

1
2
3
4
5 **Decoding mouse behavior to explain single-trial decisions and their relationship with**
6 **neural activity.**
7
8
9

10 *Yves Weissenberger, Andrew J. King*, Johannes C. Dahmen**
11
12

13 Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK.
14
15

16 * These authors jointly supervised this work
17

18 Correspondence should be addressed to Y.W. (yves.weissenberger@dpag.ox.ac.uk) or J.C.D.
19 (johannes.dahmen@dpag.ox.ac.uk).
20
21
22
23
24
25
26

27 **Abstract**

28 Models of behavior typically focus on sparse measurements of motor output over long
29 timescales, limiting their ability to explain momentary decisions or neural activity. We developed
30 data-driven models relating experimental variables to videos of behavior. Applied to mouse
31 operant behavior, they revealed behavioral encoding of cognitive variables. Model-based
32 decoding of videos yielded an accurate account of single-trial behavior in terms of the
33 relationship between cognition, motor output and cortical activity.
34
35
36
37
38
39
40
41
42
43
44

45 **Main Text**

46

47 Advances in neural recording technologies have enabled activity to be measured from
48 thousands of neurons simultaneously^{1,2}. By eliminating the need for averaging activity across
49 trials, these methods are providing unprecedented insights into neural function. But to fully realize
50 their promise, we also require similarly comprehensive descriptions of behavior that can be used
51 to bridge the gap between neural activity and function.

52 However, even in highly-controlled experimental settings, such as during a sensory
53 decision-making task, quantitative descriptions of behavioral variability remain elusive^{3,4}.
54 Analyses of session-level choice-statistics have shown that decisions are influenced by a variety
55 of factors^{5,6}. Nevertheless, it remains extremely challenging to identify the factors underlying
56 single-trial decisions from currently available behavioral readouts. This severely limits the
57 functional interpretation of brain activity, which often relies on such behavioral readouts to link
58 neural activity to cognitive processes.

59 The interpretation of neural activity is further complicated by correlations between
60 experimental variables (e.g. cognitive variables or environmental stimuli) and motor output.
61 Indeed, such correlations can confound the neural encoding of an experimental variable like a
62 decision with the encoding of the associated motor output, i.e. the enactment of the decision.

63 One approach to overcoming these issues is the detailed quantitative study of behavior⁴.
64 Classical approaches⁷ focus on simple measures (e.g. aggregate choice-statistics) that are easy
65 to relate back to experimental variables. However, these measures lack the capacity or temporal
66 resolution that is required to robustly link neural activity to the computations underpinning trial-by-
67 trial behavior. Although recent approaches have begun to address these shortcomings by
68 performing unsupervised decompositions of detailed behavioral measurements^{8,9}, their output
69 can be difficult to relate to experimental variables, thereby limiting their scope.

70 We sought a novel and generally applicable approach to the challenge of quantifying
71 behavior which combines the strengths of previous methods. We took a data-driven approach
72 and developed statistical models of dense behavioral measurements. Our objective was to find
73 representations of behavior that can account for an animal's motor output whilst remaining easily
74 relatable to cognitive and stimulus-related variables. Crucially, we attempted to find such
75 representations directly in the data, without *a priori* knowledge. In doing so, we aimed to extract
76 a comprehensive and interpretable account of behavior that can support detailed analysis of neural
77 activity.

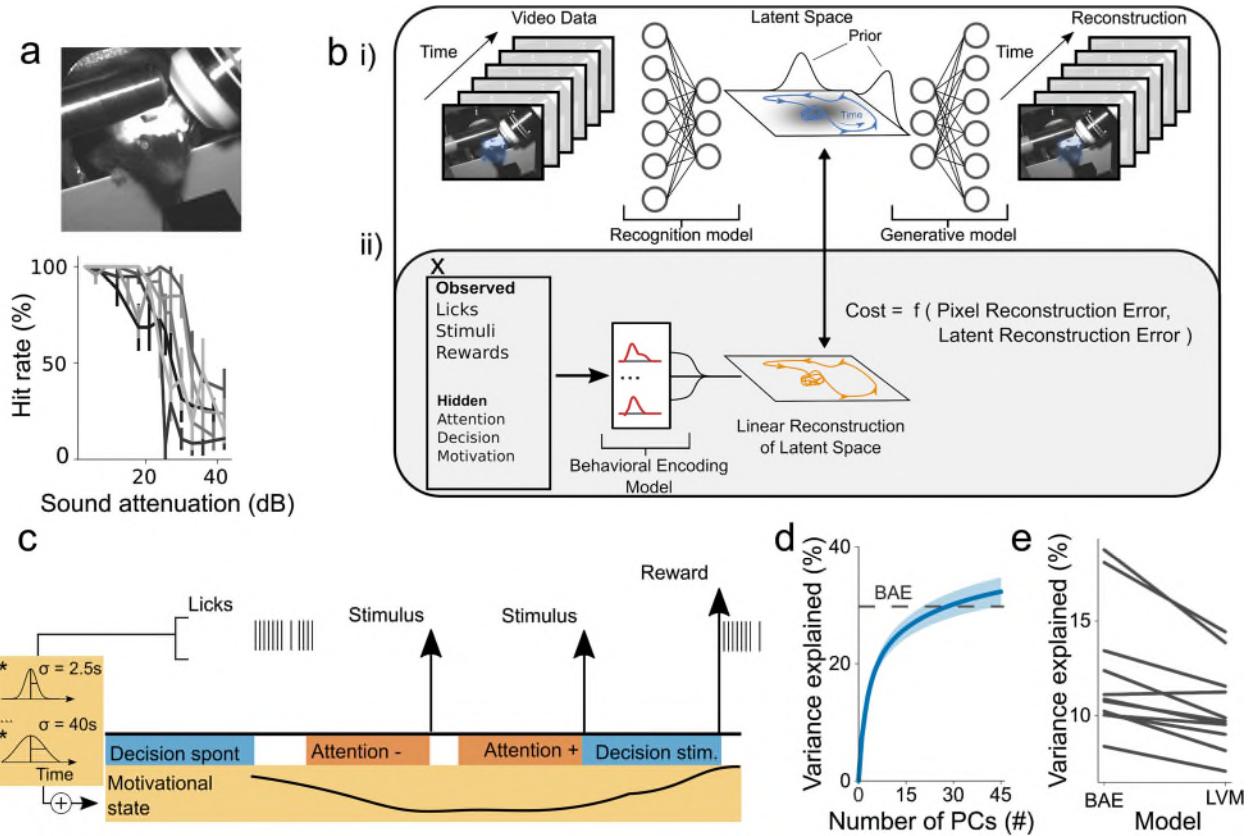
78 We analyzed video data from head-fixed mice ($n = 11$ sessions from 6 mice) performing
79 a sound detection task (**Fig. 1a**), and used variational autoencoders, which are Bayesian latent-
80 variable models (LVM)^{10,11}, as a starting point for modelling animals' motor output. The aim of the
81 model was to find low-dimensional representations of the video data that enable frame-by-frame
82 reconstructions at pixel-level resolution (**Fig. 1b i**).

83 Models of behavior are useful only to the extent that they can be related to experimental
84 variables, such as an animal's decisions or the underlying neural activity. We therefore formalized
85 the notion of relatability as linear predictability from these variables. This yielded a novel model,
86 which we refer to as a behavioral autoencoder (BAE), the cost function of which is augmented
87 with an additional penalty term. This term encourages learning a representation of behavior that

88 is explicable in terms of *a priori* defined variables of interest (**Fig. 1b ii**) (see *Methods*). We then
 89 fitted this model to videos acquired during task performance.

90 The sound detection task provided a rich set of observed and hidden variables (**Fig. 1c**),
 91 which may explain momentary variations in animals' motor output. We therefore used both sets
 92 of variables (henceforth referred to collectively as experimental variables) to augment the model's
 93 cost function.

94



95
 96

97 **Figure 1** Model Structure and performance. **a) (top)** Image of a mouse in the experimental
 98 setup. **(bottom)** Example psychometric functions ($\pm 95\%$ binomial confidence intervals)
 99 illustrating performance in the sound detection task (each curve depicts performance of one
 100 mouse in a single session; all curves are from different mice). **b)** Schematic of the LVM and
 101 BAE. **(i)** The LVM is parameterized by two sequential deep neural networks. The first network
 102 parameterizes a recognition model that maps from video data to a low-dimensional latent space.
 103 The second network parameterizes a generative model which maps from the latent space back
 104 into pixel space and reconstructs the video data. **(ii)** The BAE encompasses the LVM and a
 105 behavioral encoding model that maps experimental variables into an approximation of the latent
 106 space. This is used to encourage latent representations to be linearly predictable from
 107 experimental variables \mathbf{x} by an additional penalty term, which structures representations in the
 108 latent space. **c)** Schematic illustrating the definition of hidden variables (see *Methods*). Briefly, an
 109 animal was considered attentive on a given trial if the stimulus was of low intensity and the trial
 110 was a hit-trial. It was considered inattentive on a given trial if the stimulus was of low intensity and
 111 the trial was a miss-trial. An animal was considered to engage in 'stimulus-driven' licking if a

112 stimulus occurred in a 540-ms window preceding the onset of a lick bout; otherwise the licking
113 was considered to be 'spontaneous'. A high lick rate was interpreted to be indicative of reward
114 seeking and, thus, a state of high motivation. Motivational state regressors were created by
115 convolving licks with a series of Gaussian filters that were fitted individually and then summed.
116 Relative timescales across elements of the figure are not to scale. **d)** Performance of the BAE
117 (dashed line; latent states were inferred using the recognition model) compared with a principal
118 component analysis (PCA) based reconstruction (mean ± 2 s.e.m) as a function of number of
119 PCs. Here, BAE reconstructions used the recognition model. **e)** Comparison of the LVM and the
120 BAE's ability to reconstruct videos using the behavioral encoding model (paired-sample t-test; p
121 $= 4.1 \cdot 10^{-4}$).

