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Abstract

One of the key characteristics of the transmission dynamics of infectious diseases is the
generation time which refers to the time interval between the infection of a secondary
case and the infection of its infector. The generation time distribution together with the
reproduction number determines the rate at which an infection spreads in a population.
When defining the generation time distribution at a calendar time ¢ two definitions are
plausible according whether we regard t as the infection time of the infector or the
infection time of the infectee. The resulting measurements are respectively called
forward generation time and backward generation time. It has been observed that the
mean forward generation time contracts around the peak of an epidemic. This
contraction effect has previously been attributed to either competition among potential
infectors or depletion of susceptibles in the population. The first explanation requires
many infectives for contraction to occur whereas the latter explanation suggests that
contraction occurs even when there are few infectives. With a simulation study we show
that both competition and depletion cause the mean forward generation time to
contract. Our results also reveal that the distribution of the infectious period and the
reproduction number have a strong effect on the size and timing of the contraction, as
well as on the mean value of the generation time in both forward and backward scheme.

Author summary

Infectious diseases remain one of the greatest threats to human health and commerce,
and the analysis of epidemic data is one of the most important applications of statistics
in public health. Thus, having reliable estimates of fundamental infectious diseases
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parameters is critical for public health decision-makers in order to take appropriate
actions for the global prevention and management of outbreaks and other health
emergencies. A key example is given by the prediction models of the reproduction
numbers: these rely on the generation time distribution that is usually estimated from
contact tracing data collected at a precise calendar time. The forward scheme is used in
such a prediction model and the knowledge of its evolution over time is crucial to
correctly estimate the parameters of interest. It is therefore important to characterize
the causes that lead to the contraction of the mean forward generation time during the
course of an outbreak.

In this paper, we firstly identify the impact of the epidemiological quantities as
reproduction number, infectious period and population size on the mean forward and
backward generation time. Moreover, we analyze the phenomena of competition among
infectives and depletion of susceptible individuals highlighting their effects on the
contraction of the mean forward generation time. The upshot of this investigation is
that the variance of the infectious period distribution and the reproduction number
have a strong impact on the generation times affecting both the mean value and the
evolution over time. Furthermore, competition and depletion can both cause contraction
even for small values of the reproduction number suggesting that, in epidemic models
where the generation time is considered time-inhomogeneous, estimators accounting for
both depletion and competing risks are to be preferred in the inference of the generation
interval distributions.

Introduction

In infectious disease epidemiology, mathematical models are increasingly being used to
study the transmission dynamics of infectious agents in a population and thereby
providing fundamental tools for developing control policies. An optimal control strategy
is based on an appropriate prediction model that in turn requires reliable estimates of
the key epidemic parameters.

Most research has focused on the ‘basic reproduction number’, Ry, which is defined
as the expected number of secondary cases resulting from introducing a typical infected
person into an entirely susceptible population [2|. The inference of its value in the
ascending phase of an epidemic is based either explicitly or implicitly on assumptions
about the generation interval distribution [3].

The generation interval, or generation time, is defined to be the time interval
between the infection time of an infectee and the infection time of its infector [4].
Generation times are lengths of time intervals and thus there is not a unequivocal
procedure to define their dependence on a precise calendar time ¢. To account for the
evolution over time a choice has to be made weather considering generations from the
infectee or infector point of view. In the former case the time coordinate refers to the
time that has evolved since the infector of an infected person was infected. This is
called ‘backward’, or ‘period’, generation interval. In the latter case, known as ‘forward’,
or ‘cohort’, generation interval the average time required to infect another individual is
recorded [5}[6]. Considered in the forward scheme, the generation interval distributions
is commonly used to estimate infectious disease parameters such as the basic
reproduction number [6H9].

More ambiguity arises in the estimation of the mean generation time because actual
data often concern the onset of clinical symptoms rather than the time of infection.
These observations relate to the ‘serial interval’, the time interval between symptom
onset of a secondary case and symptom onset of its infector [10]. Many authors have
used the serial interval as a synonym for the generation time. However, unlike the
generation time, the serial interval can have a negative duration when the clinical
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symptoms for an infectee appear prior to that of its infector |[11]. Note that the serial
interval is only defined for symptomatic individuals; an issue that we will not discuss
here.

Statistical development led to approaches for the estimation of the generation time
distribution |7}/12,/13] or jointly of the basic reproduction number and the generation
time distribution [14H16]. The usefulness of the aforementioned approaches has been
demonstrated in the analysis of epidemic data during e.g. SARS outbreaks and the
pandemic influenza A(HIN1)V2009 outbreak [17H19]. Most of these estimation methods
assume the generation or serial time distribution to remain constant during the
epidemic. However, several authors described a non-constant evolution over time for
both backward and forward generation interval [5L|6L8,20]. In the former case as the
epidemic evolves the generation time increases while in the latter case the generation
time contracts reaching a minimum approximately at the peak of the outbreak [61/8].
We will refer to this phenomenon in the forward scheme as ‘contraction’ to stress the
particular shape that the mean generation time assumes over time. The non-constant
evolution of the generation interval has stimulated a search for different approaches to
estimate the reproduction number that avoid assuming a constant generation intervals
distribution through time [8}9/13]. Kenah et al. (2008) proposed an hazard-based
estimator and the so-called contact interval, the time from onset of infectiousness to an
infectious contact, accounting not only for depletion but also for competing risks.

The contraction of the mean forward generation time seems counter-intuitive since
one would expect generations to happen faster in the initial phase of the epidemic, when
the population is mostly susceptible. The principal aim of this paper is to clarify the
epidemiological mechanisms that cause contraction. Researchers typically assign to the
phenomenon of contraction only one among two explanations: competition among
infectors [8] and depletion of susceptible individuals [5,20]. Both explanations are
reasonable, but a study that clearly shows which of these hypotheses are responsible for
the contraction of the mean forward generation time is not present in literature. The
first explanation requires multiple infectors competing to infect the same susceptible
and affects the specific generation time while the latter accounts for the variation in the
probability of encountering a susceptible individual during the outbreak inducing
infectors to more likely infect other individuals in a short time frame since the
probability of contacting a susceptible later on is lower. More recently, Liu et al. (2018)
reported the evolution over time of the mean forward generation interval in a structured
population. More precisely, different infectious contact processes have been defined in
different locations showing that levels of contraction strongly depend on the underlying
contact process. Therefore, in addition to investigate the competition and depletion
hypotheses, we address the impact on the mean backward and forward generation
intervals over time of settings with different reproduction numbers, population sizes and
infectious period distributions.

