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Highlights
e Multiplatform genomic analysis defines landscape of 261 pediatric cancer patient
derived xenograft (PDX) models
e Pediatric patient derived xenografts faithfully recapitulate relapsed disease
e Inferred TP53 pathway inactivation correlates with pediatric cancer copy number
burden

e Somatic mutational signatures predict impaired DNA repair across multiple histologies

Summary (150 words)

Accelerating cures for children with cancer remains an immediate challenge due to
extensive oncogenic heterogeneity between and within histologies, distinct molecular
mechanisms evolving between diagnosis and relapsed disease, and limited therapeutic
options. To systematically prioritize and rationally test novel agents in preclinical murine
models, researchers within the Pediatric Preclinical Testing Consortium are continuously
developing patient-derived xenografts (PDXs) from high-risk childhood cancers, many
refractory to current standard-of-care treatments. Here, we genomically characterize 261 PDX
models from 29 unique pediatric cancer malignancies and demonstrate faithful recapitulation
of histologies, subtypes, and refine our understanding of relapsed disease. Expression and
mutational signatures are used to classify tumors for TP53 and NF1 inactivation, as well as
impaired DNA repair. We anticipate that these data will serve as a resource for pediatric

oncology drug development and guide rational clinical trial design for children with cancer.

Keywords (up to 10, csv)
Pediatric cancer, patient-derived xenograft, relapse, whole exome sequencing, transcriptome

sequencing, copy number profiling, preclinical testing, classifier
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Introduction

An estimated 15,780 children and adolescents (< 20 years) are diagnosed with cancer
in the United States each year, and these diverse entities are the leading cause of disease-
related deaths in children (American Childhood Cancer Organization 2014). Despite five-year
survival rates for pediatric cancers now exceeding 80%, survivors frequently have lifelong side
effects from cytotoxic therapy, and survival outcomes for children with certain types of tumors
remain dismal. The relative rarity of pediatric cancers, molecular and mechanistic heterogeneity
of subtypes within and across histologies, genetic and molecular distinction from adult
malignancies, tumor evolution in the face of cytotoxic standard therapies, and lack of targeted
therapeutic agents all pose major challenges to improving outcomes for children with cancer.
Indeed, there are very few drugs with specific labeled indications for pediatric malignancies,
and the majority of standard therapies are largely empiric.

Preclinical testing of new therapeutic anti-cancer agents is essential in the field of
pediatric oncology due to the relative rarity of the condition and the need to prioritize agents
for early phase clinical trials. Over the past 15 years, the Pediatric Preclinical Testing
Consortium (PPTC), previously known as the Pediatric Preclinical Testing Program (Houghton
et al. 2007; Houghton et al. 2002) has developed over 370 patient-derived xenograft (PDX)
models from high-risk childhood cancers. In collaboration with pharmaceutical and academic
partners, the PPTC systematically screens novel therapeutic agents for anti-tumor efficacy in
order to help prioritize those that will move to the clinic. While some of these models have
been credentialed with mRNA expression arrays (Whiteford et al. 2007) and/or single
nucleotide polymorphism (SNP) arrays (EI-Hoss et al. 2016), here we present a comprehensive

genomic characterization of 261 models from 29 unique pediatric cancer malignancies.
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Results
Analysis pipeline for somatic mutations, gene expression, RNA fusions, and copy humber
profiling in pediatric PDX tumors

We performed whole exome sequencing (WES) on 240 childhood cancer PDX models,
whole transcriptome sequencing (RNA-Seq) on 244 models, single nucleotide polymorphism
(SNP) microarrays on 252 models (Table S1, Figure S1 panels A-B), and performed short
tandem repeat (STR) profiling on all 261 models (Figure 1B, Table S2). Of the 261 models
profiled, 82 had available references that are also included in Table S2.

Figure 1 depicts the analysis workflow (see STAR methods for details). Of the 240 models
on which WES was performed, 69 models were previously sequenced through efforts of the
PPTP (dbGAP ID phs000469.v17.p7), and we harmonized these data. For WES (Figure 1C) and
RNA-Seq (Figure 1D), we performed competitive mapping to a hybrid human-mouse reference
(hg19-mm10) and used human-specific BAM files as the bases for downstream analyses. We
validated this biochemically with quantitative PCR (QPCR) by calculating the ratio of
human:mouse DNA in a subset of 35 PDX tumors. We found a significant correlation between
the percent of human reads following WES hybrid mapping and the percent of human DNA in
the tumor extract (Figure 1B, Pearson correlation R = 0.943, F = 272.5, df = 34, p-value < 2.2e-
16). A MAF file of common germline variation was created if a variant was present in more than
five normal samples from TCGA patients (N = 809). The remaining variants, comprised of both
somatic and rare germline alterations, were collated into the “somatic” MAF file. Artifactual
sequencing variants were removed as described in STAR methods (Table S3). Mutation
variation was summarized (Figure S1, panels C-I and Table S4). Common germline SNP
distributions (allele frequency > 0.005 in any one of the three databases: Exome Aggregation
Consortium, 1000 genomes, or the NHBLI Exome Sequencing Project) were plotted for each

model and visually inspected for a negatively skewed distribution to assess DNA cross-
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contamination in WES data. To identify potential mis-identification, RNA variant calling was
performed and variant allele frequencies correlated between WES and RNA. Models whose
variants did not correlate were deemed mis-identified and removed (STAR Methods). Within
this cohort, five pairs of models were derived from tissue at a single phase of therapy (Table
S1). Thus, as additional QC, we correlated somatic mutation allele frequencies between each
pair and found high concordance of mutation frequencies (Figure S1, panel J), confirming
biological reproducibility of creating PDX models within a center. The OS-36/0S-36-SJ pair
were derived from lung metastases at two different centers and interestingly, the OS-36 model
contains a higher mutational load (117 total mutations) than the OS-36-SJ model (37 total
mutations) which could reflect tumor heterogeneity in metastatic disease (Figure S1, panel K).

SNP arrays were processed for segmentation, focal copy number, and ethnicity inference
(STAR methods, Figure 1A, Figure S2). As reported ethnicities were only available for a small
proportion of the models, we used SNP array genotypes to infer approximate ethnicities using
HapMap genotype frequencies. We assigned models to African, East Asian, European, and
South Asian/Hispanic ethnicities (Figure S2, Table S1). Overall, 71% of models are of predicted
European descent, 11.5% South Asian/Hispanic, 9.1% African, 5.5% mixed or unknown
ethnicity, and 2.4% East Asian.

Following rigorous assessment for contamination, mis-identification, and sample mis-

labeling, 26 full models were removed and 3 RNA samples were removed. All remaining
models used in these analyses were shown to be free of detectable levels of DNA

contamination (STAR Methods).

PDX models recapitulate the mutation and copy number landscape of childhood cancers
We defined oncogenic driver genes for broad histology classifications (brain,
sarcoma/carcinoma, leukemia, renal, neuroblastoma, and osteosarcoma) in Table S5, based
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on previously reported pediatric cancer genomic studies (Ma et al. 2018; Grébner et al. 2018;
Pugh et al. 2013; Eleveld et al. 2015; Behjati et al. 2017; Shern et al. 2014; Liu et al. 2017;
Zhang et al. 2012). RNA fusions, somatic mutations, and focal copy number events for the top
20 altered genes are presented in Figure 2, full oncoprint matrices in Table S5, and described
below for samples on which at least WES was performed. Focal homozygous deletions
correspond to loss of expression (FPKM < 1) in models for which RNA was available. Genome-
wide copy-number profiles for histologies with 10 or more models are plotted in Figure S4.
ATRX deletions were determined from WES bam files (STAR Methods). Pathway enrichment

derived from RNA-Seq for histologies with N >=4 are plotted in Figure 6C.

Acute Lymphoblastic Leukemias.

Figure 2A depicts oncoprints for 90 acute lymphoblastic leukemia models.

BCP ALLs. A total of 41-43% of BCP-ALL PDX models contain canonical focal
deletions of the tumor suppressors on chromosome 9p, CDKN2A or CDKN2B (Figures 2A and
S4B), the majority of which are homozygous. ALL-07 and ALL-19 harbor both a CDKN2A
homozygous deletion and a CDKN2B hemizygous deletion. ALL-84 has hemizygous loss of
both CDKN2A/B and contains a nonsense mutation in, and minimal expression of CDKN2A
(FPKM = 3.14). The BCP-ALL models were enriched for alterations in the RAS pathway (KRAS
mutated in 27 %, NRAS mutated in 16%), the JAK-STAT pathway (JAK2/3 altered in 22%), and
22% have altered KMT2D. These pathways, along with PISK/AKT, TNFa, and TP53 signaling,
were all significantly enriched in the expression data (Figure 6C). We detected fusion
transcripts in 29 BCP-ALL models (78%); 24% with ETV6 fusions (66% partner with RUNXT),
14% with PAX5 fusions, 14% with TCF3 fusions, and 8% with IKZF1 fusions (Table 1).

ETP and T-ALLs. ETP-ALL and T-ALL models are predominantly characterized by

CDKNZ2A/B focal deletions (72-76%, Figure S4B) and/or a NOTCH1 mutation (68%). ALL-43
8
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has a focal homozygous deletion of CDKN2B and partial homozygous deletion of CDKN2A but
retains MRNA expression of CDKN2A (FPKM = 12). Genes within the JAK-STAT pathway are
also frequently altered: lesions in JAKT or JAK2 are observed in 24% of models and 4% of
models contain lesions in STAT5B. We detected oncogenic fusion transcripts in nearly half
(48%) of these models involving the following genes: TRBC2 (16%), TRBC1 (12%), ABL1 (8%),
IGH (8%), LMAN2 (4%), LMO1 (4%), LMOZ2 (4%), and ETV6 (4%). ATRX is deleted in ETP-1
and expression is ablated (FPKM < 5, Figure S3, panel A).

Ph-like and Ph+ ALLs. We confirmed a BCR-ABL1 fusion in all three Ph+-ALL models
(ALL-04, ALL-55, and ALL-56). Five of the Ph-like ALL models (33%) contain a canonical
CRLF2-P2RYS8 fusion. Additional frequently-rearranged genes include JAK2 (13%) and PAX5
(27%). In both Ph+ and Ph-like ALL models, focal deletion of CDKN2A/B (56-67 %, Figure S4B)
and IKZF (44%) alterations are predominant. Frequently-altered pathways include Ras and
JAK-STAT (Figure 2A, 6C).

MLL-ALLs. All MLL-ALL models contain a canonical KMT2A fusion and have relatively
silent genomes (Figure 2A) with minimal copy number alterations (Figure S4B). The majority of

these models were derived from children < 1 year of age.

Central nervous system and extracranial rhabdoid tumors.

In Figure 2B, we present the mutational spectrum of PDX models derived from CNS and
extracranial rhabdoid tumors.

Glial-derived models. Of the three GBM tumors in this cohort, IC-1621GBM harbored
a pathogenic histone gene missense mutation (HISTTH3A D78N) as well as a TP53 missense
mutation. This PDX was generated from a patient with DNA mismatch repair deficiency
syndrome and showed 124 somatic mutations per MB. We confirmed multiple mutations in

mismatch repair genes PMS1, MSH2, MSH5, and POLE (non-exonuclease domain mutation).
9
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The likely oncogenic drivers are the nonsense mutations in PMS17 (Q316*) and MSH2 (G721%),
each of which disrupt the DNA mismatch repair protein domain and the MutS domain,
respectively (Figure S3, panel B). IC-6634GBM harbors a hemizygous SMARCB1 mutation,
missense mutation in TP53, amplification of MYCN, and focal deletion of CDKN2A/B. NCH-
PXA-1 and IC-3635PXA were derived from pleomorphic xanthoastrocytomas, one of which
harbors a canonical BRAF V600E point mutation. NCH-MN-1 was derived from a patient
diagnosed with an anaplastic rhabdoid meningioma with the clinical suspicion of an ATRT,
however this model had no evidence of an inactivating SMARCB1 alteration. Rather, it harbors
a BRAF V600E mutation and focal CDKN2A/B deletion, classifying this model as a high-grade
glioma, herein denoted as an astrocytoma. IC-2664PNET was derived from a patient
diagnosed with a primitive neuroectodermal tumor (PNET), but was further molecularly
classified as a high-grade astrocytoma. IC-2664PNET has focal amplification of MYCN and a
hemizygous SMARCB1 deletion, but retains mRNA expression of SMARCB1 (Figure S2, panel
C).

ATRT and extracranial rhabdoid tumors. All eight ATRT models and the four
extracranial rhabdoid tumors harbor inactivating alterations (focal deletion, frameshift deletion,
or nonsense mutation) in SMARCB1, the hallmark tumor suppressor gene deleted in rhabdoid
tumors.

