

1 **Distinct RhoGEFs activate apical and junctional actomyosin contractility**
2 **under control of G proteins during epithelial morphogenesis**

3

4 Alain Garcia De Las Bayonas ¹, Jean-Marc Philippe ¹, Annemarie C. Lelouch ¹, and Thomas
5 Lecuit ^{1,2§}

6 1. Aix Marseille Université, CNRS, IBDM-UMR7288, Turing Center for Living Systems,
7 13009 Marseille, France

8 2. Collège de France, 11 Place Marcelin Berthelot, 75005 Paris, France.

9

10 § Corresponding author and lead contact: thomas.lecuit@univ-amu.fr

11 **Abstract**

12 Small RhoGTPases and Myosin-II direct cell shape changes and movements during tissue
13 morphogenesis. Their activities are tightly regulated in space and time to specify the desired
14 pattern of contractility that supports tissue morphogenesis. This is expected to stem from
15 polarized surface stimuli and from polarized signaling processing inside cells. We examined
16 this general problem in the context of cell intercalation that drives extension of the *Drosophila*
17 ectoderm. In the ectoderm, G protein coupled receptors (GPCRs) and their downstream
18 heterotrimeric G proteins (G α and G $\beta\gamma$) activate Rho1 both medial-apically, where it exhibits
19 pulsed dynamics, and at junctions, where its activity is planar polarized (Kerridge et al., 2016;
20 Munjal et al., 2015). However, the mechanisms responsible for polarizing Rho1 activity are
21 unclear. In particular, it is unknown how Rho1 activity is controlled at junctions. We report a
22 division of labor in the mechanisms of Rho1 activation in that distinct guanine exchange factors
23 (GEFs), that serve as activators of Rho1, operate in these distinct cellular compartments.
24 RhoGEF2 acts uniquely to activate medial-apical Rho1. Although RhoGEF2 is recruited both
25 medial-apically and at junctions by G $\alpha_{12/13}$ -GTP, also called Concertina (Cta) in *Drosophila*,
26 its activity is restricted to the medial-apical compartment. Furthermore, we characterize a novel
27 RhoGEF, p114RhoGEF/Wireless (Wrl), and report its requirement for cell intercalation in the
28 extending ectoderm. p114RhoGEF/Wireless activates Rho1 specifically at junctions. Strikingly
29 it is restricted to adherens junctions and is under G $\beta13$ F/G $\gamma1$ control. G $\beta13$ F/G $\gamma1$ activates
30 junctional Rho1 and exerts quantitative control over planar polarization of Rho1. In particular,
31 overexpression of G $\beta13$ F/G $\gamma1$ leads to hyper planar polarization of Rho1 and MyoII. Finally,

32 we found that p114RhoGEF/Wireless is absent in the mesoderm, arguing for a tissue-specific
33 control over junctional Rho1 activity. These results shed light on the mechanisms of
34 polarization of Rho1 activity in different cellular compartments and reveal that distinct GEFs
35 are sensitive tuning parameters of cell contractility in remodeling epithelia.

36 **Introduction**

37 Contractile actomyosin networks power cell shape changes during tissue morphogenesis
38 (Gorfinkiel and Blanchard, 2011; Martin and Goldstein, 2014; Munjal and Lecuit, 2014). By
39 pulling on actin filaments anchored to E-cadherin complexes at adherens junctions, non-muscle
40 Myosin-II motors (Myo-II) generate tensile forces whose amplitude and orientation determine
41 the nature of cell and tissue level deformation (Collinet and Lecuit, 2013; Heisenberg and
42 Bellaïche, 2013; Kale et al.; Lecuit and Lenne, 2007; Priya and Yap, 2015). Consequently,
43 specific cortical Myo-II patterns predict specific cell shape changes underlying tissue
44 dynamics(Lecuit et al., 2011; Streichan et al., 2018). During *Drosophila* embryogenesis, apical
45 constriction of cells underlies mesoderm invagination (Leptin and Grunewald, 1990; Sweeton
46 et al., 1991). Apical constriction is driven by a strictly medial-apical pool of Myo-II (Martin et
47 al., 2010). In contrast, during elongation of the ventro-lateral ectoderm (also called germ-band
48 extension), cells intercalate as a consequence of a polarized shrinkage of dorso-ventral
49 interfaces or “vertical junctions” (Bertet and Lecuit, 2009; Blankenship et al., 2006; Irvine and
50 Wieschaus, 1994). This process depends on both a medial-apical pulsatile Myo-II pool and a
51 planar-polarized junctional Myo-II pool to remodel cell interfaces during tissue extension
52 (Bertet and Lecuit, 2009; Blankenship et al., 2006; Rauzi et al., 2010).

53 The small GTPase Rho1 is a chief regulator of actomyosin networks in these developmental
54 contexts (Mason et al., 2013; De Matos Simões et al., 2014; Munjal et al., 2015), though Rac1
55 can also activate actin in epithelial cells (Sun et al., 2017). Rho1 cycles between an inactive
56 GDP-bound conformation and an active GTP-bound form. Rho1-GTP binds to and thereby
57 activates the kinase Rok which in turn phosphorylates non muscle Myosin-II regulatory light
58 chain (MRLC, *Sqh* in *Drosophila*). This promotes assembly of Myo-II minifilaments on actin
59 filaments and induces contractility of actomyosin networks. Two families of proteins regulate
60 Rho cycling: Rho guanine nucleotide exchange factors (RhoGEFs), which promotes the
61 exchange of GDP to active GTP bound form of Rho1 and Rho GTPase-activating proteins
62 (RhoGAPs) that inactivate Rho1 by promoting GTP hydrolysis to GDP (Cherfils and Zeghouf,
63 2013). Recent work has explored the contribution of specific GEFs and GAPs during tissue

64 invagination (Greenberg and Hatini, 2011; Mason et al., 2016; Simões et al., 2006). In the
65 mesoderm, apically localized RhoGEF2, the *Drosophila* ortholog of the mammalian RH-
66 RhoGEFs subfamily (p115RhoGEF/PDZ-RhoGEF/LARG) (Aittaleb and Boguth, 2010; Carter
67 et al., 2014; Meyer et al., 2008), and the RhoGAP Cumberland tune and restrict Rho1 signaling
68 to the apical cell cortex (Mason et al., 2016). How Rho1 activity and therefore the Myo-II
69 activity patterns are controlled during cell intercalation where Rho1 is active both medial-
70 apically and at junctions remains unclear.

71 The Rho1-Rok core pathway activates both medial-apical and junctional Myo-II in the
72 ectoderm (De Matos Simões et al., 2014; Munjal et al., 2015). Activation of Rho1 occurs via
73 different molecular mechanisms in these distinct cellular compartments downstream of G-
74 protein coupled receptors (GPCRs) and their associated heterotrimeric G proteins (Kerridge et
75 al., 2016). Fog, a GPCR ligand initially reported for its function during apical constriction in
76 the mesoderm (Costa et al., 1994; Dawes-Hoang, 2005a; Manning and Rogers, 2014), is also
77 required for cell intercalation in the ectoderm (Kerridge et al., 2016). It is thus a general
78 regulator of medial-apical Rho1 activation in the embryo, mediated by $G\alpha_{12/13}/Cta$ and
79 RhoGEF2. In the *Drosophila* embryo, the Fog- $G\alpha_{12/13}/Cta$ -RhoGEF2 signaling module
80 specifically controls medial-apical Rho1 activity. The secreted Fog ligand binds to GPCRs
81 Smog and Mist whose GEF activity catalyzes the dissociation of active $G\alpha_{12/13}/Cta$ -GTP from
82 $G\beta\gamma$ (Kerridge et al., 2016; Manning et al., 2013). Free $G\alpha_{12/13}/Cta$ -GTP then binds to
83 RhoGEF2, which in turn activates Rho1, Rok and Myo-II at the apical membrane. In the
84 mesoderm, apical targeting of RhoGEF2 activity is driven by both active $G\alpha_{12/13}/Cta$ and
85 enhanced by the mesoderm-specific apical transmembrane protein T48 which binds the PDZ
86 domain of RhoGEF2(Kolsch et al., 2007). Whether $G\alpha_{12/13}/Cta$ is sufficient to localize
87 RhoGEF2 activity medial-apically in the ectoderm, where T48 is not expressed, is unknown.

88 A separate biochemical module was hypothesized to control and polarize junctional Rho1
89 independently in the ectoderm but the underlying molecular mechanisms remain unclear. The
90 pair-rule genes *even-skipped* (*eve*) and *runt* were the first upstream regulators of planar
91 polarized junctional Myo-II identified in the ectoderm (Irvine and Wieschaus, 1994; Zallen and
92 Wieschaus, 2004). The Tolls receptors (Toll2/6/8) are transmembrane proteins whose
93 expression in stripes is regulated by Eve and Runt and who are essential for the polarization of
94 Myo-II (Paré et al., 2014). However, the molecular mechanisms linking Tolls to Rho1
95 activation remain uncharacterized. The GPCR Smog and the two heterotrimeric G protein
96 subunits $G\beta13F/G\gamma1$ are involved in the tuning of Rho1 activity at ectodermal junctions

97 (Kerridge et al., 2016). However, in the absence of a direct junctional Rho1 activator, e.g. a
98 specific RhoGEF, it is difficult to understand how these upstream regulators polarize the
99 GTPase activity. In this study, we aim to dissect the spatial and temporal control of both medial-
100 apical and junctional Rho1 activity in the ectoderm.

101

102 **Results**

103 **RhoGEF2 controls medial-apical Rho1 activity in the ectoderm**

104 We used a Rho1-GTP biosensor that consists of a fusion protein between mEGFP (A206K
105 monomeric EGFP) and the Rho binding domain (RBD) of Anillin which binds selectively to
106 active Rho1-GTP ([Ani-RBD::GFP])(Munjal et al., 2015) in the ectoderm. Ani-RBD::GFP
107 localization shows that active Rho1 is present both medial-apically (Fig. 1a, top panel right) and
108 at adherens junctions (Fig. 1a, bottom panel left) where it is planar polarized (white arrowheads)
109 as previously reported (Munjal et al., 2015). Importantly, the Rho1 activity pattern is not a
110 consequence of a differential subcellular enrichment in Rho1 protein. Indeed, Rho1 is
111 uniformly distributed along cell membrane in contrast to the planar polarized Rho1-GTP
112 biosensor (Fig. S1 a-c). Hence, Rho1 regulators spatially control Rho1 activity in this tissue.
113 RhoGEF2 is a major activator of the medial-apical Myo-II pool, but not the junctional pool in
114 the ectoderm (Kerridge et al., 2016). Therefore, we first asked whether medial-apical Rho1
115 activity is specifically decreased upon *RhoGEF2* knock-down. The Rho1-GTP biosensor was
116 analyzed in embryos expressing shRNA against RhoGEF2 driven by maternally supplied Gal4
117 (mat α -Gal-VP16). We found that Rho1-GTP was indeed decreased apically but strikingly
118 preserved at junctions (Fig. 1, b-d, Supplementary Movie 1), consistent with the specific
119 regulation of medial-apical MyoII by RhoGEF2 previously described (Kerridge et al., 2016).

120 These shRNA studies could not rule out a residual RhoGEF2 population signaling at junctions.
121 Therefore, we generated RhoGEF2 maternal and zygotic mutants with germline clones using a
122 null allele for *RhoGEF2*, *DRhoGEF2*^{l(2)04291} (Häcker and Perrimon, 1998), and observed a
123 complete loss of medial-apical Myo-II together with an expanded cell surface area (Fig. 1, e).
124 Interestingly, junctional Myo-II persisted in RhoGEF2 mutant embryos. Adherens junctions
125 were found deeper in the tissue relative to wild type junctions, consistent with a role of apical
126 contractility in the positioning of apical junctions (Dawes-Hoang, 2005b; Weng and
127 Wieschaus, 2016). Thus, loss of RhoGEF2 affects medial-apical but not junctional Rho1

128 signaling. Overall, in the ectoderm, RhoGEF2 is specifically required for Rho1 medial-apical
129 activation, but not for junctional activation.

130 **Regulation of RhoGEF2 localization and activity in the ectoderm**

131 The spatial distribution of Rho1 signaling could stem from specific control over the localization
132 and/or activity of upstream Rho1 regulators (Mason et al., 2016; Simões et al., 2006).
133 Therefore, we analyzed RhoGEF2 localization in the ectoderm by imaging embryos expressing
134 RhoGEF2::GFP (Mason et al., 2016), whose expression rescues early embryonic phenotypes
135 in RhoGEF2 mutants, and Myo-II::mCherry. RhoGEF2 was enriched both apically and at cell
136 junctions (Fig. 2a), in agreement with previous reports (Levayer et al., 2011; Mason et al.,
137 2016). Additionally, we detected a highly dynamic pool of RhoGEF2 « comets » in the
138 cytoplasm (Fig. 2 a, middle right panel, yellow arrowheads) consistent with the observation that
139 RhoGEF2 localizes at microtubule growing (plus) ends in S2 culture cells (Rogers et al., 2004).
140 To test this further *in vivo*, we analyzed embryos co-expressing RhoGEF2::RFP and GFP-
141 tagged EB1, a microtubule plus end tracking protein, and found that indeed RhoGEF2::RFP co-
142 localizes with EB1::GFP comets (Fig. 2b, Supplementary Movie 2). The much broader spatial
143 distribution of RhoGEF2 with respect to where RhoGEF2 is specifically required for Rho1
144 activation led us to ask whether RhoGEF2 activity is spatially segregated in the ectoderm.

145 $\text{G}\alpha_{12/13}/\text{Cta}$ and the membrane anchor T48 promote RhoGEF2 activation at the cell membrane
146 in *Drosophila* upon GPCR activation (Kölsch et al., 2007; Rogers et al., 2004). Both regulators
147 cooperate to recruit RhoGEF2 to the apical membrane in the mesoderm where it activates Rho1
148 signaling. T48 anchors RhoGEF2 via a direct PDZ domain interaction. By analogy to its
149 mammalian homolog p115RhoGEF, RhoGEF2 is thought to bind to active $\text{G}\alpha_{12/13}/\text{Cta}$ via its
150 N-terminal RH domain. A conformational change then dislodges the autoinhibitory N-terminal
151 tail of the RhoGEF from its DH-PH domains, making them accessible for binding to Rho1 and
152 membrane lipids (Aittaleb and Boguth, 2010). Although this allosteric regulation by active
153 $\text{G}\alpha_{12/13}/\text{Cta}$ is sufficient to increase p115RhoGEF binding to the membrane, it is not clear
154 whether a full activation of the RhoGEF requires additional control. T48 is not expressed in the
155 ectoderm (Kölsch et al., 2007) and therefore cannot account for RhoGEF2 activity at the apical
156 membrane though T48 overexpression in the ectoderm can increase apical Myo-II activation
157 (data not shown) similar to RhoGEF2 overexpression (Kerridge et al., 2016). We previously
158 showed that RhoGEF2 is epistatic to $\text{G}\alpha_{12/13}/\text{Cta}$ in the extending lateral ectoderm (Kerridge et
159 al., 2016). Indeed, the $\text{G}\alpha_{12/13}/\text{Cta}$ -dependent increase of medial-apical Myo-II is abolished upon

160 *RhoGEF2* knock-down, indicating that RhoGEF2 transduces the signal downstream of
161 $\text{G}\alpha_{12/13}/\text{Cta}$. Therefore, $\text{G}\alpha_{12/13}/\text{Cta}$ is a strong candidate for controlling RhoGEF2 localization
162 and activity in the ectoderm. We examined RhoGEF2 localization in $\text{G}\alpha_{12/13}/\text{Cta}$ -depleted
163 embryos and in embryos expressing constitutively active $\text{G}\alpha_{12/13}/\text{Cta}$, $\text{G}\alpha_{12/13}/\text{Cta}^{\text{Q303L}}$ (a
164 mutant that mimics the GTP bound state). Apical and junctional RhoGEF2 levels in $\text{G}\alpha_{12/13}/\text{Cta}$
165 knock-down embryos (Fig. 2c) significantly decreased (Fig. 2d and e). This shows that
166 $\text{G}\alpha_{12/13}/\text{Cta}$ is required to localize RhoGEF2 in both compartments. Strikingly in $\text{G}\alpha_{12/13}/\text{Cta}^{\text{Q303L}}$
167 embryos, RhoGEF2 was strongly enriched everywhere at the cell surface, namely the
168 apical membrane, at junctions and along the lateral cell surface (Fig. 2c-e). In contrast,
169 RhoGEF2 « comets » were completely absent from the cytoplasm in this condition (Fig. 2g,
170 yellow arrowheads and Supplementary Movie 3) while EB1 comets were still present as in
171 controls (Fig. 2h). This suggests that $\text{G}\alpha_{12/13}/\text{Cta}$ -GTP promotes RhoGEF2 dissociation from
172 microtubule growing ends and its subsequent enrichment at cell membrane upon GPCR
173 activation, as reported in S2 cells (Rogers et al., 2004). We further tested whether microtubules
174 sequester RhoGEF2 and thereby limit RhoGEF2 membrane recruitment and signalling.
175 Microtubule depolymerization following injection of colcemid caused germ-band extension
176 defects (Fig. S2 a and b) and a medial-apical increase in Myo-II activation (Fig. S2 c and d).
177 This phenotype was similar to RhoGEF2 or $\text{G}\alpha_{12/13}/\text{Cta}$ overexpression (Kerridge et al., 2016),
178 arguing that microtubules sequester and thereby limit RhoGEF2 signaling medial-apically.
179 Note that while medial-apical Rho1-GTP levels increased in $\text{G}\alpha_{12/13}/\text{Cta}^{\text{Q303L}}$ expressing
180 embryos, they were unchanged at junctions (Fig. S2 e-g), consistent with the previous report
181 showing that only medial-apical Myo-II was affected in such conditions (Kerridge et al., 2016).
182 Thus, although active $\text{G}\alpha_{12/13}/\text{Cta}$ releases RhoGEF2 from microtubule plus ends and recruits it
183 both medial-apically and at junctions in the wild type and in over-expression conditions,
184 RhoGEF2 signaling is consistently restricted to the apical membrane.

185 **Identification of a new RhoGEF required during tissue extension**

186 The striking apical specificity of RhoGEF2 indicates that other RhoGEF(s) activate junctional
187 Rho1 in the ectoderm. We screened all 26 predicted *Drosophila* RhoGEFs for defects in germ-
188 band extension by expressing shRNA maternally and zygotically. Knock-down of the maternal
189 contribution was crucial in such experiments, as a strong maternal mRNA loading is observed
190 for a large number of RhoGEFs in the embryo (modENCODE_mRNA-Seq, Flybase). Knock-
191 down of *CG10188* slowed germ-band extension (Fig. 3 a and b). Notably, intercalation events,

192 (also called T1 events), which underlie tissue extension (Claire Bertet, 2004; Collinet et al.,
193 2015) were significantly decreased in *CG10188* shRNA expressing embryos (Fig. 3 c and d,
194 Supplementary Movie 3). Severe developmental defects were also observed at later stages such
195 as the absence of germ-band retraction and the occurrence of cell delamination resulting in a
196 fully penetrant embryonic lethality (data not shown). We designed a transgene that ubiquitously
197 expresses a modified form of the *CG10188* mRNA immune to targeting by the shRNA although
198 with preserved codon usage (SqhPa-*CG10188*-shRNA^R, see Material and Methods). This
199 transgene rescued lethality in *CG10188* shRNA expressing embryos and proved the specificity
200 of the knock-down (Fig. 3 f). Overall, these results demonstrate a requirement for *CG10188*
201 during germ-band extension.

202 *CG10188* has not yet been functionally characterized in *Drosophila*. From sequence and
203 domain similarity, *CG10188* is the ortholog of the mammalian RhoGEF subfamily including
204 p114RhoGEF, AKAP13, GEF-H1 and p190RhoGEF, who each activate RhoA (Fort and
205 Blangy, 2017; Nakajima and Tanoue, 2011) (Fig. 3 e). Based on their sequence and function
206 (Terry et al., 2011) compared with our data hereafter, we conclude that *CG10188* is the
207 *Drosophila* functional ortholog of mammalian p114RhoGEF and we will now refer to it as
208 p114RhoGEF. Transcriptomic analyses reported a maternal and zygotic expression of
209 p114RhoGEF in the embryo, suggesting that the protein could be present and active in the
210 ectoderm (Karaïskos et al., 2017; Pilot, 2006).

211

212 **p114RhoGEF/Wireless activates Rho1 signaling at adherens junctions in the ectoderm**

213 To test if p114RhoGEF controls Rho1 activity in the ectoderm, we investigated the distribution
214 of the Rho-GTP biosensor in *p114RhoGEF* shRNA expressing embryos. In striking contrast to
215 the RhoGEF2 knock-down, medial-apical Rho1-GTP levels were unaffected whereas
216 junctional Rho1-GTP was strongly decreased (Fig. 4 a-c). The loss of active junctional Rho1
217 suggested that junctional Myo-II might be affected. Therefore, we analyzed Myo-II::mCherry
218 in control and *p114RhoGEF* shRNA embryos. Similar to Rho1-GTP, junctional Myo-II was
219 strongly reduced while medial-apical Myo-II was preserved (Fig. 4 d-f, Fig. S3 a,b ,
220 Supplementary Movie 4). Since planar-polarized Myo-II cables that are associated with the
221 enrichment of Myo-II at vertical junctions were lost in p114RhoGEF shRNA embryos, we
222 named the novel RhoGEF p114RhoGEF Wireless (*wrl*). Interestingly, Myo-II persisted at cell
223 vertices in the *p114RhoGEF/wrl* knock-down (Fig. 4d, bottom right panel). Rho1-GTP is not

224 detected at vertices in this condition (Fig.4 a) which suggests either a redistribution of
225 remaining active Myo-II in this condition or that Myo-II could be activated through different
226 mechanisms in this compartment. Last, compared to wild type, E-cadherin levels were globally
227 reduced in *p114RhoGEF/wrl* knock-down embryos with a highly discontinuous E-cadherin
228 distribution at junctions (Fig. S3 c-e). Similar E-cadherin defects have been observed upon
229 dominant-negative Rho1 expression and Rho1 inhibition (Braga et al., 1999; De Matos Simões
230 et al., 2014; Takaishi et al., 1997), consistent with the specificity of *p114RhoGEF/wrl* for Rho1
231 signaling.

232 RhoGEF2 exhibits a dose-dependent effect on medial-apical Rho1 signaling in that
233 overexpression of RhoGEF2 is sufficient to increase medial Rho1-GTPase and Myo-II
234 activation(Azevedo et al., 2011; Kerridge et al., 2016). Therefore, we asked whether increasing
235 *p114RhoGEF/wrl* expression levels could, symmetrically, increase Rho1 signaling at junctions.
236 The p114RhoGEF/Wrl levels were increased by driving *p114RhoGEF/wrl* wild type coding
237 sequence under control of the ubiquitous MRLC/Sqh promoter in Myo-II::mCherry embryos.
238 The result was unique and striking: p114RhoGEF/Wrl overexpression led to a global Myo-II
239 junctional increase relative to control with no effect on medial-apical Myo-II (Fig. 4 g-i,
240 Supplementary Movie 5). Myo-II was increased both at transverse (0-15°, 63% increase) and
241 vertical junctions (75-90°, 200% increase) (Fig.4 j), with a resulting modest (24%) increase in
242 planar polarity (Fig.4 k). Thus, p114RhoGEF/Wrl tunes Rho1 signaling in a dose dependent
243 manner at junctions.

