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ABSTRACT

While an increased impact of cues on decision-making has been associated with substance
dependence, it is yet unclear whether this is also a phenotype of non-substance related addictive
disorders, such as gambling disorder (GD). To better understand the basic mechanisms of
impaired decision-making in addiction, we investigated whether cue-induced changes in
decision-making could distinguish GD from healthy control (HC) subjects. We expected that
cue-induced changes in gamble acceptance and specifically in loss aversion would distinguish

GD from HC subjects.

30 GD subjects and 30 matched HC subjects completed a mixed gambles task where gambling
and other emotional cues were shown in the background. We used machine learning to carve
out the importance of cue-dependency of decision-making and of loss aversion for

distinguishing GD from HC subjects.

Cross-validated classification yielded an area under the receiver operating curve (AUC-ROC)
of 68.9% (p=0.002). Applying the classifier to an independent sample yielded an AUC-ROC of
65.0% (p=0.047). As expected, the classifier used cue-induced changes in gamble acceptance
to distinguish GD from HC. Especially increased gambling during the presentation of gambling
cues characterized GD subjects. However, cue-induced changes in loss aversion were irrelevant
for distinguishing GD from HC subjects. To our knowledge, this is the first study to investigate
the classificatory power of addiction-relevant behavioral task parameters when distinguishing
GD from HC subjects. The results indicate that cue-induced changes in decision-making are a

characteristic feature of addictive disorders, independent of a substance of abuse.
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INTRODUCTION

Gambling disorder (GD) is characterized by continued gambling for money despite severe
negative consequences®. Burdens of GD include financial ruin, loss of social structures, as well
as development of psychiatric comorbidities®. In line with this clinical picture of impaired
decision making, GD subjects have also displayed impaired decision making in laboratory

experiments®#,

Besides impaired decision making, cue reactivity has been a crucial concept in understanding
addictive disorders including GD>®. Through Pavlovian conditioning, any neutral stimulus can
become a conditioned stimulus (i.e. a cue) if it has been paired with the effects of the addictive
behavior’. In addictive disorders, including GD, cues may induce attentional bias, arousal, and
craving for the addictive behavior in periods of abstinence®®. Treatment of addictive disorders
may focus on identifying and coping with individual cues that induce craving for addictive
behavior®. If we understood better how cues exert control over instrumental behavior and
decision-making, we would be able to improve treatment tools and even public health policy
for GD and perhaps other addictive disorders. In the present study we were thus interested in
broadening our understanding of the basic mechanisms of impaired decision making in

addictions, especially with respect to cue-induced effects on value-based decision making.

The effect of cues exhibiting a facilitating or inhibiting influence on instrumental behavior and
decision making is known as Pavlovian-to-Instrumental Transfer (PIT)!. PIT experiments
usually have three phases: a first phase where subjects learn an instrumental behavior to gain
rewards or avoid punishments, a second phase where subjects learn about the value of arbitrary
stimuli through classical conditioning, and a third phase (the PIT phase), where subjects are
supposed to perform the instrumental task, while stimuli from the second phase (changing from

trial to trial) are presented in the background. The PIT phase measures the effect of value-
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charged cues on instrumental behavior despite the fact that the background cues have no
objective relation to the instrumental task in the foreground. For instance, certain cues could
increase the likelihood of gamble acceptance or the sensitivity to the gain offered in the gamble.
In the current study we focus only on the PIT phase. PIT has recently drawn attention in the
study of substance use disorders (SUDs)2. This is because PIT effects can persist even when
the outcome of the instrumental behavior has been devalued®®, and because increased PIT has
been associated with a marker for impulsivity'* and with decreased model-based behavior'®,
Lastly, PIT effects tend to be stronger in subjects with a substance-use-disorder than in healthy

subjects'?8, and increased PIT has been associated with the probability of relapse!?.

Increased PIT effects are based on Pavlovian and instrumental conditioning and on their
interaction. This highlights how addictive disorders rely on learning mechanisms'’. GD is an
addictive disorder independent of any influence of a neurotropic substance of abuse. The study
of PIT in GD may thus further shed light on whether increased PIT in addictive disorders is a

result of learning, independent of any substance of abuse, or even a congenital vulnerability*®.

