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ABSTRACT:

Statistical mechanics is employed to tackle the problem of polymer brush bi-

layers under stationary shear motion. The article addresses, solely, the linear

response regime in which the polymer brush bilayers behave very much simi-

lar to the Newtonian fluids. My approach to this long-standing problem split

drastically from the work already published Kreer, T, Soft Matter, 12, 3479

(2016). It has been thought for many decades that the interpenetration be-

tween the brushes is source of the friction between the brush covered surfaces

sliding over each other. Whiles, the present article strongly rejects the idea

of interpenetration length in that issue. Instead, here, I show that structure

of the whole system is significant in friction between brush covered surfaces

and the interpenetration is absolutely insignificant. The results of this research

would blow one’s mind about how the polymer brush bilayers respond at small

shear rates.
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INTRODUCTION

Polymers are linear macromolecular structures that are composed of repeating building

blocks of atomic or molecular size i.e. monomers. Typically, polymers bear 104 to 105

monomers per chain (degree of polymerization) in biological systems1. In principle, the

word polymer is devoted to long linear macromolecules with many monomers. The con-

nectivity between monomers in chain is established through the Covalent bond in which

monomers share their valence electron together. In 1827, R. Brown discovered that parti-

cles at molecular and atomic scale undergo thermal fluctuations. Since, monomers undergo

thermal agitation as well, therefore the whole polymer chain undergoes all possible confor-

mations in the course of time. However, at thermal equilibrium the chain stays at a certain

average length. This length is determined by entropic elasticity (which shrinks the chain)

from one hand and the steric repulsion among monomers (which stretches the chain) on the

other hand.

One of the most interesting polymeric structures that exists in many biological systems

is the polymer brushes2. Polymer brushes are composed of linear chains that are chemically

grafted into a surface. The steric repulsion among monomers of nearby chains stretches the

chains strongly in the perpendicular direction. The brush like structures could be found as

Glycol on the outside of cell membranes as well as aggregan in synovial fluids of mammalian

joints. Since the thickness of the brush layer is easily controllable by varying molecular

parameters, therefore one could tune the surface properties by brushes. Polymer brush

bilayers (PBB) are observed in synivial joints of mammals and they are responsible for

reduction of friction between the bones sliding over each other. Moreover, it has been

also known that the PBBs are responsible for suppression of the mechanical instabilities in

synovial joints. To investigate such a situation, one would normally take two parallel surfaces

with a certain distance and each surface covered by a brush that are similar in molecular

parameters. The brushes got to be at intermediately compressed state to make balance

between compression and interpenetration. The most simplified motion that resembles the

synovial joints motion in walking, could be the shear motion where surfaces move in opposite

directions with the same velocity. Depending on the shear rates, the PBBs response to the
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shear forces are divided into two regimes. The regime of small shear rates or the linear

response regime and the regime of large shear rates. In this article, I focus on the linear

response regime where the PBBs behave like the Newtonian fluids. Note that, here I do

not address the regime of large shear rates where shear thinning effects appear. It has

been taught, for few decades, that the interpenetration between the brushes is significant in

producing friction between sliding surfaces4. Here, I provide theoretical considerations that

strongly rejects the significance of interpenetration length in the friction. Instead, my theory

suggests that the structure of whole system is significant in friction.

In the next section, I describe my theory in detail and make comparisons with the existing

theoretical approaches to the same problem.

THEORETICAL DESCRIPTION

Newtonian fluids

Let us consider a Newtonian fluid which is restricted between two flat plates of surface area

A and distance D. Under the shear motion the flat plates move in opposite directions with

velocity v. In such situations, the governing equations would be the Stokes equations as

follows,

η∇2u(x, t) = ∇p (1)

where η is the fluid viscosity, u(x, t) the fluid velocity and p the fluid pressure. Assume

that the flat plates are in xy plane such that the bottom plate is located at z = 0 and the

top plate at z = D. If the shear direction is supposed to be in the x direction, then the

following differential equation holds,

η
∂2ux
∂z2

=
∂p

∂x
(2)

In the absence of external flow, one would set ∂p
∂x

= 0. By considering the no-slip boundary

conditions i.e. ux(z = 0) = −v and ux(z = D) = v, the solution of Eq. (2) would be,

ux(z) = γ̇ z − v (3)