244 RhoGEF2 and p114RhoGEF/Wrl show complementary spatial restriction of activity on Rho1
245 signaling. We thus hypothesized that a double knock-down of both RhoGEFs should abolish
246 total Rho1 activity in the ectoderm. Indeed, Rho1-GTP and Myo-II were decreased both
247 apically and at cell junctions in this context (Fig.S4 a-f). Together, our data demonstrate that
248 p114RhoGEF/Wrl is a key activator of Rho1 signaling at adherens junctions in the ectoderm.
249 Moreover, RhoGEF2 and p114RhoGEF/Wrl have additive and non-redundant functions in the
250 ectoderm.

251 **p114RhoGEF/Wrl mediates G β 13F/G γ 1-dependent junctional Rho1 signaling**

252 Given the critical function of G β 13F/G γ 1 in the regulation of medial-apical and junctional Myo-
253 II pools (Kerridge et al., 2016), we examined its link with p114RhoGEF/Wireless at junctions.
254 We first tested whether Rho activity was dependent upon G β 13F/G γ 1. We analyzed the Rho1-
255 GTP biosensor distribution in both G β 13F/G γ 1 loss of function (G γ 1 germline clone) and gain

256 of function ($G\beta 13F/G\gamma 1$ overexpression) conditions. Loss of $G\gamma 1$ resulted in a reduction of both
257 junctional and medial-apical $Rho1$ -GTP, consistent with the overall reduction in Myo-II
258 previously reported (Kerridge et al., 2016) (Fig. 5, a-c). Note that the medial-apical decrease in
259 $Rho1$ signaling does not imply direct $G\beta 13F/G\gamma 1$ activity apically as this is expected from the
260 known mechanisms controlling heterotrimeric G protein activation. Indeed the $G\beta\gamma$ subunit
261 dimer is necessary to properly localize $G\alpha$ at the membrane and thereby to prime $G\alpha$ to respond
262 to GPCR GEF activity (Evanko et al., 2000; Fishburn et al., 2000; Tang et al., 2006). Thus,
263 $G\beta 13F/G\gamma 1$ is required for $G\alpha_{12/13}/Cta$ activation ($G\alpha$ -GTP) downstream of GPCRs such that
264 loss of $G\beta 13F/G\gamma 1$ also causes loss of $G\alpha_{12/13}/Cta$ activity.

265 We then overexpressed both $G\beta 13F$ and $G\gamma 1$ in embryos to test a dose-dependent effect of these
266 subunits on junctional $Rho1$ signaling. Overexpression of either $G\beta 13F$ or $G\gamma 1$ alone did not
267 give any phenotype (data not shown), consistent with studies showing that the individual $G\beta$
268 and $G\gamma$ subunits can neither be transported to the membrane individually nor bind to or signal
269 via their molecular effectors as monomers (Lukov et al., 2005; Smrcka, 2008). In contrast and
270 remarkably, $G\beta 13F/G\gamma 1$ co-expression resulted in a specific enrichment in $Rho1$ activity at
271 vertical junctions (23% increase) compared to controls (Fig. 5 d). Consequently, $Rho1$ -GTP
272 planar-polarity was significantly increased (25% increase, Fig. 5 e). However, medial-apical
273 $Rho1$ activity was not significantly changed upon $G\beta 13F/G\gamma 1$ co-expression, indicating a
274 different sensitivity to $G\beta 13F/G\gamma 1$ levels in the apical compared to the junctional compartments
275 (Fig. 5 f). Note that, $G\alpha_{12/13}/Cta$ showed the opposite pattern (Fig. S2, e-g). Myo-II::mCherry
276 was next examined in $G\beta 13F/G\gamma 1$ overexpressing embryos (referred to as $G\beta 13F/G\gamma 1++$).
277 Consistent with the previous data, we observed a specific increase of Myo-II at vertical
278 junctions (48% increase, Fig. 5, g and h, Supplementary Movie 6) leading to a strong (two-fold)
279 increase in Myo-II planar polarity (Fig. 5, i). Because $G\beta 13F/G\gamma 1$ overexpression
280 hyperpolarized Myo-II in all the ectodermal cells, the strong parasegmental boundaries cables
281 (Tetley et al., 2016) observed in the wild-type (yellow arrowheads in Fig. 5 g, left panel) were
282 now indistinguishable from the other vertical interfaces in this condition (orange arrowheads
283 Fig. 5 g, right panel). Altogether, we uncovered a new role for $G\beta 13F/G\gamma 1$ dimer which is
284 involved quantitatively in the planar-polarization of $Rho1$ signaling at junctions. Therefore,
285 both $G\beta 13F/G\gamma 1$ and p114RhoGEF/Wrl regulate junctional Myo-II by quantitatively tuning
286 $Rho1$ activation at junctions.

287

288 These results suggested that p114RhoGEF/Wrl might be genetically epistatic to G β 13F/G γ 1.
289 Thus, we investigated G β 13F/G γ 1 overexpression in conjunction with *p114RhoGEF/wrl*
290 shRNA to explore this relationship. To avoid any differential titration of Gal4 effects, the
291 number of UAS regulatory sequences was equivalent in both the G β 13F/G γ 1++ and the
292 G β 13F/G γ 1++, p114RhoGEF/Wrl shRNA embryos (see Table 1). The polarized increase in
293 Myo-II at vertical junctions in G β 13F/G γ 1++ embryos was no longer observed in
294 G β 13F/G γ 1++, p114RhoGEF/Wrl shRNA embryos (Fig.6a) which were indistinguishable
295 from p114RhoGEF/Wrl shRNA embryos alone (Fig.6 b, c compare with Fig.4 d and Fig.S3
296 a,b). Overall, these data show that p114RhoGEF/Wrl is crucial to mediate G β 13F/G γ 1-
297 dependent Rho1 signaling at junctions.

298 **G β 13F/G γ 1 regulate p114RhoGEF/Wrl junctional enrichment in the ectoderm**

299 The new genetic interaction between G β 13F/G γ 1 and p114RhoGEF/Wrl led us to ask whether
300 G β 13F/G γ 1 subunits could activate and/or localize p114RhoGEF/Wrl at junctions. First, we
301 assessed their respective subcellular distribution *in vivo*. Transgenic lines that express
302 p114RhoGEF/Wrl tagged with either N-terminal or C-terminal GFP were generated (see
303 Material and Methods). Embryos expressing GFP-tagged p114RhoGEF/Wrl and Myo-
304 II::mCherry were imaged. We found that p114RhoGEF/Wrl::GFP localization was restricted to
305 adherens junctions, where it forms puncta, in both N- and C-term GFP fusions (Fig. 7 a, Fig.
306 S5 a). Remarkably, while expressed ubiquitously in the embryo, p114RhoGEF/Wrl::GFP was
307 not detected at junctions in the mesoderm (Fig. 7 b). It has been reported that Rho1 signaling
308 in mesodermal cells is induced medial-apically and absent from junctions (Mason et al., 2016).
309 Therefore, a mesoderm-specific regulation is likely to block junctional Rho1 signaling in this
310 tissue via p114RhoGEF/Wrl mRNA or protein degradation since we failed to detect any
311 increase in cytoplasmic p114RhoGEF/Wrl::GFP signal in these cells (Fig. 7 b).

312 Planar polarized Rho1 activity at ectodermal junctions could be explained by a planar polarized
313 distribution of its direct activator(s) in the ectoderm. To test this hypothesis, we next compared
314 junctional p114RhoGEF/Wrl distribution with the distribution of the non-polarized membrane
315 protein GAP43 in the ectoderm of the same embryos. No difference was observed between
316 p114RhoGEF/Wrl and GAP43 amplitude of polarity (Fig. S5 b and c). Thus, p114RhoGEF/Wrl
317 localization alone cannot account for the polarized Rho signaling at junctions.

318 Alternatively, p114RhoGEF/Wrl activity could be polarized at junctions. Considering the
319 newly uncovered genetic interaction between p114RhoGEF/Wrl and G β 13F/G γ 1 in the control

320 of junctional Rho1 signaling, we hypothesized that the heterotrimeric G proteins could be
321 upstream activators of p114RhoGEF/Wrl. Thus, the localization of G β 13F/G γ 1 could instruct
322 planar polarization of p114RhoGEF/Wrl activity. We generated antibodies against two
323 different peptides of G β 13F (see Material and Methods) and confirmed their specificity by
324 Western-blot and immunochemistry analyses (Fig.S6 a-c). Both antibodies revealed an apical
325 and junctional enrichment of G β 13F in the ectoderm (Fig.S6 c). Furthermore, G β 13F co-
326 localizes with both p114RhoGEF/Wrl and β -catenin at junctions (Fig.7 c and Fig.S6 d
327 respectively) where it is not planar polarized (Fig.S6 e).

328 Finally, we asked whether G β 13F/G γ 1 control Wireless enrichment at junctions. We looked at
329 p114RhoGEF/Wrl::GFP signal in both gain (G β 13F/G γ 1++) and loss of G β 13F/G γ 1 (G γ 1-/-).
330 p114RhoGEF/Wrl was decreased at junctions upon G γ 1 depletion (Fig.6 d and e). Conversely,
331 G β 13F/G γ 1 overexpression led to an increase in p114RhoGEF/Wrl::GFP levels at junctions
332 though, strikingly without any gain in planar polarity (Fig.7 f and g, Fig.S6 f), which contrasts
333 with the gain in Rho1-GTP and MyoII planar polarity in this condition. Taken together, our
334 data show that G β 13F/G γ 1 subunits are present at adherens junctions where they increase
335 recruitment of p114RhoGEF/Wrl allowing Rho1 to signal efficiently in this compartment.

336

337 **Discussion**

338 Critical aspects of cell mechanics are governed by spatial-temporal control over Rho1 activity
339 during *Drosophila* embryo morphogenesis. This work sheds new light on the mechanisms
340 underlying polarized Rho1 activation during intercalation in the ectoderm. We found that Rho1
341 activity is driven by two complementary RhoGEFs under spatial control of distinct
342 heterotrimeric G protein subunits (Fig.S7). Notably, we uncovered a regulatory module specific
343 for junctional Rho1 activation.

344 We identified p114RhoGEF/Wrl as a novel activator of junctional Rho1 in the extending
345 ectoderm. Hence, two RhoGEFs, p114RhoGEF/Wrl and RhoGEF2, coordinate the modular
346 Rho GTPase activation during tissue extension of the ectoderm. The division of labor in the
347 molecular mechanisms of Rho1 activation in distinct cellular compartments lends itself to
348 differential quantitative regulation. The activation kinetics of these different GEFs and
349 nucleotide exchange catalytic efficiencies are likely to differentially impact Rho1 activity and
350 therefore MyoII activation at the junctional and medial-apical compartments. For example,

351 RhoGEF2 mammalian orthologs, LARG and PDZ-RhoGEF, show a catalytic activity that is
352 two orders of magnitude higher as compared with the p114RhoGEF/Wrl orthologs subfamily
353 (Jaiswal et al., 2013). This may help to establish specific contractile regimes of actomyosin in
354 given subcellular compartments. It is therefore important to tightly control RhoGEFs
355 localization and activity to ensure a proper quantitative activation of the downstream GTPase.

356 RhoGEF2 is a major regulator of medial-apical Rho1 activity during *Drosophila* gastrulation
357 (Barrett et al., 1997; Häcker and Perrimon, 1998; Kölsch et al., 2007). Originally characterized
358 in the invaginating mesoderm, we found that RhoGEF2 also activates Rho1 medial-apical
359 activity in the elongating ectoderm. There, RhoGEF2 localizes both medial-apically and at
360 junctions where it is also planar-polarized. Although RhoGEF2 and active Rho1 are both planar
361 polarized at junctions, in *RhoGEF2* mutants, junctional Rho1-GTP is not affected and ectopic
362 recruitment of RhoGEF2 following expression of $G\alpha_{12/13}^{Q303L}$ does not cause ectopic
363 junctional Rho1-GTP accumulation. Thus, RhoGEF2 localization at the membrane is not
364 strictly indicative of its activation status. Interestingly, $G\alpha_{12/13}/Cta$ is necessary for RhoGEF2
365 to translocate from microtubules plus ends to the plasma membrane where it signals but
366 $G\alpha_{12/13}/Cta$ alone does not account for the restricted activation of Rho1 medial-apically.

367 We hypothesize that additional factors must regulate the spatial distribution of RhoGEF2
368 activity. In principle, RhoGEF2 signaling activity could either be specifically induced medial-
369 apically independent of RhoGEF2 recruitment or RhoGEF2 could be inhibited at junctions and
370 laterally. Sequestration of inactive RhoGEFs at cell junctions has been reported previously in
371 mammalian cell cultures (Aijaz et al., 2005; Terry et al., 2012), suggesting that such mechanism
372 could be evolutionary conserved. Phosphorylation can control the activity of the RH-RhoGEFs
373 subfamily (Chikumi et al., 2002; Suzuki et al., 2003). Therefore, phosphorylation could promote
374 activation or inhibition of RhoGEF2 activity in specific subcellular compartments in the
375 ectoderm. RhoGEF2 is reported to be phosphorylated in the gastrulating embryo (Sopko et al.,
376 2014).

377 Complementary to RhoGEF2, p114RhoGEF/Wireless is the main activator of junctional Rho1
378 in the ectoderm. p114RhoGEF/Wrl strictly localizes at junctions (Fig.7 a), providing a direct
379 explanation for its junctional specific effect. We showed that $G\beta13F/G\gamma1$ is also enriched at
380 adherens junctions where it controls p114RhoGEF/Wrl junctional recruitment (Fig.7 d-g).
381 Therefore, we suggest that $G\beta13F/G\gamma1$ -dependent tuning of junctional Rho1 activation could
382 be achieved through its ability to concentrate the GEF at junctions. $G\beta/G\gamma$ -dependent

383 regulation of RhoGEFs has been described in mammals (Niu et al., 2003a; Wang et al., 2009).
384 One study proposes that mammalian p114RhoGEF, may bind and be activated by G β 1/G γ 2
385 (Niu et al., 2003b). Interestingly, recent work demonstrates that G α 12 can also recruit
386 p114RhoGEF at cell junctions under mechanical stress in mammalian cell cultures where it
387 promotes RhoA signaling (Nestor-bergmann et al., 2018). However, the region of mammalian
388 p114RhoGEF that binds to G α 12 is absent in invertebrate RhoGEFs (Martin et al., 2016).
389 Therefore, a specific G α 12 control of p114RhoGEF may have appeared during vertebrate
390 evolution while G β 13F/G γ 1 controls p114RhoGEF ortholog in invertebrates. How G β 13F/G γ 1
391 control p114RhoGEF/Wrl at junctions in the *Drosophila* embryo remains an open question.

392 Importantly, neither G β 13F/G γ 1 nor p114RhoGEF/Wrl are themselves planar polarized at
393 junctions. Hence, their distribution alone cannot explain polarized Rho1 activity at junctions.
394 However, our G β 13F antibodies detect both inactive G β 13F (bound to G α -GDP) and active
395 G β 13F (released from G α -GTP) and it would be therefore important to probe specifically the
396 distribution of active G β 13F/G γ 1 dimers in the ectoderm. Strikingly we found that an increase
397 in G β 13F/G γ 1 dimers hyperpolarizes Rho1 activity and Myo-II at vertical junctions (Fig.5h).
398 G β 13F/G γ 1 overexpression also leads to an overall increase in p114RhoGEF/Wrl levels at
399 junctions, although p114RhoGEF/Wrl is not planar polarized in this condition. This indicates
400 that recruitment at the plasma membrane and activation of p114RhoGEF/Wrl are independently
401 regulated, similar to RhoGEF2. In contrast, p114RhoGEF/Wrl overexpression increases Myo-
402 II at both transverse and vertical junctions, although a slightly stronger accumulation is
403 observed at vertical junctions (Fig.4 j, k). Therefore, while p114RhoGEF/Wrl junctional levels
404 are increased in both experiments, only G β 13F/G γ 1 overexpression leads to an increased planar
405 polarization of Rho1-GTP and Myo-II at vertical junctions. This points to a key role for
406 G β 13F/G γ 1 subunits in the planar-polarization process associated with, but independent from
407 the sole recruitment of p114RhoGEF/Wrl at junctions. In principle, G β 13F/G γ 1 could bias
408 junctional Rho1 signaling either by promoting its activation at vertical junctions or by inhibiting
409 it at transverse junctions. G β 13F/G γ 1 could also control active Rho1 distribution independent
410 of its activation. For instance, a scaffolding protein binding to Rho1-GTP at junctions could be
411 polarized by G β 13F/G γ 1 to bias Rho1-GTP distribution downstream of its activation. Anillin,
412 a Rho1-GTP anchor known to stabilize Rho1 signaling at cell junctions (Budnar et al., 2018),
413 is a potential candidate in the ectoderm. Last, Toll receptors control Myo-II planar-polarity in
414 the ectoderm (Paré et al., 2014). Whether G β 13F/G γ 1 and Tolls are part of the same signaling
415 pathway is an important point yet to address in the future.

416 Finally, our study sheds light on new regulatory differences underlying tissue invagination and
417 tissue extension. Here we found that p114RhoGEF/Wrl localizes at junctions in the ectoderm
418 where it activates Rho1 and Myo-II. In contrast, maternally and zygotically supplied
419 p114RhoGEF/Wrl::GFP is not detected at junctions in the mesoderm. We see little if any
420 cytoplasmic signal in this condition suggesting that p114RhoGEF/Wrl::GFP could be degraded
421 in these cells. Interestingly, the E3 ubiquitin-ligase Neuralized is active only in the mesoderm
422 where it controls the invagination of the tissue (Perez-Mockus et al., 2017). Whether
423 p114RhoGEF/Wrl is a target of Neuralized in the mesoderm is unknown. Since p114RhoGEF
424 is expressed maternally this mechanism would ensure absence of this protein in the mesoderm
425 despite maternally loaded mRNA. Additionally, virtual *in situ* hybridizations suggest that
426 p114RhoGEF/Wrl mRNA is not zygotically expressed in the mesoderm but is present in the
427 rest of the embryo (Karaïkos et al., 2017). Thus, repression of both p114RhoGEF/Wrl mRNA
428 and protein in the mesoderm could be an important mechanism for cell apical constriction and
429 proper tissue invagination. Of interest, Rho1 signaling is absent at junctions in the mesoderm
430 (Mason et al., 2013). Therefore, it is tempting to suggest that the absence of p114RhoGEF/Wrl
431 at junction in the mesoderm accounts for cells inability to activate Rho1 in this compartment.
432 Importantly, the GPCR Smog and G β 13F/G γ 1 subunits, found to control junctional Rho1 in the
433 ectoderm, are present to both tissues (Kerridge et al., 2016). p114RhoGEF/Wrl differential
434 expression and/or subcellular localization could be a key element to bias signaling towards
435 junctional compartment in the ectoderm.

436 Cell contractility necessitates activation of the Rho1-Rock-MyoII core pathway. During
437 epithelial morphogenesis, tissue and cell-specific regulation of Rho1 signaling requires the
438 diversification of Rho1 regulators, in particular RhoGEFs and RhoGAPs, as shown in this
439 study. There are at least 26 RhoGEFs and 23 RhoGAPs encoded in the *Drosophila* genome.
440 Some of them are tissue specific with given subcellular localizations and activation
441 mechanisms. The identification of signaling modules, namely G α _{12/13}-RhoGEF2 and G β 13F/G
442 γ 1-p114RhoGEF/Wrl, provides a simple mechanistic framework for explaining how tissue
443 specific modulators control Rho1 activity in a given subcellular compartment in a given cell
444 type. Therefore, we suggest that the variation of (1) ligands, GPCRs and associated
445 heterotrimeric G proteins, and (2) types of RhoGEFs and RhoGAPs as well as their
446 combination, activation and localization by respective co-factors underlie the context-specific
447 control of Rho1 signaling during tissue morphogenesis. How developmental patterning signals
448 ultimately control Rho regulators is an exciting area for future investigations.

449 **Methods**

450 **Fly stocks and genetics.**

451 The following mutant chromosomes were used: FRTG13 $G\gamma 1^{N159}$ (refs Izumi et al., 2004;
452 Kanesaki et al., 2013), FRTG13 RhoGEF2^{I(2)04291}(ref Häcker and Perrimon, 1998), UAS-TRIP
453 RhoGEF2 (Bloomington 34643), UAS-TRIP CG10188 (Bloomington 41579), UAS-TRIP
454 $G\alpha_{12/13}$ (Bloomington 51848), UAS-TRIP Yellow (Bloomington 64527), pUAST- $G\alpha_{12/13}^{Q303L}$
455 (ref(Fuse et al., 2013), UASt- $G\gamma 1^{\#15}$ (ref Kanesaki et al., 2013), UASt-G $\beta 13F^{\#20}$ (ref Kanesaki
456 et al., 2013), Rho1-mCh::Rho1 (ref Abreu-Blanco et al., 2014), Ubi-Ani-RBD::GFP (ref
457 Munjal et al., 2015), UAS-EB1::GFP (Gift from Brunner, ref Jankovics and Brunner, 2006),
458 UASp-RFP::RhoGEF2 (ref Wenzl et al., 2010), RhoGEF2-GFP::RhoGEF2 (ref Mason et al.,
459 2016), UASp-mCh::GAP43 (gift from Manos Mavrakis) and endo- α -Catenin::YFP
460 (Cambridge Protein Trap Insertion line (CPTI-002516) ; DGRC #115551). endoCAD::GFP
461 replaces endogenous E-cadherin protein at the locus (ref Huang et al., 2009) and sqh_RLC-
462 Myosin-II::mCherry (chromosome 2 or 3; ref Martin et al., 2009 + chromosome 2; ref Bailles
463 et al., 2018). 67-Gal4 (mat-4-GAL-VP16), nos-Gal4 and 15-Gal4 are ubiquitous, maternally
464 supplied, Gal4 drivers. Germline clones for $G\gamma 1^{N159}$ and RhoGEF2^{I(2)04291} were made using the
465 FLP-DFS system (refs Chou and Perrimon, 1996). All fly constructs and genetics are listed in
466 Supplementary Extended Table 1 and Table 2.

467 **Transgenic lines.**

468 SqhPa-p114/Wireless expression vectors were generated using a SqhPa-sqh::mCherry
469 modified vector (kind gift from A. Martin), a pCasper vector containing a sqh (MyoII RLC,
470 CG3595) minimal promoter. A PhiC31 attB sequence was inserted downstream from the white
471 gene of the SqhP vector into AfeI restriction site to perform PhiC31 site specific transgenesis.
472 To build SqhPa- p114/Wireless plasmids, ORF of sqh::mCherry was replaced by the one of
473 p114/Wireless (CG10188) using 2 ESTs as matrices (RE42026 and RE33026) to build a WT
474 sequence (Genebank, NP_609977). p114/Wireless was then tagged either N- or C-terminally
475 by mEGFP with a SGGGGS flexible aa linker in between. SqhPa- p114/Wireless (CG10188) -
476 shRNA^R Resistant was built by introducing silent point mutations to the codons of the 21bp
477 targeted by the shRNA TRIP 41579 (CACGAGACAGACAATGGATT to
478 CAtGAaACtGAtAAcGGtTTA). All recombinant expression vectors were verified by sequence
479 (Genewiz) and were sent to BestGene Incorporate for PhiC31 site specific mediated insertion
480 into attP2 (3L, 68A4). FASTA sequences of these vectors are available on request.

