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Abstract: The availability of genome-wide epigenomic datasets enables in-depth stud-
ies of epigenetic modifications and their relationships with chromatin structures and
gene expression. Various alignment tools have been developed to align nucleotide or
protein sequences in order to identify structurally similar regions. However, there are
currently no alignment methods specifically designed for comparing multi-track epige-
nomic signals and detecting common patterns that may explain functional or evolu-
tionary similarities. We propose a new local alignment algorithm, EpiAlign, designed
to compare chromatin state sequences learned from multi-track epigenomic signals and
to identify locally aligned chromatin regions. EpiAlign is a dynamic programming al-
gorithm that novelly incorporates varying lengths and frequencies of chromatin states.
We demonstrate the efficacy of EpiAlign through extensive simulations and studies on
the real data from the NIH Roadmap Epigenomics project. EpiAlign is able to ex-
tract recurrent chromatin state patterns along a single epigenome, and many of these
patterns carry cell-type-specific characteristics. EpiAlign can also detect common chro-
matin state patterns across multiple epigenomes, and it will serve as a useful tool to
group and distinguish epigenomic samples based on genome-wide or local chromatin
state patterns.

1. Introduction

All tissue and cell types, such as embryonic stem cells (ESCs), terminally differentiated tis-
sues, and cultured cell lines, are maintained and controlled by epigenomic regulation and gene
expression programs [1, 2, 3]. An epigenome encodes information of chemical modifications
to DNA and histone proteins of a genome, and such modifications may result in changes to
chromatin structures and genome functions. Epigenomic information is represented by multi-
track signals, including DNA methylation, covalent histone modifications, and DNA acces-
sibility, all of which are measured genome-wide by high-throughput sequencing technologies
1
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such as Bisulfite-seq, ChIP-seq and DNase-seq [4]. In recent years, multiple international
consortia, including the Encyclopedia of DNA elements (ENCODE) [5], the NIH Roadmap
Epigenomics Mapping Consortium [6, 7], and the International Human Epigenome Consor-
tium [8], have generated large-scale high-throughput epigenome sequencing datasets for a
broad spectrum of tissue and cell types, offering an unprecedented opportunity for study-
ing multiple levels of epigenetic regulation across diverse cell states. Specifically, the NIH
Roadmap project has released public epigenomic data of 127 human tissue and cell types [7].
This database contains a total of 2,804 genome-wide epigenomic datasets, including 1,821
histone modification datasets, 360 DNase datasets, and 277 DNA methylation datasets.

A series of computational methods, including ChromHMM [9], Segway [10], GATE [11],
TreeHMM [12], STAN [13], EpiCSeg [14], Spectacle [15], IDEAS [16], and GenoSTAN [17],
have been developed to build a genome-wide chromatin state annotation, where distinct chro-
matin states have demonstrated diverse regulatory and transcriptional signals [18, 19, 20].
In these methods, each epigenome is segmented into non-overlapping regions, and a single-
track chromatin state sequence is constructed by compressing the multi-track epigenetic
activities (e.g., DNA methylation and histone modifications) in various ways. For example,
ChromHMM assigns discrete chromatin state labels to genomic regions based on signals
of multiple epigenetic markers using a hidden Markov model [9]. The predicted chromatin
states have shown strong biological relevance and wide applicability in genomic research,
e.g., the identification of enhancers and promoters [20]. Given a chromatin state annota-
tion constructed by any of these methods, genomic regions of the same chromatin state are
expected to have both consistent epigenomic patterns and similar regulatory functions.

Based on existing chromatin state annotations, previous work has studied similarities and
differences of human tissue and cell types in terms of epigenomic signals in specific functional
genomic elements (e.g., promoters and enhancers), as well as the tissue and cell specificity
of these elements, using the Pearson correlation coefficients [21, 7] or a newly developed
epigenome overlap measure (EPOM) [22]. The aforementioned methods have shed significant
insights into our understanding of gene regulation on a global scale, i.e., how promoters and
enhancers regulate target genes in diverse tissue and cell types. However, former epigenome
comparative studies failed to effectively incorporate the sequential information of chromatin
states, which, however, we believe are highly likely to contain critical information on gene
regulatory mechanisms.

