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Abstract

Protein-protein interactions (PPIs) are critical, and so are the databases and tools (resources) concerning
PPIs. But in absence of systematic comparisons, biol ogists/bioinformaticians may be forced to make a
subj ective selection among such protein interaction databases and tools. In fact, a comprehensive list of
such bioinformatics resources has not been reported so far. For thefirst time, we compiled 375 PPI
resources, short-listed and performed preliminary comparison of 125 important ones (both lists available
publicly at startbioinfo.com), and then systematically compared human PPIs from 16 carefully-selected
databases. General features have been first compared in detail. The coverage of 'experimentally verified'
vs. dl PPIs, aswell as those significant in case of disease-associated and other types of genes among the
chosen databases has been compared quantitatively. This has been done in two ways: outputs manually
obtained using web-interfaces, and all interactions downloaded from the databases. For the first approach,
PPIs obtained in response to gene queries using the web interfaces were compared. As aquery set, 108
genes associated with different tissues (specific to kidney, testis, and uterus, and ubiquitous) or diseases
(breast cancer, lung cancer, Alzheimer’s, cystic fibrosis, diabetes, and cardiomyopathy) were chosen. PPI-
coverage for well-studied genes was also compared with that of |ess-studied ones. For the second
approach, the back-end-data from the databases was downloaded and compared. Based on the results, we
recommend the use of STRING and UniHI for retrieving the majority of ‘experimentaly verified’ protein
interactions, and hPRINT and STRING for obtai ning maximum number of ‘total’ (experimentally
verified as well as predicted) PPIs. The analysis of experimentally verified PPIs found exclusively in each
database revealed that STRING contributed about 71% of exclusive hits. Overal, hPRINT, STRING and
11D together retrieved ~94% of ‘total’ protein interactions available in the databases. The coverage of
certain databases was skewed for some gene-types. The results also indicate that the database usage
frequency may not correlate with their advantages, thereby justifying the need for more frequent studies

of this nature.
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I ntroduction

The flood of databases and tools can enforce subjective selections among biologists. Periodic comparative
studies are needed to counter this problem. But such studies are not always a priority among biol ogists or
bioinformati cians. Protein-protein interaction (PPI) databases and tools (resources) are not an exception to
this. PPIs are important in deciphering the underlying biological mechanisms in various normal and
disease conditions [1-2]. Understandably, there has been a substantial increase in the effortsin
characterizing them using various experimental techniques[3] and prediction methods [4]. The time line
datain PubMed indeed shows a constant increase in the number of research articles on PPIs across years.
With increase in data, many scientists realized the need to compile the PPIs, and there seem to be alarge
number of PPl databases and computational tools (henceforth collectively referred as ‘resources’) that
enable storing, accessing, and analyzing the interaction data in various contexts. The databases can be
identified into three broad types based on the type of interaction data collected: i) experimentally verified
(EV) PPIs, either curated from literature or submitted directly by the authors, ii) PPIs predicted through
various computational methods, and iii) both curated and predicted PPIs. The databases that
independently compile the data are called as primary databases, and the ones that collect data from

multiple primary databases are called as meta-databases.

Scientists are also increasingly using PPl resources for various purposes - particularly with the advent of
genome-wide study methods for biomol ecules. Bioinformaticians have a so been putting efforts to make a
better use of primary databasesin terms of improved predictions, visualizations, network analysis etc.
Whileit isaboon for the scientific community to have many specialized protein interaction databases and
software, objectively selecting a specific resource is often a daunting task for the biologists. Thisis most
probably true for most bioinformatics resources. Most of the time, researchers may have to make an
arbitrary choice by selecting one of the databases or tools used by their peers, as the usage of such

bi oinformatics resources is usually one of the small component in their research work and they cannot
3
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afford to deviate from their main research goals. It is also important to note that the databases and tools
are too many to compare (see www.startbioinfo.com). In fact, the actual number of PPI-resources had not
been reported anywheretill now, even though there have been some efforts to compile (e.g.,

www . startbioinfo.com and http://pathguide.org/) or compare them. Tuncbag et a ., [5] have compiled the

features of about 80 PPI databases, protein interface databases and tools, binding site prediction servers
and protein docking tools and servers. The authors have also shown the use of protein interaction
resources using specific case studies. Further, Zhou and He have described about 25 tools that retrieve
protein-protein interactions from literature, through text mining [6]. About 50 PPI resources have been

classified in Startbioinfo (http://startbi oi nfo.com/cqi-bin/resources.pl 2n=PPI CUS) based on their

applicationg/utilities.

There have also been good efforts to quantitatively compare the performance and/or capacities of the PP
databases. Turinsky et d., [7] have quantified the agreement between curated interactions shared across
nine major public databases (BIND, BioGRID, CORUM, DIP, HPRD, IntAct, MINT, MPact, and MPPI).
Another study [8] analyzed the extent of coverage of interactions across multiple species by comparing
six protein interaction databases (BIND, BioGRID, DIP, HPRD, IntAct and MINT). In 2006, Mathivanan
et a., [9] compared the primary protein interaction databases containing literature curated PPIs for human
proteins (BIND, DIP, HPRD, IntAct, MINT, MIPS, PDZBase and Reactome) and quantified the coverage
of PPIs and proteins. They aso compared the performances of these databases using 16 genes/proteins.

But thereis aneed for further work.

