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The progression of cancer in the breast involves multiple reciprocal interactions
between malignantly transformed epithelia, surrounding untransformed but affected
stromal cells, and the extracellular matrix (ECM) that is remodelled during the
process. A quantitative understanding of the relative contribution of such interactions
to phenotypes associated with cancer cells can be arrived at through the
construction of increasingly complex experimental and computational models.
Herein, we introduce a multiscale 3D organo-and patho-typic model that
approximates, to an unprecedented extent, the histopathological complexity of a
tumor disseminating into its surrounding stromal milieu via both bulk and solitary
motility dynamics. End-point and time-lapse microscopic observations of this model
allow us to study the earliest steps of cancer invasion as well as the dynamical
interactions between the epithelial and stromal compartments. We then construct an
agent-based Cellular Potts model that incorporates constituents of the experimental
model, as well as places them in similar spatial arrangements. The computational
model, which comprises adhesion between cancer cells and the matrices, cell
proliferation and apoptosis, and matrix remodeling through reaction-diffusion-based
morphogen dynamics, is first trained to phenocopy controls run with the experimental
model, wherein one or the other matrices have been removed. The trained
computational model successfully predicts phenotypes of the experimental
counterparts that are subjected to pharmacological treatments (inhibition of N-linked
glycosylation and matrix metalloproteinase activity) and scaffold modulation
(alteration of collagen density). Our results suggest that specific permissive regimes
of cell-cell and cell-matrix adhesions operating in the context of a reaction-diffusion-
regulated ECM dynamics, promote multiscale invasion of breast cancer cells and
determine the extent to which they migrate through their surrounding stroma.
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Introduction

Within physiologically functioning tissues and organs, cells constantly interact with
their surrounding extracellular matrix (ECM). This interaction is complex and is
essential for organ development and homeostasis (Bhat and Bissell, 2014; Bhat and
Pally, 2017). Aberrant alterations that affect cell-ECM interactions aid in the
progression of pathologies like cancer (Nelson and Bissell, 2005; Simi et al., 2018).
In normal mammary glands and breasts, luminal epithelial cells are surrounded by a
layer of myoepithelial cells that secrete basement membrane (BM): a sheet-like ECM
rich in laminin and non-fibrillar collagens. Such mammary epithelial architectures are
surrounded by stromal ECM that is rich in fibrillar matrix proteins such as collagens
and connective tissue cells such as fibroblasts, macrophages, adipocytes. In breast
cancer, this architecture is lost: the lumen is filled with proliferating apolar
transformed epithelia, myoepithelia are absent and the BM is ultimately breached by
invading cells (Polyak and Kalluri, 2010). The stroma shows degradation of ECM,
fibrosis, leucocytic infiltration, neo-angiogenesis and lymphangiogenesis (Dumont et
al., 2013; Orimo et al., 2005; Wiseman and Werb, 2002). Malignant transformation
results in a recalibration of existent interactions and the origination of novel ones
between constituents of the tumor microenvironment. Studying and quantifying the
contribution of a given interaction to the progression phenotype of cancer
spatiotemporally is a challenge, as our histo- and bio-chemical analyses are limited
to distinct stages of breast cancer from various patients. Three-dimensional (3D)
organotypic and pathotypic cultures of cancer cell lines and primary patient cells
have helped extend our understanding of the molecular mechanisms underlying
cancer (Torras et al., 2018; Weinhart et al., 2019). 3D cultures are approximations of
the histopathological complexity of in vivo tumor microenvironments; most current
models involve embedding cancer epithelia within a natural or tunable synthetic
matrix scaffolds(Balachander et al., 2015; Bhat et al., 2016; Furuta et al., 2018)
(more complicated versions comprise efforts to mimic the perivascular and
endothelial metastatic niches (Carlson et al., 2019; Ghajar et al., 2013) as well as
efforts to engineer platforms consisting of multiple organs-on-a-chip reviewed by
(Zhao et al., 2019)).

Non-cancerous and malignant breast cell lines, when cultured in reconstituted
basement membrane matrix (rBM), cluster into discrete morphologies that have been
described as ‘round’, ‘mass’, ‘grape’ and ‘stellate’ in increasing order of
aggressiveness (Kenny et al., 2007). The round phenotype is characteristic of
untransformed cells that form growth-arrested acinar-like multicellular clusters with
basoapical polarity, and a lumen. Mass and grape phenotypes are characteristic of
malignantly transformed epithelia which mimic carcinoma-in-situ or indolently
progressive cancers with cells that have completely lost their polarity. The stellate
phenotype is typical of highly metastatic cancer cells that actively migrate, although
in a collective manner, into and through rBM matrices. Using such 3D assays of cells
embedded in rBM, it is possible to study the role of specific expressed proteins in
regulating the adhesion between cancer cells, or with ECM proteins such as
laminins. However, such culture frameworks are inadequate for investigations into
the dynamics of spatial transition of cells between two matrix microenvironments that
have distinct rheological properties, such as the non-fibrillar BM-like
microenvironment and its fibrillar collagen-like types (Fig S1A and B shows scanning
electron micrographs of non-fibrillar rBM and fibrillar Type 1 collagen matrices). In
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addition, it is unfeasible to design experiments to observe the phenotypic
consequences of an exhaustive exploration of interaction space within a
multicomponent biological system.

The second limitation can especially be mitigated by adopting a computational
approach and simulating the progression of cancer-like phenotypes for a diverse
range of interactive parameter combinations. Agent-based models, particularly the
Cellular Potts model (CPM) have been shown to be useful for such efforts (Swat et
al., 2012; Zhang et al., 2011). For example, the deployment of proteolytic and non-
proteolytic mode of cancer migration through collagenous scaffolds, or between
solitary and collective cell invasion has been well-elucidated using in silico
approaches (Kumar et al., 2016). However, to the best of our knowledge, no
theoretical model has explicitly explored the transitioning dynamics, and the
consequences thereof, of cancer cells moving between dissimilar matrix-
microenvironments. Moreover, while the dynamical role of individual mesoscale
physicochemical processes have been well studied in cancer and development
(Grant et al., 2004; Pantziarka, 2016; Zhang et al., 2011), whether their combined
deployment constrains or widens the phenotypic reaction norm: the spectrum of
discrete phenotypes achievable by cancer cells, has not been investigated using
such a computational effort.

