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Abstract

Models of behavior typically focus on sparse measurements of motor output over long
timescales, limiting their ability to explain momentary decisions or neural activity. We developed
data-driven models relating experimental variables to videos of behavior. Applied to mouse
operant behavior, they revealed behavioral encoding of cognitive variables. Model-based
decoding of videos yielded an accurate account of single-trial behavior in terms of the
relationship between cognition, motor output and cortical activity.
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Main Text

Advances in neural recording technologies have enabled activity to be measured from
thousands of neurons simultaneously!?. By eliminating the need for averaging activity across
trials, these methods are providing unprecedented insights into neural function. But to fully realize
their promise, we also require similarly comprehensive descriptions of behavior that can be used
to bridge the gap between neural activity and function.

However, even in highly-controlled experimental settings, such as during a sensory
decision-making task, quantitative descriptions of behavioral variability remain elusive®*.
Analyses of session-level choice-statistics have shown that decisions are influenced by a variety
of factors®® . Nevertheless, it remains extremely challenging to identify the factors underlying
single-trial decisions from currently available behavioral readouts. This severely limits the
functional interpretation of brain activity, which often relies on such behavioral readouts to link
neural activity to cognitive processes.

The interpretation of neural activity is further complicated by correlations between
experimental variables (e.g. cognitive variables or environmental stimuli) and motor output.
Indeed, such correlations can confound the neural encoding of an experimental variable like a
decision with the encoding of the associated motor output, i.e. the enactment of the decision.

One approach to overcoming these issues is the detailed quantitative study of behavior*.
Classical approaches’ focus on simple measures (e.g. aggregate choice-statistics) that are easy
to relate back to experimental variables. However, these measures lack the capacity or temporal
resolution that is required to robustly link neural activity to the computations underpinning trial-by-
trial behavior. Although recent approaches have begun to address these shortcomings by
performing unsupervised decompositions of detailed behavioral measurements®® | their output
can be difficult to relate to experimental variables, thereby limiting their scope.

We sought a novel and generally applicable approach to the challenge of quantifying
behavior which combines the strengths of previous methods. We took a data-driven approach
and developed statistical models of dense behavioral measurements. Our objective was to find
representations of behavior that can account for an animal’s motor output whilst remaining easily
relatable to cognitive and stimulus-related variables. Crucially, we attempted to find such
representations directly in the data, without a priori knowledge. In doing so, we aimed to extract
a comprehensive and interpetable account of behavior that can support detailed analysis of neural
activity.

We analyzed video data from head-fixed mice (n = 11 sessions from 6 mice) performing
a sound detection task (Fig. 1a), and used variational autoencoders, which are Bayesian latent-
variable models (LVM)11 as a starting point for modelling animals’ motor output. The aim of the
model was to find low-dimensional representations of the video data that enable frame-by-frame
reconstructions at pixel-level resolution (Fig. 1b i).

Models of behavior are useful only to the extent that they can be related to experimental
variables, such as an animal’s decisions or the underlying neural activity. We therefore formalized
the notion of relatability as linear predictability from these variables. This yielded a novel model,
which we refer to as a behavioral autoencoder (BAE), the cost function of which is augmented
with an additional penalty term. This term encourages learning a representation of behavior that
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88 is explicable in terms of a priori defined variables of interest (Fig. 1b ii) (see Methods). We then
89 fitted this model to videos acquired during task performance.

90 The sound detection task provided a rich set of observed and hidden variables (Fig. 1c),
91  which may explain momentary variations in animals’ motor output. We therefore used both sets
92  of variables (henceforth referred to collectively as experimental variables) to augment the model’s
93  cost function.

94
95
96
97 Figure 1 Model Structure and performance. a) (top) Image of a mouse in the experimental
98 setup. (bottom) Example psychometric functions (+95% binomial confidence intervals)
99 llustrating performance in the sound detection task (each curve depicts performance of one

100 mouse in a single session; all curves are from different mice). b) Schematic of the LVM and
101  BAE. (i) The LVM is parameterized by two sequential deep neural networks. The first network
102  parameterizes a recognition model that maps from video data to a low-dimensional latent space.
103 The second network parameterizes a generative model which maps from the latent space back
104 into pixel space and reconstructs the video data. (ii)) The BAE encompasses the LVM and a
105 behavioral encoding model that maps experimental variables into an approximation of the latent
106 space. This is used to encourage latent representations to be linearly predictable from
107  experimental variables x by an additional penalty term, which structures representations in the
108 latent space. ¢) Schematic illustrating the definition of hidden variables (see Methods). Briefly, an
109 animal was considered attentive on a given trial if the stimulus was of low intensity and the trial
110 was a hit-trial. It was considered inattentive on a given trial if the stimulus was of low intensity and
111  the trial was a miss-trial. An animal was considered to engage in ‘stimulus-driven’ licking if a
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112  stimulus occurred in a 540-ms window preceding the onset of a lick bout; otherwise the licking
113 was considered to be ‘spontaneous’. A high lick rate was interpreted to be indicative of reward
114  seeking and, thus, a state of high motivation. Motivational state regressors were created by
115 convolving licks with a series of Gaussian filters that were fitted individually and then summed.
116  Relative timescales across elements of the figure are not to scale. d) Performance of the BAE
117 (dashed line; latent states were inferred using the recognition model) compared with a principal
118 component analysis (PCA) based reconstruction (mean +2 s.e.m) as a function of number of
119 PCs. Here, BAE reconstructions used the recognition model. e€) Comparison of the LVM and the
120 BAE's ability to reconstruct videos using the behavioral encoding model (paired-sample t-test; p
121 =4.1-107%).

122

123

124

125

126 To assess the model’'s performance, we quantified the reconstruction quality and capacity
127  of the experimental variables to explain behavioral latent states. Qualitative and quantitative
128 analyses revealed accurate reconstruction of the video data (mean r? = 30%, s.e.m = 3%)
129 (Supplementary Fig. 1, Supplementary Video 1). Quantitatively, a 10-dimensional BAE
130 outperformed optimal linear methods, which required three-fold greater dimensionality to account
131  for the same variance (Fig. 1d, Supplementary Fig. 2a). Importantly, learned representations
132 were highly interpretable, as assayed by measuring their predictability from experimental
133 variables (Supplementary Fig. 2b). Furthermore, augmentation of the cost function in the BAE
134  significantly improved this predictability over that provided by the LVM (Fig. 1e, Supplementary
135 Fig. 2b). Together, these findings suggest that the model learned comprehensive and
136 interpretable representations of the animals’ behavior.

