

1 **Cue-induced effects on decision-making distinguish**

2 **subjects with gambling disorder from healthy**

3 **controls**

4 **Running title:**

5 Pavlovian-to-instrumental-transfer in gambling disorder

6

7 **Authors:**

8 Alexander Genauck¹⁾²⁾, Milan Andrejevic¹⁾³⁾, Katharina Brehm¹⁾, Caroline Matthis⁵⁾²⁾, Andreas
9 Heinz¹⁾, André Weinreich⁴⁾, Norbert Kathmann⁴⁾, Nina Romanczuk-Seiferth¹⁾

10

11 **Corresponding Author:**

12 Alexander Genauck

13 Department of Psychiatry and Psychotherapy

14 Charité – Universitätsmedizin Berlin

15 Charitéplatz 1, 10117 Berlin

16 Germany

17 +49 30 450 517-307

18 alexander.genauck@charite.de

19

20 **Affiliations:**

21 1) Charité – Universitätsmedizin Berlin, Department of Psychiatry and Psychotherapy

22 2) Bernstein Center for Computational Neuroscience Berlin

23 3) Melbourne School of Psychological Sciences, The University of Melbourne

24 4) Humboldt-Universität zu Berlin, Department of Psychology

1 5) Technische Universität Berlin, Institute of Software Engineering and Theoretical
2 Computer Science, Neural Information Processing

3

4 **Funding Sources:**

5 This study was funded by a research grant by the Senatsverwaltung für Gesundheit, Pflege und
6 Gleichstellung, Berlin. A.G. was funded by Deutsche Forschungsgemeinschaft (DFG)
7 HE2597/15-1, HE2597/15-2, and DFG Graduiertenkolleg 1519 “Sensory Computation in
8 Neural Systems”.

9

10 **Conflict of interest:**

11 The authors declare no conflict of interest.

12

13 **Key words:** (should accompany the abstract)

14 gambling disorder, decision-making, pavlovian-to-instrumental transfer, loss aversion

15

16 **Words (main text):**

17 4906

18

19 **Words abstract:**

20 239

21 **Date when re-submitted after revision:**

22 30 July 2019

23

24 **Co-Authors' email addresses:**

25 Milan Andrejevic: milan.andrejevic@unimelb.edu.au

26 Katharina Brehm: kathabrehm@gmail.com

27 Caroline Matthis: matthis@ni.tu-berlin.de

28 Andreas Heinz: andreas.heinz@charite.de

29 André Weinreich: a.weinreich@psychologie.hu-berlin.de

1 Norbert Kathmann: kathmann@hu-berlin.de

2 Nina Romanczuk-Seiferth: nina.seiferth@charite.de

3

4 Remarks

5 To ensure a more convenient reviewing process, we positioned figures and tables at their
6 destined position.

7

8

1 ABSTRACT

2 While an increased impact of cues on decision-making has been associated with substance
3 dependence, it is yet unclear whether this is also a phenotype of non-substance related addictive
4 disorders, such as gambling disorder (GD). To better understand the basic mechanisms of
5 impaired decision-making in addiction, we investigated whether cue-induced changes in
6 decision-making could distinguish GD from healthy control (HC) subjects. We expected that
7 cue-induced changes in gamble acceptance and specifically in loss aversion would distinguish
8 GD from HC subjects.

9 30 GD subjects and 30 matched HC subjects completed a mixed gambles task where gambling
10 and other emotional cues were shown in the background. We used machine learning to carve
11 out the importance of cue-dependency of decision-making and of loss aversion for
12 distinguishing GD from HC subjects.

13 Cross-validated classification yielded an area under the receiver operating curve (AUC-ROC)
14 of 68.9% ($p=0.002$). Applying the classifier to an independent sample yielded an AUC-ROC of
15 65.0% ($p=0.047$). As expected, the classifier used cue-induced changes in gamble acceptance
16 to distinguish GD from HC. Especially increased gambling during the presentation of gambling
17 cues characterized GD subjects. However, cue-induced changes in loss aversion were irrelevant
18 for distinguishing GD from HC subjects. To our knowledge, this is the first study to investigate
19 the classificatory power of addiction-relevant behavioral task parameters when distinguishing
20 GD from HC subjects. The results indicate that cue-induced changes in decision-making are a
21 characteristic feature of addictive disorders, independent of a substance of abuse.

1 INTRODUCTION

2 Gambling disorder (GD) is characterized by continued gambling for money despite severe
3 negative consequences¹. Burdens of GD include financial ruin, loss of social structures, as well
4 as development of psychiatric comorbidities². In line with this clinical picture of impaired
5 decision making, GD subjects have also displayed impaired decision making in laboratory
6 experiments^{3,4}.

7 Besides impaired decision making, cue reactivity has been a crucial concept in understanding
8 addictive disorders including GD^{5,6}. Through Pavlovian conditioning, any neutral stimulus can
9 become a conditioned stimulus (i.e. a cue) if it has been paired with the effects of the addictive
10 behavior⁷. In addictive disorders, including GD, cues may induce attentional bias, arousal, and
11 craving for the addictive behavior in periods of abstinence^{8,9}. Treatment of addictive disorders
12 may focus on identifying and coping with individual cues that induce craving for addictive
13 behavior¹⁰. If we understood better how cues exert control over instrumental behavior and
14 decision-making, we would be able to improve treatment tools and even public health policy
15 for GD and perhaps other addictive disorders. In the present study we were thus interested in
16 broadening our understanding of the basic mechanisms of impaired decision making in
17 addictions, especially with respect to cue-induced effects on value-based decision making.

18 The effect of cues exhibiting a facilitating or inhibiting influence on instrumental behavior and
19 decision making is known as Pavlovian-to-Instrumental Transfer (PIT)¹¹. PIT experiments
20 usually have three phases: a first phase where subjects learn an instrumental behavior to gain
21 rewards or avoid punishments, a second phase where subjects learn about the value of arbitrary
22 stimuli through classical conditioning, and a third phase (the PIT phase), where subjects are
23 supposed to perform the instrumental task, while stimuli from the second phase (changing from
24 trial to trial) are presented in the background. The PIT phase measures the effect of value-