Overal, whileit isimportant to systematically compare protein-interaction databases, the highest number
of databases compared systematically isonly 9, reported in 2010 [7]. A general compilation of such
resources has been amaximum of 89 and reported in 2009 [5]. While the above-mentioned comparative
studies provided useful insights on the coverage of different PPl databases, such studies need to be

conducted periodically as some of the resources would be updated over time, afew may stop working and
4
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new ones are likely to be published every year. It also should be noted that earlier studies primarily
focused on the overall coverage in terms of the content of the PPl databases but missed an important user-
perspective, a quantitative comparison of response of the PPI databases to specific types of biological
gueries via the web-interfaces. Comparison of databases from user's perspective using gene-names as
gueries was reported in one of the published comparative studies in 2006, and with arandom set of 16
genes[9]. Such studies are important because, irrespective of the method of data compilation, a biologist
would query databases with various types of genes/proteins. It would be interesting, for example, to check
the relative performance of the databases when queried with well-studied vs. less studied genes.

Similarly, no one has tested the possibility of biases in the curation process used by databases for various
diseases. Thereis also a possibility of unintended bias due to literature selection for auto-text-mining or
manual data collection, as different databases and search engines have different efficiency and coverage
of the type of articles. For example, about 70% of articles related to Chikungunya disease prevalence that
could be scanned by Google Scholar were missed by most other scientific literature search engines[10].
Genes specifically transcribed in different tissues may also be suspected to have different amount of
protein interaction studies, and one cannot simply rule out a differential coverage of such gene-sets across
databases. For example kidney, uterus and testis tissues have different amount of corresponding research
papers available from PubMed, and this might influence the PPI data -corresponding to genes specific to
these tissues or the ubiquitously expressed genes. It is hot easy to imagine the net result of type of
research papers used and the mode of data compilation, as well as the methods of storage, query-handling
(including identifier conversions) and agorithms, used by different databases. Hence, web-based

querying might be the best way to compare the end-results from users' perspective.

Moreover, earlier comparative studies mainly focused on primary databases storing
curated/experimentally verified protein interactions, whereas, the meta-databases, which are being widely

used by researchers, were not considered at all. Thus, there is a need to compile a comprehensive list of
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PPI resources, carefully select and then systematically compare them from user's perspectives. We
initiated an exhaustive compilation of PPI resources and performed a comprehensive comparative study
to evaluate the current features and coverage of afew selected databases. After athorough initial
screening, we selected and evaluated sixteen human protein interaction databases by comparing the
interactions obtained through web-interface based query of tissue specific and disease associated genes.
We also compared the compl ete protein interaction data downloaded from the databases, to provide a
guantitative measure on the exclusive and shared proteins and interactions across them. In addition, the

study describes various features, advantages, and disadvantages of the databases considered.

M ethods

A schematic representation of the overall methodology of the comparative analysis is represented in Fig

1.
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Fig 1: Schematic representation of the methodology used in the comparative analysis of sixteen
protein interaction databases.
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Compilation and selection of protein interaction databases

Extensive literature search was performed using PubMed and Google to compile protein interaction
resources. Basic features, URL, publication date, and corresponding article(s) for each resource were also
listed by browsing through their web-pages. Relative usage frequency was assessed for every resource,
and arank was assigned from 1 to 100. Each rank corresponded to one or more resources with similar
usage frequency. Rank 1 was assigned to resources with highest usage whereas 100" rank corresponded
to resources that were least commonly used. The usage frequency rank (UFR) was independently
calculated by 3 different methods first, ranks were assigned and the average rank was then derived and
considered to be the final UFR for each resource. The rankings were also cross-checked by random
manual assessment of the citations of the resources, and were confirmed to be indicating a correct relative
usage frequency of the resources. Details of the methods used for UFR calculation and rank-assignment

are provided in Startbioinfo portal (http://startbioinfo.com/description.html)

The databases used for detailed comparative analysis were selected based on a multi-step selection
process: (A) resources having an UFR of 98 and below were shortlisted, (B) the PPI resources that have
been considered by the existing comparative studies and (C) the ones published since 2011 were also
included in this list, irrespective of their UFR. The resources thus short-listed had a non-redundant set of
125 PPI databases/tools. Each of the 125 PPI resource was then queried with a gene/protein identifier for
testing its functionality, and the resources belonging to the following types were excluded from further
consideration for the detailed analysis: (i) those which were not functional (35 resources), (ii) protein
interaction related tool/software/text-mining systems (32 tools; only PPI databases were retained), (iii)
databases that did not provide human PPl data (18 databases), (iv) databases providing only visualization
of the protein interaction network or those restricted to very specific type of PPl information, such as
compartment specific (e.g., ComPPl), specific to extracellular matrix proteins (e.g., MatrixDB), or

specific to mitochondrial proteins (e.g., Mitolnteractome). Finally, we obtained 16 PPl databases that
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were used for the detailed comparative analysis. More details about each database can be found in

Supplementary data, S1 Text.

Selection of the gene-setsfor database comparison

We considered tissue specific (kidney, testis, and uterus), ubiquitous, and disease associated (breast
cancer, lung cancer, Alzheimer’s, cystic fibrosis, diabetes, and cardiomyopathy) genes for querying the 16
selected PPI databases. Genes transcribed ubiquitously or tissue-specifically were prepared using tissue
specific gene expression databases for testis[11], uterus [12], and kidney

(http://resource.ibab.ac.in/fM GEx-Kdb/), which were prepared by manually compiling gene expression
data. These databases also assign areliability score for expression in each tissue and condition. These
scores were useful in hierarchically arranging the genesin each list and select the top ones. Genes
reported earlier [13] aswell asthe TiGER [14] and PaGenBase [15] databases were also used. The
ubiquitous and tissue specific genes were categorized into well- and less-studied based on the number of
published articles in PubMed. More details on the selection of tissue specific and ubiquitous genes can be
found in Supplementary data, S2 Text. The disease associated genes were obtained from Online

Mendelian Inheritance in Man (OMIM) database [16].