Medulloblastomas. Of the 21 medulloblastoma models, 10 could be classified into one
of the four consensus molecular subgroups based on histopathology and genomic profiling
(Northcott et al. 2017). Six models were classified as the SHH subtype: ICb-1078MB, ICb-
1197MB, ICb-1338MB, ICb-2123MB, ICb-5610MB, ICb-984MB, one as WNT subtype: NCH-
MB-1, two as Group 3 subtype: ICb-1494MB and ICb-1595MB, one as Group 4 subtype: ICb-
1487MB, and 10 were unclassified (pathology unavailable and genetics inconclusive, Table S1).

NCH-MB-1 was reported to be derived from a large cell anaplastic tumor, but this model

10
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harbors missense mutations in TP53, CTNNB1, and DDX3X, and has monosomy of
chromosome 6, thus genetically classifying this model into the WNT subtype.

Non-medulloblastoma embryonal tumors. All tumors previously labeled clinically as
PNETs were reclassified. ICb-S1129MB was classified as an embryonal tumor with
multilayered rosettes (ETMR) by pathology and indeed has high expression of the ETMR
biomarker, LIN28A (Figure S3, panel D). Copy number profiling was not performed on this
tumor. ICb-1343ENB and IBs-2373PNET were genetically classified as ETMR due to
amplification of C19MC and high expression of LIN28A. Additionally, IBS-2373PNET contains a
DPRX-TTYH1 reciprocal fusion and a TTYH1-LAIR1 fusion. ICb-9850PNET and IC-
22909PNET-rlll, a diagnosis/relapse pair, were genetically classified as CNS EFT-CIC, as the
diagnostic tumor contains a CIC-DUX4 fusion. These models also harbor hemizygous
SMARCRB!T1 deletions and could be differentially classified as ATRT, though both retained some
MRNA expression of SMARCB1 (Figure S3, panel C). The previously-annotated PNET model
BT-27 was genetically classified as CNS embryonal NOS. The ependymoblastoma model IC-
1499EPB did not harbor known driver mutations.

Ependymomas. Of the six total ependymoma models, one contained a C770rf95-RELA
fusion IC-1425EPN (no WES; not shown in oncoprint) and two contained a CFAP300-YAP1
fusion, IC-9635EPN and ICb-10614EPN (no WES; not shown in oncoprint), classifying these
three as supratentorial.

DIPGs. The two DIPG models were profiled with RNA-Seq and SNP array, thus are not
shown in the oncoprint. Both IBs-P1215DIPG and IBs-W0128DIPG show expression of H3F3A
and H3F3B (FPKM > 50), genes encoding the histone H3.3 variant, and lack expression of
HIST1H3B or HIST1H3C, genes encoding the histone H3.1 variant (Figure S3, panel E).
However, we did not detect H3.1 or H3.3 histone mutations in these models. RNA variant

calling revealed IBs-W0128DIPG contained predicted damaging (Polyphen) missense
11
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mutations in NRAS (p.G13R, 0.41), CIC (p.C102Y, 0.44), SNCAIP (p.R806H, 0.44), KMT2C
(p.C988F, 0.45), and PTCH1 (p.P1315L, 0.45). We did not detect any CNS driver gene

damaging mutations in IBs-P1215DIPG.

Extracranial solid tumors.

Figure 2C depicts the landscape of PDX models derived from extracranial solid tumors.

Osteosarcomas. The hallmark of osteosarcomas is TP53 inactivation, and using a
classifier trained on RNA expression data from The Cancer Genome Atlas (TCGA), we found all
osteosarcoma models with available RNA-Seq data (N = 32) were predicted to have non-
functional TP53 (described below). As expected, TP53 was the most commonly-altered gene
(82%) in osteosarcoma PDX models (Figure 2C). Additional genes commonly altered include:
RB1 (35%), CDKN2A (15%), KMT2B, KMT2D, and PTEN (each 12%), and ATRX (9%). Of note,
ATRX harbors a partial deletion in OS-41 (exons 2-26, FPKM = 11) and the full gene is deleted
with ablation of expression in 0OS-45-TSV-pr1, and OS-60 (Figure S3, panel A). Recurrent focal
amplifications were observed in IGF1R, PDGFRA, CCNE1, COPS3, CDK4, RICTOR, and MYC
(6-9%). Osteosarcoma genomes demonstrate global copy-number changes, consistent with
high prevalence of complex genomic rearrangements found in this tumor type (Figure S4).

Ewing sarcomas. The canonical EWSR1-FLI1 fusion was found in all Ewing sarcoma
models profiled with RNA-Seq (NCH-EWS-1 was not profiled) and CHLA-258 contained an
additional FLI7 fusion partner: RP11-9L18.2 (Table 1, Figure 2C). TP53 mutations are present in
seven (70%) cases, with six showing allele frequencies at or near 1.0 due to copy-neutral loss
of heterozygosity (cnLOH, ES-6, EW-8, SK-NEP-1) or loss of heterozygosity (LOH) due to
chromosomal arm deletion (EW-5, ES-8, and TC-71), and the mutation in ES-1 appears
hemizygous (R248Q, AF = 0.44) (Figure S3, panel F). Homozygous CDKN2A/B loss (60%) was

mutually exclusive of STAG2 mutations (20%), as expected (Tirode et al. 2014). We observe
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canonical (Tirode et al. 2014) broad gain of whole chromosomes 8 and 12, as well as focal 1q
gain and 16q loss, in Ewing sarcomas (Figure S4A).

Wilms tumors. The mutational and copy number landscapes of Wilms tumor (N = 13)

PDX models are depicted in Figures 2C and S4A. The WTT gene located at 11p13 was mutated

in one PDX model (NCH-WT-6-S13-1506), but we observed hemizygous deletions of WT7 in

61% of Wilms models, many of which were due to LOH of the entire 11p13 region. The
11p15.5 region, which contains imprint control regions (ICR) 1 and 2, often undergoes loss of
imprinting (LOI) either due to maternal DNA methylation or maternal LOH/paternal uniparental
disomy (pUPD) in Wilms tumor. The 11p15.5 region harbored LOH in 69% (9/13) of Wilms
tumors, consistent with previous reports (Scott et al. 2012). Two models (15%) harbored
hemizygous deletions of AMERT1 (formerly known as WTX and/or FAM123B), annotated as LOH
of Xg11.2 (manual inspection; X and Y chromosomes were removed from copy number
analyses). KT-9 is the only model annotated as coming from a patient with bilateral disease,
and although it does not harbor a WT7 mutation, it does have two hits in TP53: a TP53-FXR2
fusion and a partial homozygous deletion. The TP53 RNA fusion breakpoint was predicted to
be in the 5’ UTR, which is concordant with SNP array data showing DNA deletion breakpoints
within FXR2 and TP53 (Figure S3, panel G). Two Wilms models (15%, KT-6 and NCH-WT-6-
S13-1506) harbored CTNNB1 mutations, and consistent with previous reports (Scott et al.
2012), these were mutually exclusive of WTX alterations. Gain of the 1g arm, 1p LOH, and 16q
LOH, adverse prognostic biomarkers for Wilms tumors (Segers et al. 2013; Spreafico et al.
2013; Pan et al. 2017), were observed in 31% (4/13), 8% (1/13), and 23% (3/13) of models,
respectively. Additionally, KT-13, KT-10, and NCH-WT-4 had partial gains and/or mixed
hyperploidy at 1g and KT-6, NCH-WT-4, KT-10, NCH-WT-5, and KT-8 had hotspots of LOH on
169g. Model KT-5 was not profiled with a SNP array.
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Rhabdomyosarcomas. The oncoprints for fusion positive (Fusion+ RMS, N = 6) and
fusion negative (Fusion- RMS, N = 6) rhabdomyosarcomas are depicted in Figure 2C. All
Fusion+ RMS models harbored a hallmark PAX3-FOXO1 fusion (Figure 2C, Table 1). Median

patient age of Fusion+ RMS patients (16 years) was higher than that of Fusion- RMS patients

(five years) (Table S4). As expected, we also observe focal amplification of MYCN (Rh-65 and

NCH-ARMS-2-NCH-S13-7484) and CDK4 (NCH-ARMS-2-NCH-S13-7484 and Rh-30).

Amplification of CDK4 was not present the Rh-30R (relapse tumor paired with Rh-30, SNPs and

STRs confirm identity). Fusion- RMS models contained nonsynonymous mutations in
previously reported recurrently-mutated genes at expected frequencies. For example,
combined Ras pathway mutations (NRAS, HRAS, KRAS, and NF1) are typically observed in

one-third of Fusion- RMS cases and here, Ras mutations were observed in 3/6 models (Rh-12

with NF1 T2335fs, NCH-ERMS-1-NCH-RMS-1 with NRAS Q67K mutation, and Rh-36 with

HRAS Q61K). Other genes previously documented as recurrently-mutated in fewer than 10%
of Fusion-RMS cases and found in this PDX dataset were: FGFR4, PIK3CA, and BCOR. All
models except for IRS-68 over-express the common rhabdomyosarcoma biomarker, MYOD1
(Figure S3, panel H). IRS-56, Rh-12, Rh-36, and Rh-70 had 11p15.5 LOH.

Neuroblastomas. Amplification of the MYCN oncogene was the most frequent
alteration observed across all models (66%), and as expected, is largely mutually exclusive of
11q deletion (23%). Seventy seven percent of models had 1p deletion and 97% had 17q gain
(collapsed profiles are shown in Figure S4A). Focal amplifications were observed in CDK4 (6%),
FGFR4 (3%), and MDM?2 (3%) and homozygous deletions in CIC (9%). Consistent with
previous reports, we find ALK to be the most frequently mutated gene (37% of all models
contain hotspot mutations) and neuroblastomas that progress (36%) or relapse (50%) contain
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a higher frequency of ALK mutations than PDX models derived from diagnostic material (25%).
Missense, nonsense, indel, and/or splice, mutations were found in: TP53 (11%), ATM (11%),
PTPN11 (9%), NF1 (9), ARID1B (6%), BRAF (3%), BRIP1 (3%), CHEKZ2 (3%), CIC (3%), FGFR1
(8%), FGFR4 (3%), KRAS (3%), and PHOX2B (3%). The nonsense and frameshift deletions in
NF1 correspond with ablated expression in COG-N-590x and NB-1771, respectively, but NB-
1643 retains expression. COG-N-625x, derived from a male child, harbors an ATRX deletion

(exons 2-10) (Figure S3, panel A).

Rare histologies. Seven PDX models were derived from rare tumor types and are
depicted in Figure 2C: hepatoblastoma (NCH-HEP1), alveolar soft part sarcoma (ASPS-KY and
NCI-ASPS), colon carcinoma (NCH-CA-3), small cell carcinoma, large cell variant (NCH-CA-1
and NCH-CA-2, diagnosis and relapse pair), and a clear cell sarcoma (NCH-CCS-1). Three
models (43%) contained alterations in TP53; of note, an in-frame hemizygous deletion of TP53
evolved at relapse in NCH-CA-2. The canonical ASPSCR1-TFES3 fusion was detected in both
ASPS models. NCH-CA-1 and NCH-CA-2 harbored deleterious SMARCA4 mutations and
NCH-CA-3 harbored a deleterious NF7 nonsense mutation, each with concurrent loss of mMRNA
expression and as such, may be potential drivers of oncogenesis in these tumors. NCH-HEP1

contained a likely oncogenic WNT pathway mutation (CTNNB1 p.D32G).

Breakpoint Density

We calculated total number of breakpoints per sample and breakpoint density within
chromosomes, the latter as a surrogate measure of putative chromothripsis events (STAR
methods). Consistent with pediatric cancer genomics literature, we observe very few
breakpoints per sample in hematologic malignancies compared to those in solid tumors

(median = 3 breakpoints per sample in CNS embryonal NOS to median = 154.5 breakpoints
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per sample in osteosarcoma; Figure S4C and Table S4). We found 25% (64/252) of models
profiled have high breakpoint density (HBD) across one or more chromosomes (Figure S4D,
Table S4), consistent with a recent pan-cancer chromothripsis report (Cortes-Ciriano, 2018).
Specifically, 97% of osteosarcomas had HBD; 30% (10/33) of these contained HBD on four or
fewer chromosomes indicative of chromothripsis, while the remaining 70% (23/33) contained
HBD on five or more chromosomes, supporting a more complex and chaotic genomes
prevalent in this tumor type (Lorenz et al. 2016). In neuroblastoma samples, 17% of models
contained HBD on chromosomes 2, 5, 16, 17, 19. Chromothripsis events on chromosomes 2,
5, and 17 in neuroblastoma tumors have been previously reported associated with MYCN
amplification, TERT rearrangements, and 17q gain, respectively (Molenaar et al. 2012; Boeva et
al. 2013). Recurrent loci with HBD in medulloblastoma were chromosomes 2, 8, 14, and 17,
consistent with recent reports (Rausch et al. 2012). In summary, PDX models faithfully

recapitulate important prognostic copy number alterations of pediatric tumors.