We are aware of three studies that have observed in GD subjects increased cue-induced effects
on decision-making and instrumental behavior, comparable to increased PIT effects. In two
single-group studies, GD subjects have shown higher delay discounting (preferring immediate
rewards over rewards in the future) in response to a casino environment vs. a laboratory
environment'® and to high-craving vs. low-craving gambling cues®. In a third study, GD
subjects have been more influenced than HC subjects by gambling stimuli in a response
inhibition task?%. To our knowledge, however, there are no studies yet that have investigated the

effect of cue reactivity on loss aversion in GD as a possibly relevant PIT effect in GD.

Loss aversion (LA) is, besides delay discounting, another facet of value-based decision-making.

It is the phenomenon wherein people assign a greater value to potential losses than to an equal

Alexander Genauck 6
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amount of possible gains??. For example, healthy subjects tend to agree to a coin toss gamble
(win/loss probability of 0.5) only if the amount of possible gain is at least twice the amount of
possible loss. In GD subjects, LA seems to be reduced?®?*, but there are also studies that have

found no difference in LA between GD and HC subjects®.

High LA protects against disadvantageous gambling decisions. However, it has been observed
that LA can be transiently modulated by experimentally controlled cues®® and that this LA
modulation varies considerably across subjects?’. In GD subjects, loss aversion might be
particularly cue-dependent leading to reckless gambling especially in casino contexts or at slot
machines. In the current study, we thus hypothesized that GD subjects should show stronger
PIT effects than HC subjects in their gambling decisions and especially stronger drops in LA

when e.g. gambling-related cues are present (i.e. higher “loss aversion PIT”).

So far, we have mentioned studies that have used group-mean difference analyses to investigate
decision making or cue reactivity in addictive disorders. This approach is faithful to the desire
to explain human behavior rather than predict it?®. However, this may lead to overly complicated
(i.e. overfitted) models, which do not correctly predict human behavior in new samples?. Thus,
in the current study we wanted to avoid overfitting and isolate a model with not only explanatory
but also predictive value?®, We did so by disentangling the specific benefits of “loss aversion
PIT” parameters when distinguishing GD from HC subjects. Hence, we used machine learning
methods in addition to classical mean-difference statistics to test our hypotheses. This approach
has drawn increasing attention in the field of clinical psychology and psychiatry®®. In particular,
we built and tested an algorithm that decides between various loss aversion models and different
models with and without PIT to classify subjects into HC vs. GD groups. Importantly, to avoid
overfitting, we used out-of-sample classification®®-32. Our results allowed us to disentangle

which PIT effects are relevant to distinguish GD from HC subjects.
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When selecting cues for this study, we aimed at expanding on existing studies investigating cue-
effects in GD*?., Besides gambling-related cues, we thus selected additional cues from
different motivational and emotional categories®? related to GD. These categories comprised
images used in gambling advertisements as well as for advertisement of GD therapy and

prevention (positive and negative cues).

We expected that our classifier would select models that incorporate the modulation of loss
aversion by gambling and other emotional cues (“loss aversion PIT”) to distinguish between

HC and GD subjects.
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MATERIALS AND METHODS

Samples

GD subjects were diagnosed using the German short questionnaire for gambling behavior
questionnaire (KFG)*®. The KFG diagnoses subjects according to DSM-IV criteria for
pathological gambling. Scoring 16 points and over means “likely suffering from pathological
gambling”. However, here we use the DSM-5 term “gambling disorder” interchangeably,
because the DSM-IV and DSM-5 criteria largely overlap. The GD group were active gamblers
and not in therapy. The HC group consisted of subjects that had no to little experience with
gambling, reflecting the healthy general population as in other addiction studies®. For further
information on the sample, see Tab. 1 and Supplements (1.1). GD and HC were matched on
relevant variables (education, net personal income, age, alcohol use), except for smoking
severity. We thus included smoking severity in the classifier and tested it against classifying
based only on smoking severity. For final validation of the fitted classifier we used a sample
from another study where subjects performed the affective mixed gambles task in a functional

magnetic resonance imaging (FMRI) scanner (see Tab. S2)%.

