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13 Abstract

14 Genome-wide association (GWA) studies have generally focused on a single phenotype of in-
15 terest. Emerging biobanks that pair genotype data from thousands of individuals with pheno-
16 type data using medical records or surveys enable testing for genetic associations in each pheno-
17 type assayed. However, methods for characterizing shared genetic architecture among multiple
18 traits are lagging behind. Here, we present a new method, Ward clustering to identify Internal
19 Node branch length outliers using Gene Scores (WINGS), for characterizing shared and divergent
20 genetic architecture among multiple phenotypes. The objective of WINGS (freely available at
21 https://github.com/ramachandran-lab/PEGASUS-WINGS) is to identify groups of phenotypes, or
2 “clusters”, that share a core set of genes enriched for mutations in cases. We show in simulations
23 that WINGS can reliably detect phenotype clusters across a range of percent shared architecture
2 and number of phenotypes included. We then use the gene-level association test PEGASUS with
25 WINGS to characterize shared genetic architecture among 87 case-control and seven quantitative
2 phenotypes in 349,468 unrelated European-ancestry individuals from the UK Biobank. We identify
27 10 significant phenotype clusters that contain two to eight phenotypes. One significant cluster of
28 seven immunological phenotypes is driven by seven genes; these genes have each been associated
2 with two or more of those same phenotypes in past publications. WINGS offers a precise and
30 efficient new application of Ward hierarchical clustering to generate hypotheses regarding shared
31 genetic architecture among phenotypes in the biobank era.

McGuirl, Smith et al. 2 WINGS


https://doi.org/10.1101/565903
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/565903; this version posted March 4, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

1 Introduction »

Since the 2007 publication of the Wellcome Trust Case Control Consortium’s landmark genome-wide s
association (GWA) study of seven common diseases using 14,000 cases and 3,000 common controls, GWA s
studies have grown dramatically in scope. Much attention has been given to the increasing number 3
of individuals sampled in GWA studies (198 studies to date have analyzed over 100,000 individuals, 3
data accessed at https://www.ebi.ac.uk/gwas/docs/file-downloads on Jan. 5 2019), as well as to the
challenges of interpreting and validating the statistically associated variants identified in large-scale s
studies (for recent examples, see [1} 2, B, 4, B [6, [7]). However, as “mega-biobank” datasets (used here as s
by Huffman [5] to mean “a study with phenotype and genotype data on >100,000 individuals. ..rather
than to the physical sample repository”) such as the UK Biobank [8] and BioVU at Vanderbilt University
[0, [I0] are interrogated by medical and population geneticists, there is comparatively less discussion
surrounding approaches to analyze multiple phenotypes in a single genomic study. a3

In particular, a fundamental question mega-biobanks can answer is whether shared genetic architec- 4
ture among multiple phenotypes is detectable using summaries of germline genetic variation. Pickrell s
et al. 2016 [II] explicitly tested for pleiotropy among 42 complex traits, focusing on identifying colo- 4
calized variants in GWA studies for pairs of traits (see also [12], which tests for colocalization between
eQTLs and associated variants for the same trait). While phenome-wide association studies (PheWAS; 4
[13} 14]) and multivariate GWA studies have tested for statistical association between variants and 4
multiple phenotypes [15] [16, 17, 18], [19], these studies, including [IT], 12] share the central challenge of s
single-phenotype GWA studies: they focus on single variants assumed to act independently, making s
results difficult to interpret biologically for any complex traits. 52

As large-scale GWA studies find statistically associated variants spread uniformly throughout the s
genome [2, 3 20] and that effect sizes have reached diminishing returns [7], gene-level association tests s
[21, 22] 23] can offer insight into gene sets and pathways that are enriched for mutations in cases s
for a phenotype of interest. Gene-level association tests not only allow for different mutations to be s
associated with the phenotype of interest in different cases, but also generate biologically interpretable s
hypotheses regarding genetic interactions that the GWA framework ignores [24]. Despite this, gene-level s
association tests have rarely been brought to bear on multivariate GWA datasets. One approach was s
developed by Chang and Keinan (disPCA, [25]), who applied principal components analysis to a matrix e
of gene-level association scores to detect clusters of phenotypes in two dimensions. However, their &

dimensionality reduction of the gene score matrix ignored minor axes of variation across gene scores for e
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63 ease of visualization and distances between phenotypes in PC space were difficult to interpret. Thus,
e identifying phenotypes significantly enriched for shared mutations in mega-biobanks remains an open
es challenge.

66 In this study, we present Ward clustering to identify Internal Node branch length outliers using Gene
e Scores (WINGS), a flexible method for (i) computationally detecting phenotype clusters based on gene-
¢ level association scores, and (it) ranking phenotype clusters based on their levels of significance. Given
e gene-level association test statistics for multiple phenotypes as input, WINGS enables the detection of
o a “core set” of genes — that is, genes enriched for mutations in cases — across multiple phenotypes.

n In order to identify genetic architectures shared across a set of phenotypes, we first use PEGASUS
2 |20, 27] (see section for more details) to assign a feature vector whose elements are gene-level
73 association p-values scores, or “gene scores”, to each phenotype. Each such feature vector is an element
7 of a high-dimensional vector space whose dimension is given by the number of genes included in the
»  GWA study data. Given a list of NV phenotypes, this approach therefore yields N feature vectors. The
7 more significant genes two phenotypes share, the closer their features vectors will be. Choosing a norm
77 on the vector space in which the feature vectors lie allows us to compute pairwise distances between
7 any two feature vectors, resulting in an N x N matrix of pairwise distances — we note that different
7 norms will result in different distance matrices, and we use this fact in this study to emphasize different
s parts of a feature vector when identifying clusters. Once a distance matrix has been computed, we can
s use clustering algorithms (in our case, Ward hierarchical clustering) to divide the set of phenotypes into
& disjoint groups that separate feature vectors based on their pairwise distances.

83 While hierarchical clustering algorithms have proven effective across a range of applications [28] 29]
s [30], the typical output of these clustering methods is a dendrogram illustrating the sequential formation
s of clusters starting with each cluster containing only a single data point and ending with a single cluster
s containing all of the data points. Consequently, it is unclear how to distinguish significant clusters from
e non-significant clusters and often this is done by choosing a single cutoff height in the dendrogram or
ss predetermining the number of desired clusters [311, 32, [33]. WINGS, by contrast, implements a multi-step
s algorithm to systematically identify and rank significant clusters, described in detail in Section

9 We evaluate the performance of WINGS in simulations under a variety of genetic architectures within
o1 phenotypes and shared among phenotypes. Lastly, we apply WINGS to identify significant phenotype
o2 clusters across 87 case-control phenotypes and 7 quantitative phenotypes assayed in 349,468 unrelated

o3 European-ancestry individuals in the UK Biobank.