3

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 4, 2019. ; https://doi.org/10.1101/565796doi: bioRxiv preprint 

https://doi.org/10.1101/565796
http://creativecommons.org/licenses/by-nc-nd/4.0/


Where γ̇ = 2v/D is the shear rate. Therefore, the velocity profile is linear in z and

vanishes at the center of channel. The stress tensor is given as follows,

Π = η∇u− pI (4)

Which implies the following results for normal and shear stresses,

Πn = p Πs = η γ̇ (5)

It turns out that the viscosity and the equation of state of the fluid give a full description of

the response under stationary shear motion. That is an important property of the Newtonian

fluids. Having reviewed the Newtonian fluids under stationary shear, I will consider PBBs

under stationary shear in the following.

PBBs under stationary shear

Now let us consider brushes that are grafted onto the flat plates and are suspended in a

solvent. The equation of state of a PBB has been already calculated6 and it is given as

follows,

p =
1

240 a4 bN4D4
(435D8 + 720 a2 bD5N3σ − 187D7 χ

1/3
0 − 192 a2 bDN3σχ1χ

1/3
0

+ 187D6 χ
2/3
0 − 600 a2 bN3 σ χ1 χ

2/3
0 + 2D4 χ

1/3
0 χ2 + 4D3 χ

2/3
0 χ3) (6)

where a is the Kuhn length or monomer size, b the second Virial coefficient, N the degree

of polymerization, σ the grafting density and I have introduced the following volumes for

the sake of having shorter formula,

χ0 = (6 a2 bN3 σ −D3 + 2
√

3 a2 bN3 σ (3 a2 bN3 σ −D3)) (7)

χ1 = (3 a2 bN3 σ +
√

3 a2 bN3 σ (3 a2 bN3 σ −D3)) (8)

χ2 = (−351 a2 bN3 σ + 151
√

3 a2 bN3 σ (3 a2 bN3 σ −D3)) (9)

χ3 = (−558 a2 bN3 σ + 169
√

3 a2 bN3 σ (3 a2 bN3 σ −D3)) (10)
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Figure 1: The equation of state of the PBBs in terms of system parameters. The plots

indicate universal power laws as p ∼ a−0.88 b0.8 σ1.55
(
N
D

)0.67
. In terms of the second Virial

coefficient, the power law changes to p ∼ b0.58 for larger bs.
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c

Fig. 1 shows that the pressure follows the universal power laws as given below,

p ∼ a−0.88 b0.8 σ1.55

(
N

D

)0.67

(11)

However, at b � 3, the plot shows the power law p ∼ b0.58. The shear forces do not

change the equation of state as long as the linear response regime holds. The linear response

regime is valid if the Weissenberg number W is smaller than unity. The Weissenberg number

is a dimensionless number that is defined as follows,

W = γ̇ τc (12)

where τc = N2a2ξ
3π2 kBT

is the critical time scale below which the chains can relax and ξ the

monomer friction constant. In principle, τc is the largest mode of the Rouse time scale which

is taken into account as the largest relaxation time of polymer chains at melt concentration

without hydrodynamic interactions between monomers5. Therefore, all of my calculations

are valid for (W � 1) that the shear forces are not able to overcome the entropic forces that

make monomers diffuse.

So far, I have given a full description of the PBB equation of state as well as the validity

range of the linear response regime. According to Eq. (5), we know the normal stress

as Πn = p. To calculate the shear stress for the PBBs, one has to get to know about

the viscosity of the PBBs. Actually, viscosity is an intrinsic property of any substance.

According to the statistical mechanics, the viscosity of any system is equal to its equation of

state multiplied by the average time between two successive collisions between its particles

i.e collision time 3. For PBBs, the collision time of monomers can be calculated as follows.

The Rouse time scale tells us how much time it takes for a monomer to travel a certain

distance by diffusion. Therefore, one could assume that for the PBBs, the mean free path

or the average distance between monomers is (2Nσ/D)−1/3 and the diffusion constant of

monomers is (kB T/Nξ). By dividing the mean free path squared by the diffusion constant,

one would get the following time scale as the collision time for monomers in a PBB,
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τ =

(
2σ

D

)−2/3
N1/3ξ

kBT
(13)

This is the shortest time scale during which monomers are kicked by other monomers.