481 **Antibody generation**

482 To generate specific antibodies for G $\beta 13F$, peptides corresponding to the amino-terminal region
483 and internal region of the G $\beta 13F$ protein were commercially synthesized and used to immunize
484 rabbits (Eurogentec). The peptide sequences employed were as follows:
485 MNELDSLRLQEAESLK (aa 1-15) and CKQTFPGHESDINAVT (aa 218-233). Polyclonal
486 anti-G $\beta 13F$ antibodies affinity purified against the immunizing peptide were then tested for
487 specificity in western blots and immunostainings. Lysates from dechorionated embryos were
488 prepared in 10 mM Tris/Cl pH 7.5; 150 mM NaCl; 0.5 mM EDTA; 0.5% NP-40 supplemented
489 with HALT Protease/Phosphatase Inhibitor Mix (Life Technologies) and 0.2M PMSF (Sigma).
490 Samples were denatured, reduced, separated by SDS PAGE and transferred to PVDF
491 membranes. After blocking, blots were incubated with polyclonal antibody (2 μ g/mL) with or

492 without preincubation of antibody with 200 µg/ml of immunizing/affinity purified peptide. A
493 band of the expected molecular weight (43 kD) was present in the western blot and was
494 abolished when the antibody was preincubated with the immunizing peptide. Similarly, the
495 signal observed in subsequent immunofluorescence labelings was abolished when the antibody
496 was preincubated with the immunizing peptide.

497 **Immunofluorescence.**

498 Methanol-heat fixation(H.-Arno J. Müller and Eric Wieschaus, 1996) was used for embryos
499 labeled with rabbit anti-G β 13F (1:20, as described above), mouse anti- β catenin (1:100,
500 DSHB), mouse anti-Neurotactin (1:50, DSHB). A chicken anti-GFP antibody (1:1000, Aves
501 Labs) was used in embryos expressing GFP::Wireless to amplify the signal in fixed embryos.
502 Secondary antibodies (Invitrogen) were used at 1:500. Fixed samples (using Aqua-Poly mount,
503 Polysciences) were imaged under a confocal microscope (LSM 780, Carl Zeiss) using a Plan
504 Apochromat 40x/1.4 NA oil immersion objective.

505 **Differential interference contrast live imaging.**

506 Standard techniques were used to immobilize embryos for imaging. Bright-field time-lapse
507 images were collected on an inverted microscope (Zeiss) and a programmable motorized stage
508 to record different positions over time (Mark&Find module from Zeiss). The system was run
509 with AxioVision software (Zeiss) and allowed the acquisition of time-lapse data sets in wild-
510 type or mutant embryos. Images were acquired every 2 min for 40 min post dorsal movement
511 of the posterior pole cells. The extent of elongation was measured by tracking the distance
512 between the pole cells and the posterior pole at each time point and normalized to the total
513 length of the embryo.

514 **Embryo viability test**

515 40 freshly hatched females and males were incubated at 25°C for 4 days in each experimental
516 conditions (Control, p114/Wireless shRNA and p114/Wireless shRNA, Sqh-p114/Wireless
517 shRNA^R). For egg collection, flies were given a fresh apple juice agar plate to lay eggs for 4
518 hours. Eggs were then counted and incubated at 25°C for 2 days. The total number of emerging
519 larva was counted and plotted in percentage as a function of viability.

520 **Embryo injection**

521 Microtubule depolymerization was carried out by injecting Colcemid (500µg/ml in water,
522 234109-M, Sigma-Aldrich) in y[*] w[67c23] or EndoCad::GFP, Sqh::mCh embryos during the
523 fast phase of cellularization. Subsequently, embryos were filmed at the onset of germ-band
524 extension on a Nikon Roper spinning disc Eclipse Ti inverted microscope using a 100X_1.4
525 N.A. oil-immersion objective or on a Zeiss inverted bright field microscope.

526 **Image acquisition.**

527 Embryos were prepared as described before (Pilot et al, 2006). Timelapse imaging was done
528 from stage 6 during 15 to 30 min depending on the experiment, on a Nikon Roper spinning
529 disc Eclipse Ti inverted microscope using a 100X_1.4 N.A. oil-immersion objective or a 40X
530 _1.25 N.A. water-immersion (for cell-intercalation measurement) at 22°C. The system acquires
531 images using the Meta-Morph software. For medial and junctional intensity measurements, 10

532 to 18 Z sections (depending on the experimental conditions), 0.5 μ m each, were acquired every
533 15s. Laser power was measured and kept constant across all experiments.

534 **Image analysis.**

535 All image processing was done in imageJ/Fiji free software. For all quantifications for medial
536 and junctional Rho1-GTP and Myo-II, maximum-intensity z-projection of slices was used,
537 followed by a first background subtraction using the rolling ball tool (radius 50 pixels~4 μ m)
538 and a second subtraction where mean cytoplasmic intensity value measured on the projected
539 stack was subtracted to the same image. Cell outlines were extracted from spinning disk
540 confocal images of Ecad::GFP or Rho1-GTP using the Tissue Analyzer software (Aigouy et
541 al., 2010) from B.Aigouy (IBDM, France). The Ecad-GFP resulting outlines were then dilated
542 by 2 pixels on either side of the junction (5-pixel-wide lines) and used as a junctional mask on
543 the MyoII::mCherry channel. Medial-apical area was obtained by shrinking individual cell
544 mask by 4 pixels to exclude any contribution of junctional signal (ImageJ/Fiji macro, Girish
545 Kale, IBDM France). Medial and junctional Myo-II and Rho1-GTP values were mean
546 intensities calculated in these two non-overlapping cell areas.

547 For planar polarity analysis, junctional masks described previously were used to extract for
548 each junction the mean pixel intensity and orientation. Intensities were averaged for all
549 junctions in each angular range. Amplitude of polarity was then calculated as a ratio between
550 signal intensity measured at vertical junctions (75-90° angular range) over intensity measured
551 at transverse junctions (0-15° angular range).

552 To measure the number of T1 transitions, Tissue Analyzer software. Segmentation was
553 automatically performed on Utr::GFP channel by the plugin and corrected by the experimenter.
554 Tracked cells present in the field of view during a period of 10min were then analyzed for T1
555 events. T1 events were automatically detected by the plugin and checked manually to prevent
556 false detections.

557 **Statistics.**

558 Errors bars are SEM unless otherwise indicated. Statistical significance was determined
559 and *P* values calculated with a non-parametric Mann–Whitney *U* test or a Kolmogorov–
560 Smirnov two-sample test in Origin (v8). The experiments were not randomized, and the
561 investigators were not blinded to allocation during experiments and outcome assessment.

562 **Acknowledgement**

563 We are grateful to N.Fuse (Kyoto, Japan), F.Matsuzaki (RIKEN, Japan), A.Martin (MIT,
564 USA), J.Großhans (Institut of Developmental Biochemistry Göttingen, Germany),
565 S.Kerridge (IBDM, France), the Drosophila Genetic Resource Center, and the Bloomington
566 Stock Center for the gift of flies. We thank the TRIP at Harvard Medical School
567 (NIH/NIGMS R01-GM084947) for providing transgenic RNAi fly stocks used in this study.
568 We thank members of the Lecuit group and C.P.Toret (IBDM, France) for stimulating
569 discussions and comments during the course of this project and writing of this manuscript.
570 We thank B.Dehapiot (IBDM, France), G.Kale and C.Collinet (IBDM, France) for help with
571 cell segmentation/tracking and image processing. This work was supported by the ERC
572 (Biomecamorph no. 323027) and the Ligue Contre le Cancer. A.G.D.L.B was supported by

573 the Ministère de l'Enseignement supérieur, de la Recherche et de l'Innovation and the
574 Fondation Bettencourt Schueller. We also acknowledge the France-BioImaging
575 infrastructure supported by the Agence Nationale de la Recherche (ANR-10-INSB-04-01,
576 call 'Investissements d'Avenir').

577

578 **Author contributions**

579 A.G.D.L.B and T.L conceived the project. A.G.D.L.B and T.L analyzed the data. A.G.D.L.B
580 performed all the experiments and data analysis except for Supplementary Fig.S7 b
581 performed by A.C.L. J-M.P created all the constructs and performed all cloning and
582 molecular characterization. A.G.D.L.B and T.L wrote the paper. All authors commented on
583 the manuscript.

584

585 **Declaration of Interests**

586 The authors declare no competing interests.

587 **References**

588 Abreu-Blanco, M.T., Verboon, J.M., and Parkhurst, S.M. (2014). Coordination of Rho family GTPase activities to orchestrate
589 cytoskeleton responses during cell wound repair. *Curr. Biol.* *24*, 144–155.

590 Aigouy, B., Farhadifar, R., Staple, D.B., Sagner, A., Röper, J.C., Jülicher, F., and Eaton, S. (2010). Cell Flow Reorients the
591 Axis of Planar Polarity in the Wing Epithelium of Drosophila. *Cell*.

592 Ajaz, S., D'Atri, F., Citi, S., Balda, M.S., and Matter, K. (2005). Binding of GEF-H1 to the Tight Junction-Associated Adaptor
593 Cingulin Results in Inhibition of Rho Signaling and G1/S Phase Transition. *Dev. Cell* *8*, 777–786.

594 Aittaleb, M., and Boguth, C. (2010). Structure and function of heterotrimeric G protein-regulated Rho guanine nucleotide
595 exchange factors. *Mol. Pharmacol.* *77*, 111–125.

596 Azevedo, D., Antunes, M., Prag, S., Ma, X., Hacker, U., Brodland, G.W., Hutson, M.S., Solon, J., and Jacinto, A. (2011).
597 DRhoGEF2 regulates cellular tension and cell pulsations in the amnioserosa during drosophila dorsal closure. *PLoS One* *6*.

598 Bailles, A., Collinet, C., Philippe, J.-M., Lenne, P.-F., Munro, E., and Lecuit, T. (2018). Transcriptional initiation and
599 mechanically driven self-propagation of a tissue contractile wave during axis elongation. *BioRxiv* 430512.

600 Barrett, K., Leptin, M., and Settleman, J. (1997). The Rho GTPase and a putative RhoGEF mediate a signaling pathway for the
601 cell shape changes in Drosophila gastrulation. *Cell* *91*, 905–915.

602 Bertet, C., and Lecuit, T. (2009). Planar polarity and short-range polarization in Drosophila embryos. *Semin. Cell Dev. Biol.*
603 *20*, 1006–1013.

604 Blankenship, J.T., Backovic, S.T., Sanny, J.S.P., Weitz, O., and Zallen, J.A. (2006). Multicellular Rosette Formation Links
605 Planar Cell Polarity to Tissue Morphogenesis. *459–470*.

606 Braga, V.M., Del Maschio, A., Machesky, L., and Dejana, E. (1999). Regulation of cadherin function by Rho and Rac:
607 modulation by junction maturation and cellular context. *Mol. Biol. Cell* *10*, 9–22.

608 Budnar, S., Husain, K.B., Gomez, G.A., Naghibosidat, M., Verma, S., Hamilton, N.A., Morris, R.G., and Yap, A.S. (2018).
609 Scaffolding of RhoA contractile signalling by anillin: a regulatory analogue of kinetic proofreading. *BioRxiv* 10.1101/282756.

610 Carter, A.M., Gutowski, S., and Sternweis, P.C. (2014). Regulated localization is sufficient for hormonal control of regulator
611 of G protein signaling homology Rho guanine nucleotide exchange factors (RH-RhoGEFs). *J. Biol. Chem.* *289*, 19737–19746.

612 Cherfils, J., and Zeghouf, M. (2013). Regulation of Small GTPases by GEFs, GAPs, and GDIs. *Physiol. Rev.* *93*, 269–309.

613 Chikumi, H., Fukuhara, S., and Gutkind, J.S. (2002). Regulation of G protein-linked guanine nucleotide exchange factors for
614 Rho, PDZ-RhoGEF, and LARG by tyrosine phosphorylation: Evidence of a role for focal adhesion kinase. *J. Biol. Chem.* *277*,
615 12463–12473.

616 Chou, T. Bin, and Perrimon, N. (1996). The autosomal FLP-DFS technique for generating germline mosaics in Drosophila
617 melanogaster. *Genetics*.

618 Claire Bertet, L.S. & T.L. (2004). Myosin-dependent junction remodelling controls planar cell intercalation and axis elongation.
619 *Nature* *429*.

620 Collinet, C., and Lecuit, T. (2013). Stability and dynamics of cell-cell junctions (Elsevier Inc.).

621 Collinet, C., Rauzi, M., Lenne, P.F., and Lecuit, T. (2015). Local and tissue-scale forces drive oriented junction growth during
622 tissue extension. *Nat. Cell Biol.* *17*, 1247–1258.

623 Costa, M., Wilson, E.T., and Wieschaus, E. (1994). A putative cell signal encoded by the folded gastrulation gene coordinates
624 cell shape changes during Drosophila gastrulation. *Cell* *76*, 1075–1089.

625 Dawes-Hoang, R.E. (2005a). Folded Gastrulation, Cell Shape Change and the Control of Myosin Localization. *Development*

626 132, 4165–4178.
627 Dawes-Hoang, R.E. (2005b). Folded Gastrulation, Cell Shape Change and the Control of Myosin Localization. *Development*
628 132, 4165–4178.
629 Evanko, D.S., Thiagarajan, M.M., and Wedegaertner, P.B. (2000). Interaction with G β Y Is Required for Membrane Targeting
630 and Palmitoylation of G α s and G α q*. *275*, 1327–1336.
631 Fishburn, C.S., Pollitt, S.K., and Bourne, H.R. (2000). Localization of a peripheral membrane protein : G β Y targets G α Z.
632 Fort, P., and Blangy, A. (2017). The evolutionary landscape of Dbl-like RhoGEF families: adapting eukaryotic cells to
633 environmental signals. *Genome Biol. Evol.* *9*, 1471–1486.
634 Fuse, N., Yu, F., and Hirose, S. (2013). Gprk2 adjusts Fog signaling to organize cell movements in *Drosophila* gastrulation.
635 *Development* *140*, 4246–4255.
636 Gorfinkel, N., and Blanchard, G.B. (2011). Dynamics of actomyosin contractile activity during epithelial morphogenesis.
637 *Curr. Opin. Cell Biol.* *23*, 531–539.
638 Greenberg, L., and Hatini, V. (2011). Systematic expression and loss-of-function analysis defines spatially restricted
639 requirements for *Drosophila* RhoGEFs and RhoGAPs in leg morphogenesis. *Mech. Dev.* *128*, 5–17.
640 H.-Arno J. Müller and Eric Wieschaus (1996). armadillo , bazooka , and stardust Are Critical for Early Stages in Formation of
641 the zonula adherens and Maintenance of the Polarized Blastoderm Epithelium in *Drosophila*. *134*, 149–163.
642 Häcker, U., and Perrimon, N. (1998). DRhoGEF2 encodes a member of the Dbl family of oncogenes and controls cell shape
643 changes during gastrulation in *Drosophila*. *Genes Dev.* *12*, 274–284.
644 Heisenberg, C.P., and Bellaïche, Y. (2013). XForces in tissue morphogenesis and patterning. *Cell* *153*.
645 Huang, J., Zhou, W., Dong, W., Watson, A.M., and Hong, Y. (2009). Directed, efficient, and versatile modifications of the
646 *Drosophila* genome by genomic engineering. *Proc. Natl. Acad. Sci.* *106*, 8284–8289.
647 Irvine, K.D., and Wieschaus, E. (1994). Cell intercalation during *Drosophila* germband extension and its regulation by pair0rule
648 segmentation genes. *Development* *120*, 827–841.
649 Izumi, Y., Ohta, N., Itoh-Furuya, A., Fuse, N., and Matsuzaki, F. (2004). Differential functions of G protein and Baz-aPKC
650 signaling pathways in *Drosophila* neuroblast asymmetric division. *J. Cell Biol.*
651 Jaiswal, M., Dvorsky, R., and Ahmadian, M.R. (2013). Deciphering the Molecular and Functional Basis of Dbl Family Proteins:
652 A NOVEL SYSTEMATIC APPROACH TOWARD CLASSIFICATION OF SELECTIVE ACTIVATION OF THE Rho
653 FAMILY PROTEINS. *J. Biol. Chem.* *288*, 4486–4500.
654 Jankovics, F., and Brunner, D. (2006). Transiently Reorganized Microtubules Are Essential for Zippering during Dorsal
655 Closure in *Drosophila melanogaster*. *375*–385.
656 Kale, G.R., Yang, X., Philippe, J., Mani, M., Lenne, P., and Lecuit, T. Distinct contributions of tensile and shear stress on E-
657 cadherin levels during morphogenesis. *Nat. Commun.*
658 Kanesaki, T., Hirose, S., Grosshans, J., and Fuse, N. (2013). Heterotrimeric G protein signaling governs the cortical stability
659 during apical constriction in *Drosophila* gastrulation. *Mech. Dev.* *130*, 132–142.
660 Karaïkos, N., Wahle, P., Alles, J., Boltengagen, A., Ayoub, S., Kipar, C., Kocks, C., Rajewsky, N., and Zinzen, R.P. (2017).
661 The *Drosophila* embryo at single-cell transcriptome resolution. *Science* (80-). *358*, 194–199.
662 Kerridge, S., Munjal, A., Philippe, J.-M., Jha, A., de las Bayonas, A.G., Saurin, A.J., and Lecuit, T. (2016). Modular activation
663 of Rho1 by GPCR signalling imparts polarized myosin II activation during morphogenesis. *Nat. Cell Biol.* *18*, 261–270.
664 Kolsch, V., Seher, T., Fernandez-Ballester, G.J., Serrano, L., and Leptin, M. (2007). Control of *Drosophila* Gastrulation by
665 Apical Localization of Adherens Junctions and RhoGEF2. *Science* (80-). *315*, 384–386.
666 Kolsch, V., Seher, T., Fernandez-Ballester, G.J., Serrano, L., and Leptin, M. (2007). Control of *Drosophila* gastrulation by
667 apical localization of adherens junctions and RhoGEF2. *Science* *315*, 384–386.
668 Lecuit, T., and Lenne, P.F. (2007). Cell surface mechanics and the control of cell shape, tissue patterns and morphogenesis.
669 *Nat. Rev. Mol. Cell Biol.* *8*, 633–644.
670 Lecuit, T., Lenne, P.-F., and Munro, E. (2011). Force Generation , Transmission , and Integration during Cell and Tissue
671 Morphogenesis.
672 Leptin, M., and Grunewald, B. (1990). Cell shape changes during gastrulation in *Drosophila*. *Development* *110*, 73–84.
673 Levayer, R., Pelissier-Monier, A., and Lecuit, T. (2011). Spatial regulation of Dia and Myosin-II by RhoGEF2 controls
674 initiation of E-cadherin endocytosis during epithelial morphogenesis. *Nat. Cell Biol.* *13*, 529–540.
675 Lukov, G.L., Hu, T., McLaughlin, J.N., Hamm, H.E., and Willardson, B.M. (2005). Phosducin-like protein acts as a molecular
676 chaperone for G protein $\beta\gamma$ dimer assembly. *EMBO J.* *24*, 1965–1975.
677 Manning, A.J., and Rogers, S.L. (2014). The Fog signaling pathway: insights into signaling in morphogenesis. *Dev. Biol.* *394*,
678 6–14.
679 Manning, A.J., Peters, K.A., Peifer, M., and Rogers, S.L. (2013). Regulation of Epithelial Morphogenesis by the G Protein-
680 Coupled Receptor Mist and Its Ligand Fog. *Sci. Signal.* *6*, ra98–ra98.
681 Martin, A.C., and Goldstein, B. (2014). Apical constriction: themes and variations on a cellular mechanism driving
682 morphogenesis. *Development* *141*, 1987–1998.
683 Martin, A.C., Kaschube, M., and Wieschaus, E.F. (2009). Pulsed actin-myosin network contractions drive apical constriction.
684 457.
685 Martin, A.C., Gelbart, M., Fernandez-Gonzalez, R., Kaschube, M., and Wieschaus, E.F. (2010). Integration of contractile forces
686 during tissue invagination. *J. Cell Biol.* *188*, 735–749.
687 Martin, J.W., Cavagnini, K.S., Brawley, D.N., Carrie, Y., Smolski, W.C., Garcia, R.D., Towne, A.L., Sims, J.R., and Meigs,
688 T.E. (2016). A G α 12-specific Binding Domain in AKAP-Lbc and p114RhoGEF. *1–17*.
689 Mason, F.M., Tworoger, M., and Martin, A.C. (2013). Apical domain polarization localizes actin-myosin activity to drive
690 ratchet-like apical constriction. *Nat. Cell Biol.* *15*, 926–936.
691 Mason, F.M., Xie, S., Vasquez, C.G., Tworoger, M., and Martin, A.C. (2016). RhoA GTPase inhibition organizes contraction
692 during epithelial morphogenesis. *J. Cell Biol.* *214*, 603–617.

693 De Matos Simões, S., Mainieri, A., and Zallen, J.A. (2014). Rho GTPase and Shroom direct planar polarized actomyosin
694 contractility during convergent extension. *J. Cell Biol.* *204*, 575–589.

695 Meyer, B.H., Freuler, F., Guerini, D., and Siehler, S. (2008). Reversible translocation of p115-RhoGEF by G12/13-coupled
696 receptors. *J. Cell. Biochem.* *104*, 1660–1670.

697 Munjal, A., and Lecuit, T. (2014). Actomyosin networks and tissue morphogenesis. *Development* *141*, 1789–1793.

698 Munjal, A., Philippe, J., Munro, E., and Lecuit, T. (2015). A self-organized biomechanical network drives shape changes during
699 tissue morphogenesis. *Nature* *524*, 351–355.

700 Nakajima, H., and Tanoue, T. (2011). Lulu2 regulates the circumferential actomyosin tensile system in epithelial cells through
701 p114rhoGEF. *J. Cell Biol.* *195*, 245–261.

702 Nestor-bergmann, A., Liang, X., Jensen, O.E., Bryant, Z., Yap, A.S., Acharya, B.R., Nestor-bergmann, A., Liang, X., Gupta,
703 S., Duszyc, K., et al. (2018). A Mechanosensitive RhoA Pathway that Protects Epithelia against Acute Tensile Stress Article
704 A Mechanosensitive RhoA Pathway that Protects Epithelia against Acute Tensile Stress. *Dev. Cell* *47*, 439–452.e6.

705 Niu, J., Profirovic, J., Pan, H., Vaikunaite, R., and Voyno-Yasenetskaya, T. (2003a). G Protein $\beta\gamma$ Subunits Stimulate
706 p114RhoGEF, a Guanine Nucleotide Exchange Factor for RhoA and Rac1: Regulation of Cell Shape and Reactive Oxygen
707 Species Production. *Circ. Res.* *93*, 848–856.

708 Niu, J., Profirovic, J., Pan, H., Vaikunaite, R., and Voyno-Yasenetskaya, T. (2003b). G Protein Subunits Stimulate
709 p114RhoGEF, a Guanine Nucleotide Exchange Factor for RhoA and Rac1: Regulation of Cell Shape and Reactive Oxygen
710 Species Production. *Circ. Res.* *93*, 848–856.