McGuirl, Smith et al. 4 WINGS
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2 Materials and Methods o

2.1 UK Biobank data processing o

1. Genotype and phenotype data from the UK Biobank release [8] were extracted (488,377 individuals, o

784,256 variants) and filtered as follows: o7
(a) Genotype data were extracted from the chrom®.cal files using the UK Biobank gconv tool 9
(b) Phenotype data were taken from our application-specific csv file for application 22419 99

2. Only individuals who self-identified as white British were included in the study cohort (57,275 100

individuals removed) 101
3. All monomorphic variants were removed (19,189 variants removed) 102

4. Individuals identified by the UK Biobank to have high heterozygosity, excessive relatedness, or 10

aneuploidy were removed (1,550 individuals removed) 104
5. Variants with a minor allele frequency less than 2.5% were not included (253,939 variants removed) 105

6. Only variants found to be Hardy-Weinberg Equilibrium (Fisher’s exact test p > 107%) using plink 10

2.0 [34] were included (40,433 variants removed) 107
7. Variants with missingness greater than 1% were removed (60,523 variants removed) 108
8. Individuals with greater than 5% genotype missingness were removed (38 individuals removed) 100

9. Individuals who were third-degree relatives or closer were removed using the following process: 10
One individual was removed at random from any pair of individuals with a kinship coefficient i

greater than 0.0442, calculated using KING (version 2.0; [35]) 12

Following these QC steps, 349,468 individuals who self-identified as British and 410,172 variants us
remained for analysis. In order to control for population structure within the remaining cohort, principal 1.
component analysis (PCA) was performed using flashpca (version 2.0; [36]) on SNPs passing QC that us
were also in linkage equilibrium (SNPs with 2 > 0.1 removed, resulting in 104,834 SNPs for PCA). 116

We analyzed phenotypes in two stages. We selected an initial set of 26 case-control phenotypes based 117
on phenotypes that had been previously analyzed in Shi et al. [2] and Pickrell et al. [II] that also had  us
at least 100 cases in our cohort. Those phenotypes that did not have at least 100 cases in our cohort 1

after QC were not included in the analysis (Table S1). A genome-wide association (GWA) study was 1o
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o1 performed for each of these 26 case-control phenotypes using plink2 [34] including age, sex, and the first
122 five principal components as covariates to control for population structure.

123 We then expanded our analysis to include 61 additional case-control phenotypes and 7 quantitative
122 phenotypes from the UK Biobank. These phenotypes were selected only if they had more than 1,000

125 cases in the analyzed cohort.

s 2.2 Overview of WINGS pipeline

w7 For each of the phenotypes being jointly studied (either in simulations, as detailed in the next subsec-
s tion, or in the UK Biobank), we used PEGASUS [26] to calculate gene-level association p-values for
e all autosomal genes in the human genome with at least one SNP within a +/-50kb window (17,651
1 genes). PEGASUS, developed by our group [26] 27], models correlation among genotypes in a region
w using linkage disequilibrium, the same model as VEGAS [21] and SKAT without weighting rare vari-
1 ants [22]. PEGASUS, by contrast, achieves up to machine precision in gene-level association statistic
133 computations via numerical integration. In this study, we refer to the -log,, transformed PEGASUS
1 gene-level association statistics as “gene-scores”.

135 Ward hierarchical clustering [37, [38] was then applied to the phenotypes using the PEGASUS gene
us  scores (-log;, transformed PEGASUS p-values) as feature vectors. We then concatenate together each
17 phenotype’s feature vector to generate a phenotype by gene matrix, the ultimate input for the WINGS
18 software. In our analyses of the UK Biobank, a set of 7 continuous phenotypes were clustered separately
130 due to their comparatively much larger sample sizes (Supplementary Figure|S9[shows how the continuous
1 and binary phenotypes cluster when treated as a single data set). Significant clusters were identified

w1 and ranked using the WINGS branch length thresholding algorithm (described in the Section .

w 2.3 WINGS, a new method for automatic phenotype cluster detection and

143 ranking

s WINGS is a thresholded hierarchical clustering algorithm that takes a matrix of gene-level association
s test results as its input and outputs identified phenotype clusters ranked by their significance.

146 First, WINGS applies Ward hierarchical clustering to the matrix of gene-level association test re-
17 sults, which we compute using PEGASUS. Specifically, consider a data set with N data points. Ward
us hierarchical clustering is an agglomerative clustering algorithm: initially there are N clusters, each con-

1 taining exactly one data point, and clusters are merged recursively in a hierarchical manner until there

McGuirl, Smith et al. 6 WINGS
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is a single cluster containing all N data points [37, [38] [33]. 150

Using an objective function approach, at each stage in an agglomerative clustering algorithm the pair 15
of clusters that minimizes the merging cost are combined to form a single cluster. For Ward hierarchical s
clustering, the merging cost for combining clusters R and S of size N and Ng respectively, is defined 153

as 154

Ngr - N,
AR, ) =\ 5 ICr = Cle,

where Cr and C, are the centroids of clusters R and L, respectively, and || - |2 denotes the Euclidean 155
norm. Note, this merging cost is equivalent to minimizing the increased sum of squared errors [37,38,B83]. 156

The choice to use Ward as the linkage criteria for WINGS was not arbitrary. Ward hierarchical clus- 157
tering focuses on minimizing differences within the clusters, rather than maximizing pairwise distances 1ss
between clusters. Previous work on comparing different agglomerative hierarchical clustering algorithms  1so
suggests that Ward clustering performs the best when clustering high dimensional, noisy data as long as e
cluster sizes are assumed to be approximately equal [39, [40]. We also note that we applied other linkage 1o
criteria to the data for comparison (see Supplement Section 5.3 and Supplement Figures for e
more details). 163

Hierarchical clustering results are often represented in a dendrogram, where each branch corresponds  1es
to a cluster, but it is not clear how to extract the clusters that are most significant [33, BT},[32]. Intuitively, 1o
significant clusters are those that form early on in the hierarchical clustering algorithm and do not merge 16
with other clusters until there are very few clusters left. This corresponds to clusters that form near the e
bottom of the representative dendrogram tree and have long branch lengths. 168

To quantitatively define the notion of significantly long branch length we look at the consecutive 160
differences between branch lengths and search for large gaps in the branch length distributions. That 1o
is, in the second step of WINGS we implement the following branch length thresholding algorithm to in

identify significant phenotype clusters within a dendrogram: 172

1. Sort all the branch lengths corresponding to small clusters (we define small clusters to be those 13

with less than {%] members, but the user can adjust this threshold); 174
2. Calculate the consecutive differences between branch lengths to get the branch length gaps; 175

3. Identify branch length gaps that are more than three scaled median absolute deviations away from 1

the median and classify these as branch length gap outliers; 177

McGuirl, Smith et al. 7 WINGS
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178 4. Set the branch length threshold to be the minimum branch length such that the branch length is

179 greater than the median of all branch lengths and its branch length gap is a branch length gap
180 outlier. If this threshold does not exist, we conclude that there are no significant clusters.
181 Finally, significant clusters are identified as the clusters whose corresponding dendrogram branch

182 length is greater than or equal to the branch length threshold defined above.

183 Note that the branch length thresholding algorithm in WINGS is a multi-step process for identifying
1sa  significant clusters in a dendrogram that does not require prior knowledge of the number of desirable
15 clusters and is more flexible than the traditional fixed branch cut methods [32]. Previous work in [31]
186 similarly introduces a dynamic method for identifying clusters from a dendrogram tree. In contrast to
w7 the iterative tree-cut algorithms presented in [31], however, WINGS relies solely on the dendrogram
s branch lengths and does not rely on making any tree cuts.

180 WINGS was implemented in MATLAB (R2017b) and applied to both simulated gene score matrices
10 and empirical PEGASUS gene scores for phenotypes in the UK Biobank. These results are presented

w1 in the Section

w2 2.4 Simulations of phenotypes with shared genetic architecture

13 To test the sensitivity of WINGS when identifying both ground truth shared genetic architecture and
14 varying levels of random noise in gene-level association p-values, we first applied WINGS to simulated
15 gene score matrices. We also explored the differences between clusters identified by the raw PEGASUS
s p-values and clusters identified by the -log;, transformed PEGASUS p-values (“gene scores”). To ac-
17 complish these tasks, we generated both “significant genetic architectures”, where shared genes have a
s PEGASUS gene-level p-value < 0.001, and “non-significant architectures”, where clusters share genes
10 with a PEGASUS gene-level p-value > 0.7.

