

39 **Abstract**

40 Objective: An early onset of menarche and, later, menopause are well-established risk
41 factors for the development of breast cancer and endometrial cancer. Although the
42 largest GWASs have identified 389 independent signals for age at menarche (AAM)
43 and 44 regions for age at menopause (ANM), GWAS can only identify the associations
44 between variants and traits. The aim of this study was to identify genes whose
45 expression levels were associated with AAM or ANM due to pleiotropy or causality by
46 integrating GWAS data with genome-wide expression quantitative trait loci (eQTLs)
47 data. We also aimed to identify the pleiotropic genes that influenced two phenotypes.

48 Method: We employed GWAS data of AAM and ANM and Genome-wide eQTL data
49 from whole blood. The summary data-based Mendelian randomization (SMR) method
50 was used to prioritize the associated genes for further study. The colocalization analysis
51 was used to identify the pleiotropic genes.

52 Results: We identified 31 genes whose expression was associated with AAM and 24
53 genes whose expression was associated with ANM due to pleiotropy or causality. Two
54 pleiotropic genes were identified to be associated with two phenotypes.

55 Conclusion: The results point out the most possible genes which were responsible for
56 the association. Our study prioritizes the associated genes for further functional
57 mechanistic study of AAM and ANM and illustrates the benefit of integrating different
58 omics of data into the study of complex traits.

59

60 **Introduction**

61 Menarche is the first menstrual cycle and signals the possibility of fertility.
62 An early onset of menarche is associated with risks for obesity, type 2 diabetes,
63 cardiovascular disease, breast cancer and all-cause mortality [1]. Menopause is defined
64 as the permanent cessation of menses due to the loss of ovarian follicular activity.
65 Younger age at natural menopause (ANM) is associated with low risk of breast cancer
66 and ovarian cancer, but higher risks of osteoporosis, cardiovascular disease and type 2
67 diabetes [1]. A Mendelian randomization study have found that later ANM causally
68 increased the risk of breast cancer [2]. These two traits also mark the beginning and the
69 end of a woman's reproductive life [3].

70
71 Genome-wide association studies (GWAS) are capable to identify the association
72 between target phenotypes and million genetic variants. GWAS of age at menarche
73 (AAM) identified 106 loci containing 389 independent signals [4]. GWAS of ANM has
74 successfully identified dozens of loci [2, 5, 6]. Most of these loci encode factors that
75 appear to be involved in DNA repair, immune response and breast cancer processes [2,
76 5]. However, GWAS can only identify those SNPs strongly associated with target
77 phenotypes, without pinpointing the target genes and the underlying biological
78 mechanism. For example, the largest GWAS of ANM identified 44 loci containing at
79 least one common variant significantly associated with ANM [2]. However, the
80 significant SNPs in 21 loci were annotated to more than one gene in each locus. It
81 suggested that the specific causal genes remain mostly unidentified.

82
83 A large part of genetic variants influence the target phenotypes by causal regulatory
84 effect rather than directly influencing the structure of protein [7]. Expression
85 quantitative trait loci (eQTL), which is a genetic variant influencing a target gene's
86 expression, is often used to explain the underlying biological mechanism of significant
87 SNPs identified by GWAS. Previous studies have suggested that in the significant loci,
88 those SNPs which were also eQTLs were more likely to be functional SNPs [8]. Zhu et
89 al. proposed a summary-based Mendelian randomization (SMR) analysis to combine
90 GWAS and eQTL data into a single analysis [7]. SMR integrates GWAS data and eQTL
91 identified from whole blood tissue to identify potential functionally relevant genes at
92 the significant loci identified in GWAS. Previous studies have shown that whole blood
93 can be a proxy of relevant tissues for various of phenotypes and disease [7, 9].

94
95 In this study, we identified genes whose expression levels were associated with AAM
96 or ANM due to pleiotropy or causality, by integrating ANM GWAS data with eQTL
97 data. We conducted a colocalization analysis to identify significant SNPs causally
98 associated with both phenotypes.