Note here that, this is from the kicks that monomers get from the solvent molecules because

here I assume that monomers are much larger than solvent molecules. Having calculated

the collision time, one would calculate the PBB viscosity as η = p τ . The result of this

calculation has been shown in Fig. (2).

Fig. (2) shows that the PBBs viscosity follows the universal power laws as given bellow,

η ∼ a−0.88 b0.8N σ0.88 ξ (14)

Note that, the viscosity scales as ∼ b0.58 for b � 3. However, in terms of the distance

between the plates D, the PBBs viscosity indicates sort of complex behavior. As depicted

in Fig. (2), one would recognize that the viscosity decreases by distance, nevertheless,

it possesses two exteremums in certain distances. In principle, the viscosity decreases by

distance up to a certain distance in which the viscosity begins increasing. After increasing

by distance to a certain value, the viscosity begins decreasing again.

Now that the viscosity as well as the equation of state are calculated, one would calculate

the viscosity and the kinetic friction coefficient as following,

Πs ∼ a−0.88 b0.8N σ0.88 ξ γ̇ (15)

µ = τ γ̇ =

(
2σ

D

)−2/3
N1/3ξ

kBT
γ̇ (16)

Note here that, in the friction coefficient equation, the shear rate itself is a function of

the D. It means that the actual dependence upon the plates distance is D−1/3. In the next

section, I proceed to make conclusions and discuss the final arguments. Also, I would like

to discuss some advantages of my approach to the problem of the PBBs under stationary

shear.
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Figure 2: The viscosity in terms of the system parameters. The plots show universal power

laws as η ∼ a−0.88 b0.8N σ0.88 ξ.
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CONCLUDING REMARKS

In this article, I addressed the polymer brush bilayers under stationary shear motion at linear

response regime. At linear response regime the shear forces are weaker than the entropic

forces and are not able to change the equation of states. However, the normal and shear

stresses split by presence of the weak shear forces. This is the linear response regime in which

the PBBs behave some what similar to Newtonian fluids. The only thing the PBBs have

common with the Newtonian fluids is the linear dependence of transport quantities upon the

shear rate. Clearly, the dependence upon molecular parameters are totally different from

those of the Newtonian fluids.

The idea here is that the whole structure of the PBB system is significant to produce

friction under shear. The complex processes at molecular scale such as collision time and the

equation of state are apparently responsible for the friction and definitely interpenetration4

is not responsible for that. o Trationally reject the significance of the interpenetration

between the brushes in friction one possible answer could be given as following. This is

accepted that every shear induced force will be relaxed in the system as long as the linear

response regime holds. Now, in this condition, how to admit that the stress produced in

the narrow interpenetration region will be transferred to the plates without being relaxed.

Another argument for rejecting the significance of the interpenetration would be laying in the

nonlinear response regime of the PBBs. It has been observed that at Weissenberg numbers

larger than unity, the shear stress follows sublinear regime while the interpenetration length

vanishes. However, the shear stress still is non-zero. So it would seem irrational to relate

those two effects to each other.s Remarkably, the present approach indicates that the PBB

viscosity decreases by the Kuhn length and the plates distance. These are rational predictions

as one could admit that when monomers get bigger, the entropic effects weaken and at

ultimate case there will be few large spheres between the plates. Certainly, the viscosity of.

On the other hand, the viscosity decreases by the plates distance which is again well admitted.

When the plates get more distant, then at a certain distance the entropic effects disappear.

This can happen by decrease of the monomer concentration as well as increase of the collision

time. It is shown that the viscosity increases by molecular parameters such as the degree of
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polymerization, the second Virial coefficient, the grafting density and the monomer friction

constant. The linear dependence of the viscosity upon the degree of polymerization and the

monomer friction constant tells us that the connectivity of monomers in the backbone of

chains is very significant rather than the number of chains i.e. the grafting density.

The kinetic friction coefficient decreases by the plates distance as well as grafting density

and it increases by the other molecular parameters. These are rational results based on the

fact that more distant plates make smaller concentration and larger grafting densities give

rise to more stretched chains, and therefore, more ordered system. The order is a source of

the lower viscosity.

The problem of PBBs under stationary shear at nonlinear response regime would be the

next step of my research. Moreover, the
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