200 Gene scores obtained as -log; transformed PEGASUS gene-level p-values range from (0, c0), where
20 the highly significant genes have high transformed gene scores. We expect that clusters in this space
22 are driven by shared significant genetic architecture — that is, traits that have a high percentage of
203 shared significant genes — since these features contribute the most to the pairwise distances between
2¢  phenotypes. If we instead study the raw (untransformed) PEGASUS gene-level p-values, we expect to
205  see clusters of shared non-significant genetic architecture, referring to traits that have a high percentage
206 of shared non-significant genes.

207 This distinction is illustrated in the synthetic example shown in Figure (I} As shown in Figure (A),

28 groups of shared non-significant genetic architecture (shown in red) form clusters on the raw scale,

McGuirl, Smith et al. 8 WINGS
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Figure 1: Synthetic clusters of traits with (A) shared non-significant genetic architecture
and (B) shared significant genetic architecture from the raw and -log;, scales, respectively.
Schematic example showing (A) simulated 2-dimensional gene-level p-values and (B) their corresponding
-log,, transformed gene-level p-values. The boxed groups of points represent clusters of shared non-
significant genetic architecture in (A) and clusters of shared significant genetic architecture in (B).

whereas traits with shared significant genetic architecture (shown in orange) reside as a large, and 20
therefore non-significant, group in the bottom left hand corner of the plot. In contrast, in Figure B), 210
groups of shared significant genetic architecture form clusters on the —log;, scale since this transfor- au
mation maps the small region of significant p-values (gene-level p < 0.001) to the much larger region of 2w
(3, 00). 213

We now outline how we created simulated shared significant genetic architectures. Each simulated 21
matrix was generated by randomly selecting PEGASUS p-values from the empirical distribution of s
PEGASUS p-values for Crohn’s disease (ICD10 code K50; 1,453 cases, 348,015 controls among the 2
cohort passing our QC steps detailed earlier). PEGASUS p-values were then partitioned into significant 217
(p < 0.001) and non-significant (p > 0.001) groups [41]. In the protocol described below, scores were s
taken randomly from the empirical gene scores in each of these groups. All simulated matrices maintain 21
the same number of features (17,651 PEGASUS gene-level p-values, one for each autosomal gene) as 20
our empirical analyses. For each phenotype in the matrix, 1% (175) of genes were assigned a significant  2n
value (p < 0.001). 222

We designed simulations that varied along two major parameters. We first set the number of phe- 23

notypes analyzed to either 25, 50, 75, or 100. Second, we set the percentage of the 175 significant genes 2

McGuirl, Smith et al. 9 WINGS
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»s that are shared between all cluster phenotypes to either 1% (2 genes), 10% (18 genes), 25% (44 genes),
26 50% (88 genes), or 75% (131 genes) as shared genetic architecture. For every pair of the parameters
27 above we performed 1,000 simulations as detailed below.

28 In every simulation, the number and size of the clusters was determined using the following protocol:

29 1. Choose M from a uniform distribution between 3 and 15% of the total number of phenotypes; M
230 will be the number of ground truth clusters simulated (e.g. for simulations with 100 phenotypes

231 they all contain between 3 and 15 clusters)

232 2. FOIjZl,Z...,M

233 (i) Generate ground truth cluster j of randomly selected phenotypes whose size is drawn at
23 random from a uniform distribution between 2 and 8

235 (ii) Select the corresponding percentage of significant genes to be shared for all phenotypes in
236 the ground truth cluster

237 (iii) Remove phenotypes in ground truth cluster j and corresponding shared significant genes from
238 their respective pools (a phenotype may only be in one ground truth cluster, and a gene can
239 only be shared and significant in one ground truth cluster)

240 (iv) Assign non-shared significant genes and non-significant genes to each phenotype in the ground
201 truth cluster

22 3. For all phenotypes not assigned to a ground truth cluster in Step 2, randomly draw 175 genes that

23 remain in the pool to be significant and assign remaining genes as non-significant

204 Next, we focus on shared non-significant genetic architectures. We generated 1,000 additional sim-
25 ulations containing 75 phenotypes, using the same parameters for number of clusters and cluster size
us  as described above, with the exception that we partitioned genes into those with PEGASUS gene-level
27 p-values > 0.7 and those that have p-values < 0.7 and use the former to create clusters. Each of these
2 simulations had the number of shared significant genes within a given cluster set to 75% (131 genes)
29 of the 175 significant genes. We then analyzed each of the 1,000 simulations using the untransformed
w0 PEGASUS p-values and -log;, transformed data. We use the significant and non-significant genetic
»1  architecture simulations in tandem to better understand the driving factor of clusters identified by

s WINGS.

McGuirl, Smith et al. 10 WINGS
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2.5 Gene Set Enrichment Analysis

Gene set enrichment analysis was performed for all significant empirical clusters. Genes that were
significant (gene p-value < 0.001) for all cluster phenotypes were used as input into the EnrichR database
[42]. The results from pathway analysis were used to annotate genes that WINGS identifies as associated

with multiple traits.

2.6 Data Availability

Shared significant gene lists for each of the significant clusters in Figure [f] as well as scripts that were
used to generate the simulated matrices and implement WINGS are available at https://github.com/

ramachandran-lab/Pegasus-WINGS/|

3 Results

WINGS sorted branch length outputs
Ground truth: [CN,CP], [AJ,CH,CL,DF], [AL,CK,CG,CQ,BW,AP,AU], [AC,CS,AS,BF,CT], [AQ,BE,BG,BS,CW]
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Figure 2: WINGS sorted branch lengths from a standard simulation identifies significant
clusters on (A) raw and (B) -log;, scales. The sorted branch lengths corresponding to the dendro-
gram branches generated by WINGS when applied to the (A) raw PEGASUS gene-level p-values and
(B) -log;, transformed PEGASUS gene scores from a simulation with 75 phenotypes, 75% (131) shared
genes. For this simulation the ground truth clusters are [CN, CP], [AJ, CH, CL, DF], [AL, CK, CG,
CQ, BW, AP, AU]J, [AC, CS, AS, BF, CT], and [AQ, BE, BG, BS, CW]. The dashed red horizontal
line corresponds to the branch length threshold, where the identified significant clusters are those lying
above the dashed line. The ground truth clusters are correctly identified as the significant clusters on
the -log,, scale (boxed). These figures have been truncated on the right (removing some clusters that
are not identified as significant) for better visualization purposes.
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Phenotypes Shared Genetic Architecture
in Simulation A: Power

B: Precision
0.01 0.1 0.25 0.5 0.75 ] 0.01 0.1 0.25 0.5 0.75

25 0.08 52.79 98.85 100 100 | 0.08 33.84 63.06 69.49 71.08
50 0.07 55.64 99.10 100 100 | 0.04 27.53 48.02 53.71 56.70
(0] 0.11 54.08 98.85 100 100 | 0.08 21.63 40.10 45.90 46.07
100 0.06 51.66 98.81 100 100 | 0.06 17.85 35.11 39.62 43.10

Table 1: Power (A) and precision (B) of WINGS across a range of phenotypes included as
well as shared genetic architecture. “Shared genetic architecture” denotes the percentage of the
175 significant genes in each phenotype that are shared across all phenotypes in a cluster. Every entry
in the table represents 1,000 simulations under the corresponding parameters. The power of WINGS
for identifying ground truth clusters in simulations is defined as the percentage of ground truth clusters
across these 1,000 simulations that were identified as significant by WINGS. The precision of WINGS is
defined as follows: in a simulation with = ground truth clusters and a given number of phenotypes and
proportion of shared genetic architecture, precision is the percentage of ground truth clusters that were
identified as significant and within the x most significant clusters ranked by the branch thresholding
step in WINGS.