In this paper, we present a unified experimental-computational framework to
investigate the interactions between cancer epithelia and spatially
compartmentalized extracellular matrix microenvironments. The experimental model
allows us to break down the phenomenon of cancer cell migration into cellular
interactions with the BM, their remodelling of the same, their transition from BM to
Type 1 collagen, and the subsequent remodelling of, and migration within, Type 1
collagen. We closely train the computational agent-based model on experimental
results. The computational model successfully predicts results of the cancer epithelia
upon pharmacological perturbations or scaffold modification. The trained theoretical
model also predicts that emergent interplay between reaction-diffusion and cell-
matrix adhesion can explain the diversity in the extent and mode of invasion of
breast cancer cells.

Materials and Methods:

Cell culture:

MDA-MB-231 cells were maintained in DMEM:F12 (1:1) (HiMedia, AT140)
supplemented with 10% fetal bovine serum (Gibco, 10270). MCF-7 cells were grown
in DMEM (HiMedia, ATO07F) supplemented with 10% fetal bovine serum. HMLE
cells were a kind gift from Dr Robert Weinberg, Harvard Medical School and Dr
Annapoorni Rangarajan, Indian Institute of Science and were cultured in DMEM:F12
(1:1) supplemented with 1% fetal bovine serum, 0.5 pg/mL Hydrocortisone (Sigma,
HO0888), 10 upg/mL Insulin (Sigma, 16634) and 10 ng/mL human recombinant
epidermal growth factor (HiMedia, TC228 ). All the cells were cultured in a 37°C
humidified incubator with 5% carbon dioxide.

Preparation of cancer cell clusters:
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Normal/cancer cells were trypsinized using 1:5 diluted 0.25% Trypsin & 0.02% EDTA
(HiMedia, TCLOO7). 30,000 cells per 200 uL of defined medium (Blaschke et al.,
1994) supplemented with 4% rBM (Corning, 354230) were cultured on 3%
polyHEMA (Sigma, P3932) coated 96 well plate for 48 hours in a 37°C humidified
incubator with 5% carbon dioxide.

3D invasion assay:

rBM-coated clusters were collected into 1.5 mL tubes, centrifuged briefly and
supernatant is removed. Acid-extracted rat tail collagen (Gibco, A1048301) was
neutralized on ice in the presence of 10X DMEM with 0.1N NaOH such that the final
concentration of the collagen is 1 mg/mL. Pellet of clusters was resuspended in 50
uL of neutralized collagen and seeded in 8-well chambered cover glass (Eppendorf
0030742036) and supplemented with defined medium. 3D cultures were grown in a
37°C humidified incubator with 5% carbon dioxide.

Processing of 3D invasive clusters:

3D invasion cultures were washed with phosphate buffered saline pH 7.4 (PBS)
once after removing medium and fixed with 4% neutral buffered formaldehyde
(Merck, 1.94989.0521) for 30 minutes. 2% glycine in PBS was used to neutralize
traces of formaldehyde and blocked for one hour at room temperature with 5% BSA
(HiMedia, MB083) in PBS+ 0.1% Triton X100 (HiMedia, MB031). After blocking,
clusters were stained with 4',6-diamidino-2-phenylindole (DAPI) (Invitrogen, D1306)
and Alexa Flour 633-conjugated Phalloidin (Invitrogen, A22284) overnight at 4°C.
Next day, cultures were washed with PBS+0.1% Triton X 100 for 10 minutes each
three times.

Laser scanning confocal microscopy and time lapse imaging:

Processed clusters were imaged using laser scanning confocal microscope (Zeiss
LSM 880) with system-optimized Z intervals. Images were analysed using Zen Lite
software. Brightfield time lapse imaging was done using Olympus IX81 equipped
with stage top incubator and 5% carbon dioxide (see Video 1). Imaging was done at
10-minute interval over 24 hours. Images acquired were analysed using ImageJ
software (Schindelin et al., 2012).

Computational model:
Modelling environment:

In order to simulate a biological milieu wherein cellular growth, proliferation, invasion
and morphologies, consequences of multiple underlying processes of distinct length-
scales and time-scales can be studied, a modelling environment is required which
combines all those processes. The software package CompuCell3D (Swat et al.,
2012) fulfils this purpose. Compucell3D is based on the Cellular Potts model, also
known as Glazier-Graner-Hogeweg model that was designed to model collective
behaviour of active matter (Chen et al., 2007; Sanyal and Glazier, 2006). This is
done by calculating an energy function called Hamiltonian at each step of the
simulation. Each cell is represented by the set of all Euclidian lattice sites or pixels
sharing same cell ID. A rectangular Euclidian lattice has been used in all our
simulations. The evolution of the model happens at each Monte Carlo step (MCS)
which consists of index-copy attempts of each pixel in the cell lattice. Output of each
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MCS depends on the Hamiltonian calculation denoted by H (Figure 1B). The
Hamiltonian in our model has two contributors which are affected by different
properties of the cells and chemicals. The first contributor is the sum over all
neighbouring pairs of lattice sites i and j with associated contact energies (J)
between the pair of cells indexed at those i and j. In this term, i, j denotes index of
pixel, s denotes cell index or ID, and t denotes cell-type. The & function in this term
will ensure that only the i#j terms are calculated and also contact energies are
symmetric. The contact energy between two cells can be considered as a term,
which is inversely proportional to adhesion between those two cells. The second
contributor is a function of the volume constraint on the cell, where for cell g, Ivol(o)
denotes the inverse compressibility of the cell, v(0) is the number of pixels in the cell
(volume), and V(o) is the cell’s target volume. For each cell, this term is governed by
its growth equation. If any change in the Hamiltonian is negative at a given MCS for
any configuration with respect to its previous one [AHM="(H:1-I"H;) <" 0] then
index-copy attempts of pixels resulting in that configuration will be successful.
Otherwise, the attempt will be accepted with probability p = exp(AHLU/Tr,) . A default
dynamical algorithm known as modified Metropolis dynamics with Boltzmann
acceptance function is used at each MCS to move the system towards a low-energy
configuration as MCS increases. The term T, can be considered as temperature or
magnitude of effective membrane fluctuations. In the model, the membrane
fluctuation is kept high for cancer cells compared with matrix elements in order to
strike a distinction between living and dead elements. Random movements of pixels
leading to different transition probabilities at each MCS mimics the stochasticity
present in biological systems.