99

100 **Materials and Methods**

101 AAM GWAS summary dataset

102 Using 1000 Genomes Project-imputed genotype data in up to ~370,000 women, 389
103 independent signals ($P < 5 \times 10^{-8}$) were identified for age at menarche [4]. The
104 summary data were downloaded from the following website (<http://www.reprogen.org>).
105

106 ANM GWAS summary dataset

107 The largest-scale GWAS meta-analysis summary data of ANM was used in this study
108 [2]. The GWAS meta-analysis was conducted with a total sample of 69,360 individuals
109 of European descent. SNPs with the minor allele frequency (MAF) no less than 0.01
110 and the imputation quality larger than 0.4 were included in the meta-analysis. The
111 summary data were downloaded from the following website (<http://www.reprogen.org>).
112

113 eQTL dataset

114 Because the Westra eQTL data [9] had a low coverage of human genes, in this study
115 we used the genetic architecture of gene expression (GAGE) eQTL data to do the SMR
116 test [10]. The GAGE study was performed to investigate the genetic architecture of
117 gene expression in peripheral blood in 2,765 European individuals [10]. In the GAGE
118 data, there were 11,829 unique probes. We set the p-value threshold to select the top
119 associated eQTL for the SMR test to be 5×10^{-8} . After removing those probes where the
120 p value of the top eQTL was less than 5×10^{-8} , there were 8,144 probes left in the eQTL
121 summary data. The binary summary data can be download from
122 <http://cnsgenomics.com/software/smr/#DataResource>.
123

124 SMR analysis

125 The method of SMR was fully described in previous paper [7]. In brief, there were three
126 models including causality ($Z \rightarrow X \rightarrow Y$), pleiotropy ($Z \rightarrow X$ and $Z \rightarrow Y$) and linkage
127 ($Z_1 \rightarrow X$, $Z_2 \rightarrow Y$, and Z_1 and Z_2 are two variants in linkage disequilibrium (LD) in the
128 cis-eQTL region). In this study, we tried to identify those genes with pleiotropy effect
129 on ANM. To distinguish the causality and pleiotropy model from the linkage model,
130 we conducted the heterogeneity in dependent instruments (HEIDI) test. The null
131 hypothesis of HEIDI test was that there was no heterogeneity in the b_{XY} (the effect of
132 gene's expression on the target phenotype) values. So we used $P_{HEIDI} > 0.05$ to exclude
133 those genes belonging to linkage model. The SMR software was downloaded from
134 <http://cnsgenomics.com/software/smr/#Download>.
135

136 Colocalization analysis

137 Colocalization analysis was used to identify the genetic variants affecting both
138 phenotypes. The method was detailed in previous paper [11]. In brief, the method based
139 on a hierarchical Bayesian model can be used to find the region containing a variant
140 that influences both phenotypes. It estimates the probability that a given genomic region
141 either 1) contains a genetic variant that influences the first trait, 2) contains a genetic
142 variant that influences the second trait, 3) contains a genetic variant that influences both

143 traits, or 4) contains both a genetic variant that influences the first trait and a separate
144 genetic variant that influences the second trait [11]. The threshold of posterior
145 probability equal to 0.9 was used to control the false discovery rate at level 0.1 [11].
146

147 **Results**

148 After removing those probes with the top eQTL at P_{eQTL} smaller than 5×10^{-8} , there were
149 8,144 probes left in the eQTL summary data. The genome-wide significant level for
150 SMR analysis was $P_{smr} < 6.14 \times 10^{-6}$ (0.05/8,144, Bonferroni test). We identified 98
151 gene-trait associations with $P_{smr} < 6.14 \times 10^{-6}$. After application of the HEIDI test, this
152 reduced to 54 gene-trait associations ($P_{HEIDI} > 0.05$). Those genes which did not pass
153 the HEIDI test may be associated with AAM or ANM due to linkage.
154

