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Estimation of neural network model

parameters from local field potentials (LFPs)

Jan-Eirik W. Skaar*!, Alexander J. Stasik!?, Espen Hagen?,
Torbjorn V. Ness!, and Gaute T. Einevoll®>?'

Faculty of Science and Technology, Norwegian University of Life
Sciences, Aas, Norway

2Department of Physics, University of Oslo, Norway

. Abstract

> Most modeling in systems neuroscience has been descriptive where neural
3 representations, that is, ‘receptive fields’, have been found by statistically
4 correlating neural activity to sensory input. In the traditional physics approach
s to modelling, hypotheses are represented by mechanistic models based on the
s underlying building blocks of the system, and candidate models are validated
7 by comparing with experiments. Until now validation of mechanistic cortical
s network models has been based on comparison with neuronal spikes, found

o from the high-frequency part of extracellular electrical potentials. In this
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10 computational study we investigated to what extent the low-frequency part of
1 the signal, the local field potential (LFP), can be used to infer properties of the
12 neuronal network. In particular, we asked the question whether the LFP can
13 be used to accurately estimate synaptic connection weights in the underlying
12 network. We considered the thoroughly analysed Brunel network comprising
15 an excitatory and an inhibitory population of recurrently connected integrate-
16 and-fire (LIF) neurons. This model exhibits a high diversity of spiking
17 network dynamics depending on the values of only three synaptic weight
18 parameters. The LF'P generated by the network was computed using a hybrid
10 scheme where spikes computed from the point-neuron network were replayed
20 on biophysically detailed multicompartmental neurons. We assessed how
21 accurately the three model parameters could be estimated from power spectra
22 of stationary ‘background’ LFP signals by application of convolutional neural
23 nets (CNNs). All network parameters could be very accurately estimated,

24 suggesting that LFPs indeed can be used for network model validation.

» Significance statement

26 Most of what we have learned about brain networks in vivo have come from the
27 measurement of spikes (action potentials) recorded by extracellular electrodes.
»s The low-frequency part of these signals, the local field potential (LFP),
20 contains unique information about how dendrites in neuronal populations
30 integrate synaptic inputs, but has so far played a lesser role. To investigate
s1 whether the LFP can be used to validate network models, we computed LFP

22 signals for a recurrent network model (the Brunel network) for which the
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;3 ground-truth parameters are known. By application of convolutional neural
;2 nets (CNNs) we found that the synaptic weights indeed could be accurately
35 estimated from ‘background’ LFP signals, suggesting a future key role for

s LFP in development of network models.

» 1 Introduction

33 The traditional physics approach to modeling typically involves four steps:
30 (i) A hypothesis is formulated in terms of a candidate mechanistic mathemat-
w0 ical model, that is, a model based on interactions between building blocks of
s the system, (ii) predictions of experimentally measurable quantities are calcu-
s> lated from the model, (iii) the predictions are compared with experiments, and
a3 (iv) if necessary, the hypothesis is adjusted, that is, a new candidate model
as is proposed. In neuroscience, a descriptive or statistical approach has been
ss  more common, in particular in systems neuroscience aiming to understand
s neural network behaviour in vivo. Here statistical techniques are used to
oz look, for example, for correlations between measured neural activity and sen-
ss  sory stimuli presented to the animal to estimate receptive fields (Dayan and
s Abbott} 2001, Ch. 2). While descriptive models can inform us about neural
so representations in various brain areas, they do not as mechanistic models
s1 inform about the biological mechanisms underlying these representations.

52 At present, mechanistic network models mimicking specific neural circuits
s3 are scarce. For small networks like the circuit in the crustacean stomatogas-
s« tric nervous system comprising a few tens of neurons, some excellent models

ss have been developed (Marder and Goaillard, 2006]). For cortical networks
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ss important pioneering efforts to construct comprehensive networks with tens
s7 of thousands of neurons mimicking cortical columns in mammalian sensory
ss cortices, have been pursued, e.g., [Traub et al.| (2005); Potjans and Dies+
so mann| (2014); Markram et al.| (2015)); Arkhipov et al. (2018). These models
so were found to predict spiking activity in rough qualitative accordance with
s1 some observed population phenomena (spiking statistics, spike oscillations,
2 ...). Fitting of cortical network models to trial-averaged multi-unit activity
63 (MUA) recorded in somatosensory cortex has been pursued for population
e« firing-rate models (Blomquist et al., 2009). However, we do not yet have
es validated, general-purpose network models that accurately predict experimen-
e tally recorded neural activity both in the various ‘background’ states and as
67 a response to sensory stimulation.