Model components:

Cell & matrix orientation: Using a 2-dimensional computational model, several
aspects of cancer invasiveness and tumor-associated 3-dimensional phenomena
have been studied where the property of spherical symmetry of tumor morphologies
was used to obtain the minimalistic setup(Jiao and Torquato, 2011). Our 2D
simulations mimic experiments in which biological cells may require 3D space to
allow certain interactions but in the computational model, only the properties
associated with cells will play a role in determining the output irrespective of 2D or
3D. 2D simulations are computationally more efficient as it carries out exponentially
less number of calculations for the whole system. Our model space is 100 * 100 *1
pixel in size where a group of cancer cells is initially located at the centre grid
surrounded by ECM. Any element of the model that is required to actively participate
through MCS pixel-copy attempts must be assigned a cell-type, as instructed, the
laminin (‘BM’) and Type 1 Collagen (‘C1’) are assigned different cell-types along with
cancer cells (‘CELL’). In the setup, clusters of cancer cells are surrounded by blob-
like 2-layer cells of BM. The BM, in turn is surrounded by fibrillar collagen. To mimic
in-vivo ECM architecture, BM is modelled as dense adhesive blob-like ‘cells’ similar
to the lamina densa of basal lamina, whereas C1 is modelled as the interconnected
fibres similar to Type 1 collagen. All components of the system have depth of 1 pixel
in z direction so there is no overlapping of objects. A cell cannot cross another cell if
it does not degrade it and without degradation the cell will be trapped in a zone due
to steric hindrance by its surrounding environment or find ways to squeeze through
small spaces in its vicinity which become accessible by random movement of that
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cell. In an initial configuration, cancer cells start as a rectangular objects of 16 unit
volume (4*4*1pixels) spanning 14*14*1 unit volume at the centre (x,y= 43:57) of the
simulation grid without any inter-cellular space. Tightly packed BM cells of 9 unit
volume (3*3*1pixels) is then created around the cancer mass (x,y=37:63) having 2
layers of laminin cells separating it from C1. C1 is formulated around the cancer and
BM structure throughout the whole grid with initial configuration of 4 unit volume cells
(2*2*1pixels) with 2 pixel gaps in between them. In order to make the C1 fibrillar, a
plugin is applied on the cells which elongate them in axis, random with respect to
each other at 0.8 unit volume increment at each MCS till 5. The length-scale of
components of ECM (BM and C1) is kept relatively smaller than cancer cells (Das et
al., 2017). The lattices with no assigned cell-type or in other words the gaps or the
free spaces are assigned cell-type ‘medium’ as a default of the Compucell3D syntax.

Contact energies (Differential Adhesion):

Compucell3D requires setting interactions between all cell-types in terms of contact
energies. Higher contact energy values between two cell-types signifies lower
adhesion or higher mechanical hindrance between them. This is denoted by the term
J in the Hamiltonian (H). the contact energies are set in our simulation by
gualitatively considering interactions between pairs of components of the
experimental setup in terms of adhesion or repulsion. After running simulations with
a range of values of each contact energy, from all the resultant combinations, an
appropriate set of contact energies are taken. The contact energies that were
established for model simulations included cell-cell, cell-BM, cell-C1, cell-medium.
Values of these contact energies can be found in Table 1. The cell-medium contact
energy can be thought in terms of cell-cell adhesion of cancer with proportional
correlation. Higher cancer cell-cell adhesion will give higher cell-medium contact
energy value. Across simulations, contact energies were established qualitatively
motivated by transcriptomic findings including in, but not limited to (Kenny et al.,
2007). For example, to mimic the decreased expression of E-cadherin in highly
invasive cells, cell-cell contact energy was increased and cell-medium contact
energy reduced

MMP-TIMP reaction diffusion system:

Auxiliary equations in Compucell 3D are used to model chemical fields. These fields
store the concentration information of a certain chemical at every location in the
simulation grid. Two chemical fields, A and | are created which are governed by
partial differential equations (PDE) based on reaction-diffusion dynamics of an
activator and its inhibitor. These fields are incorporated with GGH algorithm to allow
interaction between other simulation components and the fields. The governing

equations for these two fields are:
24 = D,V*[4] + a— 8,[a] 1)
Ze= DIV + b =811 (2)
b=a=K-(c*[I]—d=*[A] (3)

Where, [A], [I] : concentration values for fields A and I.
D, , D, : diffusion constants of A and |

6, ,6; . degradation rates of A and |

a, b : secretion rate of A and |

t=MCS
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Default parameterizations, D,= 0.01, D,= 0.8, §,=6,=0.003 , K=2.0,c=4.0, d=
2.0

Here A is considered as the activated form of matrix metalloproteinases. Its
activation (or secretion of the activated form i.e. ‘a’) is assumed to be dependent on
its inhibitors (inversely) and on its own concentration (autocatalysis) in the form of
equation-3. There are numerous variants of MMPs and TIMPs present in biological
tissues (Brew and Nagase, 2010). Their production rates and inter-dependencies are
still not known entirely for cancer cells so, a generalised form of MMP-TIMP
interaction (A-l interaction of the model) is assumed in the light of reaction-diffusion
dynamics (equation 1 & 2). The diffusion rate of MMP is set in the same range that is
used by previous literature (Kumar et al., 2016) [that model has

D= 1.0 x["10°r1em?s™* = 0.025 pixel® s, as Imm=500pixels]. The difference in
diffusion rates between the models (0.01 instead of 0.025) is due to different scaling
of MCS with respect to time (s). All other parameters have been set based on
previous literature and by optimisation of the model. The diffusion rate of | is set
higher than A to generate localised ‘activator’ field and de-localised ‘inhibitor’ filed of
reaction-diffusion system.

As all proteins have a lifetime, the degradation rate or decay constant associated
with A and | in the model limits the spread of fields. (if there is no decay rate, initially
secreted fields will spread the whole grid of the simulation as MCS increases without
any further secretion). The Decay constant is assumed to be similar for A and | due
to paucity of rigorous experimental analyses. In the model, A and | fields are
secreted at the boundaries of all ‘CELL’ which come in contact with ECM. To
initialise the A-I axis, random value of ‘a’ (range is from 0 to 4) is assigned to each
cell which is in contact with ECM at MCS<5. CC3D package has forward Euler
method-based PDE solver which was used to solve the PDE equations (Swat et al.,
2012).

