

## 1 Running title: visual working memory and distractibility in schizophrenia

2

# 3 Unexpected higher resilience to distraction during visual

## 4 working memory in schizophrenia

5

6 Yijie Zhao<sup>1</sup>, Xuemei Ran<sup>1</sup>, Li Zhang<sup>1</sup>, Ruyuan Zhang<sup>2\*</sup>, Yixuan Ku<sup>1\*</sup>

<sup>7</sup> <sup>1</sup>The Shanghai Key Lab of Brain Functional Genomics, Shanghai Changning-ECNU Mental  
<sup>8</sup> Health Center, School of Psychology and Cognitive Science, East China Normal University,  
<sup>9</sup> Shanghai, 200062 China

<sup>2</sup>Center for Magnetic Resonance Research, Department of Radiology and Neuroscience,  
University of Minnesota, Minneapolis, MN 55455 USA

<sup>12</sup> \*co-senior authors

13

## 14 Correspondence:

15 Ruyuan Zhang [ruyuanzhang@gmail.com](mailto:ruyuanzhang@gmail.com)

16 Yixuan Ku [yxku@psy.ecnu.edu.cn](mailto:yxku@psy.ecnu.edu.cn)

17

18

19 **ABSTRACT**

20 Visual working memory (VWM) and distractibility are two core executive functions in human  
21 cognition. It has been suggested that schizophrenia (SZ) patients exhibit worse VWM  
22 performance and lower resilience to distraction compared with healthy control (HC) subjects.  
23 Previous studies, however, have largely investigated these two functions separately. It still  
24 remains unclear what are the mechanisms of the deficits, especially the interactions between the  
25 two cognitive domains. Here we modify the standard delay-estimation task in VWM and  
26 explicitly add distractors in the task so as to examine the two domains simultaneously. We find  
27 that SZ indeed exhibit worse performance compared with HC in almost all VWM load and  
28 distraction levels, a result consistent with most prior experimental findings. But adding  
29 distractors does not selectively impose larger impacts on SZ performance. Furthermore, unlike  
30 most previous studies that only focused on behavioral performance, we use the variable precision  
31 model to disentangle the distraction effect on different computational components of VWM  
32 (resources and resources allocation variability etc.). Surprisingly, adding distractors significantly  
33 elevates resources allocation variability—a parameter describing the heterogeneity of resource  
34 allocation across different targets—in HC but not in SZ. This counterintuitive result suggests that  
35 the internal VWM process in SZ is less interfered by the distractors. However, this unexpected  
36 higher resilience to distraction might be associated with less flexible cognitive control  
37 mechanisms. In sum, our work demonstrates that multiple cognitive functions might jointly  
38 contribute to dysfunctions in SZ and their interactions might manifest differently from merely  
39 summing their independent effects.

40

41 **Keywords:** Schizophrenia, Visual working memory, distractibility, Bayesian observer model

42

43 **INTRODUCTION**

44 Visual working memory (VWM) is a central cognitive ability that provides temporary storage  
45 and manipulation of information<sup>1,2</sup>. VWM deficits have been widely documented in people with  
46 schizophrenia (SZ)<sup>3-7</sup>. But the underlying mechanisms still remain unclear. Existing theories  
47 propose impaired sensory processing at the encoding stage of working memory as one candidate  
48 mechanism of the behavioral deficits<sup>8</sup>. Indeed, our sensory systems are often confronted with an  
49 immense amount of information that greatly exceeds the processing capacity<sup>9</sup>. However,  
50 working memory capacity is known to be limited<sup>10,11</sup>. The capacity limitation necessitates a  
51 selection process that prioritizes task-relevant information and filters out task-irrelevant ones in  
52 order to optimize performance. This is particularly important when salient distractors are present  
53 and interfering with the processing of targets. The interference induced by distractors, so-called  
54 “distractibility”, has been shown to link with several key cognitive functions, such as working  
55 memory<sup>12</sup>, endogenous and exogenous attention<sup>13</sup>, perceptual and value-based decision<sup>14</sup>,  
56 response inhibition<sup>15</sup>, cognitive control<sup>16</sup>. Moreover, atypical distractibility has been discovered  
57 in several psychiatry disorders, including ADHD<sup>17</sup>, autism<sup>18</sup>, depression<sup>19</sup>.

58 A sizable amount of literature has suggested the aberrant distractibility in SZ<sup>20-24</sup>. One  
59 standard approach to study distractibility is to impose distractors in some cue-based attention  
60 tasks. However, most studies found no significant deficits in cue-based attention tasks in SZ<sup>25,26</sup>.  
61 One possibility is that the cues and instructions in those tasks were quite simple and 100% valid.  
62 Simple cues ease the tasks and require less attentional control. By contrast, if probed in high-  
63 demanding attention tasks, SZ exhibit deficits in suppressing salient distractors<sup>27,28</sup>. These  
64 findings suggest that the distractibility deficits in SZ exist and might be more prominent at the  
65 presence of highly salient distractors.

66 Recent advances in the basic science of VWM demonstrate that behavioral performance  
67 in VWM tasks is mediated by multiple factors<sup>29</sup>. It has long been proposed that SZ has lower  
68 memory capacity but intact memory precision compared with healthy control (HC) subjects<sup>4,30</sup>.  
69 This view has been proposed in the studies that use standard VWM tasks without distractors. It  
70 remains unclear whether SZ have deficits in VWM processing when confronted with distractors.  
71 From the computational perspective, distractors may reduce memory capacity and/or impair  
72 memory precision. Unfortunately, most previous studies on SZ have examined distractibility and  
73 VWM deficits separately. Few studies have attempted to combine them and investigate their

74 interaction effect. It remains two unanswered questions: (1) whether SZ have distractibility  
75 deficits in VWM; (2) if yes, which VWM component(s) such distractibility deficits will  
76 influence.