TMB and clonal evolution

Using somatic missense and nonsense mutations, we calculated tumor mutation
burden (TMB) for each PDX model (see STAR methods). Median TMB across all models was
2.66 somatic mutations per megabase (Mut/Mb; Figure S4, panel E and Table S4). The TMBs
across this cohort of PDX models are likely higher than those in previous reports for two main
reasons. First, 37% of the PDX models were derived from a patient tumor at a phase of therapy
other than diagnosis (Figure S1, A) and it is now known that tumors acquire significantly more
somatic mutations post-therapy and following a relapse (Eleveld et al. 2015; Schramm et al.
2015; Padovan-Merhar et al. 2016; Ma et al. 2015; Schleiermacher et al. 2014). In fact, we
observe an overall significantly higher TMB in PDX models derived from relapse tissue (3.08
Mut/Mb) compared to those derived at diagnosis (2.57 Mut/Mb, Wilcoxon p-value = 0.002,
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Figure 3A). Histologies containing models derived from both diagnosis and relapse are plotted
in Figure S4, panel F. Second, without paired normal samples, rare germline and private
variants could not be reliably removed from the “somatic” MAF. Thus, TMB reported here is
likely inflated, but the trends across histologies and phase of therapy should accurately reflect
TMBs determined with a paired germline sample.

The majority of the PDX models were established at diagnosis (63%), but 6% were
derived from surgical resection specimens after neoadjuvant therapy, 27% from a relapsed
specimen (14% of those were neuroblastomas from a large volume blood draw obtained

immediately after death from disease progression), and 4% did not have phase of therapy

annotated. In addition, 12 pediatric cancer patients had either two or three models created

across the spectrum of their therapy (Table S1). The tables in Figure 3B report non-silent

mutation frequencies for genes of interest (Table S5) as reported previously (Ma et al. 2018;

Grobner et al. 2018; Pugh et al. 2013; Liu et al. 2017). We report PDX gene mutation

frequencies for histologies with paired diagnosis/relapse cohorts with group N 2 6: BCP-ALL

(Ndiagnosis = 21/Nre|apse = 16), T'ALL or ETP_ALL (Ndiagnosis = 17/Nre|apse = 8), OSteosarcoma (Ndiagnosis

= 25/Nreiapse = 6), and neuroblastoma (Naiagnosis = 12/Nprogressing= 13/Nreiapse = 10). Across all four
histologies, there is an increased frequency of driver gene mutations in relapsed disease as
indicated numerically and by the intensity of the red heatmap compared to those at diagnosis
(blue heatmap). Next, we plotted somatic mutation allele frequencies for the 13 PDX diagnosis-
relapse pairs (Figure 3C, 3D) and highlight diagnosis-specific (blue), relapse-specific (red),
common (grey) mutations, demonstrating the increased frequency of relapse-specific

mutations. Finally, the median number of mutations in the paired relapse samples was
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significantly higher than the number of mutations detected in the diagnostic samples (Figure

3E; median of 98.0 vs. 27.5 mutations; Wilcoxon p < 0.01).

Expression and mutational signatures classify pediatric PDX models for TP53 inactivation, NF1
inactivation, and defective DNA repair

A recent study used TCGA data to classify tumors for TP53 inactivation status and
found that alterations in multiple genes phenocopy TP53 inactivation, indicating that TP53
mutation status alone is not necessary to infer inactivation of the pathway (Knijnenburg et al.
2018). We used a machine learning algorithm to infer TP53 inactivation, as well as NF1
inactivation and Ras pathway activation, from transcriptomes of PDX tumors using classifiers
previously trained on TCGA expression data (STAR methods) (Knijnenburg et al. 2018; Way et
al. 2018; Way et al. 2017). The TP53 (AUROC = 0.89) and NF1 (AUROC = 0.77) classifiers are
both accurate compared to a shuffled gene expression baseline, but performance of the Ras
classifier (AUROC = 0.58) was relatively poor (Figure 4A). Classifier scores > 0.5 predict
inactivation of TP53 or NF1 (Table S6) and TP53 scores are significantly higher (Wilcoxon p <
2.2e-16) in models with a TP53 alteration (mean score = 0.747) compared to those without
alterations (mean score = 0.459) (Figure 4B). Many models annotated as wild-type TP53 have
high TP53 inactivation scores (Figure 4B). We found models with alterations in genes such as
MDM?2 and RB1 also have high TP53 inactivation scores. These alterations may phenocopy
TP53 alterations (Figure 4C, genes chosen as primary or secondary interactors of TP53 defined
by the TP53 KEGG signaling pathway). In Figure 4D, we plot alterations for each gene by
variant classification. Notably, all types of alterations within TP53 were associated with high
classifier scores, while scores for other genes varied by type of alteration.

As TP53 inactivation is a hallmark of osteosarcoma, we focused on these models as a

proof-of-concept. The classifier predicted that all models profiled with RNA-Seq except OS-
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55-SBX had TP53 pathway inactivation. Many had a genetic alteration in a TP53 pathway gene
as supporting evidence (Figure 4E, Table S6). However, the mechanisms of TP53 inactivation
in 0S-34-SJ, 0S-43-TPMX, and OS-51-CHLX are still unknown, and may require whole
genome sequencing to detect. To ensure osteosarcoma models were not driving the observed
association with TP53 scores, we removed osteosarcoma models and reanalyzed the data. We
found a significantly higher TP53 classifier score (Wilcoxon p = 4e-12) in models with
alterations in TP53 pathway genes (Figure S5, panels A-B). We then evaluated which types of
variants were associated with high TP53 classification score and observed that models
containing fusions had the highest classifier scores compared to wild-type, followed by models
with SNVs and CNVs, respectively (Figure S5, panel C, Kruskal-Wallis P = 9.8e-11). These are
broken down by gene in Figure S5, panel D. Outside of osteosarcomas, only one model
contained a fusion in the TP53 pathway: Wilms model KT-9 contained a TP53-FXR2 fusion. We
found overall copy number burden (number of breakpoints calculated from SNP array data,
STAR methods), but not tumor mutation burden nor shuffle score, correlates significantly with
TP53 classifier score (Figure 4F, R = 0.54, p = 2.0e-19), supporting recent published
observations (Knijnenburg et al. 2018). Genetic alterations rendering TP53 inactive may
contribute to copy number instability in these models. Use of gene expression classifiers can
guide preclinical studies, for example, therapeutically targeting the TP53 pathway in tumors
with high TP53 inactivation scores rather than those with altered TP53.

Next, we used the COSMIC 30 mutational signature profile to create single sample
mutational signature matrices for each PDX model (Table S6, STAR methods). We validated the
co-occurrence of Signatures 2 and 13 (R = 0.60, p = 8.18e-25) and independence of other DNA
repair and hypermutation signatures from each other (Figure S5, panel E). Signature 1
(spontaneous deamination of 5-methylcytosine) was significantly inversely correlated with

presence of defective DNA repair Signatures 3 and 6 (R =-0.41, p = 3.94e-11 and R=-0.54, p
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= 1.08e-19, Figure S5, panel E). Figure 4G displays signatures for models containing > 50
mutations and signatures with a cosine similarity > 0.1. In all brain tumor models, Wilms,
neuroblastoma, osteosarcoma, Ewing sarcoma, both rhabdomyosarcoma subtypes, colon
carcinoma, and all ALLs except for Ph+-ALL, we found models that contained signatures of
defective DNA repair by homologous recombination (Signature 3) and/or DNA mismatch repair
(Signatures 6, 15, 20, 26). Hypermutation (Signatures 9, 10, 14) and microsatellite instability
(Signature 21) signatures were observed in 10 of 24 PDX histologies. The APOBEC mutational
signature (Signatures 2 and 13) was found in two BCP-ALL models (ALL-58 and ALL-115) and
one osteosarcoma model (0S-43-TPMX); both are histologies which have previously been
reported to harbor this signature (Alexandrov et al. 2013). We did not observe kataegis in these
models, but this may be a limitation of using WES instead of WGS (Figure S3, panel l). Figures
3C (first two plots) and 4H-I display tumor evolution across the one trio of models in this
dataset: ALL-102 (diagnosis), ALL-105 (relapse 1), and ALL-115 (relapse 3). From diagnosis to
the first relapse, there was little change in mutation burden. At diagnosis, ALL-102 contained
an oncogenic JAK2 T875N mutation (AF = 0.41), which appears to have been eradicated
following standard chemotherapy (ANCHOG ALLS trial ID ACTRN12607000302459); this clone
was not detected in ALL-105 (first relapse). Upon the third relapse (ALL-115), total mutation
burden significantly increased, TP53 M2461 (AF = 0.37, likely oncogenic) arose, and a new
oncogenic JAK2 mutation (R683T, AF = 0.26) arose (the second relapse was testicular and
thus, sample was not available for engrafting), suggesting this tumor was driven by the JAK2
and TP53 oncogenic lesions. There was little change in mutational signature between
diagnosis to the first relapse, but following the third relapse, additional Signatures 2 (APOBEC),
7 (UV exposure), and 13 (APOBEC) were detected (Figure 41). The CRLF2-P2RY8 reciprocal

fusion persisted as the tumor evolved.
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Expression profiles of patient-derived xenograft models cluster by tissue of origin and contain
driver fusions

We used the UCSC TumorMap (Newton et al. 2017) to visualize clusters of expression
profiles across PDX histologies (Figure 5A). We observed clear separation among unrelated
histologies and overlapping clustering among related histologies. For example, T-ALL and
ETP-ALL cluster together as expected, but distinct from other ALL histologies. The leukemias
clustered by subtype and distinctly from solid tumors. Ewing sarcoma, neuroblastoma, Wilms,
and medulloblastoma form distinct clusters. Osteosarcomas cluster with two ASPS models.
Fusion+ and fusion- RMS cluster near each other but distinctly. Brain tumor histologies cluster
near each other with the exception of ATRTs, some of which cluster with extracranial rhabdoid
tumors near sarcoma samples. We identified histology-specific expression differences using a
Bayesian hierarchical model (Gelman, 2006), grouped related histologies under the same prior
distribution and ranked gene expression differences for each histology and performed Gene
Set Enrichment Analysis (GSEA). This demonstrated tissue-specific enrichment within each
histology using GSEA and the TissGDB (Kim, 2018) and TiGER (Liu, 2008) gene sets (Figure
5B). To investigate pathway enrichment within histologies, we ran GSEA using the MSigDB
curated (C2) gene sets and plotted the normalized enrichment scores (NES) for the Hallmark
pathway gene sets in Figure 5C.

Next, we searched for fusions in the RNA-Seq data using four algorithms: defuse,
FusionCatcher, STARFusion, and SOAPFuse. A total of 50,796 unique fusions were called and
we used the pipeline described in Figure 1D and STAR methods to define 925 unique high-
confidence fusions (Figure 5D and Table S7) and 92 unique known oncogenic driver fusions
defined by cytogenetics and literature (Table 1 and Figure 5E). Fusions were annotated for
frame and whether a gene partner is a known oncogene, kinase, or transcription factor to
identify oncogenic potential and functional relevance. We found that PPTC PDX models largely
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maintain known oncogenic driver fusions specific to their histology: all alveolar
rhabdomyosarcoma models harbored PAX3-FOXOT1 fusions, all Ewing sarcoma samples with
RNA-Seq data showed EWSR17-FLI1 fusions, all Ph+ ALL tumors contained BCR-ABL1

fusions, and KMT2A (MLL) fusions were detected in all MLL-ALL models (Table 1).
Osteosarcomas harbored TP53 fusions and breakpoints reside within intron one of the TP53
gene, a mechanism of TP53 inactivation which has been previously reported in osteosarcoma
(Ribi et al. 2015). In five diagnosis/relapse pairs, we detected four fusions in the diagnostic PDX
(PAX5-RP11-465M18.1, IGH-MYC, CIC-DUX4, and TP53-TNR) that were undetected in the
paired relapse model (Figure 3C), suggesting these specific gene fusions may have been

acquired after an alternative initiating event that was retained in each case.

Discussion

In this study we used whole exome, whole transcriptome, SNP genotyping arrays, and
STR profiling to genomically characterize 261 pediatric PDX models across 29 unique
histologies. We developed novel analytical pipelines to remove mouse reads from DNA or RNA
sequencing data and demonstrate high concordance between these pipelines and orthogonal
measurement of human:mouse DNA. We validated faithful recapitulation of primary and
relapsed disease within tumor of origin type through analysis of somatic mutations, copy
number alterations, RNA expression, gene fusions, and oncogenic pathways.