Matrix degradation and regeneration:

Degradation of matrix is assumed to be dependent on the ratio of [A] over [I]. For
each MCS, ECM cells access the concentration values of A and | fields at each of its
pixels and depending on the ratio, those pixels are either degraded or remain
unchanged. This degradation is threshold-based. Only pixels with the ratio [A]/[I] >
2.0, will be converted to ‘lysed’ form which is either C_Lysed (C1) or L_Lysed

(BM) cell-type. The degraded matrix is assigned different cell-types by assuming
different properties of degraded form of BM and C1 as the non-degraded BM and C1
also have different properties. As a cost of degradation, [A] and [I] are reduced at
maximum 1.5 unit/MCS in pixels belonging to the ‘lysed’ cell-types. Matrix
regeneration is incorporated into the model by conversion of C_Lysed and L_Lysed
into C1 (given that cancer cells secrete predominantly fibrillar collagen-rich matrices)
after 20 MCS from the degradation event associated with that ‘lysed’ pixel (Socovich
and Naba, 2018; Yuzhalin et al., 2018). The regeneration of matrix is essential to
eliminate unnecessary free spaces formed as an artefact of matrix degradation
which takes the computational model closer to its experimental counterpart. All the
‘lysed’ cell-types are subjected to 0.1 volume decrease at each MCS to mimic
dissipation of degraded matrix materials in-vivo.

Cellular growth and proliferation:
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Growth rate of ‘CELL’ is assumed be a linear combination of nutrient availability at
cell boundaries and degradation of matrix. The growth equation is given by,

av
E=g*p+[GF]*q
Where V = volume of ‘CELL’

g = measure of nutrient availability

[GF] = concentration of growth factor (GF) at centre of mass of ‘CELL’

p.q = constants

Two quantities, the common surface area of a cell with its neighbouring cells (k) and
the total cell surface area (s) is accessed to calculate g in this equation as g=(s-k)/40
. The denominator in calculation of g is due to 2-D nature of the simulation as a cell
can be surrounded by other cells only in xy plane and not in z axis. The scaling of
that extra cell surface area without any neighbouring cells in z axis is provided by the
denominator. Another contributor of the growth function is [GF] which mimics the
ECM-degradation dependence of growth and proliferation (Olivares et al., 2017). The
‘lysed’ cell-types are programmed to secrete GF at each of its pixel location where
the diffusion constant is kept low (0.02) to localise this growth signal to areas of
matrix degradation. p (=1/3) and q (=1/21) constant values are set according to the
assumed weightage of the two variables in growth equation.

Cell division is incorporated into the cancer cells by a CC3D steppable called
‘MitosisSteppable’ with base function ‘MitosisSteppableBase’. If any ‘CELL’ reaches
a threshold volume of 30 units then those cells will be divided in random orientation.
The resultant two cells will have volumes half of its predecessor with all other
properties kept same as the parent cell. In this model, growth rate is directly
correlated to proliferation as it determines the volume of the cell to reach threshold
for cell division.

Quantification: Invasion of morphology

The quantification for the spread or invasiveness of morphologies has been done in
Matlab using minimal enclosing circle algorithm. Screenshots captured at different
MCS from a simulation are used to track invasion of that model. A program was
written where for a screenshot, the image is binarized with respect to ‘CELL’ which is
represented by red colour. From that binarized image, centroids of all cells are
accessed by the function ‘regionprops’. In order to find the smallest possible
enclosing circle, two bits of information are required which are position of centre and
radius of a circle which will encompass all the centroid positions. An arbitrary centre
for the circle can be selected from which distances are measured to all the centroids.
In the smallest possible enclosing circle, centre to centroid distance will be maximum
for the furthest centroid that it needs to cover, and this distance will be the radius of
the circle. The function ‘fminsearch’ is used with input of assumed centers and radii
(maximum of center-to-centroid distance) which yields a center with minimized
radius. Circle formed with this center and radius from ‘fminsearch’ will enclose all the
centroids and will be the smallest possible circle to do so. All simulations have
‘CELL’ at the center of the grid as the initial configuration, so the centre of smallest
enclosing circle can be assumed at the center of the that grid to start with, which is
also the centre of screenshot; this optimises the programme. Running this program
will yield smallest possible enclosing circle for screenshots at each specified MCS
and the area of this circle is considered as the measure of invasiveness of that
phenotype (Fig 1).
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Statistics:

All the biological experiments were repeated three times independently. All the
simulations were repeated at least 10 times and the data is represented as
mean+S.E.M. Parametric students’ t-test was performed with Welch’s correction to
estimate statistical significance.
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Results

Breast cancer cells invade from rBM-like matrix to collagen-rich matrix
concurrently across multiple spatial scales

In order to mimic the invasion of breast cancer cells in vivo, we designed a culture
model, wherein MDA-MB-231 cells were allowed to form rBM-coated suspended
clusters (See Materials and Methods; Fig S2 showing rBM is spatially limited to the
surface of clusters). When such clusters were embedded in Type 1 collagen (Fig
2Ai) and the cultures were imaged in time lapse, the cancer cells rapidly migrated
past the rBM barrier into collagen (Fig 2Aii). We observed spatially distinct but
temporally concurrent modes of invasion, ranging from bulk motion where the cells
moved centrifugally in an expansive and collective manner (Fig 2Aii bottom left
inset), to mesenchymal migration of solitary cells with a slender cytoplasmic front
and a nucleus-containing lagging end (Fig 2Aii bottom right inset). We here forward
refer to this simultaneous deployment of distinct motility modes as multiscale
invasion. Studies concerned with cancer cell migration investigate mechanisms
underlying transitions between the modes; however the studies also note that these
modes temporally coexist within histopathological sections of human tumors (Friedl
and Alexander, 2011; Friedl et al., 2012; Krakhmal et al., 2015). Our experimental
model successfully recapitulates the multimodal and multiscale 3D cancer cell
invasion.

We then sought to codify the minimal set of interactive cellular and ECM behaviors
that could give rise such multiscale migratory behaviors of invading cancer cells.
Using CC3D, we constructed a computational model, wherein for constrained set of
values of cell-cell and -BM-like ECM adhesion, as well as upon invoking a reaction-
diffusion (R-D) based remodelling kinetics of ECM, we observed multiscale invasion
of cancer epithelia from a non-fibrillar to fibrillar in silico ECM microenvironment (Fig
2Bi represents the in silico cluster at Monte Carlo Step (MCS) = 10; Fig 2Bii
represents the same cluster at MCS = 440 ; emergence of expansive collective
invasion seen in Fig 2Bii bottom left inset, emergence of single cell invasion within
the same culture seen in Fig 2Bii bottom right inset; see also appropriate sections in
Materials and Methods for details of model construction). The use of an R-D-based
modulation of ECM steady state was motivated by the morphology of the invasion
phenotypes in our experimental assay, wherein invading cell populations were
spatially separated by lateral zones of inhibition. In addition, the use of R-D based
microenvironmental regulation and has strong precedence in the literature on cancer
progression (Chaplain, 1995; Gatenby and Gawlinski, 1996; Roque et al., 2018;
Zhang et al., 2018).

