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ABSTRACT

Independent component analysis has been widely applied to
brain imaging and genetic data analyses for its ability to
identify interpretable latent sources. Nevertheless, leveraging
source sparsity in a more granular way may further improve its
ability to optimize the solution for certain data types. For this
purpose, we propose a sparse infomax algorithm based on
nonlinear Hoyer projection, leveraging both sparsity and
statistical independence of latent sources. The proposed
algorithm iteratively updates the unmixing matrix by infomax
(for independence) and the sources by Hoyer projection (for
sparsity), feeding the sparse sources back as input data for the
next iteration. Consequently, sparseness propagates effectively
through infomax iterations, producing sources with more
desirable properties. Simulation results on both brain imaging
and genetic data demonstrate that the proposed algorithm yields
improved pattern recovery, particularly under low signal-to-
noise ratio conditions, as well as improved sparseness
compared to traditional infomax.

Index Terms — Sparse infomax, Hoyer projection,
Imaging data, SNP data, Pattern recovery.

1. INTRODUCTION

Blind source separation methods, such as independent
component analysis (ICA), have been widely applied to brain
magnetic resonance imaging (MRI) and electroencephalogram
data, as well as genetic data, etc. Infomax, as one of the most
robust ICA approaches, has shown great ability to recover
super-Gaussian sources when the signal-to-noise (or -
background) ratio (SNR or SBR) of data is high[1]. Meanwhile,
improvement is needed for the situation where the SNR or SBR
is low, such as genetic mutation data, namely single nucleotide
polymorphisms (SNPs). SNPs are categorical values (0, 1, or 2)
that indicate the number of minor (usually mutated) alleles at
each SNP locus. Typically, the variance of SNP independent
sources of interest (modeling genetic interactions) is similar to
that of the background (presenting genetic coding for unknown
or less represented biological processes). In such case, other
source properties could be leveraged to improve the ICA
performance.

Sparsity is one such property that is commonly incorporated
into ICA approaches. Ge et. al [2] proposed sparse FastiICA
based on the smoothed [, norm, which outperformed FastICA
in terms of source detection and robustness to noise. However,
its performance was still similar to that of infomax, likely

because infomax already includes an implicit (non-tunable)
sparsity prior due to the choice of nonlinear neuronal activation
function (sigmoid or tanh), which optimizes for super-Gaussian
distributions.

In order to add tunable sparsity control to infomax, we consider
the Hoyer index. Hurley and Rickard [3] have shown that the
Gini index is the only one satisfying the six axiomatic attributes
of sparsity measures. But optimizing the Gini index is difficult
due to its built-in sorting operation. The Hoyer index is a
sparsity measure second only to the Gini index, and easy to
optimize. Compared to standard [, or I, norms, the Hoyer index
is an extension of the ratio between [, and [,. Also, it is scale
invariant and has no need for additional normalization, which
presents great potential in the context of ICA algorithms as the
scale of source estimates is arbitrary and irrelevant for the
pursuit of independence.

In this paper, we propose a sparse infomax algorithm based on
the nonlinear Hoyer projection. Sparse infomax updates the
unmixing matrix the same way as infomax optimization, but
applies the Hoyer projection to the source estimates before
propagating them as mixed data for the next iteration.

2. METHODS

For a vector z, its Hoyer index is defined as follows:
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where n is the number of elements in z. The Hoyer index
ranges between 0 and 1. A Hoyer index of O (least sparse)
indicates that all elements in z are the same, while a Hoyer
index of 1 (most sparse) means that there is only one non-zero
element in z.
The proposed sparse infomax has the same cost function as
traditional infomax[1] (i.e. maximizing the differential entropy
H(y) with respect to the unmixing weight matrix W) except for
the additional constraint on the estimated sources S, calling for
a Hoyer(s) larger or equal than the preset threshold ¢; see (2).
Assume that the observed data Xis a linear mixture of
independent sources (X = AS), where A is the mixing matrix.
Then the source S can be estimated as WX, where W = A~
Since the Hoyer index[4] constraint is optimized through a
series of nonlinear projections, A cannot be estimated directly
by W1 after convergence. Instead, Tychonov-regularized least
squares [5] is employed to estimate A using the sources
estimated by sparse infomax. Tychonov-regularized least
squares takes the data noise into account, providing a better