137 We then asked which experimental variables were encoded (i.e. expressed) in the
138 animals’ behavior by quantifying the capacity of individual variables to explain behavioral latent
139 states. Although we found that all variables are encoded in behavior (Fig. 2a), this may arise
140 simply because many of them are correlated. We therefore quantified the effect of excluding
141  subsets of regression parameters, relating to a single experimental variable, on model-fit quality
142  (see Methods). This revealed that only a subset of variables uniquely accounted for variance in
143 the data (Fig. 2b). Time into session accounted for most variance, reflecting the fact that the
144  animals’ resting posture gradually changed over the course of the session. Additionally, we
145  consistently found that the animals’ motivational state (operationalized as a smoothed lick time
146  series, Fig. 1c; see Methods) was explicitly encoded in behavior (Supplementary Fig. 3a,b). By
147  contrast, we found no evidence that trial-by-trial variations in attention or stimulus presentation
148  were expressed in behavior (Fig. 2a,b, Supplementary Fig. 3c). The latter result suggests that
149 the animals’ behavioral response to the stimulus is largely embodied by its decision to lick.

150 Given the importance of single-trial analyses in decision-making paradigms?!3, we next
151 investigated the behavioral correlates of decision-making processes. The non-zero false alarm
152  rates observed in our data suggest that multiple processes drive mouse licking. We therefore
153 sought to test whether distinct causes of licking (i.e. spontaneous vs. stimulus-driven) were
154  differentially encoded in behavior (Fig. 1c, Fig. 2a,b). To do so, we attempted to decode the
155  causes of licking on a lick-by-lick basis.
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156
157

158
159

160 Figure 2 Encoding and decoding behavior. a) Estimation of upper bounds on extent of encoding
161 by only regressing parameter sets belonging to a single variable. Variables are sorted according
162 to their ability to predict latent states. b) Estimation of lower bound on extent of encoding by
163  removing regressors relating to a single variable, one at a time, and subtracting cross-validated
164  r2for full model performance from r?for models with individual components removed. Error bars
165  show bootstrapped 95% confidence intervals. c) Excerpts from two example sessions showing
166 lick-bouts defined as either stimulus-driven (blue) or spontaneous (orange) depending on their
167  timing relative to the stimulus onset (blue vertical line). d) Decoding of intention (i.e.

168 classification of bout type) by inverting behavioral encoding models reveals accurate decoding
169 (mean ROC-AUC =0.78; s.e.m = 0.01). Error-bars show + 2 s.e.m. Circles are individual data-
170 points. e) Decoding in latent space is more accurate than decoding in pixel space (paired

171  samples t-test; p =3.9 - 107%). f) Model-based decoding performs better than model-free (SVM)
172  decoding (paired samples t-test; p = 0.0086). g) Difference between the BAE's estimate of a
173  stimulus and a spontaneous bout overlayed on an image of a mouse. Estimates were created
174 by projecting linear predictions of stimulus-driven and spontaneous bouts into pixel space. In
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175 this case, informative pixels are clustered around the snout. (att=attention; stim=stimulus

176  presentation; rew=reward delivery; dec=decision basis (spontaneous vs stimulus-driven licking);
177  bout=lick-bout initiation; mot=motivational state)

178

179

180

181

182

183 We grouped licks into bouts (Fig. 2c, Supplementary Fig. 4) and selected a
184  counterbalanced set (see Methods) of stimulus-driven (fast response times on trials with loud
185 stimuli) and spontaneous (outside of the peri-stimulus period) lick-bouts. We then decoded (i.e.
186  predicted) the causes of these bouts using the latent states within the ~500 ms preceding the first
187 lick of each bout. Previous work has demonstrated that the inversion of encoding models offers a
188  powerful and parsimonious approach to decoding!**®. We therefore constructed model-based
189 decoders based on the inversion of the behavioral-encoding models (Fig. 1b). Consistent with
190 results from the encoding perspective, we were able to decode, on a bout-by-bout basis, whether
191 a stimulus preceded a bout or not (Fig. 2d). Thus, the animals’ behavior preceding a lick bout
192  allowed us to infer whether a stimulus drove that bout.

193 Further analysis demonstrated that decoding accuracy was higher in the latent-space than
194  in pixel-space (Fig. 2e) and that model-based decoding out-performed comparable model-free
195  support vector machines (SVM) (Fig. 2f). Importantly, decoding is unlikely to be driven by motor
196 preparation (Supplementary Fig. 5a-d). Finally, the generative capabilities of the BAE enabled
197  us to project linear approximations of stimulus-driven and spontaneous lick bouts back into pixel
198 space. This visual account of the basis of their classification revealed that idiosyncratic behaviors
199  associated with lick bouts formed the basis for classification (Fig. 2g, Supplementary Videos
200 2,3).

201 Model-based decoding thus offers a data-driven alternative to a priori analysis of behavior.
202 In doing so, it both provides a way of automatically identifying behavioral correlates of
203  experimental variables and a means of classifying behavior based on these correlates. In turn,
204  this yields an interpretable account of momentary behavior that can readily be employed to
205 improve our understanding of neural activity.

206 To demonstrate this, we sought to explicitty benchmark model-based and a priori
207  classifications of trial-by-trial decisions against neural activity. Previous work has demonstrated
208 that behavioral choice correlates with the activity of neurons in primary auditory cortex (A1)6-18,
209 We reasoned that by comparing the behavioral categorization of bout-by-bout intent with neural
210  activity, we would be able to compare the two classification approaches.