1 charged cues on instrumental behavior despite the fact that the background cues have no
2 objective relation to the instrumental task in the foreground. For instance, certain cues could
3 increase the likelihood of gamble acceptance or the sensitivity to the gain offered in the gamble.
4 In the current study we focus only on the PIT phase. PIT has recently drawn attention in the
5 study of substance use disorders (SUDs)¹². This is because PIT effects can persist even when
6 the outcome of the instrumental behavior has been devalued¹³, and because increased PIT has
7 been associated with a marker for impulsivity¹⁴ and with decreased model-based behavior¹⁵.
8 Lastly, PIT effects tend to be stronger in subjects with a substance-use-disorder than in healthy
9 subjects^{12,16}, and increased PIT has been associated with the probability of relapse¹².
10 Increased PIT effects are based on Pavlovian and instrumental conditioning and on their
11 interaction. This highlights how addictive disorders rely on learning mechanisms¹⁷. GD is an
12 addictive disorder independent of any influence of a neurotropic substance of abuse. The study
13 of PIT in GD may thus further shed light on whether increased PIT in addictive disorders is a
14 result of learning, independent of any substance of abuse, or even a congenital vulnerability¹⁸.
15 We are aware of three studies that have observed in GD subjects increased cue-induced effects
16 on decision-making and instrumental behavior, comparable to increased PIT effects. In two
17 single-group studies, GD subjects have shown higher delay discounting (preferring immediate
18 rewards over rewards in the future) in response to a casino environment vs. a laboratory
19 environment¹⁹ and to high-craving vs. low-craving gambling cues²⁰. In a third study, GD
20 subjects have been more influenced than HC subjects by gambling stimuli in a response
21 inhibition task²¹. To our knowledge, however, there are no studies yet that have investigated the
22 effect of cue reactivity on loss aversion in GD as a possibly relevant PIT effect in GD.
23 Loss aversion (LA) is, besides delay discounting, another facet of value-based decision-making.
24 It is the phenomenon wherein people assign a greater value to potential losses than to an equal

1 amount of possible gains²². For example, healthy subjects tend to agree to a coin toss gamble
2 (win/loss probability of 0.5) only if the amount of possible gain is at least twice the amount of
3 possible loss. In GD subjects, LA seems to be reduced^{23,24}, but there are also studies that have
4 found no difference in LA between GD and HC subjects²⁵.

5 High LA protects against disadvantageous gambling decisions. However, it has been observed
6 that LA can be transiently modulated by experimentally controlled cues²⁶ and that this LA
7 modulation varies considerably across subjects²⁷. In GD subjects, loss aversion might be
8 particularly cue-dependent leading to reckless gambling especially in casino contexts or at slot
9 machines. In the current study, we thus hypothesized that GD subjects should show stronger
10 PIT effects than HC subjects in their gambling decisions and especially stronger drops in LA
11 when e.g. gambling-related cues are present (i.e. higher “loss aversion PIT”).

12 So far, we have mentioned studies that have used group-mean difference analyses to investigate
13 decision making or cue reactivity in addictive disorders. This approach is faithful to the desire
14 to explain human behavior rather than predict it²⁸. However, this may lead to overly complicated
15 (i.e. overfitted) models, which do not correctly predict human behavior in new samples²⁸. Thus,
16 in the current study we wanted to avoid overfitting and isolate a model with not only explanatory
17 but also predictive value²⁸. We did so by disentangling the specific benefits of “loss aversion
18 PIT” parameters when distinguishing GD from HC subjects. Hence, we used machine learning
19 methods in addition to classical mean-difference statistics to test our hypotheses. This approach
20 has drawn increasing attention in the field of clinical psychology and psychiatry²⁹. In particular,
21 we built and tested an algorithm that decides between various loss aversion models and different
22 models with and without PIT to classify subjects into HC vs. GD groups. Importantly, to avoid
23 overfitting, we used out-of-sample classification³⁰⁻³². Our results allowed us to disentangle
24 which PIT effects are relevant to distinguish GD from HC subjects.

1 When selecting cues for this study, we aimed at expanding on existing studies investigating cue-
2 effects in GD¹⁹⁻²¹. Besides gambling-related cues, we thus selected additional cues from
3 different motivational and emotional categories¹² related to GD. These categories comprised
4 images used in gambling advertisements as well as for advertisement of GD therapy and
5 prevention (positive and negative cues).

6 We expected that our classifier would select models that incorporate the modulation of loss
7 aversion by gambling and other emotional cues (“loss aversion PIT”) to distinguish between
8 HC and GD subjects.

9

1 MATERIALS AND METHODS

2 Samples

3 GD subjects were diagnosed using the German short questionnaire for gambling behavior
4 questionnaire (KFG)³³. The KFG diagnoses subjects according to DSM-IV criteria for
5 pathological gambling. Scoring 16 points and over means “likely suffering from pathological
6 gambling”. However, here we use the DSM-5 term “gambling disorder” interchangeably,
7 because the DSM-IV and DSM-5 criteria largely overlap. The GD group were active gamblers
8 and not in therapy. The HC group consisted of subjects that had no to little experience with
9 gambling, reflecting the healthy general population as in other addiction studies⁵. For further
10 information on the sample, see **Tab. 1** and **Supplements (1.1)**. GD and HC were matched on
11 relevant variables (education, net personal income, age, alcohol use), except for smoking
12 severity. We thus included smoking severity in the classifier and tested it against classifying
13 based only on smoking severity. For final validation of the fitted classifier we used a sample
14 from another study where subjects performed the affective mixed gambles task in a functional
15 magnetic resonance imaging (fMRI) scanner (see **Tab. S2**)³⁴.

16

1 **Table 1: Sample characteristics, means and p-values calculated by two-sided permutation test.**

variable	HC group	se	GD group	se	p perm test
years in school	10.87	0.22	10.77	0.22	0.837
vocational school	2.47	0.24	2.77	0.26	0.464
net personal income	1207.37	118.12	1419.67	174.51	0.272
personal debt	7166.67	2277.95	36166.67	11242.95	<0.001
Fagerström	1.53	0.41	2.77	0.55	0.081
age	39.30	1.89	41.40	2.33	0.477
AUDIT	4.77	0.86	5.30	1.17	0.755
BDI-II	5.94	0.95	12.83	1.88	0.003
SOGS	1.87	0.54	9.17	0.57	<0.001
KFG	3.70	1.05	28.47	1.54	<0.001
BIS-15	32.40	1.15	33.60	1.10	0.468
GBQ persistence	2.18	0.21	3.24	0.20	0.001
GBQ illusions	3.18	0.26	3.52	0.22	0.334
ratio female	0.30	-	0.23	-	1.000*
ratio unemployed	0.10	-	0.30	-	0.217*
ratio smokers	0.53	-	0.67	-	0.299*
ratio right-handed	0.93	-	0.93	-	1.000*

2 *chi-square test used; se: bootstrapped standard errors; years in school: years in primary and secondary school; vocational
3 school: vocational school and/or university; Fagerström: smoking severity; AUDIT: alcohol use severity; BDI II: depressive
4 symptoms, SOGS: South Oaks Gambling Screen to check for pathological gambling; KFG: Kurzfragebogen zum
5 Glücksspielverhalten, Short Questionnaire Pathological Gambling, German diagnostic tool and severity measure based on the
6 DSM-IV; BIS: Barratt Impulsiveness Scale for impulsivity; GBQ persistence and GBQ illusions: from the Gamblers' Beliefs
7 Questionnaire, collecting gambling related cognitive distortions (Supplements 1.1)