155 We identified 31 genes which associated with AAM (Table 1) and 24 genes which
156 associated with ANM due to pleiotropy or causality (Table 2). Three of the 31 genes
157 can be considered as novel, i.e. no previously identified SNP, reported as genome-wide
158 significant in the primary GWAS paper in the cis-eQTL region of the probes. Among
159 the 24 genes, seven genes (MSH6, TLK1, SYCP2L, BRCA1, PGAP3, DIDO1 and
160 DDX17) were previously annotated to be responsible for the association based on
161 distance, biological function, eQTL effect and non-synonymous SNP in high LD. We
162 also identified 5 new genes (AK125462, MSL2, CLSTN3, TRAPPC2L, DDX5 and
163 CPNE1) where there was no significant SNP ($p < 5 \times 10^{-8}$) in the cis-eQTL region of the
164 probes. C17orf46 was the only gene identified to be associated with both phenotypes
165

166 **Table 1. Genes identified by SMR analysis for AAM.**

probeID	Chr	Gene	topSNP	topSNP_bp	p_GWAS	p_eQTL	b_SMR	p_SMR	p_HEIDI
ILMN_1869109	1	NUCKS1	rs823094	205689807	4.83E-08	3.39E-38	-0.0637368	8.24E-07	0.24
ILMN_1765061	2	OXER1	rs12617390	42985395	1.25E-07	4.61E-31	0.0725266	2.45E-06	0.46
ILMN_1659854	2	PRPF40A	rs7592669	153550668	7.80E-12	2.08E-10	0.163474	3.75E-06	0.98
ILMN_1783304	3	ATP1B3	rs2115935	141616198	0.5	3.82E-23	-0.0101008	3.82E-23	1.00
ILMN_1732452	3	MAPKAPK3	rs13096264	50678280	3.26E-10	5.31E-47	-0.0699323	1.37E-08	1.00
ILMN_1752631	3	CGGBP1	rs9814057	88214472	4.67E-09	1.86E-107	-0.0427618	2.75E-08	0.98
ILMN_1744471	3	ZNF654	rs7653652	88189341	3.56E-09	8.55E-79	-0.0499757	3.17E-08	0.95
ILMN_2285568	4	NAAA	rs4859572	76857388	0.5	1.90E-146	0.00402107	1.90E-146	0.51
ILMN_1749409	6	HLA-F	rs3870968	29647149	1.16E-09	4.51E-37	0.0726109	6.40E-08	0.09
ILMN_1697309	7	NCF1	rs2267812	74138121	1.87E-13	8.72E-42	-0.0884765	1.54E-10	0.13
ILMN_2112988	7	NCF1C	rs2267812	74138121	1.87E-13	2.41E-31	-0.102885	7.10E-10	0.16
ILMN_2083333	7	PMS2L5	rs3846966	74113141	3.23E-12	3.35E-22	-0.111675	2.10E-08	0.09
ILMN_1788384	9	C9orf5	rs12686736	111888739	1.45E-14	1.59E-74	-0.0619751	2.24E-12	0.13
ILMN_2191929	9	C9orf6	rs874864	111728718	5.66E-13	6.02E-24	0.10741	6.09E-09	0.11
ILMN_2163306	9	FAM120A	rs1055710	96214928	1.35E-08	2.83E-15	0.116356	5.46E-06	0.86
ILMN_2377829	10	NANOS1	rs671736	120811073	4.38E-08	3.49E-88	-0.0425769	2.37E-07	0.16
ILMN_1665964	11	GAB2	rs901105	77924607	3.51E-13	8.11E-13	0.15873	3.99E-07	0.78
ILMN_1767642	11	C11orf46	rs7926666	30363101	6.58E-08	8.15E-34	-0.066431	1.31E-06	0.24