211 We therefore performed two-photon calcium imaging of excitatory layer 2/3 neurons in A1
212  of three mice (Fig. 3a-c). To assess whether neural activity covaries with behavioral choice, we
213  computed choice probabilities!? (CPs) , and identified a subpopulation of L2/3 neurons with
214  significant CPs (Fig. 3d,e; Supplementary Fig. 6). CPs calculated by comparing hit-trials and
215  miss-trials were both significantly correlated with (Fig. 3f) and not systematically different from
216  (Supplementary Fig. 7a) those calculated by comparing hit-trials with level-matched hit-trials in
217  which animals responded prematurely (i.e. with a latency of <120 ms, which is faster than mouse
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218 reaction times). These results argue that CPs reflected sensorimotor coupling, rather than licking
219 or reward consumption, and were thus used as a benchmark measure of behavioral classification.
220 Given the non-zero false-alarm rates observed in our data, a subset of hit-trials likely
221 occurred as a result of spontaneous behavior, rather than the learned stimulus-response
222 association. In light of the robust choice encoding in Al, we reasoned that, neurally, these trials
223  should more closely resemble miss-trials than hit-trials. If our decoder is able to correctly reclassify
224 those hit-trials on which licking was spontaneous, we should observe larger CPs. Consistent with
225  this expectation, we found that CPs were indeed larger when calculated based on decoded
226  causes of behavior (mean = 0.71; s.e.m=0.005), than on a priori criteria (mean = 0.67; s.e.m =
227  0.0034), i.e. defining all trials with licking in a window 150-600 ms after the stimulus and no pre-
228  stimulus licking as hit trials (Fig 3g., Supplementary Fig. 7b). This suggests that model-based
229  decoding of video data can provide a more accurate readout of behavior than readouts based on
230 a priori definitions imposed by the task structure.

231 Finally, we sought to use the behavioral models to further clarify the relationship between
232  neural encoding of movement-related and choice-related variables. To relate neural activity to
233 these variables, we fitted a linear model that attempts to explain neurons’ frame-by-frame activity
234  using experimental variables as well as behavioral latent-states. This approach allowed us to
235 dissociate movement- and decision-related influences on neural activity, as during the inter-trial
236 interval movement and decisions are decoupled. Fitting these models to the activity of each
237  neuron thus yielded parameters quantifying how the activity of a given neuron covaries with the
238 animal’s behavior. To further examine whether movement-related influences on neural activity
239 underlie CPs, we attempted to predict neurons’ CPs from these parameters. We found that the
240 relationship between a neuron’s activity and behavioral latent states was poorly predictive of its
241  CP (Fig. 3h). Together with the behavioral controls (Fig. 3f), these findings strongly suggest that
242  neural tuning to motor variables does not underlie choice-related activity in Al.

243 Recent work has demonstrated that animals’ movements are predictive of neural activity
244  across cortical regions, including sensory cortex!®. Consistent with this result, we were better
245  able to predict neural activity using both behavioral latent states and experimental variables as
246  regressors, than experimental variables alone (Fig. 3i). However, this could either reflect

247  genuine neural tuning to motor output or be mediated via effects of internal variables on both
248  neural activity and motor output. The comprehensive representations learned by the BAE

249  allowed us to differentiate these two possibilities by quantifying how well A1 population activity
250 predicts animals’ movements. If neurons in Al are truly tuned to motor output, we should be

251  able to accurately reconstruct behavioral latent states from the measured neural activity.

252  Contrary to this prediction, we were poorly able to predict behavioral latent states from neural
253  activity (mean r? = 3%; range 1%-5%). These findings strongly argue that motor output has, at
254  most, a small effect on auditory cortical activity and that correlations between the two are likely
255  mediated by variables such as an animal’s decision that affect both movement and neural

256  activity.

257
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258
259

260 Figure 3 Behaviorally-decoded choices reflect neural activity. a) Functional localization of
261 auditory cortical fields using wide-field single photon imaging. Scale bar shows 500um. b)
262  Example imaging field (~900um?; region in white square in a with regions of interest (n = 976)
263 randomly colored. c) Activity of ten neurons from b. d) Across the entire population of recorded
264  neurons, we observed significant choice-related activity that emerged shortly after stimulus onset.
265 Shaded regions are +2 s.e.m. e) Distribution of choice probabilities (CPs). Significant CPs (p <
266  0.05, permutation-test 500 shuffles) were measured in 378 of 5339 neurons (7.1 %). This is a
267 larger subpopulation than would be expected by chance (binomial-test p = 2.1-10711%). f) CPs
268 calculated by comparing hit and miss trials and CPs calculated from hit and ‘early hit’ trials are
269 correlated (r = 0.26; p = 1.3 - 107%°) across neurons. g) CPs, plotted here as distance from 0.5,
270 are greater when trial classification is based on model-based decoding rather than a priori criteria
271  (paired sample t-test; p = 3.6 - 107%*). See supplementary Fig. 6b for raw CPs. (h) CPs are
272  poorly predicted (meanr? = 1%), on a neuron-by-neuron basis, from neural tuning to behavioral
273 latent states as assessed by fitting a multi-linear regression model. (i) Including behavioral latent
274  states into a linear regression model to predict neural activity significantly improves fit quality
275  (paired sample t-test; p < 1-10789),

276

277

278
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279 In summary, our novel class of Bayesian model enables comprehensive and interpretable
280 quantification of momentary behavior. Application of this model demonstrated robust encoding of
281  cognitive variables in animals’ behavior and enabled us to disentangle neural encoding of
282  cognitive and motor variables. We constructed model-based decoders whose application
283  provided sub-second accounts of behavior which more accurately reflected neural activity than
284  behavioral readouts imposed by task structure. Combined with recent methods for pose
285 estimation® , we envision that our approach will be able to extract simple readouts of complex
286  behavior . Finally, while we have deployed our model in the context of a sensory decision-making
287  task, these methods should be broadly applicable to both basic and clinical research seeking to
288  relate neural activity, computation and behavior.
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369 Supplementary Figure 1. Visualization of reconstructions from the latent space. Example of a
370 video frame in its raw and preprocessed form as well as its reconstruction. In the preprocessing

371  step, each pixel of video data had its mean subtracted and was divided by its variance.
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378  Supplementary Figure 2 Quantitative analysis of pixel-space reconstructions of video data by
379  various models. a) Pairwise comparison of reconstructions of the video data by BAE and PCA.
380 For BAE reconstructions shown here, we performed one full pass through the model, using the
381 recognition model to obtain latent-states and the generative model to obtain pixel-space

382  reconstructions. Each line represents a single session. In all cases, BAE outperforms PCA
383  (paired t-test; p=0.0002). b) To assess how well latent states can be predicted from

384  experimental variables we compared the ability of the BAE and LVM (Fig 1b) to predict

385  behavioral latent states. The BAE out performed the LVM in all sessions (paired t-test; p=3.5 -
386 10719, demonstrating enhanced, linear predictability of latent-states as a result of the