8 **Procedure and data acquisition**

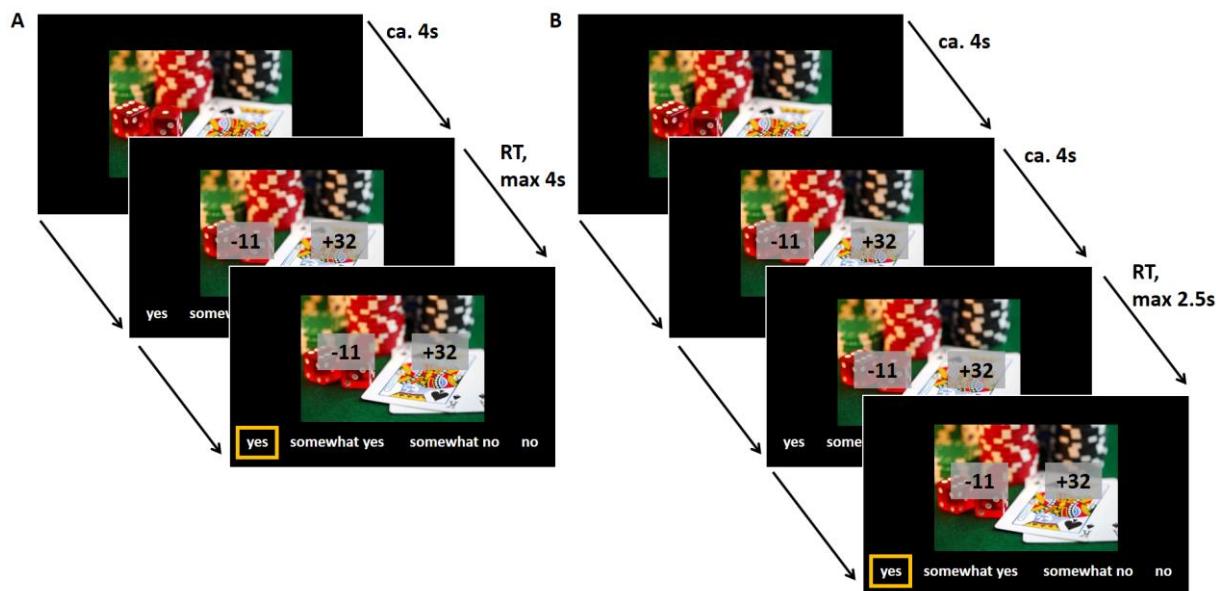
9 Subjects completed the task at the General Psychology behavioral lab of the Department of
10 Psychology of Humboldt-Universität zu Berlin. They were sitting upright in front of a computer
11 screen using their dominant hand's fingers to indicate choices on a keyboard. Subjects were
12 attached five passive facial electrodes, two above *musculus corrugator*, two above *musculus*
13 *zygomaticus*, and one on the upper forehead. We recorded electrodermal activity (EDA) from
14 the non-dominant hand. Subjects of the validation sample completed the task in an fMRI
15 environment (head-first supine in a 3-Tesla SIEMENS Trio MRI at the BCAN - Berlin Center

1 of Advanced Neuroimaging). Results of the fMRI and peripheral-physiological recordings will
2 be reported elsewhere.

3 **Affective mixed gambles task**

4 We were inspired by established tasks to measure general LA and LA under the influence of
5 affective cues^{27,35}. Subjects were each given 20€ for wagering. On every trial, subjects saw a
6 cue that they were instructed to memorize for a paid recognition task after the actual experiment.
7 After 4s (jittered), a mixed gamble, involving a possible gain and a possible loss, with
8 probability $P = 0.5$ each, was superimposed on the cue. Subjects had to choose how willing they
9 were to accept the gamble (**Fig. 1A**) on a 4-point Likert-scale to ensure task engagement³⁵.
10 Subjects of an independent validation sample completed the task in an fMRI scanner and had
11 an additional wait period to decide on the gamble (**Fig. 1B**). Gambles were created by randomly
12 drawing with replacement from a matrix with possible gambles consisting of 12 levels of gains
13 (14, 16, ..., 36) and 12 levels of losses (-7, -8, ..., -18). This matrix is apt to elicit LA in healthy
14 subjects^{23,35}. Outcomes of the gambles were never presented during the task but subjects were
15 informed that after the experiment five of their gamble decisions with ratings of “somewhat
16 yes” or “yes” would be randomly chosen and played for real money. As affective cues, four sets
17 of images were assembled: 1) 67 gambling images, showing a variety of gambling scenes, and
18 paraphernalia (*gambling cues*) 2) 31 images representing negative consequences of gambling
19 (*negative cues*) 3) 31 images representing positive effects of abstinence from gambling (*positive
20 cues*): 4) 24 neutral IAPS images (*neutral cues*). For further information on validation of the
21 cue categories and on access to the stimuli, please see **Supplements (1.2)**. We presented cues
22 of all categories in random order and each gambling cue once. For negative, positive, and neutral
23 cue categories, we randomly drew images from each pool until we had presented 45 images of
24 each category and each image at least once. Hence, we ran 202 trials in each subject. Gambles

1 were matched on average across cue categories according to expected value, variance, gamble
2 simplicity, as well as mean and variance of gain and loss, respectively. Gamble simplicity is
3 defined as Euclidean distance from diagonal of gamble matrix (ed)³⁵. HC showed on average
4 1.00 missed trial, GD 1.05 (no significant group difference, $F = 0.022$, $p = 0.882$). In fMRI
5 validation study, HC: 3.13, GD: 4.10, (no significant group difference, $F = 0.557$, $p = 0.457$).



1

2 **Figure 1: The affective mixed gambles task.** One trial is depicted. **A:** behavioral sample. **B:** fMRI validation sample.

3 Subjects first saw a fixation cross with varying inter-trial-interval (ITI, 2.5s to 5.5s, up to 8s in fMRI version; not
4 displayed here). Subjects then saw a cue with different affective content (67 of 67 gambling related, 45 of 31 with
5 positive consequences of abstinence, 45 of 31 with negative consequences of gambling, 45 of 24 neutral images)
6 for about 4s. Subjects were instructed to remember the cue for a paid recognition task after all trials. Then a
7 gamble involving a possible gain and a possible loss was superimposed on the cue. Subjects were instructed to
8 shift their attention at this point to the proposed gamble and evaluate it. In the current example, a coin toss
9 gamble was offered, where the subject could win 32 Euros or lose 11 Euros (50/50 probability). Position of gain
10 and loss was counterbalanced (left/right). Gain was indicated by a '+' sign and loss by a '-' sign. In the behavioral
11 sample, subjects had 4s to make a choice between four levels of acceptance (yes, somewhat yes, somewhat no,
12 no; here translated from German version that used "ja, eher ja, eher nein, nein"). In the fMRI sample, subjects
13 had to wait 4s (jittered) before the response options were shown. Direction of options (from left to right or vice
14 versa) was random. Directly after decision, the ITI started. If subjects failed to make a decision within 4s, ITI
15 started and trial was counted as missing. ca.: circa, RT: reaction time

1 Subjective cue ratings

2 After the task, subjects rated all cues using the Self-Assessment Manikin (SAM) assessment³⁶
3 (reporting on valence: happy vs. unhappy, arousal: energized vs. sleepy, dominance: in control
4 vs. being controlled) and additional visual analogue scales: 1) “How strongly does this image
5 trigger craving for gambling?” 2) “How appropriately does this image represent one or more
6 gambling games?” 3) “How appropriately does this image represent possible negative effects
7 of gambling?” 4) “How appropriately does this image represent possible positive effects of
8 gambling abstinence?”. All scales were operated via a slider from 0 to 100.
9 All cue ratings were z-standardized within subject. Ratings were analyzed one-by-one using
10 linear mixed-effects regression, using lmer from the lme4 package in R³⁷, where cue category
11 (and clinical group) denoted the fixed effects and subjects and cues denoted the sources of
12 random effects.