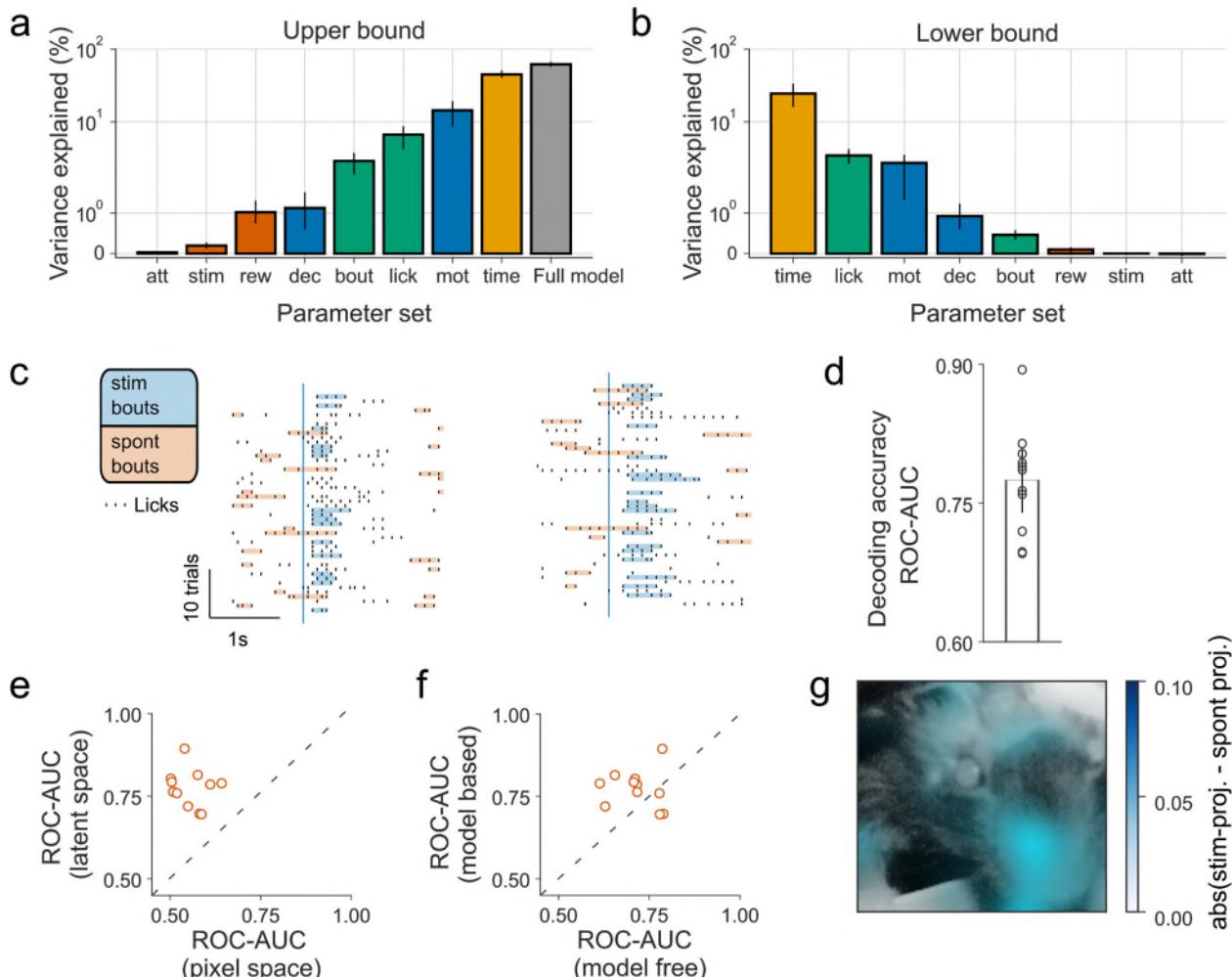
122
123
124
125

126 To assess the model's performance, we quantified the reconstruction quality and capacity
127 of the experimental variables to explain behavioral latent states. Qualitative and quantitative
128 analyses revealed accurate reconstruction of the video data (mean $r^2 = 30\%$, s.e.m = 3%)
129 (**Supplementary Fig. 1, Supplementary Video 1**). Quantitatively, a 10-dimensional BAE
130 outperformed optimal linear methods, which required three-fold greater dimensionality to account
131 for the same variance (**Fig. 1d, Supplementary Fig. 2a**). Importantly, learned representations
132 were highly interpretable, as assayed by measuring their predictability from experimental
133 variables (**Supplementary Fig. 2b**). Furthermore, augmentation of the cost function in the BAE
134 significantly improved this predictability over that provided by the LVM (**Fig. 1e, Supplementary**
135 **Fig. 2b**). Together, these findings suggest that the model learned comprehensive and
136 interpretable representations of the animals' behavior.

137 We then asked which experimental variables were encoded (i.e. expressed) in the
138 animals' behavior by quantifying the capacity of individual variables to explain behavioral latent
139 states. Although we found that all variables are encoded in behavior (**Fig. 2a**), this may arise
140 simply because many of them are correlated. We therefore quantified the effect of excluding
141 subsets of regression parameters, relating to a single experimental variable, on model-fit quality
142 (see *Methods*). This revealed that only a subset of variables uniquely accounted for variance in
143 the data (**Fig. 2b**). Time into session accounted for most variance, reflecting the fact that the
144 animals' resting posture gradually changed over the course of the session. Additionally, we
145 consistently found that the animals' motivational state (operationalized as a smoothed lick time
146 series, **Fig. 1c**; see *Methods*) was explicitly encoded in behavior (**Supplementary Fig. 3a,b**). By
147 contrast, we found no evidence that trial-by-trial variations in attention or stimulus presentation
148 were expressed in behavior (**Fig. 2a,b, Supplementary Fig. 3c**). The latter result suggests that
149 the animals' behavioral response to the stimulus is largely embodied by its decision to lick.

150 Given the importance of single-trial analyses in decision-making paradigms^{12,13}, we next
151 investigated the behavioral correlates of decision-making processes. The non-zero false alarm
152 rates observed in our data suggest that multiple processes drive mouse licking. We therefore
153 sought to test whether distinct causes of licking (i.e. spontaneous vs. stimulus-driven) were
154 differentially encoded in behavior (**Fig. 1c, Fig. 2a,b**). To do so, we attempted to decode the
155 causes of licking on a lick-by-lick basis.

156
157



158
159

Figure 2 Encoding and decoding behavior. **a)** Estimation of upper bounds on extent of encoding by only regressing parameter sets belonging to a single variable. Variables are sorted according to their ability to predict latent states. **b)** Estimation of lower bound on extent of encoding by removing regressors relating to a single variable, one at a time, and subtracting cross-validated r^2 for full model performance from r^2 for models with individual components removed. Error bars show bootstrapped 95% confidence intervals. **c)** Excerpts from two example sessions showing lick-bouts defined as either stimulus-driven (blue) or spontaneous (orange) depending on their timing relative to the stimulus onset (blue vertical line). **d)** Decoding of intention (i.e. classification of bout type) by inverting behavioral encoding models reveals accurate decoding (mean ROC-AUC = 0.78; s.e.m = 0.01). Error-bars show ± 2 s.e.m. Circles are individual data-points. **e)** Decoding in latent space is more accurate than decoding in pixel space (paired samples t-test; $p = 3.9 \cdot 10^{-6}$). **f)** Model-based decoding performs better than model-free (SVM) decoding (paired samples t-test; $p = 0.0086$). **g)** Difference between the BAE's estimate of a stimulus and a spontaneous bout overlayed on an image of a mouse. Estimates were created by projecting linear predictions of stimulus-driven and spontaneous bouts into pixel space. In

175 this case, informative pixels are clustered around the snout. (att=attention; stim=stimulus
176 presentation; rew=reward delivery; dec=decision basis (spontaneous vs stimulus-driven licking);
177 bout=lick-bout initiation; mot=motivational state)

178

179

180

181

182

183 We grouped licks into bouts (**Fig. 2c, Supplementary Fig. 4**) and selected a
184 counterbalanced set (see *Methods*) of stimulus-driven (fast response times on trials with loud
185 stimuli) and spontaneous (outside of the peri-stimulus period) lick-bouts. We then decoded (i.e.
186 predicted) the causes of these bouts using the latent states within the ~500 ms preceding the first
187 lick of each bout. Previous work has demonstrated that the inversion of encoding models offers a
188 powerful and parsimonious approach to decoding^{14,15}. We therefore constructed model-based
189 decoders based on the inversion of the behavioral-encoding models (**Fig. 1b**). Consistent with
190 results from the encoding perspective, we were able to decode, on a bout-by-bout basis, whether
191 a stimulus preceded a bout or not (**Fig. 2d**). Thus, the animals' behavior preceding a lick bout
192 allowed us to infer whether a stimulus drove that bout.

193 Further analysis demonstrated that decoding accuracy was higher in the latent-space than
194 in pixel-space (**Fig. 2e**) and that model-based decoding out-performed comparable model-free
195 support vector machines (SVM) (**Fig. 2f**). Importantly, decoding is unlikely to be driven by motor
196 preparation (**Supplementary Fig. 5a-d**). Finally, the generative capabilities of the BAE enabled
197 us to project linear approximations of stimulus-driven and spontaneous lick bouts back into pixel
198 space. This visual account of the basis of their classification revealed that idiosyncratic behaviors
199 associated with lick bouts formed the basis for classification (**Fig. 2g, Supplementary Videos**
200 **2,3**).

201 Model-based decoding thus offers a data-driven alternative to *a priori* analysis of behavior.
202 In doing so, it both provides a way of automatically identifying behavioral correlates of
203 experimental variables and a means of classifying behavior based on these correlates. In turn,
204 this yields an interpretable account of momentary behavior that can readily be employed to
205 improve our understanding of neural activity.

206 To demonstrate this, we sought to explicitly benchmark model-based and *a priori*
207 classifications of trial-by-trial decisions against neural activity. Previous work has demonstrated
208 that behavioral choice correlates with the activity of neurons in primary auditory cortex (A1)¹⁶⁻¹⁸.
209 We reasoned that by comparing the behavioral categorization of bout-by-bout intent with neural
210 activity, we would be able to compare the two classification approaches.