77 In this study, we aimed to combine the classical distraction and VWM experimental  
78 paradigm to simultaneously the two functions in SZ. To do so, we modified a standard VWM  
79 task—color delay-estimation task. In the color delay-estimation task, subjects need to memorize  
80 the colors of all presented items and after a short delay reproduce the color of one cued item. In  
81 our modified version (Fig. 1), subjects were instructed to memorize only a subset of presented  
82 items (i.e., targets) and ignore other items (i.e., distractors). We independently manipulated the  
83 target size and the distractor size to control VWM loads and distraction levels. Moreover, we  
84 employed the Variable Precision (VP) model<sup>31</sup> explicitly estimate three key aspects of VWM—  
85 the amount of resources at different target size level, the variability of resource assigned across  
86 items, and the variability induced by choice. Therefore, the VP model allows us to quantify the  
87 distraction effect in the computational process of VWM.

88

89

90

91 **MATERIALS AND METHODS**

92 *Subjects*

93 Sixty clinically stable SZ (33 inpatients and 27 outpatients) and sixty-one HC were  
94 recruited in this study. All SZ met the DSM-IV criteria for schizophrenia and were receiving  
95 antipsychotic medication (2 first-generation, 43 second-generation, and 15 both). The Brief  
96 Psychiatric Rating Scale (BPRS), the Scale for the Assessment of Negative Symptoms (SANS)  
97 and the Scale for the Assessment of Positive Symptoms (SAPS) were obtained to evaluate the  
98 symptom severity. HC were recruited by advertisement. All HC have no current diagnosis of axis  
99 1 or 2 disorders, substance dependence or abuse, or family history of psychosis. All subjects are  
100 right-handed with normal sight and color perception. Two groups of subjects were matched in  
101 age and educational level.

102

103 *Stimuli and Task*

104 The experiment was run on the platform of Matlab 8.1 and Psychtoolbox 3. Subjects were  
105 seated at a distance of 50 cm away from an LCD monitor.

106 Each trial started with a fixation cross presented at the center of the screen, lasting for the  
107 time randomly chosen from [300, 350, 400, 450, 500 ms]. A set of colored shapes (squares  
108 and/or circles) were then shown on the screen on an invisible circle with 4° radius for 500 ms.  
109 Four conditions were used in this experiment: target size 1 / 3 × distractor size 0 / 2. Half of the  
110 subjects were instructed before the experiment started to remember colored squares (target items)  
111 and ignore colored circles (distractors) for the whole experiment and vice versa. Colored squares  
112 were 1.5° × 1.5° of visual angles and colored circles were 1.5° of visual angles in diameters. The  
113 sample array was shown for 500 ms, followed by a 900 ms delay period with only the fixation  
114 cross on the screen for memory retention. Then, an equal number of outlined shapes were  
115 presented at the same locations of the items shown in the sample array. One of the outlined  
116 shapes was bolded, indicating the target item at this cued location is to be recalled. Meanwhile, a  
117 randomly rotated color wheel was shown on the screen, with the inner and outer radius as 7.8°  
118 and 9.8° respectively. Subjects were instructed to recall and report the color of the bolded item  
119 by clicking on the color wheel using a computer mouse. Precise recall of the color was desired  
120 and the response time was unlimited. The 180 colors used in this experiment were selected from  
121 a circle (centered at L = 70, a = 20, b = 38, radius of 60) deriving from the CIE L\*a\*b color

122 space. All subjects finished one block of 80 trials for each condition. The order of conditions was  
123 counterbalanced across subjects.

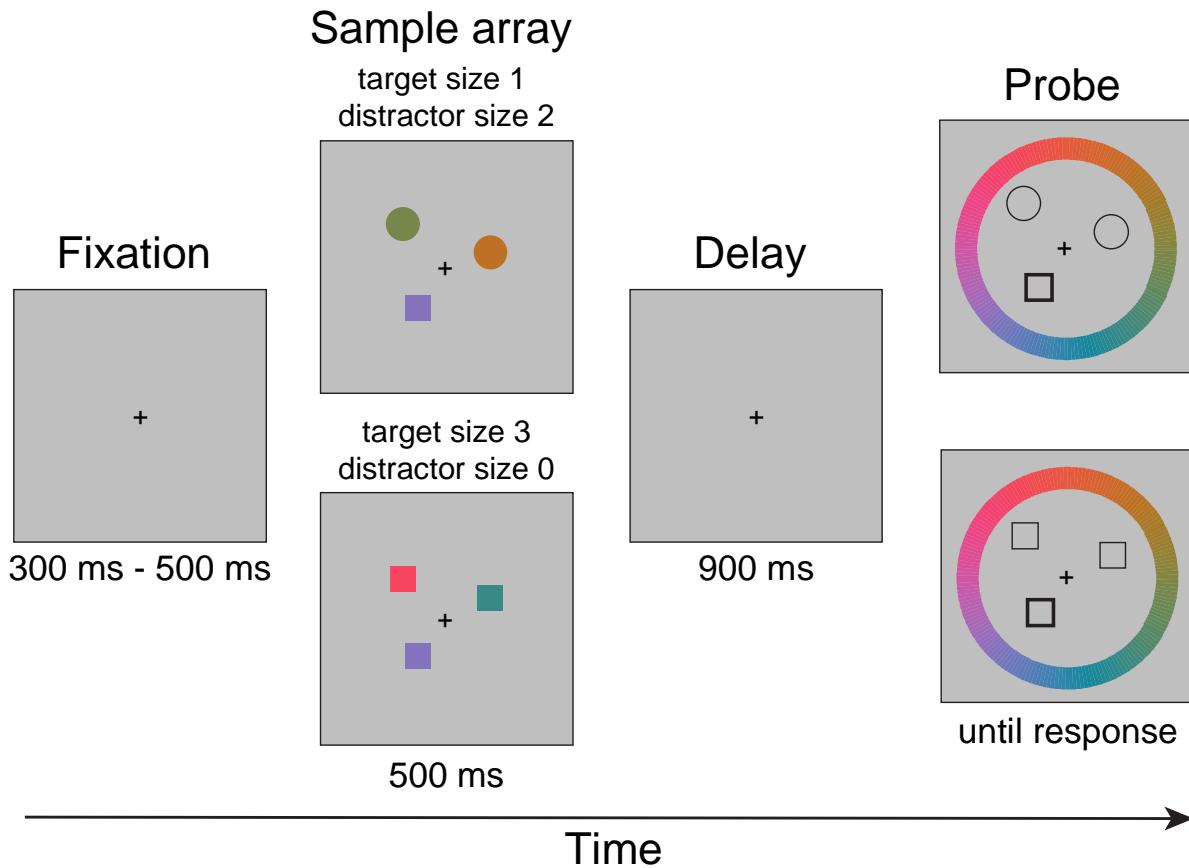



Figure 1. The modified color delay-estimation task. This figure illustrates two example trials of the experiment. In the experiment, each trial starts with a fixation point presented for 300ms to 500ms (with a step of 50ms). In the sample array, one or three targets (squares in this example) together with zero or two distractors (circles, a  $2 \times 2$  design) are displayed on the screen for 500ms. Subjects were instructed to remember the colors of one of the shapes in the sample array. After a 900ms delay, outlines of the items at their original location would appear and one of the cued target shapes is cued. Subjects are asked to recall and report the color of the target by clicking on the colored wheel using a computer mouse.