Comparison of protein-interaction data: gene based queries

For every gene-set, the ‘total’ (predicted and experimentally verified) and experimentally verified (‘EV’)
interactions were obtained by querying individual gene in each database. Both the query and results were
restricted to human proteins. In case of STRING, the proteins were queried in two ways: using the web-
interface (STRING-Web) and through Application Programming Interface (STRING-API). The APl was
used to obtain all the available interactions for the query proteins, as the web-interface output is limited to
500 interactions. The IntAct database on the other hand provides interactions for multiple speciesin one
table when queried through the web-interface, which requires additional processing to obtain the human

interactors. The protein interactions for each gene/protein were hence compiled from the complete PPI
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data downloaded from the website. The number of interactions for IntAct obtained through this process
and the web-based queries showed no difference which was verified with at least 10 sample proteins. The
output from afew databases had identifiers other than official gene symbols (e.g., APID and iRefWeb
provided UniProt identifier or accession number), which were converted using Database for Annotation,
Visualization and Integrated Discovery (DAVID) [17], and the partners with successful conversion

(~95%) were considered.

To assess the coverage of the databases (henceforth referred to as ‘ yield-coverage'), first aunion list of
non-redundant interactions for each protein was derived by considering the interacting partners from all
the 16 databases, and was considered as the maximum possible interactions for that particular protein
(hereafter referred as ‘Max-PPIs’). The total number of possible interactions for the complete gene-set
was derived by adding the ‘Max-PPIs' for al the genesin that gene-set (hereafter referred as ‘Max-PPls-
GS'), and was considered as reference for calculating the yield-coverage of each database for the gene-
set. The yield-coverage of each database was calculated independently for ‘total’ and ‘EV’ interactions by

using the following equation:

(Number of interactions for the gene-set in a database / Max-PPIs-GS) X 100

Further, the interactions obtained for each protein were compared across all the databases to obtain the
number of exclusive interactions contributed by each database. The total number of exclusive interactions
contributed by each database was derived by adding the exclusive interactions for all the proteinsin a
particular gene-set. Additionally, we calculated the exclusive interactions for each database separately by
considering the output of STRING-Web for selected gene-sets (ubiquitous, kidney, breast cancer,
Alzheimer’s, and cardiomyopathy). The yield-coverage of each database for exclusive contribution was

calculated independently for ‘total’ and ‘EV’ interactions by using the foll owing equation:

(Number of exclusive interactions for the gene-set in a database / Max-PPIs-GS) X 100
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Similarly, the yield-coverage was calculated for the well and less-studied genes by separately considering
the interactions for the corresponding genes. Well and less-studied genes were categorized based on the

number of articlesretrieved.

Comparison of protein interaction data: complete downloaded data

Complete interaction data from each of the 16 databases except for GPS-Prot (no download link was
available) was downloaded during Aug-Sep 2017. In afew cases the complete data downloaded from the
database needed some modifications to be considered for the comparison with other databases. In case of
HitPredict, the downloaded file did not contain interactions from HPRD, although the output contains
datafrom this resource when aweb-based query is used. Hence, the interaction data downloaded from
HPRD was included to the data obtained from HitPredict. In case of HURI database, the ‘ preliminary’, or
‘unpublished’ interaction data was not downloaded due to restricted permissions. In case of BioGRID, the
genetic interactions were excluded. Further, only binary or physical interactions were considered,
wherever applicable. For the databases that did not have a download link for human specific data,

compl ete data was downloaded and the human interactions were extracted based on species name or
taxonomy identifier. Cross-species interactions, where one of the interacting proteins was not from
human, were removed. The genes/proteins were converted to official gene symbols using Database for
Annotation, Visualization and Integrated Discovery (DAVID) [17], wherever applicable. On an average,
around 98% of the identifiers were successfully converted to gene symbols (Supplementary data, Table
S1). Duplicate interaction pairs were removed (interaction pairs such as, P1 — P2 and P2 — P1 were treated
same and only one pair was retained) to create a non-redundant list of interactions for each database. The
proteins and interactions were then compared across the databases to obtain the number of shared and
exclusive contribution. A non-redundant list of interactions from all the databases was considered as the
reference for calculating the individual database coverage (henceforth referred to as ‘ content-coverage’).

The comparison was performed for both *total’ and ‘EV’ interactions independently by considering the

10
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respective reference interactions. Additionally, thelist of proteins corresponding to ‘total’ and ‘EV’

interactions were obtained and compared across the sel ected databases.

Results

A total of 375 databases and tools were compiled through extensive literature search and are listed in

Startbioinfo web-portal (http://startbioinfo.com/cgi-bin/simpleresources.pl 2n=PPI_AR), along with their

basic features. Those with a potential higher relevance to biol ogists were identified to be 125 and can also

be accessed through Startbioinfo portal (http://www.startbioinfo.com/Selected PPI.xls). We selected 16

protein interaction databases based on a multi-step selection process, for the detailed comparative analysis
(Table 1). Of the 11 secondary interaction databases considered, 10 integrate data from multiple
databases including IntAct and 9 databases integrate data from BioGRID, DIP, and HPRD including
others, making these 4 the most preferred primary databases. The databases considered in the current
study collect data either by their own curation efforts and depositions of experimentally obtained PPI data
by other authors, or by integrating data from other PPl resources. A few databases (e.g., hPRINT,
STRING) additionally implement prediction methods to identify interactions. Many of the databases
(STRING, mentha, hPRINT, HIPPIE, GPS-Prot, BioGRID, HitPredict, IntAct, MINT, iRefWeb) not only
list the interacting proteins but also provide a scal e indicating the confidence of interaction, mainly
calculated based on number of evidences and the experimental techniques/prediction methods used for
identifying the interactions. Very few databases (e.g., STRING, mentha, APID and HuRlI) allow the user
to import multiple genes/proteins as a query, for which the output can be direct (interactions involving
proteins within the list) and/or indirect (interactions involving proteins other than the list) interactions.
Thiswould give an opportunity for the user to identify the intermediate proteins that are important for a
process or pathway that are not in the query. There are also some unique features provided by some of the
databases. For example, STRING is the only database among the 16 that provides information on the