The present investigation is a simulation study where the simulations are based on
two different algorithmic implementations of a stochastic SIR compartmental model as
introduced by Kenah et al. (2008) and Scalia Tomba et al. (2009) which will be referred
to as the stepwise and the parallel algorithm respectively. In what follows, we revisit the
taxonomy of various time intervals used in epidemic modeling, we simulate the impact
of the considered epidemic quantities on the mean generation times and we show the
impact of competition and depletion on the mean forward generation interval. In
addition to a baseline scenario we present three artificial scenarios accounting for
different levels of competition and depletion level since in the SIR model these
phenomena cannot be disentangle. Finally, we conclude by explaining under which
conditions the two hypotheses give rise to the generation interval contraction.
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Materials and methods

We follow the notation used by Kenah et al. (2008) to describe the dynamics of the
well-known ‘Susceptible-Infected-Removed’ (SIR) compartmental epidemic model in a
closed population of size IV:

1. after an infectious contact, person i acquires infection at time t¢;.

2. during the infectious period of length r;, person ¢ is capable of infecting other
individuals

3. at time t; + r;, person % is immune and cannot be longer infected by other person.

We distinguish between three time intervals that determine the between-host
transmission of infection. The first one is the contact interval 7; ;, defined to be the
time interval between the onset of infectiousness in person i and the first infectious
contact from i to j, where we define an infectious contact as a contact sufficient to
transmit the disease.

After becoming infectious at time ¢; an infected person ¢ makes contact with person
j at time t; ; = t; + 7; ;. When the contact interval 7; ; occurs within the infectious
period r;, i.e. 7; ; < r;, the infection can be transmitted and the contact interval is
called infectious contact interval 7/ ;. This contact will lead to an infection if j is
susceptible at time ¢; ;. In this framework the generation time w; ; can be defined in the
following way: if an infectious contact from person 7 to person j leads to an infection
transmission, then w; j = 7;°; is called the generation time. In the present paper we
consider a Poisson contact process.

Simulation setup

Our simulation models are based on two algorithms previously introduced in literature.

The stepwise algorithm was proposed by Kenah et al. (2008); it is based on the notion
contact interval [22] and it was implemented to illustrate the competition among
potential infectors and its effect on the mean generation times. After the onset of
infectiousness in an indiviudal, infectious contact intervals are drawn for all the other
susceptible persons. The parallel algorithm was outlined by Scalia-Tomba et al. (2009);
it is based on the infectious contact process aiming to illustrates the effect of the
depletion of susceptible individuals. Based on a specific infectious contact process, a
single infectious contact interval is proposed by all the individuals that are infectious in
the current time step. A complete description of both algorithms is given in S1
Appendix. Since results are similar for both algorithms we report results based on the
parallel algorithm and defer results based on the stepwise algorithm to S1 Appendix (S1
Fig and S1 Table).

Baseline scenario

We start the investigation of the causes that affect the generation time setting a baseline
scenario that representing the dynamic of a stochastic SIR model. In the baseline
scenario, we look at the impact of the infectious period, the reproduction number and
the population size on the mean backward and forward generation interval using the
two aforementioned algorithms. In the forward scheme, the mean generation interval is
calculated within each infector’s set of generation times and then used as a single data
point per infector to avoid the size biased sampling effect [5] whereas in the backward
observation scheme, we attribute the unique generation time to each single infectee.
We simulate different epidemics by varying:
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e Ro=1.5,2,3,4,5

e the infectious period distribution with mean 1: constant, Exp(1) =T'(1,1),
I'(0.5,2) and I'(2,0.5), resulting in variances equal to 1, 2 and 0.5, respectively.

e the population size: N=100, 500 and 1000

We work with a completely susceptible and closed population and report, based on
1000 simulations, the mean duration of an epidemic (7,42 ), the mean final size (Fy),
and the averages of mean forward (w;) and mean backward generation times (wy,). We
study non-extinct outbreaks or outbreaks that persist, i.e. outbreaks in which a
substantial proportion of the population is infected, i.e. with final size larger than 10%
of the total population.

The evolution over time of the generation intervals is reported performing a loess
regression on the first n = 35 non-extinct simulations. We used this approach to
account for the stochasticity of the epidemic process and because we want to attach a
confidence interval that quantifies the variability over simulations. The number of
simulations is set to n = 35 because of computational limitations: the prediction of the
loess regression requires a lot of computational memory, especially for high reproduction
numbers and high population sizes where a considerable number of generations are
registered. Rerunning results on random sets of simulations of size n yielded similar
results and therefore the choice of n = 35 is not considered a limitation. The loess
function requires specifying a smoothness parameter called span. Different span values
did impact the plot in the final part of the epidemic but did not qualitatively affect the
results (S3 and S4 Figs). The same approach will be used also for the other scenarios.

Contraction of the mean forward generation time

We introduce three summary measures to account for competition and depletion. In
case the interest is in competition, we compute the relative number of generations
affected by competition p, i.e. the number of generations for which more than an
individual propose an infectious contact to a specific susceptible over the total number
of generations; we report also the mean number of competitors when there is
competition, p.. In case interest is in depletion, we compute the maximum depletion ¢

that is defined to be:
. S(t)
o\ N

We refer to S1 Appendix for the procedure to calculate the maximum depletion.

We first show that competition and depletion are present in the baseline scenario
and we compare these summaries for populations of size N = 4,10, 20, 50, 100, 200 and
for Rg = 1.5,3,5.

After that, to investigate the phenomenon of contraction, next to the baseline
scenario, we study two scenarios that increase the effect of, respectively, depletion and
competition on the generation time distribution. In the former scenario susceptible
persons are vaccinated at a specific moment in time during the epidemic, referred to as
the vaccination scenario, and in the latter scenario infectious individuals are forced to
compete for the same susceptible, referred to as the competition scenario. We also study
a scenario in which the competition among infectors is not present: individual are
forced to proposed a contact only to susceptible persons who no one already proposed
an infectious contact to. We refer to this scenario as the pure depletion scenario. In all
of these scenarios the infectious period is set here to be constant to avoid that the
stochasticity of the infectious period distribution affects the results.

