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Abstract

Availability of large genetic databases has led to the development of powerful causal inference
methods that use genetic variables as instruments to estimate causal effects. Such methods
typically make many assumptions about the underlying causal graphical model, are limited in
the patterns they search for in the data, and there is no guide for systematic analysis of a large
database. Here, we present cGAUGE, a new pipeline for causal Graphical Analysis Using
GEnetics that utilizes large changes in the significance of local conditional independencies
between the genetic instruments and the phenotypes. We detect cases where causal inference
can be performed with minimal risk of horizontal pleiotropy. Moreover, we search for new
graphical patterns to reveal novel information about the underlying causal diagram that is not
covered by extant methods, including new direct links, colliders, and evidence for confounding.
We present theoretical justification, simulations, and apply our pipeline to 70 complex
phenotypes from 337,198 subjects from the UK Biobank. Our results cover 102 detected causal
relationships, of which some are new and many are expected. For example, we detect a direct
causal link from high cholesterol to angina and a feedback loop between angina and myocardial
infarction. We also corroborate a recent observational link between asthma and Crohn’s
disease. Finally, we detect important features of the causal network structure including several

causal hubs such as intelligence and waist circumference.

Introduction

Modern population-based biobanks are large datasets with extensive phenotypic and genotypic

data of the same subjects. These datasets offer new opportunities for causal inference due to
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their size and depth. However, the genetic variants typically have weak associations with the
phenotypes, which can limit statistical analysis. Methods such as Mendelian Randomization
(MR) and genetic-correlation (GC), utilize these genetic variables as instruments to estimate the
causal effects between traits '~°. Such methods deal with the genetic instruments using a 2D
analysis of their summary statistics: given a pair of phenotypes X,Y the effects of the variants of
X with both (hence, 2D) are analyzed and a summary is reported. To enable causal inference,
these methods typically make strong assumptions about the underlying causal diagram (causal
assumptions) and require a specific parametric model (statistical assumptions). For example,
standard MR assumes linear effects and reports a summary of a linear fit in the 2D plot. The
basic causal assumptions are that the genetic variants are independent of confounders that
affect both phenotypes, and no horizontal pleiotropy: instruments of X affect Y only through X °.
MR-PRESSO ? is a recent extension of MR that directly estimates horizontal pleiotropy by
correcting for variants with outlier effects. MR methods have another limitation in that they may
assume nonexistence of a directed cycle between an exposure and an outcome. A directed
cycle, also denoted as a feedback loop ’, or reverse causation °, occurs in the causal diagram
when two phenotypes are causes of each other, possibly indirectly. LCV ', which is an example
of a GC method, assumes that there is a latent variable that mediates the genetic correlation
and then compares the effects of the two variant sets to assess if one phenotype is fully or
partially genetically causal for the other. LCV estimates the consistency of the variant effects

and the connection with causality is based on the added assumptions to the graphical structure.

2D methods are limited to analyzing summary statistics and are thus oblivious to conditional
independencies (Cl) detected while analyzing individual level data. In addition, they do not offer
a guide for a systematic analysis of a large database, including assessing limitations of the
biobank, which phenotypes to analyze, and which of the variants to take as instruments. The
causal graphical models literature offers a more general framework for causal discovery that
utilizes Cl tests even when less causal assumptions are made ®°. Such analyses are
fundamentally different when compared to standard statistical analysis in that they are based on
finding patterns in the data that exclude possible causal models instead of having a single
objective function to be optimized (e.g., maximum likelihood). As a result, such analyses may
provide partial information about causal relationships, but the general framework is more

reliable when analyzing observational data 8.
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Here, we leverage this theoretical framework to propose conditional independence (Cl)
methodology for causal discovery in a population-based biobank "~'2. We detect cases that are
likely to fit standard MR assumptions, and use 2D methods to evaluate causal effects. We also
utilize cases in which the ClI test of a variant-phenotype is substantially different than the
marginal association of the variant with the phenotype. These are used to: (1) identify direct and
indirect causal relationships, (2) detect feedback loops (i.e., causal cycles), and (3) detect
problematic phenotype pairs for which the data are inconclusive and 2D methods are not
expected to work well. We present theoretical justification of the proposed methods, simulations
to support the way we handle weak instruments, and results from applying our tools to 70

complex traits and diseases to data from 337,198 subjects from the UK Biobank "'

Results

Simulations of graphical models with weak instruments

To utilize ClI tests for causal discovery, we first performed simulations to test their output when
instruments are weak and causal effect sizes are low. We tested four graphical cases using
standard linear models with different parameterization (Supplementary Text). All simulated
cases followed linear relationships between the variables (e.g., the linear effect of a binary
instrument on a continuous exposure was set to a,). We computed the p-values of Cl tests using
linear or logistic regression. Figure 1 shows the Cl p-values of selected examples, see
Supplementary Figures 1-6 for all cases. The results can be summarized as follows. First,
except for very low effect sizes (a,<0.2, which is < 0.5% explained variance), a directed (causal)
edge between an instrument and a phenotype remained robust to conditioning, even when
conditioned on the affected phenotype (i.e., still had a significant p-value, Figure 1A-B).
Second, when the instrument was indirectly linked to a phenotype (i.e., by a directed path with
more than a single edge), significant association emerged only at medium-high effect sizes (due
to mediation and added noise by variables along the path). Third, when an unobserved
confounder was added, collider bias emerged only when the confounding effect was large, see
Figure 1B. Finally, when we simulated a case without a causal effect, but with a joint
confounding of genetics and the phenotypes (e.g., population structure), Cl tests did not reveal

an asymmetric structure in the data, see Figure 1C.
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We were further interested in the different patterns that weak instruments reveal. We define an
emerging association as the case in which a new association is detected between the genetic
variant and the phenotype only after conditioning on another phenotype (i.e., the p-value
decreases substantially, from >0.1 to < 0.001). We define a disappearing association as the
case in which the variant and the phenotype become independent because of the conditioning
(i.e., the p-value increases substantially from <0.001 to >0.1). We define a consistent
association when the variant and the phenotype remained associated even when conditioned
(p<0.001 in all tests).

Our simulations show that when the two simulated phenotypes had both a causal path and were
confounded, with and without a cycle, the instruments were either not significant at any test
(p>0.001) or had one of the three patterns above (i.e., emerging, disappearing, or consistent).
The different patterns emerged in some cases even when the nodes were connected in the
graph, see Figure 2 and Supplementary Figure 6. The appearance of these patterns
highlights how weak instruments of the same phenotype can have association patterns that

manifest different paths even though the underlying causal diagram is fixed.

A novel pipeline for causal discovery using genetic instruments

Given the results above, we developed a new pipeline, cGAUGE: Causal Graphical Analysis
Using GEnetics, for causal discovery using genetic instruments. See Figure 3 for an overview,
and the Supplementary Text for a thorough explanation, including theoretical justification. We
take as input the genetic and phenotypic individual level data of a population-based biobank, a
Cl test (e.g., using linear or logistic regression), and two p-value thresholds: one for rejecting the
null of conditional independence p, and one for accepting it p, (values in between are
considered unreliable). Note that standard statistical tests are not designed to accept null
hypotheses. However, this is a standard assumption made by causal discovery algorithms as
they rely on detection of independencies 2°. The phenotypic data includes exogenous variables
that are adjusted for, including ethnicity, sex, age, and genetic principal components (top 5 in
our case). In addition, we have a set of additional phenotypes where we perform causal

discovery.
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Briefly, we first compute skeletons that represent associations that are robust to conditioning
(i.e., significant at a predefined level in all Cl tests, Figure 3, middle layer): one for
phenotype-phenotype associations, called G;, and another for genetic variants-phenotypes
associations, called G, ;. The skeletons are expected to contain the true direct causal
relationships as a subset. G; is composed of phenotype pairs that are significantly associated at
a significance level p, even when conditioned on the exogeneous variables and any pair of
other phenotypes. G, ; is created by first taking all standard (LD-clumped) GWAS results from
each phenotype at a significance level p,. We then exclude (G,X) associations for which there
exists a phenotype Y such that conditioning upon it (in addition to the exogenous variables)

results in Cl p-value>p,.

We use the skeletons and the Cl tests results in three different analyses. First, NonPleioMR
(Figure 3, box 1) is based on the observation that a phenotype pair (X,Y) that is unconnected in
G; cannot be under genetic confounding (horizontal pleiotropy) and thus is a suitable pair for
MR. However, note that these pairs can represent indirect causal relations only. We use by
default the simple MR-IVW meta-analysis to evaluate if there is evidence for X->Y *'° but any
MR method can be used (e.g., MR-PRESSO). As the input for MR we take the variants that are
connected only to X in G, ;. Using these instruments we also estimate 7': the proportion of
non-null p-values (i.e., when examining the p-values of the association of the instruments with
Y) under the assumption that the p-values follow a mixture distribution. Thus, this score directly
measures consistency and avoids specific parametric assumptions made by 2D analysis
methods (e.g., having a linear causal effect). We select as output associations that were either
significant in the MR at 0.01 Bonferroni correction (of all pairs) and had >10 instruments, or

pairs that had extremely high estimated ' (>0.8).