13 Estimating subject-specific parameters from behavioral choice data

14 We modeled each subject’s behavioral data by submitting dichotomized choices (somewhat no,
15 no: 0; somewhat yes, yes: 1) into logistic regressions. We dichotomized choices to increase the
16 precision when estimating behavioral parameters, in line with previous studies using the mixed
17 gambles task^{23,35}. Regressors for subject-wise logistic regressions were gain (mean-centered)
18 and absolute loss (mean-centered) from the mixed gamble, as well as gamble simplicity (*ed*),
19 loss-gain ratio and cue category of the stimulus in the background of the mixed gamble. We
20 defined different logistic regressions by using different trial-based definitions of gamble value
21 (*Q*) (see **Tab. S1**), submitted to the logistic function:

$$22 \quad P(\text{gamble acceptance}) = 1/(1 + \exp(-Q)) \quad [1]$$

23 Different trial-based definitions of gamble value (*Q*) reflected two things:

1 1) Different ways of modeling LA may be adequate to distinguish a GD from a HC
2 subject^{23,25,27,35} (**Tab. S1**).

3 2) Different ways of incorporating cue effects on decision-making (PIT effects) may be
4 adequate to distinguish a GD from a HC subject. For example, the model **lac** assumes
5 ...

6
$$Q(lac) = Q(la) + c^T * \beta_c$$
 [2]

7 ...where ...

8
$$Q(la) = \beta_0 + x_{gain} * \beta_{gain} + x_{loss} * \beta_{loss}$$
 [3]

9 where β_0 is the intercept, x_{gain} the objective gain value of the gamble, β_{gain} the
10 regression weight for x_{gain} (same holds for x_{loss} and β_{loss} , respectively), and c the
11 dummy-coded column vector indicating the category of the current cue and β_c a column
12 vector holding the regression weights for the categories. **Lac** thus is a weighted linear
13 combination of objective gain, objective loss with an additive influence of cue category.
14 That is, some influence of cue category on decision-making (PIT) is modeled. Note that
15 we have multiple PIT effects here, because β_c is a vector of length three, reflecting the
16 three affective categories (gambling, negative, positive) different from neutral. There
17 were also models that did not incorporate any influence of loss aversion or category
18 (intercept-only, **a**), or just of category (**ac**), or just of loss aversion (**la**) or of their
19 interaction (**laci**):

20
$$Q(laci) = Q(la) + c^T * \beta_c + x_{gain} * c^T * \beta_{gain,c} + x_{loss} * c^T * \beta_{loss,c}$$
 [4]

21 A model selection procedure could thus choose whether cue-induced effects on loss aversion
22 ("loss aversion PIT", i.e. the **laci** model) were important or not to distinguish between GD and
23 HC subjects. Logistic regressions were fit using maximum likelihood estimation within the glm

1 function in R³⁸. Resulting regression parameters were extracted per model (e.g. β_0 , β_{gain} , β_{loss}
2 for model **la**) and subject. We appended the loss aversion parameter (λ) to the estimated
3 coefficients by computing for each subject and pair of β_{gain} , β_{loss} :

4

$$\lambda = -\frac{\beta_{loss}}{\beta_{gain}} \quad [5]$$

5 Models with names incorporating a “c” (e.g. **lac** or **laci**) are those that assume some influence
6 of the cues (i.e. PIT effects). Models **laCh**, **laChci** are from²⁷. Note that per model each subject
7 thus had a characteristic *parameter vector* (the estimated regression weights, plus, in the
8 expanded case, the loss aversion coefficients) and all subjects’ parameter vectors belonging to
9 a certain model constituted the model’s *parameter set*. There were 13 different ways (i.e.
10 models) to extract the behavioral parameters per subject plus 8 expansions by computing the
11 loss aversion parameters after model estimation (**Tab. S1**), i.e. 21 parameter sets. In a separate
12 analysis, the models were estimated with adjustment for cue repetition (using one additional
13 two-level factor in each single-subject model) and by randomly selecting 45 gambling cues out
14 of 67, to equalize the number of trials per cue category.

15 **Classification**

16 Our machine learning approach is based on regularized regression and cross-validation as used
17 in other machine learning studies in addiction and psychological research^{30,31,39}.

18 *Overall reasoning in building the classifier*

19 The main interest of our study was to assess whether cue-induced changes in decision-making
20 during an affective mixed gambles task can be used to distinguish GD from HC subjects. We
21 hypothesized that shifts in loss aversion that depend on what cues are shown in the background
22 (“loss aversion PIT”) should best distinguish between GD and HC subjects. This means, the

1 **laci** model's parameter set should have been the most effective in distinguishing between GD
2 and HC subjects. To test this hypothesis, we used a machine learning algorithm based on
3 regularized logistic regression that selected among various competing parameter sets (from the
4 21 different models, **la**, **lac**, **laci**, etc.) the set that best distinguished HC and GD subjects.
5 To assess the generalizability of the resultant classifier, we used cross-validation (CV)^{30,32,39,40}.
6 Generalizability estimates the predictive power, and hence replicability, of a classifier in new
7 samples²⁸. Note that machine learning algorithms are designed to generalize well to new
8 samples by inherently avoiding overfitting to the training data^{41(p9)}. We computed a p-value of
9 the algorithm denoting the probability that its classification performance was achieved under a
10 baseline model (predicting using only smoking severity as predictor variable).
11 Beyond cross-validation, which uses only one data set (splitting it repeatedly into training and
12 test data set), validation of a classifier on a completely independent sample is the gold-standard
13 in machine learning to assess the quality of an estimated model²⁸. Hence, we estimated the
14 generalization performance also via application of our classifier to a completely independent
15 sample of HC and GD subjects, who had performed a slightly adapted version of the task in an
16 fMRI scanner. A p-value was computed, as above, with random classification as the baseline
17 model. For detailed information on estimating the classifier, please see **Supplements (1.4 and**
18 **Fig. S1)**. For classical analyses of group comparisons regarding gamble acceptance rate and
19 loss aversion parameters, please see **Supplements (1.6)**. In a separate analysis, we ran the
20 classification with the model parameters adjusted for cue repetition and with equalized number
21 of trials per cue category.
22

1 **Ethics**

2 Subjects gave written informed consent. The study was conducted in accordance with the
3 Declaration of Helsinki and approved by the ethics committee of Charité – Universitätsmedizin
4 Berlin.

5

1 RESULTS

2 Cue ratings

3 Gambling cues were seen as more appropriately representing one or more gambling games than
4 any other cue category: gambling > neutral ($\beta = 1.589$, $p < 0.001$), gambling > negative ($\beta =$
5 1.197, $p < 0.001$), gambling > positive ($\beta = 1.472$, $p < 0.001$). They elicited more craving in GD
6 subjects ($\beta = 0.71$, $p < 0.001$). Negative cues were seen as evoking more negative feelings in
7 both groups ($\beta = -0.775$, $p < 0.001$) and were seen as representing negative effects of gambling,
8 more than any other category (**Supplements 2.1**). Positive cues were indeed seen as more
9 representative for positive effects of gamble abstinence than any other category (**Fig. S2**).