Sg:
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Vaccination of susceptible persons

We study simulations in which 30%, 60% and 90% of the susceptible population is
vaccinated during the epidemic. In a population of size N = 1000 and Ry = 1.5 we do
so by vaccinating the remaining susceptible persons at a specific time called vaccination
time and indicated with ¢,. In this way we change the depletion effect: both augmenting
the intensity and changing the time at which depletion occurs. We consider simulations
with different vaccination times representing the initial phase (¢, = 2), the main phase
(t, = 3,5,7) and the last phase (t, = 9) of the epidemic and we compute the value of the
epidemic characteristics. We do not report the depletion entity because of the instant
drop in susceptible population. Lastly, we plot the evolution over time of the forward
generation time for comparing this depletion scenario with the baseline scenario.

Pure depletion scenario

In this scenario infectives propose infectious contacts only to individuals who no other
infectors proposed an infectious contact to. In this way, there is no competition and
only depletion would be responsible for contraction. We consider populations of size
N = 100,500 and 1000 and reproduction numbers Ry = 1.5,2,3,4,5 and we compare
this scenario with the baseline scenario in which competition is present. For every
non-extinct simulation we compute the loess regression and we keep track of the
maximum value, the minimum value and the range defined as the difference between
maximum and minimum. We do not report here the relative number of generations
affected by competition because of requiring huge computational memory to monitor all
these generations. However, for a small sample size, values are in line with the
simulations for N = 100, 200.

Competition among infectious persons

In the competition scenario, we force individuals to compete for the same susceptible
persons in a fixed time frame. To do that, every time an individual proposes an
infectious contact we force that individual to propose it to a susceptible person who
already someone else proposed an infectious contact to. We consider a scenario with
population size N = 1000 and R = 1.5 and, without loss of generality, we modify the
code increasing competition when the outbreak time is in the interval (3,7). We select
this time interval to allow for starting from a reasonably sized infectious population.

Results

Impact of infectious period, reproduction number and
population size on the realized generation intervals.

Table 1 summarizes the results of the baseline scenario showing remarkable differences
when different infectious period distributions are considered: an higher variance of the
infectious period distribution enlarges the disparity between the value of the mean
forward and backward generation times, specially in the case of low value of the
reproduction number. Moreover, the outbreaks last longer and the backward and
forward generation times are registered to be larger. This discrepancy between mean
backward and forward generation time decreases for scenarios with lower variance
resulting almost the same when a constant infectious period is considered. The average
mean generation time decreases as the basic reproduction number increases, in line with
previous studies [5}6},8].
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Table 1. Epidemic characteristics - baseline scenarios

Pop. size N = 100 N = 500 N = 1000
R, 1.5 2 3 4 5 1.5 2 3 4 5 1.5 2 3 4 5
= | Tnaa 7.09 6.19 4.38 3.54 3.05 11.62 8.25 5.59 4.39 3.70 13.66 9.11 6.05 4.77 4.00
:_f_/ FS |56.85 | 79.61 | 94.19 | 98.03 | 99.36 | 291.70 | 398.64 | 470.32 | 490.09 | 496.53 | 581.92 | 797.00 | 940.28 | 980.11 | 993.01
g wy 0.48 0.46 0.40 0.34 0.28 0.49 0.47 0.40 0.34 0.28 0.49 0.47 0.40 0.34 0.29
© wy 0.48 0.46 0.41 0.35 0.30 0.49 0.47 0.41 0.35 0.30 0.49 0.47 0.41 0.35 0.31
-2 ) S (] 8.35 6.45 5.44 4.97 15. 11.87 .45 7.09 6.31 18.84 13.20 9.17 .02 6.95
-g o FS 55.00 | 77.74 | 93.87 | 98.10 | 99.22 | 283.83 | 397.29 | 469.64 | 489.82 | 496.33 | 575.75 | 796.39 | 940.30 | 980.23 | 992.78
&j ) wr 0.60 0.56 0.46 0.36 0.30 0.61 0.57 0.47 0.37 0.31 0.61 0.57 0.47 0.38 0.31
3 = wy 0.70 0.63 0.50 0.39 0.33 0.70 0.64 0.51 0.41 0.33 0.71 0.65 0.51 0.40 0.33
S| ~ | Lnaa 9.97 9.87 8.25 .12 6.67 19.24 15.20 11.10 9.44 NE] 23.66 16.87 12.19 10.53 9.62
g % FS 52.79 | 75.45 | 93.40 | 97.82 | 99.18 | 286.27 | 396.88 | 469.69 | 489.78 | 496.36 | 572.23 | 796.06 | 940.45 | 979.78 | 992.86
E é wr 0.70 0.65 0.53 0.42 0.34 0.72 0.67 0.54 0.43 0.35 0.72 0.67 0.54 0.43 0.35

wp 0.87 | 0.79 | 0.61 0.47 | 0.37 0.93 0.83 0.63 0.48 0.38 0.94 0.83 0.63 0.48 0.38
Tonae | TLT7 1235 7 11.25 1 10.05 | 9.43 20.80 | 21.42 ] 16.21 13.85 [ 12.89 S1.39 [ 2416 | 1770 ] 15.66 | 14.52
FS | 49.50 | 72.46 | 92.40 | 97.40 | 98.96 | 290.26 | 394.28 | 469.93 | 489.51 | 496.29 | 572.21 | 790.85 | 938.90 | 979.94 | 992.77
wy 0.84 | 0.81 | 0.67 | 0.53 | 0.43 0.91 0.85 0.69 0.54 0.43 0.92 0.85 0.69 0.55 0.43

wp 1.18 1.11 | 0.84 | 0.63 | 0.50 1.36 1.20 0.88 0.65 0.50 1.38 1.21 0.87 0.65 0.50

(0.5,2)

Average values of duration (7,45 ), final size (F'S), mean forward (wy) and mean
backward (wp) generation times.