#### *Data analysis*

The data with no distractor has been presented in reference (32)<sup>32</sup>. Comprehensive analysis of the distraction effect in this paper is new.

Variable precision model. The variable precision (VP) model was initially proposed by van den Berg *et al*<sup>31,33</sup>. The VP model proposes that the mean VWM resource levels declines as the target size assigned to individual items are not only continuous but also variable across items

141 and trials. This variability in resource assignment results in trial-by-trial response errors.  
142 Moreover, the VP model also explicitly isolated the variability of behavior choice (e.g., motor or  
143 decision noise), which was ignored by most previous models in VWM.

144 For each item, the memory resources recruited  $J$  is defined as Fisher information  
145  $J = \kappa \frac{I_1(\kappa)}{I_0(\kappa)}$ , where  $I_0$  and  $I_1$  are modified Bessel functions of the first kind of order 0 and 1  
146 respectively, with the concentration parameter  $\kappa$ . In the VP model, because  $J$  varies across  
147 items and trials, it is further assumed to follow a Gamma distribution with a mean of  $\bar{J}$  and  
148 scale parameter  $\tau$ . Moreover, since the mean VWM resource decreases with target size  $N$  (Fig.  
149 3A), we assume that the relationship between  $\bar{J}$  and  $N$  can be written in a power-law fashion  
150  $\bar{J} = \bar{J}_1 * N^{-\alpha}$ , where  $\bar{J}_1$  is the initial resources when only 1 item ( $N = 1$ ) should be remembered in  
151 VWM and  $\alpha$  is the decay exponent.

152 The model also assumes that the subject' internal representations of stimuli are noisy and  
153 follow a von Mises distribution. Thus, the distribution of sensory measurement ( $m$ ) given the  
154 input stimulus ( $s$ ) can be written as:

$$155 \quad p(m | s) = \frac{1}{2\pi I_0(\kappa)} e^{\kappa \cos(m-s)} \equiv VM(m; s, \kappa), \quad [1]$$

156 and we further assumes that subjects' reported color ( $\hat{s}$ ) shat also follows a von Mises  
157 distribution with the choice variability  $\kappa_r$ :

$$158 \quad p(\hat{s} | m) = \frac{1}{2\pi I_0(\kappa_r)} e^{\kappa_r \cos(\hat{s}-m)} \equiv VM(\hat{s}; m, \kappa_r). \quad [2]$$

159 Taken together, there are four free parameters:  $\bar{J}_1$ ,  $\alpha$ ,  $\tau$  and  $\kappa_r$  in the VP model.

160

### 161 *Model fitting*

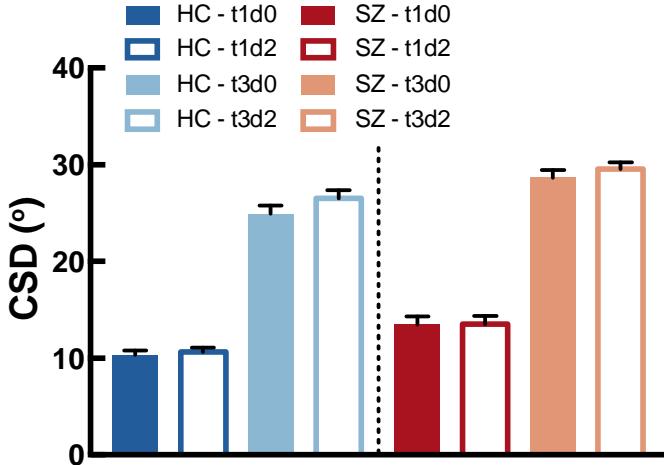
162 We fit the model separately for each subject. Because  $J$  is a variable across items and  
163 trials, we sampled it for 10000 times from the Gamma distribution with mean  $\bar{J}$  and scale  
164 parameter  $\tau$ . We then used all these samples to calculate response probability in each trial.

165 We used the BADS optimization toolbox in MATLAB to search the best fitting  
166 parameters that maximize the likelihood of responses. To avoid the issue of local minima, we did  
167 the optimization process for 20 times with 20 different initial seeds. The parameters with the

168 maximum likelihood were used as the best fitting parameters for a subject and were further used  
169 in the statistical process.

170

171 **RESULTS**


172 ***SZ make larger recall errors than HC***

173 We set four experimental conditions (target size 1/3 x distractor size 0/3) for each group. In the  
174 modified color delay-estimation task, performance in a trial, denoted as “response error”, was  
175 defined as the distance between the true color and the reported color of the cued item in the  
176 circular color space. For each subject, circular standard deviations (CSD) of response errors in  
177 each experimental condition were calculated separately as indexes of VWM performance.