711 Paré, A.C., Vichas, A., Fincher, C.T., Mirman, Z., Farrell, D.L., Mainieri, A., and Zallen, J.A. (2014). A positional Toll receptor
712 code directs convergent extension in *Drosophila*. *Nature* *515*, 523–527.

713 Perez-Mockus, G., Mazouni, K., Roca, V., Corradi, G., Conte, V., and Schweiguth, F. (2017). Spatial regulation of
714 contractility by Neuralized and Bearded during furrow invagination in *Drosophila*. *Nat. Commun.* *8*.

715 Pilot, F. (2006). Developmental control of nuclear morphogenesis and anchoring by charleston, identified in a functional
716 genomic screen of *Drosophila* cellularisation. *Development* *133*, 711–723.

717 Priya, R., and Yap, A.S. (2015). Active tension: The role of cadherin adhesion and signaling in generating junctional
718 contractility. (Elsevier Inc.).

719 Rauzi, M., Lenne, P.F., and Lecuit, T. (2010). Planar polarized actomyosin contractile flows control epithelial junction
720 remodelling. *Nature* *468*, 1110–1115.

721 Rogers, S.L., Wiedemann, U., Hacker, U., and Chris Turck, and R.D.V. (2004). *Drosophila* RhoGEF2 Associates with
722 Microtubule Plus Ends in an EB1-Dependent Manner. *Curr. Biol.* *14*, 1827–1833.

723 Simões, S., Denholm, B., Azevedo, D., Sotillo, S., Martin, P., Skaer, H., Hombria, J.C.-G., and Jacinto, A. (2006).
724 Compartmentalisation of Rho regulators directs cell invagination during tissue morphogenesis. *Development* *133*, 4257–4267.

725 Smrcka, A. V. (2008). G protein $\beta\gamma$ subunits: Central mediators of G protein-coupled receptor signaling. *Cell. Mol. Life Sci.*
726 *65*, 2191–2214.

727 Sopko, R., Foos, M., Vinayagam, A., Zhai, B., Binari, R., Hu, Y., Randklev, S., Perkins, L.A., Gygi, S.P., and Perrimon, N.
728 (2014). Combining genetic perturbations and proteomics to examine kinase-phosphatase networks in *drosophila* embryos. *Dev. Cell*
729 *31*, 114–127.

730 Streichan, S.J., Lefebvre, M.F., Noll, N., Wieschaus, E.F., and Shraiman, B.I. (2018). Global morphogenetic flow is accurately
731 predicted by the spatial distribution of myosin motors. *Elife*.

732 Sun, Z., Amourda, C., Shagirov, M., Hara, Y., Saunders, T.E., and Toyama, Y. (2017). Basolateral protrusion and apical
733 contraction cooperatively drive *Drosophila* germ-band extension. *Nat. Cell Biol.*

734 Suzuki, N., Nakamura, S., Mano, H., and Kozasa, T. (2003). G 12 activates Rho GTPase through tyrosine-phosphorylated
735 leukemia-associated RhoGEF. *Proc. Natl. Acad. Sci.* *100*, 733–738.

736 Sweeton, D., Parks, S., Costa, M., and Wieschaus, E. (1991). Gastrulation in *Drosophila*: the formation of the ventral furrow
737 and posterior midgut invaginations. *Development* *112*, 775–789.

738 Takaishi, K., Sasaki, T., Kotani, H., Nishioka, H., and Takai, Y. (1997). Regulation of Cell–Cell Adhesion by Rac and Rho
739 Small G Proteins in MDCK Cells. *J. Cell Biol.* *139*, 1–13.

740 Tang, W., Tu, Y., Nayak, S.K., Woodson, J., Jehl, M., and Ross, E.M. (2006). $\beta\gamma$ inhibits α GTPase-activating proteins by
741 inhibition of α -GTP binding during stimulation by receptor. *J. Biol. Chem.* *281*, 4746–4753.

742 Terry, S.J., Zihni, C., Elbediwy, A., Vitiello, E., Leefaa Chong San, I. V., Balda, M.S., and Matter, K. (2011). Spatially restricted
743 activation of RhoA signalling at epithelial junctions by p114RhoGEF drives junction formation and morphogenesis. *Nat. Cell Biol.* *13*, 159–166.

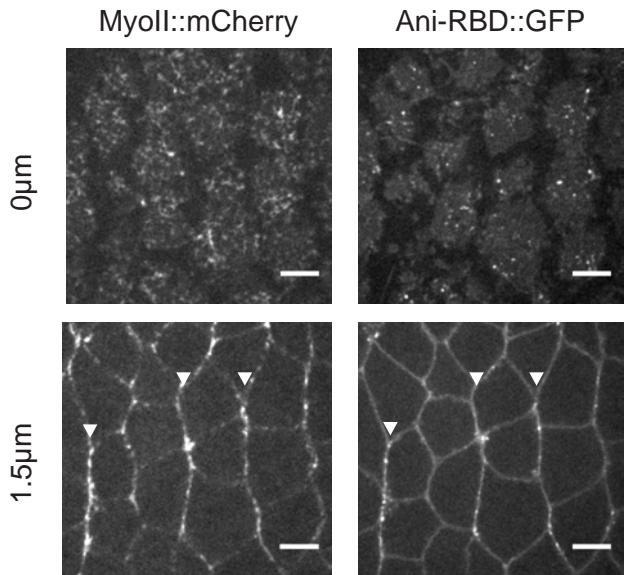
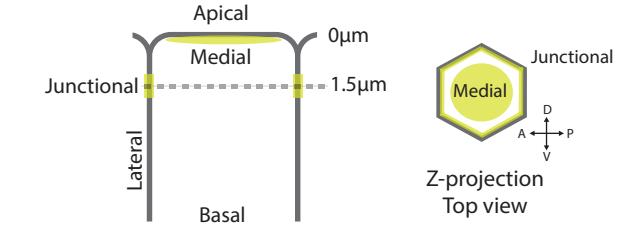
744 Terry, S.J., Elbediwy, A., Zihni, C., Harris, A.R., Bailly, M., Charras, G.T., Balda, M.S., and Matter, K. (2012). Stimulation
745 of Cortical Myosin Phosphorylation by p114RhoGEF Drives Cell Migration and Tumor Cell Invasion. *PLoS One* *7*.

746 Tetley, R.J., Blanchard, G.B., Fletcher, A.G., Adams, R.J., and Sanson, B. (2016). Unipolar distributions of junctional myosin
747 II identify cell stripe boundaries that drive cell intercalation throughout *drosophila* axis extension. *Elife* *5*, 1–35.

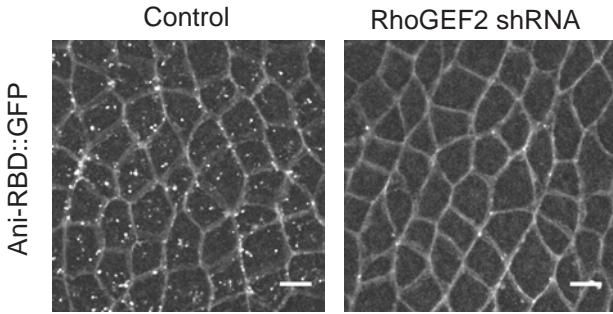
748 Wang, Z., Kumamoto, Y., Wang, P., Gan, X., Lehmann, D., Smrcka, A. V., Cohn, L., Iwasaki, A., Li, L., and Wu, D. (2009).
749 Regulation of immature dendritic cell migration by RhoA guanine nucleotide exchange factor Arhgef5. *J. Biol. Chem.* *284*,
750 28599–28606.

751 Weng, M., and Wieschaus, E. (2016). Myosin-dependent remodeling of adherens junctions protects junctions from Snail-
752 dependent disassembly. *J. Cell Biol.* *212*, 219–229.

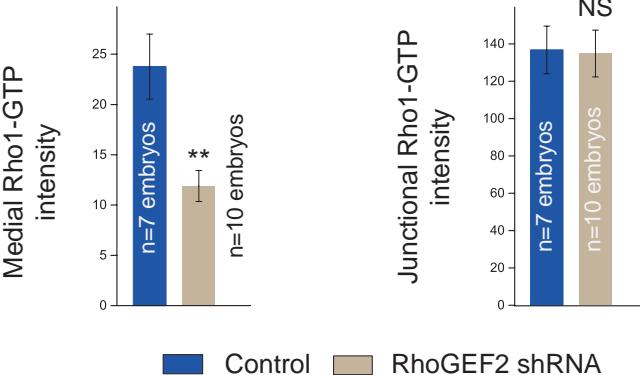
753 Wenzl, C., Yan, S., Laupsien, P., and Großhans, J. (2010). Localization of RhoGEF2 during *Drosophila* cellularization is
754 developmentally controlled by slam. *Mech. Dev.* *127*, 371–384.

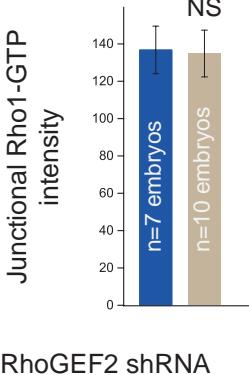


755 Zallen, J.A., and Wieschaus, E. (2004). Patterned gene expression directs bipolar planar polarity in *Drosophila*. *Dev. Cell* *6*,
756 343–355.

757


758

759


a


b

c

d

e

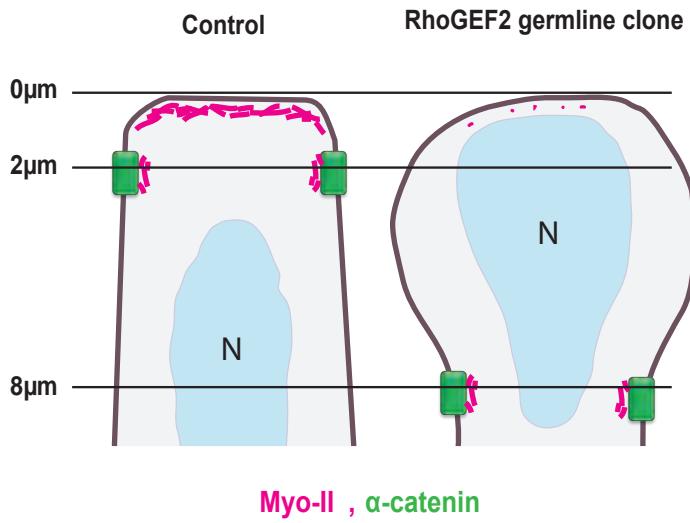



Figure 1

760 **Figure 1. RhoGEF2 activates medial-apical but not junctional Rho1 in the ectoderm.**

761
762 (a) Apical (0 μ m) and junctional (1.5 μ m) confocal z-sections of ventro-lateral ectodermal cells
763 from embryos expressing MyoII::mCherry and Ani-RBD::GFP, 8min after the onset of cephalic
764 furrow formation. White arrowheads show planar-polarized Myo-II and Rho1-GTP at vertical
765 junctions. (b) 7 μ m projections of confocal acquisitions in both control and RhoGEF2 shRNA
766 embryos expressing Ani-RBD::GFP. (c,d) Quantifications of mean medial-apical Rho1-GTP
767 and mean junctional Rho1-GTP intensities in control and RhoGEF2 shRNA embryos. (e) Left
768 panels: Apical (0 μ m), junctional (2 μ m) and lateral (8 and 12 μ m) confocal z-sections of
769 ectodermal cells in control and RhoGEF2 germline clone embryos expressing MyoII::mCherry
770 and α -catenin::YFP, a junctional marker. Medial-apical Myo-II is lost in mutant embryos while
771 Myo-II is still detected at junctions in this condition (white arrowheads). Although half of the
772 RhoGEF2 germline clone embryos express RhoGEF2 zygotically, no rescue has been observed
773 for Myo-II apical levels suggesting that maternally-loaded RhoGEF2 mainly controls the
774 process in a wild-type embryo at this stage. Right panel: schematic view of Myosin-II and
775 adherens junction distribution in both control and RhoGEF2 mutant ectodermal cells. Scale
776 bars = 5 μ m. Means \pm SEM between images are shown. Statistical significance has been
777 calculated using Mann-Whitney U test. ns, p>0.05; * p<0.05; ** p<0.01. All the panels have
778 the same orientation: dorsal at the top, anterior to the left.

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

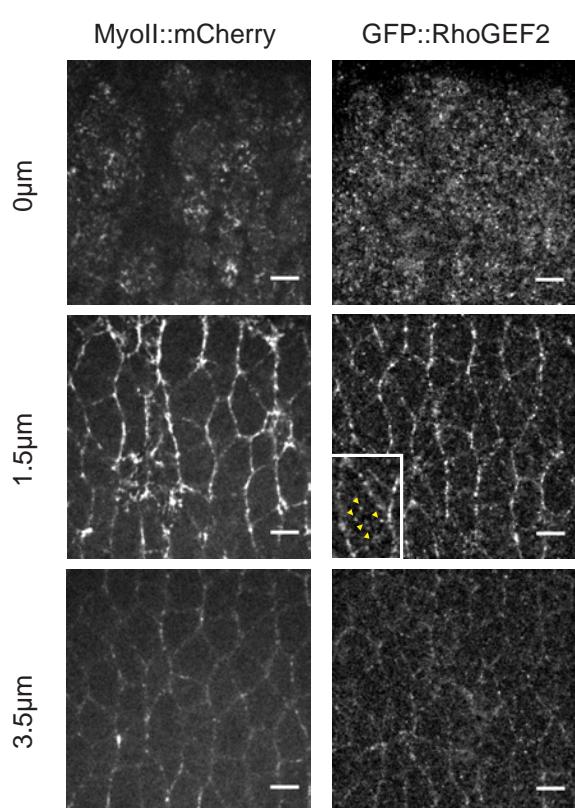
800

801

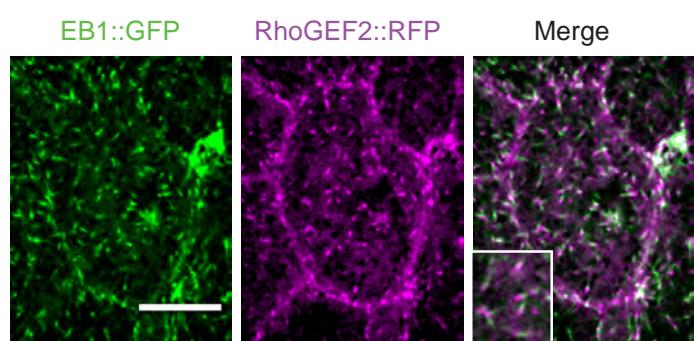
802

803

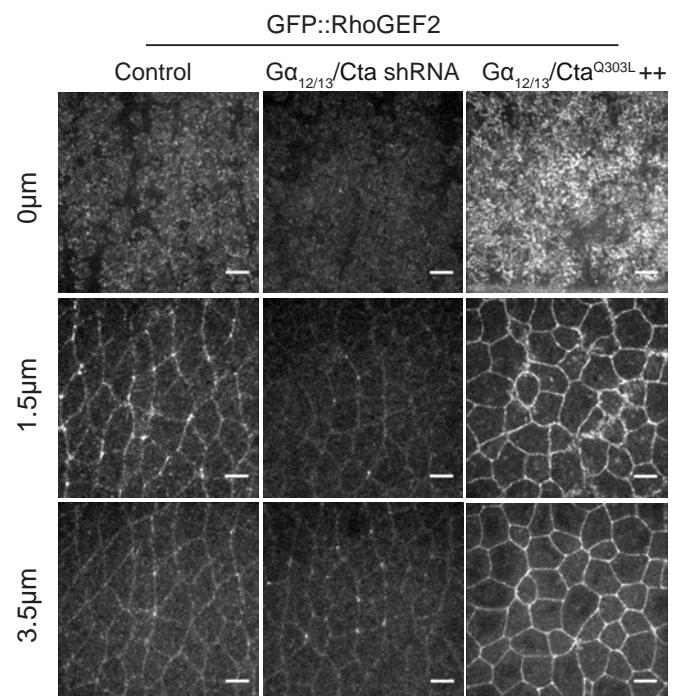
804

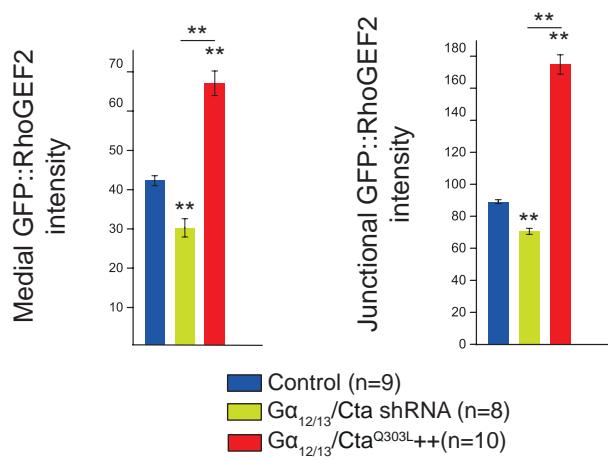

805

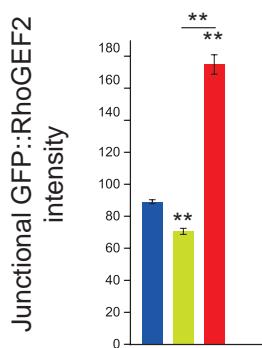
806

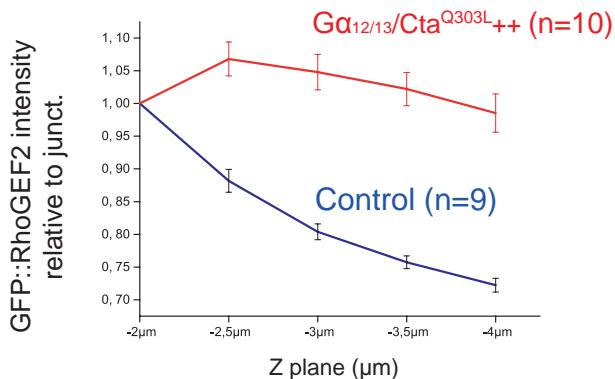

807

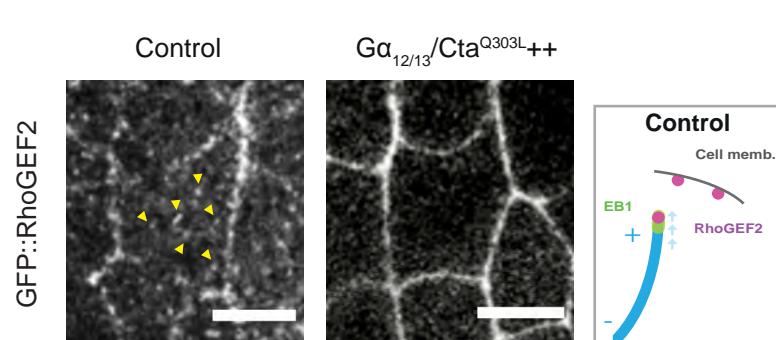
808


a


b


c


d


e

f

g

h

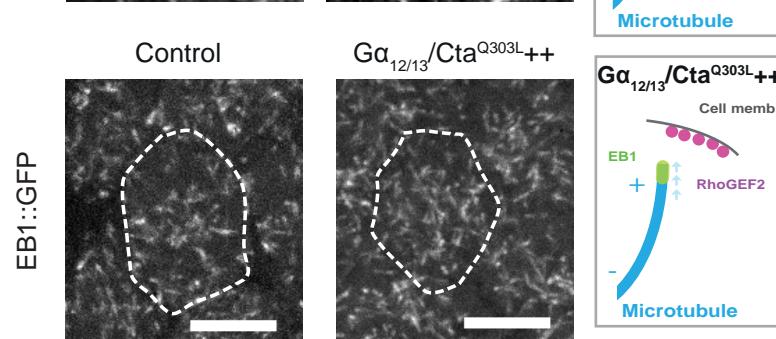
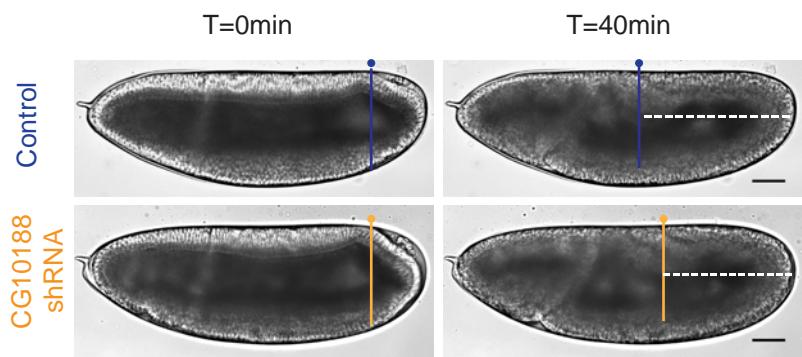
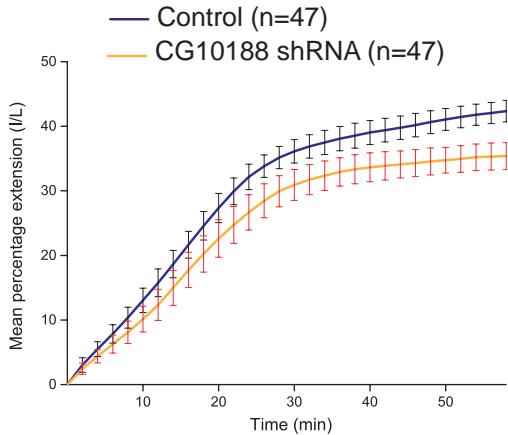
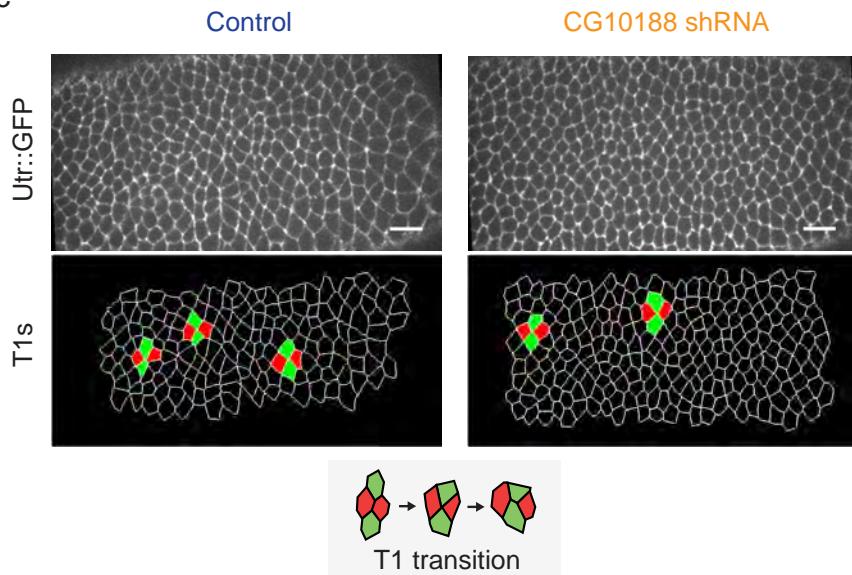
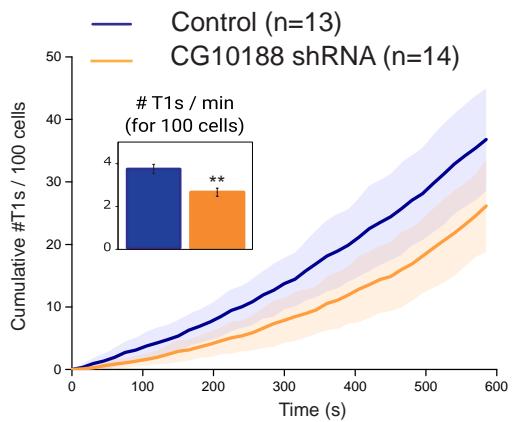