In Figs 1 and 2 we show the evolution over time of the mean forward and backward
generation times in a population of size N = 1000, respectively, for Ry = 1.5,2,3,4,5
and for the infectious period distributions specified before. The mean forward
generation interval contracts as the reproduction number increases but still slightly even
for low values of the reproduction number. In the backward observation, the generation
time shows an increasing trend that is steeper for high value of the reproduction number
and for higher variance of the infectious period. The evolution over time for both the
forward and the backward generation intervals show a similar pattern for the different
infectious period distributions though we notice that a higher variability is observed for
scenarios in which the infectious period distribution has larger variance.

A B
Q o
E £
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Fig 1. Evolution of the mean forward generation time. (A) Assumes a constant
infectious period of unitary length, (B) a gamma infectious period I'(2,0.5), (C) an
exponential infectious period of rate 1 and (D) a gamma infectious period I'(0.5, 2).
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Fig 2. Evolution of the mean backward generation time. (A) Assumes a
constant infectious period of unitary length, (B) a gamma infectious period I'(2,0.5), (C)
an exponential infectious period of rate 1 and (D) a gamma infectious period I'(0.5, 2).

Lastly, we observe that the different population sizes do not affect considerably the
average value of the forward and backward generation time (Table 1). In Fig S5 we show

that also the evolution over time is similar for the different sizes considered in the paper.

Contraction of the mean forward generation time

In this section, our focus is on the evolution over time of the mean forward generation
time and on the impact of competition and depletion thereon. We firstly show that
competition and depletion are present in our model reporting, respectively, the mean
value of the generations where competition is present and the variation in the number of
susceptible individuals.

Results reported in Table 2 show that when the reproduction number increases, also
the number of generations affected by competition and the mean number of competitors
increase. Furthermore, p. is stable for the tested population size, while the depletion
intensity is more accentuated in small population.

Table 2. Competition and depletion intensity

Pop. size N=4 N =10 N = 20 N = 50 N = 100 N = 200
Ro 1.5 3 5 1.5 3 5 1.5 3 5 1.5 3 5 1.5 3 5 1.5 3 5
Pe 0.08 | 0.18 | 0.25 ] 0.06 | 0.21 | 0.30 | 0.06 | 0.22 | 0.32 | 0.05 | 0.22 | 0.33 | 0.05 | 0.22 | 0.33 | 0.04 | 0.22 | 0.33
e 2.03 | 2.08 | 2.10 | 2.05 | 2.18 | 2.28 | 2.06 | 2.16 | 2.27 | 2.07 | 2.16 | 2.28 | 2.05 | 2.16 | 2.29 | 2.03 | 2.16 | 2.29
7] 3.11 | 370 | 512 ] 0.89 | 1.18 | 1.94 | 0.45 | 0.88 | 1.53 | 0.25 | 0.74 | 1.33 ] 0.19 | 0.71 | 1.29 | 0.16 | 0.68 | 1.26

Average values of the proportion of generations affected by competition (p.), the mean
number of competitors (u.) and the depletion intensity (¢).
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In Fig 3 we show the phenomena of competition and depletion over time in a
population of size N = 500. Each point reported in the graph represents the start of the
infectious period of an individual for which one (G-1), two(G-2), three(G-3) or four
(G-4) generations are affected by competition. Generations affected by competition are
concentrated in the declining phase of the forward generation time, close to the
maximum contraction point. In the graph we report also the probability of encountering
a susceptible individual and the time at which the depletion is at its maximum; the
latter is in the region where contraction is at maximum.

500
|
1.0

G-1

400
0.8

X G-2

G-3 d

300
1
0.6
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Individuals

200
|
0.4

rrrrr SIN

Fwd

100
|

Max depl

Fig 3. Competition and depletion. Number of infectious individuals over time
(black line), mean forward generation time (orange line), proportion of susceptible
individuals (green dashed line), time of maximum depletion (grey dashed line) and
number of generations affected by competition for a single individual (G-1,G-2,G-3,G-4).

In the vaccination scenario individuals are vaccinated at a precise time during the
epidemic. In Table 3 we report the values of the epidemic characteristics for different
vaccination times in a population of size N = 1000 and a reproduction number of 1.5.
When the vaccination coverage is high, i.e. 90%, the mean values are always smaller
with respect to the baseline scenario, independently from the vaccination time. This
difference is higher when vaccination takes place in the increasing phase of the epidemic
(t, = 3) and in the main phase (¢, = 5). Vaccination in the last part does not affect
remarkably the mean values of the generation time distributions. When the vaccination
is performed in the early stage of an epidemic (¢, = 2), the impact is clearly visible for
high vaccination coverage (60%, 90%) while for a small coverage the impact seems
negligible.

Table 3. Epidemic characteristics - vaccination scenario
Vacc. time t, =2 t, =3 t, =5 t, =17 t, =9
Coverage 30% 60% 90% 30% 60% 90% 30% 60% 90% 30% 60% 90% 30% 60% 90%
Tnas 1246 | 592 | 384 | 1L.75 | 6.70 | 483 | 1138 | 827 | 679 | 1153 | 9.75 | 866 | 1189 | 1104 | 10.35
FS 177.57 | 120.55 | 113.85 | 211.02 | 146.52 | 136.48 | 329.86 | 271.18 | 245.43 | 452.72 | 420 | 394.23 | 539.33 | 516.17 | 508.79
wy 0.49 0.44 0.38 0.49 0.45 0.41 0.48 0.47 0.44 0.49 0.48 0.47 0.49 0.48 0.48
wy 0.49 0.45 0.40 0.49 0.46 0.43 0.49 0.47 0.45 0.49 0.48 0.47 0.49 0.48 0.48
Pe 0.01 0.02 0.03 0.04 0.02 0.02 0.03 0.03 0.04 0.04 0.04 0.04 0.04 0.04 0.04
Jhe 2.01 2 1.9 2.02 2.01 2.01 2.03 2.02 2.02 2.02 2.02 2.02 2.02 2.03 2.03

Average values of duration (T},4z), final size (F'S), mean forward (w;) and mean

backward (w;,) generation times together with the proportion of generations affected by
competition (p.), mean number of competitors (u.) and depletion intensity (¢).