Nature of the ‘stromal’ ECM may determine mode of cancer cell invasion
We sought to know whether the multiscale invasion of cancer cells was a function of

the prototypical outwardly radial arrangement of cancer cells inside, a thin
intervening layer of rBM and an outer presence of Type 1 collagen. To verify if the
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initial rBM coating was required for cluster shape and integrity, MDA-MB-231 cells
were clustered in the absence of rBM. The cell clusters that formed had an irregular
shape with ill-defined contours and were inherently unstable (Fig S3A and B showing
irregular and regularly shaped clusters in the absence or presence of rBM coat,
respectively). When rBM-coated MDA-MB-231 clusters were cultured entirely in rBM,
clusters exhibited collective motility dynamics with most cells still attached to the
kernel of the cluster (control multiscale invasion shown in Fig 3Ai; rBM-exclusive
control shown in Fig 3Aii). Solitary invading cells were scarcely seen in the
periphery. On the contrary, rBM-uncoated clusters upon embedding in Type 1
collagen gels, rapidly disintegrated into a small kernel and mostly single cells that
exhibited mesenchymal single cell migration (Fig 3Aiii).

We used the phenotypic observations to further train our computational model and
chose parametric combinations for i) contact energies of cell-cell, cell-rBM and cell-
Typel collagen interactions ii) reaction-diffusion-based remodelling of ECM and iii)
proliferation and death of the cancer cells. We were able to successfully narrow
down parametric combinations for which simulations mimicking ‘only rBM’- and ‘only
collagen’ controls predicted predominantly collective and single cell migration
respectively (Fig 3Bi represents control, Fig 3Bii shows emergence of collective
invasion in an exclusive rBM-like non-fibrillar ECM environment, Fig 3Biii shows
emergence of single cell invasion in an exclusive collagen-like fibrillar ECM
environment. Since the parameter combinations were kept identical in the controls,
the divergent phenotypes suggest that the identity of the stromal ECM and its spatial
arrangement may determine the mode of outward migration of cancer epithelia.

Metalloproteinase activity and N-linked glycosylation regulate multiscale
invasion

We next sought to test our assumption that a locally auto-active regulation of ECM
remodeling is essential for multiscale invasion. Matrix metalloproteinases (MMP) with
their cognate lateral inhibitors: Tissue inhibitors of metalloproteinase (TIMP) are
putative activator-inhibitor couples, given their diffusivity and nature of interactions.
Treatment of cultures with a broad spectrum MMP inhibitor Batimastat resulted in an
abrogation in transition of cells into the stroma, although the leading cytoplasmic
head of cancer cells in the periphery of the cluster could still be visually discerned in
the surrounding collagen (Fig 4Ai represents vehicle control; Fig 4Aii represents

treatment with 10 yM Batimastat). This suggested that the transition of cancer cell

nuclei across the rBM-collagen interface is dependent on protease-dependent
remodelling of the stromal ECM. Interestingly, for amoeboid migration (which we
have not investigated in our paper, see Discussion) nuclear softening has been
proposed to be crucial for protease-independent migration (Das et al., 2019).
Decreasing the activator levels within our computational model brought about a
decrease in in silico migration of cells with sparse transitions into the fibrillar matrix
environment (Fig 4Bi represents control; Fig 4Bii represents simulation that shows
inhibition of invasion upon downregulating levels of activator A).

Second, we tested the role of cell-cell and cell-matrix interactions by treating our
cultures with an inhibitor of N-linked glycosylation: tunicamycin. Tunicamycin affects
the glycosylation and trafficking of cell surface proteins (Elbein, 1991). Molecules
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involved in cell adhesion such as cadherins and CAMs, are N-glycosylated.
Moreover, while E-cadherin expression is epigenetically silenced in invasive MDA-
MB-231 cells, N-cadherin is expressed and promotes their motility (Nieman et al.,
1999). Treatment with tunicamycin does not alter the trafficking of N-cadherin but
affects its function by interfering with its binding to catenin (Youn et al., 2006).
Tunicamycin is also known to abrogate the matrix binding functions of integrins
(Chammas et al., 1991). The effect of tunicamycin on metalloproteinases is context-
dependent (Kim et al., 2010; Lee et al.,, 2019). Treatment with tunicamycin may
increase the expression of MMPs, but due to associated ER stress and unfolded
protein response, their secretion is inhibited (Duellman et al., 2015). Treatment of
our complex experimental system with tunicamycin completely abrogated stromal
transition of cancer epithelia (Fig 4Aiii). The cytoplasmic leading-edge extensions,
likely mediated through outside-in integrin signalling, which were observed upon
MMP inhibition, were also absent upon tunicamycin exposure.

In our computational model, the phenomenological equivalent of tunicamycin
treatment would be to increase contact energies, and hence down-modulate
adhesion between cells and matrices. Additionally, secretion of MMP and TIMP was
also downregulated as part of the initial conditions for simulation. Upon doing so, we
found impaired invasion of cells into the fibrillar in silico environment compared to
control conditions (Fig 4Biii). We could also observe inhibition of invasion despite
retaining the secretion of MMPs and TIMP but only under parametric combinations
when the secretion rate of TIMPs exceeded that of MMPs (Fig S4). Our experimental
and computational results suggest that adhesive interactions and local auto-active
ECM remodelling dynamics operative within the invading milieu are necessary for
stromal migration of cancer cells and inhibiting them significantly downregulates the
latter (Fig 4Biv).

Collagen density alters multiscale invasion

We next sought to test whether the arrangement of Type 1 collagen fibers
surrounding rBM-coated clusters could regulate the nature of cancer cell migration.
rBM coated clusters of MDA-MB-231 cells were embedded within a higher density of
Type 1 collagen (2.5 mg/mL) scaffolds compared with control (1 mg/mL) (Fig 5Ai).
The transition of cancer epithelia into high-density collagen was found to be
attenuated (Fig 5Aii). Dense collagen may impede non-proteolytic migration of
cancer cells allowing movement only upon mounting a protease-based degradation
of ECM. In keeping with our experimental findings, in our computational model, we
observe that all other parameters being kept constant, crowding the fibrillar ECM
space with a higher density of collagen-like fibers decreased the migration of cells
(Fig 5Bi represents control multiscale invasion; Fig 5Bii represents simulation in high
density fibrillar ECM; Fig 5Biii shows statistically significant impairment of cellular
invasion in the computational environment).