387 augmentation of the model’s cost function. c) Pixel-space reconstructions, created by a full pass
388  of the video data through the LVM (i.e. video data are passed through the encoder network to
389 generate latent variables, which are then passed to the decoder network, reconstructing the full
390 images) are better than BAE (Paired t-test; p=1.7 - 1077).
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391
392

393 Supplementary Figure 3 Further analysis of behavioral correlates of cognitive variables. a)
394  Analysis of the encoding model from an example session, which shows that motivational state
395  explains variance not accounted for by licking, suggested that an animal’s motivational state is
396 externalized in behavior (Fig 2a,b). However, there is a chance that the encoded quantity may
397 not actually reflect motivation, but changes in posture that are unrelated to the animal’'s

398 motivational state. Motivation, in the context of our behavioral task, may be measured along a
399 one-dimensional continuum, that is to say that at each point in time animals have a certain level
400 of motivation. Therefore, if the measured quantity truly reflects motivation, we reasoned that
401  different parts of the animal’s posture, reflected in the ten behavioral latent-states, should

402  change in a coordinated fashion. In contrast to this, if the measured quantity is just related to
403  slow changes in posture, there is no a priori reason that the different behavioral latent states
404  should change in a correlated fashion. To distinguish these possibilities we calculated the

405  weighted sum of motivation regressors for each latent variable. Regressors were weighted by
406 the values of fitted regression parameters for each latent variable. We refer to this sum as the
407  inferred motivational state. We then measured the correlation between the inferred motivational
408  states fitted to each latent state. Shown is an example correlation matrix, constructed by cross-
409 correlating the inferred motivational states for each latent variable.This example illustrates that
410 inferred motivational states, fitted to each behavioral latent-state independently, are highly

411  correlated, consistent with the hypothesis that the extracted variable is related to the animals’
412  motivational state rather than arising from spurious changes in posture. b) To quantify the

413  extent to which the motivational state variables may be described by a one-dimensional

414  quantity, we performed principal component analysis and quantified the variance explained by
415  the first principal component. We found that in all sessions a single principal component

416  captured more than 95% of the variance across motivational variables. ¢) Analysis of encoding
417  model parameters suggested that attention was not expressed in animal’s behavior. To further
418 test this, we performed a logistic regression analysis and tried to predict trial-by-trial decisions,
419  asking whether knowledge of latent-states preceding stimulus onset helped us in doing so. We
420  compared performance of a baseline model to performance of an extended model that included
421  the latent-states preceding stimulus onset. The baseline model included the intensity of the
422  presented stimulus and whether the previous trial was a hit- or miss-trial. Expanding this model
423 by including behavioral latent states preceding stimulus presentation did not improve the
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424  model’s ability to predict whether a given trial is a hit- or miss-trial (paired sample t-test; p =

425  0.32). These results bolster the conclusion that attention is not encoded in the animals’ behavior
426  preceding stimulus onset.

427

428

429

430
431  Supplementary Figure 4 Mouse licking behavior is organized into bouts. Distribution of inter-

432  lick intervals across all sessions and animals (white histogram bars). Gaussians fitted to intra-
433  bout inter-lick intervals (blue curve) and between-bout inter-lick intervals (orange curve)

434  overlaid, together with the optimal separation boundary (dashed vertical gray line).

435

436

437

438

439
440

441  Supplementary Figure 5 Excluding motor preparation and time as bases for classifying

442  behavior. a) Significant differences in bout lengths (quantified in terms of number of licks in a
443  bout) exist between stimulus-driven and spontaneous bouts. Therefore, stimulus-driven and
444  spontaneous bouts could be associated with differences in motor preparation that the decoder
445  might be able to exploit for its classification. b) Partitioning of only stimulus-evoked bouts

446  according to decoder classification reveals no differences in bout length as a function of the
447  decoder’s classification. c¢) Partitioning of only spontaneous bouts according to decoder

448  classification also revealed no difference in bout length as a function of the decoder’s

449 classification. This suggests that decoder performance is not driven by potential differences in
450  motor preparation between short and long lick bouts. d) To estimate the extent to which the
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451  decoder relies on differences in bout length to perform classification, we measured how well
452  bout length could predict decoding performance. To do so, we computed the area under the
453  receiver operating characteristic curve (mean=0.56; s.e.m=0.01) and found that bout length was
454  a poor predictor of the decoder’s decision.

455

456

457

458

459
460 Supplementary Figure 6 Representative examples of neurons with significant choice

461  probabilities. Each panel shows the average activity (meants.e.m) of a single neuron in a

462  window surrounding stimulus onset (dashed vertical line). The y-axis of each panel is

463  normalized to show the full dynamic range of each neuron. Blue curves show mean activity
464  during hit-trials; orange curves show mean activity during miss-trials. Examples shown are

465  taken from all animals.

466

467
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468
469  Supplementary Figure 7 Further analysis of choice-related activity. a) Choice probabilities

470  calculated by comparing hit and miss trials (CPmiss) and choice probabilities computed by

471  comparing hit vs early hit trials (CPeany) are not significantly different in magnitude (paired-
472  sample t-test p = 0.68). b) Full distribution of classical versus behavior inferred choice

473  probabilities.

474

475

476

477

478  Supplementary Video 1. Example pre-processed video and associated reconstructions using
479  the BAE. Latent states were estimated using the recognition model.

480

481  Supplementary Video 2. Estimation, via the BAE, of the mean video sequence preceding
482  stimulus-driven and spontaneous lick bouts, respectively. Estimation is based on data from one
483  example session. These pre-lick bout sequences were estimated by reconstructing latent states
484  using the behavioral encoding model and projecting these latent states into pixel space using
485  the generative model.

486

487  Supplementary Video 3. Example sets of video sequences preceding stimulus-driven and
488  spontaneous lick bouts from a single session. Data shown in video are temporally

489  counterbalanced such that simultaneously shown clips are close in time. Data are from the
490 same session as Supplementary Video 2.