Alexander Genauck 9


https://doi.org/10.1101/564781
http://creativecommons.org/licenses/by/4.0/

1

~N oo o B~ O wWwDN

10

11

12

13

14

15

bioRxiv preprint doi: https://doi.org/10.1101/564781; this version posted October 24, 2019. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

Table 1: Sample characteristics, means and p-values calculated by two-sided permutation test.

variable HC group se GD group se p perm test
years in school 10.87 0.22 10.77 0.22 0.837
vocational school 2.47 0.24 2.77 0.26 0.464
net personal income 1207.37 118.12 1419.67 174.51 0.272
personal debt 7166.67 2277.95 36166.67 11242.95 <0.001
Fagerstrom 1.53 0.41 2.77 0.55 0.081
age 39.30 1.89 41.40 2.33 0.477
AUDIT 4.77 0.86 5.30 1.17 0.755
BDI-II 5.94 0.95 12.83 1.88 0.003
SOGS 1.87 0.54 9.17 0.57 <0.001
KFG 3.70 1.05 28.47 1.54 <0.001
BIS-15 32.40 1.15 33.60 1.10 0.468
GBQ persistence 2.18 0.21 3.24 0.20 0.001
GBQillusions 3.18 0.26 3.52 0.22 0.334
ratio female 0.30 - 0.23 - 1.000*
ratio unemployed 0.10 - 0.30 - 0.217*
ratio smokers 0.53 - 0.67 - 0.299*
ratio right-handed 0.93 - 0.93 - 1.000*

*chi-square test used; se: bootstrapped standard errors; years in school: years in primary and secondary school; vocational
school: vocational school and/or university; Fagerstrom: smoking severity. AUDIT: alcohol use severity; BDI II: depressive
symptoms, SOGS: South Oaks Gambling Screen to check for pathological gambling; KFG: Kurzfragebogen zum
Glucksspielverhalten, Short Questionnaire Pathological Gambling, German diagnostic tool and severity measure based on the
DSM-IV; BIS: Barratt Impulsiveness Scale for impulsivity; GBQ persistence and GBQ illusions: from the Gamblers’ Beliefs

Questionnaire, collecting gambling related cognitive distortions (Supplements 1.1)

Procedure and data acquisition

Subjects completed the task at the General Psychology behavioral lab of the Department of
Psychology of Humboldt-Universitat zu Berlin. They were sitting upright in front of a computer
screen using their dominant hand’s fingers to indicate choices on a keyboard. Subjects were
attached five passive facial electrodes, two above musculus corrugator, two above musculus
zygomaticus, and one on the upper forehead. We recorded electrodermal activity (EDA) from
the non-dominant hand. Subjects of the validation sample completed the task in an fMRI

environment (head-first supine in a 3-Tesla SIEMENS Trio MRI at the BCAN - Berlin Center
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of Advanced Neuroimaging). Results of the fMRI and peripheral-physiological recordings will

be reported elsewhere.

Affective mixed gambles task

We were inspired by established tasks to measure general LA and LA under the influence of
affective cues?’*®. Subjects were each given 20€ for wagering. On every trial, subjects saw a
cue that they were instructed to memorize for a paid recognition task after the actual experiment.
After 4s (jittered), a mixed gamble, involving a possible gain and a possible loss, with
probability P = 0.5 each, was superimposed on the cue. Subjects had to choose how willing they
were to accept the gamble (Fig. 1A) on a 4-point Likert-scale to ensure task engagement®,
Subjects of an independent validation sample completed the task in an fMRI scanner and had
an additional wait period to decide on the gamble (Fig. 1B). Gambles were created by randomly
drawing with replacement from a matrix with possible gambles consisting of 12 levels of gains
(14,16, ..., 36) and 12 levels of losses (-7, -8, ..., -18). This matrix is apt to elicit LA in healthy
subjects?>%®, Outcomes of the gambles were never presented during the task but subjects were
informed that after the experiment five of their gamble decisions with ratings of “somewhat
yes” or “yes” would be randomly chosen and played for real money. As affective cues, four sets
of images were assembled: 1) 67 gambling images, showing a variety of gambling scenes, and
paraphernalia (gambling cues) 2) 31 images representing negative consequences of gambling
(negative cues) 3) 31 images representing positive effects of abstinence from gambling (positive
cues): 4) 24 neutral IAPS images (neutral cues). For further information on validation of the
cue categories and on access to the stimuli, please see Supplements (1.2). We presented cues
of all categories in random order and each gambling cue once. For negative, positive, and neutral
cue categories, we randomly drew images from each pool until we had presented 45 images of