178 A  $2 \times 2 \times 2$  ANOVA was performed with the CSDs as the dependent variable (Fig. 2),  
179 target size (1/3) and distractor size (0/3) as the within-subject variables, and group (SZ/HC) as  
180 the between-subject variable. We observed the main effects of target size ( $F(1,119) = 935.650, p < 0.001$ , partial  $\eta^2 = 0.887$ ) and distractor size ( $F(1,119) = 8.909, p = 0.003$ , partial  $\eta^2 = 0.070$ ),  
181 indicating that behavioral performance in both groups declined as the memory load and the  
182 distraction level increased. These results also suggest that our experimental manipulation  
183 successfully induced the classical load effect and the distraction effect. A group difference was  
184 also found ( $F(1,119) = 12.716, p < 0.001$ , partial  $\eta^2 = 0.097$ ) and we confirmed a general worse  
185 VWM performance of SZ than HC, a result consistent with many previous studies showing the  
186 VWM deficits in schizophrenia<sup>3–6</sup>. We also found a significant interaction between target size  
187 and distractor size ( $F(1,119) = 4.486, p = 0.036$ , partial  $\eta^2 = 0.036$ ). Post hoc analysis showed  
188 that the distractors worsened VWM performance ( $p = 0.004$ ) in the high target size (i.e., target  
189 size = 3) condition, whereas no distraction effect was detected in the low target size (i.e., target  
190 size = 1) condition ( $p = 1.000$ ).

192 The key question we asked here was whether the distractors selectively impaired VWM  
193 processing in SZ. If yes, we should expect an interaction effect between distractor size and group  
194 as adding distractors might impose stronger performance deteriorations in SZ compared with HC.  
195 However, we did not find such interaction effect ( $F(1,119) = 0.820, p = 0.367$ , partial  $\eta^2 = 0.007$ ), indicating that adding distractors worsened performance in both groups and such  
196 distraction effect was not specific to SZ. Moreover, previous studies have suggested that  
197 distractibility deficits in SZ might be more prominent when the task becomes more challenging  
198 (e.g., higher memory load). However, no other significant interaction effect was noted with  
199 respect to the group variable (target size  $\times$  group,  $F(1,119) = 0.139, p = 0.710$ , partial  $\eta^2 = 0.001$ ;  
200 target size  $\times$  distractor size  $\times$  group ( $F(1,119) = 0.137, p = 0.712$ , partial  $\eta^2 = 0.001$ ). These

202 results were consistent with the previous studies<sup>25,26,34</sup> showing that SZ exhibit generally worse  
203 VWM performance than HC but the memory load and distraction effect manifest similarly in  
204 both groups.



205

206 Figure 2. General memory load and distraction effects on both groups. A higher CSD  
207 indicates worse performance. Increasing the memory load and the distractor level  
208 worsen performance in both groups. Also, SZ showed generally worse VWM  
209 performance than HC. Moreover, distractors only impact VWM performance at high  
210 memory load (target size = 3). Error bars represent  $\pm$ SEM across subjects. The letter  
211 “t” in the legend means “target size” and “d” means “distractor size”. For example,  
212 “t1d0” indicates target size = 1 and distractor size = 0.

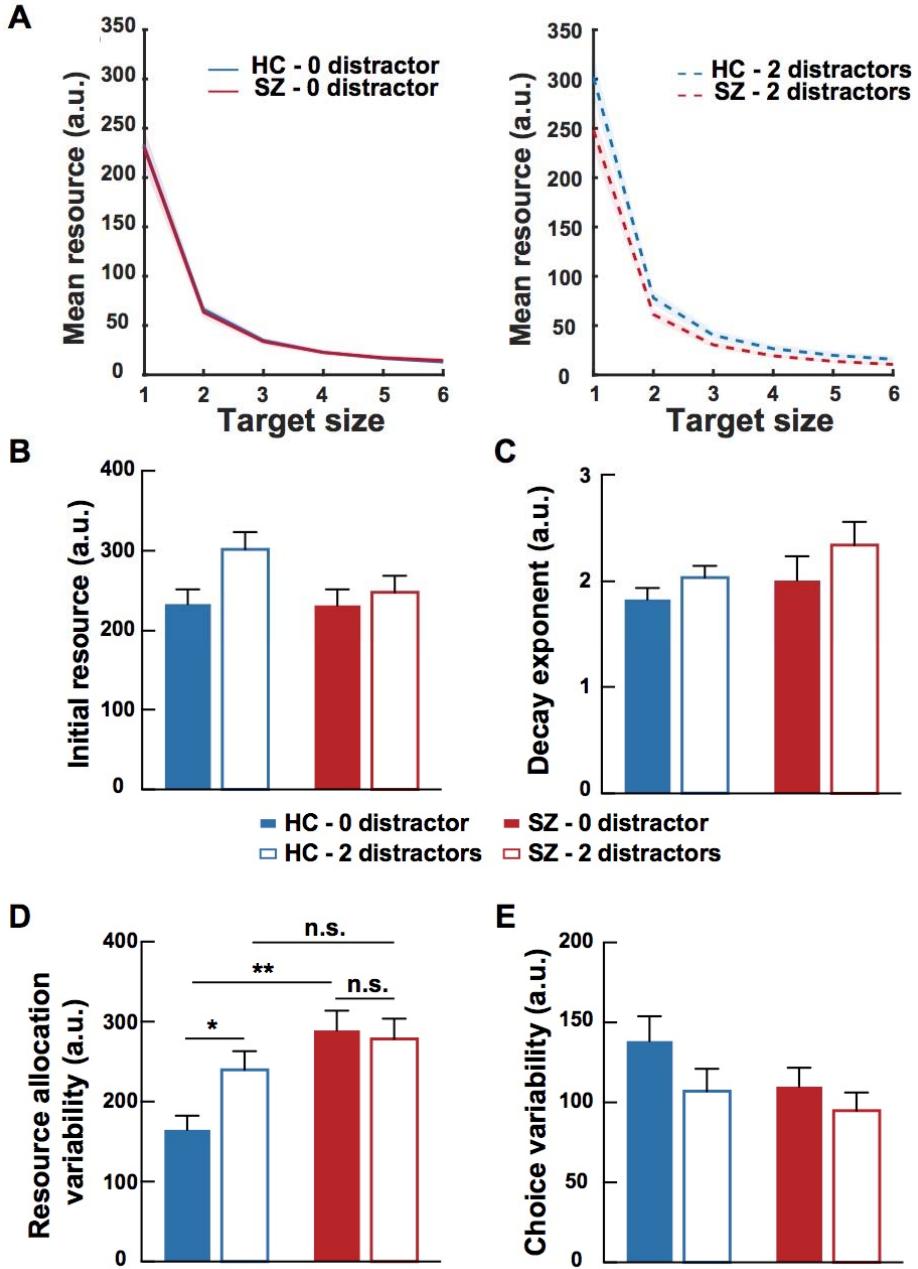
213

#### 214 ***Distractors elevate resource allocation variability in HC but not in SZ***

215 Above analyses only focused on CSD—a summary statistics describing the variance of recall  
216 error distributions in each experimental condition. To further scrutinize the data, we employed  
217 the VP model (see Methods)—a Bayesian observer model describing the generative process of a  
218 behavioral choice in the delay-estimation task. The VP model has two major strengths. First,  
219 unlike the CSD as a summary statistical variable, the VP model is a probabilistic model that can  
220 utilize the data in every trial without losing any information. Second and more importantly, the  
221 VP model explicitly defines some key VWM components and characterizes the full generative  
222 process of the VWM task. Therefore, we can quantify the distraction effect on these VWM  
223 components.