68 The cortical models above have been compared with experimental spiking
eo activity, that is, the high-frequency part of extracellular electrical potentials.
70 The low-frequency part, the local field potential (LFP), in contrast largely
7 reflects how synaptic inputs are processed by dendrites in the populations
72 of neurons surrounding the electrode contacts (Buzséaki et al., [2012; |[Einevoll
73 et al. 2013; [Pesaran et al., [2018). Several methods for analysis of cortical
72 LFP signals have been developed, see Einevoll et al.| (2013); |[Pesaran et al.
s (2018) for reviews. However, the LFP signal has only rarely been used to
76 yvalidate specific mechanistic models for cortical networks, but see Mazzoni
77 et al. (2008} 2011)).

78 In the present work we explore to what extent the LFP signal generated by
79 a neuronal network model can be used to extract the connectivity parameters

so of the same network. As a model network we consider the so-called Brunel


https://doi.org/10.1101/564765
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/564765; this version posted March 1, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

g1 network comprising an excitatory and an inhibitory population of recurrently
sz connected integrate-and-fire (LIF) neurons (Brunel, 2000). Point neurons do
83 not generate extracellular potentials, however, and to compute corresponding
s LFPs we use a hybrid LFP scheme (Hagen et al., |2016)): First the spiking
ss activity is computed by use of the simulator NEST (Kunkel et al 2017), and
ss next the computed spikes are replayed as presynaptic spikes onto biophysically
g7 detailed multicompartmental neuron models to compute the LFP using LFPy
ss (Lindén et al| 2014; Hagen et al., [2018). The LFP generated by a network
g0 depends crucially on the level of temporal correlations of synaptic input onto
o the neurons (Lindén et al., 2011} FLeski et al. 2013; Mazzoni et al., 2015;
o1 Hagen et al| 2016)). Thus the LFPs generated by the Brunel network will,
o2 as the spiking activity, vary strongly between the different network states as
03 obtained for different choices of network model parameters.

04 We assess how well network model parameters can be estimated from the
os stationary ‘background’ LFP signal. For this, we first train convolutional
o neural nets (CNNs) (Rawat and Wang, [2017)) with LFP training data for
oz which the underlying model parameters are known, and then test the accuracy
os of parameter estimation on a separate set of LFP test data. As it turns out,
o a relatively simple CNN is sufficient for the task and is indeed found to
100 accurately estimate the network model parameters. Thus for the present
101 example, the LFP signal contains sufficient information to accurately recover
102 the underlying model parameters. This suggest that not only spiking data,

103 but also LFPs, can be used to validate candidate network models.
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w 2  Methods

ws 2.1 Point-neuron network model

16 The Brunel network (Brunel, |2000) consists of two local populations, one
107 with excitatory and one with inhibitory neurons. These populations of size
ws  Ng and Ny, respectively, consist of leaky integrate-and-fire (LIF) neurons in-
100 terconnected with current-based delta-shaped synapses. Inputs from external
1o connections are modeled as uncorrelated excitatory synaptic input currents
11 with activation governed by a fixed-rate Poisson process with rate vey.