Second, EdgeSep (Figure 3, box 2) takes an edge (X,Y) in G; and seeks associations that
appear in the GWAS results of a phenotype Y at a significance level p,, but disappear once
conditioned on a new phenotype X (p>p,). For each phenotype pair we report the number and
percentage of GWAS-associated genetic variables that satisfy the condition above. These
patterns point out direct causal relationships. This analysis can find evidence for both X->Y and

Y->X, which indicates the existence of a cycle (i.e., a feedback loop).
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Finally, DepEmerge (Figure 3, box 3) seeks genetic variables that form new associations with a
phenotype Y once conditioned on X. This serves as partial evidence for the existence of a path
in which X is a collider and thus not a cause of Y. For each X,Y we report the number of variants
and the percentage of the instruments of Y that fit the DepEmerge pattern. When DepEmerge
discovers many variants for both (X,Y) and (Y,X), it suggests the existence of either a latent
confounder for both or a cycle between them. When this occurs, these two options are
unidentifiable: there is no statistical method that can distinguish the two cases unless additional
assumptions are made 2. In addition, the fact that many of the instruments of one are not
marginally associated with the other, it suggests that MR will not work well in practice. Thus,
while the output of DepEmerge is both partial and harder to interpret, it is very valuable in that it
reveals pairs of phenotypes on which 2D methods may be unreliable or fail to detect expected
causal links (based on the theory). This cannot be solved, unless the researcher either has
additional information or is willing to make additional assumptions (e.g., by selecting variants
using external information or by handling reverse causation of diseases by excluding their

subjects, see *).

Robustness analysis and comparison with other methods

We compared cGAUGE with state of the art methods: MR-Egger '°, MR-IVW, MR-PRESSO,
and LCV. It is important to note that cGAUGE is not directly comparable with these methods
both in that it is not based on summary statistics alone (i.e., 2D analysis) and that its focus is on
discovery of existence of causal relationships and not inference of effects. Nevertheless, we
compared the methods in the number of inferred links and their robustness. We used 70
phenotypes from 337,198 genotyped subjects, see Supplementary Table 1. The robustness
analysis was performed by randomly splitting the dataset into two parts of the same size,
running the pipelines of each subset, and comparing the detected networks using the Jaccard

coefficient of their edge set, see Materials and Methods.

When testing different parameters for cGAUGE (p,=1e-8,1e-7,0r 1e-6; p,=0.1,0.01, or 0.001,
Supplementary Table 2), we discovered an overall high robustness of EdgeSep and
DepEmerge (median J>0.72, even though they may rely on a small number of genetic
instruments), and a lower robustness for NonPleioMR (J<0.45). Comparing cGAUGE to other

methods (Supplementary Table 3) revealed that they were less reliable markedly in one of two
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ways: (1) when the number of output edges was moderate (<160, MR-Egger) or low (<20, LCV)
the Jaccard score was low (J<0.46 for MR-Egger; J=0.33 for LCV), or (2) when the number of
edges was very high (>370, MR-IVW or MR-PRESSO) the Jaccard score was high but the
output was likely inflated with false positives such as multiple cancer-cancer inferred causal
relationships (e.g., skin->bladder). In summary, cGAUGE offered a better balance between the

number of detected associations (90-130), robustness, and reliability.

Results on the UK Biobank data

We take as default p, = 1e-07 and p, = 0.001 as it gave a reasonable tradeoff between number
of edges and robustness in our analysis above. Moreover, it fits both best practices from MR
publications for p, '8, and default settings of causal discovery algorithms for p, '°.
Nevertheless, using other combinations gave similar results and had similar scores in the
robustness analysis. The results using p, = 1e-06 and p,= 0.001 are shown in Supplementary

Figures 7-9.

Skeletons. Figure 4 shows the inferred G;. This graph is sparse with 249 edges for 68 nodes,
yet related phenotypes form dense regions. For example, even though the graph is one large
connected component, heart diseases and their related phenotypes formed a dense module
that had no behavioral phenotypes. For inference of G, ; we observed that 42.5% of the original
GWAS results were filtered, illustrating how GWAS results can be substantially filtered when
many phenotypes are analyzed together using Cl tests. From the point of interpreting a GWAS,

this filter’s output can be thought of a way for prioritizing the discovered loci.

NonPleioMR detected 24 causal links of which most are expected and some are novel, see
Supplementary Table 4. For example, we detect asthma->Crohn's disease, which has been
hypothesized recently in an independent study %°. Interestingly, this link had marginal
significance using LCV (p=0.09), but was significant when we tested MR-PRESSO instead of

IVW as a comparison (p<1e-20).

EdgeSep’s results are shown in Figure 5 and Supplementary Table 5. It revealed 66 causal
relationships supported by at least two variants, and 12 with a only a single variant. For most

pairs the percentages are low (<2%), which may be a property of partial signal detected by
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weak instruments (see Supplementary Text for discussion). Such rare local patterns are very
informative, but will be overlooked in the summary analysis of 2D methods (see the example

below).

The network has some expected causal links, such as eosinophil count->asthma, or a cycle
between metabolic rate and waist circumference. Another example is the path diabetes->high
cholesterol->angina<->heart attack, with the last link forming a feedback loop. Diabetes is
known to affect cholesterol metabolism regardless of obesity, which fits our network 2'. The
angina-heart attack feedback is expected and supported by observational longitudinal data %.
Interestingly, the eosinophil->asthma link was detected using a single variant rs11743851 (out
of >600 variants in G, ), and was not significant using LCV or MR-PRESSO (p>0.5) even
though the estimated genetic correlation was 26% (using LCV). The reverse link was detected
by MRPRESSO (p=0.005), and not by LCV (p>0.5).

Note two additional features of the inferred network. First, it reveals hubs that impact many traits
and diseases, most notable are waist circumference and intelligence. Second, some discovered
causal relationships may result from temporal information, as was also observed by O’Connor
and Price ', which discussed a causal link from age of menarche to height. In our case we
observed both age of menarche->height and intelligence->height, where the latter was
supported by 12 instruments, (6.4% of the intelligence instruments used in this analysis).
Positive correlation between height and intelligence is a well recognized phenomenon in
children 2. This newly discovered causal link was not significant when tested using LCV (p>0.2),

and had a marginal significance using MR-PRESSO (p=0.03, uncorrected).

DepEmerge’s results are shown in Figure 6, see Supplementary Table 4 for additional results.
As an example for a pattern, consider SNP rs769449, which is associated with high cholesterol
(p<1e-100) but not with hypertension (p > 0.9). However, once conditioned on high cholesterol a
new association with hypertension emerges (p=1.43e-8), suggesting the existence of a path
from rs769449 to hypertension in which high cholesterol is a collider. Moreover, based on G, .

rs769449 seems to directly additional phenotypes including erythrocyte distribution width.

DepEmerge’s network had most edges with low percentages but some with high (>25%), which

were often bi-linked. For example, waist circumference and BMI were bi-linked with >50%
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support of the edges. As discussed above, we do not expect 2D analyses to work well in these
cases. Nevertheless, the presence of these phenotypes as hubs in both DepEmerge’s and
EdgeSep’s output suggests that these are general proxy scores for health and are thus
implicated in multiple cycles. As another example for phenotypes that are present in both
networks, consider asthma->eosinophil count. Our analyses suggest both a directed causal link
(Figure 5) and a confounding effect by a third variable that affects asthma and eosinophil count

(Figure 6), possibly medication- or behavior-related.

Discussion

In this work we presented methods that utilize Cl tests to enrich the causal discovery tool set of
genetic biobanks. We filter out a substantial fraction of the single phenotype GWAS results,
highlighting which genetic instruments to use. We reveal phenotype pairs with minimal violations
of assumptions of MR analyses (NonPleioMR). We also search for alternating associations
between genetic instruments and phenotypes to provide additional information not covered by
extant approaches. These analyses both revealed features of the causal network and
highlighted limitations of the analyzed dataset (EdgeSep, DepEmerge). Discovering such ClI
patterns is a unique property of our flow that is not covered by extant approaches such as LCV
or MR-PRESSO. Other properties that distinguish our flow from such 2D analyses are: (1) we
integrate the genetic information with patterns of the phenotypes inferred while ignoring genetic
data, (2) we utilize patterns with provable properties under less assumptions (e.g., correctness
of NonPleioMR), and (3) we detect limitations of the biobank including phenotype pairs on which

MR may be biased.

In light of the points above, we view our pipeline as a preliminary analysis on which MR and GC
methods can be used with better justification for either the instruments used or selection of
phenotype pairs. Nevertheless, we have a few limitations that can be addressed by future
studies. First, we require individual level data which may be difficult to retrieve in some cases or
result in slow running times. Second, in this study we sought a proof of concept for the
usefulness of graphical analysis for genetic data and reported the network of each procedure
separately. Further research can build upon our flow to propose novel methods that integrate

the different inferred networks. Third, we do not directly quantify the false discovery rate of an
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inferred network. Finally, the output of DepEmerge provides only partial information that

requires additional, possibly manual interpretation.