» 3.1 Performance on simulated data

20« In Table[I] we report power as the percentage of ground truth simulated clusters that WINGS correctly
x5 labels as significant across the 1,000 simulations, for a fixed number of phenotypes in analysis and
x6 percent shared significantly mutated genes (“shared genetic architecture”). We define shared genetic
»7  architecture for a cluster to be the percentage of genes that are significant (p-value < 0.001) across all
s member phenotypes of the cluster. We also measure the precision of WINGS in identifying simulated
20 clusters. We define precision for a given simulation as the number of ground truth clusters that were
a0 correctly identified as significant and that further fell within the top x significant clusters in that
on simulation. For example, if a simulation has five ground truth clusters, the power of WINGS for that
a2 simulation would be the percentage of those five clusters that are identified as significant. The precision
oz of WINGS is the percentage of those five ground truth clusters that have been both correctly identified
o and are within the five most significant clusters identified in that simulations. Table 1 reports the
a5 precision of WINGS on the standard simulations across varying parameter values for both the number
as  of phenotypes analyzed and shared genetic architecture using PEGASUS p-values. We additionally
o generated simulations using the same protocol but substituting the PASCAL (sum) [23] and SKAT [43]
as - gene-level association test results for PEGASUS gene-level association p-values to illustrate that WINGS
a9 can be used with any gene-level association metric. The results for the simulations using PASCAL and
20 SKAT are shown in Table [S2] and Table respectively.

281 One sample output of WINGS applied to a standard simulation is presented in Figure On the
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Power Precision

Raw PEGASUS p-values 100 78.37
-log;; PEGASUS p-values  0.32 0.26

Table 2: WINGS power and precision when applied to “non-significant architecture” simulations (see
Methods, section ; these simulations had 75 phenotypes and 75% (131 genes) shared genetic archi-
tecture.

-log, scale, the thresholded hierarchical clustering algorithm within WINGS identifies the ground truth 2
clusters as the top five most significant clusters, whereas the clusters identified using raw gene-level s
p-values do not include the ground truth clusters. These results suggest that WINGS applied to -logo-  2e
transformed gene-level association statistics captures groups of phenotypes that have a high percentage 2
of shared significant genes, but these ground truth clusters are not captured by the raw gene-level s
p-values. 287

Using the protocol described in section [2:4] we applied WINGS to 1,000 non-significant architecture s
simulations to test its sensitivity to shared non-significant genetic architecture and analyzed the results.  2s
We find that WINGS is also robust to detecting shared levels of non-significant architecture using raw 20
PEGASUS gene-level p-values (Table [2)). 201

One sample output of WINGS applied to a non-significant architecture simulation with four ground 20
truth clusters is presented in Figure[3] On the raw scale, the thresholded hierarchical clustering algorithm 203
identifies the ground truth clusters as the top four most significant clusters, whereas the algorithm fails to 20
identify the ground truth clusters when applied to the matrix of -log;, transformed PEGASUS gene-level 205
p-values. These results suggest that clustering applied to raw PEGASUS gene-level p-values identifies 206
clusters of phenotypes that have a high percentage of shared non-significant genes, while clustering using 2o
the -log;, transformed PEGASUS gene scores captures phenotype clusters that share a high percentage 20

of significant genes. 200

3.2 Analysis of 87 case-control phenotypes 300

We first applied WINGS to the 26 case-control phenotypes analyzed in Pickrell et al. 2016 [I1] and Shi  sa
et al. 2016 [2]. We provide the results of the analyzing these 26 phenotypes in The focus of this paper s
is on the application of WINGS to 87 case-control phenotypes form the UK Biobank. We use the 26 30
phenotpypes from our initial analysis and add 61 case-control phenotypes that had at least 1,000 cases 3o

in our cohort from the UK Biobank (see Methods for QC details). The additional 61 phenotypes and 30

McGuirl, Smith et al. 13 WINGS
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WINGS sorted branch length outputs
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B. Clusters on the -Iog10 scale

Figure 3: WINGS sorted branch lengths from a non-significant architecture simulation
identifies significant clusters on (A) raw and (B) -log;, scales. Sorted branch lengths from the
dendrogram output of WINGS when applied to (A) raw PEGASUS gene-level p-values and (B) -log; -
transformed PEGASUS gene scores from a non-significant architecture simulation with 75 phenotypes
and 75% shared non-significant genes. For this simulation the ground truth clusters are [AK, AO, CY,
BX, BM, BR], [AP, BO, BV, BG, AB, CU, BU], [AY, BF, BN, CG], and [BW, CL, BC, CE, CJ, AI].
The dashed red horizontal line corresponds to the branch length threshold, above which the identified
significant clusters lie. The ground truth clusters are correctly identified as the significant clusters on
the raw scale (boxed). These figures have been truncated on the right (removing some clusters that are
not identified as significant) for better visualization purposes.

their corresponding case numbers are provided in Table We then applied WINGS to the resulting 87
phenotype by 17,651 gene matrix. In this expanded set of phenotypes, WINGS identifies 10 significant
clusters, some of which contain smaller subclusters of phenotypes that are also significantly clustered.
For instance, in Figure[d] the Immunological cluster 2 contains 7 phenotypes but many of the individual
phenotype clades within it are additionally significant, including Type 1 diabetes mellitus (E10) and
Seronegative rheumatoid arthritis (M06). For an exhaustive list of significant sub-clusters see Table
The ten significant clusters as well as their phenotypes are shown in the WINGS dendrogram in Figure [4]
with the corresponding sorted branch length plots presented Figure We find that the case number of
a phenotype is not significantly correlated with that phenotype being in a significant cluster (Kendall’s
7, p-value < 0.2625). As expected, we found that whether a phenotype was in a significant cluster or
not is significantly correlated with the number of significant gene scores (Kendall’s 7, p-value < 0.0002)
when testing correlation between case number and number of significant PEGASUS gene scores after

Bonferroni correction for 17,651 autosomal genes.
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In addition to only including genes and their +/- 50kb regions as features, we also computed PEGA- 310
SUS scores for intergenic regions and observe that the topology of the tree is highly similar (dissimilarity 3o
index from [44] between Figure 4] and Figure is Z = 0). We believe a more rigorous definition of s

intergenic regions may lead to a more informed tree. 32

3.3 Gene-Set Enrichment Analysis and Network Propagation 23

For each cluster, gene set enrichment analysis was performed using all genes that had a PEGASUS 3
p-value < 0.001 [41] for every phenotype in a cluster. Significant genes shared by all phenotypes in the s
cluster of immunological phenotypes include several located in the MHC region: BAT1,BAT3,BATS5 3
as well as HLA-DOA and HLA-DRA (See Supplementary Data on github for list of shared significant s
genes by cluster). Using the KEGG pathway database, Enrichr [45] [46] identified significant enrichment s
for genes that play a role in networks associated with Type I Diabetes mellitus, allograft rejection, and s

graft-versus-host disease. 330

McGuirl, Smith et al. 15 WINGS


https://doi.org/10.1101/565903
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/565903; this version posted March 4, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

110
Diverticular disease of the large intestine (K573)
Ulcerative Colitis (K51)
Varicose veins of lower extremeties (183)
Acute myocardial infarction (I212
Chronic ischemic heart disease (125)
Angina pectoris (120) .
Disorders of lipoprotein metabolism (E78)
Type 2 diabeted mellitus (E11)
Psoriasis (L40)
Celiac disease (K900)
Disorders of mineral metabolism (E83)
Asthma (J45)
Enteropathic arthropathies (M07)
Seropositive rheumatoid arthritis (M05)
Multiple sclerosis (G35) | »
Seronegative rheumatoid arthritis (M06)
Type 1 diabetes mellitus (E10

ther hyﬁothyroidism (EO3)
Osteoarthritis of knee (M17)
Osteoarthritis of hip (M16)
E)A\;ezrweight and obesity (E66)