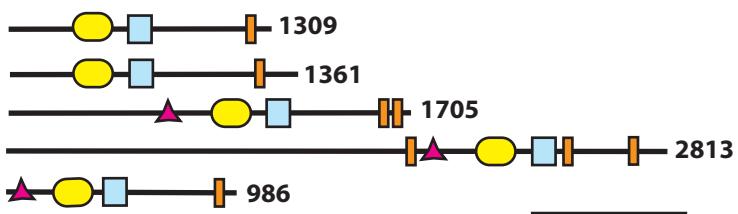
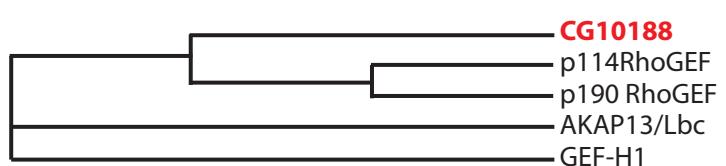
Figure 2


809 **Figure 2. $\text{G}\alpha_{12/13}/\text{Cta-GTP}$ and microtubules control RhoGEF2 enrichment at cell
810 membrane in the ectoderm**

811
812 (a) Apical (0 μm), junctional (1.5 μm) and lateral (3.5 μm) z-sections of ectoderm tissue co-
813 expressing MyoII::mCherry and GFP::RhoGEF2. Middle right panel, bottom left corner: a
814 closeup of a cell showing GFP::RhoGEF2 « comets » (yellow arrowheads) (b) Confocal Z-
815 section of an ectodermal cell co-expressing RhoGEF2::RFP and EB1::GFP. Both EB1 and
816 RhoGEF2 « comets » colocalize. (c) Apical (0 μm), junctional (1.5 μm) and lateral (3.5 μm) z-
817 sections of ectoderm tissue expressing GFP-RhoGEF2 in control, $\text{G}\alpha_{12/13}/\text{Cta}$ shRNA and
818 $\text{G}\alpha_{12/13}/\text{Cta}^{\text{Q303L}++}$ embryos. (d and e) Quantifications of mean medial-apical and junctional
819 GFP::RhoGEF2 intensities in control, $\text{G}\alpha_{12/13}/\text{Cta}$ shRNA and $\text{G}\alpha_{12/13}/\text{Cta}^{\text{Q303L}++}$ embryos.
820 n=number of embryos (f) Total GFP::RhoGEF2 cortical levels normalized to the apical
821 junctional intensities (-2 μm below the apical membrane). (g) Confocal Z-section of an
822 ectodermal cell expressing GFP::RhoGEF2 in control and $\text{G}\alpha_{12/13}/\text{Cta}^{\text{Q303L}++}$ embryos.
823 GFP::RhoGEF2 « comets » (yellow arrowheads) are absent from $\text{G}\alpha_{12/13}/\text{Cta}^{\text{Q303L}++}$ embryos.
824 (h) Confocal cross-section of an ectodermal cell expressing EB1::GFP in control and
825 $\text{G}\alpha_{12/13}/\text{Cta}^{\text{Q303L}++}$ embryos. Scale bars = 5 μm . Means \pm SEM between images are shown.
826 Statistical significance has been calculated using Mann-Whitney U test. ns, p>0.05; * p<0.05;
827 ** p<0.01. All the panels have the same orientation: dorsal at the top, anterior to the left.
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858


a


b



c

d

e

f

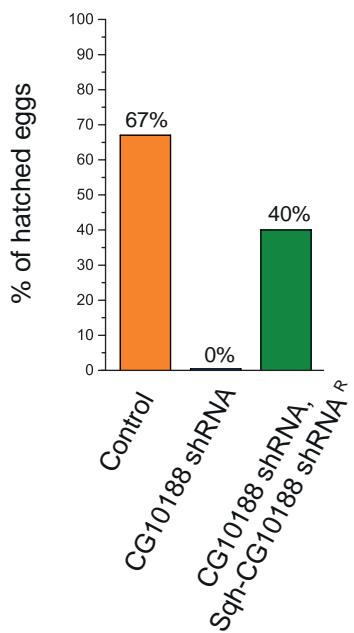


Figure 3

859 **Figure 3. A new RhoGEF controls cell intercalation during germ-band extension.**

860
861 (a) Lateral view of a control and a CG10188 shRNA expressing embryo at the onset (t=0min)
862 of germ-band extension (GBE) and 40min later. The dotted lines mark the distance between the
863 pole cells and the posterior side of the embryos 40 minutes after the onset of GBE. (b)
864 Quantification of germ-band extension over time in control and CG10188 shRNA embryos.
865 n=number of embryos. (c) Top panels: a representative view of the extending ventro-lateral
866 ectoderm in control and CG10188 shRNA embryos expressing Utr::GFP. Bottom panels:
867 segmented view of the same embryos. T1 transitions are depicted in green and red on the image.
868 (d) Cumulative sum of T1 transitions measured for control and CG10188 shRNA embryos over
869 a period of 10 minutes. n=number of embryos. (e) Phylogenetic tree inferred from sequence
870 similarity between the *Drosophila* CG10188 and its human orthologs p114RhoGEF, GEF-H1,
871 p190RhoGEF and AKAP13. Human sequences were collected from UniProt and clustered by
872 multiple sequence alignment using ClustalOmega (nj tree, no distance correction). CG10188
873 exhibits a DH-PH tandem characteristic of the Dbl-RhoGEFs and a Coil-coiled (CC) motif in
874 its C-terminal region, known to be a dimerization domain in its mammalian counterparts.(f)
875 Percentage of embryos that hatched in control (n=238/354 embryos), CG10188 shRNA
876 (n=0/243 embryos) and cg10188 shRNA, Sqh-cg10188^{wt} shRNA (n=86/213 embryos)
877 conditions. The egg-hatching percentage was determined as a measurement of embryo viability
878 (see Materials and Methods). The fully penetrant embryonic lethality observed in cg10188
879 shRNA embryos is rescued by the expression of the targeted gene refractory to the shRNA
880 (Sqh-CG10188 shRNA^R). Scale bars = 50μm (a) and =15μm (c). Error bars, SD for b and SEM
881 for d.

882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908

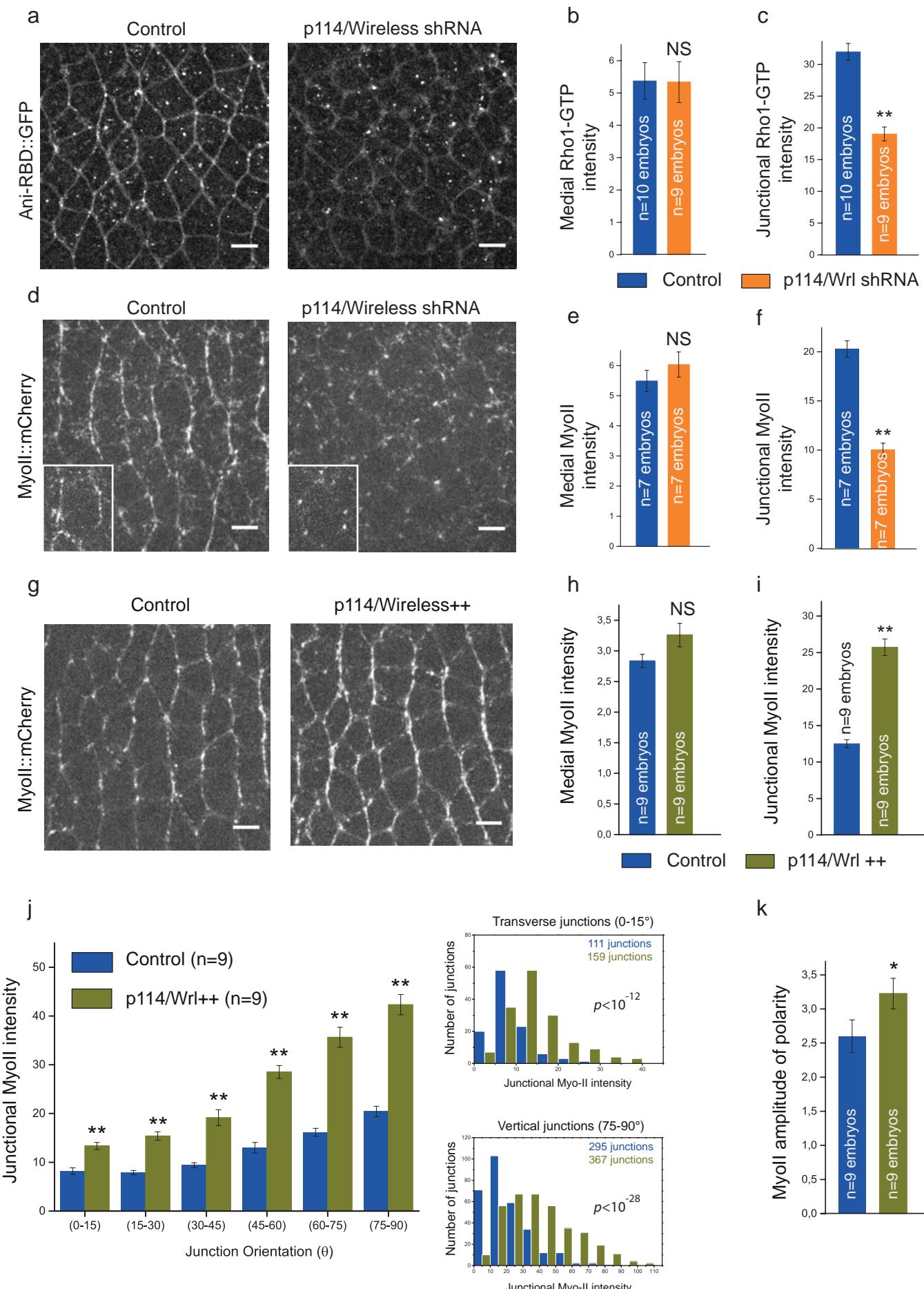


Figure 4

909 **Figure 4. p114RhoGEF/Wireless activates junctional Rho1 signaling in the ectoderm.**

910
911 (a) 4 μ m z-projection of confocal acquisition of control or p114RhoGEF/Wireless shRNA
912 embryos expressing Ani-RBD::GFP. Active Rho1 is specifically decreased at junctions upon
913 p114RhoGEF/Wireless knock-down. (b, c) Mean medial-apical and junctional Rho1-GTP
914 intensities in both control and p114RhoGEF/Wireless shRNA embryos. (d) Confocal
915 acquisitions of control and p114RhoGEF/Wireless shRNA embryos expressing
916 MyoII::mCherry. A closeup of a representative cell is shown in the bottom part left panel for
917 both conditions (the most apical z-planes containing medial-apical Myo-II have been removed
918 for a better visualization of junctional MyoII::mCherry signal). (e, f) Quantifications of mean
919 medial-apical and junctional Myo-II intensities in both control and p114RhoGEF/Wireless
920 shRNA embryos. (g) MyoII::mCherry in control and Sqh-p114RhoGEF/Wireless embryos
921 (p114RhoGEF/Wireless ++). (h, i) Mean medial-apical and junctional Myo-II intensities in
922 control and p114RhoGEF/Wireless++ embryos. (j) Left panel: Mean junctional intensity of
923 Myo-II according to the angle of the junctions. (junction angle; 0°, parallel to the antero-
924 posterior axis; 90°, perpendicular to the antero-posterior axis). n= number of embryos. Right
925 panels: Distributions of junctional Myo-II intensity values at transverse (0-15°) and vertical
926 junctions (75-90°) in control and p114RhoGEF/Wireless ++ embryos. A significant difference
927 was observed in both angular ranges (Kolmogorov-Smirnov two-sample test). p values for
928 Kolmogorov-Smirnov two-sample test in each comparison are indicated on the plot. ns, not
929 significant, p>0.05. (k) Quantification of Myo-II amplitude of polarity in control and
930 p114RhoGEF/Wireless ++ embryos. Amplitude of polarity is measured as the ratio of mean
931 Myo-II intensity at vertical junctions to mean Myo-II intensity at transverse junctions. Scale
932 bars = 5 μ m. Means \pm SEM are shown. Statistical significance has been calculated using Mann-
933 Whitney U test. ns, p>0.05; * p<0.05; ** p<0.01.

934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958

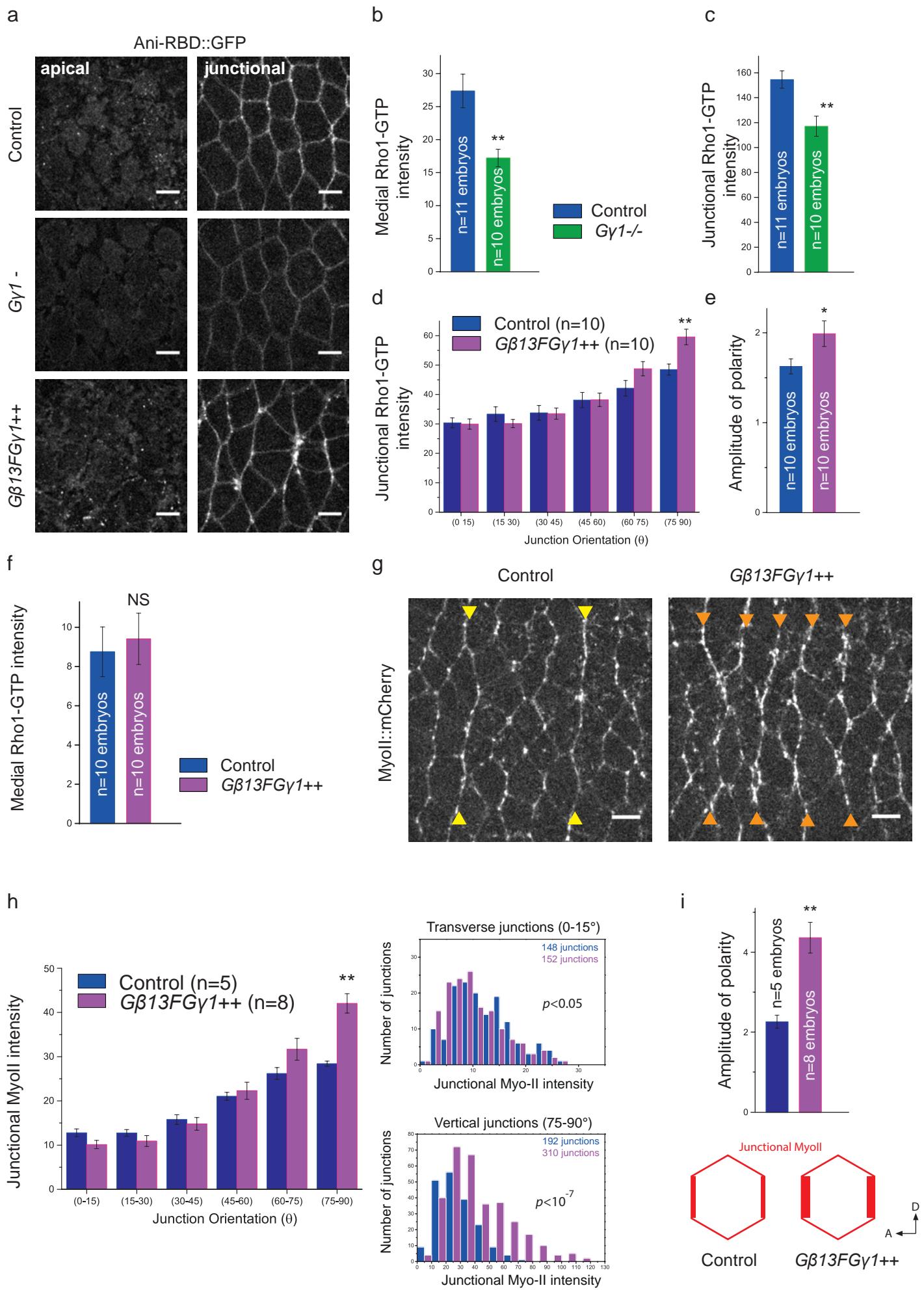


Figure 5

959 **Figure 5. G β 13FG γ 1 activates and polarizes junctional Rho1 signaling in the ectoderm.**

960
961 (a) Apical (0 μ m) and junctional (1.5 μ m) confocal z-sections of ventro-lateral ectodermal cells
962 expressing Ani-RBD::GFP in control, G γ 1 germline clone (G γ 1 $^{-}$) and G β 13FG γ 1
963 overexpressing embryos (G β 13FG γ 1 $^{++}$). (b, c) Mean medial-apical and junctional Rho1-GTP
964 intensities in control and G γ 1 $^{-}$ embryos. (d) Mean junctional intensity of Rho1-GTP according
965 to the angle of the junctions in control and G β 13FG γ 1 $^{++}$ embryos. n= number of embryos. (e)
966 Rho1-GTP amplitude of polarity. (f) Medial-apical Rho1-GTP intensities in control and
967 G β 13FG γ 1 $^{++}$ embryos. (g) Confocal acquisitions (4.5 μ m projections) showing
968 MyoII::mCherry in control and G β 13FG γ 1 $^{++}$ embryos. (yellow arrowheads show two strong
969 compartment boundaries cables of Myo-II in a control embryo ; orange arrowheads show the
970 ectopic supracellular cables of Myo-II induced by G β 13FG γ 1 overexpression. (h) Left panel:
971 Mean junctional intensity of MyoII::mCherry according to the angle of the junctions in control
972 and G β 13FG γ 1 $^{++}$ embryos. n= number of embryos. Right panels show the distributions of
973 junctional Myo-II intensity values for transverse (0-15°) and vertical junctions (75-90°) in
974 control and G β 13FG γ 1 $^{++}$ embryos. We observed a mild statistical difference at the transverse
975 junctions (Kolmogorov-Smirnov two-sample test, $p<0.05$). This is explained by an increase in
976 the lower Myo-II intensity values in G β 13F/G γ 1 $^{++}$ embryos as compared to control. At vertical
977 junctions, a strong statistical difference was observed ($p<10^{-7}$) as a consequence of a global
978 increase in Myo-II intensity values in G β 13F/G γ 1 $^{++}$ embryos compared to control. p values for
979 Kolmogorov-Smirnov test in each comparison are indicated on the plot. ns, not significant,
980 $p>0.05$. (i) Quantification of Myo-II amplitude of polarity in control and G β 13FG γ 1 $^{++}$
981 embryos. Scale bars = 5 μ m. Means \pm SEM are shown. Statistical significance has been
982 calculated using Mann-Whitney U test. ns, $p>0.05$; * $p<0.05$; ** $p<0.01$.