each category and each image at least once. Hence, we ran 202 trials in each subject. Gambles
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were matched on average across cue categories according to expected value, variance, gamble
simplicity, as well as mean and variance of gain and loss, respectively. Gamble simplicity is
defined as Euclidean distance from diagonal of gamble matrix (ed)*®. HC showed on average
1.00 missed trial, GD 1.05 (no significant group difference, F = 0.022, p = 0.882). In fMRI

validation study, HC: 3.13, GD: 4.10, (no significant group difference, F = 0.557, p = 0.457).
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Ol

RT,
max 2.5s

somewhatyes somewhatno no

somewhat yes somewhatno no

Figure 1: The affective mixed gambles task. One trial is depicted. A: behavioral sample. B: fMRI validation sample.
Subjects first saw a fixation cross with varying inter-trial-interval (ITl, 2.5s to 5.5s, up to 8s in fMRI version; not
displayed here). Subjects then saw a cue with different affective content (67 of 67 gambling related, 45 of 31 with
positive consequences of abstinence, 45 of 31 with negative consequences of gambling, 45 of 24 neutral images)
for about 4s. Subjects were instructed to remember the cue for a paid recognition task after all trials. Then a
gamble involving a possible gain and a possible loss was superimposed on the cue. Subjects were instructed to
shift their attention at this point to the proposed gamble and evaluate it. In the current example, a coin toss
gamble was offered, where the subject could win 32 Euros or lose 11 Euros (50/50 probability). Position of gain
and loss was counterbalanced (left/right). Gain was indicated by a '+' sign and loss by a '-' sign. In the behavioral
sample, subjects had 4s to make a choice between four levels of acceptance (yes, somewhat yes, somewhat no,
no; here translated from German version that used “ja, eher ja, eher nein, nein”). In the fMRI sample, subjects
had to wait 4s (jittered) before the response options were shown. Direction of options (from left to right or vice
versa) was random. Directly after decision, the ITI started. If subjects failed to make a decision within 4s, ITI

started and trial was counted as missing. ca.: circa, RT: reaction time

Alexander Genauck 13


https://doi.org/10.1101/564781
http://creativecommons.org/licenses/by/4.0/

10

11

12

13

14

15

16

17

18

19

20

21

22

23

bioRxiv preprint doi: https://doi.org/10.1101/564781; this version posted October 24, 2019. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

Subjective cue ratings

After the task, subjects rated all cues using the Self-Assessment Manikin (SAM) assessment3®
(reporting on valence: happy vs. unhappy, arousal: energized vs. sleepy, dominance: in control
vs. being controlled) and additional visual analogue scales: 1) “How strongly does this image
trigger craving for gambling?” 2) “How appropriately does this image represent one or more
gambling games?” 3) “How appropriately does this image represent possible negative effects
of gambling?” 4) “How appropriately does this image represent possible positive effects of

gambling abstinence?”. All scales were operated via a slider from 0 to 100.

All cue ratings were z-standardized within subject. Ratings were analyzed one-by-one using
linear mixed-effects regression, using Imer from the Ime4 package in R/, where cue category
(and clinical group) denoted the fixed effects and subjects and cues denoted the sources of

random effects.