491

492

493

494

495

496

497

498

499
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500 Methods

501

502

503 Animals

504

505 All experiments were approved by the local ethical review committee at the University of

506  Oxford and licensed by the UK Home Office. One female C57BL/6NTac.Cdh23753A>G (Harlan
507 Laboratories, UK) mice?, 3 female (C57B6.129S-Gt(ROSA)26Sortm95.1(CAG-GCaMP6f)Hze
508 [Jax: 024105] x C57B6.Cg-Tg(Camk2a-cre)T29-1Stl/J [Jax:005359]), one male

509  (Igs7tm93.1(tetO-GCaMP6f)Hze Tg(Camk2a-tTA)L1Mmay/J [ Jax: 024108] x Rbp4_KL100-Cre,
510 MMRRC: 037128; Gerfen et al., 2013) and one male Rbp4-cre mouse were used for behavioral
511  experiments. Neural data were obtained from the three (C57B6.129S-

512 Gt(ROSA)26Sortm95.1(CAG-GCaMP6f)Hze x C57B6.Cg-Tg(Camk2a-cre)T29-1Stl/J) mice. All
513 experiments were performed before mice reached 12 weeks of age, preceding the onset of age-
514  related sensorineural hearing loss in C57BL/6J strains?::22,

515

516

517

518 Click detection task

519

520 Three days before mice commenced behavioral training, we started restricting their

521  access to water and acclimatising them to handling and head-fixation. Throughout the training
522  and testing period the mice’ body weight remained above 80% of their pre-restriction body

523  weight. Mice were trained daily to lick in response to a 0.05-ms biphasic click stimulus

524  presented at 80 dB SPL. There were two types of trials: stimulus trials (80 dB SPL click; water
525 reward for licking) and catch trials (no stimulus; no reward for licking). These were randomly
526 interleaved at an inter-trial interval drawn from a uniform distribution between 6s and 12s. If
527  mice licked during a 1.5 s window following onset of the stimulus, a water drop (2 pl) was

528 delivered immediately. Once mice reached high performance levels (> 80 % correct on stimulus
529 trials), which took 2-5 sessions, they were moved to the testing phase in which stimuli were

530 presented at different intensities. Stimuli were randomly interleaved and presented over a

531 maximum range of 38 dB SPL to 80 dB SPL (3-dB steps). The range of stimulus levels

532  presented in a given session was, in some cases, adjusted according to the animals’ sensitivity.
533  Behavioral data were acquired in blocks lasting between 7 and 30 minutes. Typical sessions
534 lasted approximately forty minutes during which mice performed approximately 250 trials.

535 Data were excluded, in a block-wise manner according to several criteria. Firstly, mice
536 needed to have undergone at least two testing sessions prior to the sessions considered for
537 inclusion. Secondly, to be able to reliably identify stimulus-driven bouts, we required hit-rates for
538 the loudest stimuli to exceed 95%. Finally, to be able to reliably identify hit-trials as being

539 stimulus driven, we required false-alarm rates to be below 45%. Of the 12 sessions (two per
540 mouse) passing these criteria, one had to be excluded because of video frames missing as a
541  result of camera failure.

542

543
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Apparatus

The behavioral apparatus was controlled from a computer running Windows 7 using
MATLAB (Mathworks) interfaced with a National Instruments board (NI- DAQ USB-6008) for
data acquisition. Stimuli were presented using MATLAB 2016a (Mathworks) running
psychtoolbox. Stimuli were digital-to analog converted using a commercial soundcard (ASUS
Xonar-U7), amplified (Portable Ultrasonic Power Amplified; Avisoft Bioacoustics) and played
through a free-field electrostatic speaker (Vifa; Avisoft Bioacoustics), positioned approximately
15 cm in front of the mouse’s snout.

Stimuli were calibrated using an M500 microphone (Pettersson), which was itself
referenced to a sound-level calibrator (Iso-Tech SLC-1356). Click volumes were calibrated by
integrating the recorded RMS of clicks over the mouse hearing range (1-100kHz) and
comparing it to the RMS of stimuli from the reference sound-level calibrator.

Video frame acquisition was triggered by the frame clock of the two-photon microscope,
such that one video frame was acquired for every two microscope frames, resulting in an
acquisition rate of ~13 Hz at a resolution of 640 x 480 pixels. The camera, a DMK23UV024 (The
Imaging Source) mounted with a M5018-MP2 (Computar) lens, was positioned approximately
30 cm in front of and 30 cm above the behavior apparatus, aligned to have the mouse’s face
and most of its body in the field of view. Regions of interest showing the mouse’s face
(Supplementary Fig. 1) were drawn manually (approximately 150 x 150 pixels in size) on each
dataset. These regions of interest were used for further analysis.

Widefield calcium imaging

The widefield imaging system consisted of a 470nm LED (M470L3, Thorlabs), a digital camera
(340M-GE, Thorlabs) and a 2X objective (TL2X-SAP, Thorlabs) mounted on a Thorlabs
Bergamo Il microscope body. Images were acquired at a rate of 10 Hz and a resolution of 96 by
128 pixels using ThorCam (Thorlabs) software. Sound waveforms were generated in LabView
(National Instruments) and presented on the same hardware as described above. For the
frequency mapping of auditory cortical fields we presented 500 ms long sinusoidally amplitude
modulated (SAM) tones with a modulation frequency and depth of 10 Hz and 100%,
respectively. Each map was based on the responses to 15 repeats of one low carrier frequency
(4 kHz or 5.04 kHz) and 15 repeats of one high carrier frequency (25.4 kHz or 32 kHz) SAM
tone, presented at either 55 dB SPL or 65 dB SPL and at a rate of 0.33Hz. Frequency maps
(Fig. 3a) were generated by calculating the average response (mean signal intensity in a 1-s
window following sound onset minus mean signal in a 1-s window preceding sound onset) to the
low-frequency and high-frequency stimulus, subtracting one from the other, color-coding the
resulting image and superimposing it on a grayscale image of the bloodvessel pattern.
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588  Two-photon data acquisition

589

590 Two photon imaging was performed as described previously?*. Briefly, image acquisition
591 was carried out using a commercially available two-photon laser-scanning system (B-Scope;
592  Thorlabs). A SpectraPhysics Mai-Tai eHP laser fitted with a DeepSee prechirp unit (70fs pulse
593  width, 80MHz repetition rate) provided the laser beam for two photon excitation. The beam was
594  directed into a Conoptics modulator and then through the objective (16x 0.8NA water immersion
595  objective; Nikon). The beam was scanned across the brain using an 8-kHz resonance scanner
596 (X) and a galvanometric mirror (Y). The resonance scanner was used in bidirectional mode,
597  enabling acquisition of 512 x 512 pixels at a frame-rate of approximately 26 Hz. Emitted photons
598 were filtered (525/50) and collected and amplified by GaAsP photomultiplier tubes

599 (Hamamatsu). Scanimage was used to acquire data and control the microscope. All imaging
600 was done between 150 and 250um below the cortical surface.