The genomic and gene expression data presented herein have immediate applications
to the prioritization of experimental agents for testing in pediatric preclinical models and in
potentially moving them forward for clinical testing. For example, there are reports identifying
specific genomic alterations as predicting sensitivity to ATR inhibitors, including ATM loss,
ARID1A mutation, defective homologous recombination, and ATRX mutation associated with

alternative lengthening of telomeres (ALT) (Lecona, 2018). Querying the PPTC data at
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PedcBioPortal can quickly identify models with these characteristics, and the models can then
be used to test whether in vivo responsiveness to ATR inhibitors is predicted by one or more of
the molecular characteristics. Similarly, PPTC RNA-seq data can be used to identify models
that show elevated gene expression for the targets of immunotherapy agents such as
antibody-drug conjugates and T cell engagers. As examples, in the PPTC dataset DLL3 shows
overexpression in selected neuroblastoma and medulloblastoma models (Sano, 2018), ROR1
shows overexpression in a subset of B-ALL and Ewing sarcoma models, and IL3RA (CD123)
shows overexpression in many B-ALL models. The PPTC RNA-seq dataset was also used to
identify T-ALL as a target histology for an agent activated by the aldo-keto reductase AKR1C3
(Lock, 2018) and to identify alveolar soft part sarcoma (ASPS) xenografts as intrinsically
overexpressing CD274 (PD-L1), making ASPS a target histology for the evaluation of
checkpoint inhibition (OSullivan, 2018).

Further, we performed machine learning to classify tumors into TP53 and NF1 active or
inactive and we suggest that these scores might be future biomarkers for drug response.
These classifiers have been used to identify tumors that may respond to novel agents,
including those that target tumors driven by NF1 loss (Way, 2017). Although these machine
learning algorithms are not ready for the clinic, the next logical step is to use PDX models to
test the predictive nature of classifiers so that in the future, interdisciplinary teams can identify
tumors driven by TP53 and/or NF1 loss, evaluate, and compare multiple therapies in real time.

Our study also highlights additional opportunities for pan-pediatric genomic
characterization. We did not have available models for acute myelogenous leukemia, juvenile
myelomonocytic leukemia, lymphomas, retinoblastoma, melanoma, or thyroid malignancies.
Additionally, although we covered 29 histotypes, many of the rare tumors had low numbers
and could benefit from creation and sequencing of additional models, and we seek to generate
these data and/or hope to merge our data with future pediatric cancer PDX sequencing
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projects. Finally, WES likely missed several pathogenic lesions, and DNA methylation profiling
is particularly relevant for pediatric brain tumors. Future studies, perhaps in collaboration with
ongoing similar efforts by international colleagues, could address these gaps.

We performed this project to provide a resource to the pediatric cancer research
community. To date, the pediatric cancer genomic literature largely focuses on diagnostic
samples, and this study includes a large number of PDXs derived during or after intensive
chemoradiotherapy. Thus, the frequency of many genomic alterations is higher in these models
compared to the literature. By having a large number of PDXs obtained from samples at
relapse or at autopsy, we can provide models that more closely recapitulate the patients being
enrolled on early phase clinical trials after extensive chemoradiotherapy. All models are readily-

available from the Children’s Oncology Group (www.CCCells.org) supported by ALSF or

request to Pl and data are openly-available from https://pedcbioportal.org/study?id=pptc for

the pediatric oncology community.
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Main Figure and Table Legends

Figure 1. Analysis pipeline for somatic mutations, gene expression, RNA fusions, and
copy number profiling in pediatric PDX tumors. Figure 1 displays an overview of analysis
methods utilized. Genomic DNA from PDX tumors was used for SNP array copy number
analysis (A, N = 252), short-tandem repeat identity testing (B, N = 261), quantitative PCR to

assess human:mouse DNA content (B, N = 35), and whole exome sequencing (C, N = 240).
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Total RNA from PDX tumors was used for whole transcriptome sequencing (D, N = 244). See

Table S1 for Ns per assay per histology and Table S2 for STR profiles.

Figure 2. Patient-derived xenograft models recapitulate the mutational landscape of
childhood cancers.

Oncoprints of somatic alterations (homozygous deletions, amplifications, SNVs, and fusions) in
known driver genes for PDX models for which exome sequencing was performed (N = 240, top
20 genes per histology shown, or fewer if total < 20). Oncoprints are grouped by acute
lymphoblastic leukemia (A: From left to right are B-cell precursor ALLs (N = 37), early T-cell
precursor (ETP) and T-cell ALLs (N = 25), Philadelphia chromosome-like (Ph-like) and
Philadelphia chromosome positive (Ph+) ALLs (N = 18), and mixed lineage leukemias (MLL, N =
10)), central nervous system (B: From left to right are: astrocytic tumors, comprised of
astrocytoma (N = 4) and glioblastoma (GBM, N = 3), atypical teratoid rhabdoid tumor (ATRT, N
= 8) and extracranial rhabdoid tumors (N = 4), medulloblastomas (N = 8), non-medulloblastoma
embryonal tumors comprised of embryonal tumor with multilayered rosettes, C19MC-altered
(ETMR, N = 3), CNS Ewing sarcoma family tumor with CIC alteration (CNS EFT-CIC, N = 2),
ependymoblastoma (N = 1), and CNS embryonal tumor not-otherwise specified (CNS
embryonal tumor NOS, N = 1), and ependymomas (N = 5)), and extracranial solid tumors (C:
From left to right are osteosarcomas (N = 34), Ewing sarcomas (N = 10), Wilms tumors (N = 13),
fusion negative rhabdomyosarcomas (N = 6), fusion positive rhabdomyosarcomas (N = 6),
neuroblastomas (N = 35), and rare tumors (N = 7)). Clinical annotations for all models include:
histology, patient phase of therapy from which PDX was derived, sex, and age. Additional
histology-specific annotations include: TP53 classifier score for osteosarcoma models, 1p, 1q,
11p13, 11p15.5, 16q, and Xq11.2 status for Wilms tumor models, and 1p36.33, 11g24.3, and

17921.2 status for neuroblastoma models. Hemizygous deletions in TP53 are annotated for
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osteosarcoma models, in CDKNZ2A for leukemia models, and in WT71 for Wilms tumor models.
See Table S2 for driver gene lists. For BCP-ALL, T/ETP-ALL, Ph+/-like-ALL, and

osteosarcomas, only mutations observed in more than one model are depicted.

Figure 3. TMB and clonal evolution. Models derived from relapsed tumors contain a
significantly higher number of mutations compared to models derived from diagnostic tumors
(A, Wilcoxon p = 0.002, Ngiagnosis = 151, Nreiapse = 77). Panel B depicts frequencies of SNVs within
genes of interest for primary and relapse T-ALL (Ngiagrosis = 17, Nretapse = 8), BCP-ALL (Naiagnosis =
21, Nreiapse = 16), osteosarcoma (Naiagnosis = 25, Nreiapse = 6), and neuroblastoma (Ngiagnosis = 12,
Nprogressing = 13, Nreipse = 10) models compared to literature frequencies reported for primary
tumors (blue = diagnosis, red = relapse, intensity scaled to highest value within each phase
and histology; copy number variation and fusions not available for each source and not
included). Frequency of genes altered within the primary PPTC cohort are concordant with
primary tissue results reported in the literature and frequencies of major driver genes increase
in relapse tumors (T-ALL: NOTCH1; BCP-ALL: KMT2D, JAK2, TP53, ETV6; Osteosarcoma:
TP53, ATRX, IGF1R; Neuroblastoma: ALK, PTPN11, ATM, TP53). Panel C depicts scatterplots
of mutant allele frequencies for matched diagnosis/relapse models (blue = early-specific
mutations, grey = mutations common at diagnosis and relapse, red = late-specific mutations).
Only mutations for genes of interest per histology and fusions are annotated. There increase in
mutational burden upon relapse in each pair (D) was significant (E, Wilcoxon p = 0.0083,

NdiaQHOSiS = 12, Nrelapse = 13)

Figure 4. Expression and mutational signatures classify pediatric PDX models for TP53
inactivation, NF1 inactivation, and defective DNA repair. Only TP53 and NF1 classifiers

performed well in our dataset (A, AUROGpss = 0.89, AUROCkr1 = 0.77, AUROCk.s = 0.58). B,
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TP53 scores are significantly higher (Wilcoxon p < 2.2e-16) in models with genetic aberrations
in TP53 (mean score = 0.747) compared to those without alterations (mean score = 0.459). C,
Classifier scores are plotted by TP53 pathway gene aberration and variant classification (D). In
osteosarcoma models, most scores, regardless of variant type or gene, were predicted active
(E). Overall copy number burden (number of breakpoints calculated from SNP array data, STAR
methods) correlates significantly with TP53 classifier score (F, R = 0.54, p = 2.0e-19). G,
Somatic mutational signatures (STAR methods) for models containing > 50 mutations are
plotted as cumulative barplots for signatures defined by 5-methylcytosine deamination
(Signature 1), impaired DNA repair (Signatures 3, 6, 15, 20, and 26), hypermutation and/or
microsatellite instability (Signatures 9, 10, 14, and 21), or APOBEC (Signature 2 and 13). Panel
H displays an increased mutational load (total mutations) upon the third relapse (NaiagnosisaLL-102)
= 23, Nrepset(aLi-105) = 21, Nreiapsesari-115 = 127). Panel | shows signatures 2 (APOBEC), 7 (UV

exposure), and 13 (APOBEC) arose between the first and third relapse.

Figure 5. Expression profiles of patient-derived xenograft models cluster by tissue of
origin and contain driver fusions. TumorMap rendition of PDX RNA-Seq expression matrices
by histology (A) and hierarchical clustering depict tissue-specific enrichment within each
histology (B, NES = normalized enrichment score). Gene set enrichment analysis for Hallmark
pathways (C) demonstrate histology-specific biologic processes significantly altered (samples
grouped by prior and process). Venn diagram of RNA fusion overlap among four algorithms (D)
and high-confidence fusion totals (E) demonstrate a higher overall number of fusions in
hematologic malignancies (boxplots are graphed as medians with box edges as first and third

quartiles; detailed Ns in Table S4).
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Table 1. Fusions in known driver genes that were detected in this PDX dataset. Following

rigorous filtering (Figure 1D, STAR Methods), 92 unique fusions in 101 unique models were

found in known histology-specific driver genes.

Histology Fusion

Models

ASPS (n=2) ASPSCR1-TFE3

ASPS-KY, NCI-ASPS

ASPS (n=2) TFE3-ASPSCR1

ASPS-KY, NCI-ASPS

BCP-ALL (n=37) AL122127.25-IGH

ALL-122

BCP-ALL (n=37) AUTS2-PAX5 ALL-51, ALL-75
BCP-ALL (n=37) BCR-JAK2 PAKYEP
BCP-ALL (n=37) CLEC2D-IGH ALL-122, ALL-75

BCP-ALL (n=37)

CRLF2-CLVS1

ALL-50

BCP-ALL (n=37)

CRLF2-P2RYS8

ALL-102, ALL-105, ALL-115

BCP-ALL (n=37)

CXCR4-TCF3

ALL-75

BCP-ALL (n=37)

ETV6-RUNX1

ALL-11, ALL-123, ALL-26,
ALL-53, ALL-58, ALL-82, ALL-

83, ALL-87

BCP-ALL (n=37)

HMGN2P46-ETV1

ALL-52

BCP-ALL (n=37)

IGH-CLEC2D

ALL-122, ALL-75
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BCP-ALL (n=37) IGH-CRLF2 PALNTB
BCP-ALL (n=37) IGHVIII-13-1-IGH ALL-53
BCP-ALL (n=37) IKZF1-AC020743.3 ALL-17
BCP-ALL (n=37) IKZF1-COBL ALL-93
BCP-ALL (n=37) IKZF1-DDC PALNTB
BCP-ALL (n=37) JAK2-PAX5 ALL-88
BCP-ALL (n=37) JAK2-RP11-260018.1 PAKYEP
BCP-ALL (n=37) NUP214-ABL1 ALL-19

BCP-ALL (n=37)

P2RY8-CRLF2

ALL-102, ALL-105, ALL-115

BCP-ALL (n=37)

PAX5-AL034550.1

ALL-95

BCP-ALL (n=37)

PAX5-AUTS2

ALL-51, ALL-75

BCP-ALL (n=37) PAX5-C200rf112 ALL-95
BCP-ALL (n=37) PAX5-JAK2 ALL-88
BCP-ALL (n=37) PAX5-NBPF8 ALL-54
BCP-ALL (n=37) PAX5-NOLA4L ALL-95
BCP-ALL (n=37) PAX5-RP11-465M18.1 ALL-25

BCP-ALL (n=37)

PBX1-TCF3

ALL-25, ALL-61
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BCP-ALL (n=37) RP11-166D19.1-IGH ALL-60
BCP-ALL (n=37) RP11-434C1.1-ETV6 ALL-17
BCP-ALL (n=37) RUNX1-BORCS5 ALL-11
BCP-ALL (n=37) RUNX1-EMP1 ALL-26
BCP-ALL (n=37) RUNX1-ETV6 ALL-123, ALL-26, ALL-58,
ALL-82, ALL-83, ALL-87
BCP-ALL (n=37) TCF3-HLF ALL-07
BCP-ALL (n=37) TCF3-PBX1 ALL-25, ALL-57, ALL-61
CNS EFT-CIC (n=2) CIC-DUX4 ICb-9850PNET