Materials and methods

UK Biobank data. We used 805,462 directly genotyped variants from 337,198 white British
subjects from the UK Biobank "', The MHC region was excluded. Data were preprocessed as

explained in *

with a small change: we excluded variants with a MAF < 5%. 70 phenotypes
(traits and diseases) were selected for the analysis, see Supplementary Table 1. These were
selected to cover the phenotypes analyzed by ', but additional traits that had large sample sizes

were added.

Single GWAS. Genome wide association analysis per phenotype was performed using PLINK
% The baseline results for each each GWAS were adjusted for sex, age, and the top five
genetic PCs. We also clumped the results using PLINK’s greedy approach with default
parameters.

Graph visualization. All networks were plotted using Cytoscape %.

Meta-analysis and Mendelian Randomization in NonPleioMR. Our pipeline discovers cases
in which pleiotropic effects are unlikely (or negligible). That is, we find pairs of phenotypes (X,Y)
and a set of genetic variables for X that can be used in an MR setting to test the causal effect of
X on Y. However, for inference of causal diagrams alone (causal discovery), instruments can
point out potential flow of information without necessarily trying to estimate effects using a
parametric model. We therefore perform two meta-analyses. The first is a standard MR based
on random effects meta-analysis using the IVW method 2. Here, we run IVW on each pair and
select those whose significance passed a Bonferroni correction at 0.01. In addition, we
examined the heterogeneity of the meta-analysis using Cochran’s test and excluded cases with
p<1e-4 . Although this original analysis was developed to quantify pleiotropic effects, we use it
in our study as a measure of statistical heterogeneity as is done in standard meta-analysis.
Moreover, we observed that MR was not robust when we split the dataset (see next section)

unless we added a constraint to include only analyses with 10 variants or more.
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In the second analysis we simply examined the p-value distribution of the variants with the
outcome variable. We computed the proportion of non-null p-values as a measure of
consistency. This measure is commonly used by FDR methods and it is estimated by comparing
the observed distribution of p-values to a random uniform distribution. Specifically, we use the
local FDR method implemented in limma 33!, We used this statistic to add causal links between
pairs for which this proportion was >0.8. Our goal here was to point out cases that may still be
consistent in the way the variants were associated with the exposure but were not well

approximated using the MR parametric analysis.

Other 2D analysis methods. We tested current state of the art methods by taking the GWAS
summary statistics of each phenotype (without the MHC region) and ignoring the ClI tests. For
MR, given a p-value threshold (p=1e-6,1e-7, or 1e-8) we select the top GWAS regions with MAF
>5%, clump them using PLINK, and use the filtered results as the instruments. We used the
MendelianRandomization R package 8 to run MR-IVW, and MR-Egger. We used the
MR-PRESSO implementation from the original publication 2. We tested MRPRESSO with and
without outlier correction, denoted as MRPRESSO1 and MRPRESSO2, respectively (in
Supplementary Table 3). For genetic correlation analysis using LCV we take the summary

statistics (t-statistic or z-statistic) of variants with MAF>5% and run LCV with LDScore weights .

Robustness analysis. To measure the robustness of our pipeline we split the UKBB into two
random subsets of the same size. We then ran our entire pipeline and the other methods on
each one and compared the inferred networks from our different analyses. For each network
type we computed the Jaccard coefficient (size of intersection divided by size of union) between
the edge sets. For our method we tested different values for p, (1e-6,1e-7,1e-8) and p, (0.1,
0.01,0.001) and computed the Jaccard score for each network type and for each combination of

p, and p,, see Supplementary Table 2.

Availability. R implementation of cGAUGE is available at
https://github.com/david-dd-amar/cGAUGE/.
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Figure legends

Figure 1. The performance of conditional independence tests in different models. G represents
a binary genetic variable with 5% frequency. X and Y are two observed non-genetic continuous
phenotype. U is an unobserved continuous confounder. Except for G, noise factors were set to
standard normal distributions. Each bar represents the results over 100 simulated datasets.
Conditional independence was tested using linear regression or logistic regression. A) The
standard model assumed by MR methods. The effects of U and X on Y were set to 0.5 (< 20%
explained variance). Dashed lines represent a 0.01 p-value threshold. Theoretically, conditioned
on X, G and Y have an active pathway because X is a collider in the path from G to Y through
U. However, this path does not manifest a detectable conditional dependence in our case as
much stronger effects are needed. B) Same as (A) but now X and Y form a cycle, which means
that theoretically now G and Y cannot be separated even when conditioned on U and X. In
practice, compared to (A) the conditional dependencies are now stronger and detectable at
lower thresholds. C) U now affects all observed variables, including G (e.g., as may occur due to
uncorrected population bias). However, X has no causal effect on Y. Interestingly, in practice,

when conditioned on X (Y), G and Y (X) are independent.

Figure 2. Weak instruments can provide different evidence for the same graphical models. The
presented cases fit the first two simulated cases of Figure 1. Each line presents the frequency of
different dependency patterns between the simulated genetic instrument G and the phenotypes
Y and X. In all simulated cases G and X were significantly associated at p < 0.001, and are thus
not shown. Disappearing associations: G and Y are associated marginally, but become
independence when conditioned on X (p > 0.1). Emerging associations: G and Y are
independent but become associated when conditioned on X. Consistent: G and Y are
significantly associated with and without conditioning on X. The results show that when
instruments are weak, even though the causal diagram is fixed, some may provide different
patterns. Nevertheless, as expected from the theory, associations occur only when a

non-blocked path exists between G and the Y.

Figure 3. Our pipeline for causal diagram discovery using genetic data. We take as input data
from independent subjects that were phenotyped and genotyped (a “biobank”). A set of
phenotypes are selected in addition to standard exogenous variables such as ethnicity, sex,

age, and genetic principal components. Our goal is to discover causal relationships among
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these phenotypes. We first preprocess the data to infer two skeleton graphs: graphs that
represent associations that are robust to conditioning. Based on causal inference theory,
surviving associations contain the subset of true causal links. The last layer illustrates the three
graphical rules in which we utilize genetic variables to provide evidence for flow of causal
information. NonPleioMR detects phenotype pairs that are unlikely to be affected by horizontal
pleiotropy and run MR using their detected instruments. The instruments for this analysis are
taken from the genetics-phenotypes skeleton. EdgeSep checks for associations that appear in
the GWAS results of a phenotype Y (at a significance level p,), but disappear once conditioned
on a new phenotype X (i.e., the significance is >p,), and such that X and Y are adjacent in the
G;. These cases can point out a direct causal link from X to Y. Finally, DepEmerge seeks
genetic variables that form new associations with a phenotype X once conditioned on Y. Such

analyses hint for existence of a path in which Y is a collider and X is not.

Figure 4. Inferred skeleton among the phenotypes (G;). The edges represent phenotype pairs
that remain associated at p<1e-7 when conditioned on other phenotypes. The graph structure

points out expected modules such as the dense area around heart attack.

Figure 5. Inferred direct causal relations by disappearing associations along skeleton edges.
The analysis reveals cycles, hubs, and clean directed paths. Intelligence, waist circumference,

and whole blood count (WBC) are the main hubs. In this analysis, p, = 1e-7, and p, = 0.001.

Figure 6. Inferred partial causal information with p, = 1e-7, and p, = 0.001. Each edge from X to
Y represents evidence for a path without a causal effect of Y on X. When there is an edge from
Xto Y and an edge from Y to X it serves as evidence for latent confounding or a feedback loop.
Most edges represent weak signal as the edge consistency scores are typically lower than 1%.
However, in some cases (e.g., BMI vs. waist circumference) the scores are very high (> 50%).
For such bi-directed edges with high percentages DepEmerge explains why MR may fail for

phenotype pairs that are expected to have causal relationships.


https://doi.org/10.1101/566133
http://creativecommons.org/licenses/by-nc-nd/4.0/

Figure 1

Cor(G,X)
Cor(G)Y)
CI(G,X]Y)
CI(G,Y|X)

(o 0)
OdEmn



https://doi.org/10.1101/566133
http://creativecommons.org/licenses/by-nc-nd/4.0/

Figure 2

Frequency

Frequency
00 02 04 06

0.4

0.2

0.0

MR, MAF=0.05, a,=0.5

— s
M Disappear Rita~
- [ Emerge
B Consistent
/.
o a——2 @ e o
I I I | T I
0.0 0.1 0.2 0.3 04 0.5
al
MR, MAF=0.1, a,=1
m Disappear
1 O Emerge
¥ O Consistent
= G o\
/ O
..._IQ___O " - 2 $_>,_
I T T I
0.0 0.1 0.2 0.3 04 0.5
a