Polyp of colon (K635)
Rectal polyp (K621)
Other ane

Other disc

Other disc
Sarcoidos
Iron defici

il

Chronic obstructive pulmonary disease (J44)
Emphysema (J43)
At1h9erosclerosis (170)

Number of shared
Cluster Color Cluster Label  significant genes (p <0.001) |

Metabolic 24

Tall]

Immunological 1 140

Immunological 2 103

Osteoarthritis 2 Alzheimer’s disease (G30)

Vascular dementia (FO1)

[

Jumminminminiiimnn

v

Chronic kidney disease (N18)
Egﬂ)ertensive chronic kidney disease (112)

K26

G20
Other diseases of the liver (K76)
I’ililg(r)osis and cirrhosis of the liver (K74)

Polyp 22

Unconnected 6

Pulmonary 6
Alzheimer’s/Dementia 8

Kidney 4

Liver 9

1400 1200 1000 800 600 400

Figure 4: WINGS dendrogram from 87 case-control phenotypes in the UK Biobank reveals
clusters of traits with shared significant genetic architecture. Dendrogram output from WINGS
analysis of —log,, transformed PEGASUS scores of 87 case-control phenotypes in the UK Biobank.
Listed are the ICD10 codes and common names of each phenotype that belongs to a significant cluster,
grouped by cluster. Table insert: Each significant cluster’s color, assigned label, and number of shared
significant genes (p < 0.001).
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4 Discussion -

Although biobank-scale datasets — in which multiple phenotypes are assayed and/or surveyed in tens s
of thousands to hundreds of thousands individuals — are becoming increasingly available to medical 33
genomics researchers, approaches for leveraging these datasets to identify shared architecture among 3.
phenotypes are still in their infancy. Existing approaches for analyzing the shared genomic underpinnings s
of multiple phenotypes focus on colocalizing variant-level signals [14] [IT], but these results overlook the 13
role that genetic heterogeneity and interactions among genes may play in generating multiple complex 337
traits and diseases. 338

Here, we present a new method, Ward clustering to identify Internal Node branch length outliers 33
using Gene Scores (WINGS), for identifying phenotypes that share significant genetic architecture based 340
on germline genetic data matched with binary or quantitative phenotypes for mega-biobanks. WINGS s
leverages Ward hierarchical clustering applied to gene scores for the phenotypes of interest, and further .
goes beyond past clustering applications to GWA studies of multiple phenotypes (e.g., disPCA; [25]) s
by providing a thresholding algorithm for identifying significantly clustered phenotypes. We note that 3
the thresholding step in WINGS offers a useful visualization for interpreting results: while dendrograms s
depict the hierarchical architecture of clusters (Figures , the sorted branch lengths WINGS 14
provides as output are intuitive to read, demonstrate a clear ranking of clusters, and identify significant 34
clusters (Figures [S6). 8

Given concerns over whether GWA data contain signals of genetic architecture, we note that our 3w
simulations indicate that WINGS is sensitive to both shared significant genes (that is, genes enriched  ss0
for trait-associated mutations) and shared non-significant genes (genes depleted for trait-associated s
mutations) (Figures Tables. Figures suggest that WINGS can offer insight into shared s
genetic architecture underlying comorbid phenotypes, or phenotypes that may often be misdiagnosed s
for one another such as vascular dementia and Alzheimer’s disease [47, [48]. Our results from applying s
WINGS to European-ancestry individuals sampled in the UK Biobank show that such relationships s
among phenotypes are not apparent from the taxonomy of ICD10 codes, where codes with the same 3%
letter prefix are considered related in their etiology. 357

Clustering of high-dimensional features will always be relative to the input data. In this case, an s
analysis of a subset of the phenotypes studied in the UK Biobank (Figures [4| and Table will 350
alter results. Still, we underscore that our analysis of 26 phenotypes in the UK Biobank (chosen based o

on having been studied by both Pickrell et al. ([II]) and Shi et al. ([2]), as well as having over 100 cases s
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2 in the UK Biobank) also recovers multiple significant clusters of phenotypes identified in our full set of
33 87 phenotypes: Alzheimer’s/Dementia, Metabolic and Immunological 2, Figure

364 Next, we offer some caveats for future applications of WINGS and potential future directions for the
s development of methods to identify shared genetic architecture among multiple phenotypes in mega-
6 biobanks. First, our goal here was to validate WINGS with simulations and to generate hypotheses
7 regarding shared genetic architecture among complex traits in the UK Biobank. We do not seek to
s replicate our results from applying WINGS to data, an increasingly common challenge for mega-biobank
w0 analyses [5]. However, our validation with simulations and annotation of previously identified genes
s reinforces that we are reliably detecting true genetic architecture (see Supplementary File 1 for an
sn extensive list of replication citations). Second, based on Figure we do not suggest jointly studying
s traits with widely varying case numbers, in particular quantitative traits and binary phenotypes in
sz mega-biobanks. One approach that could help overcome this challenge is the development of a gene
s score that incorporates both effect sizes and their standard errors into calculation [49], but this is outside
a5 the focus of our study.

376 Third, WINGS is sensitive to parameter choices: the clustering distance metric, the gene scores used
a7 as input, the upper-bound set for cluster size, and the branch length gap outlier criterion, which we
s will now discuss in more detail. We explored different clustering approaches beyond Ward hierarchical
s clustering using simulated data, and find that the choice of clustering method produces little change for
w0 results using raw gene-level p-values, but it does have a significant impact on clusters identified using
s -logyo-transformed gene scores (Figures . We focused on Ward hierarchical clustering here
s partly due to its performance on simulated phenotype clusters (Tables , and due to its assumption
s that clusters are round; because clusters are hard to find in a high-dimensional space, this may be
s+ a conservative choice. We chose PEGASUS gene-level p-values as input to WINGS due to (i) our
s previous exploration of the power of PEGASUS ([26]); in particular PEGASUS is not biased by gene
6 length, and computes more precise p-values than VEGAS [2I] and SKAT [22]), and (i) because the
7 model of correlated SNP-level p-values underlying PEGASUS is the same as that of a number of gene-
38 level association methods, Tables We set the upper bound on cluster size in our analyses to
0 be N /3, where N is the number of phenotypes being analyzed, effectively discounting the potential for
w0 relatively large clusters, which we think is appropriate for analyses of mega-biobanks; future users may
s alter this threshold.

302 Future applications and extensions of WINGS may choose to explore a number of questions regard-

33 ing shared genetic architecture among phenotypes. For example, [I1] tested variants for true pleiotropy,
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while our current implementation of WINGS cannot differentiate between phenotypic relationships de-  3e

fined by clinical comorbidity versus causal dependence (see also [I4]). We also assume that ICD10 30

codes are reliable indicators of disease status, which may not be the case [50, [5I]. WINGS is sensitive 39

to identifying shared mutated genes from -log;,-transformed gene scores, and we interpret the genes o

underlying significant clusters in the output of WINGS as core genes underlying the clustered pheno- 3o

types [3]. Integrating results from WINGS with tissue-specific expression data would further test this ss

hypothesis. WINGS could also be extended to test for differential genetic architecture among ancestries 40

[52], a fundamental question to which mega-biobanks can offer unique insight in the coming years. 201

Table 3: Comparison of raw and -log,, significant phenotypes in the analysis of 87 case-control pheno-
types. Clusters appearing on the same row have at least two common phenotypes in their intersection.