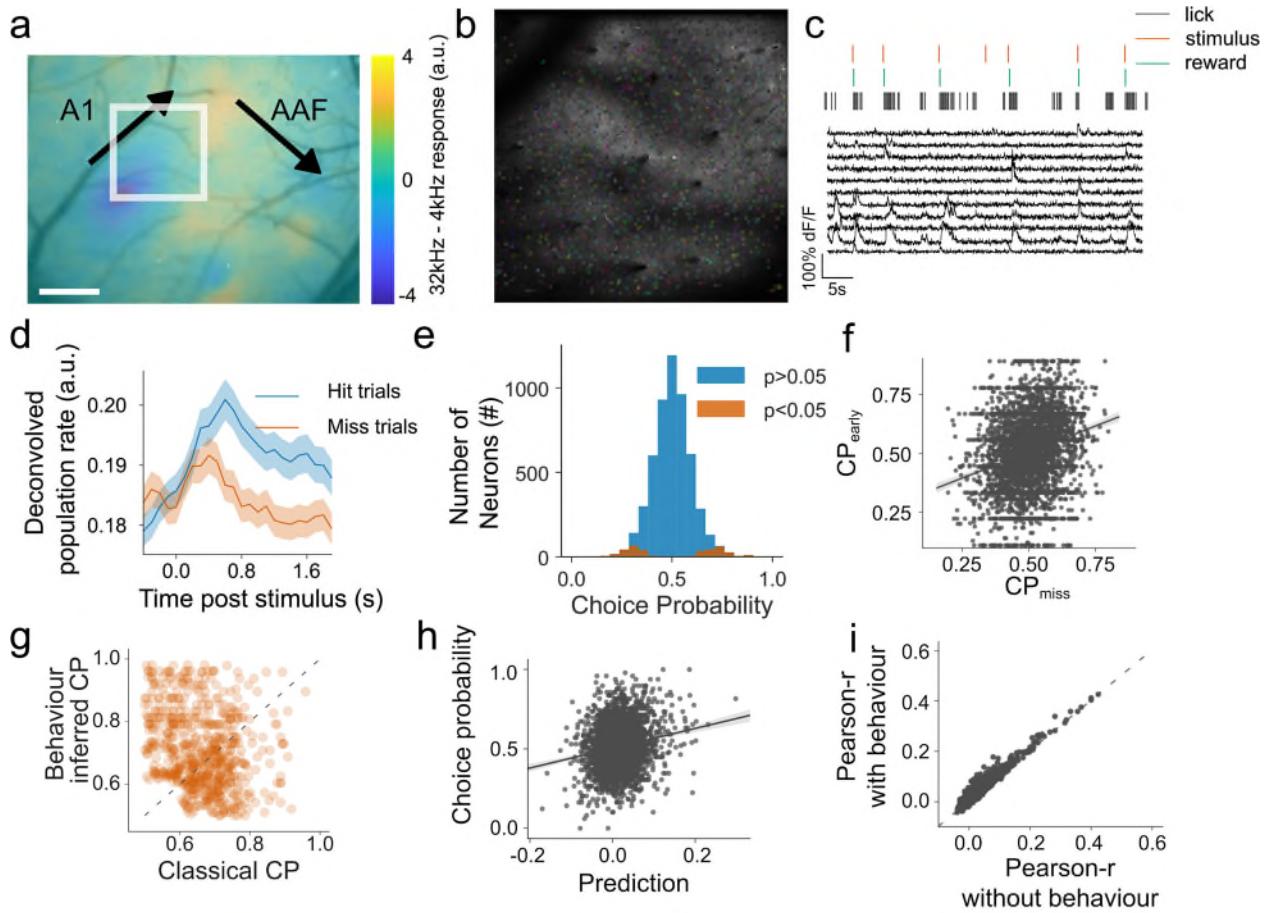
211 We therefore performed two-photon calcium imaging of excitatory layer 2/3 neurons in A1
212 of three mice (**Fig. 3a-c**). To assess whether neural activity covaries with behavioral choice, we
213 computed choice probabilities¹² (CPs), and identified a subpopulation of L2/3 neurons with
214 significant CPs (**Fig. 3d,e; Supplementary Fig. 6**). CPs calculated by comparing hit-trials and
215 miss-trials were both significantly correlated with (**Fig. 3f**) and not systematically different from
216 (**Supplementary Fig. 7a**) those calculated by comparing hit-trials with level-matched hit-trials in
217 which animals responded prematurely (i.e. with a latency of <120 ms, which is faster than mouse

218 reaction times). These results argue that CPs reflected sensorimotor coupling, rather than licking
219 or reward consumption, and were thus used as a benchmark measure of behavioral classification.

220 Given the non-zero false-alarm rates observed in our data, a subset of hit-trials likely
221 occurred as a result of spontaneous behavior, rather than the learned stimulus-response
222 association. In light of the robust choice encoding in A1, we reasoned that, neurally, these trials
223 should more closely resemble miss-trials than hit-trials. If our decoder is able to correctly reclassify
224 those hit-trials on which licking was spontaneous, we should observe larger CPs. Consistent with
225 this expectation, we found that CPs were indeed larger when calculated based on decoded
226 causes of behavior (mean = 0.71; s.e.m=0.005), than on *a priori* criteria (mean = 0.67; s.e.m =
227 0.0034), i.e. defining all trials with licking in a window 150-600 ms after the stimulus and no pre-
228 stimulus licking as hit trials (**Fig 3g.**, **Supplementary Fig. 7b**). This suggests that model-based
229 decoding of video data can provide a more accurate readout of behavior than readouts based on
230 *a priori* definitions imposed by the task structure.

231 Finally, we sought to use the behavioral models to further clarify the relationship between
232 neural encoding of movement-related and choice-related variables. To relate neural activity to
233 these variables, we fitted a linear model that attempts to explain neurons' frame-by-frame activity
234 using experimental variables as well as behavioral latent-states. This approach allowed us to
235 dissociate movement- and decision-related influences on neural activity, as during the inter-trial
236 interval movement and decisions are decoupled. Fitting these models to the activity of each
237 neuron thus yielded parameters quantifying how the activity of a given neuron covaries with the
238 animal's behavior. To further examine whether movement-related influences on neural activity
239 underlie CPs, we attempted to predict neurons' CPs from these parameters. We found that the
240 relationship between a neuron's activity and behavioral latent states was poorly predictive of its
241 CP (**Fig. 3h**). Together with the behavioral controls (**Fig. 3f**), these findings strongly suggest that
242 neural tuning to motor variables does not underlie choice-related activity in A1.

243 Recent work has demonstrated that animals' movements are predictive of neural activity
244 across cortical regions, including sensory cortex¹⁹. Consistent with this result, we were better
245 able to predict neural activity using both behavioral latent states and experimental variables as
246 regressors, than experimental variables alone (**Fig. 3i**). However, this could either reflect
247 genuine neural tuning to motor output or be mediated via effects of internal variables on both
248 neural activity and motor output. The comprehensive representations learned by the BAE
249 allowed us to differentiate these two possibilities by quantifying how well A1 population activity
250 predicts animals' movements. If neurons in A1 are truly tuned to motor output, we should be
251 able to accurately reconstruct behavioral latent states from the measured neural activity.
252 Contrary to this prediction, we were poorly able to predict behavioral latent states from neural
253 activity (mean $r^2 = 3\%$; range 1%-5%). These findings strongly argue that motor output has, at
254 most, a small effect on auditory cortical activity and that correlations between the two are likely
255 mediated by variables such as an animal's decision that affect both movement and neural
256 activity.
257



258
259

260 **Figure 3** Behaviorally-decoded choices reflect neural activity. **a**) Functional localization of
261 auditory cortical fields using wide-field single photon imaging. Scale bar shows 500 μ m. **b**)
262 Example imaging field (~900 μ m²; region in white square in **a** with regions of interest (n = 976)
263 randomly colored. **c**) Activity of ten neurons from **b**. **d**) Across the entire population of recorded
264 neurons, we observed significant choice-related activity that emerged shortly after stimulus onset.
265 Shaded regions are ± 2 s.e.m. **e**) Distribution of choice probabilities (CPs). Significant CPs ($p <$
266 0.05, permutation-test 500 shuffles) were measured in 378 of 5339 neurons (7.1 %). This is a
267 larger subpopulation than would be expected by chance (binomial-test $p = 2.1 \cdot 10^{-119}$). **f**) CPs
268 calculated by comparing hit and miss trials and CPs calculated from hit and 'early hit' trials are
269 correlated ($r = 0.26$; $p = 1.3 \cdot 10^{-69}$) across neurons. **g**) CPs, plotted here as distance from 0.5,
270 are greater when trial classification is based on model-based decoding rather than *a priori* criteria
271 (paired sample t-test; $p = 3.6 \cdot 10^{-44}$). See **supplementary Fig. 6b** for raw CPs. **h**) CPs are
272 poorly predicted ($\text{mean} r^2 = 1\%$), on a neuron-by-neuron basis, from neural tuning to behavioral
273 latent states as assessed by fitting a multi-linear regression model. **i**) Including behavioral latent
274 states into a linear regression model to predict neural activity significantly improves fit quality
275 (paired sample t-test; $p < 1 \cdot 10^{-80}$).

276
277
278

279 In summary, our novel class of Bayesian model enables comprehensive and interpretable
280 quantification of momentary behavior. Application of this model demonstrated robust encoding of
281 cognitive variables in animals' behavior and enabled us to disentangle neural encoding of
282 cognitive and motor variables. We constructed model-based decoders whose application
283 provided sub-second accounts of behavior which more accurately reflected neural activity than
284 behavioral readouts imposed by task structure. Combined with recent methods for pose
285 estimation²⁰, we envision that our approach will be able to extract simple readouts of complex
286 behavior. Finally, while we have deployed our model in the context of a sensory decision-making
287 task, these methods should be broadly applicable to both basic and clinical research seeking to
288 relate neural activity, computation and behavior.