1

Frequency
0.0 0.2 04 06

Frequency
00 02 04 06

71 O Emerge

| O Emerge

MR+cycle, MAF=0.05, 0,=0.5

m Disappear

[ Consistent

9 o
/ \
dog——g=——9""—0 2\?_
T l T T l
0.0 0.1 0.2 0.3 04 0.5
al

MR+cycle, MAF=0.1, a,=1

M Disappear

O Consistent

= o)
/

e NP it % \? —= |
| | Y ‘* |
0.0 0.1 0.2 0.3 0.4 0.5

al


https://doi.org/10.1101/566133
http://creativecommons.org/licenses/by-nc-nd/4.0/

Figure 3

Input data: Biobank
Genotyped subjects

Selected phenotypes (70)
pl, p2

Ignore genetics + Cl filter GWAS + Cl filter
Skeleton graph:

GT Non-edges = pairs that can Gv .
Pheno-pheno skeleton [EGEUENLLLEILLEIISE Geno-pheno skeleton
by conditioning ,

(1) NonPleioMR (2) EdgeSep (3) DepEmerge
Output: indirect causality QOutput: direct causality QOutput: collider in a path

-~ * G 1L X|0
GALYI|D
G A X0
Y 1l X|S ST G A X|Y

GIY|X



https://doi.org/10.1101/566133
http://creativecommons.org/licenses/by-nc-nd/4.0/

Figure 4

Potassit

take

Maligna
& a2
Non-melan ne
A oA N Allergie rhinitis
. / \

count

/ v.-‘-
' / w’ﬂ colitis
LN lﬂ/ hris disease

Cro

Helicobacter pylori Cardiomyopathy


https://doi.org/10.1101/566133
http://creativecommons.org/licenses/by-nc-nd/4.0/

Figure 5 ) /RqB‘C"

Eosin eount Heaack
A count »

ean ed ceIrl N
) ,/M @ Mono}count
Edge width gfeﬂy Body rv st } e
(B V] 4 ’V . |
\
‘ f4 f m h@ count
0 event% 100 Reticul@{ount AR

\ -
Basoount High sterol
4

Potassi@n urine
W
Sodid@ urine E' ,

Hypé

Mhe Neur t@n score
@ Wmter or tlmgu d



https://doi.org/10.1101/566133
http://creativecommons.org/licenses/by-nc-nd/4.0/

Figure 6
Edge width

o s e

W

event % 100

p|at Retlunt
; emoglobl
PId e

o

Pota rine
Diabetes


https://doi.org/10.1101/566133
http://creativecommons.org/licenses/by-nc-nd/4.0/

Supplementary Figure 1

Alpha2=0.2, MAF=0.01
8 A mcoGx B CAGKY
§ o m CoGY) B CIGY
I .
O y
= T - /i
[o)) =
e - *'“{
T o 4!:—1‘4 St
T T T T T T
00 01 02 03 04 05
Alpha 1
Alpha2=0.2, MAF=0.05
(o]
g @
o " /i
- O ’2
—
8) -
T o —é‘fg ===
| | [ | |
00 01 02 03 04 05
Alpha 1
Alpha2=0.2,MAF=0.1
3
g g
o
S R
g .
T o =2 — 1
T

T T T T
00 01 02 03 04 05

Alpha 1

—og 10 p—value —og 10 p—value

—og 10 p—~value

0 2 4 6 8

0 10 20 30

20

Alpha2=0.5,MAF=0.01

00 01 02 03 04 05

Alpha 1
Alpha2=0.5,MAF=0.05

e B
==

00 01 02 03 04 05

Alpha 1
Alpha2=0.5,MAF=0.1

T |
00 01 02 03 04 05
Alpha 1

—og 10 p—~value —log 10 p—value

—log 10 p—~value

0 2 4 6 8

10 20 30

0

20

Alpha2=1,MAF=0.01

1
01 02 03 04 05

Alpha 1
Alpha2=1,MAF=0.05

T T T
01 02 03 04 05

Alpha l
Alpha2=1,MAF=0.1

T

T T
01 02 03 04 05

Alpha 1

—og 10 p—value —og 10 p—value

—log 10 p—value

0

0 10 20 30 0 2 4 6 8

20 40

Alpha2=2,MAF=0.01

00 01 02 03 04 05

Alpha 1
Alpha2=2,MAF=0.05

' T
00 01 02 03 04

Alpha 1
Alpha2=2,MAF=0.1

L

00 01 02 03 04
Alpha 1

- HH

05

T

- HH

e ——
T

T

05


https://doi.org/10.1101/566133
http://creativecommons.org/licenses/by-nc-nd/4.0/

Supplementary Figure 2

Alpha2=0.2, MAF=0.01 Alpha2=0.5,MAF=0.01 Alpha2=1,MAF=0.01 Alpha2=2,MAF=0.01
0 — _
g B CoGX) B CIGXY) $ © i %
$ © - m CorGY) @ CHGY|X) ? $ <+ 4 $ <+
< ] P
o o | o o 4 o
7 = ikl P ; %{ T
[o)} n o (o)) o - e o)) -
o] - 2 . o] o] L o] b
TO_I—f' = T o TO_E Toi sl
T T T T T T T T I T T T I T T
00 01 02 03 04 05 00 01 02 03 04 05 00 01 02 03 04 05 00 01 02 03 04 05
Alpha 1 Alpha 1 Alpha 1 Alpha 1
Alpha2=0.2, MAF=0.05 o Alpha2=0.5,MAF=0.05 Alpha2=1,MAF=0.05 Alpha2=2,MAF=0.05
3 g & g [
7} —
T = . T T o T o
o o o o - o I
un Te]
g ; - g B % I 42
| I | | [ | I | [ | I | | |
00 01 02 03 04 05 00 01 02 03 04 05 00 01 02 03 04 05 00 01 02 03 04 05
Alpha 1 Alpha 1 Alpha 1 Alpha 1
Alpha2=0.2,MAF=0.1 Alpha2=0.5,MAF=0.1 Alpha2=1,MAF=0.1 Alpha2=2,MAF=0.1
] (]
3 5 3 2] 3 & ﬂ ERE
Q - i y
N [ > (=]
;" gl IR 7 LR
(o] (=] — o (o]
= o | - o | = 9 _ — g
g - 3__,,; ; 1 g = g " ,Effﬁ’% 1 g
T o _ef T T o _lc:_ml T T T T T o _t T | T T o T T | T
00 01 02 03 0.4 05 00 01 02 03 04 05 00 01 0.2 03 04 05 00 01 02 03 04 05

Alpha 1 Alpha 1 Alpha 1 Alpha 1


https://doi.org/10.1101/566133
http://creativecommons.org/licenses/by-nc-nd/4.0/

Supplementary Figure 3

Alpha2=0.2, MAF=0.01 Alpha2=0.5,MAF=0.01 Alpha2=1,MAF=0.01 Alpha2=2,MAF=0.01
3 o mcocn macxy 36 3 . 3
$ © | ™ ColGY) B CIGY|X‘9¢{ $ $ ? ©
o o < o < o o
o - o O o
3 % 3 o s 3 o 3 o
o] . o] fr«-—, —% o] (o]
T e —IlI I’” T I T e IE T "il T T I T e T e
00 01 02 03 0.4 0.5 00 01 02 03 04 05 00 01 02 03 04 05 00 01 02 03 04 05
Alpha 1 Alpha 1 Alpha 1 Alpha 1
Alpha2=0.2, MAF=0.05 Alpha2=0.5,MAF=0.05 Alpha2=1,MAF=0.05 Alpha2=2,MAF=0.05
3 _ /{ 3 _ g 8 _
N o o
i P&l i i
S 2 F S 9 S S 2
I I g g g
1 I T I I I I I I I I I I I I
00 01 02 03 04 05 00 01 02 03 04 05 00 01 02 03 04 05 00 01 02 03 04 05
Alpha 1 Alpha 1 Alpha 1 Alpha 1
Alpha2=0.2,MAF=0.1 Alpha2=0.5,MAF=0.1 Alpha2=1,MAF=0.1 Alpha2=2,MAF=0.1
& A : ie J
o . ' o o o
o & 4/I g & = g & =)
g AMQ g g g £
T T I T T

T
00 01 02 03 04 05 00 01 02 03 04 05 00 01 02 03 04 05 00 01 02 03 04 05
Alpha 1 Alpha 1 Alpha 1 Alpha 1


https://doi.org/10.1101/566133
http://creativecommons.org/licenses/by-nc-nd/4.0/

Supplementary Figure 4

Alpha3=0.5,MAF=0.01
(=]
O | m CorGX) B CIGX|Y)
m Cor(GY) O CHGYI|X)
8 _
g
g
om
o p
=E /I
g A
T o | -
e e
O —
I I T I I I
0.0 0.1 0.2 03 0.4 0.5
Alpha 1
Alpha3=1,MAF=0.01
O ]
frsd
8 _
3
T 8
o om
= <
g
T o |
—
o —

—og 10 p—value

10

—og 10 p—value

10 20 30 40 50

20 30 40 50

0

0

Alpha3=0.5,MAF=0.05

=%

_T I_

S

0.0

I T T I

0.1 02 0.3 0.4

Alpha l
Alpha3=1,MAF=0.05

0.5

T T T
0.2 0.3

Alpha 1

—og 10 p—value

10 20 30 40 50

—og 10 p—~value

10 20 30 40 50

0]