In Fig 4, we report the simulated evolution over time of the mean forward generation
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interval for the vaccination times t, = 5. We can appreciate the phenomenon of
contraction that increases with an increasing in the vaccination coverage reaching the
maximum contraction right before the vaccination time. In S1 Appendix we report the
forward generation time in case of ¢, = 2,9 showing a similar trend to the plot reported
hereunder (S2 Fig).

1.00-

0.75-
(o)
£
c Scenario:
(9] i
(=2} — Baseline
0 0.50- — Vacc. 30%
= — Vace. 60%
L Vace. 90%
=
©
Q
=

0.25-

0.00- ‘
0 5 10 15 20

Time
Fig 4. Evolution of the mean forward generation time - Vaccination
scenario. Comparison of the evolution of the mean forward generation time between
the baseline scenario (blue line) and the vaccination scenarios. The vaccination time is
set at t, = 5 and the vaccination coverages considered are 30% (red line), 60% (green
line) and 90% (orange line).

In the pure depletion scenario the phenomenon of competition is not present
anymore. We compare Table 4 (pure depletion scenario) with Tables 1 and 5 (baseline
scenario) to assess the impact of competition. Results show that there are no
remarkable differences among these two scenarios, neither for different values of the
reproduction number nor for different population sizes. We observe that the mean
values of the generation time distributions are slightly smaller when competition is
present, both in the forward and in the backward scheme.

Table 4. Epidemic characteristics - Pure depletion scenario

Pop. size N = 100 N = 500 N = 1000
Ro 1.5 2 3 4 5 1.5 2 3 4 5 1.5 2 3 4 5
Tnax 7.06 | 575 | 3.89 | 3.11 | 2.73 ] 11.26 7.59 4.78 3.72 | 3.23 | 12.70 8.35 5.19 3.97 3.42
FS 61.56 | 86.96 | 98.93 | 99.96 | 100 | 315.60 | 434.84 | 494.77 | 499.86 | 500 | 629.80 | 868.91 | 989.73 | 999.73 | 999.99
wy 0.49 0.47 0.41 0.35 | 0.29 0.49 0.47 0.42 0.35 0.30 0.49 0.48 0.42 0.35 0.30
wp 0.49 | 047 | 042 | 0.36 | 0.31 0.49 0.48 0.42 0.36 | 0.31 0.49 0.48 0.42 0.36 0.31

Max loess 0.68 | 0.65 | 0.61 | 0.56 | 0.51 0.63 0.62 0.60 0.56 | 0.54 0.61 0.61 0.60 0.55 0.54

Min loess 0.33 | 0.33 | 0.27 | 0.20 | 0.16 0.39 0.38 0.31 022 | 0.17 0.40 0.40 0.33 0.23 0.18

Range loess | 0.34 | 0.32 | 0.34 | 036 | 0.35 0.23 0.25 0.28 0.34 | 0.37 0.20 0.22 0.27 0.32 0.36
4 0.21 | 043 | 0.85 1.20 | 1.52 0.16 0.39 0.83 1.17 | 148 0.16 0.40 0.82 1.16 1.48

Average values of duration (7,45 ), final size (F'S), mean forward (wy) and mean
backward (wp) generation times, maximum, minimum and range of the loess regression
(Max loess, Min loess and Range loess) and depletion intensity ().

March 5, 2019

10/23

250

251

252

253

254

255

256

257

258

259

260

261


https://doi.org/10.1101/568485
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/568485; this version posted March 8, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

aCC-BY-ND 4.0 International license.

Table 5. Loess regression values and depletion intensity - Baseline scenario

Pop. size N = 100 N = 500 N = 1000
Ro 1.5 2 3 4 5 1.5 2 3 4 5 1.5 2 3 4 5
Max loess | 0.69 | 0.66 | 0.62 | 0.58 | 0.53 | 0.62 | 0.63 | 0.63 | 0.60 | 0.56 | 0.60 | 0.61 | 0.62 | 0.61 | 0.58
Min loess 0.33 1 0.31 | 0.27 | 0.21 | 0.17 ] 0.39 | 0.38 | 0.32 | 0.26 | 0.21 | 0.41 | 0.39 | 0.34 | 0.28 | 0.22
Range loess | 0.36 | 0.35 | 0.35 | 0.37 | 0.37 | 0.23 | 0.25 | 0.30 | 0.33 | 0.35 | 0.19 | 0.22 | 0.28 | 0.33 | 0.36
© 0.19 | 0.36 | 0.71 | 1.02 | 1.29 ] 0.14 | 0.32 | 0.67 | 0.97 | 1.25 ] 0.13 | 0.32 | 0.69 | 0.97 | 1.24

Average values of maximum, minimum and range of the loess regression (Max loess,
Min loess and Range loess) and depletion intensity ().

In Fig 5 we report the mean forward generation interval over time comparing the
pure depletion and the baseline scenarios in the case of Ry = 5, where the number of
generations affected by competition is higher. However, the evolution of the curves
result to be similar, showing a little difference between the two considered scenarios.

0.75-

Scenario:
0.50- — Baseline
— Pure Depletion

Mean FWD gen. time

0.25-

0.00-
0 i 2 3
Time
Fig 5. Evolution of the mean forward generation time - Pure depletion
scenario. Comparison of the evolution of the mean forward generation time between
the baseline scenario (blue line) and the pure depletion scenarios (purple line).

In the competition scenario, we increase competition in the time interval (3,7), for a
population of size N = 1000 and a reproduction number of value Ry = 1.5. In Table 6
we report the epidemic characteristics; we notice that the mean value of the generation
time is smaller compared to the one in the baseline scenario (Table 1), both for the
forward and the backward scheme. We also notice that the mean number of generation
affected by competition and the mean number of competitors is higher respect to the
baseline scenario with same reproduction number (Table 2).

Table 6. Epidemic characteristics - Competition scenario

T FS W§ Wh Dec e ¥
13.49 | 349.10 | 0.45 | 0.46 | 0.10 | 2.61 | 0.09

Average values of duration (T,qz), final size (F'S), mean forward (wy) and mean
backward (wp) generation times, generations affected by competition (p.), mean number
of competitors (u.) and depletion intensity (p).