ILMN_2094106	11	HSD17B12	rs7118906	43817320	3.67E-07	1.07E-82	0.0398518	1.62E-06	0.05
ILMN_1695585	12	RPS26	rs1131017	56435929	3.25E-07	0	0.0186654	7.70E-07	0.36
ILMN_2142353	13	GRTP1	rs4907616	114008744	0.5	1.52E-12	0.0159608	1.52E-12	0.87
ILMN_1727271	14	WARS	rs1570305	100808155	2.63E-09	1.08E-226	0.0289293	9.21E-09	0.11
ILMN_2080760	15	SNX22	rs12102207	64607472	2.15E-10	9.29E-17	-0.118627	5.98E-07	0.49
ILMN_1724406	16	INO80E	rs4787491	30015337	6.98E-13	4.48E-18	0.132111	4.14E-08	0.06
ILMN_1717565	16	CLEC18A	rs3748388	69974448	3.75E-14	3.89E-09	0.197866	3.71E-06	0.10
ILMN_2056687	17	C17orf56	rs1048775	79202329	5.78E-08	4.60E-38	0.066233	9.46E-07	0.19
ILMN_1707391	17	STXBP4	rs244293	53230722	2.26E-13	4.87E-09	0.198429	5.35E-06	0.93
ILMN_1715968	19	MLL4	rs17638853	36234652	1.89E-09	1.41E-12	-0.118845	5.89E-06	0.23
ILMN_1776188	20	MAP1LC3A	rs4564863	33179367	1.94E-08	8.12E-110	-0.037662	9.50E-08	0.25
ILMN_1781225	22	C22orf27	rs5753373	31283719	1.42E-11	1.76E-78	0.0569386	3.57E-10	0.95
ILMN_2103591	22	MORC2	rs7284474	31390187	6.47E-11	7.08E-24	-0.101685	5.99E-08	0.10

167 topSNP was the most significant SNP in the cis-region of the probe.
 168 topSNP_bp was the position of the most significant SNP.
 169 p_GWAS was p value from GWAS.
 170 p_eQTL was p value from eQTL study.
 171 b_smr was effect size from SMR test.
 172 p_smr was p value from SMR test.
 173 p_HEIDI was p value from HEIDI test.
 174