Cluster Classification

Raw Scale

-log,, Scale

El1, E66, E78, 110, 120, 121, 125, J45

Kidney Cluster I12, N18 112, N18
Liver Cluster K74, K76 K74, K76
Polyp Cluster K621, K635 K621, K635
Osteoarthritis Cluster M13, M16, M17 E66, M16, M17
Metabolic Cluster 120, 125 120, 125
120, 121, 125 120, 121, 125
E78, 110
E11, E78, 110 El1, E78
Ell, E66, E78, 110, J45 Ell, E78, 120, 121, 125
K51, K573

183, K51, K573
Ell, E78, 120, 121, 125, 183, K51, K573

Immunology2 Cluster E10, M06
G35, M05, MO7
MO05, M06 E10, G35, M05, M06, M07
E10, G35, J45 M05, M06, M07
E03, E10, G35, J45 M05, M06, M07
Unconnected Cluster D50, D86, E12
D50, D64 D50, D64, D86, E12, N39
Immunology1 Cluster K900, L40
E83, K900, L40
Alzheimer’s/Dementia Cluster F01, G30
Pulmonary Cluster 170, J43, J44
No name E03, M19
No name D70, G35
No name E&3, 7882
No name L40, MO07
No name J44, N39
McGuirl, Smith et al. 19 WINGS
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= D5 Supplemental Material

s In this section we present the dendrogram outputs of WINGS applied to simulations presented in the
s5  main text and the branch length outputs applied to the -log;, transformed PEGASUS gene scores from
s.s 87 case-control phenotypes in the UK Biobank. Note, while the dendrograms contain information about
sz the hierarchical architecture of the clusters, the sorted branch lengths presented in the paper are more
s intuitive to read, demonstrate a clear ranking of clusters, and identify the subset of highly significant
s clusters.

580 The branch length outputs outputs applied to the -log; transformed PEGASUS gene scores from 87
ss1 - case-control phenotypes in the UK Biobank. The corresponding dendrogram for this figure is presented
sz in Figure []in the main text.

583 The dendrograms corresponding to clusters from the example simulation with 75% shared genes
s are presented in Figures [S2)[S3} and, the dendrograms corresponding to clusters from the example non-

ses  significant architecture simulation with 75% shared non-significant genes are presented in Figures

s Analysis of 26 case-control phenotypes

sy Here we present results from applying WINGS to 26 binary chronic illness phenotypes in the UK
s Biobank. Figure displays the branch length outputs of WINGS (see Methods, section [2)) applied to
s0  the raw and -log;-transformed PEGASUS gene scores computed using cases and controls from the UK
s0  Biobank for 26 binary chronic illness phenotypes that were also studied by Shi et al. [2] and Pickrell et
s al. [I].

502 On the raw scale, Figure A) reveals that the significant clusters identified are [J45, E11, 125,
s E78], [M07, L40], and [M05, M06]. The significant -log clusters identified by WINGS in Figure [S6|B)
s can be annotated as metabolic [E11, 125, E78], immunological [K900, J45, K51, 140, M06, G35, M05,
ss  MO7], and Alzheimer’s/dementia [G30, FO1] (see Table [S1| for common disease names, as well as the
s shared significant genes in a cluster). On both scales, the clusters identified from WINGS applied to
so7  these 26 phenotypes in the UK Biobank are similar to the clusters identified from WINGS applied to
ss 87 case-control phenotypes in the UK Biobank (see Table [3| and Figure {4|in the main text).

509 The dendrogram corresponding to clusters from the 26 phenotypes from the UK Biobank is presented
o in Figure [S7] Figure displays the dendrogram output of WINGS applied to the -log;,-transformed
o0 PEGASUS gene scores for these 26 binary chronic illness phenotypes in the UK Biobank. The dendro-

o2 gram displays the hierarchical nature of the immunological cluster (orange branches in Figure [S§]), and
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it demonstrates the proximity of the [G30, FO1] cluster to other phenotypes. 603

WINGS applied to 87 continuous and 7 binary phenotypes in the UK Biobank «.

Figure [S9| displays results from simultaneously applying WINGS to 7 continuous and and 87 binary s
phenotypes. The binary traits and continuous traits cluster separately with the exception of nucleated o
red blood cells (NRB). We note that the NRB phenotype is only partially continuous in that there is a o
continuous spectrum of nucleated red blood cells for unhealthy individuals, but all healthy individuals eos
will have a zero value. Thus, it is not surprising that NRB trait does not belong to a significant cluster. oo

Ignoring the NRB trait, the cluster of continuous phenotypes (represented in yellow on the far left 6o
of the dendrogram in Figure remains completely disjoint from the discrete traits until there is eu
only a single cluster containing all traits. We observe that the [BMI, WHR] cluster has 6,781 shared on
significant genes (p < 0.001); the [PLC, MCV, MCV] cluster has 3,553 shared significant genes; and, the s
full continuous cluster with traits [BMI, WHR, PLC, MCV, MCV, Height] has 1,685 shared significant o1
genes. This is unsurprising as complex continuous phenotypes have been shown to be highly polygenic e

13, 53, 54].

Robustness to clustering criterion 617

In this paper, we present WINGS, a thresholded clustering algorithm based on Ward Hierarchical Clus- e
tering. While the Ward linkage criterion works well to cluster phenotypes, other linkage criterion may e
be used. To test the robustness of WINGS with respect to the choice of linkage criterion, we applied e
our method using single linkage, average linkage, and complete linkage clustering to the 26 phenotypes ez
we analyzed from the UK Biobank in Section [5| (see [33] for more information on single linkage, aver- e
age linkage, and complete linkage clustering). Here, we used the same branch thresholding algorithm s
described in Section with each linkage criterion to identify significant clusters. For reference, the e
Ward-based WINGS results are presented in Figures 625

We observe that the significant clusters remain robust with respect to the linkage criterion when 6
using raw PEGASUS gene-level p-values. When applied to -log;,-transformed PEGASUS gene scores, e
however, the clusters appear to be more sensitive to the choice of linkage criterion. Future studies will e
be dedicated to fully understanding the differences between the clusters identified by WINGS, single 62
linkage clustering, average linkage clustering, and complete linkage clustering on the -log;, scale. 630

The dendrograms and sorted branch length plots for these results are demonstrated in Figures [SI0F e
m 632
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s WINGS clustering of 87 phenotypes using all genomic regions

e In order to test if additional information about shared genetic architecture across phenotypes exists in
e intergenic region we performed an additional analysis. Using the bounds of the 17,651 genes (accounting
e for overlap) in our initial analysis to define 2,961 intergenic regions that were not included in the initial
es7 analysis. For each of these regions we performed a PEGASUS gene-level association test to generate a
68 p-value for the region. We then pooled the p-values from our initial analysis with those of the intergenic

s regions to create a matrix of 87 phenotypes with 20,116 features (regional statistics). The resulting tree

s0 topology is shown in
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Supplemental Tables and Figures 641

Table S1: Phenotypes analyzed in this study sorted by International Classication of Disease (ICD10)
codes. * denotes that the phenotype was included in the initial analysis of 26 case-control traits that
were also studied by Pickrell et al. [I1] and Shi et al. [2]