The comparison of DNA/RNA or protein sequences is based on the sequential informa-
tion of nucleotides or amino acids. Many sequence alignment methods have been developed
over the past decades to measure the similarity between sequences. Earlier work such as the
Needleman-Wunsch algorithm [23] and the Smith-Waterman algorithm [24] use dynamic
programming to search for the best global or local matches between two sequences. With
the development of these algorithms, sequence alignment tools have become indispensable
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in almost all modern biological research. They are powerful not only in studies that focus on
comparing sequences, such as evolutionary studies, but also in query-database retrieval stud-
ies, which aim to find regions from a large database that are similar to the query sequence of
interest. However, there is no alignment algorithm designed to assess the epigenetic similarity
of long genomic regions, such as gene regions and long non-coding regulatory regions. A main
challenge lies in the multi-track nature of epigenomic signals. On the one hand, substantial
information would be lost if we calculate a scalar value (e.g., the mean signal averaged over
multiple 25 bp windows) to represent the signal of a long genomic region per track per
tissue/cell. On the other hand, if we directly analyze the original data (a signal value per
25 bp window per track per tissue/cell), we would need to evaluate the similarity of large
matrices to compare genomic regions. Specifically, the matrix of a region has the dimensions
as the number of 25 bp windows in the region x the number of tracks. Given that different
regions almost certainly have different region lengths thus they have matrices of different
dimensions, how to evaluate their similarity is a non-trivial task. In addition, we also need to
consider the fact that a long region often contains multiple functional genomic elements with
varying lengths. Hence, a reasonable approach is to compare two long regions based on their
chromatin state patterns learned from multiple-track epigenomic signals. Motivated by the
fact that chromatin state sequences provide a biologically meaningful one-track interpreta-
tion of multi-track epigenomic signals [9], we reduce the challenging question of comparing
long multi-track epigenomic signals to a simpler task of comparing two chromatin state
sequences.

Given the fast accumulation of large-scale epigenomic datasets generated in recent years,
biological researchers are in great need of a new bioinformatic tool to efficiently retrieve
genomic regions similar to an interested query region in terms of epigenomic signals. Moti-
vated by the enormous successes of sequence alignment algorithms in comparing nucleotide
and protein sequences [25], here we propose a novel computational method, Epigenome
Alignment (EpiAlign), to compare two genomic regions by aligning their chromatin state se-
quences. To the best of our knowledge, EpiAlign is the first pairwise alignment-based method
that investigates the sequential patterns of chromatin states and studies the epigenome sim-
ilarity based on the patterns. EpiAlign compares two chromatin state sequences by calculat-
ing a local alignment score. It also allows the search of genomic regions (i.e., “hits”) whose
chromatin state sequences are similar to those of a query region. Aligned chromatin state
sequences are expected to have similar biological functions. EpiAlign is flexible in performing
the chromatin state sequence alignment either within an epigenome, i.e., a tissue or cell, or
between two epigenomes. From the alignment results of EpiAlign, users can identify com-
mon chromatin state patterns to investigate the functional relationship of interested genomic
regions.
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2. Methods

The EpiAlign algorithm aims to find an optimal local alignment between two chromatin
state sequences. Our algorithm development is motivated by the classic Smith-Waterman
Algorithm [24]. We design the mismatch and deletion score functions based on the weight of
each chromatin state in each sequence. We first apply a chromatin state annotation method
(e.g. ChromHMM [9]) to encode multi-track epigenomic signals into single-track chromatin
state sequences, whose different states are represented by different labels. Second, we com-
press consecutive occurrences of the same state into a state label. For example, a chromatin
state sequence abbcc is represented by a compressed state sequence S = abc. EpiAlign then
performs a local alignment between two genomic regions based on their compressed state
sequences. In the following text, unless specified, all the chromatin state sequences refer to
the compressed state sequences.

2.1. Modified Smith- Waterman Algorithm for Chromatin State Sequence
Alignment

Given two chromatin state sequences S; and S,, we characterize a possible alignment between
S; and Sy through a set of triplets {(f;, w1, u2:)}Y,, where N denotes the total number of
aligned basepairs (including matches, mismatches, and gaps), f; gives the alignment status
between two chromatin states whose positions are uy; and ug; in S; and S5, respectively. We
may equivalently write this set of triplets as three equal-length sequences: F' = fifs--- fu,
Uy = upigg -+ - ury, and Uy = ugugs - - - ugy . Specifically, f; € {m,n, d;, ds} denotes one of the
four possible alignment status between two chromatin states: m for match, n for mismatch,
d; for deletion in S7, and dy for deletion in Sy. If f; = m, there is a match between the uy;-th
state of S7 and the ug;-th state of Sy; if f; = n, there is a mismatch between the uq;-th state
of Sy and the wug;-th state of Sy; if f; = dy, the uy;-th state of Sy is aligned to nothing in Sy
(ug; is set to 0); if f; = dy, the ug;-th state of Sy is aligned to nothing in S; (uy; is set to 0). In
a b c a
an example with S; = abca and S, = aba, if we consider an alignment | | | |, then
a b — a
F =mmdim, U; = 1234, and U; = 1203. Please note that the two chromatin state sequences
S; and S, may have different lengths. Also given S; and Sy, it is possible to have more than
one alignment results, i.e., sets of {(fi, uys, ug;) 1Y, .
Now we define the alignment score function H(-) as:

N
H(F7 U17U2751752) :Zh(fi7u1i7u2iuslvs2)7 (1)

i=1
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where h(f;, uy;, ug;, S1,52) denotes the score of the alignment status f; between the wy;-th
state in S7 and the wuq;-th state in Sy. Specifically,

h(m, wy;, ugs, S1,.S2) = MF(uy;, ug, S1,.S2);
h(n, U4, Ugi, S1, 52) = NF(UM,U% S, 52);
h(d1, u1s, ug;, S1, S2) = DF(uq;, S1);
h(dQ, U4, U4, Sl, SQ) = DF(U2i7 Sg)

We will formally define the matching function MF(+), the mismatching function NF(-), and
the deletion function DF(-) later in this section. To summarize, the function h(-) takes a
form that depends on the value of its first argument f;.

Then we consider the alignment problem as an optimization problem where the goal is to
find the optimal alignment {F*, U}, U5} that maximizes the alignment score H:

{F*, f, UQ*} = argmaX{F7U17U2}H(F, Ul, UQ, Sl, SQ) . (2)

This optimization problem can be approached by dynamic programming, an algorithm that
iteratively maintains and updates a matrix M that stores dynamic alignment results. The
matrix element Mj; is the maximal alignment score of the two subsequences Sgl’k] and Sg’”,

where S&l’k] denotes the first k states of S; and Sél’l] denotes the first [ states of S,. Let ny
and ns be the length of S; and Ss, respectively. We update the matrix M using the following
rule.

Mo=0, for 0 <k <ny;
M(),l:(), for0<l<n2;
Mk 1,l— l—f-MF(k},l,Sl,Sg) Match

M., — max Mk 1,l—1 +NF (k,l,Sl,Sg) Mismatch (3)
b M1+ DF(k, S) Deletion in S;
My -1 + DF(I, S, Deletion in S,

for 1 <k<mng, 1<I<no.

The algorithm described in Equation (3) achieves the global alignment, but we instead
consider the local alignment approach in practice since the local alignment would prefer
long continuous alignments with small proportion of mismatches, which are more likely to
contain the common patterns of interest. In contrast, global alignment would prefer pat-
terns containing overly scattered short alignments separated by gaps. To achieve the goal
of local alignment, we propose the following approach to modify the dynamic programming
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algorithm.

MM:O, forOSkgnl;
My; =0, for 0 <1 <ngy;

0

My_1,-1 + MF (k,1,5,52) Match (1)
My, =max<{ My_1,-1 + NF (k,[,S1,5) Mismatch 7

M1, + DF(k, S) Deletion in S

My,—1 + DF(l,S;) Deletion in Ss

for 1 <k<mng, 1<Il<ns.

The alignment score of EpiAlign is MEPiAlien — pf

2.2. Chromatin State Weights

To define the specific forms of the matching function MF(:), the mismatching function
NF(-) and the deletion function DF(+), we first introduce a weight function W (k,.S), which
describes the weight of the k-th state in sequence S. The weights can be used to distinguish
chromatin states of different importance if we have prior knowledge that some states have
more significant biological functions than others at certain positions. We design two sets of
weights: (1) equal weights mean that all states are treated equally with the same weight
1 in sequence S, ie., W(k,S) =1, k=1,...,|5|; (2) frequency-based weights assign
larger weights to less common chromatin states (see Supplementary for details), motivated
by the fact that some uncommon states are likely strong indicators of biological functions.

With the weights defined above, we specify the matching function, the mismatching func-
tion, and the deletion function as:

MF(k, 1, Sy, S0) = W (k, 1) + W(l,Ss) (5)
NF(kZ,l,Sl,SQ) = —€N (W(/{?,Sl) —|—W(l,52)) y (6)
DF(k,S) = —ep - W(k, S), (7)

where ey and €p are the penalty parameters for a mismatch and a deletion in the alignment,
respectively. In EpiAlign, ey and €p can be tuned by users, and the default values are 1.5
and 1, respectively. Figure 1 shows the workflow of EpiAlign.

3. Results

We demonstrate in three aspects that EpiAlign is a useful tool for investigating sequential
patterns of chromatin states. First, we demonstrate that EpiAlign can identify common
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Fic 1. Workflow of the EpiAlign algorithm.

chromatin state patterns within the same epigenome or across different epigenomes. Second,
we investigate biological interpretation of the common chromatin state patterns found by
EpiAlign. Third, as a technical verification, we show that EpiAlign is able to distinguish real
epigenomes from randomized epigenomes. We also demonstrate the superiority of EpiAlign
over a naive method that compares two chromatin sequences only based on chromatin state
frequencies. We conduct the above analysis using simulation and real case studies based on
the Roadmap epigenomic database [7]. In this paper, we use the chromatin state sequences
annotated by ChromHMM, which has been well recognized to provide an informative com-
pression of multi-track epigenomic signals into a chromatin state sequence [9, 7, 22]. It is
worth noting that our method is generally applicable to chromatin state sequences annotated
by other methods.

