐚  ‖𝐒T𝐚T − 𝐱T‖2
2 + 𝛿‖𝐚T‖2

2                        (3) 

where p𝐲(𝐲) is the probability density function of the output 

vector 𝐲 (the nonlinear transformation of the bias-adjusted 

source 𝐮), and 𝐗 = 𝐀𝐒, 𝐒 = 𝐖𝐗. Infomax is solved by 

stochastic gradient descent (SGD), using the natural gradient of 

(2.a) with respect to 𝐖 and the traditional gradient of (2.a) with 

respect to 𝐰𝟎: 

∇𝐖 = (𝐈 + (𝟏 − 2𝐲)𝐮T)𝐖,        ∇𝐰0 = 𝟏 − 𝟐𝐲           (4) 

where 𝐈 is an identity matrix and 𝟏 is a vector of ones. T is the 

transpose operation. The pseudocode for the proposed sparse 

infomax algorithm is described as follows: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In the proposed sparse infomax, the independence and sparsity 

of sources are optimized iteratively. First, the unmixing matrix 

𝐖 is updated based on infomax’s natural gradient. For the first 

K steps (default is K = 5), only infomax update is applied to 

prioritize independence at the initial stage. For the ensuing 

iterations, after updating the 𝐖 matrix, the source matrix 

𝐒 = 𝐖𝐗 is estimated. Then, we compute the Hoyer index for 

each source and perform Hoyer projection if the source sparsity 

does not meet the preset value for Hoyer index. The Hoyer 

projection is implemented based on Hoyer’s paper [4], which 

keeps the 𝑙2 norm of sources unchanged while updating the 

elements of each source (a row of 𝐒) until the 𝑙1 norm reaches a 

value that yields the desired sparseness. Contrary to the 

underlying linear generative model of infomax, the Hoyer 

projection is a nonlinear transformation; the update on the 

elements of each source involves zeroing out small values and 

increasing large ones. After Hoyer projection, we propagate the 

updated sources as mixed data for the next iteration. During 

Hoyer projection, we set the desired Hoyer index as the current 

Hoyer value of the source plus 0.05, if it is not greater than the 

preset value. Otherwise, we employ the preset value as the 

desired Hoyer index. This is to avoid abrupt alterations of the 

sources.  

The solution to the Tychonov-regularized least squares is found 

by solving the following linear equation:  

(𝐒𝐒T + 𝛿𝐈) 𝐚̂𝛿
T = 𝐒𝐱T                           (5) 

where 𝐚̂𝛿
T
 is the estimated transpose of 𝐚. The role of 𝛿𝐈 is to 

stabilize the least squares solution for noisy data. As suggested 

by Strang in [5], the value of  𝛿 can be chosen as 

(
‖𝐞‖2

2𝐶‖𝐱T‖
2

)
2 3⁄

and the constant 𝐶 can be approximated by 1/𝜎3, 

where 𝜎 is the smallest singular value of 𝐒. In sparse infomax, 

we evaluate 𝐶 based on the final estimated source matrix 𝐒. The 

noise 𝐞 can be approximated using the background of the 

observed mixed data 𝐱T after excluding elements in the signal 

region based on the estimated sources. Finally, we plug 𝛿 into 

(5) to obtain the estimated 𝐚̂𝛿
T = (𝐒𝐒T + 𝛿𝐈)−1 𝐒𝐱T for each 

row of 𝐀 (here, for each subject). 

 

3. SIMULATIONS AND RESULTS 
 

3.1 Structural MRI 

The SimTB Toolbox (http://mialab.mrn.org/software/simtb/) 

[6] was used to simulate seven non-overlapping structural MRI 

(sMRI) components, each with 31064 voxels and similar 

sparsity levels (Hoyer indices were all around 0.85). By default, 

SimTB normalized the component values to be between 0 and 

1. As components generated by SimTB had continuous 

intensity values within the whole brain, we set voxels with 

intensity levels less than 0.25 as 0 to refine the components, 

yielding the source matrix 𝐒7×31064 (plotted in Fig. 1), and only 

regions with intensity values larger than 0.25 were treated as 

the ground-truth component regions (GTCR).  

 
Fig. 1, Seven non-overlapping sMRI components. 