mode of action of the interaction. And, 11D isthe only database that provides information about the
11
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expression status (tissue wise) of the interacting proteins. Such information can help in overall
understanding of a mechanism where the proteins are known to be interacting, and also aid in further
analysis. Among the databases considered, IntAct, MINT, and mentha adhere to the policies of
International Molecular Exchange (IMEXx) consortium [18]. The IMEXx consortium is an international
collaboration between a group of magjor public interaction databases that provides users with a non-
redundant set of molecular interactions, collected using a detailed curation model and are available in the
Proteomics Standards Initiative Molecular Interactions (PSI-MI) standard formats [19]. A brief overview
and features of each of the 16 databases are provided in Supplementary data, S1 Text. Fig 2 depicts the

data exchange across different primary and secondary databases.

Fig 2: A schematic representation of data flow among primary and secondary protein interaction
databases. Green nodes indicate secondary databases and blue nodes indicate primary databases considered in the
current study. Data sharing across the databases is shown by edges. The arrows indicate the direction of data flow.

A total of 108 genes including 80 tissue specific (20 genes per tissue), 20 ubiquitous and 28 disease-
associated genes (5 genes per disease except for cystic fibrosis, where only 3 genes were found to be
associated) were selected for the collection of PPI data. The list of genesis provided in Supplementary

data, Table S2.

12


https://doi.org/10.1101/566372
http://creativecommons.org/licenses/by-nc-nd/4.0/

Table 1: An overview of protein interaction databases consider ed for the compar ative analysis
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STRING [20] http://string-db.org v10.5 Secondary E&P Yes Yes Multiple(>10) Functional enrichment of interacting
proteins. Mode of action of the interaction.
User-friendly network analysis.
UniHI [21] http://www.unihi.org v7.1 Seconday E&P Yes Yes® Human’ Gene-regulatory interactions.
mentha [22] http://mentha.uniroma2.it/ -- Secondary E Yes Yes  Multiple (>10) -
hPRINT [23] http://print-db.org/hprint- v10.1 Secondary E&P No Yes  Human Integration and prediction of PPI through
web/ random forest and Bayesian learning
approaches.
APID [24] http://apid.dep.usal .es/ vune Secondary E Yes Yes  Multiple (>10) -
2017
HIPPIE [25] http://cbdm-01.zdv.uni- v2.1 Secondary' E Yes Yes  Human Confidence scored and functionally
mainz.de/~mschaefer/hippie/ annotated human PPIs.
GPS-Prot [26] http://www.gpsprot.org v3.0.5 Secondary* E Yes No Human & HIV Visualization of human and HIV PPls.
BioGRID [27] http://thebiogrid.org v3.4.154 Primary E Yes Yes  Multiple (>10) Genetic interactions
HPRD [28] http://www.hprd.org v9 Primary E No Yes® Human --
HitPredict [29] http://hintdb.hgc.jp/htp/ v4 Secondary E Yes Yes  Multiple (>10) Experimentally determined physical
protein-protein interactions with reliability
SCcores.
IntAct [30] http://www.ebi .ac.uk/intact v4.210  Primary E Yes Yes  Multiple (>10) Protein chemical interactions.
MINT [31] http://mint.bio.uniroma2.it -- Primary E Yes Yes  Multiple (>10)
HINT [32] http://hint.yulab.org/ v4 Secondary E Yes Yes  Multiple (>10) High quality experimental PPIs.
11D [33] http://ophid.utoronto.ca/iid v2017- Seconday E&P No Yes’ Multiple (<10) Tissue specific annotation of protein
04 interactions
HuRlI http://interactome.baderlab.or - Primary E Yes Yes Human High quality mapped PPIs using Y2H and
g validated using orthogonal assays.
iRefWeb [34] http://wodaklab.org/iRefWeb/  v13.0 Secondaay E&P No Yes  Multiple (>10)

"Mainly secondary databases, but also collect interaction data from literature; “Registration required for downloading complete or partial data; *Multiple species
guery possible. E: Experimental; P: Predicted. An exhaustive list of protein interaction resources (tools and databases) can be found in Startbioinfo
(http://startbioinfo.com/cgi-bin/simpleresources.pl2n=PPI_AR).
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Comparison of the database-outputs using tissue-specific, ubiquitous and disease associated genes
For all the gene-sets (ubiquitous, tissue-specific and disease associated), hPRINT retrieved highest (61%)
‘total’ interactions. STRING-API and STRING-Web retrieved 46.3% and 20%, respectively, while [1D
obtained 13.7% PPIs compared to other databases. A combination of STRING-API and hPRINT ensured
ayield of ~86% of al possible (total) PPIs, which increased to 90% after including PPIs from I1D. For
ubiquitous and cardiomyopathy gene-sets, however, iRef\Web showed higher yield (21.5 and 11.8%
respectively) than 11D (16.7 and 8.6% respectively). On the other hand, for the *EV" interactions, overall,
STRING provided the highest yield (STRING-API: 56.9%; STRING-Web: 38.8%) followed by UniHI
(31.2%) and iRefWeb (27.9%). However, again, for the ubiquitous gene-set, iRefWeb seemed to provide
alittle better yield (47% of the ‘EV’ PPIs) than UniHI, which covered 20.5% of ‘EV’ PPIs. Interestingly,
for Alzheimer’s associated genes, many databases (e.g., APID, HIPPIE, BioGRID) covered more than
40% of ‘EV’ interactions, whereas, STRING covered only 15.7% of the total possible interactions.
Further, HIPPIE showed better yield-coverage for the kidney tissue and lung cancer associated gene-sets
(12.8 and 22.9% respectively) compared to iRefWeb. The yield-coverage of hPRINT database for ‘EV’
interactions was very low (6.4%). Primary databases such as, HURI, MINT, and HPRD, each covered less
than 6% of total as well as experimental interactions. Among the 5 primary databases (BioGRID, HPRD,
MINT, IntAct, and HuRI) showed BioGRID to have highest yield-coverage for both total and ‘EV’

interactions.