3.1. Vertical alignment: Comparison of Chromatin State Sequences of
Protein-coding Genes across Epigenomes

EpiAlign is a powerful local alignment algorithm to quantify the similarity of two chromatin
state sequences in terms of their aligned subsequences. Here we apply EpiAlign to compare
chromatin state sequences of the same genomic region in different epigenomes, a strategy
we define as the vertical alignment. The diversity of the same region’s chromatin state
sequences represents epigenetic characteristics of various tissues and cell types. As epigenetic
characteristics are known to have a strong association with gene expression characteristics
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[26], we expect that a cell-type specific gene, i.e., a gene specifically highly expressed in a
cell type [27], should have similar chromatin state sequences in epigenomes of that cell type.
In contrast, lower similarity is expected between two chromatin state sequences, one of that
cell type and the other of another cell type (Supplementary Figures 2 and 3).oe

In the first study, we divide the Roadmap epigenomes into two categories: 51 male samples
and 38 female samples. In the second study, we compare the Roadmap epigenomes of two
cell types: 12 brain samples and 5 heart samples. In both studies, we compare the chromatin
state sequences for each of the 19,935 protein-coding genes between every pair of samples.
(Note that we use all protein-coding genes in GENCODE v10 [28] that are compatible with
the Roadmap database, with the exception of genes on chromosome Y.)

In the first study, we obtain three sets of alignment scores: pairwise scores within male
samples, pairwise scores between male and female samples, and pairwise scores within fe-
male samples. Since most genes on the X chromosome are associated with sex-linked traits,
we expect to observe higher alignment scores between samples of the same sex than those
between samples of different sexes. To quantify the difference between alignment scores, we
perform the two-sample one-sided Wilcoxon test between male-vs-male scores and male-vs-
female scores for each protein-coding gene. Studying the resulting p-values, we find that out
of the top 200 genes that have the smallest p-values, 188 are X chromosome genes. (Figure
2(a)). This result suggests that the majority of the genes that exhibit greater within-sex
similarity are sex linked, a reasonable finding that matches our expectation. The compari-
son between female-vs-female and male-vs-female alignment scores leads to a similar result
(Figure 2(b)). These results together confirm that EpiAlign successfully distinguishes same-
sex chromatin state sequences from different-sex ones, suggesting that EpiAlign outputs a
reasonable similarity measure of chromatin state sequences.

We also investigate the 12 genes that are not on X chromosome among the top 200 genes
with the smallest p-values (Supplementary Table 1). These genes are potentially sex linked.
For example, MFF that controls mitochondrial fission has been reported to have to have
sex-specific regulation [29]. This result suggests that EpiAlign can serve as a useful tool for
discovering genomic regions with certain epigenetic regulation of interest.

In the second study, we investigate if EpiAlign can help identify cell-type specific genes,
which were previously discovered from gene expression profiles [27], using only chromatin
state sequences. We perform the two-sample one-sided Wilcoxon test between brain-vs-brain
alignment scores and brain-vs-heart alignment scores for all the 19, 935 protein-coding genes.
We next perform the Gene Ontology (GO) enrichment analysis [30] on the top 200 genes
that receive the smallest p-values in the Wilcoxon test (Supplementary Table 2). The top
enriched GO terms (p-value < 0.0001) are highly relevant to heart/cardiac processes and
brain processes (Table 1). Previously discovered 150 heart-specific genes and 166 brain-
specific genes [27] are enriched in the top differential genes found by the Wilcoxon test,
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FiG 2. Alignment scores of chromatin state sequences of protein-coding genes within a sex vs. between sexes.
We perform the two-sample one-sided Wilcoxon test between within-sex alignment scores and between-sex
scores to quantify their differences: (a) Manhattan plot of p-values of the test between male-vs-male and
male-vs-female alignment scores for all the protein-coding genes. (b) Manhattan plot of p-values of the
test between female-vs-female and male-vs-female alignment scores for all the protein-coding genes. In the
two comparisons, within-sex and between-sex alignment scores differ most significantly for genes on the X
chromosome.