983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008

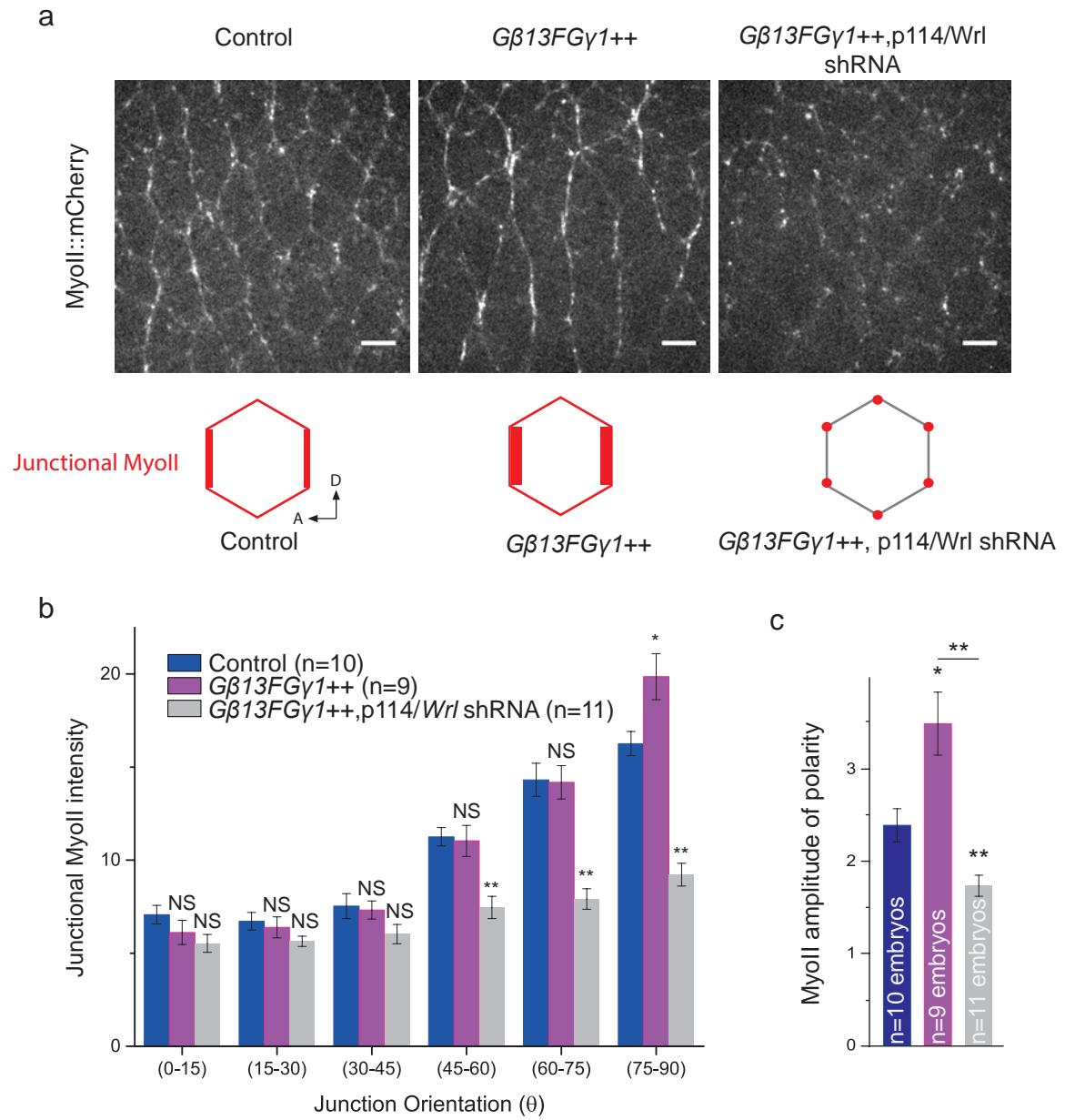
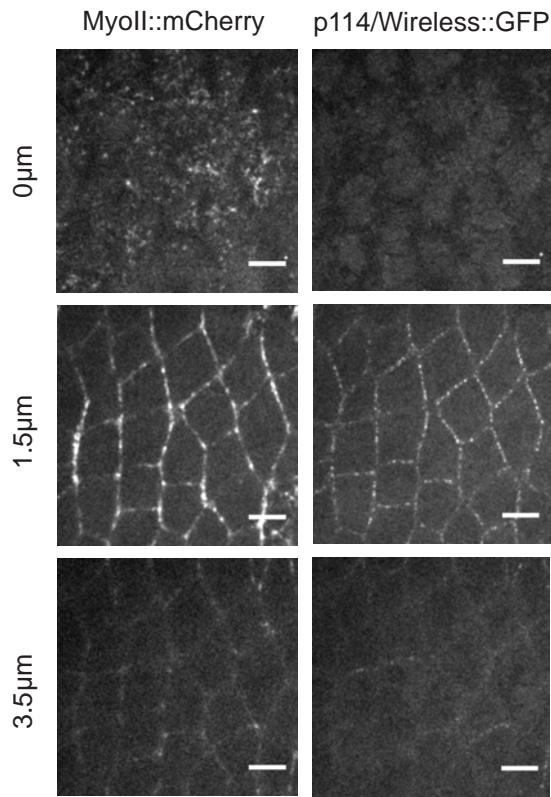
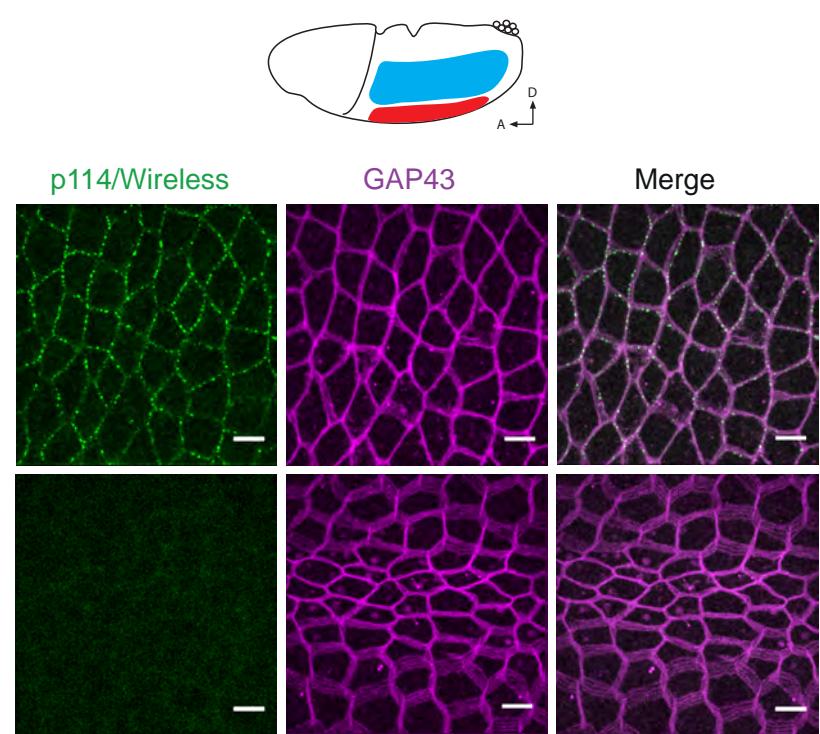
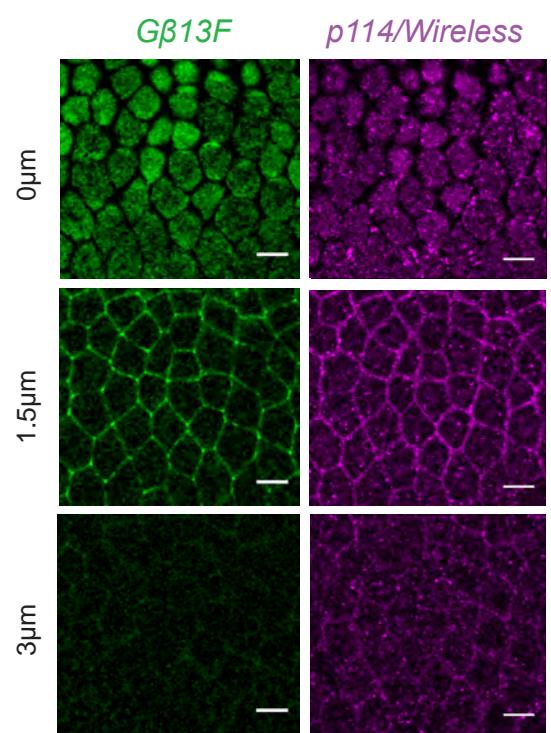
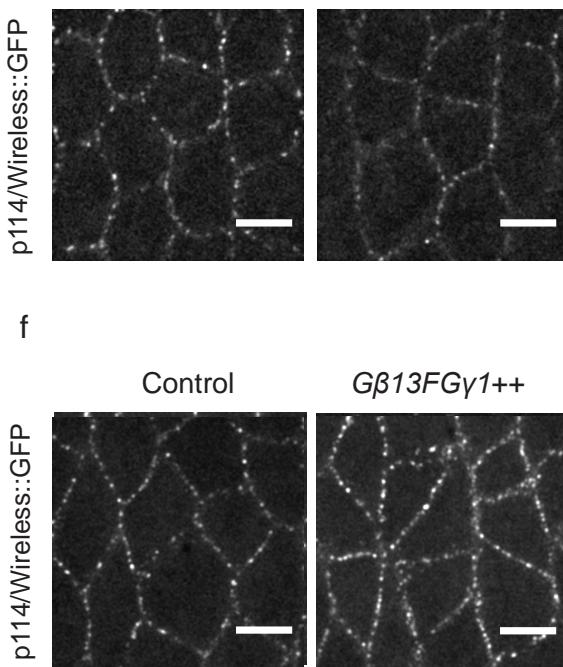



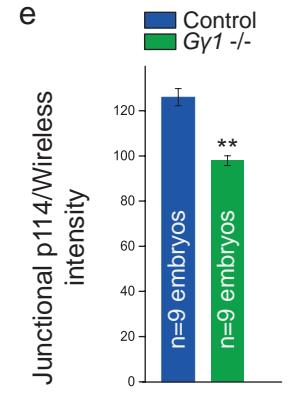
Figure 6


1009 **Figure 6. p114RhoGEF/Wireless mediates G β 13FG γ 1 signaling at junctions.**

1010
1011 (a) Confocal acquisitions of MyoII::mCherry in the ventro-lateral ectoderm of control,
1012 G β 13FG γ 1++ and G β 13FG γ 1++, p114/Wrl shRNA embryos. The increase of Myo-II at vertical
1013 junctions observed in G β 13FG γ 1++ embryos is lost when p114/Wrl shRNA is also expressed
1014 in the background. (b) Mean junctional intensity of MyoII::mCherry according to the angle of
1015 the junctions in control, G β 13FG γ 1++ embryos and G β 13FG γ 1++, p114/Wrl shRNA embryos.
1016 n= number of embryos. (c) Amplitude of polarity of junctional MyoII::mCherry in control,
1017 G β 13FG γ 1++ embryos and G β 13FG γ 1++, p114/Wrl shRNA embryos. While Myo-II planar
1018 polarity increases upon G β 13FG γ 1 overexpression compared to control embryos, co-
1019 expression of G β 13FG γ 1 together with p114/Wireless shRNA reduces Myo-II planar polarity,
1020 similar to p114/Wireless shRNA embryos alone. Scale bars = 5 μ m. Means \pm SEM are shown.
1021 Statistical significance has been calculated using Mann-Whitney U test. ns, p>0.05; * p<0.05;
1022 ** p<0.01.
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058


a


b


c

d

e

g

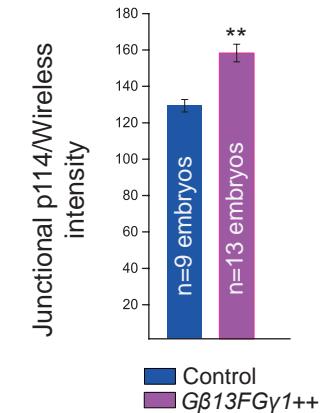
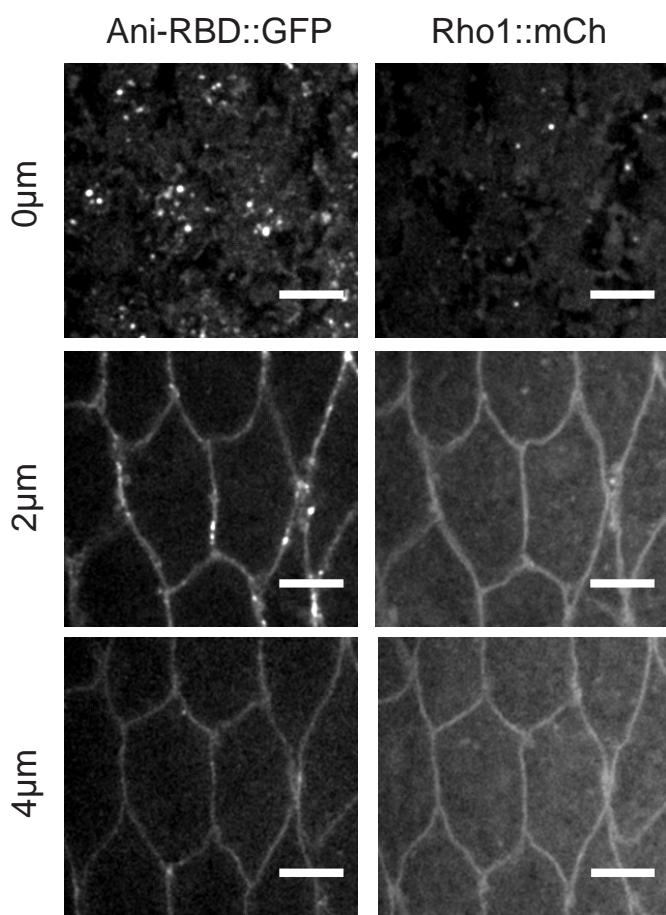
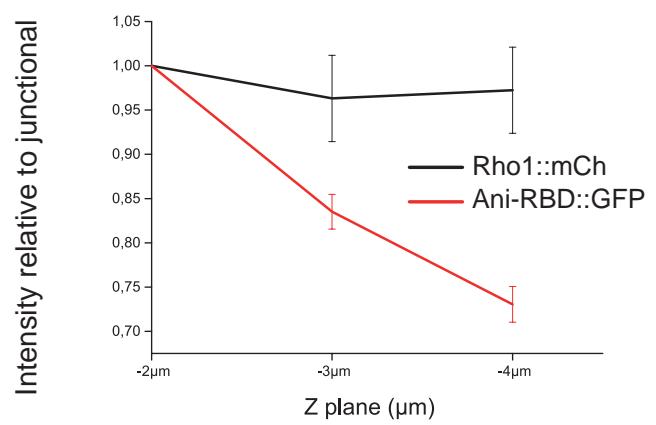
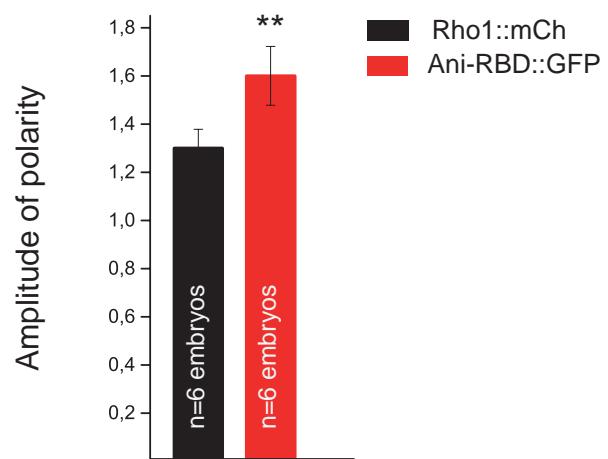
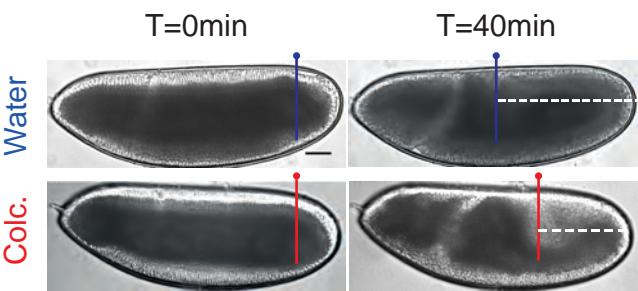





Figure 7

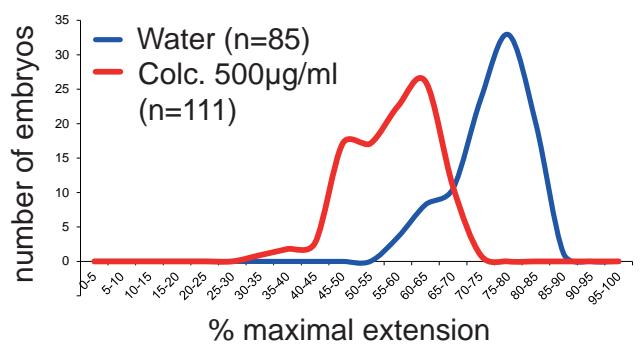
1059 **Figure 7. p114RhoGEF/Wireless localizes at adherens junctions under control of**
1060 **Gβ13FGγ1 in the ectoderm.**

1061
1062 (a) Apical (0 μ m), junctional (1.5 μ m) and lateral (3.5 μ m) confocal z-sections of ventro-lateral
1063 ectodermal cells from embryos co-expressing MyoII::mCherry and
1064 p114RhoGEF/Wireless::GFP. p114RhoGEF/Wireless localizes exclusively at junctions
1065 together with junctional Myo-II. (b) Confocal acquisitions of ectodermal cells (top panels) and
1066 mesodermal cells (bottom panels) in embryos expressing p114RhoGEF/Wireless::GFP and
1067 GAP43::Cherry. While p114RhoGEF/Wireless::GFP is detected at junctions in the ectoderm,
1068 p114RhoGEF/Wireless::GFP signal is absent from the invaginating mesoderm. (c) Anti-
1069 p114RhoGEF/Wireless::GFP and anti-Gβ13F stainings in ectodermal cells showing the
1070 enrichment of both p114RhoGEF/Wireless and Gβ13F at adherens junctions (1.5 μ m single-
1071 plane). (d, f) Confocal z-projections of ectodermal cells expressing
1072 p114RhoGEF/Wireless::GFP in control, Gγ1⁻ and Gβ13FGγ1⁺⁺ embryos. Junctional
1073 p114RhoGEF/Wireless is decreased in Gγ1 germline clones and increased upon Gβ13FGγ1
1074 overexpression. (e, g) Quantifications of mean junctional p114RhoGEF/Wireless::GFP
1075 intensities in control, Gγ1⁻ and Gβ13FGγ1⁺⁺ embryos. Scale bars = 5 μ m. Means \pm SEM are
1076 shown. Statistical significance has been calculated using Mann-Whitney U test. ns, p>0.05; *
1077 p<0.05; ** p<0.01.

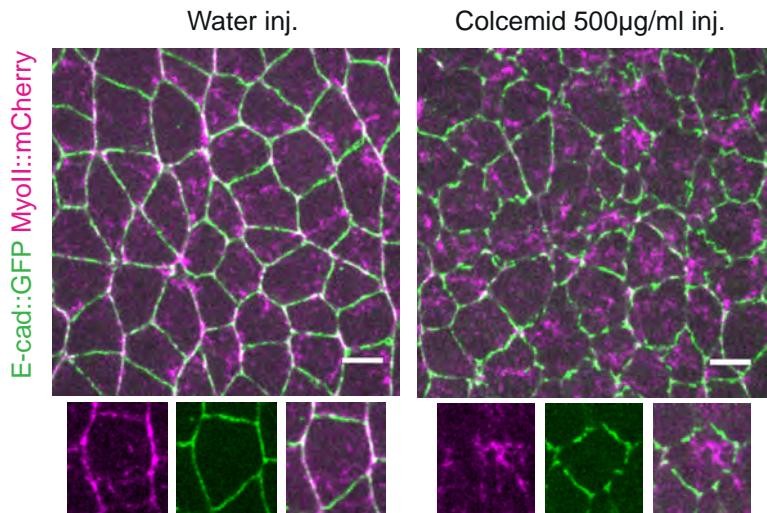
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104

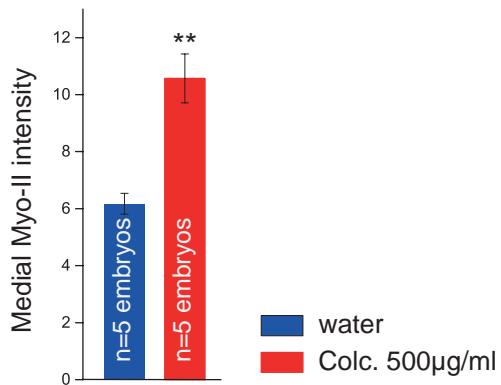

a**b****c****Figure S1**

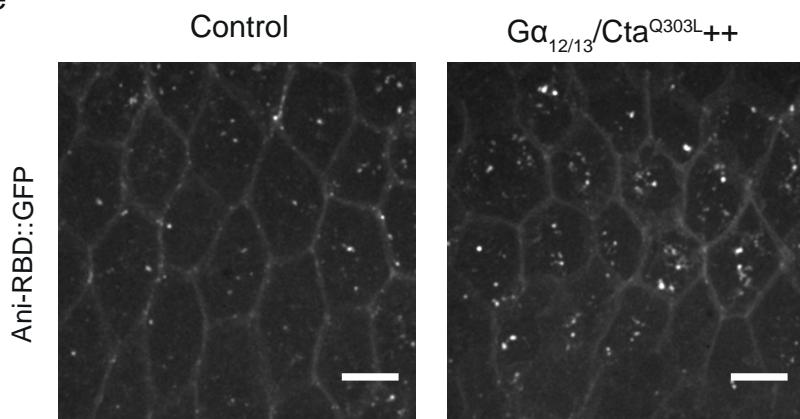
1105 **Figure S1. Rho1 protein is uniformly distributed in the ectoderm while its activity is**
1106 **polarized**


1107
1108 (a) Apical (0 μ m), junctional (2 μ m) and lateral (4 μ m) confocal z-sections of ectodermal cells
1109 co-expressing Ani-RBD::GFP and Rho1::mCherry. Active Rho1 is enriched medial-apically
1110 and at junctions where it is planar-polarized. Rho1::mCh signal is homogenous along the apico-
1111 basal axis. (b) Ani-RBD::GFP and Rho1::mCherry cortical levels normalized to the apical
1112 junctional intensities (-2 μ m below the apical membrane) along the apico-basal axis. While
1113 Rho1::mCh signal is uniform at cell cortex along the antero-posterior axis, active Rho1 is
1114 specifically enriched apically. (c) Quantification of Rho1::mCherry and Ani-RBD::GFP
1115 amplitude of polarity at junctions in the same embryos. A higher amplitude of polarity is
1116 measured for Ani-RBD::GFP at junctions compared to total Rho1. All the panels have the same
1117 orientation: dorsal at the top, anterior to the left. Scale bars = 5 μ m. Means \pm SEM are shown.
1118 Statistical significance has been calculated using Mann-Whitney U test. ns, p>0.05; * p<0.05;
1119 ** p<0.01.

1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153


a


b


c

d

e

f

g

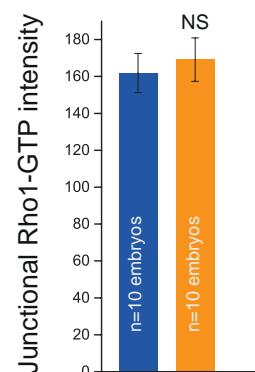
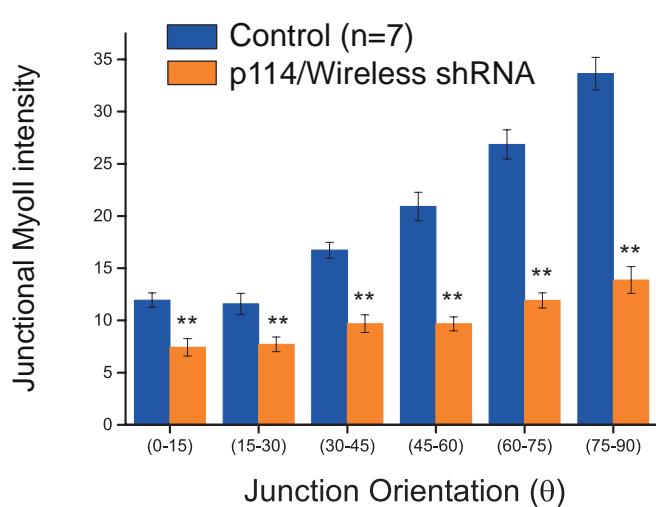
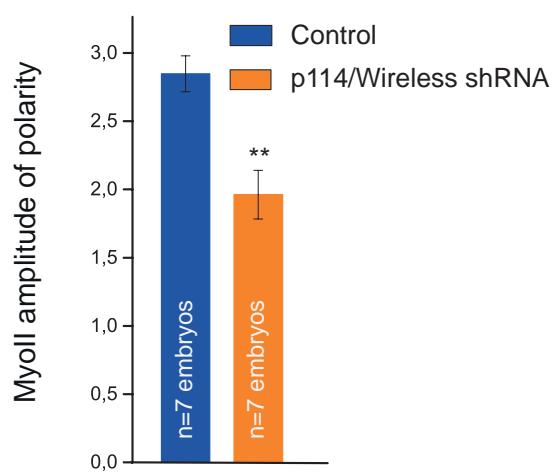
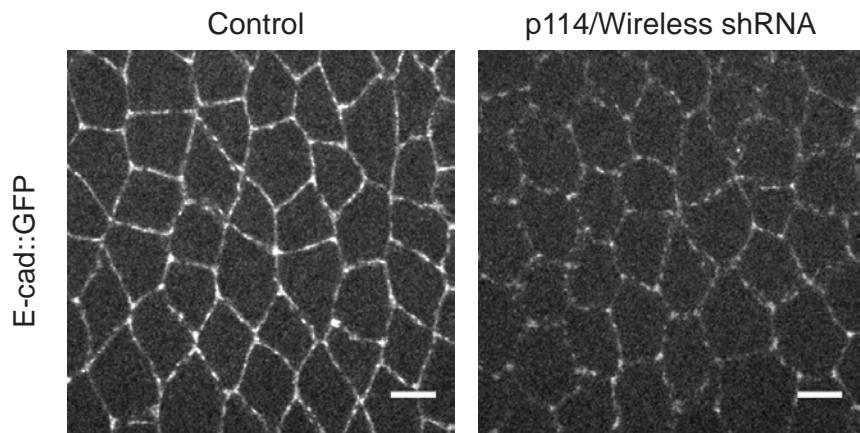
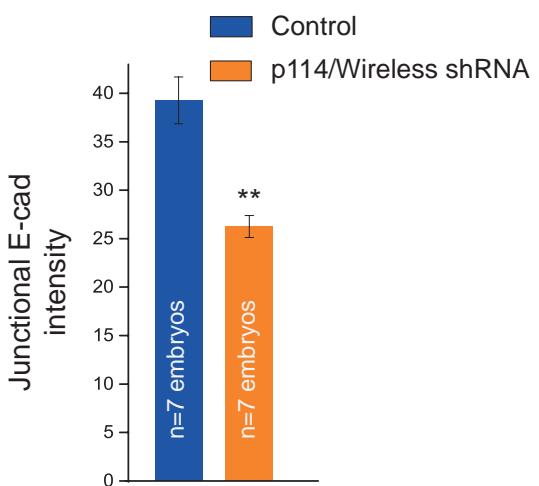