Diversity in morphological phenotype can be explained by variation in
interplay between cell adhesion and reaction-diffusion

Our computational model, trained on controls, successfully predicted the
consequences on the phenotype of various perturbations. We asked whether it could
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also accommodate, with suitable changes in its formalism, the possibility of formation
of homeostatic non-malignant phenotypes as well as precancerous and sub-invasive
phenotypes? If so, what changes in the underlying coarse-grained physical
mechanism could be responsible for those?

We obtained a non-invasive homeostatic lumen-containing phenotype (Fig 6A
represents phenotype at MCS = 10; Fig 6B represents emergence of the phenotype
at MCS = 580) by assigning the cells within our in-silico framework, certain
properties similar to noncancerous ductal epithelial cells: basement membrane-
regulated survival of the cells. By simply implementing the rules that 1. cells that are
not anchored to the BM-like non-fibrillar ECM die (Frisch and Francis, 1994) and 2.
cells anchored to the fibrillar ECM remain quiescent (Spencer et al., 2011), we were
able to achieve growth-restricted lumen-containing acini-like structures, that
resemble the structures formed by the non-malignant cell line HMLE in 3D (Fig S2A).
In silico phenotypes similar to the precancerous carcinoma-in-situ like condition,
which comprises filled multicellular masses of cells (similar to the mass morphology
(Kenny et al., 2007)) (Figure S2B shows MCF7 cells forming similar architectures
within our 3D assay) could be observed by increasing intercellular and cell-rBM
adhesion (Fig 6C). A more sub-invasive morphology, which resembles the
precancerous phenotype, but within which cells have lost their polarity and could
give rise to indolently progressive tumors, has been referred to as ‘grape’ (Kenny et
al., 2007). We simulated outcomes resembling this phenotype upon further relaxing
the intercellular and cell-matrix adhesion (Fig 6D). It is crucial to note for simulating
both the precancerous and indolent progression phenotypes, the reaction-diffusion-
based ECM remodelling network was not deployed. Invoking the same and
decreasing intercellular and cell-rBM adhesion brought about multiscale invasion in
simulation (Fig 6E). Comparison of invasiveness between the simulations of three
cancerous morphologies (Fig 6F) reveals that multiscale migration exhibits the
highest invasiveness followed by the indolently growing cluster phenotype and in
turn by the precancerous morphological phenotype.

Finally, we asked whether a decreasing gradient of cell-cell and cell-rBM adhesion
was required for increased invasion as predicted by our simulations. Could merely
deploying the reaction-diffusion-based ECM remodelling at higher adhesion regimes
bring about greater invasion? Simulating diffusion-driven instability in ECM
degradation in the context of the precancerous adhesion parameter values resulted
in increased invasion that was exclusively collective and expansive (Fig 7A
represents multiscale invasion; Fig 7B represents exclusively collective invasion
upon simulating reaction-diffusion in the context of precancerous adhesion
parameter values), and phenocopies the 6nly rBM-like in silico morphology (see Fig
3Aii). On the other hand, simulating the same in the context of the adhesion regimes
cognate to sub-invasive clustered morphologies did result in multiscale invasion (Fig
7C). It is to be noted however that the invasion seen in Fig 7B and C was
significantly lesser than 7A but more than when in such same phenotypes and
reaction-diffusion-based ECM modulation was off (Fig 7D) Our results implicate a
threshold that lies between the precancerous and clustered adhesion regimes; the
lower the cell- and matrix- adhesion, the greater the invasion.
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Discussion

In this paper, we adopt a coarse-grained systems-theoretical approach towards the
exploration of the mechanisms of stromal invasion of breast cancer epithelia. We
designed an experimental organo-and patho-typic culture setup wherein not just the
three-dimensional behaviour of cancer cells could be studied, but their transition
from nonfibrillar (BM-like) to fibrillar (collagenous) ECM environments, as occurs in
vivo could also be investigated. Using this assay, we observe this epithelial transition
both as multicellular collectives and as single mesenchymal cells. In contrast,
embedding cells in either (but not both) rBM and collagen (as controls) resulted in
predominantly discrete collective and single cell migration respectively. Our
observations imply that the complex multi-matrix nature of the assay presented here
emulates in vivo invasive behavior to a better extent than existent single matrix
assays.

Our experimental framework led to the construction, in parallel, of a computational
model, whose parameters were trained on the phenotypic outcomes of various
experimental controls. The design of the computational model takes inspiration from
the concept of dynamical patterning modules (DPMs), autonomous heuristic agents
that connote discrete physicochemical phenomena, such as adhesion, differential
sorting, reaction-diffusion, polarity etc (Newman and Bhat, 2008, 2009). DPMs, when
deployed singly or in combination, are useful for understanding the transformation of
cellular patterns in distinct ways. DPMs has been used to investigate mechanisms of
developmental morphogenesis in plants and animals (Benitez et al.,, 2018;
Hernandez-Hernandez et al., 2012; Niklas and Newman, 2013). In addition, an DPM-
based understanding of the evolution of development provides an explanation of how
body plans of animals showed an accelerated period of origination (known as the
Cambrian explosion) followed by a relative stasis (Newman et al., 2009).