112 The sub-threshold dynamics of the point-neurons obey a first-order dif-
us ferential equation, cf. Equation (1) and 2] in Table [I] When the membrane
ua  potential of a neuron reaches its firing threshold #, the neuron emits a spike,
us the synapses onto all its postsynaptic neurons are activated after a time delay
16 tq, and the neuron’s membrane potential is clamped to a potential Vet for a
uzr refractory period of t.¢. Each neuron receives a fixed number of incoming
us connections (fixed in-degree) from a fraction e of all other local neurons in the
110 network in addition to the external input. The synaptic connection strengths
120 are constant for each population, for excitatory neurons and external input
121 it is given by Jg = J and for inhibitory neurons J; = —gJ. The amount of
122 input the local neurons receive from the external population is determined by
123 the parameter 1 = Ve /Vinr, Where vy, = 6/(J7y,) is the minimum constant
124 rate input that by itself will drive a neuron to its firing threshold, and 7, is
125 the membrane time constant. A complete description of the point-network

126 model is given in Table [I} with specific parameter values given in Table 2]
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Table 1: Description of point-neuron network following the guidelines of[Nordlie et al.| (2009)).

A Model summary

Populations | One excitatory, one inhibitory

Network Fixed indegree, random convergent connections
model
Neuron Local populations: leaky integrate-and-fire, external: Poisson generator
model
Synapse Current-based delta-shaped, fixed strength for each population
model
B Popubwioms
Names Excitatory: E
Inhibitory: T
C Network model
Connectivity| Fixed number of incoming connections Cg = eNg from excitatory
population and C1 = eN} from inhibitory population
Input Poissonian synaptic input with fixed rate vey; for each neuron

Neuron model
Type Leaky integrate-and-fire neuron
Description | Dynamics of membrane potential V;(¢) (neuron ¢ € [1, N]):

|

- Spike emission at times ¢} with V;(t{) > 6
- Subthreshold dynamics:
avi(t) _

T = ~Vi(t) + R L;i(t) ifV1: t ¢ (thth+ter] (1)

where 7, is the membrane time constant, V' the membrane
potential, R, the membrane resistance, and I the synaptic
inputs.

- Reset + refractoriness: V;(t) = Vieset if VI t € (£, 8 + tye]

Exact integration with temporal resolution dt
Uniform distribution of membrane potentials V; € [Vieset,8) at t =0

D Synapse model

Type Delta-shaped postsynaptic current
Description

Ri(t) =7 ¥ Jij 3 6(t — 1t —ta) (2)
J l

where the first sum is over all the presynaptic neurons j, including
the external ones, and the second sum is over the spike times of those
neurons. t] is the Ith spike of presynaptic neuron j, and t4 is the
synaptic delay. § denotes the Dirac delta function.

T = Jv jGEaEcxt
e _gJa ]EI
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Table 2: Point-neuron network parameters.

Point-neuron parameters ‘

Symbol | Description Value

n relative amount of external input [0.8,4.0]
g relative strength of inhibitory synapses (3.5, 8.0]
J absolute excitatory strength [0.05,0.4] mV
Tm membrane time constant 20 ms
Ch membrane capacitance 250 pF
tq synaptic delay period 1.5 ms
trof absolute refractory period 2 ms

0 firing threshold 20 mV
Vieset reset membrane potential 10 mV
Ng number of excitatory neurons 10000
Ni number of inhibitory neurons 2500

€ connection probability 0.1

Cg number of incoming excitatory synapses 1000

Cr number of incoming inhibitory synapses 250
Training and validation data

Tsim simulation duration 3s
Tiransient| Start-up transient duration 150 ms
dt time resolution 0.1 ms
Model exploration data

Teim simulation duration 30.5 s
Tiransient| Start-up transient duration 500 ms
dt time resolution 0.1 ms

2z 2.2 Forward-model predictions of LFPs

126 In order to compute local field potentials (LFPs) from the point-neuron
120 network, we utilized the recently introduced ‘hybrid LFP scheme’ (Hagen et al.|
10 [2016) (github.com/INM-6/hybridLFPy), illustrated in Figure[]] The scheme
131 allows for the decoupling of the simulation of spiking dynamics (here computed
132 using point neurons) and predictions of extracellularly recorded LFPs. The
133 latter part relies on reconstructed cell morphologies and multicompartment
13 modeling in conjunction with an electrostatic forward model. As the complete