601

602

603

604  Latent variable model

605

606 The mathematics underlying variational autoencoders!®!, on which our models are

607 based, has been covered in great detail elsewhere (see e.g. Doersch, 2016 for a tutorial) so
608  we will give only a brief summary here. Given some observed high-dimensional series of pixel
609 intensities (i.e. video data) X, we seek to explain variation in X by assuming that some low-

610 dimensional underlying latent variables, z, give rise to the data. Ideally, the quantity we would
611 seek to maximize when fitting the model is thusP (X), the probability of the data. We can relate
612  zto P(X) mathematically by conditioning:

1 n
613 P(X) = f rX|z) P(z2)dz = - 2P(X|Zi) (D
i=1

614

615 where we note that any integral can be approximated by a finite sum over samples ofz;.This
616  formulation has the important property that by specifying the functional form of p(X|z) and a
617 method of sampling z; we can evaluate P(X) and hence quantify the performance of the model.
618 For analytical tractability and ease of sampling, we assert that P(z)is a Gaussian distribution
619  with 0 mean and diagonal, unit covariance.

620

621 P(z) = N(O|D) (2)

622

623  Based on the continuous values of pixel intensities, we further specify P(X;|z;) to be a normal
624  distribution:

625

626 P(Xilz;)) = N(u= fo(2z);2 =1) (3)

627

628  where f4(2)is a deterministic function, with parameters ¢, that map latent variables, z, into pixel

629  space. In practice, we implement f,(z)as a multi-layer neural network.
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However, with high-dimensional data, naive sampling approaches are inefficient to the
point of intractability because for most values of z;, p(X;|z;) = 0. To enable efficient sampling,
allowing us to tractably approximate the above integral, we construct an auxiliary distribution
Q(z;|X;)which enables us to draw samples from P(z;) such that the sampled z; are likely to give
rise to X;. In practice, we assume that

Q(zi|X;)) = N(zilu = go(Xi); ¥ = ho(X;)) 4)

where gand h are deterministic functions of X, parameterised by 8, which are implemented by a
deep neural network. However, naively sampling Q(z|X),rather thanP(z), to evaluate P(X) will
result in biased estimates. To circumvent these issues we apply standard identities from the
Variational Bayesian literature’ to derive:

L(O,¢) =log P(X) = Dz-qzix)(QzIX) [| P(z|1X) ) = —Ez~qzx)[log pe(X12)] +
D(Qo(z|X) || P(2)) 5)

where D(p||q) denotes the KL-Divergence (a measure of difference between probability
distributions) between p and q. The left hand side of this equation is the quantity we seek to
maximize. Doing so maximizes the likelihood of the data P (X)while minimizing the difference
between our approximation of Q(z|X) and the true P(z|X). Since both Q4 (z|X) and P(z) are
Gaussian, this divergence has a closed form solution. Similarly, we can arrive at a
computationally tractable form of the expectation E,_,,x)[-] by using a single sample from
Q(z|X)to make the approximation. Furthermore, tractable derivatives of this cost function are
available!®1!

We extend this model to encourage learning of interpretable latent representations. We
achieved this by adding an additional term to the cost function. Specifically, we fitted a
behavioral encoding model (see Behavioral encoding model for details), mapping from task
variables to the latent variables z using a linear regression model with parameters . We
augment the cost function with the error term of this regression model to obtain a more
interpretable model in which the values of latent variables zare linearly predictable from
variables of interest.

L, ¢; B) = —E;—qux)llog pp(X|2)] + D(Qe(z|X) || P(2))
—E,quxllog pp(z|V)] (6)

Importantly, the prior on the latent space acts to regularize the latent parameters

preventing overfitting. Additionally, our behavioral encoding model only biases the learning of
weights, it does not bias the inferred latent representation.
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673  Data analysis
674

675 Data were analysed in Matlab and Python 3.6.2 augmented with standard libraries for scientific
676  computing?-3. Unless stated otherwise, standard algorithms (e.g. principal component analysis)
677 are implemented using reference implementations from these libraries. A reference

678 implementation of the behavioral autoencoder, together with an example video dataset is

679 available for use and alteration at www.qgithub.com/yves-weissenberger/bae.

680 All statistical tests were, unless otherwise stated, implemented using reference

681 implementations in standard libraries for scientific computing in Python. All statistical tests were
682  two-tailed.

683

684

685

686  Model implementation

687

688 The hierarchical Bayesian model is implemented using the Python library Tensorflow®2.
689  The model is comprised of two sequential networks termed recognition model and generative
690 model, respectively. All neural activation functions were rectified-linear unless otherwise stated.
691 The recognition model is a four-layer network. The first two layers are comprised of

692  convolutional units (256 and 128 units), and kernel sizes three and five pixels, respectively. In
693  both cases, the stride of kernels was set to two pixels. These layers were followed by a fully
694  connected layer with 100 units and a final bipartite layer comprised of 10 linear and 10 softplus
695 units, mapping to the mean and covariance of the latent space, respectively.

696 The decoder network consisted of two fully connected layers with 100 and 500 units,
697  respectively, followed by a final fully connected linear layer mapping the previous layers’ output
698 into pixel space. Our network was trained using a 60/20/20 train/validation/test split. To optimize
699 the cost function we used AdamOptimizer3? with the learning rate set to 0.005. Hyperparameters
700 were, once heuristically optimized using a separate dataset not included in this report, held fixed
701  for all analyses reported here.

702

703

704

705  Lick bout analysis

706

707 To separate licks into bouts, we fitted a two-component Gaussian Mixture Model

708 (implemented by the GaussianMixture class of the scikit-learn library) to the inter-lick interval
709  (ILI) distribution of all mice. We thereby separated the ILI distribution into two components which
710  we interpreted as corresponding to within bout ILIS and across bout ILIs. In doing so, we

711  determined the optimal separation window for dividing licks into bouts as the point at which the
712  probability of the fitted Gaussian with the larger mean exceeded that of the smaller one. Doing
713  so, we found that a window of ~266ms provided the optimal separation window for

714  differentiating within-bout licks from across-bout licks.