In Fig 6 we show the evolution of the forward generation interval comparing the
competition and the baseline case. It is clearly visible that the mean forward generation
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time contracts around the interval in which the competition intensity is increased.

0.75-

Scenario:
— Baseline
— Competition

0.50-

Mean FWD gen. time

0.25-

0.00-
0 . E 10 20
Time
Fig 6. Evolution of the mean forward generation time - Competition
scenario. Comparison of the evolution of the mean forward generation time between
the baseline scenario (blue line) and the competition scenario (purple line). The dotted
lines represent the interval in which the competition is increased.

Discussion

The present study was designed with the aim of characterizing the main cause of
contraction in the evolution over time of the mean forward generation interval. The
results of this investigation address both depletion of susceptible individuals and
competition among infectors as causes of contraction. Scenarios where the depletion or
the competition effects are increased show that the mean forward generation interval
contracts with a peak close to the time point of maximum depletion or maximum
competition, even for a small value of the reproduction number. In the pure depletion
scenario, depletion clearly causes the phenomenon of contraction. Given that results are
similar to the baseline scenario where depletion and competition are both present, we
can conclude that depletion is predominant in shaping the evolution over time of the
mean forward generation time.

A rapid depletion forces the infectious person to make more shorter infectious
contacts because the probability of encountering a susceptible individual drastically
decreases over time. This phenomenon is highlighted for high values of the reproduction
number: the rate of the contact process is higher implying that infectious individuals
propose on average more infectious contacts during their infectious period. The higher
depletion effect increases the proportion of short contact intervals resulting in a faster
and larger contraction of the mean forward generation time.

Competition also affects the generation time distribution but its effect is directed to
a single generation. To have a similar impact on the mean forward generation time as
caused by depletion, competition should affect most of all the generations that an
individual makes. This is simulated in the scenario where competition is increased and
results show a potentially large impact of competition on the forward generation time.
However, in a baseline scenario where competition is not increased rarely more than one
generation per single individual is affected by competition and the mean number of
competitors is not particularly high to be able to explain a decreasing mean forward
generation time (Fig 3). Furthermore, the effect of competition is strongly dependent on
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the competitor’s infection time and does not not always affect the considered generation.

The contact interval that leads to the generation time can be the longest one among the
contact intervals proposed by the infectors since the next generation is the minimum of
the set given by the infection times plus the proposed contact times. Competition is
slightly affecting the forward and backward generation time: Table 6 shows a small
decrease probably due to the competition effect.

This paper’s focus is on the evolution over time of the mean forward generation time
but the backward generation scheme is of interest too. The mean backward generation
time is known to be increasing [620] and differently from the forward scheme a single
generation is considered for every time point. The increasing trend is due to the fact
that the probability of encountering a susceptible decreases over time, but a more
intense competition can, also in this case, modify the evolution of the mean value over
time. This is shown in Fig S6, where in a preliminary investigation the baseline,
vaccination, increasing competition and pure depletion scenarios are compared. The
effect of competition clearly flattens the increasing trend of the mean backward
generation time over time while increased depletion (vaccination scenario) causes a
steeper increase.

Another aim of this study was to investigate the effect of the reproduction number,
the infectious period and the population size on the mean generation time in the
backward and forward scheme. Results show that their mean values over time decrease
faster and more with increasing reproduction number. Furthermore, the infectious
period distribution affects remarkably these mean values with a higher impact when the
variance of the selected infectious period distribution is higher. This finding can be
explained with the mathematical framework developed by Nishiura (2010) where he
mathematically relates the probability density function of the generation interval to the
infectious period distribution. The population size does not remarkably influence the
mean generation intervals for the tested sizes.

Although we have looked at compartmental SIR models, we expect our conclusion to
hold for more complicated compartmental models, and even for epidemics models on
structured contact networks. A limitation of our investigation is the assumption made
for the infectious contact process to be described by a Poisson process and to be
homogeneous in the population: in a structured population the infectious contact
process depends on the location where the contacts take place because of different
behaviour of individuals yielding different contact processes |21].

The findings of the present study clearly show the non-constant behaviour of both
backward and forward generation interval, in line with the literature [5./6}8,20].
Moreover, this has been the first attempt to thoroughly examine the cause of the
contraction: competition and depletion are both capable of affecting the evolution over
time of the mean generation interval. As result, in such models, estimators of the
generation time distribution, accounting for both depletion of susceptible and
competing-risk, are to be preferred.
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Supporting information

Stepwise algorithm

Consider an introductory case in an entirely-susceptible population of size N at time
t(1) = 0 and assume the person recovery period is known. The epidemic evolves in the
following way: the introductory case makes contacts with all the susceptible person in
the population {7(1); : j € Sy, } according to a contact interval distribution with hazard
function hy), (7). Among all contacts made by the introductory case, only the infectious
contact have potential to generate the secondary cases. Set {tf}) } = {t(1) + 7(;).} as the
proposed infection times of all the infectious contacts made by the first case, where T(*l )
denotes all the infectious contact intervals of the first case. Note that all recipients o
these infectious contacts will be infected at or before time tz‘l _, either from person (1) or
from another infector. In fact, the second infected case corresponds to the smallest

proposed infection time and occurs at time t(3) = min ({t?1)4}>. Now there are two

infected persons in the population. Similarly, the second case makes contacts

{1(2)j 17 € St@)} with the remaining N — 2 susceptible persons according to the hazard
function h(a); (7). Set {tfy).} = {t(2) + 7(3).} as the proposed infection times. The third
case occurs at the minimum proposed infection time between the available infectious
contacts made by the first and second infected case: t(3) = min ({ta)} \ t?l)@)’ t>(“2).)

Note that all proposed infectious time for already-infected cases has to be omitted. The
third case can be infected either by the first or the second infected case, depending on
which one has made the first infectious contact. The epidemic continues until there are
no infectious persons. We summarize the algorithm in 5 steps.

For the ith infected person:

1. Generate contact intervals {7(;;: j € Sy, } according to the hazard function
hiy; (T)-

2. Record the proposed infection time {ta)} ={tw + 7).}

3. Recursively, set {T7;)} = {t{;) } U{T(;_;)}, where T{j) = 0.
4. The next infected case occurs at time #(; ;1) = min ({T&)}).