which have significantly higher within-tissue alignment scores than between-tissue scores.
For example, 9 brain-specific genes and 4 heart-specific genes are in the top 100 differential
genes (p-values < 107" in a hyper-geometric test). Figure 3 shows that top differential genes
contain a higher proportion of tissue-specific genes. The above results indicate that EpiAlign
is able to distinguish cell-type specific genes by assigning them higher alignment scores when
comparing the epigenomes of their associated cell types. This again suggests that EpiAlign
effectively captures chromatin state patterns in epigenomes.
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Fi1G 3. Brain and heart specific genes are enriched in the top differential genes that have significantly higher
within-tissue alignment scores than between-tissue scores. The horizontal axis shows the number of top dif-
ferential genes, and the vertical azis shows the proportion of tissue specific genes among the top differential
genes.
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GO term Description P-value
G0:0051891  *positive regulation of cardioblast differentiation 9.34E-8
GO:0051890 *regulation of cardioblast differentiation 6.42E-7
GO:0007416  **synapse assembly 5.82E-6
GO0:0003207 *cardiac chamber formation 5.83E-6
G0:0060413 *atrial septum morphogenesis 1.72E-5
G0:0006928 movement of cell or subcellular component 2.15E-5
GO0:0007409 **axonogenesis 2.98E-5
G0:0071625 vocalization behavior 3.07E-5
G0:0032990  cell part morphogenesis 4.63E-5
G0:2000738 positive regulation of stem cell differentiation 6.36E-5
GO0:0060043 *regulation of cardiac muscle cell proliferation 6.99E-5
G0:0097104 **postsynaptic membrane assembly 8.69E-5
G0:0048812  **neuron projection morphogenesis 8.79E-5
GO0:0051705 multi-organism behavior 9.73E-5
TABLE 1

Alignment scores of chromatin state sequences of protein-coding genes within a tissue (heart or brain) vs.
between heart and brain. Displayed are the enriched GO terms in the top 200 significant genes identified by
the Wilcozon test between brain-vs-brain alignment scores and brain-vs-heart alignment scores. The top
enriched GO terms are highly relevant to heart processes or brain processes (*: terms related with heart; **:
terms related with brain).

We also analyze the expression profiles of protein-coding genes. We use DESeq2 [31] and
EdgeR [32] to do differential expression (DE) analysis between heart samples and brain
samples on all the 17, 784 protein-coding genes included in the Roadmap RNA-seq datasets.
The results show a high consistency between the resulting differentially expressed genes and
the differential chromatin state sequences found by EpiAlign (Table 2). This results further
validate that the tissue-specific regions found by EpiAlign are biologically meaningful and
reflect gene expression dynamics, and that EpiAlign will be a useful tool for identifying
tissue-specific epigenomic regions.

DESeq2 | edgeR
Total number of genes 17784 17784
Number of DE genes (p < 0.05) | 5906 6251
DE genes in top 200 by EpiAlign | 143 146
p-value of hyper-geometric test <1073 [ < 10730
TABLE 2

Comparison of the 200 genes with differential chromatin state sequences identified by EpiAlign and the
differentially expressed (DE) genes identified by DESeq2 or EdgeR. DESeq2 and edgeR identify 5906 and
6251 DE genes between all 3 brain samples and all 4 heart samples from the 17,784 protein-coding genes in
the Roadmap RNA-seq datasets. A hypergeometric test is used to check the significance of the enrichment
of the top 200 genes identified by EpiAlign in the two sets of DE genes. The two resulting p-values are both
significant.
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3.2. Horizontal Alignment: Analysis of Frequent Chromatin State Sequence
Patterns within an Epigenome

Motivated by the fact that similar chromatin state sequences may encode similar biologi-
cal functions, here we use EpiAlign to analyze frequent chromatin state sequence patterns
within an epigenome. We introduce the “horizontal alignment,” which takes the chro-
matin state sequence of a region as the query and searches for its best hit except itself
within an epigenome. We first divide a given epigenome into regions of 500 kb length, and
then we align the chromatin state sequence of each region (i.e., the “query”) to those of other
regions to find the best match. It is worth noting that the alignment scores of multiple query
chromatin state sequences are not directly comparable. To normalize the alignment scores,
we align every query chromatin state sequence to randomized chromatin state sequences,
which serve as a negative control (see Supplementary for details). Then for every region, we
define the normalized alignment score of its best hit except itself (when the region is used
as the query) as its horizontal alignment score. A high score indicates that the region
shares a highly similar and non-random chromatin state sequence with another region in
the same epigenome, implying that the region’s chromatin state sequence pattern is likely
biologically meaningful.