Estimating subject-specific parameters from behavioral choice data

We modeled each subject’s behavioral data by submitting dichotomized choices (somewhat no,
no: 0; somewhat yes, yes: 1) into logistic regressions. We dichotomized choices to increase the
precision when estimating behavioral parameters, in line with previous studies using the mixed
gambles task?>%®. Regressors for subject-wise logistic regressions were gain (mean-centered)
and absolute loss (mean-centered) from the mixed gamble, as well as gamble simplicity (ed),
loss-gain ratio and cue category of the stimulus in the background of the mixed gamble. We
defined different logistic regressions by using different trial-based definitions of gamble value

(Q) (see Tab. S1), submitted to the logistic function:
P(gamble acceptance) = 1/(1 + exp(—Q)) [1]

Different trial-based definitions of gamble value (Q) reflected two things:
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1) Different ways of modeling LA may be adequate to distinguish a GD from a HC
subject?32527:35 (Tab. S1).
2) Different ways of incorporating cue effects on decision-making (PIT effects) may be

adequate to distinguish a GD from a HC subject. For example, the model lac assumes

Q(lac) = Q(la) + ¢ = fc [2]

...where ...

Q(la) = Bo + Xgain * .Bgain + X10ss * Bioss [3]

where g is the intercept, x,q, the objective gain value of the gamble, g the

gain

regression weight for x,., (same holds for x,, and g, , respectively), and c the
dummy-coded column vector indicating the category of the current cue and _a column
vector holding the regression weights for the categories. Lac thus is a weighted linear
combination of objective gain, objective loss with an additive influence of cue category.
That is, some influence of cue category on decision-making (PIT) is modeled. Note that
we have multiple PIT effects here, because S is a vector of length three, reflecting the
three affective categories (gambling, negative, positive) different from neutral. There
were also models that did not incorporate any influence of loss aversion or category
(intercept-only, a), or just of category (ac), or just of loss aversion (la) or of their

interaction (laci):
Q(laCi) = Q(la) + CT * .Bc + xgain * CT * ﬁgain,c + Xioss * CT * .Bloss,c [4]
A model selection procedure could thus choose whether cue-induced effects on loss aversion

(“loss aversion PIT”, i.e. the laci model) were important or not to distinguish between GD and

HC subjects. Logistic regressions were fit using maximum likelihood estimation within the glm
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function in R®. Resulting regression parameters were extracted per model (e.g. S, Bgain: Bloss
for model la) and subject. We appended the loss aversion parameter (1) to the estimated

coefficients by computing for each subject and pair of By4in, Bioss:

1= — Bloss [5]

Bgain
Models with names incorporating a “c” (e.g. lac or laci) are those that assume some influence
of the cues (i.e. PIT effects). Models laCh, laChci are from?’. Note that per model each subject
thus had a characteristic parameter vector (the estimated regression weights, plus, in the
expanded case, the loss aversion coefficients) and all subjects’ parameter vectors belonging to
a certain model constituted the model’s parameter set. There were 13 different ways (i.e.
models) to extract the behavioral parameters per subject plus 8 expansions by computing the
loss aversion parameters after model estimation (Tab. S1), i.e. 21 parameter sets. In a separate
analysis, the models were estimated with adjustment for cue repetition (using one additional
two-level factor in each single-subject model) and by randomly selecting 45 gambling cues out

of 67, to equalize the number of trials per cue category.

Classification

Our machine learning approach is based on regularized regression and cross-validation as used

in other machine learning studies in addiction and psychological research30:313°,

Overall reasoning in building the classifier

The main interest of our study was to assess whether cue-induced changes in decision-making
during an affective mixed gambles task can be used to distinguish GD from HC subjects. We
hypothesized that shifts in loss aversion that depend on what cues are shown in the background

(“loss aversion PIT”) should best distinguish between GD and HC subjects. This means, the
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laci model’s parameter set should have been the most effective in distinguishing between GD
and HC subjects. To test this hypothesis, we used a machine learning algorithm based on
regularized logistic regression that selected among various competing parameter sets (from the

21 different models, la, lac, laci, etc.) the set that best distinguished HC and GD subjects.

To assess the generalizability of the resultant classifier, we used cross-validation (CV)30323940,
Generalizability estimates the predictive power, and hence replicability, of a classifier in new
samples?®. Note that machine learning algorithms are designed to generalize well to new
samples by inherently avoiding overfitting to the training data*'®®. We computed a p-value of
the algorithm denoting the probability that its classification performance was achieved under a

baseline model (predicting using only smoking severity as predictor variable).