Figure S2


1154 **Figure S2. Microtubule depolymerization and $G\alpha_{12/13}/Cta^{Q303L}$ overexpression increases**
1155 **medial-apical Rho1 signalling**

1156
1157 (a) Lateral view of a water- and a colcemid-injected embryo at the onset (t=0min) of germ-band
1158 extension and 40min later. The dotted lines mark the distance between the pole cells and the
1159 posterior side of the embryos 40 minutes after the onset of germ-band extension. (b)
1160 Quantification of germ-band extension 40min after the onset of the process in water and
1161 colcemid-injected embryos. n=number of embryos. (c) Confocal acquisitions of water- and
1162 colcemid-injected embryos co-expressing Myo-II::mCherry and Endocad (E-cad)::GFP. A
1163 closeup of a representative cell is shown in the bottom part for both conditions. Colcemid-
1164 treated cells display higher medial-apical Myo-II levels and increased contractility. (d)
1165 Quantifications of mean medial-apical Myo-II intensities in both water- and colcemid-injected
1166 embryos. (e) 4 μ m confocal z-projection of ventro-lateral ectodermal cells expressing Ani-
1167 RBD::GFP in control and $G\alpha_{12/13}/CtaQ303L^{++}$ embryos. Active Rho1 is specifically increased
1168 in the medial-apical compartment of the cells upon $G\alpha_{12/13}/CtaQ303L$ overexpression. (f, g)
1169 Mean medial-apical and junctional Rho1-GTP intensities in control and $G\alpha_{12/13}/CtaQ303L^{++}$
1170 embryos. All the panels have the same orientation: dorsal at the top, anterior to the left. Scale
1171 bars = 50 μ m (a) and =5 μ m (c and e). Means \pm SEM are shown. Statistical significance has been
1172 calculated using Mann-Whitney U test. ns, p>0.05; * p<0.05; ** p<0.01.
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202


a


b

c

d

e

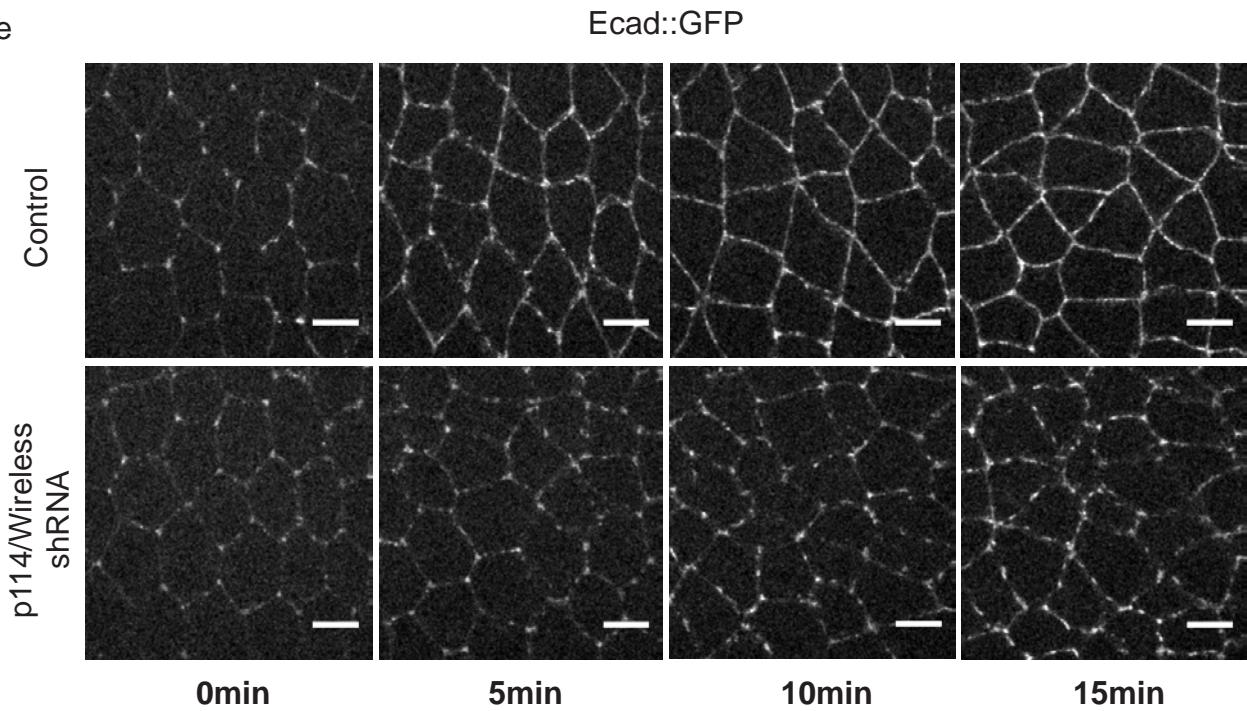


Figure S3

1203 **Figure S3. Myo-II and E-cadherin junctional levels are affected in p114RhoGEF/Wireless
1204 knock-down embryos**

1205
1206 (a) Mean junctional intensity of Myo-II according to the angle of the junctions in control and
1207 p114Rhogef/Wireless shRNA expressing embryos. (junction angle; 0°, parallel to the antero-
1208 posterior axis; 90°, perpendicular to the antero-posterior axis). n= number of embryos. A global
1209 decrease in Myo-II is observed at both transverse and vertical interfaces. (b) Quantification of
1210 junctional Myo-II amplitude of polarity in control and p114Rhogef/Wireless shRNA embryos.
1211 A reduction of Myo-II polarity is observed upon p114Rhogef/Wireless knock-down. (c)
1212 Confocal projections of ectoderm tissues expressing E-cad::GFP in control and
1213 p114Rhogef/Wireless shRNA embryos. E-cadherin junctional levels are decreased upon
1214 p114/Wireless depletion. (d) Mean E-cadherin junctional intensities. (e) E-cad::GFP in time
1215 lapse videos of control (top panels) and p114Rhogef/Wireless shRNA embryos (bottom panels)
1216 (t=0 is the end of the mesoderm pulling). Anterior is left and ventral is down. E-cadherin is
1217 enriched at cell vertices in the early germ-band and rapidly accumulates along junctions where
1218 it forms an adhesive belt in control embryos. In p114Rhogef/Wireless shRNA embryos, E-
1219 cadherin junctional maturation is disrupted and shows a low and very discontinuous signal.
1220 Scale bars = 5µm. Means ± SEM are shown. Statistical significance has been calculated using
1221 Mann-Whitney U test. ns, p>0.05; * p<0.05; ** p<0.01.
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251

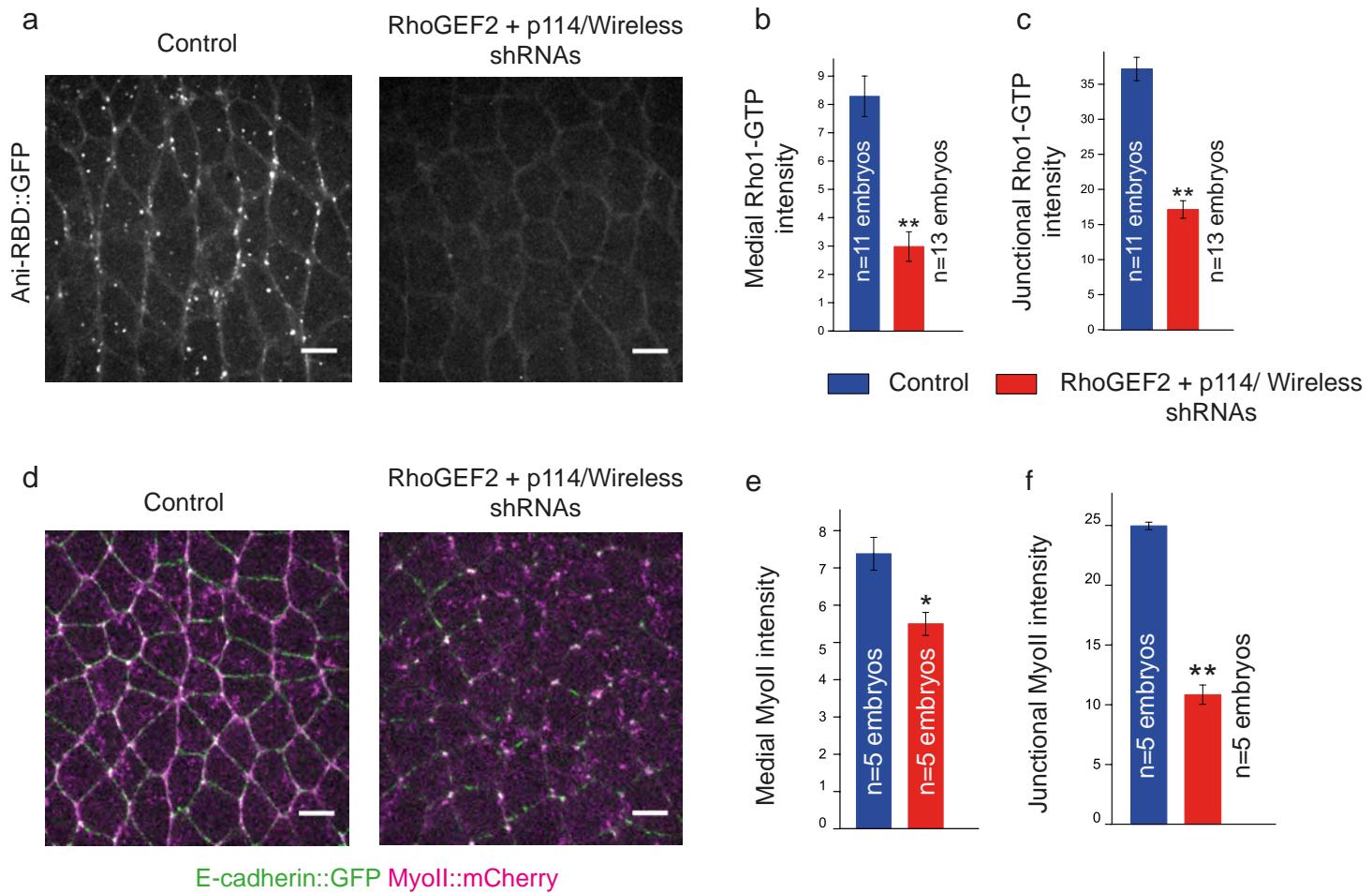
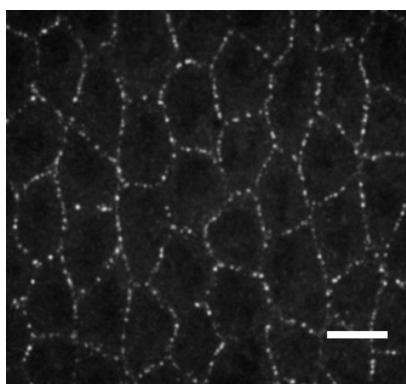
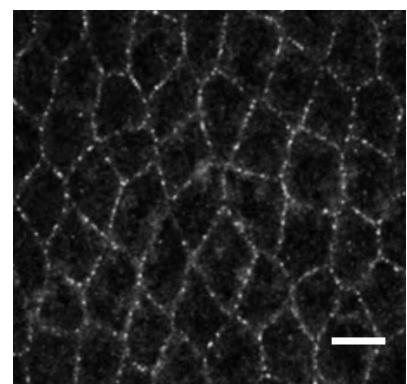


Figure S4

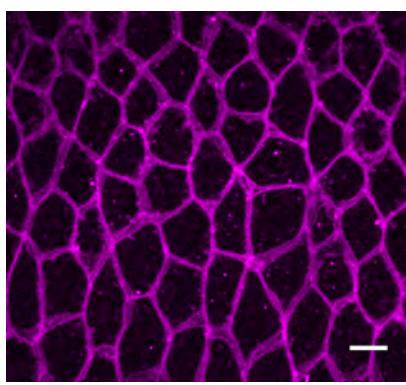

1252 **Figure S4. RhoGEF2 and p114RhoGEF/Wireless double knock-down decreases both**
1253 **medial-apical and junctional Rho1 signaling**

1254
1255 (a) Confocal z-projections of control and RhoGEF2 + p114RhoGEF/Wireless double knock-
1256 down embryos (RhoGEF2+Wireless shRNAs) expressing Ani-RBD::GFP. A decrease in both
1257 medial-apical and junctional Rho1 activity is observed in the second condition. (b, c) Mean
1258 medial-apical and junctional Rho1-GTP intensities in control and RhoGEF2+Wireless shRNAs
1259 embryos. (d) 5 μ m confocal z-projections of ventro-lateral ectodermal cells expressing E-
1260 cad::GFP and MyoII::mCherry in control and RhoGEF2+Wireless shRNAs embryos. Similar
1261 to the previous observations, medial-apical and junctional Myo-II pools are decreased in mutant
1262 embryos. (e, f) Mean medial-apical and junctional Myo-II intensities. Scale bars = 5 μ m. Means
1263 \pm SEM are shown. Statistical significance has been calculated using Mann-Whitney U test. ns,
1264 p>0.05; * p<0.05; ** p<0.01.

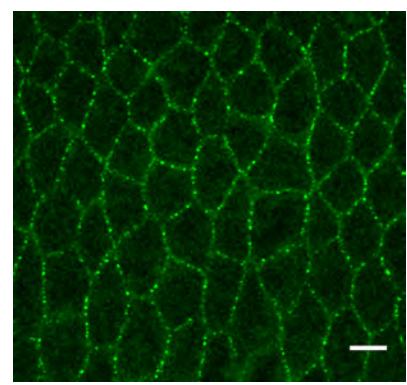

1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300

a

Sqh-p114/Wireless::GFP(Nter)



Sqh-p114/Wireless::GFP(Cter)



b

GAP43::mCherry

p114/Wireless::GFP

c

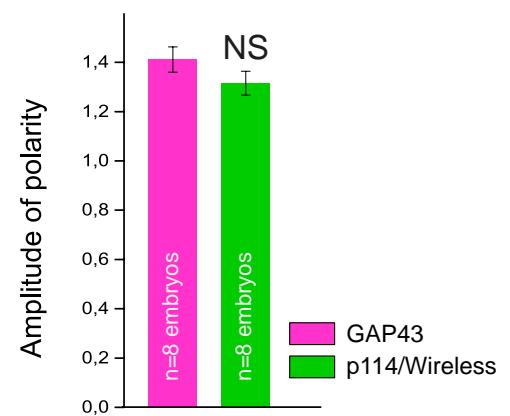


Figure S5

1301 **Figure S5. GFP-tagged p114RhoGEF/Wireless localizes at cell junctions with no apparent**
1302 **planar-polarity**

1303
1304 (a) Confocal z-projections of ectodermal cells expressing p114RhoGEF/Wireless tagged with
1305 GFP at its N-terminal (left panel) or C-terminal end (right panel). Although both fusion proteins
1306 localize at adherens junctions, a stronger cytoplasmic signal is often observed in embryos
1307 expressing the p114RhoGEF/Wireless construct tagged in C-ter. p114RhoGEF/Wireless tagged
1308 in N-ter has been used hereafter. (b) 4 μ m confocal z-projection of ectodermal cells co-
1309 expressing the membrane marker GAP43::mCherry and p114RhoGEF/Wireless::GFP in the
1310 same embryo. (c) Quantification of GAP43 and p114RhoGEF/Wireless amplitude of polarity
1311 in the same embryos. p114RhoGEF/Wireless::GFP polarity at junctions is similar to the
1312 polarity of the membrane marker. Scale bars = 5 μ m. Means \pm SEM are shown. Statistical
1313 significance has been calculated using Mann-Whitney U test. ns, p>0.05; * p<0.05; ** p<0.01.
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

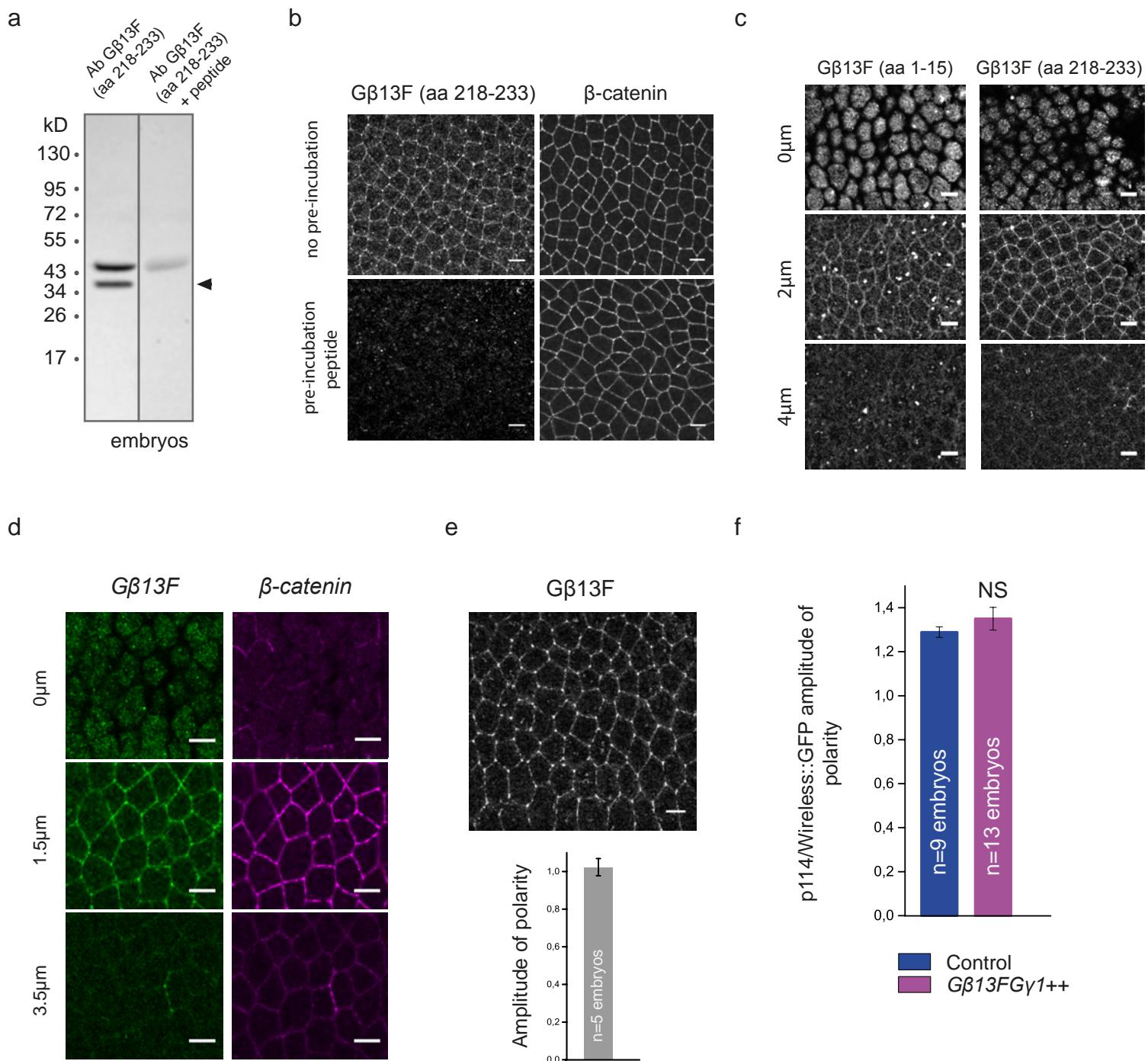


Figure S6

1350 **Figure S6. G β 13F localizes apically and at adherens junctions with no planar-polarity in**
1351 **the ectoderm**

1352
1353 (a) G β 13F (218-233) antibody specificity of binding was analyzed further in immunoblotting
1354 on *yw* embryos lysates. Two bands were detected: one at the expected G β 13F molecular weight
1355 (37kDa, black arrow) and another band around 45 kDa. Importantly, the 37kDa band was
1356 abolished when the membrane was pre-treated with the blocking G β 13F (218-233) peptide. The
1357 higher molecular weight band was strongly diminished but not completely removed. (b)
1358 Ventro-lateral ectoderms stained with G β 13F (218-233) and β -catenin antibodies. Pre-
1359 incubation of the G β 13F (218-233) antibody with the G β 13F (218-233) peptide completely
1360 abolished G β 13F signal (left bottom panel). (c) Apical (0 μ m), junctional (2 μ m) and lateral
1361 (4 μ m) confocal z-sections of ectodermal cells in fixed embryos stained with two different
1362 purified antibodies against G β 13F (see material and methods). Both antibodies showed a
1363 similar staining, with G β 13F being enriched apically and at adherens junctions. Because
1364 antibody against the G β 13F (218-233) peptide gave a cleaner staining with less intracellular
1365 aggregates, we performed the next experiments using this purified antibody exclusively. (d)
1366 Apical (0 μ m), junctional (1.5 μ m) and lateral (3.5 μ m) confocal z-sections of ectodermal cells
1367 in fixed embryos stained with G β 13F and β -catenin antibodies. G β 13F co-localizes with β -
1368 catenin at junctions. (e) Quantification of the amplitude of polarity of G β 13F measured on
1369 fixed embryos. G β 13F is not planar-polarized at cell junctions. (f) Quantifications of
1370 p114RhoGEF/Wireless::GFP amplitude of polarity in control and G β 13FG γ 1 overexpressing
1371 embryos (G β 13FG γ 1++). While G β 13FG γ 1 overexpression increases
1372 p114RhoGEF/Wireless::GFP levels at cell junctions (see main Fig.7 f and g), its amplitude of
1373 polarity is not affected. Scale bars = 5 μ m.