Disease ICD10 Code | Number of Cases
Iron deficiency anemia D50 6284
Other anemias D64 9522
Other coagulation defects D68 809
Neutropenia D70 2636
*Sarcoidosis D86 449
Other hypothyroidism E03 11691
Type 1 diabetes mellitus E10 2373
*Type 2 diabetes mellitus Ell 15080
Other disorders of pancreatic internal secretion E16 764
Overweight and obesity E66 8950
*Disorders of lipoprotein metabolism and other lipidemias E78 29778
Disorders of mineral metabolism E83 1758
*Vascular dementia Fo1 156
Alcohol related disorders F10 4313
*Schizophrenia F20 425
*Bipolar disorder F31 791
*Major depressive disorder F32 9714
Other anxiety disorders F41 4881
*Parkinson’s disease G20 972
*Alzheimer’s disease G30 331
*Multiple sclerosis G35 1124
Epilepsy and recurrent seizures G40 3071
*Migraine G43 2263
Sleep disorders G47 4410
Age-realted cataract H25 6814
Other retinal disorders H35 2872
Glaucoma H40 3729
Blindness and low visions H54 728
Hypertension 110 64135
Hypertensive chronic kidney disease 112 1274
Angina pectoris 120 15063
Acute myocradial infarction 121 6655
*Chronic ischemic heart disease 125 20958
Cardiomyopathy 142 1035
Heart failure 150 4423
Atherosclerosis 170 1025
Varicose veins of lower extremities 183 8988
Hypotension 195 4072
Other and unspecified disorders of nose and nasal sinuses J34 5393
Emphysema J43 1388
Other chronic obstructive pulmonary disease Ja4 6833
* Asthma J45 21758
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Gastro-esophageal reflux disease K21 19132
Gastric ulcer K25 3467
Duodenal ulcer K26 2517
Functional dyspepsia K30 9696
*Crohn’s disease K50 1436
*Ulcerative colitis K51 2661
Diverticular disease of large intestine without perforation or abscess K573 19462
Irritable bowel syndrome K58 4563
Rectal polyp K621 5210
Polyp of colon K635 9306
Fibrosis and cirrhosis of liver K74 676
Other diseases of liver K76 2791
Other diseases of gallbladder K82 1482
Other diseases of pancreas K86 896
*Celiac disease K900 1522
Gastrointestinal hemorrhage K922 4387
*Psoriasis 140 1836
*Lupus erythematosus 193 105
*Rheumatoid arthritis with rheumatoid factor MO05 465
*Other rheumatoid arthritis MO06 3581
*Enteropathic arthropathies MO7 591
Gout M10 2661
Other arthritis M13 9500
Osteoarthritis of hip M16 9876
Osteoarthritis of knee M17 16612
Other and unspecified osteoarthritis M19 13548
Scoliosis MA41 838
Other disorders of muscle M62 746
Synovitis and tenosynovitis M65 4311
Fibroblastic disorders M72 3267
Osteoporosis MS81 4884
Other disorders of bone M89 1261
Chronic kidney disease N18 3714
Other disorders of kidney and ureter N28 1996
Other disorders of urinary system N39 15870
Benign prostatic hyperplasia N40 9471
Inflammatory diseases of prostate N41 1334
Endometriosis N80 3235
Abnormalities of heart beat ROO 7018
Polyuria R35 3191
*Allergy status to penicillin 7880 13436
*Allergy status to sulfonamides status 7.882 712
*Allergy status to narcotic agent status 7.885 983
*Allergy status to analgesic agent status 7.886 3586
*Allergy status to serum and vaccine status 7.887 157

642
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Phenotypes Shared Genetic Architecture
in Simulation .
A: Power

B: Precision
0.01 0.1 0.25 0.5 0.75 ] 0.01 0.1 0.25 0.5 0.75

25 0.08 77.08 99.92 100 100 | 0.04 51.31 71.22 7530 77.56
50 0.11 78.08 99.98 100 100 | 0.07v 38.57 57.14 62.14 65.36
0] 0.12 76.74 99.97 100 100 | 0.07 31.20 51.36 53.97 56.73
100 0.04 7499 99.98 100 100 | 0.04 28.17 46.33 50.66 54.12

Table S2: WINGS performance on simulated data generated using the empirical distribution of PAS-
CAL [23] sum gene scores for Crohn’s disease (17,582 genes). Power (A) and precision (B) of WINGS
across a range of phenotypes included as well as shared genetic architecture. ”Shared genetic architec-
ture” denotes the percentage of the 175 significant genes in each phenotype that are shared across all
phenotypes in a cluster. Every entry in the table represent 1,000 simulations under the corresponding
parameters. Power and precision are defined explicitly in Table

Phenotypes Shared Genetic Architecture
in Simulation )
A: Power

B: Precision
0.01 0.1 0.25 0.5 0.75 | 0.01 0.1 0.25 0.5 0.75

25 0.01 1294 9143 9996 100 | 0.04 8.63 61.65 74.44 77.59
50 0.02 9.11 90.79 99.95 100 | 0.02 5.37 4847 63.24 66.73
75 0.01 719 90.14 99.97 100 | 0.01 3.47 42.06 57.78 61.07
100 0.01 6.74 8941 99.95 99.99 | 0.01 3.00 35.35 53.89 58.69

Table S3: WINGS performance on simulated data generated using the empirical distribution of SKAT
[43] sum gene scores for Crohn’s disease (11,518 genes). Power (A) and precision (B) of WINGS across
a range of phenotypes included as well as shared genetic architecture. ”Shared genetic architecture” de-
notes the percentage of the 175 significant genes in each phenotype that are shared across all phenotypes
in a cluster. Every entry in the table represent 1,000 simulations under the corresponding parameters.
Power and precision are defined explicitly in Table
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shared significant genetic architecture. The sorted branch lengths corresponding to the dendrogram branches generated by WINGS when

Figure S1: WINGS sorted branch lengths from 87 case-control phenotypes in the UK Biobank reveals clusters of traits with
applied to the -log;, transformed PEGASUS gene scores from 87 case-control phenotypes in the UK Biobank. The dashed red horizontal line

corresponds to the branch length threshold, where the identified significant clusters are those lying above the dashed line.

dendrogram is presented in Figure H
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WINGS dendrogram from simulated data (raw scale)
Groud truth: [CN,CP], [AJ,CH,CL,DF], [AL,CK,CG,CQ,BW,AP,AU], [AC,CS,AS,BF,CT], [AQ,BE,BG,BS,CW]
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Figure S2: WINGS dendrogram from a standard simulation on the raw scale. The dendrogram
output of Ward hierarchical clustering applied to the raw PEGASUS scores of a simulation with 75
traits, 75% shared genes. The branches are color coded by the largest significant clusters identified by
the branch thresholding algorithm. The corresponding sorted branch lengths are presented in Figure 2]
in the paper.

WINGS dendrogram from -log,, transformed simulated data

Ground truth: [CN,CP], [AJ,CH,CL,DF], [AL,CK,CG,CQ,BW,AP,AU], [AC,CS,AS,BF,CT], [AQ,BE,BG,BS,CW]
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Figure S3: WINGS dendrogram from a standard simulation on the -log;, scale. The dendro-
gram output of Ward hierarchical clustering applied to the -log;, transformed PEGASUS scores of a
simulation with 75 traits and 75% shared genes. The branches are color coded by the largest significant
clusters identified by the branch thresholding algorithm. The corresponding sorted branch lengths are
presented in Figure [2]in the paper.

McGuirl, Smith et al. 33 WINGS


https://doi.org/10.1101/565903
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/565903; this version posted March 4, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

WINGS dendrogram from reversed simulation data (raw scale)
Ground truth: [AK,AO,CY,BX,BM,BR], [AP,BO,BV,BG,AB,CU,BU], [AY,BF,BN,CG], [BW,CL,BC,CE,CJ,Al]
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Figure S4: WINGS dendrogram from a non-significant architecture simulation on the raw
scale. The dendrogram output of Ward hierarchical clustering applied to the raw PEGASUS scores
of a non-significant architecture simulation with 75 traits and 75% shared genes. The branches are
color coded by the largest significant clusters identified by the branch thresholding algorithm. The
corresponding sorted branch lengths are presented in Figure |§| in the paper.