289

290

291

292 References

293

- 294 1. Jun, J. J. *et al.* Fully integrated silicon probes for high-density recording of neural
295 activity. *Nature* **551**, 232–236 (2017).
- 296 2. Sofroniew, N. J., Flickinger, D., King, J. & Svoboda, K. A large field of view two-photon
297 mesoscope with subcellular resolution for in vivo imaging. *Elife* **5**, e14472 (2016).
- 298 3. Gomez-Marin, A. & Mainen, Z. F. Expanding perspectives on cognition in humans,
299 animals, and machines. *Current Opinion in Neurobiology* **37**, 85–91 (2016).
- 300 4. Gomez-Marin, A., Paton, J. J., Kampff, A. R., Costa, R. M. & Mainen, Z. F. Big
301 behavioral data: psychology, ethology and the foundations of neuroscience. *Nat. Neurosci.* **17**,
302 1455–1462 (2014).
- 303 5. Busse, L. *et al.* The Detection of Visual Contrast in the Behaving Mouse. *J. Neurosci.* **31**,
304 11351–11361 (2011).
- 305 6. Bak, J. H., Choi, J., Witten, I., Akrami, A. & Pillow, J. W. Adaptive optimal training of
306 animal behavior. in *NIPS* 1939–1947 (2016).
- 307 7. Wichmann, F. A. & Hill, N. J. The psychometric function: I. Fitting, sampling, and
308 goodness of fit. *Percept. Psychophys.* **63**, 1293–313 (2001).
- 309 8. Wiltschko, A. B. *et al.* Mapping Sub-Second Structure in Mouse Behavior. *Neuron* **88**,
310 1121–1135 (2015).
- 311 9. Egnor, S. E. R. & Branson, K. Computational Analysis of Behavior. *Annu. Rev. Neurosci.*
312 **39**, 217–236 (2016).
- 313 10. Kingma, D. P. & Welling, M. Auto-Encoding Variational Bayes. *Iclr* 1–14 (2014).
314 doi:10.1051/0004-6361/201527329
- 315 11. Rezende, D. J., Mohamed, S. & Wierstra, D. Stochastic Backpropagation and
316 Approximate Inference in Deep Generative Models. (2014). doi:10.1051/0004-6361/201527329
- 317 12. Britten, K. H., Newsome, W. T., Shadlen, M. N., Celebrini, S. & Movshon, J. A. A
318 relationship between behavioral choice and the visual responses of neurons in macaque MT.
319 *Vis. Neurosci.* **13**, 87–100 (1996).
- 320 13. Parker, A. J. & Newsome, W. T. Sense and the single neuron: Probing the Physiology of
321 Perception. *Annu. Rev. Neurosci.* **21**, 227–277 (1998).

322 14. Pillow, J. W., Ahmadian, Y. & Paninski, L. Model-Based Decoding, Information
323 Estimation, and Change-Point Detection Techniques for Multineuron Spike Trains. *Neural*
324 *Comput.* **45**, 1–45 (2010).

325 15. Zhang, K. *et al.* Interpreting Neuronal Population Activity by Reconstruction : Unified
326 Framework With Application to Hippocampal Place Cells Interpreting Neuronal Population
327 Activity by Reconstruction : Unified Framework With Application to Hippocampal Place Cells.
328 *Am. Physiol. Soc.* **79**, 1017–1044 (2014).

329 16. Bizley, J. K., Walker, K. M. M., Nodal, F. R., King, A. J. & Schnupp, J. W. H. Auditory
330 cortex represents both pitch judgments and the corresponding acoustic cues. *Curr. Biol.* **23**,
331 620–625 (2013).

332 17. Jaramillo, S., Borges, K. & Zador, A. M. Auditory Thalamus and Auditory Cortex Are
333 Equally Modulated by Context during Flexible Categorization of Sounds. *J. Neurosci.* **34**, 5291–
334 5301 (2014).

335 18. Francis, N. A. *et al.* Small Networks Encode Decision-Making in Primary Auditory
336 Cortex. *Neuron* **97**, 885–897.e6 (2018).

337 19. Najafi, F. & Churchland, A. K. Perceptual Decision-Making: A Field in the Midst of a
338 Transformation. *Neuron* **100**, 453–462 (2018).

339 20. Abe, T. *et al.* DeepLabCut: markerless pose estimation of user-defined body parts with
340 deep learning. *Nat. Neurosci.* **21**, 1281–1289 (2018).

341

342

343 **Acknowledgements**

344

345 We would like to thank all members of the Auditory Neuroscience Group for comments and
346 feedback on the work. In particular we would like to thank Samuel Picard and Michael Lohse for
347 valuable comments on the manuscript and critical discussion. We would further like to thank
348 Lydia Oikonomidis, James Phillips and Martin Kahn for comments on the manuscript and critical
349 discussion of the project. This work was supported by a Wellcome Trust PhD studentship
350 (WT102373/Z/13/Z) to YW and a Wellcome Principal Research Fellowship (WT07650AIA,
351 WT108369/Z/2015/Z) to AJK.

352

353

354 **Author Contributions**

355

356 Y.W. conceived the study and the model. Y.W. and J.C.D. designed the experiments. Y.W. and
357 J.C.D. performed surgeries. Y.W. performed experiments. Y.W. analysed the data. A.J.K.
358 provided infrastructure and resources. A.J.K. and J.C.D. supervised the project. Y.W., A.J.K.
359 and J.C.D. wrote the manuscript.

360

361

362 **Competing Interests**

363

364 The authors declare no competing interests.

365

366 **Supplementary Figures**

367

368

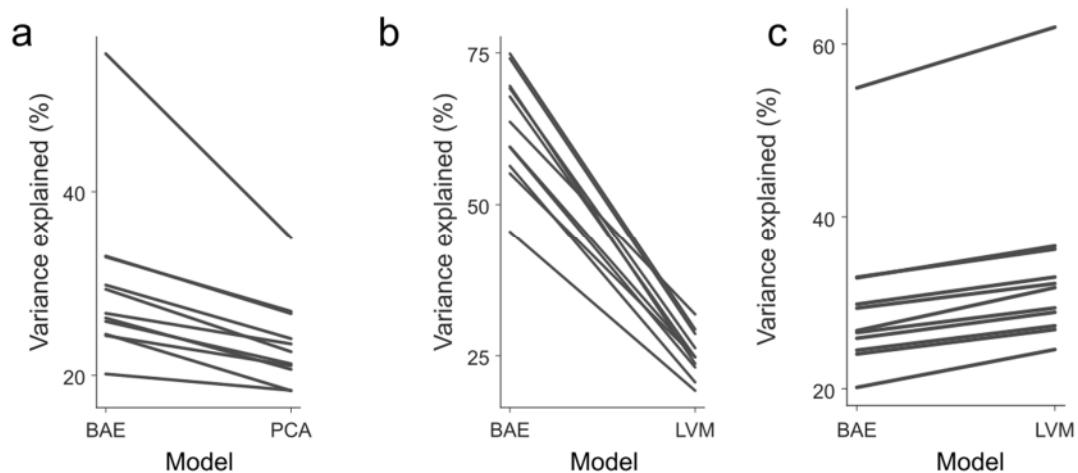
369 **Supplementary Figure 1.** Visualization of reconstructions from the latent space. Example of a
370 video frame in its raw and preprocessed form as well as its reconstruction. In the preprocessing
371 step, each pixel of video data had its mean subtracted and was divided by its variance.

372

373

374

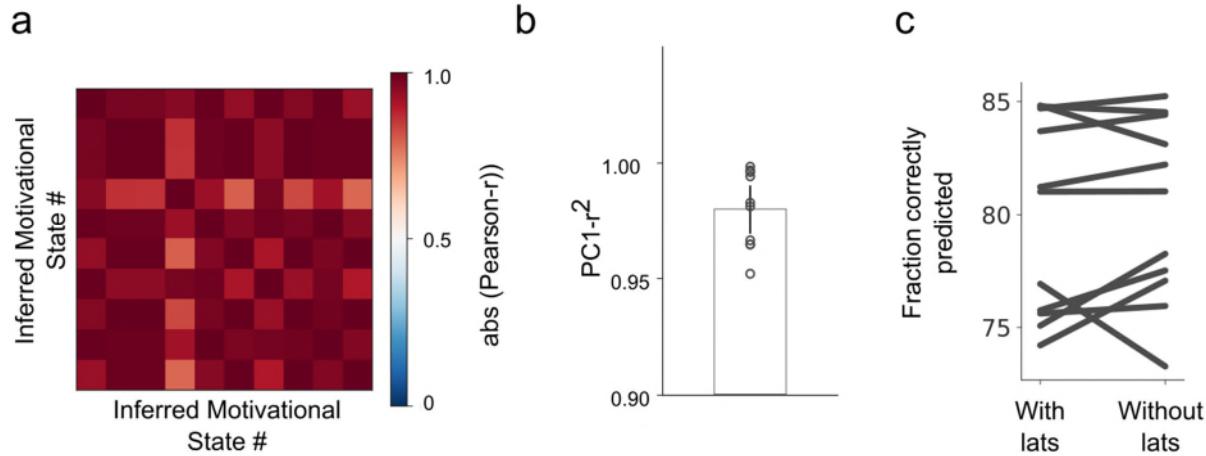
375



376

377

378 **Supplementary Figure 2** Quantitative analysis of pixel-space reconstructions of video data by
379 various models. **a)** Pairwise comparison of reconstructions of the video data by BAE and PCA.
380 For BAE reconstructions shown here, we performed one full pass through the model, using the
381 recognition model to obtain latent-states and the generative model to obtain pixel-space
382 reconstructions. Each line represents a single session. In all cases, BAE outperforms PCA
383 (paired t-test; $p=0.0002$). **b)** To assess how well latent states can be predicted from
384 experimental variables we compared the ability of the BAE and LVM (**Fig 1b**) to predict
385 behavioral latent states. The BAE out performed the LVM in all sessions (paired t-test; $p=3.5 \cdot 10^{-10}$), demonstrating enhanced, linear predictability of latent-states as a result of the
386 augmentation of the model's cost function. **c)** Pixel-space reconstructions, created by a full pass
387 of the video data through the LVM (i.e. video data are passed through the encoder network to
388 generate latent variables, which are then passed to the decoder network, reconstructing the full
389 images) are better than BAE (Paired t-test; $p=1.7 \cdot 10^{-7}$).