135 description of the scheme (including the biophysics-based forward model) and
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136 its application with a cortical microcircuit model (Potjans and Diesmann),
137 2014)) is given in Hagen et al.| (2016), we here only briefly summarize the
133 main steps taken to predict LFPs from the two-population network described
130 above: To represent each network population we chose one layer-4 pyramidal
120 neuron and one interneuron reconstruction for the excitatory and inhibitory
1 populations, respectively (Figure [IB). The corresponding morphology files
w2 L4AE 53rpyl cut.hoc and L4l 0i26rbcl.hoc were also used in [Hagen et al.
13 (2016) (cf. their Table 7), but the apical dendrite of the pyramidal neuron was
s cut to make it shorter to better fit our smaller column. The somatic positions
us of all Ng 4+ Np neurons were drawn randomly with homogeneous probability
us within a cylinder with radius 7 and height Az (Figure [I]B). Each excitatory
147 cell morphology was oriented with their apical dendrite pointing upwards in
s the direction of the positive z—axis and rotated with a random angle around
1o that axis, while inhibitory neurons were rotated randomly around all three
150 axes. The membranes of each morphology were fully passive, with the same
151 membrane time constant 7, as in the point-neuron network.

152 In the present hybrid scheme the activity in the LFP-generating popula-
153 tions of multicompartment neurons are obtained by mapping spikes generated
1sa by individual LIF neurons in the point-neuron network to synapse activation
155 times at specific positions on their equivalent multicompartment neurons. To
156 obtain the synaptic connectivity onto the different positions on the morpholo-
157 gies of the multicompartment neurons, we defined an ‘upper’ and ‘lower’ layer
158 (homologous to e.g., layer 2/3 and 4) on the depth intervals [0, z1) and [z1, 22),
1se see Figure [IB. The layer-specificity of connections (Hagen et all 2016 p.

10 4470-4473) was equal between layers for excitatory synapses onto excitatory

10
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Figure 1: Overview of hybrid scheme for computing local field potentials (LFPs). Top row:
First, the dynamics of a network is simulated using a point-neuron simulation (A), and the resulting
spike times are saved to file. Orange and blue color indicate excitatory and inhibitory neurons. In a
separate simulation, the obtained spike times are replayed as synaptic input currents onto reconstructed
neuron morphologies representing postsynaptic target neurons (B, only one excitatory in orange and one
inhibitory neuron in blue are shown). Based on the resulting transmembrane currents of the postsynaptic
target neurons in this second simulation, the LFP is calculated (C). Bottom row: Prediction of LFPs
from population firing histograms. Instead of running the full hybrid scheme, the LFP can be predicted
by the convolution of the population firing histograms (lower figure in A) with kernels representing the
average contribution to the LFP by a single spike in each population (lower figure in B). These kernels
are computed using the hybrid scheme, see |Hagen et al.| (2016} Figure 13).

161 cells, otherwise all other synapses were made in the lower layer. Within
12 each layer, the probabilities for synaptic connections were proportional to
163 the surface area of each compartment normalized by the total compartment
16a  surface area within the layer. Only inhibitory synapses were allowed on the
165 soma compartments. The per-neuron synaptic in-degrees were preserved
16 from the network. As the delta-shaped postsynaptic currents (PSCs) of
167 the point-neuron network cannot be accurately represented in the multicom-
168 partment neuron modeling scheme due to numerical discretization of time,
160 alpha-function shaped PSCs (Equation @ in Table [3)) with synaptic time
1o constant 7y were used instead. The amplitude of the PSCs was chosen so that

11 the total transferred charge is equal for both synapse types (thus preserving

11
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12 the total synaptic input current between the network and multicompartment
173 neurons). A full description of the multi-compartment neuron model is given
17 in Tables [B] and [
175 The presently used choice of current-based synapses and morphologies with
176 passive membranes in the multicompartment neuron models introduces a linear
177 relationship between any presynaptic spike event and contributions to the LFP
178 resulting from evoked currents in all postsynaptic multicompartment neurons.
17e Thus the LFP contribution ¢%(r,t) at position r from a single presynaptic
180 point-neuron neuron ¢ in population X can, in general, be calculated by
161 the convolution of its spike train v4 () = >, 6(t — t¥) with a unique kernel
w2 Hiy(r,7) as ¢y (r,t) = >, (Vi * Hyy )(r, ). This kernel encompasses effects
183 of the postsynaptic neuron morphologies and biophysics, the electrostatic
18 forward model, the synaptic connectivity pattern, conduction delay and PSCs.
The resulting LF'P due to spikes in a presynaptic population X is then

given by (Hagen et al.| 2016)

ox(r,t) = ) (Vi * Hiy)(r,t) . (9)