With horizontal alignment scores, we can represent every epigenome by a vector, whose
length is the number of regions and whose entries are the regions’ horizontal alignment
scores. As mentioned above, horizontal alignment scores measure whether their correspond-
ing regions contain biologically meaningful chromatin state patterns, which are expected
to be largely consistent across epigenomes of the same tissue. We use the Roadmap sam-
ples to calculate the horizontal alignment scores for all regions in all epigenomes. Then we
represent every epigenome by a horizontal alignment score vector. To verify the biological
meaning of the vector representation, we calculate the pairwise Pearson correlations between
epigenomes and perform an average-linkage hierarchical clustering of epigenomes based on
the (1—Pearson correlation) distance metric. The clustering result matches our expecta-
tion: samples from the same tissue are clustered together, confirming that the horizontal
alignment scores are indeed consistent across the samples from the same tissue (Figure 4).

3.2.1. EpiAlign distinguishs real epigenomes from randomized ones

We further perform a technical validation of EpiAlign based on horizontal alignment, by
showing that EpiAlign is able to distinguish real epigenomes from randomized epigenomes,
which serve as a negative control. Here we calculate horizontal alignment scores using Epi-
Align on all the 127 Roadmap samples based on the 15-state ChromHMM annotation. In
addition to each real epigenome, we also generate a randomized epigenome and two hybrid
epigenomes for comparison. Here the randomized epigenome is generated in the same way as
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Fic 4. Clustering based on the correlation matriz of horizontal alignment scores of Roadmap epigenomes.
Samples from the same tissue or cell type are clustered together, indicating that horizontal alignment scores
are highly correlated between samples from the same tissue or cell type.

in the normalization step for calculating horizontal alignment scores (see Supplementary for
details). To contrast real and randomized epigenomes, we also generate a hybrid epigenome
as a semi-negative control by mixing the real and randomized epigenomes of every chromo-
some, so that a hybrid epigenome is composed of alternating real regions and randomized
regions. (see Supplementary for details)

We use an ESC (embryonic stem cell) sample (Roadmap ID E003) as an example and cal-
culate horizontal alignment scores in four epigenomes: the real ESC epigenome, a randomized
epigenome, and two hybrid epigenomes. We summarize the distributions of horizontal align-
ment scores in the real and randomized epigenomes in Figure 5(a). As expected, the regions
in the real epigenome have an average alignment score higher than 0, while the average score
of regions in the randomized epigenome is close to 0. For each of these four epigenomes, we
find the top 500 non-overlapping regions with the highest horizontal alignment scores. As
expected, the top regions in the real epigenome have scores significantly higher than those in
the randomized and hybrid epigenomes (Figure 5(b)), an observation consistent with the fact
that a high score indicates a region likely to have a biologically meaningful chromatin state
pattern. Moreover, for hybrid epigenomes, almost all the top 500 regions are those generated
from the real epigenome (Figure 5(c)), again confirming that real chromatin state patterns
are more biologically meaningful than randomized patterns. Overall, our results suggest that
EpiAlign can powerfully distinguish real biological epigenomes from randomized epigenomes.

3.2.2. Comparison of EpiAlign with alternatives

We further validate our EpiAlign algorithm with equal weights by comparing it with two
alternative approaches. The first is a variant of EpiAlign using frequency-based weights,
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F1G 5. Horizontal alignment results of embryonic stem cell sample E003. (a) The distribution of horizontal
alignment scores of regions in real and randomized epigenomes. (b) The top 500 highest horizontal alignment
scores (logy, transformed) in real, randomized and hybrid epigenomes. Scores in the real epigenome are
always the highest given the same rank. (c) Locations of the regions with the top 500 horizontal alignment
scores in the two hybrid epigenomes. The three panels together indicate that the real epigenome contains
non-random chromatin state sequential patterns captured by EpiAlign.

which are determined by the frequencies of chromatin states (see Supplementary for details).
The second is a naive alignment method, in which we first calculate the proportion of each
chromatin state in two regions (chromatin state sequences) to obtain two proportion vectors
Py = (pi1,p12,---,mo)" and Py = (pa1, pa2,---,Pag)’, where @ is the number of unique
chromatin states in the annotation (e.g., @ = 15 in this case). The naive alignment score
is a similarity measure defined as M™% = —||P, — P||2 = — X9, (p1; — po:)?. The naive
method directly compares two chromatin state sequences based on their state proportions,
and it does not use a dynamic programming approach as does in EpiAlign. However, given
that similar chromatin state sequences share similar frequency vectors, the naive method is
also a biologically meaningful approach.