175 Table 2. Genes identified by SMR analysis for ANM.

probeID	Chr	Gene	topSNP_bp	topSNP	p_GWAS	p_eQTL	b_SMR	p_SMR	p_HEIDI
ILMN_1810915	1	FAAH	46747301	rs12142240	6.60E-09	5.31E-28	0.381001	2.24E-08	5.54E-02
ILMN_1716004	1	NSUN4	46806703	rs10489769	8.20E-08	9.38E-77	0.209601	1.14E-08	3.25E-01
ILMN_1793461	1	AK125462	149848885	rs1260246	1.60E-06	3.92E-79	0.207352	5.91E-06	9.53E-01
ILMN_1732810	2	SNX17	27644464	rs1728922	1.20E-14	5.12E-23	0.596554	5.06E-10	6.58E-02
ILMN_1670096	2	NRBP1	27584666	rs7586601	2.30E-14	1.59E-10	0.931532	5.85E-07	1.82E-01
ILMN_1729051	2	MSH6	48018081	rs1800932	3.20E-11	4.44E-47	0.30321	1.34E-07	3.86E-01
ILMN_1811029	2	TLK1	171871997	rs13004273	5.90E-17	1.67E-10	1.01194	1.89E-07	5.00E-01
ILMN_1788053	2	SLC25A12	172704291	rs4668414	2.30E-07	8.11E-21	-0.418	4.40E-07	2.27E-01
ILMN_1766859	3	MSL2	136518670	rs13433683	1.10E-05	2.00E-44	0.234233	3.08E-07	9.18E-01
ILMN_1779743	6	SYCP2L	10895260	rs6899676	2.20E-19	3.03E-10	1.07936	1.14E-06	6.02E-01
ILMN_1798804	6	SRPK1	35809776	rs17705020	1.70E-06	7.09E-34	0.280719	3.79E-06	5.41E-02
ILMN_1767642	11	C11orf46	30363101	rs7926666	1.90E-11	8.15E-34	-0.39443	1.99E-08	6.12E-02
ILMN_1734021	12	CLSTN3	7284301	rs2167285	1.20E-06	9.69E-20	-0.44306	2.53E-06	5.06E-02
ILMN_1654421	12	MPHOSPH9	123634122	rs884548	6.80E-07	2.39E-18	-0.43820	7.57E-07	5.77E-01
ILMN_1859908	16	TRAPPCL	88927221	rs3826061	2.80E-06	3.93E-198	-0.10996	8.13E-07	7.80E-02
ILMN_1805636	17	PGAP3	37833035	rs2941506	2.00E-09	2.98E-57	-0.27618	1.75E-09	6.23E-01
ILMN_2311089	17	BRCA1	41215825	rs3092994	2.80E-10	1.18E-66	0.275418	8.81E-11	1.58E-01
ILMN_1700690	17	VAT1	41215825	rs3092994	2.80E-10	4.47E-15	-0.60833	1.77E-07	3.21E-01
ILMN_1805344	17	DDX5	62502435	rs1991401	9.60E-07	2.73E-84	0.216125	9.84E-09	8.01E-02
ILMN_1802053	19	ZNF91	23545004	rs296092	1.50E-06	5.82E-118	0.151764	8.78E-08	6.96E-01
ILMN_2307025	20	CPNE1	34221155	rs6060524	1.40E-05	5.28E-244	0.100523	7.62E-07	1.00E+00

ILMN_1812934	20	DIDO1	61558775	rs910831	7.10E-10	2.65E-16	0.554822	3.19E-08	4.00E-01
ILMN_2371590	22	DDX17	39021522	rs5757187	1.30E-12	1.88E-28	-0.49116	9.01E-11	1.00E-01
ILMN_1668535	22	JOSD1	39065172	rs3788545	3.60E-12	3.06E-12	0.782725	1.46E-07	7.48E-01

176 topSNP was the most significant SNP in the cis-region of the probe.
177 topSNP_bp was the position of the most significant SNP.
178 p_GWAS was p value from GWAS.
179 p_eQTL was p value from eQTL study.
180 b_smr was effect size from SMR test.
181 p_smr was p value from SMR test.
182 p_HEIDI was p value from HEIDI test.
183
184 To identify more pleiotropic SNPs and genes associated with both phenotypes, we
185 conducted a colocalization analysis. One region was identified to contain a variant
186 influencing two phenotypes with the posterior probability of 0.92 (Table 3). Thirteen
187 regions were considered to influence two phenotypes through different variants (Table
188 3). rs3136249, with the largest probability, was considered to be the causal SNP
189 influencing two phenotypes.

190
191

192 Table 3. colocalization analysis results of AAM and ANM.

chunk	chr	st	sp	PPA_3	PPA_4
162	chr2	47318990	48212562	0.92	0.064
1419	chr15	88370262	90473690	2.5E-17	1.00
1579	chr19	614967	2098015	1.1E-08	1.00
360	chr3	135458294	137370076	4.1E-06	1.00
653	chr6	28918936	29737846	3.3E-05	1.00
799	chr7	92500845	93966036	5.4E-05	1.00
1637	chr20	32819871	34960201	6.7E-05	0.99
656	chr6	31572333	32682429	3.5E-03	0.97
655	chr6	30798697	31568469	6.1E-04	0.94
1682	chr22	19913726	22355640	4.0E-04	0.94
128	chr1	241582668	242070731	2.5E-04	0.93
1644	chr20	42680811	44838112	1.9E-03	0.93
1693	chr22	37570784	39306630	3.0E-04	0.92
1213	chr12	55665948	57543572	3.7E-04	0.91