715

716
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717  Behavioral encoding model

718

719 Our behavioral encoding model was a linear-regression model mapping from the set of
720 observed and hidden variablesVto inferred latent-states z; using parameters . The set of

721  observed variables we used comprised licks, rewards, lick-bout initiations (defined as the first
722  lick in a bout of licks) and sound stimuli. The timestamps of each of these observed event types
723  were discretized to construct a set of T x 1 vectors (where T is the length of the session), either
724  setto 1 on the camera frame at which the event occurred (click, reward) or two frames

725  preceding an event (lick-bout initiation, lick), as these movements will be initiated before a lick is
726  completed, and 0 everywhere else. In the case of the clicks, we also analyzed the data after
727  scaling entries in the vector according to sound level, but this made no qualitative or quantitative
728  difference (data not shown).

729 The set of hidden variables was comprised of decision basis, attention and motivational
730 state. Decision basis was a T x 2 binary vector whose first and second columns signified

731  whether a stimulus-driven or spontaneous lick-bout occurred, respectively. An entry in the first
732  column was set to a value of 1 at five frames (~380 ms) preceding the onset of a lick-bout if a
733  stimulus preceded the lick-bout within a ~600 ms window (this window represents the 70th

734  percentile of the across-animal reaction time distribution). Analogously, an element was setto 1
735 in the second column if no stimulus preceded the bout and the bout was initiated outside the
736  peri-stimulus period. This period was defined as the period from ~150 ms prior to onset of the
737  stimulus to ~1.5 s following the onset of the stimulus.

738 Attention was a T X 2 binary vector whose first column signified that the animal was
739  attentive. We reasoned that detection of particularly loud stimuli was not affected by attention
740 and therefore did not include these in this analysis. An element in the first column was set to 1
741  atfive frames preceding the onset of a stimulus if that stimulus was presented at a low intensity
742  (average hit-rate at that intensity <75%) and the trial was a hit trial. Analogously, an element in
743  the second column was set to 1 on miss trials.

744 Motivational state was a T x 5 continuously valued vector approximating the extent of
745  reward seeking. We constructed each row of this matrix by convolving the vector of licks with a
746  Gaussian distribution. We derived this definition of motivational state based on recent work

747  demonstrating that in head-fixed mice, increased motivation is associated with increased

748  baseline lick rates®*. The Gaussian for each row had a different standard deviation reflecting our
749  a priori uncertainty about the timescales of motivational fluctuations. The standard deviations
750 ranged from ~2.5 s to ~40 s multiplied in powers of two.

751 We additionally included a set of time regressors, a T x 10 vector, where each row is a
752  continuous low frequency oscillation, to account for slow drifts in posture over time. The period
753  of these oscillations ranged from ~1450 s to ~2150 s. To enable events to affect latent-states at
754  future time points, all the above vectors (with the exception of motivational-state and time) were
755  multiplied with a Toeplitz matrix giving rise to a series of lagging regressors extending 5 frames
756 into the future.

757 The Design Matrix Vwas then constructed by concatenating these vectors together with
758 an offset term yielding the following regression model

759

760
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761 p(z| B;V) = NB-V| D) (7)
762

763  where

764

s i i stim
765 V= [Uoffset’vtlme v lick K,v bout , K, v rew . K,v ‘K,

766 1Jlatt K, Uzatt K, Uldec K, Uzdec . K,UmOt] (8)
767

768

769 Linear models were regularized using an L2-penalty term. Fitting, as well as

770  regularization parameter selection was implemented using the scikit-learn function RidgeCV. Fit
771  quality estimation was performed using repeated, nested K-fold cross validation (five folds; four
772  repeats). In the inner K-fold loop (five folds), the training data were used for fitting and

773  hyperparameter selection, while in an outer loop fit quality was assessed using the held-out
774  data.

775

776

777  Analysis of behavioral-encoding model parameters

778

779 To determine the importance of each regressor in the behavioral encoding model, we

780 performed two complementary analyses to bound the extent of their encoding. This was

781  required because of the collinearity of regressors. To obtain a lower bound on strength of

782  encoding, we quantified the effect of excluding subsets of regression parameters, relating to a
783  single experimental variable (e.g. v ?°%t), on cross-validated fit quality. Secondly, to obtain an
784  upper bound, we included only parameters relating to a single experimental variable in the

785  regression model. Each of these models was fitted to latent-states extracted after the initial,

786  global fitting process. Model performance was estimated, as during initial fitting, using repeated,
787  nested K-fold cross validation (six folds; four repeats). In the inner K-fold loop (five folds), we
788 determined the optimal regularization parameter. In the outer loop, we attempted to assign hit or
789  miss labels to a held-out test set of trials based on fit parameters.

790

791

792  Logistic-regression analysis of attentional state

793

794 To determine whether trial-by-trial attentional states were externalized in behavior, we

795  attempted to use behavioral latent-states preceding stimulus onset to predict whether a given
796 trial was a hit or miss trial. To do so, following fitting of our latent variable model and the

797  determination of behavioral latent-states, we fitted a logistic regression model to subjects’ trial-
798  by-trial choices. Logistic regression was implemented using the sklearn function

799  LogisticRegression using the Newton Conjugate Gradient solver and an L2 penalty. A reference
800 model included as regressors the level of the presented stimulus and a variable indicating

801  whether the previous trial was a hit- or miss-trial. To determine whether some correlate of

802  attention was externalized in behavior, we compared performance of the reference model to a
803  model which additionally included the behavioral latent states on the ten video frames preceding
804  each stimulus onset as regressors. Model performance was estimated using a repeated, nested
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805  K-fold cross validation (six folds; four repeats). Regularization parameters were optimized in an
806 inner K-fold loop (five folds).

807

808

809

810 Behavioral decoding dataset

811

812 The window for decoding extended 5 video frames backwards from the onset of the lick-
813  bouts. To ensure that lick history did not form the basis of our behavioral decoding, we only
814  selected lick-bouts in which no licks occurred in a ~610 ms window preceding bout-onset.