5. Set {T(} = {17} \ {t7;41)}, where {t7,, )} is the set of all proposed infection
times for the (i + 1)-th case from all the potential infectors.

The outbreak ends when there are no longer infectious persons. This algorithm
highlight the phenomenon of competition among infectious persons (Kenah et al. 2008).

Parallel algorithm

The other algorithm for generating epidemics is the parallel algorithm by Scalia Tomba
et al. (2010). The epidemic begins with an imported infection from outside the
population at time ¢(;y = 0. The introductory case has an infectious period of length
7(1), according to a desirable statistical distribution F. We assume that the total
number of contacts for a fixed length of the infectious period r, follows a homogeneous
Poisson process with constant intensity Sr, where 3 is a known constant. Consequently,
the inter-arrival contact times for an infected case i, denoted by {d;1,d;2,- - } are
independent and follow an exponential distribution of parameter Sr. The introductory
case will randomly meet the first individual at time tzl)l =t(1) + d¢1)1- If this contact
happens within the infectious period r(y), i.e. tZ‘l)l < t@1) + r@), it is an infectious
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contact and the infection time of the next case is t(5) = tz‘l)l. At this stage, the newly
infected case and its infector will contact other people randomly in the population.
Unlike the stepwise algorithm, this contact can be potentially generated also for already
infected person. In parallel, the first case will generate his or her second contact at time
tZ‘l)Q =t(1) + d(1)1 + 6(1)2 and the second case will generate his or her contact at time
tz2)1 =1t(2) + d(2)1- As long as the contacts are made with susceptible persons and lie
within the respective infectious period, they will be infectious contact. The third case
will correspond to an infectious contact with the earliest contact time. The epidemic
grows in this way until there are no infectious person anymore. We summarize the
parallel algorithm:

For each infectious case i:

1. Generate the next inter-arrival contact time ;4

2. Set T}, =T} + d;4 as the proposed next contact time of person i where T}" is the
previous contact time made by case 1.

3. If i > t; +r; the case 7 is already recovered and the contact can not be an
infectious contact, then discard it. If the contact is made with a susceptible
person it is a proposed infectious time and record 77, .

4. The next infectious time is the minimum over all the proposed infectious time.

5. Generate the recovery time for the newly infected.

Comparison of the simulation algorithms

The two algorithms give the same results when looking at the mean value of the
considered epidemic characteristics and when plotting the evolution over time of the
mean forward and backward generation times. In S1 Table we reported the average
quantities of mean duration 7},,,, mean final size F'S, mean forward generation time
@y and mean backward generation generation time &y for simulations with the stepwise
algorithm. Values are almost the same as the ones reported for the parallel case in
Table 1. In S1 Fig we compare the evolution over time of the mean forward generation
time in the vaccination scenario for Ry = 1.5, 3 varying the infectious period and using
both parallel and stepwise algorithms. The plot shows that the results are independent
from the selected algorithm and infectious period. Same conclusions hold also for the
gamma infectious period distributions considered in this paper.

S1 Table. Epidemic characteristics - baseline scenarios

Pop. size 100 500 1000
R, 1.5 2 3 4 5 1.5 2 3 4 5 1.5 2 3 4 5
= | Toae | 709 | 6.19 | 438 | 3.54 | 3.05 11.62 8.25 5.59 4.39 3.70 13.66 9.11 6.05 4.77 4.00
; FS 56.85 | 79.61 [ 94.19 | 98.03 | 99.36 | 291.70 | 398.64 | 470.32 | 490.09 | 496.53 | 581.92 | 797.00 | 940.28 | 980.11 | 993.01
5 wr 0.48 | 046 | 0.40 | 0.34 | 0.28 0.49 0.47 0.40 0.34 0.28 0.49 0.47 0.40 0.34 0.29
© wpy 0.48 | 046 | 041 | 0.35 | 0.30 0.49 0.47 0.41 0.35 0.30 0.49 0.47 0.41 0.35 0.31
= Tnax (0 .30 6.45 0.44 4.97 15.8: 11.87 4D 7.09 6.51 18.84 15.20 9.17 .02 6.9
S FS 55.09 | 77.74 | 93.87 | 98.10 | 99.22 | 283.83 | 397.29 | 469.64 | 489.82 | 496.33 | 575.75 | 796.39 | 940.30 | 980.23 | 992.78
S', wy 0.60 | 0.56 | 0.46 | 0.36 | 0.30 0.61 0.57 0.47 0.37 0.31 0.61 0.57 0.47 0.38 0.31

wp 0.70 | 0.63 | 0.50 | 0.39 | 0.33 0.70 0.64 0.51 0.41 0.33 0.71 0.65 0.51 0.40 0.33
Tnaz | 9:97 9.87 20 | 12 6.67 19.2477715.20 | TI.10 9.44 (3 23.06 | 16.87 12.19 77 10.53 9.62

Infectious Period

s FS 52.79 | 75.45 | 93.40 | 97.82 | 99.18 | 286.27 | 396.88 | 469.69 | 489.78 | 496.36 | 572.23 | 796.06 | 940.45 | 979.78 | 992.86
5 wy 0.70 | 0.65 | 0.53 | 0.42 | 0.34 0.72 0.67 0.54 0.43 0.35 0.72 0.67 0.54 0.43 0.35

wh 0.87 | 0.79 | 0.61 0.47 | 0.37 0.93 0.83 0.63 0.48 0.38 0.94 0.83 0.63 0.48 0.38
=~ | Lmae | 1LI7 1235 71125 T7710.05 T 9.43 25.80 | 21.42 16.21 13.85 12.89 5139 | 24.16 1770 15.65 14.52
S FS 49.50 | 72.46 | 92.40 | 97.40 | 98.96 | 290.26 | 394.28 | 469.93 | 489.51 | 496.29 | 572.21 | 790.85 | 938.90 | 979.94 | 992.77
g, wr 0.84 | 0.81 0.67 | 0.53 | 0.43 0.91 0.85 0.69 0.54 0.43 0.92 0.85 0.69 0.55 0.43

wy 1.18 1.11 0.84 | 0.63 | 0.50 1.36 1.20 0.88 0.65 0.50 1.38 1.21 0.87 0.65 0.50

Average values of duration (T},qz), final size (F'S), mean forward (w;) and mean
backward (wy) generation times for simulations based on the stepwise algorithm.
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S1 Fig. Evolution of the mean forward generation time - Parallel and
Stepwise algorithm Mean forward generation time in the vaccination scenario
comparing stepwise and parallel algorithms. (A) and (B) identify the parallel algorithm
while (C) and (D) identify the stepwise algorithm. The considered infectious period is
exponential with unitary rate and the population is of size N = 1000. The reproduction
number is of value Ry = 1.5 for (A) and (C) and of value Ry = 3 for (B) and (D). The
vaccination time is, respectively, ¢, = 9 (A and C) and ¢, = 5 for (B and D).