The mixing matrix 𝐀200×7 was randomly generated from a 

uniform distribution 𝒰(0,1) to represent the components 

expression levels for 200 subjects. Then, we obtained the 

noiseless data matrix as 𝐗𝑐𝑙𝑒𝑎𝑛 = 𝐀𝐒. Rician noise with a 

contrast-to-noise ratio (CNR, as defined in [6]) of 3 was added 

to 𝐗𝑐𝑙𝑒𝑎𝑛 in order to obtain the final mixed data 𝐗.  

Subject-wise mean removal and principal component analysis 

(PCA) were applied to data 𝐗 and seven principal components 

were extracted for further infomax or sparse infomax analyses. 

To test the performance of sparse infomax, we applied it with 

the preset Hoyer index value varying from 0.4 to 0.95, with a 

step size of 0.05. Various component-wise performance 

measures were evaluated, including correlations between the 

estimated and ground-truth components, and correlations 

between the estimated  and ground-truth mixing matrix, 

sensitivity, specificity and F1 scores, sparsity measures 

(Hoyer/Gini indices), as well as SBR. In Fig. 2, we reported 

average values across components. Here, SBR was defined as: 

SBR =
mean(|signal|)

mean(background)+std(background)
               (7) 

where std denotes the standard deviation. Signal and 

background regions were defined based on both GTCR and a 

1: k = 0. 

2: While k ≤ kmax: 

3: (a) For each data block (or batch) in 𝐗k: 

4:      Do an infomax update on 𝐖k using SGD. 

5: (b) Compute the new source matrix 𝐒k using the 

6:    newly updated  𝐖k as: 𝐒k =  𝐖k 𝐗k. 

7: (c) If k > K 

8:      For each source (j-th row) 𝐬k,j in 𝐒k : 

9: 9:           If the Hoyer index of the source is less           

10:               than the preset value: 

11:        Do Hoyer projection 𝐬H,j = Hoyer(𝐬k,j)  

12:               Else:  𝐬H,j = 𝐬k,j    

13:          Else: 𝐒H =  𝐒k 

14: (d) If ‖ 𝐖𝐤 − 𝐖k−1‖2
2 is less than a threshold: 

15:      Return 𝐒H and break. 

16: (e) k = k + 1.  

17: (f) Assign 𝐒H as mixed data: 𝐗k = 𝐒H. 
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component-level z-threshold of |𝑧| = 3.5 (same for SNP data 

analysis). Thus, assuming that the component background 

region follows a normal distribution, SBR measures how far on 

average a component’s signal is away from the background. 

Higher SBR values indicate better signal discrimination. 

 
Fig. 2 Infomax and sparse infomax performances on simulated 

sMRI data (a) component correlation, (b) mixing matrix 

correlation, (c) sensitivity/specificity/F1 score, (d) Gini/Hoyer 

indices, (e) SBR (GTCR based), (f) SBR (z-threshold based, 
|𝑧| > 3.5). Notes: Infmx denotes infomax, and 0.4 to 0.95 are the 

preset Hoyer index values used in sparse infomax; Sinfomax in (c) 

and (d) denotes sparse infomax (the same for Fig.3, Fig.4 and 

Fig.5). The error bars reflect mean ± standard error across seven 

components (the same for Fig.3, Fig.4 and Fig.5). 

Fig. 2 shows that, except for sparseness (Gini/Hoyer indices) 

all performance measures are comparable between infomax and 

sparse infomax when the preset Hoyer index value is 

reasonable (here, less than the true value of 0.85). In all cases, 

the sparsity measures of components from sparse infomax are 

improved compared to those from infomax. Furthermore, in the 

very low SNR cases (e.g. CNR=0.5), we also observe 

improvement in component correlation and SBR by sparse 

infomax, which are in agreement with the following SNP data 

results. Thus, they are omitted here. The convergence speed 

(iterations taken until convergence) is 80 iterations for infomax, 

and 71 for sparse infomax (mean of all Hoyer indices 

scenarios). 

3.2 SNP data 

We simulated SNP data of 10000 loci with 7 non-overlapping 

SNP component patterns using Plink 1.9 

(http://zzz.bwh.harvard.edu/plink/) for three scenarios:   

Scenario 1: for each SNP component, the effect size = 3.5, 

number of risk SNP = 150 (signal region), and sample size 

(number of subjects) varying from 100 to 1000 (100, 200, 300, 

500, 700, 1000). Effect size (ES) is defined as follow: 

ES =
mean(|corr(𝐯,risk SNPs)|)

mean(corr(𝐯,background SNPs))+std(corr(𝐯,background SNPs))
  (8) 

where 𝐯 is the representative risk SNP, corr and std denote 

correlation and standard deviation operations, respectively. 