0

Alpha3=0.5,MAF=0.1

— &= T =
I I I T I |
00 01 02 03 04 05

Alpha 1

Alpha3=1,MAF=0.1

& i

0.2
Alpha 1

0.3 04


https://doi.org/10.1101/566133
http://creativecommons.org/licenses/by-nc-nd/4.0/

Supplementary Figure 5

Alpha2=0.1, MAF=0.01
S o {mcoGx m G
g o | ® ColGY) B GV /{
[o R
o <
—
3 /?"’I
T o _I
T |
0.0 0.1 0.2 0.3 0.4 0.5
Alpha 1
Alpha2=0.2,MAF=0.01
E
g < fr
O
=
T o —f
00 04 0.5
Alpha 1
Alpha2=0.5,MAF=0.01
3 o]
I <]
9' —
N —
g _
T o |

T
03
Alpha 1

0.0 01 0.2 0.4

—og 10 p—value —log 10 p—value

—log 10 p—value

10 20

0

Alpha2=0.1,MAF=0.05

0.0 0.1 02 0.3 0.5
Alpha 1
Alpha2=0.2,MAF=0.05

0.0 0.1 0.2 0.3 0.4 0.5
Alpha l
Alpha2=0,5,MAF=0.05
_F T T T T T
0.0 0.1 02 0.3 0.4 05
Alpha 1

—og 10 p—value —og 10 p—value

—og 10 p—~value

Alpha2=0.1,MAF=0.1

00 01 ©02 03 04 05
Alpha 1
Alpha2=0.2,MAF=0.1

- T
| [ [ | |
00 01 ©02 03 04 05
Alpha 1
Alpha2=0.5,MAF=0.1



https://doi.org/10.1101/566133
http://creativecommons.org/licenses/by-nc-nd/4.0/

Supplementary Figure 6

Frequency

0.2

Frequency
000 0.10 0.20 0.30

0.4

0.0

MAF=0.05,Conf=0.5
B disappear
7| O emerge
- B consistent
et g————r—
0.0 0.1 0.2 0.3 04 0.5
al
MAF=0.05,Conf=1
: MW disappear
N O emerge
O consistent
= p—p—p—p——0
0.0 0.1 0.2 0.3 04 0.5
a

Frequency

Frequency

0.00 0.10 0.20 0.30

0.00 0.10 0.20 0.30

MAF=0.1,Conf=0.5

_| W disappear

| @ consistent

CJ emerge

0.0 0.1 0.2 0.3 04 0.5

al
MAF=0.1,Conf=1
_| M disappear
O emerge

| @ consistent

1 a

e—ge—g—p——==¢

0.0 0.1 0.2 0.3 04 0.5
al



https://doi.org/10.1101/566133
http://creativecommons.org/licenses/by-nc-nd/4.0/

Supplementary Figure 7

B L S S 8§ S
2 0 s PA > \7 s.‘
» ; » offe Fa '/E‘,'. \‘

N
AHerd ‘ §

ﬁgjﬁ" / infection
‘Qigslilliillllliii:p
-eCoIore cancer
ation elicobacter pylori
Ulcera 0

Crof sease

take

opathy


https://doi.org/10.1101/566133
http://creativecommons.org/licenses/by-nc-nd/4.0/

Supplementary Figure 8

Edge transparency, width Dis
Basal @n rate HigH‘steroI

\‘ 4
@ Body-r'mdex
A
0 event % 100 Beke AL ‘lst g@ference
o \ “‘

\ NS >
‘ﬂ Winter or time Hyp5|0n
.. v A W
MoA P N Mhe )

Retlcul count R

Summ.tdoor '
Illl.nce WM*eafw-s ed ceII A
WM
Neuro s 0 @ —
Ier|n|t|s~ A pute

Platelet g W‘Idth
P
"Iatel@lum‘e

Ml A
Hen
Eosin)count ' 5 | N
OP
> ( l\ \

W

4

5,\

.

: *
A y 4 ™~
A@a \ V Basu nf 'at“"t RBC>.N|dth

Mono count

Crohl‘ease b
Lymp'ﬁ@ count
Sodiu@ urine Potassi@n urine



https://doi.org/10.1101/566133
http://creativecommons.org/licenses/by-nc-nd/4.0/

Supplementary Figure 9

A
Hig grol A .

» = ence, ‘
. Basait"é St Y X AN
Mean sihered cel) volume ' N
emoglobi ; - )
Edge transparency, width w %
) ! \ _
- Mo nt
o s

™
2
S
=

0 event % 100


https://doi.org/10.1101/566133
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/566133; this version posted March 4, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

Supplementary Text: Constraint-based analysis for causal

discovery in population-based biobanks

David Amar, Euan Ashley, and Manuel Rivas

February 28, 2019

1 Notation and background

In this section we give a brief overview of the theoretical results that provide the foundation

for our algorithms. For a more thorough background on theory of causal inference see [1, 2].

Notation. We generally use the following notations unless stated otherwise. Graphs: calli-
graphic uppercase (e.g., G). Distributions (including empirical): blackboard bold typeface
(e.g., P). Italic uppercase: a random variable. Italic bold uppercase: a set. Lowercase letter:

a scalar or a realization of a random variable.

Graphs. A graph G is an ordered pair G =< V| E >, where V is a set of nodes (or vertices)
and F is a set of pairs of nodes. When two nodes are connected by an edge we say that they
are adjacent. In an undirected graph, E is a set of unordered pairs, whereas in a directed
graph FE is a set of ordered pairs and an edge < X,Y > can also be marked as X — Y. If
G is directed and < X,Y >€ FE then we say that X is a parent of Y. We denote the set of
parents of a node Y as Pa(Y). In this paper we consider directed graphs without self loops,
that is VX € V, X ¢ Pa(X). Generalizing parent-child relationships, we can naturally define

descendants and ancestors.

An undirected path m between X and Y is a set of consecutive edges (independent of their
orientation) connecting the variables such that no vertex is visited more than once. A directed

path from X to Y is a set of consecutive directed edges from X to Y in the direction of the
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edges. A (directed) cycle in the graph occurs when there is a (directed) path from X to Y,
and Y and X are also adjacent (i.e., Y — X in the directed case). A non-endpoint variable
X in a path 7 is called a collider if and only if the edges around it have their arrowheads into

X (e, Z—=>X«Y).

Causal models. We use the structural equation model with independent errors (SEM-IE) to
describe a causal model [1]. This fits the standard assumptions made by current methods for
genetic data analysis. Briefly, a causal model M is a pair < D,0Op > with a directed graph D
over a set of variables V. Op is a parameterization that assigns a function z; = f;(Pa(X;), €;)
for each X; € V, where ¢; is an error term (also called disturbance) distributed independently
of other error terms according to a distribution P(¢;). Given all variables and distributions in

a causal model, observed data follow a joint distribution P.

DAG factorization. The causal diagram D is the underlying graph that represents the direct
causal interactions between the variables represented by the vertices V' (some may be unob-
served). If D is directed and acyclic (DAG) we say that a distribution PP satisfies that Markov
property if it factorizes over D such that f(X) = Hl)z(ll (X;|Pa(X;)), where f marks density

functions. A similar definition can be used for discrete variables using probability functions

instead of densities.

D-separation. Early work had established that some conditional independencies can be inferred
from the graph structure alone regardless of the parameterization of the entire causal model [1].
When found, such discoveries constraint the set of possible distributions that are compatible
with the underlying causal structure. The graphical rule is called d-separation and it is defined
as follows. A set of variables Z (possibly an empty set) d-separates a set of variables X from
another set Y, where X,Y, and Z are all disjoint, if and only if every path from a node in
X toanodein Y is blocked by Z. A path 7 between two nodes X and Y is blocked by a set
of nodes Z, X,Y ¢ Z if and only if at least one of the following is satisfied: (1) Z contains a
node m that emits an edge in 7 (i.e., there is an edge m — m/ in 7), (2) there is a collider X’

in 7 such that not X’ nor any of its descendants are in Z.

We use (X 1L Y|Z)p to mark the event that Z d-separates two nodes X and Y in the
graph D. We use (X 1L Y|Z)p to denote the case in which two random variables X and Y

are conditionally independent given a set of variables Z according to their joint distribution
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P. The d-separation property of DAGs can be succinctly written: if (X 1 Y|Z)p then
(X 1L Y|Z)p in any distribution P that is compatible (i.e., satisfies the Markov property)
with D.