Y ieX

1e5 The evaluation of this sum is computationally expensive for large population
186 sizes. For our purposes where the calculation of of LFP signals lasting seconds
157 must be repeated tens of thousands of times to have training and test data
183 for the CNNs, this scheme is not feasible.

Following Hagen et al.| (2016|, Figure 13) we instead use a firing-rate ap-

proximation and compute the LEP by a convolution of population firing rates

vx(t) = Y x Vi (t) and averaged kernels H x (v, 7) = 1/Nx >y Do Hiy (v, 7),

12
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Table 3: Description of multi-compartment neuron populations.

A Model summary
Populations | Local excitatory and inhibitory populations
Neuron Multi-compartment neurons with passive cable formalism
model
Synapse Current-based a-function shaped, fixed strength for each population
model
Topology Cylinder of 1 mm? cross-section with somas of both populations positioned in
single layer of thickness 0.1 mm.
B Neuron models
Type Reconstructed multi-compartment morphologies with passive electrical properties
Description | For each neuron, the membrane potential V,, of compartment n connected to
m other compartments k, with a surface area a,, length [,, and diameter d,, is
given by:
m
Zgak’n(vk‘ - Vn) = Cmn% + Imn (3)
k=1
Cmn, = Cm0n (4)
Gakn = 7(dp + di) [ (4ra(ln + li)) (5)
Imn :gLn(Vn_EL)+ZI]n ; (6)

where for compartment n, Cl,, is the membrahe capacitance, g.x, the axial
conductance from compartment k, I, the membrane current, gr,, the membrane
leak conductance, Er, the extracellular reversal potential, and I;, the synaptic
current from presynaptic neuron j.

‘

Synapse model

Synapse a-function shaped postsynaptic current
type
Description 1—t/7,
I(t) = H(t — t,)JCte s (7)
H(t) =0 for t <0, otherwise 1. (8)

Here t, is the activation time of the synapse, J the synaptic strength, and 7y is the
synaptic time constant. C is a constant chosen so that JC f()oo tel =t/ dt = CpJ,
assuring that the same total charge is transferred as in the §-function synapse in
the point-neuron network.

Type Cylinder with radius 1/y/7 mm and height 0.5 mm containing two vertical
sections
Description - Cylinder extends from z=-500 pym to z =0

- All somas are randomly placed with a uniform distribution within the
boundaries r < 564 pm and —450 pym < z < —350 pm

- Two regions separated by the plane z = —300 um

- Synapses on inhibitory neurons are placed in lower region

- Inhibitory synapses on excitatory neurons are placed in lower region

- Excitatory synapses on excitatory neurons are split equally between

regions

13
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Table 4: Multi-compartment neuron parameters.

Multi-compartment neuron parameters

Symbol | Description Value

T membrane time constant 20 ms

Cm membrane capacitance 1.0 uF/ cm?

R, membrane resistivity Tm/Crm

R, axial resistivity 150 Qcm

Ts synaptic time constant 5 ms

by, passive leak reversal potential 0 mV

Vinit membrane potentials at ¢ = 0 ms 0 mV

Oe extracellular conductivity 0.3 Sm~!
that is,

¢X(r7t):(VX*HX)<r7t)' (10)

1o Similar to Hagen et al.| (2016)), these averaged kernels H x(r,7) were here
10 measured using the full hybrid-scheme set up by replacing ongoing spiking
101 activity in the point-neuron network populations by fully synchronous spike
102 events, that is, V4 (t) = §(t — tx) where ty is the timing of the synchronous
103 event in population X. In this way the computational resources needed to
10 run LFP simulations are reduced by several orders of magnitude compared
105 to direct use of Equation [9] To test the accuracy of the approximation of
s using Equation [10] instead of Equation [9] we compared their LFP predictions
107 for a set of example parameter sets and found in general excellent agreement
108 between the resulting power spectra. A comparison is shown in the lower
100 panels of Figure [5] in Results.