391
392

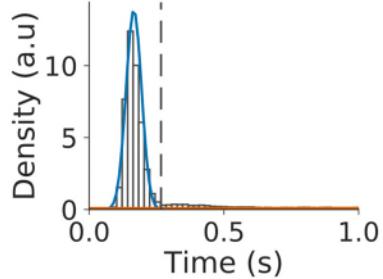
393 **Supplementary Figure 3** Further analysis of behavioral correlates of cognitive variables. **a)**
394 Analysis of the encoding model from an example session, which shows that motivational state
395 explains variance not accounted for by licking, suggested that an animal's motivational state is
396 externalized in behavior (**Fig 2a,b**). However, there is a chance that the encoded quantity may
397 not actually reflect motivation, but changes in posture that are unrelated to the animal's
398 motivational state. Motivation, in the context of our behavioral task, may be measured along a
399 one-dimensional continuum, that is to say that at each point in time animals have a certain level
400 of motivation. Therefore, if the measured quantity truly reflects motivation, we reasoned that
401 different parts of the animal's posture, reflected in the ten behavioral latent-states, should
402 change in a coordinated fashion. In contrast to this, if the measured quantity is just related to
403 slow changes in posture, there is no *a priori* reason that the different behavioral latent states
404 should change in a correlated fashion. To distinguish these possibilities we calculated the
405 weighted sum of motivation regressors for each latent variable. Regressors were weighted by
406 the values of fitted regression parameters for each latent variable. We refer to this sum as the
407 inferred motivational state. We then measured the correlation between the inferred motivational
408 states fitted to each latent state. Shown is an example correlation matrix, constructed by cross-
409 correlating the inferred motivational states for each latent variable. This example illustrates that
410 inferred motivational states, fitted to each behavioral latent-state independently, are highly
411 correlated, consistent with the hypothesis that the extracted variable is related to the animals'
412 motivational state rather than arising from spurious changes in posture. **b)** To quantify the
413 extent to which the motivational state variables may be described by a one-dimensional
414 quantity, we performed principal component analysis and quantified the variance explained by
415 the first principal component. We found that in all sessions a single principal component
416 captured more than 95% of the variance across motivational variables. **c)** Analysis of encoding
417 model parameters suggested that attention was not expressed in animal's behavior. To further
418 test this, we performed a logistic regression analysis and tried to predict trial-by-trial decisions,
419 asking whether knowledge of latent-states preceding stimulus onset helped us in doing so. We
420 compared performance of a baseline model to performance of an extended model that included
421 the latent-states preceding stimulus onset. The baseline model included the intensity of the
422 presented stimulus and whether the previous trial was a hit- or miss-trial. Expanding this model
423 by including behavioral latent states preceding stimulus presentation did not improve the

424 model's ability to predict whether a given trial is a hit- or miss-trial (paired sample t-test; $p =$
425 0.32). These results bolster the conclusion that attention is not encoded in the animals' behavior
426 preceding stimulus onset.

427

428

429



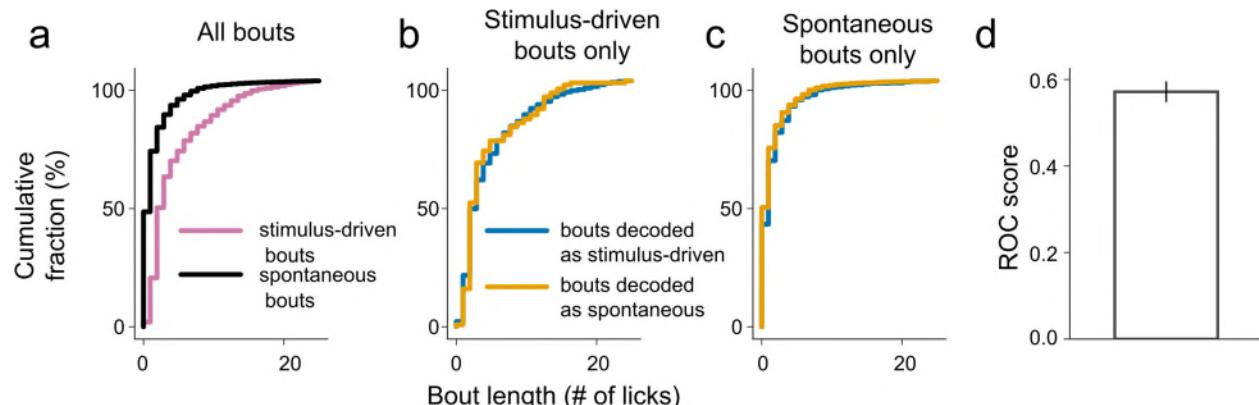
430
431 **Supplementary Figure 4** Mouse licking behavior is organized into bouts. Distribution of inter-
432 lick intervals across all sessions and animals (white histogram bars). Gaussians fitted to intra-
433 bout inter-lick intervals (blue curve) and between-bout inter-lick intervals (orange curve)
434 overlaid, together with the optimal separation boundary (dashed vertical gray line).

435

436

437

438



439

440

441 **Supplementary Figure 5** Excluding motor preparation and time as bases for classifying
442 behavior. **a)** Significant differences in bout lengths (quantified in terms of number of licks in a
443 bout) exist between stimulus-driven and spontaneous bouts. Therefore, stimulus-driven and
444 spontaneous bouts could be associated with differences in motor preparation that the decoder
445 might be able to exploit for its classification. **b)** Partitioning of only stimulus-evoked bouts
446 according to decoder classification reveals no differences in bout length as a function of the
447 decoder's classification. **c)** Partitioning of only spontaneous bouts according to decoder
448 classification also revealed no difference in bout length as a function of the decoder's
449 classification. This suggests that decoder performance is not driven by potential differences in
450 motor preparation between short and long lick bouts. **d)** To estimate the extent to which the

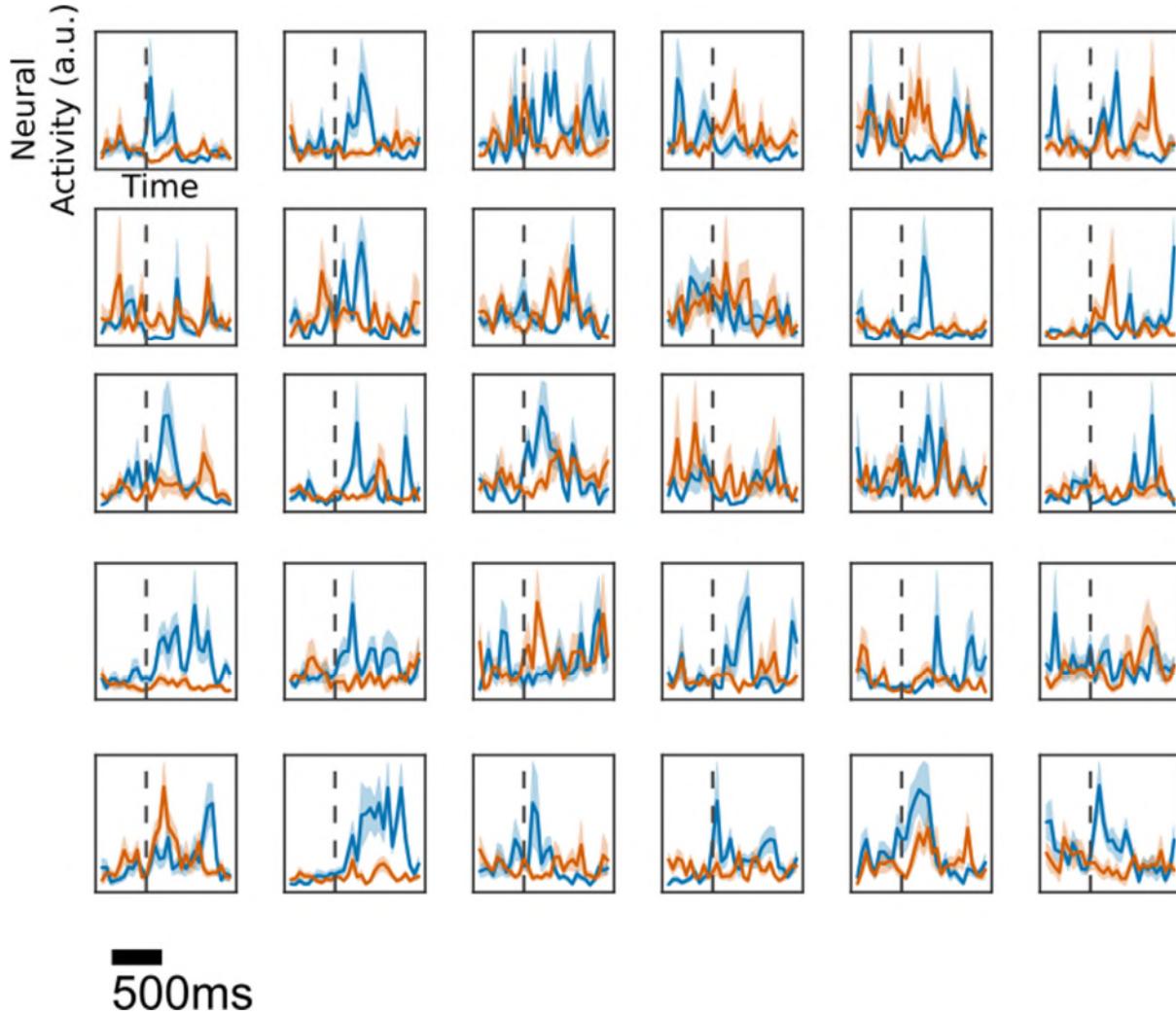
451 decoder relies on differences in bout length to perform classification, we measured how well
452 bout length could predict decoding performance. To do so, we computed the area under the
453 receiver operating characteristic curve (mean=0.56; s.e.m=0.01) and found that bout length was
454 a poor predictor of the decoder's decision.

455

456

457

458



459

460

461

462

463

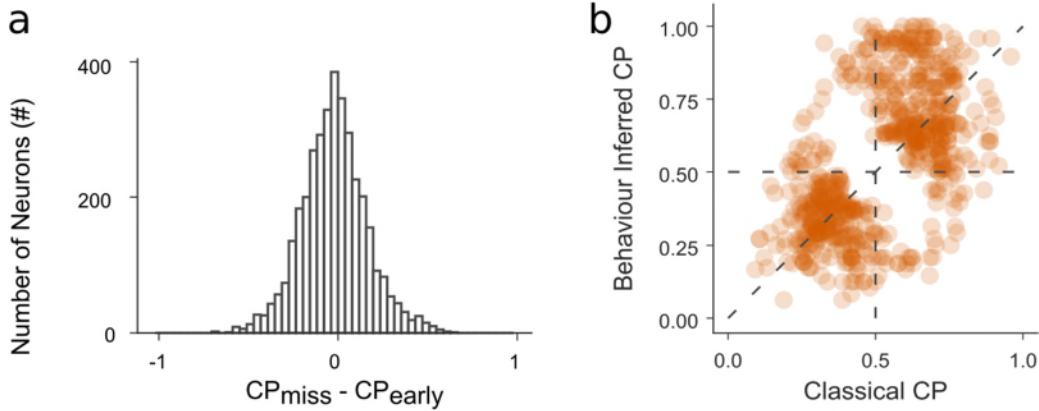
464

465

466

467

Supplementary Figure 6 Representative examples of neurons with significant choice probabilities. Each panel shows the average activity (mean \pm s.e.m) of a single neuron in a window surrounding stimulus onset (dashed vertical line). The y-axis of each panel is normalized to show the full dynamic range of each neuron. Blue curves show mean activity during hit-trials; orange curves show mean activity during miss-trials. Examples shown are taken from all animals.