CNS germinoma (n=1)

NFIA-CBFA2T3

IC-9320GCT

Ependymoma (n=6)

CFAP300-YAP1

IC-9635EPN, ICb-10614EPN

ETMR (n=3) DPRX-TTYH1 IBs-2373PNET

ETMR (n=3) TTYH1-DPRX IBs-2373PNET

ETMR (n=3) TTYH1-LAIR1 IBs-2373PNET
ETP-ALL (n=6) KMT2A-AFDN ETP-5
ETP-ALL (n=6) LMAN2-PTMA ETP-3
ETP-ALL (n=6) RP11-434C1.1-ETV6 ETP-1
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Ewing Sarcoma (n=9) EWSR1-FLI1 CHLA-258, ES-1, ES-4, ES-6,

ES-8, EW-5, EW-8, SK-NEP-

1, TC-71
Ewing Sarcoma (n=9) FLIT-EWSR1 EW-5
Ewing Sarcoma (n=9) RP11-9L18.2-FLI1 CHLA-258
Fusion+ RMS (n=6) FOXO1-PAX3 Rh-10
Fusion+ RMS (n=6) PAX3-FOXO1 NCH-ARMS-2-NCH-S13-

7484, Rh-10, Rh-30, Rh-30R,

Rh-41, Rh-65
Glioblastoma (n=4) RP11-434C1.1-ETV6 IC-1621GBM
MLL-ALL (n=10) AFF1-KMT2A MLL-7, MLL-86
MLL-ALL (n=10) KMT2A-AFF1 MLL-2, MLL-7, MLL-86
MLL-ALL (n=10) KMT2A-EPS15 MLL-1
MLL-ALL (n=10) KMT2A-GAS7 MLL-3
MLL-ALL (n=10) KMT2A-MLLT1 ALL-03, MLL-14, MLL-6,
MLL-8
MLL-ALL (n=10) KMT2A-MLLT10 MLL-5
MLL-ALL (n=10) KMT2A-PTPRC MLL-7
MLL-ALL (n=10) PTPRC-KMT2A MLL-7
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Osteosarcoma (n=30) CREBZF-DLG2 0S-48
Osteosarcoma (n=30) MACF1-TP53 0S-49-SJ
Osteosarcoma (n=30) MAP4-RB1 0S-1
Osteosarcoma (n=30) PTEN-DGKB 0S-33
Osteosarcoma (n=30) RB1-DLEU1 0Ss-60
Osteosarcoma (n=30) RB1-LINC00462 0S-55-SBX
Osteosarcoma (n=30) RB1-MAP4 0S-1
Osteosarcoma (n=30) RB1-RP11-165D7.3 0S-33
Osteosarcoma (n=30) TP53-CLIC5 0S-31
Osteosarcoma (n=30) TP53-HPCA 0S-49-SJ
Osteosarcoma (n=30) TP53-NAA38 0S-47-SJ
Osteosarcoma (n=30) TP53-REC114 0S-29, 0S-9
Osteosarcoma (n=30) TP53-RNF111 0S-48
Osteosarcoma (n=30) TP53-RP11-770G2.2 0S-34, 0S-34-SJ
Osteosarcoma (n=30) TP53-TNR 0Ss-32
Osteosarcoma (n=30) ZFP91-DLG2 0S-55-SBX
Ph-likeALL (n=15) ATF7IP-JAK2 ALL-117
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Ph-likeALL (n=15)

CRLF2-IGHM

PAKRSL

Ph-likeALL (n=15)

CRLF2-P2RYS8

ALL-10, ALL-107, ALL-108,

PALKTY
Ph-likeALL (n=15) IGH-CRLF2 PAKRSL, PAMDRM
Ph-likeALL (n=15) IKZF1-DDC PALLSD
Ph-likeALL (n=15) JAK2-ATF7IP ALL-117
Ph-likeALL (n=15) JAK2-INSL4 ALL-118
Ph-likeALL (n=15) JAK2-PAX5 ALL-116, ALL-118

Ph-likeALL (n=15)

P2RY8-CRLF2

ALL-10, ALL-107, ALL-108,

PALKTY

Ph-likeALL (n=15)

PAX5-JAK2

ALL-116, ALL-118

Ph-likeALL (n=15)

ZCCHC7-PAX5

ALL-107, PALLSD

Ph+-ALL (n=3) ABL1-BCR ALL-04, ALL-55, ALL-56
Ph+-ALL (n=3) BCR-ABL1 ALL-04, ALL-55, ALL-56
T-ALL (n=19) IGH-LMO2 ALL-33
T-ALL (n=19) IGH-MYC ALL-46
T-ALL (n=19) LMO1-TRAC ALL-47
T-ALL (n=19) LMO1-TRB ALL-81
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T-ALL (n=19) LMO1-TRBC1 ALL-80, ALL-81
T-ALL (n=19) LMO1-TRBC2 ALL-31, ALL-80, ALL-81
T-ALL (n=19) NUP214-ABL1 ALL-32, ALL-90
T-ALL (n=19) TAL1-TRB ALL-97

T-ALL (n=19) TAL1-TRBC1 ALL-97

T-ALL (n=19) TAL1-TRBC2 ALL-97

T-ALL (n=19) TRD-GTC9-1-LMO1 ALL-47

Wilms (n=12) TP53-FXR2 KT-9

Supplemental Figure and Table Legends.

Figure S1. Histology and mutational breakdown, Related to Figure 1. Pie charts showing
breakdown of phase of therapy (A) and histology (B) for 261 PDX models. Variant classification
breakdown (C), variant type breakdown (D), percent of mutations by nucleotide change (E),
percent transitions (Ti) and transversions (Tv) (F), histogram of variants per sample (median =
133) (G), and top 10 genes mutated (H, x-axis = number of mutations, colors explained by C).
Median number of small insertions and deletions (indels) were plotted per histology (I, box
edges as first and third quartiles; detailed Ns in Table S4). J, same-phase scatterplots for
model pairs created at the same phase of therapy (blue = diagnostic samples, red = relapse
samples, grey = common mutations between two models plotted), K, total mutations in OS-26

and OS-36-SJ relapse samples.
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Figure S2. Ethnicity prediction, Related to Figure 1. Principal components analysis grouping
of European, African, East Asian, and South Asian/Hispanic HapMap reference populations
used to predict PDX ethnicities (A). The first two principal components calculated from SNP
array genotypes for 252 PDX models (circles) are plotted alongside 1,184 HapMap reference
samples (triangles). Dashed boxes represent the cutoffs used to classify PDXs into four broad
population groups: European (including HapMap CEU and TSI population samples), African
(ASW, LWK, MKK, and YRI), East Asian (CHB, CHD, and JPT), and South Asian or Hispanic
(GIH and MXL). Tabulated counts and frequencies of ethnicities in PDX cohort (B) and a
comparison table of reported versus inferred ethnicities in the PDX cohort (C).

Figure S3. Genetic alteration evidence, Related to Figure 2. ATRX expression by exon for
transcripts ENST00000373344.5, ENST00000395603.3, and ENST0000480283.1 derived from
WES showing deletions in ETP-1, 0S-41, OS-45-TSX-pr1, OS-60, and COG-N-625x (A, STAR
Methods). Lollipop plots for ocogenic mutations in DNA repair genes, PMS1 and MSH2 for
hypermutated model, IC-1621GBM (B). Gene expression for SMARCB1 across ATRT and
previously-classified PNET models (C), LIN28A for previously-classified PNET models (D), and
H3F3A, H3F3B, HIST1H3B, and HIST1H3C for DIPG models (E). Nexus screenshots of the
TP53 locus in Ewing’s tumor models to validate homozygous or hemizygous deletions and loss
of heterozygosity (F). Nexus screenshot of TP53 deletion and breakpoints for TP53-FXR2
fusion in KT-9 (G). MYOD1 gene expression across rhabdomyosarcoma models (H). Rainfall

plots for samples with predicted APOBEC signatures: ALL-58, ALL-115, and OS-43-TPMX (I).

Figure S4. Copy number, TMB, and tumor evolution. Related to Figures 2 and 3. Figure 5

depicts genome-wide copy-number profiles for histologies with N 2 10 models (Panel A, solid

tumors: Ewing sarcoma, N = 10; Medulloblastoma, N = 18; Neuroblastoma, N = 35;
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Osteosarcoma, N = 34; Wilms, N = 12 and Panel B, leukemias: BCP-ALL, N = 36; MLL-ALL, N

= 10; Ph+ or Ph-like ALL, N = 18; T-ALL, N = 19). Canonical broad and focal lesions are

annotated by histology. Breakpoints per histology are plotted in C (boxplots are graphed as

medians with box edges as first and third quartiles; detailed Ns in Table S4) and breakpoint

density across histologies is plotted in D (displayed as percent of models per histology and N /

total; details in Table S4). Tumor mutation burden by histology across 240 models on which

WES was performed (E, STAR methods). Histologies are plotted in rank order by median (y-

intercept) and Ns per histology are listed. Tumor mutation burden by phase of therapy for

histologies containing models from diagnosis and relapse (F). Boxplots represent median and

first and third quartiles; Ns listed.

Figure S5. Classifier scores and mutational signature correlations, Related to Figure 4.
With osteosarcoma models removed from analysis, TP53 classifier scores were still
significantly higher (Wilcoxon p = 4e-12) in models with a TP53 alteration (A), but alterations in
other pathway genes don’t consistently phenocopy TP53 inactivation (B). Models containing
fusions had highest classifier scores, followed by models with SNVs and CNVs, respectively (C,
Kruskal-Wallis p = 9.8e-11) and these are broken down by gene in panel D. Validation of
mutational signatures via Pearson correlation matrix: Signatures 2 and 13 correlate strongly (R
= 0.6), Signature 1 is inversely correlated with impaired DNA repair mutational signatures, 3 (R

= -0.41) and 6 (R = -0.54) (E).
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Table S1. Clinical, mouse, and metadata associated with 261 PDX models. Related to
Figures 1, 2, and 3. Breakdown of models per histology by assay performed and tables of
clinical, mouse, and data file information for the PDX models described in this paper. Paired

samples derived from the same patient are listed.

Table S2. STR profiles for 261 PDX models. Related to Figure 1. Geneprint 24 short tandem
repeat profiles for all models described in this paper, along with all available laboratory, web,
and published reference profiles.

Table S3. Genes inspected for artifacts. Related to Figure 2. MutSigCV results and
determination of artifactual mutations in genes were annotated.

Table S4. Summary mutation and demographics per model. Related to Figures 2, 5, and
6. Mutations per model, mutations per megabase, breakpoints, high breakpoint density, and
fusions are listed per model. Ages are summarized by histology. Summary statistics are listed
within the table.

Table S5. Driver gene of interest lists, driver fusions, and oncoprint matrices. Related to
Figure 2. Lists of driver genes and literature sources used for oncoprint plots. The rare
histology oncoprint was created using’ all genes as input. Genes creating canonical oncogenic
fusions or known oncogenic fusions are listed per histology. Oncoprint matrices for Figure 2
are provided.

Table S6. Classifier scores for TP53, NF1, and Ras. Related to Figure 4. Listed are all
osteosarcoma tumors on which RNA-Seq was performed (N = 30). All except OS-55-SBX
(score = 0.44) had scores predictive of TP53 pathway inactivation. Genetic alterations within
TP53, CDKN2A, MDM2, MDM4, GORAB, ATM, ATR, RB1, CHEK1, and CHEK2 are listed as

potential evidence of TP53 inactivation in these models. Classifier and scores resulting from a
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shuffled gene expression matrix for each PDX model for which RNA-Seq was performed (N =
244). Raw, unfiltered COSMIC 30 mutational signature weights for all PDX models for which
WES was performed (N = 240).

Table S7. High-confidence fusion predictions. Related to Figure 5. Filtered driver gene
fusions and high-confidence fusions for which at least one gene partner was expressed
(pipeline in Figure 1D and STAR methods). Fusions were annotated for being a kinase,
transcription factor, or gene with oncogenic potential. FPKM of each fusion partner is listed

and fusions without any expression were removed.