Maximum depletion

Every time an infectious contact is proposed we keep track of the current time ¢; and the
probability of encountering a susceptible individual at that specific time &, computed
as the proportion of susceptibles over the population size. We than fit a 5-parameters
logistic curve f(x[{t;};,{&,};) to the simulated values using the function drm of the
drc package in R. At this point we approximate the derivative of the fitted function as:

Pl (6 h) ~ f(@+hl{t;};,{&, }j})L — f@l{t;};.{&; 1)

where in our simulation h is set to be h = 0,001. According to this discretization, for a
specific simulation we define the maximum depletion to be:

% = |min (F/(t 1t} 5, {8 30))

We then compute the mean of the depletion intensity value among all the non extinct
simulations.
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Vaccination time

Vaccination affects the phenomenon of contraction differently, depending on the
vaccination time. In S2 Fig we report plots for two different vaccination times t, = 2,9
in the scenario with Ry = 1.5 reported in the results section representing the ascending
phase and the descending phase of an epidemic outbreak. Even if the intensity is
different the phenomenon of contraction is always present.

A
i
© 0.9- i
E
g ' Scenario:
O () 5- ! — Baseline
[a] [C——— — Vacc. 30%
E | — Vacc. 60%
' Vacc. 90%
% '
g 03 ]
= i
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Time
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O 6- 4 — Baseline
=) : — Vace. 30%
E \\ — Vacc. 60%
' o
c:u { Vacc. 90%
3 0.3 4
= :
H
0.0-
0 5 10 15 20

Time
S2 Fig. Evolution of the mean forward generation time for different
vaccination times. Mean forward generation time for a vaccination time of ¢, = 2 (A)
and t, = 9 (B). The population is of size N = 1000, the reproduction number of value
Ro = 1.5 and the infectious period is constant.

Regression of the simulated data

The simulated data are analyzed in R; generations resulting from the first n non-extinct
simulations are merge together in a unique data file and we predict the value of a loess
regression to express the evolution over time of mean forward or backward generation
time. This analysis required a huge computational memory, limiting the number of
simulations that can be considered. However, this R function allows us to construct a
confidence interval to quantify the variability of the loess regression used. In S3 Fig we
show how different numbers of considered simulations affect the results. The quality of
the fit is based on the number of generations considered and this number is directly
related to the population size. We present the evolution over time for the mean forward
generation time in a population of size N = 1000 for a constant infectious period. These
plots enforce the analysis we conducted even if a limited number of simulations are
considered.
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S3 Fig. Prediction of the mean forward generation time. Prediction of the
mean forward generation time based on, respectively, n =5 (A), n =20 (B) and n = 30
non extinct simulations. The selected infectious period is constant with unitary length,
the population size is N = 1000 and the simulations are obtained with the parallel
algorithm. The reproduction number Ry = 1.5,2,3,4,5.

Another important aspect in the loess regression is the considered span. The fitting
is done locally and the considered neighbourhood of a point z is based on the value of
the span, parameter that has to be given as input in the loess function. In S4 Fig we
report the evolution over time of the mean forward generation time for R = 1.5 in the
vaccination scenario for three different values of the span parameter: 0.5, 0.75(default
value) and 1.5 in the case of exponential infectious period. The plot shows differences
between the curves in the last part of the outbreak after the vaccination time where few
generations are registered. This is probably due to the little number of generations that
happen after the vaccination time. We want to remark that the result of contraction
holds independently on the type of span considered.
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S4 Fig. Prediction of the mean forward generation time - varying the span
parameter Prediction of the mean forward generation time based on different value of
the span parameter (loess regression). Respectively, span=0.75 (A), span=1 (B) and
span=0.5 (C). The population is of size N = 1000, the vaccination time is ¢, = 9, the
reproduction number Ry = 1.5 and the infectious period is exponential of unitary rate.

Lastly, we want to show the evolution over time of the mean forward generation time
for different population sizes. In S5 Fig we report this quantity for population of size
N = 100,500 and 1000 in the case of exponential infectious period. We notice that one
plot is the re-scaling of the others; the general evolution of the forward generation
intervals is not affect by the population size. The same results apply for the backward
generation interval.
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S5 Fig. Evolution of the mean forward generation time - Population sizes
Evolution of the mean forward generation time in the baseline scenario for different
population size. A, B and C identify, respectively, a population of size

N =100, 500,1000. The infectious period considered is exponential with unitary rate
and the reproduction number varies with Ry = 1.5,2,3,4, 5.

Effect of competition and depletion on the mean backward
generation time

In a preliminary study, we investigated also the effect of competition on the mean
backward generation time. In S6 Fig we report the evolution over time of the mean
backward generation interval Rg = 1.5, 3,5 comparing the baseline, the vaccination, the
competition and the pure depletion scenario. We note an overall relevant impact of
competition when its effect is incremented (competition scenario), registering a
smoothed increase. Furthermore, for Ry = 3,5 we observe that the pure depletion and
the baseline scenario have different evolution indicating an impact of competition.
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S6 Fig. Evolution of the mean backward generation time Evolution of the
mean backward generation time comparing the baseline scenario, the vaccination (90%
coverage) scenario, the competition scenario and the pure depletion scenario. The
infectious period is constant, the population is of size N = 1000 and the considered
reproduction number is, respectively, Rg = 1.5 (A), Ro =3 (B) and Ry =5 (C).
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