224 We elaborated the details of the VP model here. First, the VP model estimates the initial  
225 resources when only one target is present. Second, the memory resources decline as a power  
226 function of target size and this decreasing trend can be described by the decay exponent. Third,

227 the power function only specifies the mean resource at each target size level. The actual  
228 resources assigned to each item vary and follow a Gamma distribution with the variance as  
229 resource allocation variability. The amount of resources assigned to each item determines the  
230 precision of sensory measurement (i.e., memory representation) of the item. Forth, given the  
231 noisy representation, there exists choice variability describing the uncertainty from internal  
232 sensory representation to the outcome behavioral choice. We estimated the four parameters (i.e.,  
233 initial resources, decay exponent, resource allocation variability and choice variability) on each  
234 subject and separately on two distractor size levels.


235 We performed a  $2 \times 2$  ANOVA with distractor size as the within-subject variable, group  
236 as the between-subject variable, and the four estimated parameters of the VP model as the  
237 dependent variables. We observed a main effect of group in resource allocation variability  
238 ( $F(1,119) = 9.863, p = 0.002$ , partial  $\eta^2 = 0.077$ ), showing an overall higher resource allocation  
239 variability in SZ compared to HC (Fig. 3D). This result is consistent with our earlier work<sup>32</sup>. The  
240 main effect of group was not significant in the other three parameters. Particularly, we did not  
241 observe a significant main effect of initial resource and decay exponent, two factors that control  
242 the amount of memory resources. Intuitively, these results suggest that SZ might have the same  
243 amount of memory resources, but they distributed the resources across targets in a very  
244 heterogeneous manner.

245 We also found a main effect of distractor size on initial resource ( $F(1,119) = 5.559, p =$   
246  $0.020$ , partial  $\eta^2 = 0.045$ ) and a marginal significant main effects on decay exponent ( $F(1,119) =$   
247  $3.882, p = 0.051$ , partial  $\eta^2 = 0.032$ ). We speculate that adding distractors greatly enhanced the  
248 task difficulty and consequently forced subjects to internally utilize more resources to memorize  
249 targets. There were no main effects of distractor size on choice variability ( $F(1,119) = 3.528, p =$   
250  $0.063$ , partial  $\eta^2 = 0.029$ ) and resource allocation variability ( $F(1,119) = 2.862, p = 0.093$ , partial  
251  $\eta^2 = 0.023$ ). Note that these main effects manifest in both groups not specific for SZ.

252 More importantly, to examine the distraction effect, the key is to examine the interaction  
253 effect between group and distractor size. If SZ have deficits in distractibility, we should expect  
254 that adding distractors imposes significantly larger interferences on VWM processing in SZ but  
255 compared with HC. We indeed observed a significant interaction effect between group and  
256 distractor size ( $F(1,119) = 5.062, p = 0.026$ , partial  $\eta^2 = 0.041$ ) (Fig. 3D) in resource allocation  
257 variability. However, post hoc analysis suggested that adding distractors only increased the

258 resource allocation variability in HC ( $p = 0.036$ ) but had little impact on SZ ( $p = 0.999$ ). This is  
259 surprising since elevated distractibility has long been proposed as a core executive function  
260 deficit in SZ. On the contrary, we found a more prominent distraction effect in HC rather in SZ,  
261 indicating a relatively higher resilience to distraction in SZ. We did not find such interaction  
262 effect in all other three parameters (initial resource,  $F(1,119) = 2.042$ ,  $p = 0.156$ , partial  $\eta^2 =$   
263 0.017; decay exponent,  $F(1,119) = 0.236$ ,  $p = 0.628$ , partial  $\eta^2 = 0.002$ ; choice variability,  
264  $F(1,119) = 0.430$ ,  $p = 0.513$ , partial  $\eta^2 = 0.004$ ).

265 These results also suggest the critical role of resource allocation variability since we did  
266 not find the interaction effect of group and distractor size, as well as their interaction on other  
267 three VP model parameters (see full statistical results in Supplementary Materials note 1).  
268 Resource allocation variability is a relatively new concept in VWM and has increasingly been  
269 regarded as one of the key determinants for VWM performance<sup>31</sup>. Also, our earlier work  
270 confirmed its contribution to schizophrenic pathology<sup>32</sup>. Recent studies have shown that it is not  
271 only a key component in VWM but might be also a very general property in sensory processing<sup>35</sup>.  
272



273

274

275

276

277

278

279

280

281

282

283

Figure 3. Effects of group, target size and distractor size on the four fitted parameters of the VP model. Panel A illustrates the mean resources as a function of the target size, which are generated by fitted initial resource (panel B) and decay exponent (panel C) values. Panels D and E illustrate the fitted resource allocation variability and choice variability respectively. The main group effect was only found in resource allocation variability (panel D). Precisely, SZ showed overall larger resource allocation variability than HC and adding distractors only elevated the resource allocation variability in HC but not SZ, indicating that SZ have stronger resilience to distraction than HC. No group  $\times$  distractor size interaction was observed in initial resource, decay exponent and choice variability. Shaded areas in panel A and error

284 bars in panels B to E denote  $\pm$ SEM across subjects. Significance symbol conventions  
285 are \*:  $p < 0.05$ ; \*\*:  $p < 0.01$ ; n.s.: non-significant.  
286  
287

288 **DISCUSSION**

289 Visual working memory and distractibility have long been recognized as core executive  
290 functions. Despite the widely documented behavioral deficits of SZ in these two domains, little is  
291 known with respect to the computational mechanisms underlying these deficits. This arises from  
292 two major obstacles: (1) few studies have attempted to integrate two cognitive functions within  
293 the same experimental paradigm; (2) the computational models that describe the internal  
294 processes have been lacking. To circumvent these, we modified the classical VWM delay-  
295 estimation task to deliberately incorporate distractors and employed the VP model to distinguish  
296 several VWM key components. We set two distractor conditions (distractor size 0/3) and used  
297 the VP model to estimate the VWM components separately under these two conditions. We  
298 made two major observations: (1) the variability of allocation memory resources was generally  
299 larger in SZ ; (2) adding distractors enlarged the resource allocation variability in HC but had  
300 little impact on that in SZ. These results highlight the significance of resource allocation  
301 variability in mediating VWM performance and demonstrate an unexpected higher resilience to  
302 distraction during VWM in SZ.