Beyond cross-validation, which uses only one data set (splitting it repeatedly into training and
test data set), validation of a classifier on a completely independent sample is the gold-standard
in machine learning to assess the quality of an estimated model?®. Hence, we estimated the
generalization performance also via application of our classifier to a completely independent
sample of HC and GD subjects, who had performed a slightly adapted version of the task in an
fMRI scanner. A p-value was computed, as above, with random classification as the baseline
model. For detailed information on estimating the classifier, please see Supplements (1.4 and
Fig. S1). For classical analyses of group comparisons regarding gamble acceptance rate and
loss aversion parameters, please see Supplements (1.6). In a separate analysis, we ran the
classification with the model parameters adjusted for cue repetition and with equalized number

of trials per cue category.
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Ethics

Subjects gave written informed consent. The study was conducted in accordance with the
Declaration of Helsinki and approved by the ethics committee of Charité — Universitdtsmedizin

Berlin.
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RESULTS

Cue ratings

Gambling cues were seen as more appropriately representing one or more gambling games than
any other cue category: gambling > neutral (B = 1.589, p < 0.001), gambling > negative (p =
1.197, p <0.001), gambling > positive (B = 1.472, p <0.001). They elicited more craving in GD
subjects (B = 0.71, p < 0.001). Negative cues were seen as evoking more negative feelings in
both groups (B =-0.775, p <0.001) and were seen as representing negative effects of gambling,
more than any other category (Supplements 2.1). Positive cues were indeed seen as more

representative for positive effects of gamble abstinence than any other category (Fig. S2).

Prediction of group using behavioral data

The classification algorithm yielded an AUC-ROC of 68.9% (under 0-hypothesis, i.e. with only
smoking as predictor: 55.1%, p = 0.002) (Fig. 2B, S4). The most often selected model was the
“acceptance rate per category” (ac) model (90.7% of the rounds). Combined with the models
laec, lac in 95.8% of the rounds a model was used that incorporated PIT, i.e. an effect of cue
category on decisions (Fig. S5). In only 9.3% of the rounds a model was selected that
incorporated loss aversion (i.e. gain and loss sensitivities). Validating the estimated classifier in
the independent sample, the classifier yielded an AUC-ROC of 65.0% (under random
classification: 55.3%, p = 0.047) (Fig. 2C). Adjusting for cue repetition and equalizing the
number of trials across cue categories lead to very similar AUR-ROC scores, the ac model was
still the most often chosen model (42%), otherwise laec_L A and lac were chosen very often

(Supplements 2.4).
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Inspection of classifier

Inspecting the classifier’s logistic regression weights, we saw that the classifier places most
importance on the shift in gambling acceptance during gambling cues (see Fig. 2D). Note
further that the classifier places also some importance on the sensitivity to the negative cues but

deselects the sensitivity to positive cues.

Acceptance rate and loss aversion under cue conditions

Overall acceptance rate between groups was not significantly different (HC: 53%, GD: 58%, p
= 0.169, AAIC = 0). Across all subjects there was a significant effect of cue category on
acceptance rate (p < 0.001, AAIC = 648), driven by the effect of positive and negative cues.
There was a significant interaction with group (p = 0.002, AAIC = 9). There, GD subjects
showed significantly higher acceptance rate during gambling cues than HC subjects (HC: 49%,
GD: 68%, pwaldapprox = 0.003) (Fig. 2A), and there were no more cue effects in the HC group

and no other significant cue effect differences between HC and GD.

The fixed effects for gain sensitivity, absolute loss sensitivity, and LA over all trials for HC
(0.26, 0.42, and 1.64) were descriptively larger than for GD (0.19, 0.22, and 1.13). Testing the
interaction between group, gain, and loss (i.e. testing for difference of LA between groups) via
nested model comparison, yielded p < 0.001, AAIC = 93, with sensitivity to loss being
significantly smaller in GD subjects pwaidapprox = 0.011. Loss aversion was significantly smaller
in GD than in HC (pperm < 0.001). Loss aversion shifts due to category did not differ between