200 The kernel Hyx will scale linearly with the postsynaptic strengths of
200 population X, and is therefore dependent on the parameters J for X € [E, ]

202 and g for X € [I]. The kernels were thus computed only once for a set of

14
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reference values for J and g, and for each simulation these reference kernels
were scaled accordingly to the particular values of J and g. The LFP was
computed across depth through the center of the cylindric volume with a
spatial resolution d as illustrated in Figure for the same duration as the

network simulations.

2.3 Statistical methods
LFP spectral analysis

The power spectral densities Py(r, f) of LEPs ¢(r,t) in each location r were
estimated using Welch’s average periodogram method (Welchl |1967)). For this
we used the implementation from the Python SciPy package (Jones et al.|,

2001-) (scipy.signal.welch), with parameters listed in Table [5|

Table 5: Parameters for Welch’s method for computing power spectral density (PSD) of LFP.

Power spectrum estimation

Symbol Description Value
NFFT window length 300 ms
noverlap segment overlap 150 ms
Fs sampling frequency 1 kHz
window window function Hann

Statistical measures of activity

Two statistical measures were employed to probe the spiking network activity
in the different regions of the parameter space. Simulations of 30.5 seconds
of the activity were run and used to calculate the statistics, where the first

500 ms of the simulations were discarded.
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The mean network firing rate, including both the excitatory and inhibitory

populations was calculated as

1 Tsim .
V= ZZ/ ot —tpdt,  (11)
(NE + NI)<Tsim - 7—Icmnsient) i )

Ttransient

over all neurons i and their spikes [ at spike times ¢;. The coefficient of
variation (CV) of the inter-spike intervals (ISI) of individual neurons was
used as a measure of the irregularity of firing (Griin and Rotter, [2010)). The

presently used mean CV was defined as

1 o st
V=21 =2 (12)

210 averaged over all neurons i.
As a measure of the degree to which the LFP power spectrum is spread
out over different frequencies, we employed the entropy of the normalized

power spectrum of the LEFP measured in the uppermost channel, defined as
S==> Pu(fa)log Ps(fa), (13)

220 where }3¢( fn) is the power spectrum of the LFP ¢(r,t) at frequency f,
221 normalized to unity. Since the power spectrum is computed numerically using

22 Welch’s method, this introduces a discretisation in frequency space.
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»s 2.4 Simulation of training and validation data

24 Two different sets of training and validation data were created for this study.
225 The first set was generated by a wide parameter space wherein the point-
26 neuron network parameters 7 € [0.8,4.0], g € [3.5,8.0] and J € [0.05, 0.4|mV
227 were 50000 parameter triplets were randomly selected with homogeneous
228 probability. This first set thus encompassed the four different activity states
2o that are displayed by the Brunel network, illustrated in Figure 2l These
230 activities include synchronous regular (SR), asynchronous irregular (AI),
2nn synchronous irregular (SI) with either slow or fast oscillations. This wide-
232 spanning parameter space is illustrated by the orange outline. The second
233 training and validation data set was generated by drawing 50000 parameter
23 combinations from a narrower parameter space where n € [1.5,3.0], g €
235 [4.5,6.0] and J € [0.1,0.25] mV. This second data set encompassed Al activity
236 states, as illustrated by the blue outline in Figure 2 All other parameters
237 (Table [2)) were kept constant in the simulations, which each was run for a
238 duration of Ty, = 3 s. Start-up transients with duration T angient = 150 ms
230 were discarded. LFP signals for all spiking output were computed as outlined
220 above, and as final training and validation data we estimated the power

201 spectrum Py(r, f) in each LFP channel.