The relative percentage of ‘total’ PPIsfor the ubiquitous gene-set was comparatively higher in all the
databases, except STRING, hPRINT, HitPredict and HuRI. STRING-Web, hPRINT, and HuRI retrieved
dlightly more interactions for tissue specific gene-sets, whereas, STRING-API and HitPredict were
dlightly better for disease specific genes. When experimental PPIs within each database were compared,
the relative percentage of PPIs for disease specific genes was higher in all the databases, except in HuURI,

IntAct, hPRINT, STRING-API, and iRefWeb. The HuRI, IntAct, hPRINT and STRING-API databases
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retrieved dightly higher percentage of PPIs for tissue-specific genes, whereas, iRefWeb was relatively
better for ubiquitous gene-set. The average interaction yield-coverage for ubiquitous, tissue-specific and
disease gene-sets are provided in Fig 3 and the detailed results are provided in Supplementary data,

Table S3 & SA4.

Cumulative » Disease specific mTissue specific  mUbiquitous

RN (100) g —

RN AP ()
STRING-Web (32) &

II.

_F,—w-ll”'E[ﬂN|

1D (100)

‘I

il

UniHI (98)

iRefWWeb (99)

HIPPIE (100)

APID (99)

?J

mentha (100)

:
\

!

HINT (94)
BioGRID (76)

HitPredict (100)

|
|

GPS-Prot (100)
IntAct (67)
HPRD (52)
MINT (89)

HuRI (79)

B0 55 50 45 40 35 30 25 20 15 10 §

o

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70

Percentage mean coverage (experimentally verified PPIs) Percentage mean coverage (total PPIs)

Fig 3: M ean yield-coverage of protein interactions across databases for ubiquitous, tissue specific,
and disease associated gene-sets. The databases were manually queried with individual gene/protein names and
list of interacting proteins were obtained. A union list of non-redundant interactions for each gene-set across al the
databases was considered as reference for calculating the yield-coverage of each database. The yield-coverage for
‘total’ and ‘experimentally verified' protein interactions was calculated independently by considering the reference
datafor ‘total’ and ‘experimentally verified' interactions, respectively. The number in the parenthesis next to the
database name indicates its usage frequency rank. More details on the yield-coverage of individual gene-sets can be
found in Supplementary data, Table S3 and 4.

The comparison using well and less-studied genes overall showed a similar trend. The hPRINT database

had highest yield-coverage (60.5 and 55.2% respectively), followed by STRING (STRING-API: 46% and
15
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43.4% respectively; STRING-Web: 19% and 36.1% respectively) and 11D (13.4% and 6.3% respectively)
for the total interactions, Supplementary data, Table S5. When ‘EV’ interactions were compared for
well-studied gene-sets, STRING showed highest yield (STRING-API: 54.2%; STRING-Web: 33%)
followed by UniHI (31%) and iRefWeb (27.7%) databases. However, for the less studied genes, APID
and BioGRID with a mean yield-coverage of 24.3% and 24.1% respectively followed STRING

(STRING-API: 53.4%; STRING-Web: 43.9%), Supplementary data, Table S6.

Comparison of ‘total’ exclusive interactions across databases for the gene-sets showed hPRINT to have
highest mean yield-coverage (39.9%) followed by STRING-API (25.4%) and |1D (3.8%), Fig 4. For
ubiquitous and cardiomyopathy genes, however, iRefWeb (9.5% and 6.7% respectively) and for
Alzheimer’s disease, HitPredict (7.2%) provided more number of exclusive interactions than the 11D
database, Supplementary data, Table S7. When ‘EV’ exclusive interactions were compared across the
databases, the trend was found to be similar to that of all ‘EV’ interactions, where STRING-API showed
highest mean yield-coverage (44.3%) followed by iRefWeb (10.5%), and UniHI (9.8%) databases (Fig
4). Again for Alzheimer’ s disease, HitPredict showed much better yield-coverage (22.3%) than the other
databases. For cystic fibrosis gene-set, |1D showed better yield-coverage (4.3%) than iRefWeb,
Supplementary data, Table S8. Further, the exclusive PPIs from the STRING-Web interface, using
selected gene-sets showed a similar result to that of STRING-API. On an average, hPRINT showed
highest (44.7%) exclusive hits followed by STRING-Web (9.7%), although, as expected, the percentage
of exclusive interactions from STRING-Web was comparatively less than those from STRING-API.
When ‘EV’ interactions were considered, STRING-Web showed highest (22.8%) exclusive PPIs followed
by iRefWeb (14.1%) and UniHI (8.2%) databases, Supplementary data, Table S9. The complete list of
protein interactions collected for each gene can be accessed from

http://www .startbioinfo.com/PPIs Individual Genes.zip.
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Fig 4: M ean yield-coverage of exclusive protein interactions acr oss databases for the gene-sets.
STRING-Web results are based on the protein interactions of selected gene-sets (ubiquitous, kidney, breast cancer,
lung cancer, Alzheimer’s disease, and cardiomyopathy). ‘ Others’ include, mentha, APID, HIPPIE, GPS-Prot,
BioGRID, HPRD, IntAct, MINT, HINT, and HuRI databases. The exclusive interactions represented for UniHI,
iRefWeb, HitPredict, hPRINT, 11D, and Others are based on the comparison with STRING-API resulted PPIsand
not STRING-Web. A union list of non-redundant interactions across all the databases was considered as reference
for calculating the exclusive yield-coverage of each database. More details on the exclusive interactions for
individual gene-sets can be found in Supplementary data, Table S7, S8, and 9.