D-separation in graphs with cycles. Although originally proven for causal models with DAG
diagrams, the d-separation criterion was later proven for diagrams with cycles in two cases: (1)
discrete finite variables in positive distributions [3], and (2) linear SEM-IEs [4]. Of note, the
Markov property does not necessarily hold when cycles are introduced. Therefore, additional
assumptions must be used. For example, in both cases above, the proofs require the assumption
that the observed distribution is an equilibrium. Roughly, an equilibrium in this context is
reached from an SEM when we start with a random sample of the errors and then simulate
the SEM repeatedly until we achieve convergence. The set of values achievable in this process
is called the equilibrium distribution. For the linear case Fisher’s fixed point method can be
used to simulate the equilibrium distribution from an SEM-IE. In the discrete case, stronger
assumptions are required as the process depends on the order of the equations [5]. Nevertheless,

once the equilibrium is well-defined, d-separation holds [5, 6].

Causal discovery. The tight connection between causal diagrams and conditional independen-
cies has been used to propose causal discovery algorithms. For DAGs, we used the Markov
condition mentioned above, which also means that each variable X is independent of its non-
descendants given its parents. For diagrams with cycles, while this property does not hold,
the d — separation rule is still used. However, two additional fundamental assumptions that
seem plausible in practice and can be treated as axioms are used as well [2]: minimality, and
faithfulness. Minimality is the causal inference analog to Occam’s Razor: we prefer simpler
models when we consider alternatives that can explain the data. More formally, a causal
diagram D satisfies the minimality condition with respect to a distribution P if the Markov
property does not hold for every < H,P >, where H is a proper sub-graph of D. Finally,
faithfulness, (also called stability) assumes that all independencies embedded in the observed
distribution P are stable and are invariant to changes in parameterization. Thus, it implies

that (X 1L Y|Z)p < (X 1L Y|Z)p.

The assumptions above are especially important if we are to propose causal discovery ap-

proaches in the present of confounding by latent variables. We generally say that the effect of
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X on Y is confounded if there exists a third variable U such that X < U — Y. If U is unob-
served the standard notation is X <> Y. We use XY instead to avoid confusion with having
acycle X — Y and X < Y. Presence of unobserved confounding adds complexity to the
inference problem and limits our discovery power. Nevertheless, conditional independencies
inferred from observed distribution are still powerful enough to constraint the set of plausible
causal diagrams. When enough constraints are accumulated we can partially or completely

infer causal diagrams.

It is important to note the fundamental difference between this algorithmic approach and stan-
dard statistical inference algorithms that optimize a global objective function such as training
a Bayesian network using maximum a posteriori (MAP) or maximum likelihood (MLE) objec-
tives. Here, the basic assumptions and the theoretical results are used as constraints in order
to narrow down the set of possible causal diagrams. Thus, these algorithms heavily rely on
the ability to statistically detect conditional independencies, and their output may be an only
partially oriented diagram. Notable algorithms to perform such analyses are PC [4], IC* [1],
FCI |2, 7|, and CCD |8, 2|. Another notable example is the SAT-based optimization algorithm

of [9] that extended the basic ideas to address the inference task as an optimization problem.

A few notable drawbacks of the algorithms above should be highlighted, especially for the case
of analysis of large biobanks. First, these algorithms require exponential running times as
results from all conditional independencies may be required. Second, most of these algorithms
assume that the input contains a statistical oracle for testing conditional independence. Al-
ternatively, this assumes that in practice there are no statistical errors, although some recent
approaches had attempted to mitigate this issue by addressing the FDR of inferred edges
[10, 11]. Nevertheless, the sequential nature by which these algorithms update the inferred
structure implies that errors are propagated and accumulated. These two issues are crucial
when biobanks are considered as we may need to analyze data from thousands of weak genetic
variants and dozens of phenotypes. Our algorithms below build upon the main principles of
these methods, integrating them with prior biological information about the nature of genetic

variables.

Instrumental variable analysis. A special set of causal inference algorithms can be defined

once instrumental variables are present. A variable Z is instrumental relative to (X,Y) if


https://doi.org/10.1101/566133
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/566133; this version posted March 4, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

it is not independent of X and is independent of all variables that have influence on Y that
is not mediated by X [1]. Using instrumental variables, we can use path-analysis methods
to quantify causal effects associated with the edges of an SEM [12, 13]. In the genetic and
epidemiological literature such analyses are often called Mendelian Randomization (MR), and
the recent availability of genetic biobanks has led to increased interest in new MR methods.
These methods are appealing for their ability to handle many instruments, reverse causality
in some situations, and confounding effects [14]. Another common approach is to compute
the overall genetic correlation (GC) between phenotypes. The recently proposed LCV method
[15], uses higher moments of inferred summary statistics to move beyond standard GC to

causal inference under a specific parametric model.

Using genetic instruments for causal inference process is promising as they act as markers that
carry causal information flow. This is a unique property not generally achievable in causal
inference from observational data, which explains the high popularity of MR and GC methods.
However, extant methods are limited in that: (1) they assume that the instruments are known
and are not confounded themselves (i.e., by population bias), (2) they are typically based on a
parametric linear model, (3) they may be sensitive to horizontal pleiotropy: confounding effects
caused by the genetic instruments, and (4) these methods are limited to analysis of GWAS
summary statistics and are therefore limited in the ability to utilize conditional independencies.
In addition, there are important issues that these methods do not address such as exploring
latent confounding and presenting how weak instruments behave. In our analysis we make
use of constraint-based methodology to alleviate these issues and guide the causal inference

process in large genetic biobanks.

2 Simulations: weak instruments and their effects on condi-

tional independence tests

We evaluated the performance of conditional independence tests when instruments are weak
using linear structural equations. Let G represent a binary genetic variable, X and Y two
observed continuous variables, and U an unobserved continuous variable. Four different graph-

ical structures were considered: a simple chain G — X — Y, and the three graphs shown
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in Figure 1. Datasets were simulated using standard normal errors for continuous variables
and sampling G from a Bernoulli distribution with a different probability to simulate different
minor allele frequencies. Then, each edge had a coefficient that determined its added value
in the structural equation. For example, the graph structure presented in Figure 1A can be

written:

=19+ a3u + €;

Y = Q2r + a3u + €

where €, ~ Bernoulli(p), and €, €5, ¢, ~ N(0,1) i.i.d.

When cycles are present, as in Figure 1B, we use Fisher’s iterative fixed point method [16]:
we first simulate the errors and then repeatedly update the other variables, which converge
almost surely to a fixed point. The convergence threshold was set to 10™# or up to 100 update

repeats, which were rarely required.

In all simulated cases we tested the range 0.01,0.1,0.2,0.3,0.4,0.5 for a1, and 0.01,0.05, 0.1 for
p. For models without cycles we tested 0.2,0.5,1,2 for as and omitted 1,2 for cycles to avoid
convergence issues. Finally, for as we considered two cases: weak confounding with as = 0.5,
and strong confounding with a3 = 1. For each combination, we simulated 100 datasets
with 10,000 samples. Conditional independence was tested using generalized likelihood tests
via either linear regression or logistic regression (e.g., if G was considered as the dependent

variable).

We were interested in the performance of conditional independence tests and their fit with
the theory when weak instruments are present. We present the empirical distribution of the
p-values of each test in each case. We also computed the frequencies of mixed results for each
case. That is, we compared how many instruments had: (1) disappearing correlations - (G L
LX0)p, (GLYD)p - and (G Y[X)s . (2) emerging correlations - (G L X|0)z
(G Y[0)p  ,and (G AL Y[X)s  and (3) consistent correlations - (G L X|0) . (G A

I

Y‘®>psim’ and (G L Y|X)p . Here, Pyim, is the empirical distribution of a single simulated
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dataset. All simulation results are presented in Figures 1 and 2, and Supplementary

Figures 1-6.

3 Graphical analysis to guide causal inference in genetic biobanksj|j

3.1 Input data

We formalize our input as follows. We have two sets of features I (instruments), and T
(phenotypes/traits/diseases) measured in n independent subjects. We denote the empirical
distribution of the data as P. I is a set of genetic variants (typically SNPs) that are used as
instruments for the causal inference process. T is a set of phenotypes, that are typically com-
plex traits and diseases. Generally, |I| is large initially (>500,000), but can be substantially
reduced once relevant variants are detected and LD-clumped (or pruned) per phenotype. |T|
is much smaller. In our case we used the UK Biobank to obtain data of 337,198 white British
subjects. We selected 70 phenotypes by taking those covered in [15] and some additional ones
that had large sample sizes, see Supplementary Table 1. In addition, we assume that sex,
age, and genetic principal components are exogenous variables (ethnicity as well but it was
ignored here because our analysis was limited to a single group). We denote their collective

set as W, and assume that W (T = 0.

Our analyses depend on three additional parameters: a test for conditional independence and
the thresholds to make a decision about the results of such tests. Let c¢i(X,Y, Z) be a statistical
test for conditional independence (i.e., a function that returns a p-value). The null hypothesis
of this test is that (X 1L Y|Z)p, and low p-values serve as evidence for the alternative
(X LY|Z)g. As in the simulations above, we use linear regression or logistic regression (for
binary variables) for conditional independence tests. The two additional parameters are p;,
and py. When ci(X,Y, Z) < p; we conclude that (X A Y[Z)z. When ci(X,Y,Z) > py
we conclude that (X 1L Y'|Z)s. P-values in (p1,p2) represent ambiguous cases. Additional
discussion about the importance of these parameters is given below. We tested different

combinations of p; and py (on real data): p; = 1077 or p; = 107% and py = 0.001 or

D2 = 0.01.
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3.2 Assumptions

We first make two general assumptions about the data. First, we assume that there is no
directed path going from a member of T' to a member of I. This assumption is biological and
states that at a specific generation, the observed phenotypes do not change the DNA of the
subjects. Second, we assume that the dataset is not under some collider bias. This implies
that if we observe (X L Y|0)s then it truly reflects (X A Y|)p (as the sample sizes goes to

infinity).