10 Prediction of group using behavioral data

11 The classification algorithm yielded an AUC-ROC of 68.9% (under 0-hypothesis, i.e. with only
12 smoking as predictor: 55.1%, $p = 0.002$) (**Fig. 2B, S4**). The most often selected model was the
13 “acceptance rate per category” (**ac**) model (90.7% of the rounds). Combined with the models
14 **laec, lac** in 95.8% of the rounds a model was used that incorporated PIT, i.e. an effect of cue
15 category on decisions (**Fig. S5**). In only 9.3% of the rounds a model was selected that
16 incorporated loss aversion (i.e. gain and loss sensitivities). Validating the estimated classifier in
17 the independent sample, the classifier yielded an AUC-ROC of 65.0% (under random
18 classification: 55.3%, $p = 0.047$) (**Fig. 2C**). Adjusting for cue repetition and equalizing the
19 number of trials across cue categories lead to very similar AUR-ROC scores, the **ac** model was
20 still the most often chosen model (42%), otherwise **laec_LA** and **lac** were chosen very often
21 (**Supplements 2.4**).

22

1 **Inspection of classifier**

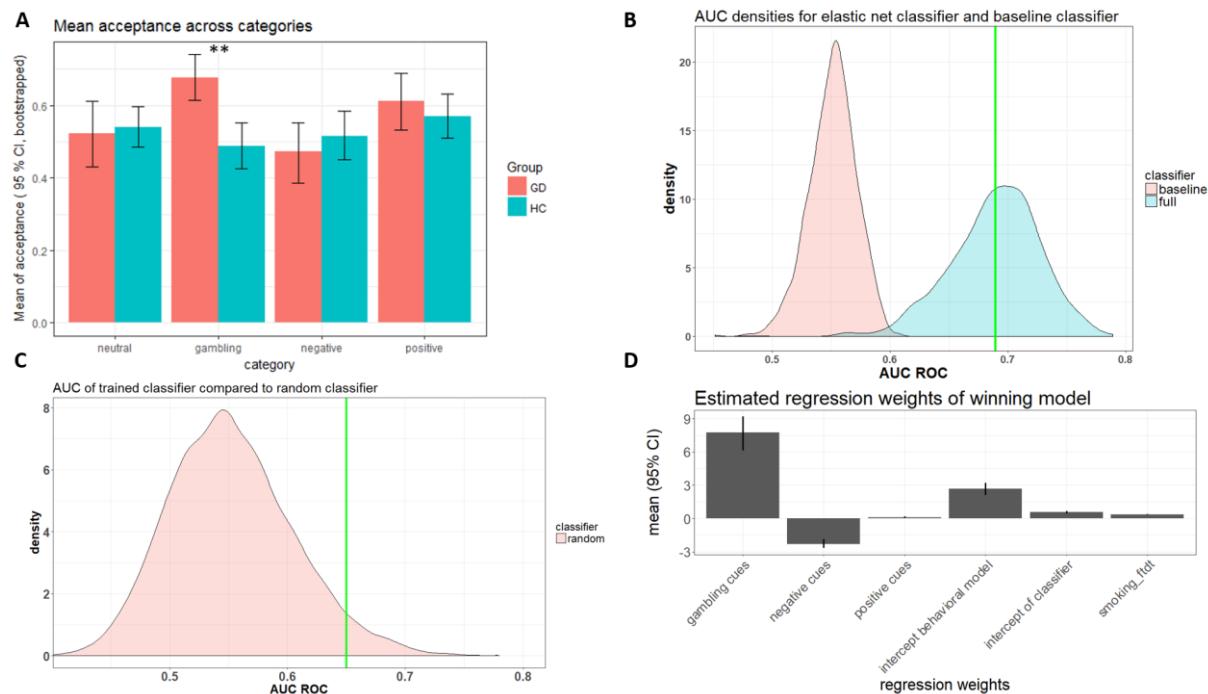
2 Inspecting the classifier's logistic regression weights, we saw that the classifier places most
3 importance on the shift in gambling acceptance during gambling cues (see **Fig. 2D**). Note
4 further that the classifier places also some importance on the sensitivity to the negative cues but
5 deselects the sensitivity to positive cues.

6 **Acceptance rate and loss aversion under cue conditions**

7 Overall acceptance rate between groups was not significantly different (HC: 53%, GD: 58%, p
8 = 0.169, Δ AIC = 0). Across all subjects there was a significant effect of cue category on
9 acceptance rate ($p < 0.001$, Δ AIC = 648), driven by the effect of positive and negative cues.

10 There was a significant interaction with group ($p = 0.002$, Δ AIC = 9). There, GD subjects
11 showed significantly higher acceptance rate during gambling cues than HC subjects (HC: 49%,
12 GD: 68%, $p_{WaldApprox} = 0.003$) (**Fig. 2A**), and there were no more cue effects in the HC group
13 and no other significant cue effect differences between HC and GD.

14 The fixed effects for gain sensitivity, absolute loss sensitivity, and LA over all trials for HC
15 (0.26, 0.42, and 1.64) were descriptively larger than for GD (0.19, 0.22, and 1.13). Testing the
16 interaction between group, gain, and loss (i.e. testing for difference of LA between groups) via
17 nested model comparison, yielded $p < 0.001$, Δ AIC = 93, with sensitivity to loss being
18 significantly smaller in GD subjects $p_{WaldApprox} = 0.011$. Loss aversion was significantly smaller
19 in GD than in HC ($p_{perm} < 0.001$). Loss aversion shifts due to category did not differ between
20 groups (**Supplements 2.2**).



1 **Figure 2: Behavioral results. A: Empirical mean acceptance rate with 95% CI's.** Means were computed over
2 subjects' means in the categories. Mean acceptance rate was significantly higher in GD subjects during gambling
3 stimuli ($p = 0.004$). CIs are bootstrapped from category means of subjects. **B: Assessment of AUC-ROC of**
4 **classifier:** Plot shows density estimates of the area under the receiver-operating curve when running the baseline
5 classifier (red) / the full classifier (turquoise) 1000 times to predict the class label of 60 subjects. The green line
6 shows the mean AUC performance of the estimated classifier across CV rounds. **C: Classifier validation on fMRI**
7 **sample.** Plot shows the estimated density of AUC-ROC under random classification. The green line shows the
8 performance of the combined 1000 classifiers on the fMRI data set. **D: Winning model for classification.**
9 Standardized regression parameters and their confidence intervals (percentiles across cross-validation rounds).
10 The algorithm mainly used the shift in acceptance rate in response to gambling cues in order to detect GD
11 subjects.