303 The finding of enhanced resource allocation variability is of unique significance for  
304 understanding VWM deficits in SZ. This finding has been systematically evaluated in our prior  
305 work<sup>32</sup>. In that study, we compared several influential models in VWM literature and compare  
306 results between SZ and HC. We found that the only difference between the two groups lies in  
307 resource allocation variability not the amount of memory resources. This result suggests that SZ  
308 have the same amount of mean resources as HC at each target size level, but the resources  
309 assigned to individual items exhibit larger variability around this mean value. For example,  
310 assume that, given three targets, both SZ and HC have  $r$  units of mean resource across three  
311 targets. But the actual resources assigned to each item vary around this mean value (i.e.,  $r+0.1$ ,  $r-$   
312  $0.2$ ). SZ exhibit overall larger variability (e.g.,  $r+3$ ,  $r-2$ ) than HC (e.g.,  $r+0.3$ ,  $r-0.2$ ). Note that  
313 this mechanism is fundamentally different from elevated attentional lapse or general deficits in  
314 filtering distraction. Elevated attentional lapse will lead to more guessing trials and the general  
315 deficits in filtering distraction will allow more resources assigned to distractors. Therefore, these  
316 mechanisms predict that the mean resources will be overall reduced in SZ. However, we did not  
317 observe the significant group differences in memory resources (Fig. 3A).

318        The unexpected enhanced resilience to distraction in resource allocation variability  
319 provides a new perspective for understanding distractibility in SZ. We confirmed that behavioral  
320 performance of SZ is in general worse than HC, a well-established finding in many previous  
321 studies<sup>3-6</sup>. However, in the analyses of behavioral performance, we indeed observe significant  
322 effects of memory load and distraction but both effects manifest similarly in both groups. There  
323 was no stronger distraction effect specific for SZ. Most previous studies employed a similar  
324 approach and only focused on behavioral performance. We made a further stride here and  
325 examined the distraction effect on individual VWM computational components. Results showed  
326 that adding distractors only significantly raise the resource allocation variability in HC but not in  
327 SZ. This is the key contribution of our work. Our approach allows us to provide a deeper  
328 mechanistic interpretation rather than only reporting the quantitative behavioral deficits in SZ.  
329 Note that our approach here is to fit the VP model separately to the data at two distraction  
330 conditions and then examine the differences in the estimated parameters. An alternative approach  
331 is to directly incorporate the distraction effect into the generative process, which has been  
332 recently pursued in Ni & Ma<sup>36</sup> and Shen & Ma<sup>35</sup>. The latter approach permits to compare  
333 different computational models so as to ground different theories. Future work might continue to  
334 explore this line of research.

335        At first glance, higher resilience to distraction in the VWM resource allocation suggests a  
336 cognitive advantage in SZ. However, this might also imply less flexible cognitive control in SZ.  
337 For example, there has been shown that SZ tend to allocate their VWM resources more intensely  
338 and narrowly than HC<sup>37</sup>, a phenomenon called “hyperfocusing”. If SZ distribute too many  
339 resources on a small set of visual objects, they may have trouble in flexibly switching to new  
340 objects. Hyperfocusing might be particularly problematic in VWM tasks since one of the key  
341 features of VWM is to flexibly and dynamically maintain representations of multiple objects.  
342 The hyperfocusing mechanism might explain both the elevated resource allocation variability  
343 and higher distraction resilience in SZ. In our task, hyperfocusing on a subset of targets avoids  
344 the interference of distractor. Again, note that the “side effect” of hyperfocusing might be the  
345 lack of ability to flexibly switch to different sources of information<sup>38</sup>. Also, the atypical ability  
346 in task switching has also been discovered in other special populations, such as aging<sup>39,40</sup>,  
347 ADHD<sup>41</sup>.

348           What are the neural mechanisms underlying VWM deficits and distraction effects in SZ?  
349           A recent study has identified the superior intraparietal sulcus (IPS) as the cortical region  
350           controlling resource allocation variability<sup>42</sup>. SZ patients have also been found the atypical neural  
351           processing in this region<sup>43</sup>. On the other hand, the distraction effect on neural processing has  
352           been broadly found in attention and cognitive control networks<sup>44</sup>. Especially, SZ exhibited  
353           abnormal neural processing when distractors are present and cortical activity in high-level brain  
354           regions (i.e., dorsolateral prefrontal cortex) is correlated with negative symptoms<sup>45</sup>. However, no  
355           study has combined the VWM and distractors paradigm and measured neural activity in SZ. Also,  
356           it is unclear how other computational components of VWM are implemented in the brain. Future  
357           studies might need to combine computational modeling, neural measurements and behavioral  
358           testing to systematically address this issue.

359           Taken together, in this study we combined the standard VWM and distractor paradigms  
360           to examine the distraction effect during VWM in both SZ and HC. We replicated the standard  
361           memory load and distraction effects in both groups. We also found general worse VWM  
362           performance in SZ. But we did not observe a significant higher distraction effect in SZ. Further  
363           modeling analyses revealed that distractors elevate resource allocation variability during VWM  
364           in HC but not in SZ. This unexpected higher resilience to distraction in SZ provides new  
365           evidence for the cognitive deficits of SZ. Such unexpected higher resilience and less flexible  
366           cognitive control might be two sides of the same coin.