468
469 **Supplementary Figure 7** Further analysis of choice-related activity. **a)** Choice probabilities
470 calculated by comparing hit and miss trials (CP_{miss}) and choice probabilities computed by
471 comparing hit vs early hit trials (CP_{early}) are not significantly different in magnitude (paired-
472 sample t-test $p = 0.68$). **b)** Full distribution of classical versus behavior inferred choice
473 probabilities.

474

475

476

477

478 **Supplementary Video 1.** Example pre-processed video and associated reconstructions using
479 the BAE. Latent states were estimated using the recognition model.

480

481 **Supplementary Video 2.** Estimation, via the BAE, of the mean video sequence preceding
482 stimulus-driven and spontaneous lick bouts, respectively. Estimation is based on data from one
483 example session. These pre-lick bout sequences were estimated by reconstructing latent states
484 using the behavioral encoding model and projecting these latent states into pixel space using
485 the generative model.

486

487 **Supplementary Video 3.** Example sets of video sequences preceding stimulus-driven and
488 spontaneous lick bouts from a single session. Data shown in video are temporally
489 counterbalanced such that simultaneously shown clips are close in time. Data are from the
490 same session as Supplementary Video 2.

491

492

493

494

495

496

497

498

499

500 **Methods**

501

502

503 *Animals*

504

505 All experiments were approved by the local ethical review committee at the University of
506 Oxford and licensed by the UK Home Office. One female C57BL/6NTac.Cdh23753A>G (Harlan
507 Laboratories, UK) mice²³, 3 female (C57B6.129S-Gt(ROSA)26Sortm95.1(CAG-GCaMP6f)Hze
508 [Jax: 024105] x C57B6.Cg-Tg(Camk2a-cre)T29-1Stl/J [Jax:005359]), one male
509 (Igs7tm93.1(tetO-GCaMP6f)Hze Tg(Camk2a-tTA)1Mmay/J [Jax: 024108] x Rbp4_KL100-Cre,
510 MMRRC: 037128; Gerfen et al., 2013) and one male Rbp4-cre mouse were used for behavioral
511 experiments. Neural data were obtained from the three (C57B6.129S-
512 Gt(ROSA)26Sortm95.1(CAG-GCaMP6f)Hze x C57B6.Cg-Tg(Camk2a-cre)T29-1Stl/J) mice. All
513 experiments were performed before mice reached 12 weeks of age, preceding the onset of age-
514 related sensorineural hearing loss in C57BL/6J strains^{21,22}.

515

516

517

518 *Click detection task*

519

520 Three days before mice commenced behavioral training, we started restricting their
521 access to water and acclimatising them to handling and head-fixation. Throughout the training
522 and testing period the mice' body weight remained above 80% of their pre-restriction body
523 weight. Mice were trained daily to lick in response to a 0.05-ms biphasic click stimulus
524 presented at 80 dB SPL. There were two types of trials: stimulus trials (80 dB SPL click; water
525 reward for licking) and catch trials (no stimulus; no reward for licking). These were randomly
526 interleaved at an inter-trial interval drawn from a uniform distribution between 6s and 12s. If
527 mice licked during a 1.5 s window following onset of the stimulus, a water drop (2 μ l) was
528 delivered immediately. Once mice reached high performance levels (> 80 % correct on stimulus
529 trials), which took 2-5 sessions, they were moved to the testing phase in which stimuli were
530 presented at different intensities. Stimuli were randomly interleaved and presented over a
531 maximum range of 38 dB SPL to 80 dB SPL (3-dB steps). The range of stimulus levels
532 presented in a given session was, in some cases, adjusted according to the animals' sensitivity.
533 Behavioral data were acquired in blocks lasting between 7 and 30 minutes. Typical sessions
534 lasted approximately forty minutes during which mice performed approximately 250 trials.

535 Data were excluded, in a block-wise manner according to several criteria. Firstly, mice
536 needed to have undergone at least two testing sessions prior to the sessions considered for
537 inclusion. Secondly, to be able to reliably identify stimulus-driven bouts, we required hit-rates for
538 the loudest stimuli to exceed 95%. Finally, to be able to reliably identify hit-trials as being
539 stimulus driven, we required false-alarm rates to be below 45%. Of the 12 sessions (two per
540 mouse) passing these criteria, one had to be excluded because of video frames missing as a
541 result of camera failure.

542

543

544 *Apparatus*

545

546 The behavioral apparatus was controlled from a computer running Windows 7 using
547 MATLAB (Mathworks) interfaced with a National Instruments board (NI- DAQ USB-6008) for
548 data acquisition. Stimuli were presented using MATLAB 2016a (Mathworks) running
549 psychtoolbox. Stimuli were digital-to analog converted using a commercial soundcard (ASUS
550 Xonar-U7), amplified (Portable Ultrasonic Power Amplified; Avisoft Bioacoustics) and played
551 through a free-field electrostatic speaker (Vifa; Avisoft Bioacoustics), positioned approximately
552 15 cm in front of the mouse's snout.

553 Stimuli were calibrated using an M500 microphone (Pettersson), which was itself
554 referenced to a sound-level calibrator (Iso-Tech SLC-1356). Click volumes were calibrated by
555 integrating the recorded RMS of clicks over the mouse hearing range (1-100kHz) and
556 comparing it to the RMS of stimuli from the reference sound-level calibrator.

557 Video frame acquisition was triggered by the frame clock of the two-photon microscope,
558 such that one video frame was acquired for every two microscope frames, resulting in an
559 acquisition rate of ~13 Hz at a resolution of 640 x 480 pixels. The camera, a DMK23UV024 (The
560 Imaging Source) mounted with a M5018-MP2 (Computar) lens, was positioned approximately
561 30 cm in front of and 30 cm above the behavior apparatus, aligned to have the mouse's face
562 and most of its body in the field of view. Regions of interest showing the mouse's face
563 (**Supplementary Fig. 1**) were drawn manually (approximately 150 x 150 pixels in size) on each
564 dataset. These regions of interest were used for further analysis.

565

566

567

568 *Widefield calcium imaging*

569

570 The widefield imaging system consisted of a 470nm LED (M470L3, Thorlabs), a digital camera
571 (340M-GE, Thorlabs) and a 2X objective (TL2X-SAP, Thorlabs) mounted on a Thorlabs
572 Bergamo II microscope body. Images were acquired at a rate of 10 Hz and a resolution of 96 by
573 128 pixels using ThorCam (Thorlabs) software. Sound waveforms were generated in LabView
574 (National Instruments) and presented on the same hardware as described above. For the
575 frequency mapping of auditory cortical fields we presented 500 ms long sinusoidally amplitude
576 modulated (SAM) tones with a modulation frequency and depth of 10 Hz and 100%,
577 respectively. Each map was based on the responses to 15 repeats of one low carrier frequency
578 (4 kHz or 5.04 kHz) and 15 repeats of one high carrier frequency (25.4 kHz or 32 kHz) SAM
579 tone, presented at either 55 dB SPL or 65 dB SPL and at a rate of 0.33Hz. Frequency maps
580 (**Fig. 3a**) were generated by calculating the average response (mean signal intensity in a 1-s
581 window following sound onset minus mean signal in a 1-s window preceding sound onset) to the
582 low-frequency and high-frequency stimulus, subtracting one from the other, color-coding the
583 resulting image and superimposing it on a grayscale image of the bloodvessel pattern.

584

585

586

587

588 *Two-photon data acquisition*

589

590 Two photon imaging was performed as described previously²⁴. Briefly, image acquisition
591 was carried out using a commercially available two-photon laser-scanning system (B-Scope;
592 Thorlabs). A SpectraPhysics Mai-Tai eHP laser fitted with a DeepSee prechirp unit (70fs pulse
593 width, 80MHz repetition rate) provided the laser beam for two photon excitation. The beam was
594 directed into a Conoptics modulator and then through the objective (16x 0.8NA water immersion
595 objective; Nikon). The beam was scanned across the brain using an 8-kHz resonance scanner
596 (X) and a galvanometric mirror (Y). The resonance scanner was used in bidirectional mode,
597 enabling acquisition of 512 x 512 pixels at a frame-rate of approximately 26 Hz. Emitted photons
598 were filtered (525/50) and collected and amplified by GaAsP photomultiplier tubes
599 (Hamamatsu). ScanImage was used to acquire data and control the microscope. All imaging
600 was done between 150 and 250 μ m below the cortical surface.

601

602

603

604 *Latent variable model*

605

606 The mathematics underlying variational autoencoders^{10,11}, on which our models are
607 based, has been covered in great detail elsewhere (see e.g. Doersch, 2016²⁵ for a tutorial) so
608 we will give only a brief summary here. Given some observed high-dimensional series of pixel
609 intensities (i.e. video data) X , we seek to explain variation in X by assuming that some low-
610 dimensional underlying latent variables, z , give rise to the data. Ideally, the quantity we would
611 seek to maximize when fitting the model is thus $P(X)$, the probability of the data. We can relate
612 z to $P(X)$ mathematically by conditioning:

613
$$P(X) = \int p(X|z) P(z) dz \approx \frac{1}{n} \sum_{i=1}^n P(X|z_i) \quad (1)$$

614

615 where we note that any integral can be approximated by a finite sum over samples of z_i . This
616 formulation has the important property that by specifying the functional form of $p(X|z)$ and a
617 method of sampling z_i we can evaluate $P(X)$ and hence quantify the performance of the model.
618 For analytical tractability and ease of sampling, we assert that $P(z)$ is a Gaussian distribution
619 with 0 mean and diagonal, unit covariance.

620

621
$$P(z) = N(0 | I) \quad (2)$$

622

623 Based on the continuous values of pixel intensities, we further specify $P(X_i|z_i)$ to be a normal
624 distribution:

625

626
$$P(X_i|z_i) = N(\mu = f_\phi(z_i); \Sigma = I) \quad (3)$$

627

628 where $f_\phi(z)$ is a deterministic function, with parameters ϕ , that map latent variables, z , into pixel
629 space. In practice, we implement $f_\phi(z)$ as a multi-layer neural network.