193 Chunk was the internal numerical identifier for the segment.

194 chr: chromosome

195 st: star position

196 sp: end position

197 PPA_3 was the posterior probability of model 3.

198 PPA_4 was the posterior probability of model 4.

199

200 **Discussion**

201 In this study, we identified 31 genes whose expression was associated with AAM and
202 24 genes whose expression was associated with ANM due to pleiotropy or causality. In
203 total, we identified 7 new genes where there was no significant SNP in the gene region.
204 Many of these genes participated in DNA repair, immune response, and breast cancer
205 process [2, 5]. C17orf46 was identified to be associated with both phenotypes by
206 integrating GWAS and eQTLs data. We also found one region influencing two
207 phenotypes though the colocalization analysis.

208
209 SMR demonstrated that it was useful to prioritize novel genes associated with AAM or
210 ANM. In the significant loci, we redefined the functional genes which were more likely
211 to play important roles in the process of natural menopause. For example, a previous
212 study that combined modification quantitative trait locus (mQTL) and eQTL identified
213 that NRBP1 may be a functional gene associated with menopause in the significant
214 locus [12]. Our study found that the expression of NRBP1 was associated with age at
215 natural menopause due to pleiotropy or causality. SRPK1, encoding the splicing factor
216 kinase SRSF protein kinase 1, was highly expressed in basal breast cancer cells [13].
217 The knockdown of SRPK1 significantly suppressed metastasis of breast cancer cells
218 [14].

219
220 SMR tests reduced the multiple hypothesis burdens by testing tens of thousands of
221 genes instead of millions of SNPs [15]. So, SMR was useful in identifying novel genes
222 associated with AAM or ANM. DDX5, which is also known as p68, is a prototypic
223 member of the DEAD box family of RNA helicases that encompasses multiple
224 functions. DDX5 was highly expressed in a high proportion of breast cancers. Patients
225 with a detectable levels of both DDX5 and polo-like kinase-1 (pLK1) often had a poor
226 prognosis [16]. Fatty acid amide hydrolase (FAAH), the enzyme that breaks down the
227 endocannabinoid anandamide and controls its levels, is regulated by estrogen [17].

228
229 Despite the common belief that multiple genes are responsible for controlling the timing
230 of menarche and natural menopause, very few genes have been identified that contain
231 common genetic variants associated with AAM and ANM. In this study, we identified
232 two genes rs3136249 is located in the intronic region of MSH6. MSH6, which is a
233 mismatch repair gene, was found to be associated with ANM by previous study [18].
234 Although the function of C11orf46 is unknown, further studies are needed to prove this
235 result.

236
237 The present study may have some limitations that should be considered. Although we
238 redefined the functional genes in the significant loci, these genes may be associated
239 with age at natural menopause due to pleiotropy which meant that some of these genes
240 may be not the causal genes. Due to the limitation of method, we did not distinguish
241 those pleiotropic genes from causal genes. So, further works are warranted to confirm
242 the functional genes and explore the underlying mechanism.

243
244 In conclusion, we highlighted the putative functional genes in the significant loci for

245 AAM and ANM. Our study prioritizes the associated genes for further functional
246 mechanistic study of AAM and ANM and illustrates the benefit of integrating different
247 omics of data into the study of complex traits.

248

249 **Acknowledgments**

250 We thank Felix R. Day et al. to provide the GWAS summary data of AAM and ANM.
251

252 **References**

253 [1] Hartge P. Genetics of reproductive lifespan. *Nature Genetics*. 2009;41: 637.

254 [2] Day FR, Ruth KS, Thompson DJ, Lunetta KL, Pervjakova N, et al. Large-scale genomic
255 analyses link reproductive aging to hypothalamic signaling, breast cancer susceptibility and
256 BRCA1-mediated DNA repair. *Nat Genet*. 2015;47: 1294-1303.