Subject-wise mean removal and PCA were applied to SNP data 

to generate 8 principal components, including one extra for 

noise/background. Subsequently, infomax and sparse infomax 

with preset Hoyer value of 0.4 were performed to estimate 8 

independent components. Performance measures including 

correlation between the estimated and ground-truth 

components, sensitivity, specificity and F1 scores, sparsity 

measures (Hoyer/Gini indices), as well as SBR (z-threshold 

of |𝑧| > 3.5), were computed and averaged across components 

for both methods (Fig. 3). 

Scenario 2: sample size = 200, effect size = 3.5, number of risk 

SNPs varying from 50 to 200 with a step size of 50. Infomax 

and sparse infomax analyses were performed in the same way 

as in scenario 1, and the same performance measures were 

reported in Fig. 4. 

Scenario 3: number of subjects = 200, number of risk SNPs = 

150, effect size varying from 2 to 5 with a step size of 1. Same 

infomax and sparse infomax analyses as in scenario 1 were 

performed, and the same performance measures were reported 

in Fig. 5.  

 
Fig. 3 Infomax and sparse infomax performances on SNP data 

when varying sample size: (a) component correlation, (b) 

sensitivity/specificity/F1, (c) SBR (z-threshold based, |𝑧| > 3.5), 

(d) sparsity measures (Gini/Hoyer indices).  

Fig. 3 shows an increasing trend in accuracy with increasing 

sample size, as reflected by component correlation, 

sensitivity/F1 and SBR values. Sparse infomax always 

outperforms infomax, which suggests that sparse infomax 

provides improved pattern detection capability over infomax. In 

addition, sparse infomax is tunable and, thus, can produce even 
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sparser components. The convergence speeds are comparable 

between infomax and sparse infomax when varying subject 

number (similarly for scenarios 2 and 3). 

 
Fig. 4 Infomax and sparse infomax performances when varying the 

number of risk SNPs: (a) component correlation, (b) 

sensitivity/specificity/F1, (c) SBR (z-threshold based, |𝑧| > 3.5), 

(d) sparsity measures (Gini/Hoyer indices). 

 
Fig. 5 Infomax and sparse infomax performances when varying 

effect size (a) component correlation, (b) sensitivity/specificity/F1, 

(c) SBR (z-threshold based, |𝑧| > 3.5), (d) sparsity measures. 

Fig. 4 also shows an increasing trend in terms of component 

correlation, sensitivity/F1, and SBR as the number of risk SNPs 

increases. When the number of risk SNPs is 50 and 100, both 

infomax and sparse infomax fail to recover the true sources, 

which is likely caused by the fact that the PCA step removes 

too much variability from the data. In cases where the number 

of risk SNPs are larger than 100, sparse infomax has higher 

component correlation and sensitivity/F1 than infomax. For all 

cases, components estimated by sparse infomax always have 

higher SBR and are much sparser than those from infomax.    

From Fig. 5, we can observe that, as the effect size increases, 

the component correlation, sensitivity/F1 and SBR increases. 

When effect size is low (e.g., 2 and 3), both infomax and sparse 

infomax fail to detect the underlying components. In the cases 

where effect sizes are greater than or equal to 4, sparse infomax 

outperforms infomax in terms of component correlation, 

sensitivity/F1 (which are comparable to those from infomax 

when the effect size is 5), SBR and sparsity measures.                  

                           

4. DISCUSSION  
 

A sparse infomax algorithm based on the Hoyer projection is 

proposed in this paper. Sparse infomax leverages the sparsity 

nature of sources to help suppress noise (background) and 

enhance signal, through a nonlinear projection, thus, expanding 

the solution search space as compared to traditional linear 

transformation solvers based on gradient optimization, and then 

use Tychonov-regularized least squares, taking noise into 

account to estimate the mixing matrix from the estimated 

sources. Simulation results show that recovering the 

independent sources with sparsity optimization can increase the 

component detection power for situations where the source 

SBR is low. This method is particularly beneficial to SNP data. 

The setting of the Hoyer index preset value can be subjective to 

data type. By default, we adaptively adjust it to make sure that 

components achieve the minimum SBR (e.g. 5). The minimum 

SBR is set according to the observations from both simulation 

and real data. Also, users may opt to set a higher Hoyer index 

preset value in order to produce sparser components. 
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