However, with high-dimensional data, naive sampling approaches are inefficient to the point of intractability because for most values of z_i , $p(X_i|z_i) \approx 0$. To enable efficient sampling, allowing us to tractably approximate the above integral, we construct an auxiliary distribution $Q(z_i|X_i)$ which enables us to draw samples from $P(z_i)$ such that the sampled z_i are likely to give rise to X_i . In practice, we assume that

$$Q(z_i|X_i) = N(z_i| \mu = g_\theta(X_i); \Sigma = h_\theta(X_i)) \quad (4)$$

where g and h are deterministic functions of X , parameterised by θ , which are implemented by a deep neural network. However, naively sampling $Q(z|X)$, rather than $P(z)$, to evaluate $P(X)$ will result in biased estimates. To circumvent these issues we apply standard identities from the Variational Bayesian literature⁷ to derive:

$$L(\theta, \phi) = \log P(X) - D_{z \sim Q(z|X)}(Q(z|X) \parallel P(z|X)) = -E_{z \sim Q(z|X)}[\log p_\phi(X|z)] + D(Q_\theta(z|X) \parallel P(z)) \quad (5)$$

where $D(p||q)$ denotes the KL-Divergence (a measure of difference between probability distributions) between p and q . The left hand side of this equation is the quantity we seek to maximize. Doing so maximizes the likelihood of the data $P(X)$ while minimizing the difference between our approximation of $Q(z|X)$ and the true $P(z|X)$. Since both $Q_\theta(z|X)$ and $P(z)$ are Gaussian, this divergence has a closed form solution. Similarly, we can arrive at a computationally tractable form of the expectation $E_{z \sim Q(z|X)}[\cdot]$ by using a single sample from $Q(z|X)$ to make the approximation. Furthermore, tractable derivatives of this cost function are available^{10,11}.

We extend this model to encourage learning of interpretable latent representations. We achieved this by adding an additional term to the cost function. Specifically, we fitted a behavioral encoding model (see *Behavioral encoding model* for details), mapping from task variables to the latent variables z using a linear regression model with parameters β . We augment the cost function with the error term of this regression model to obtain a more interpretable model in which the values of latent variables z are linearly predictable from variables of interest.

$$L(\theta, \phi; \beta) = -E_{z \sim Q(z|X)}[\log p_\phi(X|z)] + D(Q_\theta(z|X) || P(z)) - E_{z \sim Q(z|X)}[\log p_\beta(z|V)] \quad (6)$$

Importantly, the prior on the latent space acts to regularize the latent parameters preventing overfitting. Additionally, our behavioral encoding model only biases the learning of weights, it does not bias the inferred latent representation.

673 *Data analysis*

674

675 Data were analysed in Matlab and Python 3.6.2 augmented with standard libraries for scientific
676 computing²⁶⁻³¹. Unless stated otherwise, standard algorithms (e.g. principal component analysis)
677 are implemented using reference implementations from these libraries. A reference
678 implementation of the behavioral autoencoder, together with an example video dataset is
679 available for use and alteration at www.github.com/yves-weissenberger/bae.

680 All statistical tests were, unless otherwise stated, implemented using reference
681 implementations in standard libraries for scientific computing in Python. All statistical tests were
682 two-tailed.

683

684

685

686 *Model implementation*

687

688 The hierarchical Bayesian model is implemented using the Python library *Tensorflow*³².
689 The model is comprised of two sequential networks termed recognition model and generative
690 model, respectively. All neural activation functions were rectified-linear unless otherwise stated.

691 The recognition model is a four-layer network. The first two layers are comprised of
692 convolutional units (256 and 128 units), and kernel sizes three and five pixels, respectively. In
693 both cases, the stride of kernels was set to two pixels. These layers were followed by a fully
694 connected layer with 100 units and a final bipartite layer comprised of 10 linear and 10 softplus
695 units, mapping to the mean and covariance of the latent space, respectively.

696 The decoder network consisted of two fully connected layers with 100 and 500 units,
697 respectively, followed by a final fully connected linear layer mapping the previous layers' output
698 into pixel space. Our network was trained using a 60/20/20 train/validation/test split. To optimize
699 the cost function we used AdamOptimizer³³ with the learning rate set to 0.005. Hyperparameters
700 were, once heuristically optimized using a separate dataset not included in this report, held fixed
701 for all analyses reported here.

702

703

704

705 *Lick bout analysis*

706

707 To separate licks into bouts, we fitted a two-component Gaussian Mixture Model
708 (implemented by the *GaussianMixture* class of the scikit-learn library) to the inter-lick interval
709 (ILI) distribution of all mice. We thereby separated the ILI distribution into two components which
710 we interpreted as corresponding to within bout ILIs and across bout ILIs. In doing so, we
711 determined the optimal separation window for dividing licks into bouts as the point at which the
712 probability of the fitted Gaussian with the larger mean exceeded that of the smaller one. Doing
713 so, we found that a window of ~266ms provided the optimal separation window for
714 differentiating within-bout licks from across-bout licks.

715

716

717 *Behavioral encoding model*

718

719 Our behavioral encoding model was a linear-regression model mapping from the set of
720 observed and hidden variables V to inferred latent-states z_i using parameters β . The set of
721 observed variables we used comprised licks, rewards, lick-bout initiations (defined as the first
722 lick in a bout of licks) and sound stimuli. The timestamps of each of these observed event types
723 were discretized to construct a set of $T \times 1$ vectors (where T is the length of the session), either
724 set to 1 on the camera frame at which the event occurred (click, reward) or two frames
725 preceding an event (lick-bout initiation, lick), as these movements will be initiated before a lick is
726 completed, and 0 everywhere else. In the case of the clicks, we also analyzed the data after
727 scaling entries in the vector according to sound level, but this made no qualitative or quantitative
728 difference (data not shown).

729 The set of hidden variables was comprised of decision basis, attention and motivational
730 state. Decision basis was a $T \times 2$ binary vector whose first and second columns signified
731 whether a stimulus-driven or spontaneous lick-bout occurred, respectively. An entry in the first
732 column was set to a value of 1 at five frames (~380 ms) preceding the onset of a lick-bout if a
733 stimulus preceded the lick-bout within a ~600 ms window (this window represents the 70th
734 percentile of the across-animal reaction time distribution). Analogously, an element was set to 1
735 in the second column if no stimulus preceded the bout and the bout was initiated outside the
736 peri-stimulus period. This period was defined as the period from ~150 ms prior to onset of the
737 stimulus to ~1.5 s following the onset of the stimulus.

738 Attention was a $T \times 2$ binary vector whose first column signified that the animal was
739 attentive. We reasoned that detection of particularly loud stimuli was not affected by attention
740 and therefore did not include these in this analysis. An element in the first column was set to 1
741 at five frames preceding the onset of a stimulus if that stimulus was presented at a low intensity
742 (average hit-rate at that intensity <75%) and the trial was a hit trial. Analogously, an element in
743 the second column was set to 1 on miss trials.

744 Motivational state was a $T \times 5$ continuously valued vector approximating the extent of
745 reward seeking. We constructed each row of this matrix by convolving the vector of licks with a
746 Gaussian distribution. We derived this definition of motivational state based on recent work
747 demonstrating that in head-fixed mice, increased motivation is associated with increased
748 baseline lick rates³⁴. The Gaussian for each row had a different standard deviation reflecting our
749 *a priori* uncertainty about the timescales of motivational fluctuations. The standard deviations
750 ranged from ~2.5 s to ~40 s multiplied in powers of two.

751 We additionally included a set of time regressors, a $T \times 10$ vector, where each row is a
752 continuous low frequency oscillation, to account for slow drifts in posture over time. The period
753 of these oscillations ranged from ~1450 s to ~2150 s. To enable events to affect latent-states at
754 future time points, all the above vectors (with the exception of motivational-state and time) were
755 multiplied with a Toeplitz matrix giving rise to a series of lagging regressors extending 5 frames
756 into the future.

757 The Design Matrix \hat{V} was then constructed by concatenating these vectors together with
758 an offset term yielding the following regression model

759

760

761 $p(z|\beta; \hat{V}) = N(\beta \cdot \hat{V} | I)$ (7)

762

763 where

764

765 $\hat{V} = [v^{offset}, v^{time}, v^{lick} \cdot K, v^{bout} \cdot K, v^{rew} \cdot K, v^{stim} \cdot K,$
766 $v_1^{att} \cdot K, v_2^{att} \cdot K, v_1^{dec} \cdot K, v_2^{dec} \cdot K, v^{mot}]$ (8)

767

768

769 Linear models were regularized using an L2-penalty term. Fitting, as well as
770 regularization parameter selection was implemented using the scikit-learn function *RidgeCV*. Fit
771 quality estimation was performed using repeated, nested K-fold cross validation (five folds; four
772 repeats). In the inner K-fold loop (five folds), the training data were used for fitting and
773 hyperparameter selection, while in an outer loop fit quality was assessed using the held-out
774 data.

775

776

777 *Analysis of behavioral-encoding model parameters*

778

779 To determine the importance of each regressor in the behavioral encoding model, we
780 performed two complementary analyses to bound the extent of their encoding. This was
781 required because of the collinearity of regressors. To obtain a lower bound on strength of
782 encoding, we quantified the effect of excluding subsets of regression parameters, relating to a
783 single experimental variable (e.g. v^{bout}), on cross-validated fit quality. Secondly, to obtain an
784 upper bound, we included only parameters relating to a single experimental variable in the
785 regression model. Each of these models was fitted to latent-states extracted after the initial,
786 global fitting process. Model performance was estimated, as during initial fitting, using repeated,
787 nested K-fold cross validation (six folds; four repeats). In the inner K-fold loop (five folds), we
788 determined the optimal regularization parameter. In the outer loop, we attempted to assign hit or
789 miss labels to a held-out test set of trials based on fit parameters.

790

791

792 *Logistic-regression analysis of attentional state*

793

794 To determine whether trial-by-trial attentional states were externalized in behavior, we
795 attempted to use behavioral latent-states preceding stimulus onset to predict whether a given
796 trial was a hit or miss trial. To do so, following fitting of our latent variable model and the
797 determination of behavioral latent-states, we fitted a logistic regression model to subjects' trial-
798 by-trial choices. Logistic regression was implemented using the *sklearn* function
799 *LogisticRegression* using the Newton Conjugate Gradient solver and an L2 penalty. A reference
800 model included as regressors the level of the presented stimulus and a variable indicating
801 whether the previous trial was a hit- or miss-trial. To determine whether some correlate of
802 attention was externalized in behavior, we compared performance of the reference model to a
803 model which additionally included the behavioral latent states on the ten video frames preceding
804 each stimulus onset as regressors. Model performance was estimated using a repeated, nested

805 K-fold cross validation (six folds; four repeats). Regularization parameters were optimized in an
806 inner K-fold loop (five folds).