367

368 **ACKNOWLEDGMENTS**

369 This work was supported by the National Social Science Foundation of China (17ZDA323), the  
370 National Key Fundamental Research Program of China (2013CB329501), the Major Program of  
371 Science and Technology Commission Shanghai Municipal (17JC1404100), the Fundamental  
372 Research Funds for the Central Universities (2018ECNU-QKT015), and the NYU-ECNU  
373 Institute of Brain and Cognitive Science at NYU (YK).

374

375 **AUTHOR CONTRIBUTIONS**

376 YZ, RZ, & YK developed research idea and study concepts; YZ & YK design the experiment;  
377 XR and LZ collected the data; RZ & YZ performed the data analyses and modeling; RZ&YZ  
378 wrote the manuscript.

379

380 **COMPETING INTERESTS**

381 The authors report no biomedical financial interests or potential conflicts of interest. □

382

383 **REFERENCES**

- 384 1. Baddeley A. Working memory and language: an overview. *J Commun Disord.*  
385 2003;36(3):189-208. doi:10.1016/S0021-9924(03)00019-4.
- 386 2. Baddeley A. Working Memory: Theories, Models, and Controversies. *Annu Rev Psychol.*  
387 2012;63(1):1-29. doi:10.1146/annurev-psych-120710-100422.
- 388 3. Gold JM, Randolph C, Carpenter C. Auditory working memory and Wisconsin Card  
389 Sorting Test Performance in Schizophrenia. *Arch Gen Psychiatry.* 1997;54:159-165.
- 390 4. Lee J, Park S. Working Memory Impairments in Schizophrenia: A Meta-Analysis. *J*  
391 *Abnorm Psychol.* 2005;114(4):599-611. doi:10.1037/0021-843X.114.4.599.
- 392 5. Forbes NF, Carrick LA, McIntosh AM, Lawrie SM. Working memory in schizophrenia: a  
393 meta-analysis. *Psychol Med.* 2009;39(06):889-905. doi:10.1017/S0033291708004558.
- 394 6. Goldman-Rakic PS. Working memory dysfunction in schizophrenia. *J Neuropsychiatry*  
395 *Clin Neurosci.* 1994;6(4):348-357. doi:10.1176/jnp.6.4.348.
- 396 7. Gold JM, Wilk CM, McMahon RP, Buchanan RW, Luck SJ. Working memory for visual  
397 features and conjunctions in schizophrenia. *J Abnorm Psychol.* 2003;112(1):61-71.  
398 doi:10.1037/0021-843X.112.1.61.

399 8. Dias EC, Butler PD, Hoptman MJ, Javitt DC. Early sensory contributions to contextual  
400 encoding deficits in schizophrenia. *Arch Gen Psychiatry*. 2011;68(7):654-664.  
401 doi:10.1001/archgenpsychiatry.2011.17.

402 9. Baddeley A. Working memory: looking back and looking forward. *Nat Rev Neurosci*.  
403 2003;4(10):829-839. doi:10.1038/nrn1201.

404 10. Cowan N. The magical mystery four: How is working memory capacity limited, and why?  
405 *Curr Dir Psychol Sci*. 2010;19(1):51-57. doi:10.1177/0963721409359277.

406 11. Cowan N. The magical number 4 in short-term memory: A reconsideration of mental  
407 storage capacity. *Behav Brain Sci*. 2001;24(1):87-114. doi:10.1017/S0140525X01003922.

408 12. Vogel EK, McCollough AW, Machizawa MG. Neural measures reveal individual  
409 differences in controlling access to working memory. *Nature*. 2005;438(7067):500-503.  
410 doi:10.1038/nature04171.

411 13. Engle RW. Working Memory Capacity as Executive Attention. *Curr Dir Psychol Sci*.  
412 2002;11(1):19-23. doi:10.1111/1467-8721.00160.

413 14. Li V, Michael E, Balaguer J, Herce Castaño S, Summerfield C. Gain control explains the  
414 effect of distraction in human perceptual, cognitive, and economic decision making. *Proc  
415 Natl Acad Sci*. 2018;115(38):E8825-E8834. doi:10.1073/pnas.1805224115.

416 15. Booth JR, Burman DD, Meyer JR, et al. Neural development of selective attention and  
417 response inhibition. *Neuroimage*. 2003;20(2):737-751. doi:[https://doi.org/10.1016/S1053-8119\(03\)00404-X](https://doi.org/10.1016/S1053-8119(03)00404-X).

419 16. Lavie N. Attention, Distraction, and Cognitive Control Under Load. *Curr Dir Psychol Sci*.  
420 2010;19(3):143-148. doi:10.1177/0963721410370295.

421 17. Fassbender C, Zhang H, Buzy WM, et al. A lack of default network suppression is linked  
422 to increased distractibility in ADHD. *Brain Res*. 2009;1273:114-128.  
423 doi:<https://doi.org/10.1016/j.brainres.2009.02.070>.

424 18. Nydén A, Gillberg C, Hjelmquist E, Heiman M. Executive Function/Attention Deficits in  
425 Boys with Asperger Syndrome, Attention Disorder and Reading/Writing Disorder. *Autism*.  
426 1999;3(3):213-228. doi:10.1177/1362361399003003002.

427 19. Lemelin S, Baruch P, Vincent A, Everett J, Vincent P. Distractibility and processing  
428 resource deficit in major depression. Evidence for two deficient attentional processing

429 models. *J Nerv Ment Dis.* 1997;185(9):542-548. doi:10.1097/00005053-199709000-  
430 00002.

431 20. Sereno AB, Holzman PS. Spatial selective attention in schizophrenic, affective disorder,  
432 and normal subjects. *Schizophr Res.* 1996;20:33-50.  
433 <http://search.proquest.com/docview/618191297?accountid=14777>.

434 21. Fuller RL, Luck SJ, Braun EL, Robinson BM, McMahon RP, Gold JM. Impaired control  
435 of visual attention in schizophrenia. *J Abnorm Psychol.* 2006;115(2):266-275.  
436 doi:10.1037/0021-843X.115.2.266.

437 22. Hahn B, Robinson BM, Harvey AN, et al. Visuospatial attention in schizophrenia: Deficits  
438 in broad monitoring. *J Abnorm Psychol.* 2012;121(1):119-128. doi:10.1037/a0023938.