CONTACT FOR REAGENT AND RESOURCE SHARING
Further information and requests for resources and reagents should be directed to and will be
fulfilled by the Lead Contact, John M. Maris (maris@email.chop.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Patient-Derived xenograft generation and harvesting

Patient-derived xenograft models from the Pediatric Preclinical Testing Program (PPTP) were
generated as described (Whiteford et al. 2007; Houghton et al. 2007; Houghton et al. 2002).
Briefly, CB17/Icr scid-/- mice (Taconic Farms, Germantown NY), subcutaneously engraft
kidney/rhabdoid  tumors, sarcomas (Ewing, osteosarcoma, rhabdomyosarcoma),
neuroblastoma, and non-glioblastoma brain tumors. For CNS tumors, patient tumor was
surgically-transplanted into RAG2/SCID mouse brains in the diagnosis-specific orthotopic
location as previously described (Yu et al. 2010). Whole murine brains containing visible tumors
were aseptically removed and transferred to the tissue culture laboratory. Tumors were
microscopically dissected from surrounding brain tissue, mechanically dissociated into cell
suspensions, and filtered. Single tumor cells were subsequently injected into the brains of SCID
mice as described above. Sub-transplantation process was repeated to complete a total of five
tumor passages. All animal experiments were conducted according to an Institutional Animal
Care and Use Committee-approved protocol. All leukemia animal experimentation was approved
by the Animal Care and Ethics Committee, UNSW Sydney (Sydney, Australia). Experiments used
continuous PDXs established previously in 20-25 g female non-obese diabetic/severe combined
immuno-deficient (NOD.CB17-Prkdcs““/SzJ, NOD/SCID) or NOD/SCID/interleukin-2 receptor y—
negative (NOD.Cg-Prkdcs l12rg™"/SzJ, NSG) mice, as described previously. Briefly, leukemia
cells were inoculated intravenously into 6-8 week-old NOD/SCID or NSG mice (Australian
BioResources, Moss Vale, NSW, Australia) and leukemia burden monitored via enumeration of
human CD45* (%huCD45") cells versus total CD45* leukocytes (human plus mouse) in the
peripheral blood (PB) and tissues, as outlined previously (Lock et al. 2002; Liem et al. 2004).
Additional details per model are included in Table S1.

METHOD DETAILS
Nucleic acid extractions and quality control
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PDX samples were submitted from Children's Cancer Institute, Children's Hospital of
Philadelphia, Greehey Children’s Cancer Research Institute, and Montefiore Medical Center to
the Nationwide Children’s Hospital Biospecimen Core Resource at -190°C using an MVE
cryoshipper. Cytospins and H&E frozen sections were prepared from leukemia and solid tissue
PDX specimens, respectively. Slides were assessed by board-certified pathologists to determine
blast percentage in leukemia PDX samples, and percent tumor nuclei and necrosis of the solid
PDX samples. DNA and RNA were co-extracted from the PDXs using a modification of the
DNA/RNA AllPrep kit (Qiagen). The flow-through from the Qiagen DNA column was processed
using a mirVana miRNA Isolation Kit (Ambion). DNA was quantified by PicoGreen assay and RNA
samples were quantified by measuring Absze with a UV spectrophotometer. DNA specimens
were resolved by 1% agarose gel electrophoresis to confirm high molecular weight fragments.
RNA was analyzed via the RNA6000 Nano assay (Agilent) for determination of an RNA Integrity
Number (RIN). The PPTC study committee reviewed the pathology and molecular QC data and
selected DNA and RNA aliquots for sequencing.

Short tandem repeat (STR) profiling

Each tumor DNA sample was subjected to STR profiling performed by Guardian Forensic
Sciences. DNA samples were quantified using Qiagen Investigator Quantiplex Kit (Cat# 387018)
on a Qiagen RotorGene Q instrument. The GenePrint24 System for STR profiling (Promega,
Cat#B1870) was used to amplify 0.05 ng of template DNA in a 12.5 pL volume using the following
conditions: 96 °C for 1 minute, 27 cycles of {94 °C for 10 seconds, 59 °C for 1 minute, 72 °C for 30
seconds}, 60 °C for 10 minutes using the RotorGene Q instrument. Samples were injected into
the Applied Biosystems ABI 310 Genetic Analyzer and profiles were interpreted by forensic
biologists. Only those samples deemed not misidentified and free of contamination were used in
this study.

Biochemical measurement of human DNA content in PDX tumors

To determine the composition of human and mouse DNA within PDX tumors, PDX DNA samples
were amplified using modified version of the published pTGER2 (prostaglandin E receptor 2)
gPCR assay (Alcoser et al. 2011). Depending upon sample availability, 2-20 ng of PDX tumor
DNA were added to 500 nM each human- and mouse-specific forward primers, reverse primers,
probes (sequences in resource document) and 1X IDT PrimeTime Gene Expression 2X
Mastermix (Integrated DNA Technologies) in a total of 20 uL. Reactions were thermalcycled at
95 °C for 8 min and 42 cycles of {95 °C for 15 sec, 64 °C for 1 min}. Five-point standard curves
were performed using a mixture of CHLA-90 and COG-N-603 neuroblastoma cell lines as
human-specific template and pooled liver/spleen/muscle DNA from a naive NU/NU mouse as
the mouse-specific template to confirm each primer efficiency was between 90-110%. The DNA
equivalent of one diploid copy of either mouse or human template was run as a reference
template. Three technical replicates were performed for each standard and sample. Average Cr
values of the reference DNA samples were used as “ground truth” Cr values for one DNA copy.

. . T
To estimate relative copy number, 2‘AC values were calculated for each unknown for each
species: . To estimate percent human content, the following equation was used: .

Whole exome sequencing

lllumina paired-end pre-capture libraries were constructed from PDX DNA samples according to
the manufacturer’s protocol (lllumina Multiplexing_SamplePrep_Guide_1005361_D) modified as
described in the BCM-HGSC lllumina Barcoded Paired-End Capture Library Preparation
protocol. The complete protocol including oligonucleotide sequences used as adaptors and
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blockers are accessible from the HGSC website
https://www.hgsc.bcm.edu/sites/default/files/documents/Protocol-
lllumina_Whole_Exome_Sequencing_Library_Preparation-KAPA_Version_BCM-HGSC_RD_03-
20-2014.pdf. The DNA sequence production is described briefly below.

Library Preparation. 500 ng (or 250 ng if sample quantity was limiting) of DNA in 50ul
volume were sheared into fragments to an average size of 200-300 bp in a Covaris plate with
E220 system (Covaris, Inc. Woburn, MA) followed by end-repair, A-tailing and ligation of the
lllumina multiplexing PE adaptors. Pre-capture Ligation Mediated-PCR (LM-PCR) was
performed for 6-8 cycles using the Library Amplification Readymix containing KAPA HiFi DNA
Polymerase (Kapa Biosystems, Inc.). Universal primer LM-PCR Primer 1.0 and LM-PCR Primer
2.0 were used to amplify the ligated products. Reaction products were purified using 1.8X
Agencourt AMPure XP beads (Beckman Coulter) after each enzymatic reaction. Following the
final 1.2X Agentcourt XP beads purification, quantification and size distribution of the pre-capture
LM-PCR product was determined using Fragment Analyzer capillary electrophoresis system
(Advanced Analytical Technologies, Inc.).

Capture Enrichment. Four pre-capture libraries were pooled together (~750 ng/sample, 3
ug/pool) and then hybridized in solution to the HGSC VCRome 2.1 design1 (Bainbridge et al.
2011) according to the manufacturer’s protocol NimbleGen SeqCap EZ Exome Library SR User’s
Guide (Version 2.2) with minor revisions. Probes for exome coverage across >3,500 clinically
relevant genes that are previously <20X (~2.72Mb) is supplemented into the VCRome 2.1 probe.
Human COT1 DNA was added into the hybridization to block repetitive genomic sequences.
Blocking oligonucleotides from Sigma (individually sequence specifically synthesized) or xGen
Universal Blocking oligonucleotides (Integrated DNA Technologies) were added into the
hybridization to block the adaptor sequences. Hybridization was carried out at 560C for ~16h.
Post-capture LM-PCR amplification was performed using the Library Amplification Readymix
containing KAPA HiFi DNA Polymerase (Kapa Biosystems, Inc.) with 12 cycles of amplification.
After the final AMPure XP bead purification, quantity and size of the capture library was analyzed
using the Agilent Bioanalyzer 2100 DNA Chip 7500. The efficiency of the capture was evaluated
by performing a gPCR-based quality check on the four standard NimbleGen internal controls.
Successful enrichment of the capture libraries was estimated to range from a 6 to 9 of ACy value
over the non-enriched samples.

DNA Sequencing. Library templates were prepared for sequencing using lllumina’s cBot
cluster generation system with TruSeq PE Cluster Generation Kits (lllumina) according to the
manufacturer’s protocol. Briefly, these libraries were denatured with sodium hydroxide and
diluted to 6-9 pM in hybridization buffer in order to achieve a load density of ~800K clusters/mm?.
Each library pool was loaded in a single lane of a HiSeq flow cell, and each lane was spiked with
1% phiX control library for run quality control. The sample libraries then underwent bridge
amplification to form clonal clusters, followed by hybridization with the sequencing primer.
Sequencing runs were performed in paired-end mode using the lllumina HiSeq 2000 platform.
Using the TruSeq SBS Kits (lllumina), sequencing-by-synthesis reactions were extended for 101
cycles from each end, with an additional 7 cycles for the index read. With sequencing yields
averaging 12.1 Gb per sample, samples achieved an average of 97. 64% of the targeted exome
bases covered to a depth of 20X or greater.

Primary Data Analysis. Initial sequence analysis was performed using the HGSC Mercury
analysis pipeline (Challis et al. 2012; Reid et al. 2014). In summary, the .bcl files produced on-
instrument were first transferred into the HGSC analysis infrastructure by the HiSeq Real-time
Analysis module. Mercury then ran the vendor’s primary analysis software (CASAVA) to de-
multiplex pooled samples and generate sequence reads and base-call confidence values
(qualities), followed by the mapping of reads to the GRCh37 Human reference genome
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(http://www.ncbi.nlm.nih.gov/projects/genome/assembly/grc/human/) using the Burrows-
Wheeler aligner (Li & Durbin 2010). The resulting BAM (binary alignment/map) file underwent
quality recalibration using GATK, and where necessary the merging of separate sequence-event
BAMs into a single sample-level BAM. BAM sorting, duplicate read marking, and realignment to
improve in/del discovery all occur at this step. Next, Atlas-SNP and Atlas-indel from the Atlas2
suite (Shen et al. 2010) were used to call variants and produce a variant call file (VCF). Finally,
annotation data was added to the VCF using a suite of annotation tools “Cassandra”
(https://www.hgsc.bcm.edu/software/cassandra) that brings together frequency, function, and
other relevant information using AnnoVar with UCSC and RefSeq gene models, as well as a host
of other internal and external data resources.

SNP array assay

In brief, 200 ng of genomic DNA were denatured with NaOH, followed by isothermal whole
genome amplification at 37°C for 20-24 hours. The amplified DNA was enzymatically fragmented
and hybridized to the BeadChip for 16-24 hours at 48°C (24 samples were processed in parallel
for each BeadChip). After a series of washing steps to remove unhybridized and non-specifically
hybridized DNA fragments, allele-specific single-base extension reactions were performed to
incorporate labeled nucleotides into the bead-bound primers. A multi-layer staining process was
conducted to amplify signals from the labeled extended primers, and then the coated beads
were imaged with the lllumina iScan system.

Chip types used were humanomniexpress-24-vi-1-a.bpm and InfiniumOmniExpress-24v1-
2_A1.bpm.

Whole transcriptome sequencing

Whole-transcriptome RNA sequencing (RNA-seq) was performed using total RNA extracted as
described above. Strand-specific, poly-A+ RNA-seq libraries for sequencing on the lllumina
platform were prepared as previously described with minor modifications (Wang et al. 2015;
Peters et al. 2015). RNA Integrity was confirmed (RIN >7.0) on a Bioanalyzer (Agilent). Briefly,
poly-A+ mRNA was extracted from 1 pg total RNA using Oligo(dT)25 Dynabeads (Life
Technologies), to which 4 pL of 1:100 dilution of the ERCC spike-in mix 1 (Ambion, Life
technologies) was already added (Baker et al. 2005). There are a total of 92 poyladenylated
transcripts in this mix that are used to monitor sample and process consistency. mRNA is then
fragmented by heat at 94 °C for 15 minutes or less depending on sample RIN. First strand cDNA
was synthesized using NEBNext RNA First Strand Synthesis Module (New England BioLabs) and
during second strand cDNA synthesis, dNTP mix containing dUTP was used to introduce strand-
specificity with NEBNext Ultra Directional RNA Second Strand Synthesis Module (New England
BioLabs). For lllumina paired-end library construction, the resultant cDNA is processed through
end-repair and A-tailing, ligated with lllumina PE adapters, and then digested with 10 units of
Uracil-DNA Glycosylase (New England BiolLabs). Libraries are prepared on the Beckman BioMek
FXp robots and amplification of the libraries was performed for 13 PCR cycles using the Phusion
High-Fidelity PCR Master Mix (New England BiolLabs); 6-bp molecular barcodes that were also
incorporated during this step. Libraries were purified with Agencourt AMPure XP beads
(Beckman Coulter) after each enzymatic reaction, and after PCR amplification, and were
quantified using Fragment Analyzer electrophoresis system. Libraries were pooled in equimolar
amounts (4 libraries/pool). Library templates were prepared and sequenced exactly as described
above for DNA Sequencing. Sequencing runs generated approximately 300-400 million
successful reads on each lane of a flow cell, yielding 75-100M reads per sample.
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QUANTIFICATION AND STATISTICAL ANALYSIS

Mouse read subtraction from WES sequencing data

Raw fastq files (n = 240) from Whole exome sequencing data were aligned to a combined hybrid
genome of human hg19 and mouse mm10 genomes using the Burrows-Wheeler transformation
algorithm (BWA v0.7.17-r1188). Reads overlapping specifically to either the human or mouse
genome were extracted and separated in corresponding human and mouse bam files using
Samtools v1.9. The mouse subtracted bam files containing reads specific to human genome
were then sorted by name and only paired reads were kept using the Samtools parameter -f 1.
Following this, duplicated reads were removed using Sambamba v0.6.6. The deduplicated bam
files were then used as input for local realignment around indels using IndelRealigner and base
quality score recalibration using BaseRecalibrator utilities from GATK v3.8.1.