Hoyer(z) =
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solution than traditional least squares. Its cost function is
defined in (3), where § is the regularization parameter, a is a
row of A, and x" represents a row of X. The overall
mathematical model of sparse infomax is defined below:
maxy H(y) = maxy {—IE[ln py(y)]}, (2.2)
s.t. Hoyer(s) > t
with y=T1_u,u=s+wo,s=Wx (2.b)
min, ||STaT — xT||3 + §||aT||3 (3)
where p,(y) is the probability density function of the output
vector y (the nonlinear transformation of the bias-adjusted
source u), and X =AS, S=WX. Infomax is solved by
stochastic gradient descent (SGD), using the natural gradient of
(2.a) with respect to W and the traditional gradient of (2.a) with
respect to wy:

VW=>O+1-29)u"h)W, Vw,=1-2y 4)
where I is an identity matrix and 1 is a vector of ones. T is the
transpose operation. The pseudocode for the proposed sparse
infomax algorithm is described as follows:

1:k=0.
2: While k < Ky

3: () For each data block (or batch) in X:

4: Do an infomax update on Wy using SGD.

5:  (b) Compute the new source matrix S, using the
6: newly updated Wy as: S, = W X,.

7. (©Ifk>K

8: For each source (j-th row) sy ; in Sy :

9: If the Hoyer index of the source is less
10: than the preset value:

11: Do Hoyer projection sy;; = Hoyer(s;)
12: E|Se SH']' = Sk,j

13: Else: Sy = Sk

14:  (d) If || Wy, — Wy_, |13 is less than a threshold:
15: Return Sy and break.

16: (e)k=k+1.
17: () Assign Sy as mixed data: Xi = Sy.

In the proposed sparse infomax, the independence and sparsity
of sources are optimized iteratively. First, the unmixing matrix
W is updated based on infomax’s natural gradient. For the first
K steps (default is K = 5), only infomax update is applied to
prioritize independence at the initial stage. For the ensuing
iterations, after updating the W matrix, the source matrix
S = WX is estimated. Then, we compute the Hoyer index for
each source and perform Hoyer projection if the source sparsity
does not meet the preset value for Hoyer index. The Hoyer
projection is implemented based on Hoyer’s paper [4], which
keeps the [, norm of sources unchanged while updating the
elements of each source (a row of S) until the I; norm reaches a
value that yields the desired sparseness. Contrary to the
underlying linear generative model of infomax, the Hoyer
projection is a nonlinear transformation; the update on the
elements of each source involves zeroing out small values and
increasing large ones. After Hoyer projection, we propagate the
updated sources as mixed data for the next iteration. During
Hoyer projection, we set the desired Hoyer index as the current
Hoyer value of the source plus 0.05, if it is not greater than the
preset value. Otherwise, we employ the preset value as the

desired Hoyer index. This is to avoid abrupt alterations of the
sources.

The solution to the Tychonov-regularized least squares is found
by solving the following linear equation:

(SST + 8) 45" = Sx” (5)
where 45" is the estimated transpose of a. The role of &I is to
stabilize the least squares solution for noisy data. As suggested
by Strang in [5], the value of & can be chosen as

2/3
(zc”|rx”T2|| ) and the constant C can be approximated by 1/03,
2

where ¢ is the smallest singular value of S. In sparse infomax,
we evaluate C based on the final estimated source matrix S. The
noise e can be approximated using the background of the
observed mixed data xT after excluding elements in the signal
region based on the estimated sources. Finally, we plug é into
(5) to obtain the estimated d;" = (SST + 61)~* SxT for each
row of A (here, for each subject).

3. SIMULATIONS AND RESULTS

3.1 Structural MRI

The SimTB Toolbox (http://mialab.mrn.org/software/simtb/)
[6] was used to simulate seven non-overlapping structural MRI
(SMRI) components, each with 31064 voxels and similar
sparsity levels (Hoyer indices were all around 0.85). By default,
SimTB normalized the component values to be between 0 and
1. As components generated by SimTB had continuous
intensity values within the whole brain, we set voxels with
intensity levels less than 0.25 as 0 to refine the components,
yielding the source matrix S;.31064 (plotted in Fig. 1), and only
regions with intensity values larger than 0.25 were treated as
the ground-truth component regions (GTCR)

Fig. 1, Seven non-overlapping SMRI components.