Note that EpiAlign (with equal weights), the frequency-based variant of EpiAlign, and
the naive method do not have horizontal alignment scores on the same scale and cannot
be compared directly, so we compare the three approaches by evaluating the biological
meaning of the regions they find with high scores. Since gene regions are expected to share
some common chromatin state patterns (i.e., promoter, transcription start site, transcribed
region, and transcription ending site), a good alignment method is expected to assign high
horizontal alignment scores to gene regions. In other words, genes expressed in a tissue
are expected to have high horizontal alignment scores in the tissue’s epigenome. Hence, we
design two evaluation criteria: one is the enrichment of known tissue-associated genes, i.e.,
the non-house-keeping genes highly expressed in a tissue [33], in regions with high alignment
scores; the other criterion is the enrichment of annotated genes. The greater the enrichment,
the better the alignment method. We apply each of the three approaches to do horizontal
alignment and check the overlap between tissue-associated genes or annotated genes and each
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approach’s top-aligned regions, which receive the highest horizontal alignment scores. We
perform this evaluation on 16 samples: 5 ESC, 4 heart and 7 brain samples. For each sample,
we collect the top 500 regions with the highest alignment scores found by each approach
and count the numbers of tissue-associated genes from Yang et al. [33] and annotated genes
from Kent et al. [34] that overlap with these regions. From the results shown in Figure
6, we see that EpiAlign outperforms the naive method in detecting annotated genes and
tissue-associated genes. In addition, we observe that the frequency-based weights do not
have apparent advantages over the equal weights, suggesting that we may use EpiAlign with
equal weights as the default.

(a)
Tissue-associated Gene Enrichment Comparison of Top 500 Regions
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Fic 6. Comparison of EpiAlign, EpiAlign with frequency-based weights, and the maive method using 16
Roadmap samples (5 ESC, 4 heart, and 7 brain samples from the 92 samples with 18-state ChromHMM
annotation). (a) The number of tissue-associated genes that overlap with the top 500 regions with the highest
horizontal alignment scores found by each approach. (b) The number of annotated genes that overlap with
the same three sets of top 500 regions.

3.2.8. Motif Analysis

As a further investigation, we check if the regions with top horizontal alignment scores
share any chromatin state patterns in common. We apply EpiAlign to perform horizontal
alignment within the epigenome of the embryonic stem cell sample E003, and we select the
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top 200 regions with the highest horizontal alignment scores. To investigate whether common
chromatin state patterns exist among these regions, we calculate the pairwise alignment
scores between each pair of these top 200 regions. We normalize the pairwise alignment scores
and store them in a 200 x 200 symmetric matrix A, whose (4, j)-th entry A;; represents the
normalized alignment score of regions 7 and j and is defined as

1 if i =j
Aij - alignment score of regions ¢ and j otherwise (8)
a(maxy, alignment score of regions k and )

where o = 1.1 ensures that 0 < A;; < 1 for all 7 # j. We then define a distance matrix D,
whose (i, j)-th entry is D;; = 1 — A;;. We then perform hierarchical clustering with average
linkage on the top 200 regions based on D, and we display the clustering result in Figure 7.

From the heatmap in Figure 7, we see that the top 200 regions are well partitioned into four
clusters, indicating that regions in the same cluster share similar chromatin state patterns.
(Supplementary Table 3) We inspect each of these four clusters to identify its representative
chromatin state patterns, which we refer to as motifs in the following text. For notation
simplicity, we use alphabets “a” to “0” to denote chromatin states 1 to 15.

Color Key

Count
0 1500

0 0.4 0.8
Value

Fic 7. Heatmap of pairwise distances of the top 200 regions, identified by the horizontal alignment on
embryonic stem cell sample E003. Based on the distance matriz D, the top 200 regions are grouped into 4
clusters by average-linkage hierarchical clustering.
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Using the motif-discovery tool MEME [35], we find that all the four clusters are charac-
terized by certain motifs. As annotated by the 15-state ChromHMM model [36], the state
“0” denotes the quiescent state and lacks a good biological interpretation, so we only con-
sider the motifs without “0”. We find that cluster 1 is characterized by the “ihih”-repeat
motif; cluster 2 is characterized by the “egeg”-repeat motif; cluster 3 is characterized by
“eded” motif; cluster 4 is characterized by the “egeg” motif and “mlml” motif. Based on
the ChromHMM annotation, the state “i” represents heterochromatin, while “h” represents
ZNF genes and repeats. Since existing evidence shows that human heterochromatin pro-
teins form large domains containing KRAB-ZNF genes [37], the “ihih”-repeat motif may
represent functional non-coding regions. Since “d” denotes strong transcription, “e” denotes
weak transcription, and “g” denotes enhancer, the “egeg”-repeat motif may be an evidence
of transcriptional enhancers [38] and the “eded”-repeat motif may denotes transcriptional
regions. In the “mlml”-repeat motif, “m” and “1” represent repressed polycomb and bivalent
enhancer, respectively. Since polycomb-repressed genes have permissive enhancers that initi-
ate reprogramming [39], the “mlml”-repeat motif may be an indicator of polycomb-repressed
gene regions. All these results show that the motifs discovered from the frequent chromatin
state patterns are biologically meaningful and EpiAlign can help identify common chromatin
state patterns in epigenomes of specific biological conditions.