In the specific context of breast cancer invasion, using DPMs, we have been able to
treat much of the intracellular genetic repertoire and its associated dynamics
(mutation and epigenetic regulations) as a black box. Instead, we concentrate on
phenotypic traits that manifest at the spatial scales of cells and multicellular
populations. We then asked whether specific combinations of parameters pertaining
to these traits are permissive to the diversity of morphologies and cellular patterns
seen in breast cancer progression. Given discrete assumptions that are confirmed by
experiments, the same framework could give rise to phenotypes exhibited by non-
malignant, malignant but non-invasive, sub-invasive and aggressively invasive
malignant cells. In case of noncancerous cells, their quiescent and lumen-containing
architecture was dependent on adhesion to basement membrane matrix; inability to
do so resulted in anoikis (Bissell et al., 2002; Frisch and Francis, 1994; Furuta et al.,
2018; Schwartz, 1997). The model predicts that the transition from homeostatic to a
precancerous carcinoma-in-situ-like (DCIS) structures involves anchorage-
independent survival and division. The transition from DCIS-like states to sub-
invasive phenotypes that are characterized by complete loss of cell polarity involves
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a decrease in adhesion, both intercellular and between cells and BM-like matrices.
On the other hand, the transition from sub-invasive phenotype to a full blown
invasive multiscale phenotype is predicted to be achieved through specific interplay
between decreased cell-cell and -matrix adhesion and reaction-diffusion-based
cross-modulation between regulators of ECM remodelling, with neither physical
process being sufficient by itself to bring about the phenotype. The computational
model upon being asked to deploy reaction-diffusion in the presence of high cell-cell
and -matrix adhesion predicted an exclusively collective invasion phenotype. The
latter resembles morphologies obtained when cancer cell clusters are cultured in
rBM scaffolds in the absence of Type 1 collagen. This suggests that the progression
between two given morphologies can be achieved through distinct and dissimilar
trajectories in parameter-space.

Reaction-diffusion-based mechanisms have been proposed to regulate the spatial
patterning of iterative structures in development such as hairs, feathers, and digits
(Glimm et al., 2014; Raspopovic et al., 2014; Sick et al., 2006). This occurs through
interaction between an autocatalytic mediator of a morphogenetic step and its
inhibitor (Gierer and Meinhardt, 1972; Meinhardt and Gierer, 2000). Both the
mediator and its inhibitor are as per the R-D formalism, expected to be diffusible in
nature (Turing, 1990). Their interaction would lead to spatial foci of morphogenesis
separated by lateral zones of inhibition. It is reasonable to hypothesize the mediator
to be a negative regulator of a morphological trait and its inhibitor to therefore
antagonize the mediator’s inhibition of morphogenesis. Matrix metalloproteinases
(MMP) and Tissue inhibitors of Matrix metalloproteinases (TIMP) are exemplars of
such processes. They have been shown to play significant roles in mammary gland
branch patterning (Wiseman and Werb, 2002). Their interaction dynamics in the
context of mammary morphogenesis and elsewhere has been proposed to act
through reaction-diffusion (Grant et al., 2004; Hoshino et al., 2012; Kumar et al.,
2018; Skaalure et al., 2016).

A brief survey of expression patterns of genes across multiple cell lines grown on top
of rBM matrices provides support for our predictions (Kenny et al.,, 2007).
Cell lines exhibiting sub-invasive and invasive morphologies exhibit a progressive
decrease in E-cadherin expression for which experimental support is available
(Hiraguri et al., 1998). Cell lines with sub-invasive morphologies showed decreased
levels of B1 integrin, which participates in multiple integrin heterodimers that bind to
laminin. Invasive cells specifically expressed an aberrantly glycosylated levels of a
B1 integrin (the consequences of glycosylation of B1 integrin have been reviewed in
(Bellis, 2004)). Invasive cancer epithelia are known to express matrix
metalloproteinases to a greater extent than untransformed cells: MDA-MB-231, for
example, shows high levels of multiple MMPs as well as TIMP, relative to poorly
invasive MCF7 cells (Bachmeier et al., 2001; Balduyck et al., 2000).

The modelling approach we have used successfully distinguishes between collective
and single-cell growth dynamics However it is not able to parse mesenchymal versus
amoeboid motilities. This is because we have modelled cells as bounded units that
show little change in shape as they move. We aim to overcome this limitation in the
future, by constructing multicompartment cells wherein intracellular cytoskeletal
dynamics will be incorporated and will also be allowed to respond to inhomogeneities
in ECM patterns. Our black-box approach also assumes a direct intracellular linkage
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between the various extracellular phenomena that mediate invasion. The
introduction of signalling as a means of linking adhesion, proliferation, motility and
ECM remodelling, and the (non)linear dynamics associated with the links would
further enrich our understanding of the coordination between the diverse cellular
phenomena in future efforts. In our computational model, cells proliferate copiously.
On the other hand, our culture assays are grown for 24 to 36 h; cell proliferation can
at best construed to play a mild role in the overall invasion. These two observations
are not inconsistent with each other though; proliferation is also observed in cultures
grown for longer time periods but does not alter the pattern of invasion that has been
initially set by cell migration.

3D pathotypic cultures from patient cells/organoids are increasingly being considered
as standards for personalized therapeutic strategies (Hagemann et al., 2017; Pauli et
al., 2017). Their ability to prognose radio- and chemoresistance and match the
results of patient derived xenograft models is backed up by a burgeoning body of
literature (Gilles et al., 2018; Hubert et al., 2016; Zeeberg et al., 2016). Most of these
culture setups lack a stromal compartment. The addition of the latter, as we have
done in our assay, may prove to be a useful spatial milieu wherein the effect of
immunotherapeutic interventions is tested. Our experimental breast cancer model
can also be adapted for other cancers wherein the effect of stromal constituents on
multiscale invasion of transformed epithelia may be studied and targeted.
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Figure Legends:

Figurel: Schematic depiction of experimental system and computational model
(A) Early stages of breast cancer progression: Top left denotes the normal glandular
(ductal/luminal) architecture of human breast. Top right denotes the pattern of breast
epithelia undergoing ductal carcinoma-in-situ where normal epithelia are malignantly
transformed, lose polarity and proliferate resulting in filling up of ductal lumen.
Bottom right shows the architecture of invasive ductal/luminal carcinoma where
transformed cells breach the basement membrane and invade into collagen-rich
breast stroma. Bottom right shows how invasive breast cancer cells having traversed
through stroma intravasate into blood/lymph vessels and metastasize to secondary
organs. (B) Schematic workflow of 3D invasion assay used throughout the paper:
Cells are first cultured on top of non-adhesive substrata in medium containing 4%
rBM. Once cells assembled into clusters, the latter is embedded within Type 1
collagen scaffolds and cultured in serum-free conditions. (C) Governing equations
used for setting up the computational model. The first equation calculates H which is
Hamiltonian of the simulation: H determines the probability P associated with index-
copy attempts, movements by generalized cells to minimize local effective energy
through the default dynamical algorithm known as modified Metropolis dynamics.
The equation for calculating growth rate shows it to be dependent on GH, Growth
Factor concentration and g, which denotes nutrient availability. ECM remodeling
follows the kinetics of reaction-diffusion (please refer to the appropriate sections in
Material and Methods for a more detailed description of model construction). (D)
Quantification of invasiveness of cancer cells in the computational model is
performed using the minimal enclosing circle algorithm developed using MATLAB.