Comparison of complete protein interaction data acr oss databases

Complete human protein interaction data comparison showed hPRINT to have highest number of total
interactions (58.1%) followed by STRING (44.7%) and 11D (10%). When the number of proteins
corresponding to total interactions was compared, STRING database was found to have the highest
coverage. hPRINT, followed by STRING and 11D had highest number of mean ‘total’ interactions per
protein. In case of ‘EV’ interactions, STRING covered 79.3% of the al possible interactions, followed by
APID (16.9%) and HIPPIE (16.5%). A similar trend was observed for the average number of ‘EV’
interactions per protein. APID provided highest number of proteins corresponding to the ‘EV’
interactions, followed by HitPredict and HIPPIE databases. Among the five primary databases
considered, BioGRID showed highest content-coverage for both interactions as well as proteins. APID

database was found to have highest number of PPIs, followed by HIPPIE and HitPredict when the
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databases containing only experimentally verified interactions were considered. Among the databases
storing both *EV’ and predicted protein interactions, iRef\Web had highest percentage of *EV’ interactions
followed by UniHI, whereas, hPRINT had the least. The details on the content-coverage of interactions

and proteins for different databases are provided in Table 2 and Fig 5.

Table2: Summary of complete protein interaction data downloaded from the databases

Database  Number of total PPIs  Percentage Total PPIs EV PPIs
name (EV PPIS) EV PPIs Number of  Avg. number of Number of Avg. number
proteins PPIs/protein proteins of PPIg/protein
STRINGtT 4,056,217 (1,620,507) 40.0 18,523 219 16,366 99
UniHI T 359,772 (267,393) 74.3 17,311 21 16,635 16
iRefWebt 168,549 (145,874) 86.5 15,266 11 14,989 10
Mentha 270,130 - 16,477 16 -- --
APID 345,965 - 17,473 20 - -
HIPPIE 337,892 -- 17,283 20 - --
BioGRID* 260,308 - 16,682 16 -- -
HPRD* 39,001 - 9,608 4 - --
HitPredict 262,317 - 17,371 15 -- -
IntAct* 143,973 - 14,689 10 -- --
MINT* 17,265 - 6,215 3 - -
HINT 121,957 -- 14,433 8 -- -
hPRINTt 5,272,669 (93,149) 18 18,192 290 11,167 8
HuRI* 25,188 - 7,944 3 - --
1Dt 905,499 (279,529) 30.9 17,916 51 16,447 17

tDatabases storing both experimentally verified and predicted protein interactions; * Primary protein interaction databases. Note:
Non-redundant PPIs and proteins of each database are represented. EV: Experimentally Verified

When the databases were compared for their exclusive contribution of proteins, hPRINT showed highest
coverage followed by UniHI (Fig 6). The hPRINT database was a so found to have highest content-
coverage for ‘total’ exclusive interactions (46.5%) followed by STRING (33.1%) and |1D (3.1%).
However, STRING provided most number of ‘EV’ exclusive interactions (70.6%) and was followed by
UniHI (5%). Six databases, hPRINT, STRING, UniHI, 11D, APID, and HIPPIE together covered 99.7%

of ‘total’ and 98.9% of ‘EV’ exclusiveinteractions (Fig 7).
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Fig 5: Coverage of protein interactions acr oss the databases based on complete downloaded data. A
union list of non-redundant interactions across all the databases was considered as reference for calculating the
content-coverage of each database. The content-coverage for ‘total’ and ‘experimentally verified' interactions was
calculated independently by considering reference data for ‘total’ and ‘ experimentally verified' interactions
respectively. The number in the parenthesis next to the database name indicates its usage frequency rank.

900

=
©
800
700
600
500 +
400
300
200
100
0+

Fig 6: Number of exclusive proteins contributed by each database. A non-redundant list of proteins was
obtained from the interaction pairs downloaded from each database and compared across dl the databases to obtain
exclusive number of proteins. Only databases with exclusive contribution are shown in the figure (mentha and
HPRD had no exclusive contribution). Numbers corresponding to each bar represent the number of exclusive
proteins in the database.

Number of exclusive proteins
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Fig 7: Coverage of exclusive protein interactionsin the databases, based on the analysis of complete
downloaded data. The interaction pairs extracted from the downloaded data were compared across the databases
to obtain exclusive interactions in each database. The comparison was performed with both the possible
combinations of interaction pairs (P1— P2 and P2 —P1). A union list of non-redundant interactions across all the
databases was considered as reference for calculating the content-coverage of each database for ‘total’ and
‘experimentally verified’ interactions independently. ‘ Others’ include iRefWeb, mentha, BioGRID, HPRD,
HitPredict, IntAct, MINT, HINT, and HuRI.

The HPRD database did not contribute any exclusive interaction. IntAct had the least number of exclusive
interactions followed by MINT for both ‘total’ and ‘EV’ PPIs. Among the primary databases, BioGRID
provided highest number of exclusive interactions (49.5%) followed by IntAct (17.2%) corresponding to
69.5% and 24.2% of all the exclusive interactions, respectively. MINT contributed least number of

exclusive interactions among the primary databases (Fig 8).