The mixing matrix A,y,x; was randomly generated from a
uniform distribution U(0,1) to represent the components
expression levels for 200 subjects. Then, we obtained the
noiseless data matrix as X,.q., = AS. Rician noise with a
contrast-to-noise ratio (CNR, as defined in [6]) of 3 was added
t0 X jeqn I Order to obtain the final mixed data X.

Subject-wise mean removal and principal component analysis
(PCA) were applied to data X and seven principal components
were extracted for further infomax or sparse infomax analyses.
To test the performance of sparse infomax, we applied it with
the preset Hoyer index value varying from 0.4 to 0.95, with a
step size of 0.05. Various component-wise performance
measures were evaluated, including correlations between the
estimated and ground-truth components, and correlations
between the estimated and ground-truth mixing matrix,
sensitivity, specificity and F1 scores, sparsity measures
(Hoyer/Gini indices), as well as SBR. In Fig. 2, we reported
average values across components. Here, SBR was defined as:

_ mean(|signal|)
SBR = mean(background)+std(background) (7)
where std denotes the standard deviation. Signal and
background regions were defined based on both GTCR and a
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component-level z-threshold of |z| = 3.5 (same for SNP data
analysis). Thus, assuming that the component background
region follows a normal distribution, SBR measures how far on
average a component’s signal is away from the background.
Higher SBR values indicate better signal discrimination.
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Fig. 2 Infomax and sparse infomax performances on simulated
SMRI data (a) component correlation, (b) mixing matrix
correlation, (c) sensitivity/specificity/F1 score, (d) Gini/Hoyer
indices, (e) SBR (GTCR based), (f) SBR (z-threshold based,
|z] > 3.5). Notes: Infmx denotes infomax, and 0.4 to 0.95 are the
preset Hoyer index values used in sparse infomax; Sinfomax in (c)
and (d) denotes sparse infomax (the same for Fig.3, Fig.4 and
Fig.5). The error bars reflect mean + standard error across seven
components (the same for Fig.3, Fig.4 and Fig.5).

Fig. 2 shows that, except for sparseness (Gini/Hoyer indices)
all performance measures are comparable between infomax and
sparse infomax when the preset Hoyer index value is
reasonable (here, less than the true value of 0.85). In all cases,
the sparsity measures of components from sparse infomax are
improved compared to those from infomax. Furthermore, in the
very low SNR cases (e.g. CNR=0.5), we also observe
improvement in component correlation and SBR by sparse
infomax, which are in agreement with the following SNP data
results. Thus, they are omitted here. The convergence speed
(iterations taken until convergence) is 80 iterations for infomax,
and 71 for sparse infomax (mean of all Hoyer indices
scenarios).

3.2 SNP data

We simulated SNP data of 10000 loci with 7 non-overlapping

SNP component patterns using Plink 1.9
(http://zzz.bwh.harvard.edu/plink/) for three scenarios:
Scenario 1: for each SNP component, the effect size = 3.5,
number of risk SNP = 150 (signal region), and sample size
(number of subjects) varying from 100 to 1000 (100, 200, 300,
500, 700, 1000). Effect size (ES) is defined as follow:

ES = mean(|corr(v,risk SNPs)|) (8)
mean(corr(v,background SNPs))+std(corr(v,background SNPs))