13

1 DISCUSSION

2 Gambling disorder (GD) is characterized by impaired decision making⁴ and craving in response
3 to gambling associated images⁹. However, it is unclear whether specific cue-induced changes
4 in loss aversion exist that distinguish GD from HC subjects. In order to better understand the
5 basic mechanisms of impaired decision-making in addiction, we thus used a machine-learning
6 algorithm to determine the relevance of cue-induced changes on loss aversion (“loss aversion
7 PIT”) in distinguishing GD from HC subjects. We hypothesized that cue-induced changes in
8 gamble acceptance and especially a strong shift of loss aversion by gambling and other affective
9 cues should distinguish GD from HC subjects (i.e. the model representing this effect should
10 have been chosen most often by the algorithm to distinguish GD from HC subjects). To our
11 knowledge, our study is the first to investigate the classificatory power of addiction-relevant
12 behavioral task parameters when distinguishing GD from HC subjects. Moreover, we are not
13 aware of any study specifically investigating the relevance of behavioral PIT effects in
14 characterizing addicted subjects using predictive modeling.

15 Our algorithm was significantly better in distinguishing GD from HC subjects than the control
16 model, which only used smoking severity as a predictor variable (cross-validated AUC-ROC of
17 68.9% vs. 55.1%, $p = 0.002$). In an independent validation sample the classifier was almost as
18 accurate (AUC-ROC of 65.0% vs. 55.3%, $p = 0.047$). When classifying subjects, in 93% of the
19 estimation rounds, our algorithm chose a model with some influence of the cue categories on
20 choices. The most frequently chosen model was the **ac** model (85%), i.e. a model only
21 accounting for mean shifts in acceptance rate depending on cue category. PIT-related variables
22 could therefore successfully discriminate between GD and HC subjects. We saw that especially
23 the tendency of subjects to gamble more during the presentation of gambling cues was indicative
24 of the subject belonging to the GD group. Contrary to what we expected, “loss aversion PIT”

1 was not useful in distinguishing between GD and HC subjects. In other words, the algorithm
2 never selected the **laci** model, which included the modulation of gain and loss sensitivity by cue
3 categories. We also did not see this in univariate group comparisons. “Loss aversion PIT” might
4 thus not play a role in distinguishing GD from HC subjects. However, small sample size, as in
5 the present study, may limit the possible complexity of a classifier^{42(p237)}. It cannot be ruled out
6 that larger and more diverse samples in future studies may produce classifiers allocating at least
7 minor importance to “loss aversion PIT”.

8 We observed that both GD and HC subjects perceived the cues as intended. GD subjects
9 reported higher craving for gambling in response to gambling stimuli as seen in other studies⁹.
10 Our results may thus be interpreted as cue reactivity leading to more automatic decision-making
11 in GD subjects. Note that this does not mean that GD subjects simply show higher vigor or more
12 disinhibition to press a button, as in some PIT designs⁴³. Instead, since the required motor
13 response for saying yes or no changed randomly, gamblers seemed to be indeed more inclined
14 to *decide* in favor of gambling when gambling cues were shown in the background. Especially
15 because cue influence on LA was not relevant for distinguishing GD from HC subjects, but
16 instead cue influence on general acceptance rate, this may be seen as GD subjects responding
17 more habitually and in a less goal-directed manner¹⁵ when gambling cues are visible.

18 In the current study, the classifier also put some importance on behavior under negative cues,
19 and, descriptively but not significantly, GD subjects tended to reduce gambling more in the face
20 of negative cues than HC subjects. Future studies should explore the possible power of negative
21 images to inhibit gambling in larger and more heterogeneous GD samples.

22 Our results show the gambling promoting effects of gambling cues in GD subjects. Alcohol and
23 tobacco advertisement promote alcohol and tobacco use⁴⁴ and advertisement bans and counter-
24 active labels on alcohol and tobacco goods help reduce consumption⁴⁵. Our results suggest that

1 much like advertisement for these substances, visual stimuli in gambling halls and on slot
2 machines may also increase PIT effects. Policy makers may consider our results as another
3 piece of evidence that gambling advertisement is not different from alcohol and tobacco
4 advertisement and that respective advertisement regulation perhaps should be extended.
5 We are not aware of any machine learning studies that have assessed the relevance of a
6 behavioral task measure in characterizing GD. Using this approach, we observed a cross-
7 validated classification performance of $AUC-ROC = 0.68$. We are aware of one machine
8 learning study that built and tested a classifier in 160 GD patients and matched controls based
9 on personality questionnaire self-report, reaching an $AUC-ROC = 0.77^{31}$. Studies in the field of
10 substance-based addiction, using behavioral markers and machine learning for classification,
11 report cross-validated $AUC-ROC$'s of 0.71 to 0.90 for cross-validated classification
12 performance^{30,39}. However, the mentioned studies used a whole array of different informative
13 variables while the current studied tried to carve out the relevance of one basic behavioral
14 mechanism while controlling for all covariates of no-interest.
15 Our results may be a first building block in creating more advanced and more multivariate
16 diagnostic tools for GD and other addictive disorders, especially when combined with other
17 high-performing discriminating features, such as personality profiles and scores from other
18 decision-making tasks. Further, our results invite more in-depth scrutiny of decision-making in
19 GD subjects during the presence of cues, e.g. on neural level³⁴. Moreover, the above machine
20 learning studies did not use an independent validation sample to corroborate their results. Our
21 independent validation yielded an $AUC-ROC$ of 0.65. This supports the validity of our findings
22 of increased PIT in GD.

1 STRENGTHS AND LIMITATIONS

2 When carving out the relevance of PIT, we did not match for depression score (BDI) because,
3 epidemiologically, GD is associated with high depression scores⁴⁶, meaning it could be seen as
4 a feature of GD. Further, the evidence on the association of PIT and depression is
5 inconclusive^{47,48}. However, PIT might play some role in depression and thus also in GD
6 subjects. Future studies should thus address the modulatory effect of depressive symptoms in
7 GD on PIT⁴⁹.

8 The current classifier was slightly less effective in the independent validation sample than
9 estimated using cross-validation (AUC = 65.4% vs. 68.0%). This might have occurred due to
10 the use of an fMRI version of the affective mixed gambles task in the validation sample. It
11 included an additional decision-making period, during which subjects could not yet answer.
12 This may have led to slight changes in responses with respect to the cue categories. However,
13 this could be seen as a strength since our classifier still performed better than chance. And
14 classifiers that are robust against slight changes in the experimental set-up allow arguably more
15 general conclusions than classifiers that only work with data from the same experimental set-
16 up. Future studies should also use validation samples⁴⁰.

17 Cues were repeated and trial numbers were not perfectly balanced across categories. We
18 adjusted for this in our analyses and results were stable. Here, model selection geared also
19 towards reduced loss aversion additionally characterizing GD, in line with^{23,24}.

1 CONCLUSION

2 Our results propose that GD subjects' acceptance of mixed gambles is cue-dependent and that
3 this cue-dependency even lends itself to distinguishing GD from HC subjects in out-of-sample
4 data. However, we did not observe that cues specifically shift loss aversion, neither on average,
5 nor in a way relevant to classification. We saw that especially gambling cues lead to increased
6 gambling GD subjects. Observing increased PIT in GD suggests that PIT related to an addictive
7 disorder might not depend on the direct effect of a substance of abuse, but on related learning
8 processes¹⁷ or on innate traits¹⁸. The here reported effects should be explored further in larger,
9 more diverse and longitudinal GD samples as they could inform diagnostics, therapy⁵⁰ and
10 public health policy.