groups (Supplements 2.2).
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Figure 2: Behavioral results. A: Empirical mean acceptance rate with 95% Cl’s. Means were computed over
subjects’ means in the categories. Mean acceptance rate was significantly higher in GD subjects during gambling
stimuli (p = 0.004). Cls are bootstrapped from category means of subjects. B: Assessment of AUC-ROC of
classifier: Plot shows density estimates of the area under the receiver-operating curve when running the baseline
classifier (red) / the full classifier (turquoise) 1000 times to predict the class label of 60 subjects. The green line
shows the mean AUC performance of the estimated classifier across CV rounds. C: Classifier validation on fMRI
sample. Plot shows the estimated density of AUC-ROC under random classification. The green line shows the
performance of the combined 1000 classifiers on the fMRI data set. D: Winning model for classification.
Standardized regression parameters and their confidence intervals (percentiles across cross-validation rounds).
The algorithm mainly used the shift in acceptance rate in response to gambling cues in order to detect GD

subjects.
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DISCUSSION

Gambling disorder (GD) is characterized by impaired decision making* and craving in response
to gambling associated images®. However, it is unclear whether specific cue-induced changes
in loss aversion exist that distinguish GD from HC subjects. In order to better understand the
basic mechanisms of impaired decision-making in addiction, we thus used a machine-learning
algorithm to determine the relevance of cue-induced changes on loss aversion (“loss aversion
PIT”) in distinguishing GD from HC subjects. We hypothesized that cue-induced changes in
gamble acceptance and especially a strong shift of loss aversion by gambling and other affective
cues should distinguish GD from HC subjects (i.e. the model representing this effect should
have been chosen most often by the algorithm to distinguish GD from HC subjects). To our
knowledge, our study is the first to investigate the classificatory power of addiction-relevant
behavioral task parameters when distinguishing GD from HC subjects. Moreover, we are not
aware of any study specifically investigating the relevance of behavioral PIT effects in

characterizing addicted subjects using predictive modeling.

Our algorithm was significantly better in distinguishing GD from HC subjects than the control
model, which only used smoking severity as a predictor variable (cross-validated AUC-ROC of
68.9% vs. 55.1%, p = 0.002). In an independent validation sample the classifier was almost as
accurate (AUC-ROC of 65.0% vs. 55.3%, p = 0.047). When classifying subjects, in 93% of the
estimation rounds, our algorithm chose a model with some influence of the cue categories on
choices. The most frequently chosen model was the ac model (85%), i.e. a model only
accounting for mean shifts in acceptance rate depending on cue category. PIT-related variables
could therefore successfully discriminate between GD and HC subjects. We saw that especially
the tendency of subjects to gamble more during the presentation of gambling cues was indicative

of the subject belonging to the GD group. Contrary to what we expected, “loss aversion PIT”
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was not useful in distinguishing between GD and HC subjects. In other words, the algorithm
never selected the laci model, which included the modulation of gain and loss sensitivity by cue
categories. We also did not see this in univariate group comparisons. “Loss aversion PIT” might
thus not play a role in distinguishing GD from HC subjects. However, small sample size, as in
the present study, may limit the possible complexity of a classifier*?®23)). It cannot be ruled out
that larger and more diverse samples in future studies may produce classifiers allocating at least

minor importance to “loss aversion PIT”.

We observed that both GD and HC subjects perceived the cues as intended. GD subjects
reported higher craving for gambling in response to gambling stimuli as seen in other studies®.
Our results may thus be interpreted as cue reactivity leading to more automatic decision-making
in GD subjects. Note that this does not mean that GD subjects simply show higher vigor or more
disinhibition to press a button, as in some PIT designs®. Instead, since the required motor
response for saying yes or no changed randomly, gamblers seemed to be indeed more inclined
to decide in favor of gambling when gambling cues were shown in the background. Especially
because cue influence on LA was not relevant for distinguishing GD from HC subjects, but
instead cue influence on general acceptance rate, this may be seen as GD subjects responding

more habitually and in a less goal-directed manner'® when gambling cues are visible.

In the current study, the classifier also put some importance on behavior under negative cues,
and, descriptively but not significantly, GD subjects tended to reduce gambling more in the face
of negative cues than HC subjects. Future studies should explore the possible power of negative

images to inhibit gambling in larger and more heterogeneous GD samples.