In the simulations we illustrated that even for linear models, low power can lead to partial
faithfulness fit when analyzing weak instruments in practice: when multiple unblocked paths
exist between an instrument G and a variable Y, some may manifest observed (conditional)
association, and some do not. In other words, when (G 1L Y'|Z)g then ci(G,Y, S) will follow
the null distribution. However, if (G L Y|Z)g then ci(G,Y, S) may follow some distribution
that is too similar to the null distribution. Such partial faithfulness fit is very problematic
for standard causal discovery algorithms as they heavily rely on a sequential process that uses
faithfulness to make decisions. Thus, errors due to partial fit may propagate and distort the

output.

While faithfulness may be a reasonable assumption when analyzing variables from T, it is
problematic when we consider weak instruments. We address this issue by introducing a
relaxed assumption about conditional independence between variables from I and T, which
we denote as local faithfulness of order k, for some integer k > 1. Standard faithfulness dictates
that if G is a genetic instrument, X € T (following the assumptions above), S, S8’ C T are two
sets such that X ¢ S, X ¢ §’, and we observed (G /L X|S)s A (G 1L X|S”) then every path
in G between G and X that is unblocked given S becomes blocked given S’. We alternatively
assume that if [S'\ 8’| < kA S\ S| < k and we observed (G AL X|S)s A (G Ll X|S’)s then
there exists a path 7 in G that is unblocked given S but is blocked given S’.

In words, if we observed an association between G and X given a set S such that a small
change to S renders G and X independent then the paths between G and X that manifested
the association before are now blocked in G given the new set S. Thus, we ease faithfulness

in that we do not assume that (G 1L X|S’)s = (G 1L X|S’)g necessarily. We alternatively
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require some local information first that is dependent on observed patterns in the data. Note
that the observed association still indicates the existence of an unblocked path between G and

X given S, regardless of faithfulness.

Given local faithfulness we can now search for high confidence events of alternating associations
that have provable properties that can be used for causal discovery. In this work we consider
k = 1 only. In practice, we use information from multiple independent genetic instruments
in parallel and record their patterns. In addition, as discussed above, we use two thresholds
for p-values p; and po that are substantially different (by orders of magnitude). That is, we
seek cases in which a small change to the set conditioned upon leads to substantial difference
in the association analysis result and use it as an evidence for the existence of a specific path

structure in the underlying causal diagram. These analyses are explained in the next sections.

3.3 Algorithm overview

Our pipeline has five steps:

1. Single GWAS: perform a genome-wide association study for each phenotype, adjust
for sex and genetic principal components (5). Clump the variants from each phenotype

and merge the list.
2. Skeletons graphs: detect associations that are robust to conditioning.

3. NonPleioMR: analyze phenotype pairs that are unlikely to be under genetic confound-

ing effects.

4. EdgeSep: search for skeleton edges that have evidence for a specific direction hinted by

disappearing associations.

5. DepEmerge: search for collider bias evidence by looking at newly formed associations.

Note that unlike standard MR and GC methods we combine information from analysis of
instruments with results obtained by looking at the phenotypes while ignoring the genetic
data. These, together with the alternating associations detected in steps 4 and 5, are all

meant to utilize the partial information that weak instruments provide for causal discovery.
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For phase 1 we use standard procedures using PLINK [17]. We also avoid an exponential
number of statistical tests using practical heuristics. These enables powerful and robust algo-
rithmic strategies. The subsequent analyses are discussed below. The final section discusses
meta-analysis and additional measurements that can be used to prioritize candidate causal

links.

3.4 Skeleton graphs

Inference of a skeleton graph is the initial step that most causal discovery algorithms perform.
A skeleton graph is an undirected graph G over a set of observed variables V' such that an edge
e = (X,Y) is added only if there is no evidence that X and Y can be rendered independent
by conditioning on a set Z (which can be empty) of other observed variables. In other words,
skeleton graphs represent associations that are robust to conditioning. Under our assumptions
above, these graphs represent a set of candidate pairs that contain the true direct causal links

in the underlying causal diagram.

As implied above, the construction of a skeleton depends on a search algorithm that scans
through the space of possible sets on which we condition. Naturally, going over all possible
sets is not feasible in our case. We deal with this issue using two strategies. First, we limit the
number of tested sets per pair of variables to O(|T'|?). Second, we define two skeleton graphs:
Gr and Gy . Gr is a standard skeleton inferred by analyzing the phenotypes alone and ignoring
the genetic information. Gy 7 is a bipartite graph: here we examine the associations between

genetic variables and phenotypes.

Gr is constructed as follows. We start with a complete graph. For each pair X, Y € T we go
over all sets Z C T\ {X,Y} such that |Z| < 2. For each such Z we compute two conditional
independence tests: ¢i(X,Y, Z) and ci(X,Y, ZUW). If at least of these p-values is > p; then

we remove the edge between X and Y from Gp.

G is constructed as follows. We start with an empty bipartite graph between I and T.
We then add an edge between a genetic variable G and a phenotype X if the GWAS result
marked G as associated with X at a significant level p;. For each such G, X pair we then go

over all sets Z C T\ {X} such that |Z| < 1. For each such Z we compute two conditional

10
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independence tests: ci(X, G, Z) and ci(X, G, ZUW). If at least one of these p-values is > po

then we remove the edge between X and G from Gy 7.

3.5 NonPleioMR: Phenotype pairs that have no pleiotropic confounding

Pleiotropy is a biological phenomenon in which a genetic factor affects two or more biological
processes (and their downstream phenotypes). This term is also used to describe confounding
caused by genetic variables. That is, when a genetic variable causally affects two phenotypes
that are investigated. We say that the pleiotropic confounding is direct if the effect of the
genetic variable is not mediated by other phenotypes in the study (note that additional directed
pathways may occur as well). Pleiotropy poses a fundamental problem for MR methods as it

contradicts their basic assumptions, and therefore undermines their validity.

Another type of bias that jeopardizes using genetic variables as instruments is joint confound-
ing with the phenotypes, as may occur due to population bias. Even though there is a rich
literature that aims to deal with such biases, there is no guarantee that such bias was com-

pletely removed even when these methods are used.

We now move to using graphical guidelines to alleviate these issues.

Lemma 3.1. Given the skeleton of the phenotypes Gr inferred using conditional independence
tests among the traits only, a pair X,Y € T that is disconnected in Gy cannot have direct

pleiotropic effects.

Proof. Had X and Y been directly affected by genetic variables then under the faithfulness
assumption there could not have been a conditional independence test to separate them and

thus X and Y would have been connected in Gr, a contradiction [

This lemma implies that non-edges in Gr are good candidates for using MR-like methods,
however it does not tell us which instruments to use, nor does it help with population bias.

We address this issue next.

Definition 3.1. Given the bipartite skeleton Gy and X € T, let Nei;(X) be the set of all

neighbors of X that are not linked to any other member of T'.

11
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Theorem 3.1. Given a pair of phenotypes X,Y € T not adjacent in Gr, and such that

|Neii(X)| > 0, the variants in Neij(X) are proper instruments relative to (X,Y).

Proof. By assumption about the correctness of Gy 7, members of Nei;(X) cannot have outgo-
ing edges to members of T' other than X. Similarly, there cannot be an unobserved variable
U (a confounder) that has pathways going to both a member of Nei;(X) and Y. Finally, by
our assumption that genetic variants cannot be affected by members of T', there cannot be
either directed pathways from X or Y to members of Neiq(X), nor is there another member

Z € T that affects X or Y and is a member of Neiy(X) O

The two lemmas above help us integrate information from both sources: instruments-phenotypesfj
and the phenotypes’ joint distribution. When we limit our analysis to phenotype pairs that are
not adjacent in Gy we rule out the possibility of strong unobserved confounding, pleiotropic or
not, even if we have errors in Gy 7. On the other hand, once these pairs has been established,
the safest variant set to use as instruments are those in Neiq(X). Note that if we are willing
to assume that Gy has no errors then Neii(X) can be used as instruments (e.g., for MR)
relative to any pair (X,Y) (Y € T, Y # X). However, as a conservative measure we chose to
add the constraint from lemma 3.1 as it represents compelling evidence that is independent of

the genetic variables.

3.6 EdgeSep: Disappearing associations along skeleton edges

In the analysis above we excluded the detected edges in Gp. These edges are a mixture of
(by assumption) a few errors, confounding effects, and direct causal links. We next discuss
situations in which the conditional independence observed relative to skeleton edges can be

used as evidence for direction.