1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399

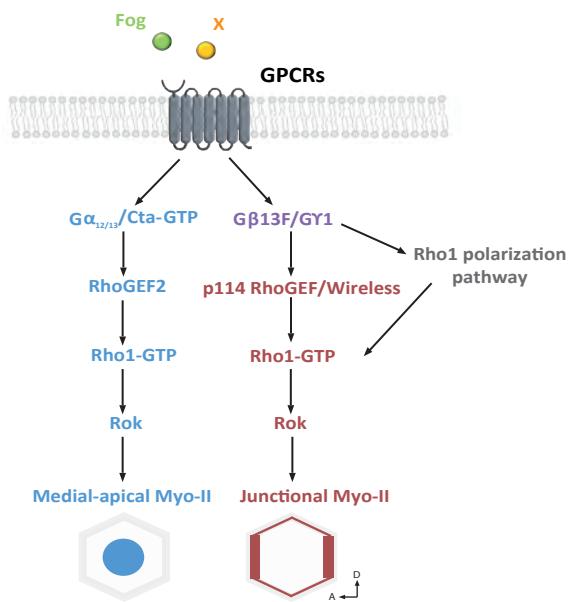
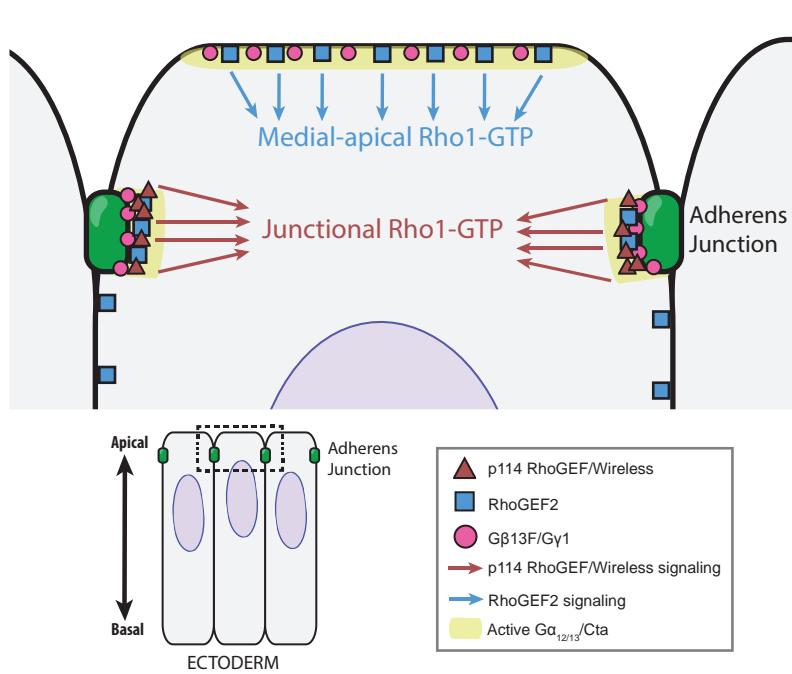



Figure S7

1400 **Figure S7. Distinct RhoGEFs compartmentalize Rho1 signaling apically and at junctions**
1401 **under control of G proteins in the *Drosophila* embryonic ectoderm.**

1402
1403 Left panel: a schematic view of heterotrimeric G protein subunits and RhoGEFs spatial
1404 distribution and activity in ectodermal cells. RhoGEF2 (in blue) is present apically and at
1405 adherens junctions but only activates medial-apical Rho1 signaling. Active $G\alpha_{12/13}/Cta$ recruits
1406 RhoGEF2 in both compartments by promoting its dissociation from microtubules. Additional
1407 regulators at the membrane bias RhoGEF2 activity towards the medial-apical compartment.
1408 p114RhoGEF/Wireless (in red) is present exclusively at junctions where it activates Rho1 under
1409 control of $G\beta 13FG\gamma 1$ and other unknown regulators. Right panel: An overview of the medial
1410 and junctional signaling pathways controlling Rho1 activity in the ectoderm. Following
1411 stimulation by ligand (Fog and others), GPCRs release active $G\alpha_{12/13}/Cta$ ($G\alpha_{12/13}/Cta$ -GTP)
1412 and active $G\beta 13FG\gamma 1$ dimers that promote RhoGEF2 and p114 RhoGEF/Wireless signaling
1413 respectively. How $G\beta 13FG\gamma 1$ polarize junctional Rho1 activation is unclear and could involve
1414 Toll receptors.

1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445

1446 **Movie Legends**

1447

1448 **Movie 1** Developing ectoderm in control and RhoGEF2 shRNA embryos. Ani-RBD::GFP,
1449 Related to Fig.1b ; Scale bar=5 μ m. Duration: 2min

1450

1451 **Movie 2** EB1::GFP and RhoGEF2::RFP dynamics in an ectodermal cell from a developing
1452 embryo. Related to Fig.2b; Scale bar=5 μ m. Duration: 4s

1453

1454 **Movie 3** Developing ectoderm in control and $\text{G}\alpha_{12/13}/\text{Cta}^{\text{Q303L}++}$ embryos. GFP::RhoGEF2,
1455 Related to Fig.2g; Scale bar=5 μ m. Duration: 14s

1456

1457 **Movie 4** T1s events during germ-band extension in control and *CG10188* shRNA embryos.
1458 Related to Fig.3c; Scale bar=15 μ m. Red/Green: T1s. Duration: 10min

1459

1460 **Movie 5** Developing ectoderm in control and p114RhoGEF/Wireless shRNA embryos.
1461 MyoII::mCherry, Related to Fig.4d; Scale bar=5 μ m. Duration: 15min

1462

1463 **Movie 6** Developing ectoderm in control and p114RhoGEF/Wireless overexpressing embryos.
1464 MyoII::mCherry, Related to Fig.4g; Scale bar=5 μ m. Duration: 15min

1465

1466 **Movie 7** Developing ectoderm in control and $\text{G}\beta13F/\text{G}\gamma1$ overexpressing embryos.
1467 MyoII::mCherry, Related to Fig.5g; Scale bar=5 μ m. Duration: 17min

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493
1494

Supplementary table 1. Drosophila strains used in this study

Drosophila Strains	SOURCE	IDENTIFIER
y[*] w[67c23]	Kyoto stock center	DGRC:101079 / Flybase: FBst0300120
;;Ubi-GFP::AniRBD/TM3,sb	This Laboratory	FBal0318725
;{mata4-GAL-VP16};	Gift from Eric Wieschaus	Flybase:FBti00161 78
;RhoGEF2-GFP::RhoGEF2 (vk33)	Adam Martin	FBal0321765
;Sqh-Sqh::mCh;RhoGEF2-GFP::RhoGEF2	Adam Martin	
;Sqh-Sqh::mCh;	Adam Martin	FBal0258457
;Sqh-Sqh::mCh;	This laboratory	
;RhoGEF2-GFP::RhoGEF2/Cyo;	Adam Martin	FBal0321765
;Sqh-eGFP::p114/Wireless (Nter)	This Laboratory	
;Sqh-p114/Wireless::eGFP (Cter)	This Laboratory	
;Sqh-p114/Wireless	This Laboratory	
;Ecad::GFP, Sqh-Sqh::mCh;	This Laboratory	
;Ecad::GFP, Sqh-Sqh::mCh;Sqh-p114/Wireless	This Laboratory	
y1 sc v1; UAS-p114/Wireless shRNA;	Bloomington Drosophila stock center	41579
;{mata4-GAL-VP16}/Cyo;Sqh-eGFP::p114/Wireless (Nter)	This Laboratory	
;;SqhPa-p114/Wireless shRNA ^R	This Laboratory	
;;Sqh-eGFP ::p114/Wireless shRNA ^R (Nter)	This Laboratory	
;UAS-p114/Wireless shRNA;SqhPa-p114/Wireless shRNA ^R	This Laboratory	
; P{w[+mC]=mChFP-Rho1}21/Cyo; Ubi-GFP::AniRBD/ Ubi-GFP::AniRBD	This Laboratory	
;UASt-Gβ13F ^{#20} , UAS-Yellow shrna /UASt-Gβ13F ^{#20} , UAS-Yellow shrna; UASt-Gγ1 ^{#15} /UASt-Gγ1 ^{#15}	This Laboratory	
;FRTG13 Gγ1 ^{N159} /Cyo; Sqh-eGFP::p114/Wireless (Nter)	This Laboratory	
;;UASt-Gγ1#15	Gift from Fumio Matsuzaki	FBal0147909
;UASt-Gβ13F#20;	Gift from Fumio Matsuzaki	FBal0147911
;UASt-Gβ13F#20;UASt-Gγ1#15	This Laboratory	
w;FRTG13 Gγ1 ^{N159} /Cyo, ftz LacZ	Gift from Fumio Matsuzaki	FBal0191699
;FRTG13 Gγ1 ^{N159} / Cyo; Ubi-GFP::AniRBD/TM6	This Laboratory	
P{w[+mW.hs]}=FRT(w[hs]))G13 P{w[+mC]}=ovoD1-18}2R/Dp(?;2)bw[D], S[1] wg[Sp-1] Ms(2)M[1] bw[D]/CyO	Bloomington Drosophila stock center	2125

ovo[D2] v[24] P{w[+mW.hs]=FRT(w[hs])}9-2/C(1)DX, y[1] f[1]/Y	Bloomington Drosophila stock center	1843
;UAS-Cta shRNA ;RhoGEF2-GFP::RhoGEF2 (vk33)	This Laboratory	
{mata4-GAL-VP16};RhoGEF2-GFP::RhoGEF2 (vk33)	This Laboratory	
w;{mata4-GAL-VP16},Sqh-Sqh::mCh,Ecad::GFP;15-Gal4	This Laboratory	
w;{mata4-GAL-VP16},Sqh-Sqh::mCh,Ecad::GFP	This Laboratory	
y1 sc v1;UAS-RhoGEF2 shRNA	Bloomington Drosophila stock center	34643
;UAS-Wireless shRNA;UAS-RhoGEF2 shRNA	This Laboratory	
;{mata4-GAL-VP16},Sqh-GFP::utABD,Sqh-Sqh::mKate;	This Laboratory	
;{mata4-GAL-VP16};Ubi-GFP::AniRBD/TM6	This Laboratory	
;;UASt-Cta ^{Q303L} /TM3	Gift from Naoyuki Fuse	FBal0290962
hsflp22; FRTG13 RhoGEF2 ^{I(2)04291} /Cyo;	This laboratory	
;RhoGEF2 ^{I(2)04291} /Cyo;	Bloomington Drosophila stock center	11369
w[*]; P{w[+mC]=mChFP-Rho1}21/P{w[+mC]=mChFP-Rho1}21;	Bloomington Drosophila stock center	52281
;;UASp-GAP43::mCherry, nanos-Gal4/TM6Tb	Gift from Manos Mavrakis	
;Ubi-GFP::AniRBD/Cyo;Sqh-Sqh::mCh	This Laboratory	
y1 sc v1; UAS-Yellow shRNA /CyO	Bloomington Drosophila stock center	64527
;UASt-G β 13F ^{#20} , UAS-Wireless shRNA /UASt-G β 13F ^{#20} , UAS-Wireless shRNA ; UASt-G γ 1 ^{#15} /UASt-G γ 1 ^{#15}	This Laboratory	
; ; endo- α -Catenin::YFP, sqh-sqh::mCherry	This Laboratory	
w[1118].; P{y[+t7.7] w[+mC]=hs-FLPD5}	Bloomington Drosophila stock center	55813
y1 v1;UAS-Cta shRNA;	Bloomington Drosophila stock center	51848
w;SP/Cyo;UASp-RFP-RhoGEF2[wt]/TM3, Sb hb-lacZ{ry+}	Gift from Jörg Großhans	
(y),w ; 67-Gal4, UAS-EB1::GFP/CyO, ftz-lacZ	Gift from Damian Brunner	
;UASt-G β 13F ^{#20} , UAS-yellow shRNA /UASt-G β 13F ^{#20} , UAS-yellow shRNA ; UASt-G γ 1 ^{#15} /UASt-G γ 1 ^{#15}	This Laboratory	

1495
1496

Supplementary table 2. Fly crosses performed in this study

1497
1498

F1 progeny (embryos) were analyzed for following crosses:

1499
1500

Fig.1 (a)
; Ubi-GFP::AniRBD/Cyo ; Sqh-Sqh::mCh/ Sqh-Sqh::mCh (Females) X ; Ubi-GFP::AniRBD/Cyo ; Sqh-Sqh::mCh/ Sqh-Sqh::mCh (Males)

1501
1502

Fig.1 (b-d)
;{mata4-GAL-VP16}/+;Ubi-GFP::AniRBD/+ (Females) X y[*] w[67c23] (Males)
;{mata4-GAL-VP16}/+;Ubi-GFP::AniRBD/UAS-RhoGEF2 shRNA (Females) X y1 sc v1;UAS-RhoGEF2 shRNA (Males)

1503
1504

Fig.1 (e)
; endo- α -Catenin::YFP, Sqh-sqh::mCherry/+ (Females) X y[*] w[67c23] (Males)
y w hsflp / +;FRTG13 ovo^D/ FRTG13 RhoGEF2^{l(2)04291}; endo- α -Catenin::YFP, Sqh-sqh::mCherry/+ (Females) X y w hsflp / FRTG13 RhoGEF2^{l(2)04291}/Cyo,Twist-Gal4,UAS-GFP;+/+ (Males)

1505
1506

Fig.2 (a)
;Sqh-Sqh::mCh/ Sqh-Sqh::mCh;RhoGEF2-GFP::RhoGEF2-RhoGEF2-GFP::RhoGEF2 (Females) X
;Sqh-Sqh::mCh/ Sqh-Sqh::mCh;RhoGEF2-GFP::RhoGEF2-RhoGEF2-GFP::RhoGEF2 (Males)

1507
1508

Fig.2 (b)
;{mata4-GAL-VP16}, UAS-EB1::GFP/Cyo; UASp-RhoGEF2 ::RFP/+ (Females) X ;Sp/Cyo ; UASp-RhoGEF2 ::RFP/
UASp-RhoGEF2 ::RFP (Males)

1509
1510

Fig.2 (c-g)
;{mata4-GAL-VP16}/{mata4-GAL-VP16};RhoGEF2-GFP::RhoGEF2-RhoGEF2-GFP::RhoGEF2 (Females) X y[*]
w[67c23] (Males)

1511
1512

;{mata4-GAL-VP16}/{mata4-GAL-VP16};RhoGEF2-GFP::RhoGEF2-RhoGEF2-GFP::RhoGEF2 (Females) X ;;UAS-
Cta^{Q303L}/TM3 (Males)

1513
1514

;{mata4-GAL-VP16}/UAS-Cta shRNA ;RhoGEF2-GFP::RhoGEF2-RhoGEF2-GFP::RhoGEF2 (Females) X ;UAS-Cta
shRNA/ UAS-Cta shRNA;RhoGEF2-GFP::RhoGEF2-RhoGEF2-GFP::RhoGEF2 (Males)

1515
1516

Fig.2 (h)
;{mata4-GAL-VP16}, UAS-EB1::GFP/Cyo (Females) X y[*] w[67c23] (Males)

1517
1518

;{mata4-GAL-VP16}, UAS-EB1::GFP/Cyo (Females) X ;;UAS- Cta^{Q303L}/Tm3 (Males)

1519
1520

Fig.3 (a,b)
;{mata4-GAL-VP16}/+; (Females) X y[*] w[67c23] (Males)

1521
1522

;{mata4-GAL-VP16}/UAS-Wireless shRNA; (Females) X y1 sc v1; UAS-Wireless shRNA; (Males)

1523
1524

Fig.3 (c,d)
;{mata4-GAL-VP16},Sqh-GFP::utABD,Sqh-Sqh::mKate/+; (Females) X y[*] w[67c23] (Males)

1525
1526

;{mata4-GAL-VP16},Sqh-GFP::utABD,Sqh-Sqh::mKate/ UAS-Wireless shRNA; (Females) X y1 sc v1; UAS-Wireless
shRNA; (Males)

1527
1528

Fig.3 (e)
w;{mata4-GAL-VP16}/+; (Females) X y[*] w[67c23] (Males)

1529
1530

w;{mata4-GAL-VP16}/ UAS-Wireless shRNA; (Females) X y1 sc v1; UAS-Wireless shRNA/UAS-Wireless shRNA;
(Males)

1531
1532

w; ;{mata4-GAL-VP16}/ UAS-Wireless shRNA; Sqh-Wireless shRNA R/+ (Females) X y1 sc v1; UAS-Wireless
shRNA/UAS-Wireless shRNA; (Males)

1533
1534

Fig.4 (a-c)
;{mata4-GAL-VP16}/+;Ubi-GFP::AniRBD/+ (Females) X y[*] w[67c23] (Males)

1535
1536

;{mata4-GAL-VP16}/ UAS-Wireless shRNA;Ubi-GFP::AniRBD/+ (Females) X y1 sc v1; UAS-Wireless shRNA/ UAS-
Wireless shRNA; (Males)

1537
1538

Fig.4 (d-f), Fig.S3 (a-e)
;{mata4-GAL-VP16}, Sqh-Sqh::mCh,Ecad::GFP/+ (Females) X y[*] w[67c23] (Males)

1539
1540

;{mata4-GAL-VP16}, Sqh-Sqh::mCh,Ecad::GFP/UAS-Wireless shRNA (Females) X y1 sc v1; UAS-Wireless shRNA/UAS-
Wireless shRNA; (Males)

1541
1542

Fig.4 (g-k)
;Ecad::GFP, Sqh-Sqh::mCh/ Ecad::GFP, Sqh-Sqh::mCh; (Females) X ;Ecad::GFP, Sqh-Sqh::mCh/ Ecad::GFP, Sqh-
Sqh::mCh; (Males)

1561 ;Ecad::GFP, Sqh-Sqh::mCh/ Ecad::GFP, Sqh-Sqh::mCh; Sqh-Wireless / Sqh-Wireless (Females) X ;Ecad::GFP, Sqh-
1562 Sqh::mCh/ Ecad::GFP, Sqh-Sqh::mCh; Sqh-Wireless / Sqh-Wireless (Males)
1563
1564 **Fig.5 (a-f)**
1565 ;{mata4-GAL-VP16}/+; Ubi-GFP::AniRBD/+ (Females) X y[*] w[67c23] (Males)
1566 y w hsflp / +; FRTG13 ovo^D/ FRTG13 G γ 1^{N159}; Ubi-GFP::AniRBD/+ (Females) X w; FRTG13 G γ 1N159/Cyo, ftz LacZ
1567 (Males)
1568 ;{mata4-GAL-VP16}/UAST-G β 13F^{#20}; Ubi-GFP::AniRBD/UAST-G γ 1^{#15} (Females) X ;UAST-G β 13F^{#20}/ UAST-
1569 G β 13F^{#20}; UAST-G γ 1^{#15}/ UAST-G γ 1^{#15} (Males)
1570
1571 **Fig.5 (g-i)**
1572 w; {mata4-GAL-VP16}, Sqh-Sqh::mCh, Ecad::GFP/+; (Females) X y[*] w[67c23] (Males)
1573 w; {mata4-GAL-VP16}, Sqh-Sqh::mCh, Ecad::GFP/ UAST-G β 13F^{#20}+/ UAST-G γ 1^{#15} (Females) X ;UAST-G β 13F^{#20}/ UAST-
1574 G β 13F^{#20}; UAST-G γ 1^{#15}/ UAST-G γ 1^{#15} (Males)
1575
1576 **Fig.6 (a-c)**
1577 w; {mata4-GAL-VP16}, Sqh-Sqh::mCh, Ecad::GFP/+; 15-Gal4/+ (Females) X y[*] w[67c23] (Males)
1578 w; {mata4-GAL-VP16}, Sqh-Sqh::mCh, Ecad::GFP/ UAST-G β 13F^{#20}, UAS-Yellow shRNA; 15-Gal4/ UAST-G γ 1^{#15} (Females)
1579 X ;UAST-G β 13F^{#20}, UAS-Yellow shRNA /UAST-G β 13F^{#20}, UAS-Yellow shRNA; UAST-G γ 1^{#15}/UAST-G γ 1^{#15} (Males)
1580 w; {mata4-GAL-VP16}, Sqh-Sqh::mCh, Ecad::GFP/ UAST-G β 13F^{#20}, UAS-Wireless shRNA; 15-Gal4/ UAST-G γ 1^{#15} (Females)
1581 X ;UAST-G β 13F^{#20}, UAS-Wireless shRNA /UAST-G β 13F^{#20}, UAS-Wireless shRNA; UAST-G γ 1^{#15}/UAST-G γ 1^{#15} (Males)
1582
1583
1584 **Fig.7 (a)**
1585 w; Sqh-Sqh::mCh/Sqh-Sqh::mCh; Sqh-eGFP::Wireless (Nter)/ Sqh-eGFP::Wireless (Nter) (Females) X w; Sqh-
1586 Sqh::mCh/Sqh-Sqh::mCh; Sqh-eGFP::Wireless (Nter)/ Sqh-eGFP::Wireless (Nter) (Males)
1587
1588 **Fig.7 (b), Fig.S5 (b, c)**
1589 ;; UASp-GAP43::mCherry, nanos-Gal4/Sqh-eGFP::Wireless (Nter) (Females) X ;; Sqh-eGFP::WRL (Nter)/ Sqh-eGFP::WRL
1590 (Nter) (Males)
1591
1592 **Fig.7 (d-g), Fig.S6 f**
1593 ;; Sqh-eGFP::Wireless (Nter)/+ (Females) X ;; Sqh-eGFP::Wireless (Nter)/ Sqh-eGFP::Wireless (Nter) (Males)
1594 y w hsflp / +; FRTG13 ovo^D/ FRTG13 G γ 1^{N159}; Sqh-eGFP::Wireless (Nter) /+ (Females) X ;FRTG13 G γ 1N159 /Cyo; Sqh-
1595 eGFP::Wireless (Nter)/ Sqh-eGFP::Wireless (Nter) (Males)
1596 w ;UAST-G β 13F^{#20}+/ UAST-G γ 1^{#15}/ Sqh-eGFP::Wireless (Females) X ;UAST-G β 13F^{#20}/ UAST-G β 13F^{#20}; UAST-G γ 1^{#15}/
1597 UAST-G γ 1^{#15} (Males)
1598
1599 **Fig.S1 (a-c)**
1600 w[*]; P{w[+mC]=mChFP-Rho1}21+; Ubi-GFP::AniRBD/+ (Females) X y[*] w[67c23] (Males)
1601
1602 **Fig.S2 (a,b)**
1603 y[*] w[67c23] (Females) X y[*] w[67c23] (Males)
1604
1605 **Fig.S2 (c,d)**
1606 ;Ecad::GFP, Sqh-Sqh::mCh/Ecad::GFP, Sqh-Sqh::mCh; (Females) X ;Ecad::GFP, Sqh-Sqh::mCh/Ecad::GFP, Sqh-
1607 Sqh::mCh; (Males)
1608
1609 **Fig.S2 (e-g)**
1610 ;{mata4-GAL-VP16}; Ubi-GFP::AniRBD/TM6 (Females) X y[*] w[67c23] (Males)
1611
1612 **Fig.S4 (a-c)**
1613 ;{mata4-GAL-VP16}/+; Ubi-GFP::AniRBD/+ (Females) X y[*] w[67c23] (Males)
1614 ;{mata4-GAL-VP16}/ UAS-Wireless shRNA ; Ubi-GFP::AniRBD/UAS-RhoGEF2 shRNA (Females) X ;UAS-Wireless
1615 shRNA/ UAS-Wireless shRNA; UAS-RhoGEF2 shRNA/ UAS-RhoGEF2 shRNA (Males)
1616
1617 **Fig.S4 (d-f)**
1618 w; {mata4-GAL-VP16}, Sqh-Sqh::mCh, Ecad::GFP/+; (Females) X y[*] w[67c23] (Males)
1619 w; {mata4-GAL-VP16}, Sqh-Sqh::mCh, Ecad::GFP/ UAS-Wireless shRNA; UAS-RhoGEF2 shRNA/+ (Females) X ;UAS-
1620 Wireless shRNA/ UAS-Wireless shRNA; UAS-RhoGEF2 shRNA/ UAS-RhoGEF2 shRNA (Males)
1621
1622 **Fig.S5 (a)**
1623 w; Sqh-eGFP::Wireless (Nter)/ Sqh-eGFP::Wireless (Nter) (Females) X w; Sqh-eGFP::Wireless (Nter)/ Sqh-
1624 eGFP::Wireless (Nter) (Males)
1625 w; Sqh-Wireless::GFP (Cter)/ Sqh-Wireless::GFP (Cter) (Females) X w; Sqh-Wireless::GFP (Cter) Sqh-Wireless::GFP
1626 (Cter) (Males)
1627

1628
1629
1630
1631
1632
1633
1634
1635
1636