Figure 2: Multi-scale multicellular invasion of breast cancer cells in culture

(A) Representative phase contrast micrographs from time-lapse imaging of MDA-
MB-231 cells showing multiscale invasion into fibrillar matrix. rBM-coated MDA-MB-
231 clusters embedded within Type 1 Collagen (2Ai) invade into the latter within 24 h
(2Aii). Cells show expansive migration (left inset; double-headed blue arrow shows
the extent of collective migration between initial boundary (0 h) and final boundary
(24 h) of the cluster (boundaries shown in pink). Single mesenchymal cells are also
observed in Type 1 collagen (right inset; blue arrowheads). Scale bar: 200 um. (B)
Multiscale invasion exhibited by computational model. Initial pattern (2Bi; MCS10;
cancer cells (red) packed within a basement membrane (BM)-like non-fibrillar matrix
(blue) and further outwards by fibrillar collagen-like matrix (green; inter-fibrillar gap =
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3 unit pixels)) and final pattern (2Bii; MCS 440) showing invasion of cells. In silico
cells show expansive migration (left inset; bulk movement visible through the spatial
gap between two black lines denoting boundary at initial MCS and final MCS). Single
cells are also observed in non-fibrillar ECM.

Figure 3: Single-matrix controls of models show simpler modes of invasion

(A) Maximum intensity projections of laser confocal micrographs of MDA-MB-231 cell
clusters cultured within specific matrix milieu, fixed and stained for F-actin (using
phalloidin; red; top row), DNA (using DAPI; white; middle row) and with both signals
merged (bottom row). (i) rBM-coated clusters embedded in Type 1 collagen show
multiscale invasion (left column) (ii) rBM-coated clusters embedded in rBM show
collective or streaming migration of cells (iii) Uncoated MDA-MB-231 clusters in Type
1 Collagen show predominantly single cell invasion. Scale bar: 100 um. (B)
Representative images from simulations of invasion of cancer cells at early (top row)
intermediate (middle row) and late MCS steps (bottom row). Simulations mimicking
cells encapsulated within non-fibrillar and then fibrillar ECM exhibit multiscale
invasion (left column). Simulations of cells cultured exclusively in non-fibrillar and
fibrillar ECM show collective and single cell migration. Inter-fibrillar gap of C1= 3 unit
pixels.

Figure 4. Inhibition of matrix metalloproteinase activity and N-linked
glycosylation inhibits multiscale invasion

(A) Maximum intensity projections of laser confocal micrographs of MDA-MB-231 cell
clusters cultured within specific matrix milieu, fixed and stained for F-actin (using
phalloidin; red; top row), DNA (using DAPI; white; middle row) and with both signals
merged (bottom row). (i) rBM-coated clusters embedded in Type 1 collagen treated
with cehicle control DMSO show multiscale invasion (left column) (ii) Treatment with
10 uM Batimastat leads to inhibition of transition of cells to Type 1 collagen although
cytoplasmic projections of cells in the periphery of the cluster are visible in the
fibrillar matrix. (iii) Treatment with 10 yM Tunicamycin results in complete abrogation
of multiscale invasion. (B) Simulations of control conditions (i), parametric variations
analogous with inhibition of reaction-diffusion (ii) parametric variations analogous
with inhibtion of cell-cell, cell-fibrillar ECM and reaction-diffusion (iii) at MCS590
Graph represents invasiveness of cells in simulations associated with 4Bi, ii and iii.
Each bar represents mean +/- SEM **** denotes p-value <0.0001.

Figure 5: Increased collagen density impairs multiscale invasion

(A) Maximum intensity projections of laser confocal micrographs of MDA-MB-231 cell
clusters cultured within specific matrix milieu, fixed and stained for F-actin (using
phalloidin; red; top row), DNA (using DAPI; white; middle row) and with both signals
merged (bottom row). (i) rBM-coated clusters embedded in 1 mg/ml Type 1 collagen
show multiscale invasion (ii) rBM-coated clusters embedded in 2.5 mg/ml Type 1
collagen show impaired invasion of cells into surrounding high density Type 1
collagen (B) Simulations of control conditions (i), high density arrangement of fibrillar
ECM showing impaired migration of cells at MCS 540. Graph represents
invasiveness of cells in simulations associated with 5Bi and ii. Each bar represents
mean +/- SEM ***denotes p-value <0.0001.
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Figure 6: Parameter variation in the computational model can simulate
homeostatic, precancerous and indolently cancerous phenotypes

(A) Initial configuration of all components of the computational model at MCS 0 (B)
Simulation of a homeostatic growth-arrested phenotype with a central lumen
obtained upon imposing a non-fibrillar ECM-based rules for regulation of cellular
quiescence and death of anchored and detached cells respectively (C) Simulation of
a carcinoma-in-situ-like phenotype obtained by maintaining high values of cell-cell
and cell-non fibrillar ECM adhesion (D) Decreasing cell-cell and -ECM adhesion in
simulation leads to a phenotype that shows further loss of polarity (as evidenced by
a roughness in the outer contour of the clusters) and occasional sub-invasive single
cell phenotypes (E) Further decreasing cell-cell and -matrix adhesion and
deployment of a reaction-diffusion-based kinetics of ECM remodeling leads to
multiscale invasion. (F) Quantification (bottom right) of the invasiveness of cells from
simulations of homeostasis, carcinoma-in-situ, apolar clusters and multiscale
invasion. Sacel bar: 100 ym. Each bar represents mean +/- SEM **** denotes p-
value <0.0001.

Figure 7: Simulations of the deployment of reaction-diffusion-based kinetics in
carcinoma-in-situ and sub-invasive cluster phenotypes

(A) Simulations, within which regulation of the ECM was modeled using reaction-
diffusion kinetics in parameter regimes of adhesion cognate to carcinoma-in-situ
phenotypes, predict collective but not single-cell invasion (B) Simulations, within
which regulation of the ECM was modeled using reaction-diffusion kinetics in
parameter regimes of adhesion cognate to sub-invasive apolar cluster phenotypes
predict multiscale invasion (C) Simulations for these results are done in 200*200*1
grid by keeping initial configuration similar to 100*100*1 grid. (F) Quantification of
the invasiveness of cells from the above simulations in comparison with control
multiscale invasion. Each bar represents mean +/- SEM **** denotes p-value
<0.0001.
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