1 ONLINE MATERIAL

2 You can find the data and R Code to reproduce the analyses here:

3 https://github.com/pransito/PIT_GD_bv_release

1 AUTHORS' CONTRIBUTION:

2 AG designed the experiment, collected the data, analyzed the data, and wrote the manuscript.

3 MA implemented the ratings and questionnaire electronically, analyzed the ratings data, and

4 revised the manuscript. KB collected data and revised the manuscript. CM reviewed the

5 machine-learning algorithm and revised the manuscript. AH revised the manuscript, and

6 oversaw manuscript drafting and data analyses. AW revised the manuscript and oversaw

7 implementation of experiment in the lab. NK revised the manuscript and, advised first author.

8 NRS designed and supervised study and experiment, and oversaw manuscript drafting and data

9 analyses.

1 REFERENCES

- 2 1. American Psychiatric Association, American Psychiatric Association, DSM-5 Task Force.
3 *Diagnostic and Statistical Manual of Mental Disorders: DSM-5*. Arlington, Va.: American
4 Psychiatric Association; 2013.
- 5 2. Ladouceur R, Boisvert J-M, Pépin M, Loranger M, Sylvain C. Social cost of pathological
6 gambling. *J Gambl Stud*. 1994;10(4):399-409. doi:10.1007/BF02104905
- 7 3. Romanczuk-Seiferth N, van den Brink W, Goudriaan AE. From Symptoms to
8 Neurobiology: Pathological Gambling in the Light of the New Classification in DSM-5.
9 *Neuropsychobiology*. 2014;70(2):95-102. doi:10.1159/000362839
- 10 4. Wiehler A, Peters J. Reward-based decision making in pathological gambling: The roles
11 of risk and delay. *Neurosci Res*. 2015;90:3-14. doi:10.1016/j.neures.2014.09.008
- 12 5. Beck A, Wüstenberg T, Genauck A, et al. Effect of Brain Structure, Brain Function, and
13 Brain Connectivity on Relapse in Alcohol-Dependent PatientsRelapse in Alcohol-
14 Dependent Patients. *Arch Gen Psychiatry*. 2012;69(8):842–852.
- 15 6. Schacht JP, Anton RF, Myrick H. Functional neuroimaging studies of alcohol cue
16 reactivity: a quantitative meta-analysis and systematic review. *Addict Biol*.
17 2013;18(1):121-133. doi:10.1111/j.1369-1600.2012.00464.x
- 18 7. Mucha RF, Geier A, Stuhlinger M, Mundle G. Appetitve effects of drug cues modelled by
19 pictures of the intake ritual: generality of cue-modulated startle examined with inpatient
20 alcoholics. *Psychopharmacology (Berl)*. 2000;151(4):428-432.
- 21 8. Wölfling K, Mörsen CP, Duven E, Albrecht U, Grüsser SM, Flor H. To gamble or not to
22 gamble: at risk for craving and relapse--learned motivated attention in pathological
23 gambling. *Biol Psychol*. 2011;87(2):275-281. doi:10.1016/j.biopsych.2011.03.010
- 24 9. Limbrick-Oldfield EH, Mick I, Cocks RE, et al. Neural substrates of cue reactivity and
25 craving in gambling disorder. *Transl Psychiatry*. 2017;7(1):e992.
26 doi:10.1038/tp.2016.256
- 27 10. Courtney KE, Schacht JP, Hutchison K, Roche DJO, Ray LA. NEURAL SUBSTRATES
28 OF CUE-REACTIVITY: ASSOCIATION WITH TREATMENT OUTCOMES AND
29 RELAPSE. *Addict Biol*. 2016;21(1):3-22. doi:10.1111/adb.12314
- 30 11. Cartoni E, Balleine B, Baldassarre G. Appetitive Pavlovian-instrumental Transfer: A
31 review. *Neurosci Biobehav Rev*. 2016;71:829-848. doi:10.1016/j.neubiorev.2016.09.020
- 32 12. Garbusow M, Schad DJ, Sebold M, et al. Pavlovian-to-instrumental transfer effects in the
33 nucleus accumbens relate to relapse in alcohol dependence. *Addict Biol*. 2016;21(3):719-
34 731. doi:10.1111/adb.12243

1 13. De Tommaso M, Mastropasqua T, Turatto M. Working for beverages without being
2 thirsty: Human Pavlovian-instrumental transfer despite outcome devaluation. *Learn
3 Motiv.* 2018;63:37-48. doi:10.1016/j.lmot.2018.01.001

4 14. Garofalo S, Robbins TW. Triggering Avoidance: Dissociable Influences of Aversive
5 Pavlovian Conditioned Stimuli on Human Instrumental Behavior. *Front Behav Neurosci.*
6 2017;11. doi:10.3389/fnbeh.2017.00063

7 15. Sebold M, Schad DJ, Nebe S, et al. Don't Think, Just Feel the Music: Individuals with
8 Strong Pavlovian-to-Instrumental Transfer Effects Rely Less on Model-based
9 Reinforcement Learning. *J Cogn Neurosci.* 2016;28(7):985-995.
10 doi:10.1162/jocn_a_00945

11 16. Saddoris MP, Stamatakis A, Carelli RM. Neural correlates of Pavlovian-to-instrumental
12 transfer in the nucleus accumbens shell are selectively potentiated following cocaine self-
13 administration. *Eur J Neurosci.* 2011;33(12):2274–2287. doi:10.1111/j.1460-
14 9568.2011.07683.x

15 17. Heinz A, Schlagenhauf F, Beck A, Wackerhagen C. Dimensional psychiatry: mental
16 disorders as dysfunctions of basic learning mechanisms. *J Neural Transm Vienna Austria*
17 1996. May 2016. doi:10.1007/s00702-016-1561-2

18 18. Barker JM, Torregrossa MM, Taylor JR. Low prefrontal PSA-NCAM confers risk for
19 alcoholism-related behavior. *Nat Neurosci.* 2012;15(10):1356-1358. doi:10.1038/nn.3194

20 19. Dixon MR, Jacobs EA, Sanders S. Contextual Control of Delay Discounting by
21 Pathological Gamblers. *J Appl Behav Anal.* 2006;39(4):413-422.
22 doi:10.1901/jaba.2006.173-05

23 20. Miedl SF, Büchel C, Peters J. Cue-Induced Craving Increases Impulsivity via Changes in
24 Striatal Value Signals in Problem Gamblers. *J Neurosci.* 2014;34(13):4750-4755.
25 doi:10.1523/JNEUROSCI.5020-13.2014

26 21. van Holst RJ, van Holstein M, van den Brink W, Veltman DJ, Goudriaan AE. Response
27 Inhibition during Cue Reactivity in Problem Gamblers: An fMRI Study. *PLoS ONE.*
28 2012;7(3):e30909. doi:10.1371/journal.pone.0030909

29 22. Kahneman D, Tversky A. Prospect theory: An analysis of decision under risk. *Econom J
30 Econom Soc.* 1979:263–291.