The comparison of databases based on number of ‘EV’ PPIs per protein showed that ~90% of proteinsin
both MINT and HuRI databases had 10 or fewer interactions. At the same time, 34% of the proteins
(5,580 proteins) in STRING database had at least 100 interacting partners (Fig 9). It was interesting to
note that certain proteins have high number of interactions, with ubiquitin C (UBC), ubiquitin B (UBB)

and ubiquitin D (UBD) on top of thelist having 11,849, 4,435, and 3,928 PPIs, respectively (Fig 10).
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HPRD,
5.5%

Fig 8: Coverage of exclusive protein interactions among the primary databases, based on the
analysis of complete downloaded data. The interaction pairs extracted from the downloaded data were
compared across the primary databases to obtain exclusive interactions. The comparison was performed with both
the possible combination of interaction pairs (P1 — P2 and P2 — P1). A union list of non-redundant interactions
across al the primary databases was considered as reference for calculating the exclusive interactions contributed by
each database.
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Fig 9: Number of experimentally verified protein interactions per protein. A non-redundant list of
interaction pairs was obtained for each database (P1-P2 and P2-P1 were treated same and only one pair was
retained). Number of interactions per protein in each database was derived by counting the number of times a
protein is present in the non-redundant list of each database.
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Fig 10: Top 10 proteins based on number of experimentally verified protein interactions. A non-
redundant list of experimentally verified interaction pairs was obtained by combining PPIs downloaded from all the
databases (P1-P2 and P2-P1 were treated same and only one pair was retained). Number of interactions per protein
was derived by counting the number of times a protein is present in the combined list. Numbers corresponding to
each bar represent the number of PPIs for the protein.

Discussion

Thefirst time compilation of 375 PPI resources, followed by short-listing and basic comparison of 125
relevant resources for human PPIs and then a systematic comparison of 16 selected databases has
provided many new insights. The study shows specific advantages of different databases for specific
purposes and indicates benefits of combinatorial usage of certain databases in some cases, for the first
time. These observations and resulting suggestions are different from some of the earlier studies. A study
[8] on comparative analysis of six protein interaction databases showed IntAct to be the most
comprehensive database in terms of number of PPIs as well as species. The authors observed that the pair-
wise overlap among the considered databases was only up to 75%. Further, to increase the number and
quality of protein interaction data, the study suggested a submission requirement of the PPI data prior to
publication. In the current study, IntAct contributed <10% of all the possibleinteractions, and avery less

percentage (<1 %) of exclusive interactions. Another study [9] showed that HPRD [26] covered highest
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number of proteins, interactions, and literature citations. However, it was found to be low in terms of
contents as well as output in our study. The lower coverage of IntAct and HPRD could be because of the
consideration of meta-databases in the current study, unlike the previous studies and/or lack of updates
(e.g., HPRD was last updated in 2010). However, despite their low coverage, these two PPl databases
seem to be very popular asindicated by their usage frequency, which were next to STRING (Fig 3). Lack
of the meta-databases until recently combined with preference for manually curated data and observations
from an earlier comparative study [9] may have prompted researchers to use these databases. Among the
primary databases, HPRD retained the top position in terms of usage frequency, even though BioGRID
shows highest coverage (69.5%) of PPIs according to our study (Fig 8). Such observations stress the need

for detailed comparative analysis as the current one.

Overdl, hPRINT and STRING showed highest coverage for total and ‘EV’ interactions respectively, for
both gene-based queries and complete PPl data. These databases al so contributed maximum number of
exclusive interactions, which makes them a suitable choice for any research involving PPIs. Moreover,
these are meta-databases that cover data from multiple resources, and also predict interactions using
several computational methods. Though, hPRINT provided highest number of total interactions, the
coverage for the ‘EV’ PPIswas found to be <10%. Thisis perhaps due to the variation in the annotation
of ‘EV’ PPIsin hPRINT compared to the rest. Even though hPRINT integrates data from multiple
resources including STRING (which had highest coverage for the ‘EV'’ interactions), the interactions
referred to be experimentally verified in STRING are not categorized in case of hPRINT. The STRING
database which showed avery good coverage of PPIsin the current study has also been found to be
frequently used (based on the UFR) by the scientific community, probably dueto its publication in well-
known journal (s) and data update frequency. Whereas, hPRINT being in the top position for its coverage
found to be at the bottom in terms of its usage (Fig 3), probably because it is comparatively new. Further,

the UFR specifically indicated that the usage of some of the databases has been limited even though they
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have high coverage. One of the reasons behind this could be the lack of awareness among the scientific
community about the availability of such resources with better coverage. Hence, compilation and
periodical comparative studies of the PPl databases and tools are a need of the hour, which can equip

biologists with latest developments and help them in choosing the right resource.

hPRINT provided a good coverage of total interactions, but it does not support any visualization of
interactions, or integrate additional data for the proteins, such as pathways, domains. The output of
hPRINT isjust the interactions in atabular format, with their evidence scores. On the other hand,
STRING, along with a good coverage of interactions, offers visualization of the interaction network. It

a so supports functional enrichment of the network proteins using pathways, domains, and Gene Ontol ogy
annotations. The datain STRING is updated on aregular basis, and the complete data can be downl oaded
in various formats aiding for an easier integration into any new tool. It should be noted that STRING has
limited the number of interactions to be displayed in the web-browser to 500. However, as suggested by
the database, the API can be used to obtain al the interactions for a particular protein. Further, the lower
yield of ‘EV’ protein interactionsin STRING database for Alzheimer’ s disease can be attributed to APP
and A2M genes, which retrieved 3-5 times lesser number of PPIs than most other databases. In the current
study, both STRING-Web and STRING-API were independently queried with the genes to obtain the
interactions. Although STRING-Web provided less number of interactions compared to STRING-API, in
terms of protein interaction yield, the former was found to be still better than most of the other considered
databases for both ‘total’ and ‘EV’ interactions as well as for exclusive contribution. Hence, a user can
obtain good number of interactions, if not al, by using the web-based interface of STRING. The decision
of using STRING-API versus STRING-Web can be made based on the research goal. When all the
interactions for a particular protein are required, it may be better to use the API; whereas the web-based
interface would be very useful to obtain and visualize a network of high confidence interactions only. The

results show that the protein interaction coverage of primary databases was comparatively low both in
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terms of ‘all’ and ‘exclusive’ contribution. Thisis expected due to two reasons: a) the primary databases
collect interaction through literature curation, which is amanual process and takes enormous amount of
time to populate the database; b) most of the secondary databases integrate PPIs from multiple primary
databases, and hence have a higher coverage. No exclusive contribution (based on complete data

comparison) by HPRD database could be because the PPI data has not been updated since April 2010.