WINGS dendrogram from -log , transformed reversed simulation data

Ground truth: [AK,AO,CY,BX,BM,BR], [AP,BO,BV,BG,AB,CU,BU]J, [AY,BF,BN,CG], [BW,CL,BC,CE,CJ,Al]
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Figure S5: WINGS dendrogram from a non-significant architecture simulation on the -
log,, scale. The dendrogram output of Ward hierarchical clustering applied to the -log;, transformed
PEGASUS scores of a non-significant architecture simulation with 75 traits and 75% shared genes.
The branches are color coded by the largest significant clusters identified by the branch thresholding
algorithm. The corresponding sorted branch lengths are presented in Figure |§| in the paper.
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WINGS sorted branch length outputs from 26 Phenotypes in the UK Biobank
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Figure S6: WINGS sorted branch lengths applied to 26 binary chronic illness phenotypes
from the UK Biobank on the (A) raw and (B) -log;, scales. The sorted branch lengths corre-
sponding to the branches in the dendrogram output of WINGS applied to the raw PEGASUS gene-level
p-values (A) and -log;,-transformed PEGASUS gene scores (B) for 26 case-control phenotypes in the
UK Biobank. The dashed red horizontal line corresponds to the branch length threshold, where the
identified significant clusters are those lying above the dashed line (boxed). Here, the x-axis shows the
ICD10 codes; see Table [S1| for the corresponding common disease names.

5.1 WINGS sensitivity to other gene level-association statistics 643

To showcase how WINGS can be used with any gene level association statistic we designed a similar set o4
of simulations as outlined in for two additional methods PASCAL (sum) [23], shown in Table 645
and SKAT [43], shown in Table 646
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WINGS dendrogram from 26 Phenotypes in the UK Biobank (raw scale)
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Figure S7: WINGS dendrogram applied to raw PEGASUS scores for 26 binary chronic ill-
ness phenotypes from the UK Biobank. The dendrogram output of WINGS to the raw PEGASUS
scores of the 26 binary chronic illness phenotypes from the UK Biobank data. The color coded branches
correspond to significant clusters identified by WINGS. The corresponding sorted branch lengths are
presented in Figure A) in the paper.

WINGS dendrogram from 26 Phenotypes in the UK Biobank (-log, , scale)

I E11
E78
125
K900
| K51

L40
MOB
L G35
MO7
M05

J45

7880
ri: K50
FO1
G30
D86
G20
G43
F31
— F33
—— F20
7886
Lo3
|— Z8g87

7885
L 7882

450 400 350 300 250 200 150 100

Figure S8: WINGS dendrogram applied to -log;, transformed PEGASUS scores for 26
binary chronic illness phenotypes from the UK Biobank. The dendrogram output of WINGS
to the -log,, transformed PEGASUS scores of the 26 binary chronic illness phenotypes from the UK
Biobank data. The color coded branches correspond to significant clusters identified by WINGS. The
corresponding sorted branch lengths are presented in Figure B) in the paper
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WINGS dendrogram from -log 10 transformed gene p-values of continuous and binary phenotypes from the UK Biobank
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Figure S9: WINGS dendrogram from 94 case-control phenotypes in the UK Biobank sepa-
rates continuous and binary traits. The dendrogram output of Ward hierarchical clustering applied
to the -log;, transformed PEGASUS scores of the empirical continuous and binary traits. The branches
are color coded by the largest significant clusters identified by the branch thresholding algorithm. The
continuous phenotypes cluster together on the right of the dendrogram (in yellow), remaining disjoint
from the remaining binary phenotypes until there is a single cluster.

Single linkage hierarchical clustering outputs applied to 26 Phenotypes from the UK Biobank (raw scale)

A. Dendrogram B. Sorted Branch Lengths

° ® Branch Lengths

56

= = Branch Length Cut Off

54

52

Branch Length

50

NOQN T OO T ONWOOVANDON— 0O WLW D — ©
SSG3EBFDEE82E88 B3R EESNE &
= N NR~=2=22O9R N 0

g

MO07 L40

M05 M06

E11125 E78

J45E11 125 E78

F20 D86 FO1 G30 7887
7885 7886

K900 M05 M06

FO1 G30 Z887

D86 FO1 G30 Z887

F20 D86 F01 G30 2887 MO07 L4
F31 F20 D86 FO1 G30 Z887 M07 L4

Identified Clusters

Figure S10: Single linkage clustering applied to PEGASUS p-values of 26 phenotypes from
the UK Biobank (raw scale). (A) The dendrogram and (B) sorted branch lengths corresponding
to the output of single linkage hierarchical clustering applied to the raw PEGASUS scores of the 26
phenotypes from the UK Biobank. The dashed red horizontal line on the right figure corresponds to the
branch length threshold, where the identified significant clusters are those lying above the dashed line.
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Average linkage hierarchical clustering outputs applied to 26 Phenotypes from the UK Biobank (raw scale)

A. Dendrogram B. Sorted Branch Lengths
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Figure S11: Average linkage clustering applied to PEGASUS p-values of 26 phenotypes from
the UK Biobank (raw scale). (A) The dendrogram and (B) sorted branch lengths corresponding
to the output of average linkage hierarchical clustering applied to the raw PEGASUS scores of the 26
phenotypes from the UK Biobank. The dashed red horizontal line on the right figure corresponds to the
branch length threshold, where the identified significant clusters are those lying above the dashed line.

Complete linkage hierarchical clustering outputs applied to 26 phenotypes from the UK Biobank (raw scale)
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Figure S12: Complete linkage clustering applied to PEGASUS p-values of 26 phenotypes
from the UK Biobank (raw scale). (A) The dendrogram and (B) sorted branch lengths correspond-
ing to the output of complete linkage hierarchical clustering applied to the raw PEGASUS scores of the
26 phenotypes from the UK Biobank. The dashed red horizontal line on the right figure corresponds to
the branch length threshold, where the identified significant clusters are those lying above the dashed
line.
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Single linkage hierarchical clustering outputs applied to 26 Phenotypes from the UK Biobank (-log 10 scale)
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Figure S13: Single linkage clustering applied to -log,, transformed PEGASUS p-values of 26
phenotypes from the UK Biobank. (A) The dendrogram and (B) sorted branch lengths correspond-
ing to the output of single linkage hierarchical clustering applied to the -log;, transformed PEGASUS
scores of the 26 phenotypes from the UK Biobank. The dashed red horizontal line on the right figure
corresponds to the branch length threshold, where the identified significant clusters are those lying above
the dashed line.

Average linkage hierarchical clustering outputs applied to 26 Phenotypes from the UK Biobank (-log 10 scale)
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Figure S14: Average linkage clustering applied to -log;, transformed PEGASUS p-values
of 26 phenotypes from the UK Biobank. (A) The dendrogram and (B) sorted branch lengths
corresponding to the output of average linkage hierarchical clustering applied to the -log;, transformed
PEGASUS scores of the 26 phenotypes from the UK Biobank. Here, there is no significant branch length
threshold and consequently there are no significant clusters.
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Complete linkage hierarchical clustering outputs applied to 26 phenotypes from the UK Biobank (-log 10 scale)
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Figure S15: Complete linkage clustering applied to -log,;, transformed PEGASUS p-values
of 26 phenotypes from the UK Biobank. (A) The dendrogram and (B) sorted branch lengths
corresponding to the output of complete linkage hierarchical clustering applied to the -log, transformed
PEGASUS scores of the 26 phenotypes from the UK Biobank. The dashed red horizontal line on the
right figure corresponds to the branch length threshold, where the identified significant clusters are those
lying above the dashed line.
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Figure S16: WINGS dendrogram from 87 case-control phenotypes using both genes and
intergenic regions as features. We analyzed a matrix of PEGASUS p-values on the -log; scale using
both genes and intergenic regions as features. The topology of the tree is highly preserved compared to
the dendrogram shown in Figure
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