Whole exome mutation analysis

Many of these PDX models have been established decades ago, thus matched primary and/or
normal tissue either were not collected or is not currently available. To filter common germline
variation from these tumor models, we used a panel of 809 normal samples supplied from TCGA
WBC tissue to generate consensus germline variant calls. Rare germline variation was retained
and defined as < 0.005 minor allele frequency in any one of the three databases: Exome
Aggregation Consortium (ExAC) (Lek et al. 2016), 1000 genomes, or the NHBLI Exome
Sequencing Project (ESP). Filtered variants also present in COSMIC were scavenged back. We
performed MutSigCV (Lawrence et al. 2013) analysis on the entire cohort to identify and remove
false positive variants. With the exception of known oncogenes and tumor suppressors, novel
significantly mutated genes (SMGs) common across all histologies should be rare. We manually
inspected the top 100 SMGs and found that most novel genes harbored a high number of private
mutations and thus were not removed. Other novel variants were false positives due to germline
inclusion or sequencing/mapping errors (Table S3). Data were thus split into germline MAF and
somatic MAF files, the latter of which retained private variants.

Literature mutation comparison analysis

The Pediatric Preclinical Testing Consortium (Maris, 2018) dataset in the PedCBio Portal was
used to determine the gene alteration frequency in our cohort. For all studies, we tabulated only
on non-silent single nucleotide variants since not all studies reported copy number alterations
and fusions as separate entities. Previously reported gene alteration frequencies were calculated
from the following literature studies. From Grébner et al., "S_Table10" was used. We averaged
sub-histologies “B-ALLOTHER” and “B-ALLHYPO” for comparison to PPTC PDX BCP-ALL.
From Ma et al., the data in "TableS2" were used. The "Discovered by" column was filtered to
only contained "GRIN & MutSIgCV" or "MutSigCV" and the value in the "Sample Counts (P/LP)"
column was used to determine the proportion of tumors mutated. From Liu et al., "Table S9
Driver Mutations" was used. The column "#Sample" indicated the number of patients with a
mutation for each gene and was used to determine the proportion. From Pugh et al.,
"Supplementary Table 3", table entitled "Mutations" was used. Within this table, the
“Hugo_Symbol” column was utilized; the repetitions for each gene were used to determine the
proportion. From Eleveld et al., “Table S2” was filtered for relapsed samples, and the number of
repetitions for each gene was used to determine the proportion. For all datasets, if a gene that
was not included, it was deemed “NA” (Grébner et al. 2018; Pugh et al. 2013; Y. Liu et al. 2017;
Eleveld et al. 2015).

Mutation correlation analyses
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Plots correlating DNA variant allele frequencies for 13 diagnose-relapse model pairs and 6 model
pairs belonging to the same phase were generated for several histologies and genes of interest
(Table S5) were labelled. Total mutations by phase were visualized as stacked bar plots and
boxplot.

Indel analysis

Small structural variants were derived from Maftools (Mayakonda et al. 2018) (Supplemental
Figure S1). Total number of frameshift and in-frame insertions and deletions (indels) were
calculated per Model. Boxplots were generated with Histology on the x-axis and Number of
indels per Model on y-axis.

ATRX deletion analysis

The ATRX locus on chromosome X contains too few probes in OmniExpress arrays to accurately
assess deletion, even in cases of known sex. Thus, from WES bam files, total read base counts
for ATRX exons were calculated using Samtools v1.9 bedcov utility and total library size was
calculated using Samtools v1.9 flagstat utility. To convert exon read counts to Fragments per
kilobase per million reads (FPKM), the library sizes were first transformed to per million scaling
factors. Following this, raw read counts of each exon were normalized using the per million
scaling factors and the corresponding exon length.

Mutational signatures analysis
The deconstructSigs R package with the COSMIC 30 signature reference was used. We plotted

only models with =50 total somatic mutations. We quantified the proportion of models within each
histology having signatures with a cosine similarity value > 0.1. These proportions were grouped
into one of four cosmic signature categories based on aetiology (5-mC deamination, APOBEC,

DNA repair, Hypermutation and/or MSI) and plotted as stacked bar graphs.

Classifier analysis

We applied models derived from three supervised machine learning algorithms to all PDX models
with available RNA-Seq data (n = 244). The models were previously trained on RNAseq, copy
number, and mutation data across 33 different adult cancer-types from The Cancer Genome
Atlas PanCanAtlas project (Cancer Genome Atlas Research Network et al. 2013). Briefly, the
algorithm was an elastic net penalized logistic regression classifier that took FPKM and z-score
normalized RNAseq data as input and, in three independent classifiers, was trained to predict
Ras pathway activation, NF1 inactivation, and TP53 inactivation using mutation and copy
number alteration status of corresponding samples. The Ras pathway and NF7 classifiers and
the overall method were described in more detail in (Way et al. 2018). The application and
validation of the TP53 classifier was described in (Knijnenburg et al. 2018).

To assess performance of the TCGA trained classifiers applied to the PDX data, we used
orthogonal evidence of gene alterations in each PDX sample. Specifically, we used samples with
observed missense, nonsense, frame shift, and splice site mutations in ALK, BRAF, CIC, DMD,
HRAS, KRAS, NF1, NRAS, PTPN11, and SOS7 as samples with possible Ras pathway
activation. We used samples with only non-silent NF7 mutations for the NF7 classifier, and
samples with deleterious TP53 mutations, copy number deletions, and fusions for the TP53
classifier. We assessed model performance using receiver operating characteristic (ROC) and
precision recall (PR) curves using these samples as the positive set and all others as the negative
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set. We also applied the classifiers to shuffled PDX gene expression matrices and compared
performance to the real data to assess potential model bias. The reproducible analysis pipeline
can be viewed at https://github.com/marislab/pdx-classification and the software is archived on
Zenodo at doi: 10.5281/Zenodo.1475249.

mRNA gene expression analysis

Raw fastq files (n = 244) from RNA-sequencing data were aligned to a combined hybrid genome
of human hg19 and mouse mm10 genomes using the STAR aligner v2.5.3a. Reads overlapping
specifically to either the human or mouse genome were extracted and separated in
corresponding human and mouse bam files using Samtools v1.9. The mouse subtracted bam
files containing reads specific to human genome were then sorted by name and only paired
reads were kept using the Samtools parameter -f 1. Following this, duplicated reads were
removed using Sambamba v0.6.6. The deduplicated bam files were used to extract and separate
reads into paired-ended fastq files using the SamToFastq utility of Picard v2.18.14-0. The
resulting paired-ended fastq files obtained after mouse subtraction were re-aligned to human
genome hg19 using STAR aligner and filtered for duplicate reads using Picard MarkDuplicates.
Gene expression was quantified in terms of Fragments Per Kilobase of transcript per Million
mapped reads (FPKM) using HTSeq v0.9.1 and Cufflinks v2.2.1. We also processed RNA-
sequencing patient data from TARGET (ALL, n = 533; AML, n = 364; NBL, n = 169; RT, n = 70;
OS, n = 87; WT, n = 136) and PPTC PDX data (n = 244) using STAR alignment and RSEM
normalization using hg38 as reference genome and Gencode v23 gene annotation to get
transcript per million (TPM) expression values. For PPTC PDX data, human bam files generated
from the mouse subtraction pipeline were used in order to generate input fastq files.

mRNA variant calling, filtering, and comparison to DNA variants

Variant calling for RNA-seq samples was performed with Strelka v2.9.2 germline indels calling
pipeline using hg19 primary assembly reference fasta and default parameters. VCFs were
converted to MAF and variants were filtered for those that passed VEP and were non-silent (=
Silent or Intron). Variant allele frequencies for all non-silent, VEP-passed RNA variants were
calculated. For each model on which both WES and RNA-Seq were performed, WES variants
with RNA evidence were matched in the DNA MAF and VAF correlations were plotted.

Copy number analysis

SNP arrays were processed at the HGSC using the Illlumina Infinium HTS Assay according to the
manufacturer’s guidelines. Human OmniExpress arrays (lllumina, catalog No. WG-315-1101)
were used, interrogating 741 thousand SNP loci with a MAF detection limit of 5%. SNP calls
were collected using lllumina’s GenomeStudio software (version 1.0/2.0) in which standard SNP
clustering and genotyping were performed with the default settings recommended by the
manufacturer. Data from samples that met a minimum SNP call rate of 0.9 were considered
passing and were included in subsequent analyses. Output files from Genome Studio containing
BAF and LRR were used as input for Nexus 8.0. Quadratic systematic correction was performed
using a custom file (Figshare repository, below) containing common snp probes from the two
chip types. The significance threshold was reduced to 1 x 10® to reduce background noise.
Segmentation was performed using Nexus’s SNPRANK algorithm. To extract segments, gain
was set to 0 and loss to -1 x 107", The output table was reformatted to segmentation file format
for input to GISTIC2.0, which was used to calculate broad and focal, hemizygous gene-level
copy number events. Relevant arm and band level alterations were used in oncoprints. Since
normal DNA was not available for paired analyses, sex chromosomes were removed. Focal
homozygous deletions and amplifications were annotated using the segmentation file created
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post-Nexus analysis. A cutoff of LRR >=(0.538578182) was used for amplifications and >=( -
1.739) for deletions. Cutoffs were determined by assessing histogram splits for MYCN
amplification, SMARCB1 deletion, and CDKN2A/B deletions. Homozygous deletions remained
only if MRNA FPKM was < 5 or if RNA-Seq for a sample was not available. Manual inspections
were performed to confirm alterations for SMARCB1, TP53, WT1, MYCN, C19MC, CDKN2A/B
and edited when necessary (see code).

Ethnicity inference

Approximate genomic ancestries for each PDX model were inferred through principal component
analysis of SNP array genotypes. lllumina-designated plus-strand genotypes were exported from
GenomeStudio and processed using PLINK 1.9. Sex chromosomes and SNPs with minor allele
frequency <1%, call rate <90%, or a deviation from Hardy-Weinberg equilibrium surpassing
p=0.00005 were excluded. The PDX dataset was then merged with HapMap 3 (draft release 2),
restricting to only the intersecting SNPs. This set was pruned to remove highly correlated SNPs
using a window size of 50 variants, step size of 5 variants, and pairwise r* threshold of 0.1. The
39,544 remaining SNPs were used to calculate the top 20 principal components. Approximate
ethnicities were inferred using the first two components. Individuals were classified into four
broad population groups: European (including HapMap CEU and TSI population samples),
African (ASW, LWK, MKK, and YRI), East Asian (CHB, CHD, and JPT), and South Asian or
Hispanic (GIH and MXL).

Fusion transcript analysis

We used four different fusion callers: STAR-Fusion v1.1.0, FusionCatcher v0.99.7b, deFuse and
SOAPFuse on RNA-sequencing data of the PDX models (n = 244). A total of 50,796 unique
fusions were predicted with the following breakdown: STAR-Fusion (n = 9,496), FusionCatcher
(n = 3,822), deFuse (n = 30,393), and SOAPFuse (n = 7,085). To reduce the number of false
positives, we used two parallel approaches: first to keep all fusions predicted as in-frame and
second to keep all fusions where the 5’ or 3’ gene fuses promiscuously with multiple partners
within the same histology. To filter out unreliable predictions, we further filtered the in-frame
fusions by keeping fusions that were recurrently predicted in two or more models within the
sample histology or fusions that were supported by at least two fusion callers. We removed any
fusions where expression of both genes in the gene pair was found to be < 1 TPM value across
all models or it was not reported by the gene quantification algorithm. We then combined the
lists from the two approaches discussed above and filtered out any fusions that were predicted
in more than one histology. To remove spurious fusions, we filtered all fusions annotated as
“read-through” as a result of fusions between adjacent or neighboring genes. We further
removed fusions identified in non-cancer tissues and cells as per GTEx in order to remove
chimeric RNA that is normally found in healthy tissue. Next, we scavenged and annotated fusions
that have been identified as “driver” fusions in literature and fusions that were validated using
cytogenetics. Finally, we annotated the gene fusion partners with oncogenes from COSMIC,
kinases from Kinase.com, and transcription factors from AnimalTFDB to identify any oncogenic
potential and functional relevance.