439 23. Caprile C, Cuevas-Esteban J, Ochoa S, Usall J, Navarra J. Mixing apples with oranges:  
440 Visual attention deficits in schizophrenia. *J Behav Ther Exp Psychiatry.* 2015;48:27-32.  
441 doi:10.1016/j.jbtep.2015.01.006.

442 24. Luck SJ, Gold JM. The Construct of Attention in Schizophrenia. *Biol Psychiatry.*  
443 2008;64(1):34-39. doi:10.1016/j.biopsych.2008.02.014.

444 25. Gold JM, Fuller RL, Robinson BM, McMahon RP, Braun EL, Luck SJ. Intact attentional  
445 control of working memory encoding in schizophrenia. *J Abnorm Psychol.*  
446 2006;115(4):658-673. doi:10.1037/0021-843X.115.4.658.

447 26. Erickson MA, Hahn B, Leonard CJ, et al. Impaired Working Memory Capacity Is Not  
448 Caused by Failures of Selective Attention in Schizophrenia. *Schizophr Bull.*  
449 2015;41(2):366-373. doi:10.1093/schbul/sbu101.

450 27. Hahn B, Robinson BM, Kaiser ST, et al. Failure of schizophrenia patients to overcome  
451 salient distractors during working memory encoding. *Biol Psychiatry.* 2010;68(7):603-  
452 609. doi:10.1016/j.biopsych.2010.04.014.

453 28. Smith EE, Eich TS, Cebenoyan D, Malapani C. Intact and impaired cognitive-control  
454 processes in schizophrenia. *Schizophr Res.* 2011;126(1-3):132-137.  
455 doi:10.1016/j.schres.2010.11.022.

456 29. Ma WJ, Husain M, Bays PM. Changing concepts of working memory. *Nat Neurosci.*  
457 2014;17(3):347-356. doi:10.1038/nn.3655.

458 30. Johnson MK, McMahon RP, Robinson BM, et al. The relationship between working  
459 memory capacity and broad measures of cognitive ability in healthy adults and people  
460 with schizophrenia. *Neuropsychology*. 2013;27(2):220-229. doi:10.1037/a0032060.

461 31. van den Berg R, Shin H, Chou W-C, George R, Ma WJ. Variability in encoding precision  
462 accounts for visual short-term memory limitations. *Proc Natl Acad Sci*.  
463 2012;109(22):8780-8785. doi:10.1073/pnas.1117465109.

464 32. Zhao Y, Ran X, Zhang L, Zhang R, Ku Y. Atypically larger variability of resource  
465 allocation accounts for visual working memory deficits in schizophrenia. *bioRxiv*. January  
466 2018. <http://biorxiv.org/content/early/2018/09/23/424523.abstract>.

467 33. van den Berg R, Awh E, Ma WJ. Factorial comparison of working memory models.  
468 *Psychol Rev*. 2014;121(1):124-149. doi:10.1037/a0035234.

469 34. Erickson MA, Hahn B, Leonard CJ, Robinson BM, Luck SJ, Gold JM. Enhanced  
470 vulnerability to distraction does not account for working memory capacity reduction in  
471 people with schizophrenia. *Schizophr Res Cogn*. 2014;1(3):149-154.  
472 doi:10.1016/j.socog.2014.09.001.

473 35. Shen S, Ma WJ. Variable precision in visual perception. *Psychol Rev*. 2019;126(1):89-  
474 132. doi:10.1037/rev0000128.

475 36. Ni L, Ma WJ. Modeling interference in the N - back task. In: *Conference on Cognitive*  
476 *Computational Neuroscience*. New York, NY; 2017.

477 37. Luck SJ, McClenon C, Beck VM, et al. Hyperfocusing in schizophrenia: Evidence from  
478 interactions between working memory and eye movements. *J Abnorm Psychol*.  
479 2014;123(4):783-795. doi:10.1037/abn0000003.

480 38. Greenzang C, Manoach DS, Goff DC, Barton JJS. Task-switching in schizophrenia:  
481 Active switching costs and passive carry-over effects in an antisaccade paradigm. *Exp*  
482 *Brain Res*. 2007;181(3):493-502. doi:10.1007/s00221-007-0946-8.

483 39. Clapp WC, Rubens MT, Sabharwal J, Gazzaley A. Deficit in switching between  
484 functional brain networks underlies the impact of multitasking on working memory in  
485 older adults. *Proc Natl Acad Sci*. 2011;108(17):7212-7217.  
486 doi:10.1073/pnas.1015297108.

487 40. Waslylyshyn C, Verhaeghen P, Sliwinski MJ. Aging and task switching: A meta-analysis.  
488 *Psychol Aging*. 2011;26(1):15-20. doi:10.1037/a0020912.

489 41. Cepeda NJ, Cepeda ML, Kramer AF. Task switching and attention deficit hyperactivity  
490 disorder. *J Abnorm Child Psychol.* 2000;28(3):213-226. doi:10.1023/a:1005143419092.

491 42. Galeano Weber EM, Peters B, Hahn T, Bledowski C, Fiebach CJ. Superior Intraparietal  
492 Sulcus Controls the Variability of Visual Working Memory Precision. *J Neurosci.*  
493 2016;36(20):5623-5635. doi:10.1523/JNEUROSCI.1596-15.2016.

494 43. Zhou S-Y, Suzuki M, Takahashi T, et al. Parietal lobe volume deficits in schizophrenia  
495 spectrum disorders. *Schizophr Res.* 2007;89(1-3):35-48. doi:10.1016/j.schres.2006.08.032.

496 44. Corbetta M, Shulman GL. Control of Goal-Directed and Stimulus-Driven Attention in the  
497 Brain. *Nat Rev Neurosci.* 2002;3(3):215-229. doi:10.1038/nrn755.

498 45. Wolf DH, Turetsky BI, Loughead J, et al. Auditory oddball fMRI in schizophrenia:  
499 Association of negative symptoms with regional hypoactivation to novel distractors. *Brain*  
500 *Imaging Behav.* 2008;2(2):132-145. doi:10.1007/s11682-008-9022-7.

501

502