The 11D database, despite having alower coverage, can be particularly useful in obtaining PPIs along with
the expression status of interacting proteins in different tissues. Similarly, HIPPIE database provides an
option to filter the interacting proteins based on their tissue specificity. TissueNet [35] is another database
(not considered in the current study) similar to 11D, which provides tissue associated protein interactions.
The 11D database collects the gene expression data from microarray studies, whereas, the expression data
in HIPPIE and TissueNet has been obtained from GTEX, a RNA sequencing based expression database.
The protein expression datain both 11D and TissueNet has been integrated from Human Protein Atlas.
Currently, except Wiki-Pi [36] and IntAct, no other protein interaction database provides disease
associated PPIs. However, the association in Wiki-Pi is based on Gene Ontology (GO), functional, or
pathway annotations of the interacting proteins, which have been integrated from HPRD and BioGRID
databases. On the other hand, IntAct provides a precompiled list of interactions of proteins associated
with diseases, such as cancer, diabetes, Alzheimer’s, Parkinson’s. ComPPI [37] is another resource that
integrates GO annotations related to sub-cellular locations of interacting proteins, greatly enhancing the
reliability of the interactions. Interactome3D [38] is aweb-server useful for structural annotation of the
protein interaction networks. When queried with an interaction, it can find the available structural datafor

both the interacting partners as well as for the interaction itself.

While performing the comparative analysis, we also noted the shortcomings of different databases from a
user’s perspective, which we hope will be resolved in due course of time or in the future versions of the

databases, making them more user-friendly and reliable. For example, GPS-Prot provided no result for
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some proteins (e.g., ESR1) even after taking hours to load the interaction network, making it difficult for
us to judge whether the database has any interaction for the specific protein. In hPRINT database, the
download option for the output retrieved for gene-based queries resulted in aterminated file with
incomplete list of interacting partners, and hence, interactions were collect manually by copying them
from the result page. The STRING database provides maximum of 500 interactions through the web
based query, probably because of the graphical interaction network. Hence, the user hasto use API or
download the complete interaction data to obtain al the available interactions for a protein of interest.
Further, this limitation can be clearly indicated in the web-page and can be overcome by providing an
option to download all the available interactions for the query protein, while limiting the graphical
network to maximum of 500 interactions. 11D database when queried with gene/protein namein small
letters (e.g., tp53 instead of TP53) does not provide any interaction. This limitation was evaluated using

multiple gene/protein names and different browsers.

The whole study has been performed in a span of afew years, where the compilation of protein
interaction resources took most of the time. The collection of interactions and comparative analysis of the
databases, however, was performed within ayear. Therefore, variations may be expected in the number of
interactions for some databases based on their update status. For example, mentha updates the interactions
every week, whereas, HINT claimsto update its interaction data every night, making it practically
impossible to get the exact coverage of these databases at a given time point. However, based on our
preliminary studies, we believe that thiswill not affect the results drastically and the overall trend in the
coverage of the databases will remain same at least in the near future. Further, for the comparison of
complete interaction data, we have considered only binary interactions, while complex interactions were
excluded. Also, we did not assess the accuracy of the interactions provided by different databases, asit is
beyond the scope of our study. However, study by Turinsky et a., [7] quantified the agreement between

curated interactions shared across nine major public databases. Their results indicated that on an average,
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two databases fully agree on approximately 40% of the interactions and 60% of the proteins curated from
the same publication. They also showed that the variation can be mainly because of the differencein
assignments of organism or splice isoforms, different organism focus, and aternative representations of

multi-protein complexes, anong others.

Conclusions

Realizing the need for periodic comparative analysis of protein-interaction databases, we compiled 375
resources that are directly or indirectly useful in studying protein-protein interactions. Apart from basic
comparison of 125 resources that are likely to be more relevant for researchers, this study completes one
of the most elaborate evaluations of 16 carefully selected databases from a user’s perspective. The results
showed that hPRINT, followed by STRING, would be ideal for obtaining maximum of the protein
interactions. Together, they contain ~91% of the ‘total’ interactions as indicated from the analysis of
complete downloaded data. When the focusis on only Experimentally Validated (EV) interactions,
STRING could be the choice (~79% ‘EV’ PPIs), though a combinatorial use of STRING and UniHI
would_ensure a slightly higher content-coverage of ‘EV’ interactions (~84%). STRING-Web, although
provides less number of interactions than its APl counterpart, is still better than most of the other
databases in terms of coverage of all and exclusive interactions. Our results al'so conclude that a universa
rule cannot be applied for selecting the databases for gene-based searches of PPIs. Among the five
primary PPl databases considered, BioGRID provided highest coverage. The current compilation of
resources, review of severa features of the important databases, and the findings of the comparative study
can help researchers in making an objective-oriented selection of suitable protein-protein interaction
database(s), particularly for human species. The current study may also pave new componentsin the

methods for comparing bioinformatics resources especially from a user’ s perspective.
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