4. Website

We have implemented the EpiAlign algorithm in an open-access software package, which is
available at GitHub:

https://github.com/zzz3639/EpiAlign

We have also created a user-friendly website to demonstrate the functionality of EpiAlign
and visualize the alignment results of the Roadmap epigenomes:
http://shiny.stat.ucla.edu:3838 /EpiAlign.

The website includes two main features: cell-type alignment scores and pairwise alignment
scores. For the cell-type alignment feature, users can browse the alignment score matrix for a
given gene. The columns and rows of this symmetric matrix correspond to the 16 cell types,
and each matrix entry is the average pairwise alignment score between the gene’s chromatin
state sequences of the two corresponding cell types. For the pairwise alignment feature, users
can select two gene regions and calculate the alignment score between their corresponding
chromatin state sequences. Both features will help users investigate for a specific gene the
similarity of its chromatin state patterns between Roadmap epigenomes or users’ custom
epigenomic samples.
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5. Discussion

In this article, we propose the EpiAlign algorithm for alignment of chromatin state sequences
learned from multi-track epigenomic signals. We demonstrate that EpiAlign can be a power-
ful tool for studying the epigenomic dynamics along the same epigenome or across multiple
epigenomes, based on both simulation and real data studies.

First, our current alignment results are based on ChromHMM, which learns and charac-
terizes from multi-track epigenomic signals. There are also other tools for pattern discovery
in chromatin structures, such as Segway [10], which constructs a dynamic Bayesian network
instead of HMM, EpiCSeg [14], which uses natural numbers instead of binarized signals
as used by ChromHMM, and IDEAS [16], which jointly characterizes epigenetic dynam-
ics across multiple human cell types. It would be interesting to compare these tools with
ChromHMM to analyze how the chromatin state annotation affects the alignment results of
EpiAlign. If the output results of ChromHMM or other segmentation tools can be filtered
or improved based on additional biological experiments, this can also help EpiAlign obtain
more accurate and robust results.

Second, in the EpiAlign algorithm, an important step before alignment is the compression
of the chromatin state sequences. Chromatin states of different regulatory functions can
vary greatly in their lengths [40], but the length information itself is not informative of
the change of epigenetic marks along the genome. Therefore, we add a compression step to
capture and extract the dynamics of chromatin states among biological samples. We have
also tested the pre-compression alignment algorithm, but it is not able to distinguish the
randomized chromosome from the real one, suggesting that compression is necessary for
detecting biologically meaningful chromatin state patterns.

Third, EpiAlign is essentially an unsupervised algorithm, but the flexibility of the weight
function allows EpiAlign to incorporate prior knowledge into the alignment procedure by
assigning different weights to different chromatin states. For example, the frequency-based
weights lead the algorithm to favor the alignment of less frequent patterns compared to
background patterns, which frequently exist along the epigenome. In practical applications,
one may adjust the weight function to reflect the important elements in specific problems.
For instance, the weight can incorporate the transcription start sites (TSSs) in genome
annotation when transcriptional regulation is of particular importance.

Finally, in some computationally efficient sequence alignment algorithms, hash tables or
tree-based data structures are utilized to index the database, and these techniques have
greatly increased the efficiency of query retrieval. EpiAlign can also benefit from similar
techniques and further improve its computation efficiency.

There is another tool called Chromdiff [41] for comparing chromatin state sequences by
assessing the different frequencies of chromatin states. It uses statistical testing to determine
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if the frequency of each chromatin state in a certain genomic region is significantly different
across various cell states. Although Chromdiff does not make use of the sequential infor-
mation of chromatin states, it also provides good results by comparing different groups of
samples. One advantage of Chromdiff is that it normalizes the chromatin state frequencies to
reduce the effects of confounding covariates, which cannot be done in EpiAlign because we
directly look at the sequences. However, the unique advantage of EpiAlign is that it makes
use of sequential information and is able to extract chromatin state patterns that carry
tissue-associated characteristics. Such patterns show a strong capability in grouping epige-
nomic samples of the same cell type. Below we discuss several future directions to improve
the epigenetic alignment results and the EpiAlign algorithm.

In terms of biological applications, We have demonstrated that meaningful chromatin
state motifs have been found by EpiAlign. In addition, EpiAlign is able to distinguish tissue-
associated genes. These results suggest the potential of EpiAlign as a useful bioinformatic
tool to discover tissue-associated gene regulation. Moreover, the alignment scores calculated
by EpiAlign can serve as a covariate when constructing functional genomic networks, thus
allowing the network to incorporate similarities of chromatin structures as a factor.
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