RNA expression clustering and pathway analyses

The UCSC TumorMap analysis was used to visualize clusters of expression profiles across PDX
histologies (Newton et al. 2017). The expression values were transformed into log.(TPM + 1)
space. We removed genes where more than 80% of the samples had no measurable expression
and we applied a variance filter to remove the 20% least varying genes. This generated a gene
by sample matrix containing 28,482 genes and 244 PDX samples. The expression values and
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PDX annotations were uploaded to the TumorMap portal for analysis. A Bayesian hierarchical
model was used to infer differences in expression across PDX histologies. We used a hierarchical
modeling strategy to leverage similarities across related tissues and to improve inferences for
histologies with small sample sizes (Ji & X. S. Liu 2010). The hierarchical model was implemented
using the Stan statistical programming language (Carpenter et al. 2017).

We inferred the biological function of histology-specific expression by ranking the expression
differences for each histology and performing gene-set enrichment analysis (GSEA). GSEA was
performed using the fgsea software {BioRxiv:ge}. Statistically significant enrichment was defined
as having an adjusted p-value less than 0.01 and a normalized enrichment score greater than
2.0. Statistically insignificant enrichment scores were set to zero for heatmap visualization. The
normalized enrichment scores were visualized using the seaborn clustermap software (Waskom
n.d.) for tissue database scores and R for Hallmark pathway scores.

Pediatric cBioPortal data processing

All processed data: RNA-sequencing expression values (FPKM and Z-score), RNA fusions,
mutation calls in Mutation Annotation Format (MAF), segmentation, and focal copy number
values were formatted using the current cBioPortal v1.2.2 file format documentation
(https://cbioportal.readthedocs.io/en/latest/File-Formats.html)

DATA AND SOFTWARE AVAILABILITY

Raw data availability

Mouse and human separated DNA and RNA BAM files have been deposited into dbGAP under
accession number phs001437.

Intermediate processed data availability

Variant files, SNP array files, contamination assessment files:
https://figshare.com/projects/Genomic_landscape_of_childhood_cancer_patient-
derived_xenograft_models/38147

Classifier Figshare files:

https://figshare.com/articles/PPTC_RNAseq _and_Genomic_Alterations/7127726

Processed data availability

WES mutations, mRNA expression, RNA fusions, segmentation, and gene copy number has
been deposited into the publicly-available pediatric cBioportal at:
https://pedcbioportal.org/study?id=pptc#summary

Code created or modified for analysis in this paper have been deposited in GitHub

PDX mouse subtraction: https://github.com/marislab/pdx-mouse-subtraction

Ethnicity inference: https://github.com/lauraritenour/pptc-pdx-ethnicity-inference

Oncoprint generation: https://github.com/marislab/create-pptc-pdx-oncoprints

Gene classification: https://github.com/marislab/pdx-classification

RNA clustering and heatmaps: https://github.com/marislab/pptc-pdx-RNA-Seqg-clustering
RNA fusion analysis: https://github.com/marislab/pptx-pdx-fusion-analysis

Copy number and SV analysis: https://github.com/marislab/pptc-pdx-copy-number-and-SVs
Correlation analyses: https://github.com/marislab/create-pptc-pdx-corplots

Mutational signatures: https://github.com/marislab/pptc-pdx-mut-sigs
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Figure 4
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Figure $1, related to Figure 1

Variant Classification

Splice_Site I
Nonsense_Mutation I
Frame_Shift_Del I

In_Frame_Del

Frame_Shift_Ins

In_Frame_Ins

Nonstop_Mutation

12621 =
25242 -

D

= Diagnosis

= Post-Treatment

= Progressing Disease

= Relapse

Unknown

100 100
275- » 75 -
s 5
w® _ =
250 ‘g 50 —
o H E
T4 i ’ NI

L ++ 2 B
0 { ‘ +$| .

C>T T>C C>A C>G T>G T>A

2

ASPS
s ATRT
Clear Cell Sarcoma
CNS embryonal NOS
= Colon Carcinoma
= Ependymoblastoma
ETMR
= Ewing Sarcoma
= Fusion- RMS
= Glioblastoma
Medulloblastoma
= Neuroblastoma
= Ph-likeALL
Small Cell Carcinoma
= Wilms

il

100 —
75 - S 6
=
2
= 3
]
€4 ==
| 5 |
] 5 ; I -
N a
E2 2
25 = 1 4
Jo L | (
o o o & & & & RS
0 & 6\0@:\ F 7 E PN EE S NS e
" ¢
T Tv ¢ FELF SIS FFSFT VLS SIS gt
o\f.: &P I & & < NS & < S S d’é\\ RS
S & o®
S <
Histology
Osteosarcoma
Neuroblastoma , . Osteosarcoma Osteosarcoma
: 1w 1 TP53-RP11-770G22 (@ 1ol Q
1.00 : : fusion ! KMT2D R2G87"
' %0
: 0.75 : 0.75 '
0.75 '
' : AN : @
x ' 2 i = : H
' S
2 | ] : 1 : £ 8 60
hi ' q) 0.50 : $ 0.50 i g 3
Z o050 ' ' '
1 ' [ ' & 0 ! =
4] ! ALK F1174L o H b aal o i =
] : 2 ! e
: ! ! 30
: 0.25 1 0.25 KMI2B K376E
025{ | ' '
B i T I R e 0
! a
0.00 : ] —— 08-36-SJ 08-36
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 Model
0.00 0.25 coeoﬁo452 075 1.00 0S-34 05-36 o
—-N-452x
Neuroblastoma T-ALL
K : 1.00 :
0 : ' NUP214-ABL1
: fusion
; ! Phase
0.75 3 075 :
i : common
x ' PTPN11 G503V 1 . .
z ' ° ' diagnosis
2 ; 3 om0 ; T relapse
; 0.50 ! j - ' 2 E1099K
8 ' < ' H115R
g | |
: 025 :
R
:
0.00 '@
0.00 0.25 050 0.75 1.00 000 025 0.50 075 1.00
COG-N-618x ALL-32

= Astrocytoma
BCP-ALL

= CNS EFT-CIC

= CNS germinoma

= DIPG

= Ependymoma

= ETP-ALL
Extracranial Rhabdoid
Fusion+ RMS

= Hepatoblastoma

= MLL-ALL

= Osteosarcoma

= Ph+-ALL
T-ALL

Figure S1. Histology and mutational breakdown, Related to Figure 1. Pie charts showing breakdown of phase of therapy (A) and histology (B) for 261 PDX models. Variant classification breakdown (C), percent of mutations by basepair
change (E), percent transitions (Ti) and transversions (Tv) (F). Median number of small insertions and deletions (indels) were plotted per histology (G, box edges as first and third quartiles; detailed Ns in Table S4). H, same-phase
scatterplots for model pairs created at the same phase of therapy (blue = diagnostic samples, red = relapse samples, grey = common mutations between two models plotted), I, total mutations in 0S-26 and OS-36-SJ relapse samples.



Figure S2, related to Figure 1
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Figure S2. Ethnicity Prediction, Related to Figure 1. Principal components analysis grouping of European, African, East Asian, and South Asian/Hispanic HapMap reference populations used to predict PDX ethnicities (A). The first two principal

components calculated from SNP array genotypes for 252 PDX models (circles) are plotted alongside 1,184 HapMap reference samples (triangles). Dashed boxes represent the cutoffs used to classify PDXs into four broad population groups: European
(including HapMap CEU and TSI population samples), African (ASW, LWK, MKK, and YRI), East Asian (CHB, CHD, and JPT), and South Asian or Hispanic (GIH and MXL). Tabulated counts and frequencies of ethnicities in PDX cohort (B) and a comparison

table of reported versus inferred ethnicities in the PDX cohort (C).




Figure S3, related to Figure 2

0s-41

ETP-1

-l

=
123
-

# Mutations

(9]

o
HATPase_..

@
=]

SMARCB1 RNA FPKM
3 &

o

08-45-TSX-pr1 0S-60 COG-N-625x
ill;itm
transcript
] ENST00000373344.5
ENST00000395603.3
ENST00000480283.1
MSH2
5
@
c
2
T
]
= G721*
3+ L]
800 932aa 0 200 400 600 800 934aa
E H3F3A H3F3B HIST1H3C HIST1H3B
250 1
200 1
s =
o 100 E 150 1
= [
2
= < 1001
g 50 o
o
z
} I
0
~ @ = ~ N
g g g g
= f~3
9 § 8
<]
Model
+ -
st

© ™
S o

w
=}

0

MYOD1 RNA FPKM
(o2}
o

N A

& & & 8 & F & ¥ § ¢ 7§
& & &£ &£ £ & 5 & 2 & & &
3 o
7 g
n <
¢ 5
%)
& S
T @
&) <
= T

log10(inter event distance)
» o ~
& S &

°
s

©CA0CGOCTOTC TG

£y

>

Iy

]
§
2
H
H
4
]

CACTOTC
00GOTA TG

ALL-58

0S-43-TPMX

a1

16 17 1819 202122

ALL-115

¥

log10(inter event distance)

LI S ]

X

©C>A® 056 0G>T0 ToA 8 T>C

16 17 i8to20122 X V.

fo 11 42 43 14 15 6 17 tat0z0iz2

xv

Model
Figure S3. Genetic alteration evidence, Related to Figure 2. ATRX expression by exon for transcripts ENST00000373344.5, ENST00000395603.3, and ENST0000480283.1 derived from WES showing deletions in ETP-1, 0S-41, 0S-45-TSX-pr1, 0S-60, and COG-N-625x (A, STAR
Methods). Lollipop plots for ocogenic mutations in DNA repair genes, PMS1 and MSH2 for hypermutated model, IC-1621GBM (B). Gene expression for SMARCB1 across ATRT and previously-classified PNET models (C), LIN28A for previously-classified PNET models (D), and H3F3A,

H3F3B, HIST1H3B, and HIST1H3C for DIPG models (E). Nexus screenshots of the TP53 locus in Ewing’s tumor models to validate homozygous or hemizygous deletions and loss of heterozygosity (F). Nexus screenshot of TP53 deletion and breakpoints for TP53-FXR2 fusion in KT-9

(G). MYOD1 gene expression across rhabdomyosarcoma models (H). Rainfall plots for samples with predicted APOBEC signatures: ALL-58, ALL-115, and OS-43-TPMX (l).



Figure S4, related to Figures 2 and 3
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Figure S4. Copy number, TMB, and tumor evolution. Related to Figures 2 and 3. Figure 5 depicts genome-wide copy-number profiles for histologies with N = 10 models (Panel A, solid tumors: Ewing sarcoma, N = 10; Medulloblastoma, N = 18; Neuroblastoma, N = 35;
Osteosarcoma, N = 34; Wilms, N = 12 and Panel B, leukemias: BCP-ALL, N = 36; MLL-ALL, N = 10; Ph+ or Ph-like ALL, N = 18; T-ALL, N = 19). Canonical broad and focal lesions are annotated by histology. Breakpoints per histology are plotted in C (boxplots are graphed as
medians with box edges as first and third quartiles; detailed Ns in Table S4) and breakpoint density across histologies is plotted in D (displayed as percent of models per histology and N / total; details in Table S4). Tumor mutation burden by histology across 240 models on which
WES was performed (E, STAR methods). Histologies are plotted in rank order by median (y-intercept) and Ns per histology are listed. Tumor mutation burden by phase of therapy for histologies containing models from diagnosis and relapse (F). Boxplots represent median and first

and third quartiles; Ns listed.



Figure S5, related to Figure 4
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Figure S5. Classifier scores and mutational signature correlations, Related to Figure 4. With osteosarcoma models removed from analysis, TP53 classifier scores were still significantly higher (Wilcoxon p = 4e-12) in models with a TP53 alteration (A),
but alterations in other pathway genes don’t consistently phenocopy TP53 inactivation (B). Models containing fusions had highest classifier scores, followed by models with SNVs and CNVs, respectively (C, Kruskal-Wallis p = 9.8e-11) and these are
broken down by gene in panel D. Validation of mutational signatures via Pearson correlation matrix: Signatures 2 and 13 correlate strongly (R = 0.6), Signature 1 is inversely correlated with impaired DNA repair mutational signatures, 3 (R =-0.41)and 6 (R =

-0.54) (E).