815  Additionally, to ensure that long-timescale covariation in posture and spontaneous bout-rates do
816  not drive decoder performance (spontaneous bout-rates are typically higher at the beginning of
817  behavioral sessions), spontaneous and stimulus-driven lick-bouts were selected in a temporally
818 counterbalanced fashion. Specifically, for each session, we counted the number of stimulus-
819  driven and spontaneous bouts. We denote the smaller of these two sets the reference set R;.
820 For each bout in the reference set, we selected the bout in the larger set that was its nearest
821  neighbour, yielding a second set of boutsR,. The union of these sets (R; U R,) then comprised
822  the decoding dataset. This led to an unbiased selection of spontaneous and stimulus-driven
823  Dbouts. Decoding performance was similar when the bout distributions were not counterbalanced
824  in this fashion (data not shown). Decoding performance was estimated on a test-set held out
825  during fitting, using repeated, nested K-fold cross validation (five folds; four repeats).

826

827  Model free decoding

828

829 Model free decoding was performed using a linear support vector machine whose

830 regularization parameter C was determined in an inner cross validation loop, as described

831 above. In addition to determining the optimal regularization parameter, variable selection was
832  performed in the inner loop, whereby the optimal set of timepoints to use for classification was
833  determined by optimizing prediction accuracy on the training set. Classification was

834 implemented by the sklearn function SVC.

835

836  Model-based decoding

837

838 Decoding was performed using log-likelihood ratios (LLR) similarly to Pillow et al*.

839  Specifically, for each lick-bout we compared the log-likelihood of the behavioral latent-states
840 preceding the onset of a bout under the assumption that this bout was stimulus-driven, with the
841 log likelihood that the bout was spontaneous:

842

_ PVstim| B3 z) _ p(z| BiVstim) H _ .t . V2 _
843 LLR = 108 S panel B~ 09 2t f vipon T K F 2=t @ =BV )" = (2
844 :8 : VLLspont)2 } (9)
845

846  Where Vi, is the design matrix constructed by setting the relevant entry (i.e. five frames
847  preceding bout onset) for stimulus-driven bout to 1 and the entry for spontaneous bout to 0,
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848  Vspone is the reverse, H is the analysis horizon and K are terms independent of V. A log

849 likelihood ratio greater than O corresponds to a lick bout that is decoded as being stimulus-
850  driven.

851 To quantify the accuracy of the decoder we performed a repeated nested, stratified K-
852  fold (six folds; four repeats) cross validation. In an inner K-fold loop (five folds), we determined
853 the optimal regularization parameter for the behavioral encoding model. This means that

854  regularization parameters were only explicitly optimized for encoding, and only implicitly

855  optimized for decoding. Decoding performance was then estimated on the held-out cross

856  validation set comprising equal numbers of stimulus-driven and spontaneous lick-bouts.

857 Pixel space decoding was performed by projecting latent-space estimates of stimulus-
858  driven (i.e. B - Vi) and spontaneous lick bouts (i.e. § - Vtspont) back into pixel space using
859 the trained generative model and calculating log likelihood ratios in pixel space.

860

861 LLR Z?zl {(Xt - f¢(ﬁ ' Vtstim))z - (Xt - f¢>(:8 ’ Vtspont))z}
862 (10)
863

864  Where f4(-) (see equation (3) ) is a neural network implementing the generative model,
865  returning the posterior mean in pixel space from some latent value.

866

867

868  Two-photon data preprocessing

869

870 Data preprocessing was performed in Python using the Two-Photon Analysis Toolbox:

871  twoptb (https://yves-weissenberger.qgithub.io/twoptb/). Briefly, data were motion registered using
872 the efficient subpixel registration algorithm. Next, regions of interest (ROIs) were automatically
873  segmented (then manually curated) using a pre-trained supervised algorithm, included in the
874  toolbox, which uses the mean image to identify ROIs. Segmentation was performed in a two-
875  step process where the initial step involved finding seed regions for ROIs using a random-

876  forests classifier. In a second step, a region-growing algorithm was applied to construct ROIs.
877  Traces were extracted as an unweighted average of fluorescence within each region of interest.
878  All traces were neuropil corrected using the fluorescence averaged in a 20 x 20umsquare

879  surrounding the ROI (empirically determined correction factor: ~0.5). Traces were then baseline
880 corrected using a Kalman-filter based estimate of baseline fluorescence. Finally, spike inference
881  was performed on neuropil corrected traces using the c2s toolbox®. To improve temporal

882  resolution, all neural analyses were performed on inferred spike rates.

883

884  Choice probability estimation

885

886 For analysis of choice probabilities!? , we selected equal numbers of hit and miss trials

887  from each stimulus level with hit-rates between 25% and 75%. This was done to maximise data
888 inclusion while preventing variation in sound-evoked activity from dominating the influence of
889  choice. To calculate choice probabilities, we measured the neural response (average neural
890  activity in a 300ms window following stimulus onset) for each trial. We then used the resulting
891  hit and miss trial response distributions to calculate the area under the receiver operating
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892  characteristic curve using the roc_auc_score function in the sklearn package. P-values for

893  choice probabilities were determined by permutation testing using 2000 shuffles.

894 When calculating choice probability based on behavioral decoding, the subset of hit-
895 trials that were behaviorally decoded as spontaneous were moved from the hit-trial to the miss-
896 trial group. To avoid biased estimates as a result of class imbalances, we calculated choice
897  probability by averaging the mean accuracy for each class (hit and miss). Calculating choice
898  probabilities without such counterbalancing did not qualitatively affect conclusions (data not

899  shown).

900

901 Neural regression model

902

903 Regression models fitted to neural activity were identical in implementation to those

904 used in the behavioral encoding model (see above), except for the inclusion of instantaneous
905 (i.e. no time lagged regressors were used) behavioral latent-states as regressors. When neural
906 regression models were fit only to behavioral latent-states and did not include the design matrix
907 used in the behavioral encoding model, results with respect to choice encoding were

908 qualitatively similar (data not shown).

909

910

911  Choice probability prediction

912

913 To assess whether neural choice probabilities (CPs) were related to the covariation of

914  neural activity and movements, we analyzed the parameters of fitted neural regression models.
915 Following the fitting of neural regression models, parameters relating to behavioral latent-states
916  were extracted. We then fitted a multi-linear model, separately to each session, which

917 attempted, on a neuron-by-neuron basis, to predict the neuron’s choice probability from that
918 neuron’s regression model parameters related to behavioral latent-states. We reasoned that if
919 choice probability was explained by neural tuning to motor output, or indeed motion artifacts
920 unaccounted for by image registration, then, across neurons, choice probability should be

921  predictable from neurons’ tuning to behavioral latent states. The multi-linear model was

922 implemented by the OLS class from the statsmodels library.

923

924
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