where v is the representative risk SNP, corr and std denote
correlation and standard deviation operations, respectively.
Subject-wise mean removal and PCA were applied to SNP data
to generate 8 principal components, including one extra for
noise/background. Subsequently, infomax and sparse infomax
with preset Hoyer value of 0.4 were performed to estimate 8
independent components. Performance measures including
correlation  between the estimated and ground-truth
components, sensitivity, specificity and F1 scores, sparsity
measures (Hoyer/Gini indices), as well as SBR (z-threshold
of |z| > 3.5), were computed and averaged across components
for both methods (Fig. 3).
Scenario 2: sample size = 200, effect size = 3.5, number of risk
SNPs varying from 50 to 200 with a step size of 50. Infomax
and sparse infomax analyses were performed in the same way
as in scenario 1, and the same performance measures were
reported in Fig. 4.
Scenario 3: number of subjects = 200, number of risk SNPs =
150, effect size varying from 2 to 5 with a step size of 1. Same
infomax and sparse infomax analyses as in scenario 1 were
performed, and the same performance measures were reported
in Fig. 5.
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Fig. 3 Infomax and sparse infomax performances on SNP data
when varying sample size: (a) component correlation, (b)
sensitivity/specificity/F1, (c) SBR (z-threshold based, |z| > 3.5),
(d) sparsity measures (Gini/Hoyer indices).
Fig. 3 shows an increasing trend in accuracy with increasing
sample size, as reflected by component correlation,
sensitivity/F1 and SBR values. Sparse infomax always
outperforms infomax, which suggests that sparse infomax
provides improved pattern detection capability over infomax. In

addition, sparse infomax is tunable and, thus, can produce even
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sparser components. The convergence speeds are comparable
between infomax and sparse infomax when varying subject
number (similarly for scenarios 2 and 3).

Component correlation

07
05
03
01 —— Infomax
5

Sensitivity/specificity/F1

o
3

ion

o
o

Sensitivity-infomax
—— Sensitivity-Sinfomax
—— Specificity-infomax
—— Specificity-Sinfomax
—4—F1-infomax
—=—F1-Sinfomax

100 150 200 100 150 200
Risk SNP number Risk SNP number

(a) (b)
SBR (z-thresholded based) Component sparsity

T

“oeonar| ,
50 100 150 200 50 100 150 200
Risk SNP number Risk SNP number
(c) (d)
Fig. 4 Infomax and sparse infomax performances when varying the
number of risk SNPs: (a) component correlation, (b)
sensitivity/specificity/F1, (c) SBR (z-threshold based, |z| > 3.5),

(d) sparsity measures (Gini/Hoyer indices).
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Fig. 5 Infomax and sparse infomax performances when varying
effect size (a) component correlation, (b) sensitivity/specificity/F1,
(c) SBR (z-threshold based, |z| > 3.5), (d) sparsity measures.

Fig. 4 also shows an increasing trend in terms of component
correlation, sensitivity/F1, and SBR as the number of risk SNPs
increases. When the number of risk SNPs is 50 and 100, both
infomax and sparse infomax fail to recover the true sources,
which is likely caused by the fact that the PCA step removes
too much variability from the data. In cases where the number
of risk SNPs are larger than 100, sparse infomax has higher
component correlation and sensitivity/F1 than infomax. For all
cases, components estimated by sparse infomax always have
higher SBR and are much sparser than those from infomax.

From Fig. 5, we can observe that, as the effect size increases,
the component correlation, sensitivity/F1 and SBR increases.
When effect size is low (e.g., 2 and 3), both infomax and sparse
infomax fail to detect the underlying components. In the cases
where effect sizes are greater than or equal to 4, sparse infomax
outperforms infomax in terms of component correlation,
sensitivity/F1 (which are comparable to those from infomax
when the effect size is 5), SBR and sparsity measures.

4. DISCUSSION

A sparse infomax algorithm based on the Hoyer projection is
proposed in this paper. Sparse infomax leverages the sparsity
nature of sources to help suppress noise (background) and
enhance signal, through a nonlinear projection, thus, expanding
the solution search space as compared to traditional linear
transformation solvers based on gradient optimization, and then
use Tychonov-regularized least squares, taking noise into
account to estimate the mixing matrix from the estimated
sources. Simulation results show that recovering the
independent sources with sparsity optimization can increase the
component detection power for situations where the source
SBR is low. This method is particularly beneficial to SNP data.
The setting of the Hoyer index preset value can be subjective to
data type. By default, we adaptively adjust it to make sure that
components achieve the minimum SBR (e.g. 5). The minimum
SBR is set according to the observations from both simulation
and real data. Also, users may opt to set a higher Hoyer index
preset value in order to produce sparser components.
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