257 [3] te Velde ER, Pearson PL. The variability of female reproductive ageing. *Human
258 Reproduction Update*. 2002;8: 141-154.

259 [4] Day FR, Thompson DJ, Helgason H, Chasman DI, Finucane H, et al. Genomic analyses
260 identify hundreds of variants associated with age at menarche and support a role for puberty
261 timing in cancer risk. *Nature Genetics*. 2017;49: 834-841.

262 [5] Stolk L, Perry JR, Chasman DI, He C, Mangino M, et al. Meta-analyses identify 13 loci
263 associated with age at menopause and highlight DNA repair and immune pathways. *Nat Genet*.
264 2012;44: 260-8.

265 [6] Perry JR, Hsu YH, Chasman DI, Johnson AD, Elks C, et al. DNA mismatch repair gene
266 MSH6 implicated in determining age at natural menopause. *Hum Mol Genet*. 2014;23: 2490-7.

267 [7] Zhu Z, Zhang F, Hu H, Bakshi A, Robinson MR, et al. Integration of summary data from
268 GWAS and eQTL studies predicts complex trait gene targets. *Nat Genet*. 2016;48: 481-7.

269 [8] Schaub MA, Boyle AP, Kundaje A, Batzoglou S, Snyder M. Linking disease associations
270 with regulatory information in the human genome. *Genome Res*. 2012;22: 1748-59.

271 [9] Westra HJ, Peters MJ, Esko T, Yaghootkar H, Schurmann C, et al. Systematic
272 identification of trans eQTLs as putative drivers of known disease associations. *Nat Genet*.
273 2013;45: 1238-1243.

274 [10] Lloyd-Jones LR, Holloway A, McRae A, Yang J, Small K, et al. The Genetic Architecture
275 of Gene Expression in Peripheral Blood. *Am J Hum Genet.* 2017;100: 228-237.

276 [11] Pickrell JK, Berisa T, Liu JZ, Segurel L, Tung JY, et al. Detection and interpretation of
277 shared genetic influences on 42 human traits. *Nat Genet.* 2016;48: 709-17.

278 [12] Zhang X, Moen EL, Liu C, Mu W, Gamazon ER, et al. Linking the genetic architecture of
279 cytosine modifications with human complex traits. *Hum Mol Genet.* 2014;23: 5893-905.

280 [13] Gui J-F, Lane WS, Fu X-D. A serine kinase regulates intracellular localization of splicing
281 factors in the cell cycle. *Nature.* 1994;369: 678.

282 [14] van Roosmalen W, Le Devedec SE, Golani O, Smid M, Pulyakhina I, et al. Tumor cell
283 migration screen identifies SRPK1 as breast cancer metastasis determinant. *J Clin Invest.*
284 2015;125: 1648-64.

285 [15] Pasaniuc B, L Price A. Dissecting the genetics of complex traits using summary
286 association statistics; 2016.

287 [16] Iyer RS, Nicol SM, Quinlan PR, Thompson AM, Meek DW, et al. The RNA
288 helicase/transcriptional co-regulator, p68 (DDX5), stimulates expression of oncogenic protein
289 kinase, Polo-like kinase-1 (PLK1), and is associated with elevated PLK1 levels in human breast
290 cancers. *Cell Cycle.* 2014;13: 1413-23.

291 [17] Cui N, Wang C, Zhao Z, Zhang J, Xu Y, et al. The Roles of Anandamide, Fatty Acid Amide
292 Hydrolase, and Leukemia Inhibitory Factor on the Endometrium during the Implantation
293 Window. *Frontiers in Endocrinology.* 2017;8: 268.

294 [18] Perry JR, Hsu Yh Fau - Chasman DI, Chasman Di Fau - Johnson AD, Johnson Ad Fau -
295 Elks C, Elks C Fau - Albrecht E, et al. DNA mismatch repair gene MSH6 implicated in

296 determining age at natural menopause.

297

298