Theorem 3.2. Let G be a genetic variable and (X,Y’) be an edge in Gr. If (G AL X|0);,
(G A Y|D)s, and (G 1L Y|X)s, then X — Y.

Proof. Given the input and under the assumptions of no collider bias in the input dataset
and local faithfulness, we can assume that there is a pathway 7 from G to X that has no

colliders. We now look at the (X,Y’) edge and consider four ways to orient it: (1) X <Y, (2)

12
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X&Y, (3) X < Y (ie., a feedback loop), and (4) X — Y. Options (1-3) imply that the new
path from G to Y created by concatenating the new oriented edge to m; will put X as a single
collider. However, this pathway is unblocked given ) (by assumption) and should be blocked

conditioned on X, a contradiction. We therefore have only option (4) remaining [

Four important issues should be considered if we are to use such analysis in practice. First,
note that we did not assume that G € Nei;(X), and thus any variable associated with X
can be used here. In fact, G may have direct associations with other phenotypes and the
proof will remain the same. Second, notice that since we already observed (G' AL X|[0)s and
(G AL Y|D)s we can reasonably assume that there is enough detection power for associations
in the examined local area of the causal diagram and thus use local faithfulness as evidence
for blockage of a path. Third, when we analyze an edge (X,Y") in Gr we exclude such variants
that also satisfy the condition for the reverse analysis (Y, X). Such situations may occur when
instruments are very weak, see simulated case 4 (Supplementary Figure 5). In addition,
based on case 4, when we find such variants that satisfy the condition for both (X,Y) and
(Y, X)) this may indicate confounding by unobserved variables. Finally, in practice we check if
(G AL X|W)s, (GALYIW)s, and (G ILY{X}UW)s, as by assumption W are exogenous

(the proof remains similar).

3.7 DepEmerge: Emerging correlations

Here we make use of local faithfulness and observed collider bias in order to gain partial
information about a pair. We consider "emerging" correlations: cases in which an a genetic

variable G relative to a pair (X,Y), satisfies: (1) (G 1L X|W)s, (2) (G L Y[W)3, and (3)
(G A X{Y}UW)s. In words, the GWAS results indicate that the genetic variable G is

independent of X, but becomes dependent once we add Y to the variables conditioned upon.

If the case above is detected we now have evidence for the existence of a path from G to X in
which Y is a collider or a descendant of a collider and X is not. This covers two different cases:
(1) X and Y are both results of a third variable Z that may be unobserved (confounding), or
(2) X is a cause of Y. Since this information is ambiguous we mark these detected edges as
X+ — Y. If we have evidence for both X* — Y and Y+ — X then we take it as evidence

that either XY or there is a cycle that includes X and Y. The output of DepEmerge is

13
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interesting for two reasons: (1) it is another source of information to help us annotate skeleton
edges, and (2) when many instruments support both X* — Y and Y* — X then DepEmerge
reveals phenotype pairs for which we do not expect MR to work well even if there is prior

knowledge about causal relationships between the phenotypes.

4 Practical considerations

4.1 Scoring each graphical analysis

The rules explained above are of two types. In the first we are looking for alternating signif-
icance of associations. This means that for each examined variant G and a pair (X,Y) we
take two p-values p’ and p” and ask, w.l.o.g, if p’ < p; A p” > ps. To summarize this analysis
of a pair (X,Y) (e.g., summarizing all variants tested for this pair in section 3.4), we simply
report the number and fraction of variants that satisfy the condition (out of all tested for the
pair). The second analysis is much more similar to standard MR analyses. It is based on ex-
amining the association of a set of variants with a phenotype and performing a meta-analysis

to summarize the evidence.

As a default analysis we run a standard meta-analysis based MR using the IVW method. In
addition, for each analyzed pair, we examine the p-value distribution of the variants of the
exposure with the outcome. Note that for inference of causal diagrams alone, instruments can
point out potential flow of causal information without necessarily trying to estimate effects
using a parametric model as MR methods do. In theory, under faithfulness, if X is a cause
of Y then all instruments of X have and unblocked pathway with Y and should therefore be
associated. Thus, we can simply ask if a set of instruments relative to X,Y is statistically
associated with Y in a consistent way. We quantify this by computing an additional score:
the proportion of non-null p-values, denoted as 771. This is a measure that is commonly used
by FDR methods and it is estimated by comparing the observed distribution of p-values to a
random uniform distribution [18]. Specifically, we use the local FDR method implemented in

limma [19].
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4.2 Interpretation of different signals

The analyses discussed above are fundamentally different. For non-skeleton edges we obtain
a single unambiguous conclusion (once specific thresholds are set). The other analyses may
provide different evidence for a pair X,Y. In practice, as we set p; and ps to be substantially
different (e.g.,4-6 orders of magnitude) we assume that when detected, each evidence is reliable
in pointing out existence of some path. Thus, when counting and examining patterns from
multiple independent genetic instruments, a reliable comprehensive result can be attained. As
an example in real data, we obtain evidence for both Fosinophill — Asthma and Asthma *x —
Fosinophill. Thus, as a whole, the data has evidence for both direction and confounding,
possibly by behavior or medication in this case. Nevertheless, we do note that the need for
interpretation of such signals (possibly manually) and the fact that we do not directly estimate

the FDR of the inferred networks are both limitations that can be addressed by future studies.
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5 Supplementary Figures legends

Supplementary Figure 1 Simulation case 1. The graph structure is G — X — Y. G is
a binary variable with different frequencies ("MAF") whose linear effect on X is a;. Y is
directly affected by X with as. X and Y are continuous with standard normal noise. Each
bar represents the results over 100 simulated datasets. Conditional independence was tested

using linear regression or logistic regression.

Supplementary Figure 2. Simulation case 2 with strong confounding effects (g = 1). The
graphical structure of the simulations is shown in Figure 1A. G is a binary variable with
different frequencies ("MAF") whose linear effect on X is ;. Y is directly affected by X with
. U is an unobserved confounder with the same ag effect on both X and Y. U, X, and Y
are continuous with standard normal noise. Each bar represents the results over 100 simulated

datasets. Conditional independence was tested using linear regression or logistic regression.

Supplementary Figure 3. Simulation case 2 with weak confounding effects (a3 = 0.5). The
graphical structure of the simulations is shown in Figure 1A. G is a binary variable with
different frequencies ("MAF") whose linear effect on X is ;. Y is directly affected by X with
as. U is an unobserved confounder with the same ag effect on both X and Y. U, X, and Y
are continuous with standard normal noise. Each bar represents the results over 100 simulated

datasets. Conditional independence was tested using linear regression or logistic regression.

Supplementary Figure 4. Simulation case 3, no direct effect with confounding (a3 = 0.5).
The graphical structure of the simulations is shown in Figure 1C. G is a binary variable with
different frequencies ("MAF") whose linear effect on X is a;. U is an unobserved confounder
with the same ag effect on X, G, and Y. U, X, and Y are continuous with standard normal
noise. Each bar represents the results over 100 simulated datasets. Conditional independence

was tested using linear regression or logistic regression.

Supplementary Figure 5. Simulation case 4, MR with a cycle (a3 = 0.5). The graphical
structure of the simulations is shown in Figure 1B. G is a binary variable with different
frequencies ("MAF") whose linear effect on X is ay. Y is directly affected by X with ay. X
is also affected by Y with the same coefficient as. U is an unobserved confounder with the

same ag effect on both X and Y. U, X, and Y are continuous with standard normal noise.
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Each bar represents the results over 100 simulated datasets. Conditional independence was

tested using linear regression or logistic regression.

Supplementary Figure 6. Emerging and disappearing associations are rare when all asso-
ciations are confounded. The presented cases fit last cases of Figure 1. Each line presents the
frequency of different patterns between the simulated genetic instrument and the phenotypes
Y and X. In all counted cases G and X are significantly associated at p < 0.001. Disappearing;:
G and Y are associated but become independence when conditioned on X (p > 0.1). Emerg-
ing: G and Y are independent but become associated when conditioned on X. Consistent: G

and Y are significantly associated with and without conditioning on X.

Supplementary Figure 7. Inferred Gy with p; = 1075, The edges represent phenotype
pairs that remain associated at p < 1077 when conditioned on other phenotypes. The graph

structure can point out expected modules such as the dense area around heart attack.

Supplementary Figure 8. Inferred direct causal relations with p; = 1076, py = 0.001. The
analysis reveals cycles, hubs, and clean directed paths. Intelligence, waist circumference, and

whole blood count (WBC) are the main hubs.

Supplementary Figure 9. Inferred partial causal information with p; = 1076, py = 0.001.
Each edge from X to Y represents evidence against a causal effect of Y on X suggested by
the genetic variables. When there is an edge from X to Y and an edge from Y to X it serves
as evidence for latent confounding. Most edges represent weak and partial information (edge
consistency percentage scores are typically lower than 1%) but for some cases such as BMI vs.

waist circumference the scores are high (> 50%).
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