Our results show the gambling promoting effects of gambling cues in GD subjects. Alcohol and
tobacco advertisement promote alcohol and tobacco use** and advertisement bans and counter-

active labels on alcohol and tobacco goods help reduce consumption®®. Our results suggest that
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much like advertisement for these substances, visual stimuli in gambling halls and on slot
machines may also increase PIT effects. Policy makers may consider our results as another
piece of evidence that gambling advertisement is not different from alcohol and tobacco

advertisement and that respective advertisement regulation perhaps should be extended.

We are not aware of any machine learning studies that have assessed the relevance of a
behavioral task measure in characterizing GD. Using this approach, we observed a cross-
validated classification performance of AUC-ROC = 0.68. We are aware of one machine
learning study that built and tested a classifier in 160 GD patients and matched controls based
on personality questionnaire self-report, reaching an AUC-ROC = 0.773!. Studies in the field of
substance-based addiction, using behavioral markers and machine learning for classification,
report cross-validated AUC-ROC’s of 0.71 to 0.90 for cross-validated classification
performance3®2°. However, the mentioned studies used a whole array of different informative
variables while the current studied tried to carve out the relevance of one basic behavioral

mechanism while controlling for all covariates of no-interest.

Our results may be a first building block in creating more advanced and more multivariate
diagnostic tools for GD and other addictive disorders, especially when combined with other
high-performing discriminating features, such as personality profiles and scores from other
decision-making tasks. Further, our results invite more in-depth scrutiny of decision-making in
GD subjects during the presence of cues, e.g. on neural level®*. Moreover, the above machine
learning studies did not use an independent validation sample to corroborate their results. Our
independent validation yielded an AUC-ROC of 0.65. This supports the validity of our findings

of increased PIT in GD.
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STRENGTHS AND LIMITATIONS

When carving out the relevance of PIT, we did not match for depression score (BDI) because,
epidemiologically, GD is associated with high depression scores*®, meaning it could be seen as
a feature of GD. Further, the evidence on the association of PIT and depression is
inconclusive*’*8, However, PIT might play some role in depression and thus also in GD
subjects. Future studies should thus address the modulatory effect of depressive symptoms in

GD on PIT*®,

The current classifier was slightly less effective in the independent validation sample than
estimated using cross-validation (AUC = 65.4% vs. 68.0%). This might have occurred due to
the use of an fMRI version of the affective mixed gambles task in the validation sample. It
included an additional decision-making period, during which subjects could not yet answer.
This may have led to slight changes in responses with respect to the cue categories. However,
this could be seen as a strength since our classifier still performed better than chance. And
classifiers that are robust against slight changes in the experimental set-up allow arguably more
general conclusions than classifiers that only work with data from the same experimental set-

up. Future studies should also use validation samples®.

Cues were repeated and trial numbers were not perfectly balanced across categories. We
adjusted for this in our analyses and results were stable. Here, model selection geared also

towards reduced loss aversion additionally characterizing GD, in line with?%24,

Alexander Genauck 25


https://doi.org/10.1101/564781
http://creativecommons.org/licenses/by/4.0/

10

bioRxiv preprint doi: https://doi.org/10.1101/564781; this version posted October 24, 2019. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

CONCLUSION

Our results propose that GD subjects’ acceptance of mixed gambles is cue-dependent and that
this cue-dependency even lends itself to distinguishing GD from HC subjects in out-of-sample
data. However, we did not observe that cues specifically shift loss aversion, neither on average,
nor in a way relevant to classification. We saw that especially gambling cues lead to increased
gambling GD subjects. Observing increased PIT in GD suggests that PIT related to an addictive
disorder might not depend on the direct effect of a substance of abuse, but on related learning
processes’’ or on innate traits*®. The here reported effects should be explored further in larger,
more diverse and longitudinal GD samples as they could inform diagnostics, therapy®® and

public health policy.
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1 ONLINE MATERIAL

2  You can find the data and R Code to reproduce the analyses here:

3 https://github.com/pransito/PIT GD bv release
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