807

808

809

810 *Behavioral decoding dataset*

811

812 The window for decoding extended 5 video frames backwards from the onset of the lick-
813 bouts. To ensure that lick history did not form the basis of our behavioral decoding, we only
814 selected lick-bouts in which no licks occurred in a ~610 ms window preceding bout-onset.
815 Additionally, to ensure that long-timescale covariation in posture and spontaneous bout-rates do
816 not drive decoder performance (spontaneous bout-rates are typically higher at the beginning of
817 behavioral sessions), spontaneous and stimulus-driven lick-bouts were selected in a temporally
818 counterbalanced fashion. Specifically, for each session, we counted the number of stimulus-
819 driven and spontaneous bouts. We denote the smaller of these two sets the reference set R_1 .
820 For each bout in the reference set, we selected the bout in the larger set that was its nearest
821 neighbour, yielding a second set of bouts R_2 . The union of these sets ($R_1 \cup R_2$) then comprised
822 the decoding dataset. This led to an unbiased selection of spontaneous and stimulus-driven
823 bouts. Decoding performance was similar when the bout distributions were not counterbalanced
824 in this fashion (data not shown). Decoding performance was estimated on a test-set held out
825 during fitting, using repeated, nested K-fold cross validation (five folds; four repeats).

826

827 *Model free decoding*

828

829 Model free decoding was performed using a linear support vector machine whose
830 regularization parameter C was determined in an inner cross validation loop, as described
831 above. In addition to determining the optimal regularization parameter, variable selection was
832 performed in the inner loop, whereby the optimal set of timepoints to use for classification was
833 determined by optimizing prediction accuracy on the training set. Classification was
834 implemented by the *sklearn* function SVC.

835

836 *Model-based decoding*

837

838 Decoding was performed using log-likelihood ratios (*LLR*) similarly to Pillow et al¹⁴.
839 Specifically, for each lick-bout we compared the log-likelihood of the behavioral latent-states
840 preceding the onset of a bout under the assumption that this bout was stimulus-driven, with the
841 log likelihood that the bout was spontaneous:

842

$$843 LLR = \log \frac{p(V_{stim} | \beta; z)}{p(V_{spont} | \beta; z)} = \log \frac{p(z | \beta; V_{stim})}{p(z | \beta; V_{spont})} + K \propto \sum_{t=1}^H \{(z_t - \beta \cdot V_{stim}^t)^2 - (z_t - \beta \cdot V_{spont}^t)^2\} \quad (9)$$

844

845 Where V_{stim}^t is the design matrix constructed by setting the relevant entry (i.e. five frames
846 preceding bout onset) for stimulus-driven bout to 1 and the entry for spontaneous bout to 0,

848 V_{spont} is the reverse, H is the analysis horizon and K are terms independent of V . A log
849 likelihood ratio greater than 0 corresponds to a lick bout that is decoded as being stimulus-
850 driven.

851 To quantify the accuracy of the decoder we performed a repeated nested, stratified K-
852 fold (six folds; four repeats) cross validation. In an inner K-fold loop (five folds), we determined
853 the optimal regularization parameter for the behavioral encoding model. This means that
854 regularization parameters were only explicitly optimized for encoding, and only implicitly
855 optimized for decoding. Decoding performance was then estimated on the held-out cross
856 validation set comprising equal numbers of stimulus-driven and spontaneous lick-bouts.

857 Pixel space decoding was performed by projecting latent-space estimates of stimulus-
858 driven (i.e. $\beta \cdot V^t_{stim}$) and spontaneous lick bouts (i.e. $\beta \cdot V^t_{spont}$) back into pixel space using
859 the trained generative model and calculating log likelihood ratios in pixel space.

860

$$861 \quad LLR \propto \sum_{t=1}^H \{ (X_t - f_\phi(\beta \cdot V^t_{stim}))^2 - (X_t - f_\phi(\beta \cdot V^t_{spont}))^2 \} \\ 862 \quad (10)$$

863
864 Where $f_\phi(\cdot)$ (see equation (3)) is a neural network implementing the generative model,
865 returning the posterior mean in pixel space from some latent value.

866
867
868 *Two-photon data preprocessing*
869

870 Data preprocessing was performed in Python using the Two-Photon Analysis Toolbox:
871 `twoptb` (<https://yves-weissenberger.github.io/twoptb/>). Briefly, data were motion registered using
872 the efficient subpixel registration algorithm. Next, regions of interest (ROIs) were automatically
873 segmented (then manually curated) using a pre-trained supervised algorithm, included in the
874 toolbox, which uses the mean image to identify ROIs. Segmentation was performed in a two-
875 step process where the initial step involved finding seed regions for ROIs using a random-
876 forests classifier. In a second step, a region-growing algorithm was applied to construct ROIs.
877 Traces were extracted as an unweighted average of fluorescence within each region of interest.
878 All traces were neuropil corrected using the fluorescence averaged in a $20 \times 20 \mu\text{m}^2$ square
879 surrounding the ROI (empirically determined correction factor: ~0.5). Traces were then baseline
880 corrected using a Kalman-filter based estimate of baseline fluorescence. Finally, spike inference
881 was performed on neuropil corrected traces using the `c2s` toolbox³⁵. To improve temporal
882 resolution, all neural analyses were performed on inferred spike rates.

883
884 *Choice probability estimation*
885

886 For analysis of choice probabilities¹² , we selected equal numbers of hit and miss trials
887 from each stimulus level with hit-rates between 25% and 75%. This was done to maximise data
888 inclusion while preventing variation in sound-evoked activity from dominating the influence of
889 choice. To calculate choice probabilities, we measured the neural response (average neural
890 activity in a 300ms window following stimulus onset) for each trial. We then used the resulting
891 hit and miss trial response distributions to calculate the area under the receiver operating

892 characteristic curve using the *roc_auc_score* function in the *sklearn* package. P-values for
893 choice probabilities were determined by permutation testing using 2000 shuffles.

894 When calculating choice probability based on behavioral decoding, the subset of hit-
895 trials that were behaviorally decoded as spontaneous were moved from the hit-trial to the miss-
896 trial group. To avoid biased estimates as a result of class imbalances, we calculated choice
897 probability by averaging the mean accuracy for each class (hit and miss). Calculating choice
898 probabilities without such counterbalancing did not qualitatively affect conclusions (data not
899 shown).

900

901 *Neural regression model*

902

903 Regression models fitted to neural activity were identical in implementation to those
904 used in the behavioral encoding model (see above), except for the inclusion of instantaneous
905 (i.e. no time lagged regressors were used) behavioral latent-states as regressors. When neural
906 regression models were fit only to behavioral latent-states and did not include the design matrix
907 used in the behavioral encoding model, results with respect to choice encoding were
908 qualitatively similar (data not shown).

909

910

911 *Choice probability prediction*

912

913 To assess whether neural choice probabilities (CPs) were related to the covariation of
914 neural activity and movements, we analyzed the parameters of fitted neural regression models.
915 Following the fitting of neural regression models, parameters relating to behavioral latent-states
916 were extracted. We then fitted a multi-linear model, separately to each session, which
917 attempted, on a neuron-by-neuron basis, to predict the neuron's choice probability from that
918 neuron's regression model parameters related to behavioral latent-states. We reasoned that if
919 choice probability was explained by neural tuning to motor output, or indeed motion artifacts
920 unaccounted for by image registration, then, across neurons, choice probability should be
921 predictable from neurons' tuning to behavioral latent states. The multi-linear model was
922 implemented by the *OLS* class from the *statsmodels* library.

923

924

925

926 **Methods References**

927

928

929 21. Willott, J. F., Aitkin, L. M. & McFadden, S. L. Plasticity of auditory cortex associated with
930 sensorineural hearing loss in adult C57BL/6J mice. *J. Comp. Neurol.* **329**, 402–411 (1993).

931 22. Ison, J. R., Allen, P. D. & O'Neill, W. E. Age-related hearing loss in C57BL/6J mice has
932 both frequency-specific and non-frequency-specific components that produce a hyperacusis-like
933 exaggeration of the acoustic startle reflex. *JARO - J. Assoc. Res. Otolaryngol.* **8**, 539–550
934 (2007).

935 23. 1. Mianné, J. *et al.* Correction of the auditory phenotype in C57BL/6N mice via
936 CRISPR/Cas9-mediated homology directed repair. *Genome Med.* **8**, 16 (2016).

937 24. Vasquez-Lopez, S. A. *et al.* Thalamic input to auditory cortex is locally heterogeneous
938 but globally tonotopic. *Elife* **6**, e25141 (2017).

939 25. Doersch, C. Tutorial on Variational Autoencoders. (2016). doi:10.3389/fphys.2016.00108

940 26. Rossum, G. Van & Drake, F. L. *Python Tutorial, Technical Report CS-R9526. Centrum*
941 *voor Wiskunde en Informatica (CWI)* (1995). doi:16/j.hist-euroideas.2011.02.001

942 27. Hunter, J. D. Matplotlib: A 2D graphics environment. *Comput. Sci. Eng.* **9**, 99–104
943 (2007).

944 28. Oliphant, T. E. SciPy: Open source scientific tools for Python. *Comput. Sci. Eng.* **9**, 10–
945 20 (2007).

946 29. Seabold, S. & Perktold, J. Statsmodels: econometric and statistical modeling with
947 Python. in *Proceedings of the 9th Python in Science Conference* 57–61 (2010).

948 30. Pedregosa, F. *et al.* Scikit-learn: Machine Learning in Python. *Journal of Machine*
949 *Learning Research* **12**, (2011).

950 31. Van Der Walt, S., Colbert, S. C. & Varoquaux, G. The NumPy array: A structure for
951 efficient numerical computation. *Comput. Sci. Eng.* **13**, 22–30 (2011).

952 32. Abadi, M. *et al.* TensorFlow : A System for Large-Scale Machine Learning. *Proc 12th*
953 *USENIX Conf. Oper. Syst. Des. Implement.* (2016). doi:10.1126/science.aab4113.4

954 33. Kingma, D. P. & Ba, J. Adam: A Method for Stochastic Optimization. (2014).
955 doi:10.1063/1.4902458

956 34. Berditchevskaia, A., Cazé, R. D. & Schultz, S. R. Performance in a GO/NOGO
957 perceptual task reflects a balance between impulsive and instrumental components of behavior.
958 *Sci. Rep.* **6**, (2016).

959 35. Theis, L. *et al.* Benchmarking Spike Rate Inference in Population Calcium Imaging.
960 *Neuron* **90**, 471–482 (2016).

961

962

963

964