31 23. Genauck A, Quester S, Wüstenberg T, Mörsen C, Heinz A, Romanczuk-Seiferth N.
32 Reduced loss aversion in pathological gambling and alcohol dependence is associated with
33 differential alterations in amygdala and prefrontal functioning. *Sci Rep.* 2017;7(1):16306.
34 doi:10.1038/s41598-017-16433-y

35 24. Lorains FK, Dowling NA, Enticott PG, Bradshaw JL, Trueblood JS, Stout JC. Strategic
36 and non-strategic problem gamblers differ on decision-making under risk and ambiguity.
37 *Addiction.* 2014;109(7):1128–1137.

1 25. Gelskov SV, Madsen KH, Ramsøy TZ, Siebner HR. Aberrant neural signatures of
2 decision-making: Pathological gamblers display cortico-striatal hypersensitivity to
3 extreme gambles. *NeuroImage*. 2016;128:342-352.
4 doi:10.1016/j.neuroimage.2016.01.002

5 26. Schulreich S, Gerhardt H, Heekeren HR. Incidental fear cues increase monetary loss
6 aversion. *Emot Wash DC*. 2016;16(3):402-412. doi:10.1037/emo0000124

7 27. Charpentier CJ, Martino BD, Sim AL, Sharot T, Roiser JP. Emotion-induced loss aversion
8 and striatal-amygdala coupling in low-anxious individuals. *Soc Cogn Affect Neurosci*.
9 2016;11(4):569-579. doi:10.1093/scan/nsv139

10 28. Yarkoni T, Westfall J. Choosing Prediction Over Explanation in Psychology: Lessons
11 From Machine Learning. *Perspect Psychol Sci*. 2017;12(6):1100-1122.
12 doi:10.1177/1745691617693393

13 29. Bzdok D, Meyer-Lindenberg A. Machine Learning for Precision Psychiatry: Opportunities
14 and Challenges. *Biol Psychiatry Cogn Neurosci Neuroimaging*. 2018;3(3):223-230.
15 doi:10.1016/j.bpsc.2017.11.007

16 30. Ahn W-Y, Vassileva J. Machine-learning identifies substance-specific behavioral markers
17 for opiate and stimulant dependence. *Drug Alcohol Depend*. 2016;161:247-257.
18 doi:10.1016/j.drugalcdep.2016.02.008

19 31. Cerasa A, Lofaro D, Cavedini P, et al. Personality biomarkers of pathological gambling:
20 A machine learning study. *J Neurosci Methods*. 2018;294:7-14.
21 doi:10.1016/j.jneumeth.2017.10.023

22 32. Seo S, Beck A, Matthis C, et al. Risk profiles for heavy drinking in adolescence:
23 differential effects of gender. *Addict Biol*. May 2018. doi:10.1111/adb.12636

24 33. Petry J, Baulig T. Kurzfragebogen zum Glücksspielverhalten. *Psychother Glücksspielsucht Psychol Verl Union*. 1996;97.

25 34. Genauck A, Matthis C, Andrejevic M, et al. Neural correlates of cue-induced changes in
26 decision-making distinguish subjects with gambling disorder from healthy controls.
27 *bioRxiv*. December 2018:498725. doi:10.1101/498725

28 35. Tom SM, Fox CR, Trepel C, Poldrack RA. The Neural Basis of Loss Aversion in Decision-
29 Making Under Risk. *Science*. 2007;315(5811):515-518. doi:10.1126/science.1134239

30 36. Bradley MM, Lang PJ. Measuring emotion: the self-assessment manikin and the semantic
31 differential. *J Behav Ther Exp Psychiatry*. 1994;25(1):49-59.

32 37. Bates D, Maechler M, Bolker B, Walker S. lme4: Linear mixed-effects models using Eigen
33 and S4. *R Package Version 11-8*. 2015. <http://keziamanlove.com/wp-content/uploads/2015/04/StatsInRTutorial.pdf>. Accessed July 28, 2015.

34 38. R Core Team. *R: A Language and Environment for Statistical Computing*. Vienna,
35 Austria: R Foundation for Statistical Computing; 2015. <https://www.R-project.org/>.

1 39. Whelan R, Watts R, Orr CA, et al. Neuropsychosocial profiles of current and future
2 adolescent alcohol misusers. *Nature*. 2014;512(7513):185-189. doi:10.1038/nature13402

3 40. Guggenmos M, Scheel M, Sekutowicz M, et al. Decoding diagnosis and lifetime
4 consumption in alcohol dependence from grey-matter pattern information. *Acta Psychiatr
5 Scand*. 2018;137(3):252-262. doi:10.1111/acps.12848

6 41. Bishop CM. *Pattern Recognition and Machine Learning*. Springer; 2006.

7 42. Hastie T, Tibshirani R, Friedman J. *The Elements of Statistical Learning: Data Mining,
8 Inference, and Prediction, Second Edition*. Springer Science & Business Media; 2009.

9 43. Talmi D, Seymour B, Dayan P, Dolan RJ. Human Pavlovian–Instrumental Transfer. *J
10 Neurosci*. 2008;28(2):360-368. doi:10.1523/JNEUROSCI.4028-07.2008

11 44. DiFranza JR, Wellman RJ, Sargent JD, Weitzman M, Hipple BJ, Winickoff JP. Tobacco
12 Promotion and the Initiation of Tobacco Use: Assessing the Evidence for Causality.
13 *Pediatrics*. 2006;117(6):e1237-e1248. doi:10.1542/peds.2005-1817

14 45. Hammond D. Health warning messages on tobacco products: a review. *Tob Control*.
15 2011;20(5):327-337. doi:10.1136/tc.2010.037630

16 46. Kessler RC, Hwang I, LaBrie R, et al. DSM-IV pathological gambling in the National
17 Comorbidity Survey Replication. *Psychol Med*. 2008;38(9):1351-1360.
18 doi:10.1017/S0033291708002900

19 47. Huys QJM, Gölzer M, Friedel E, et al. The specificity of Pavlovian regulation is associated
20 with recovery from depression. *Psychol Med*. 2016;46(5):1027-1035.
21 doi:10.1017/S0033291715002597

22 48. Nord CL, Lawson RP, Huys QJM, Pilling S, Roiser JP. Depression is associated with
23 enhanced aversive Pavlovian control over instrumental behaviour. *Sci Rep*.
24 2018;8(1):12582. doi:10.1038/s41598-018-30828-5

25 49. Fauth-Bühler M, Zois E, Vollstädt-Klein S, Lemenager T, Beutel M, Mann K. Insula and
26 striatum activity in effort-related monetary reward processing in gambling disorder: The
27 role of depressive symptomatology. *NeuroImage Clin*. 2014;6:243-251.
28 doi:10.1016/j.nic.2014.09.008

29 50. Bouchard S, Loranger C, Giroux I, Jacques C, Robillard G. Using Virtual Reality to
30 Provide a Naturalistic Setting for the Treatment of Pathological Gambling. 2014.
31 doi:10.5772/59240

32