»» 2.5 Parameter estimation by convolutional neural net-

243 WOI'kS

2.2 The CNN architecture is illustrated in Figure [3]and fully described in Table [6]

25 and was set up using the Keras machine learning framework (Chollet et al.|
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Figure 2: Brunel model network and phase diagram. A, Tllustration of network. Solid lines

represent excitatory connections, dashed lines inhibitory connections. B, Phase diagram, adapted from
Brunel| (2000), Figure 2A. Different network states arise depending on the parameters 1 = vext/Vinr and
g (where in the present example a fixed synaptic delay tq of 1.5 ms is used). SR stands for synchronous
regular, SI for synchronous irregular, and Al asynchronous irregular. Orange box shows the extent of of
parameters we simulated and blue box when we restricted the simulations to the AI state. Note that this
plot shows a slice of the parameter space for a given value of J = 0.1. We considered different values of
J in the study, so the actual parameter space is a cube, with the third axis being in the J-direction. The
red dots labeled A-E indicate the nn and g values of the example activities shown in Figure

2s6 2015 running on top of TensorFlow (Abadi et al., 2015). It consisted of three
2a7  convolutional layers with 20 filters, each followed by max pooling layers, and
28 two fully connected layers before the output layer. The rectified linear unit
200 (ReLU) function f(x) = max(0,z) was used as the activation function for
250 all layers apart from the output layer, and biases were only used in the fully
51 connected layers. As input, it took the PSD of each LFP channel, a 6 by 151
252 matrix. The convolutions were done in one dimension, with kernels extending
253 over all LEP channels. There were two fully connected layers, with 128 nodes
54 each, before the output layer consisting of 3 nodes. Each node in the output
255 layer corresponded to a single parameter 7, g and J.

256 The LFP PSD was normalized for each channel by the mean of the

57 sum of the PSD over all frequencies, serving to diminish the variation in
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max pool

/

I output

convolutional layers fully connected

Figure 3: Illustration of convolutional neural network (CNN). The PSDs of all six LFP channels
are taken as input. The three convolutional layers consist of 20 filters each, and are followed by max
pooling. Two fully connected layers precede the output layer which consists of 3 nodes, one for each
parameter.

53 amplitude across the different LFP PSDs input to the network, while keeping
250 the variation in amplitude across channels for each single LFP PSDs. For
20 labels, each parameter was linearly mapped to the interval |0, 1].
The network was trained by batch gradient descent on 40000 of the
simulated LFPs, while the final 10000 simulated LFPs were reserved for
validation. To train the CNN, we required a loss function which was minimized

during training. We defined the loss as the mean squared error of the estimator

loss = <(d — atrue)2> (14)

261 where a is the estimate (output from the CNN) and atyye is the truth (‘ground-

262 truth’ value) of any network parameter a.

263 The Adam optimizer (Kingma and Bal, |2014) was used, with a batch size

26 Of 100, learning rate of 0.001 and the (1, 82 and €aq.m parameters at their
265 suggested default values. The networks were trained for 400 epochs, and the

266 network weights with the lowest loss were saved.
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Table 6: Detailed specification of presently used convolutional neural network (CNN). The
convolutional kernel dimensions are given as [frequency, channels in, channels out], the strides and window
sizes are given in the frequency dimension.

Convolutional neural network

Layer Description

Conv. layer 1 kernel size: 12x6x20
stride: 1

activation: ReLU
bias: no

Max pool 1 window size: 2
stride: 2

Conv. layer 2 kernel size: 3x20x20
stride: 1

activation: ReLU
bias: no

Max pool 2 window size: 2
stride: 2

Conv. layer 3 kernel size: 3x20x20
stride: 1

activation: ReLU
bias: no

Max pool 3 window size: 2
stride: 2

Dense layer 1 nodes: 128
activation: ReLU
bias: yes

Dense layer 2 nodes: 128
activation: ReLU
bias: yes

Output layer nodes: 3

activation: None
bias: no

2.6 Effect of duration of LFP signals

It was a priori not known what duration of the data are required to obtain
stable results. To test this, the duration of each LFP simulation was succes-
sively extended, the PSD of the LFP was computed using the Welch method

(cf. Section 2.3), and the CNN was trained with the data to predict the

three parameters simultaneously. The test loss during training is shown in
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213 Figure [JA. Overall, the loss decreased with training duration and reached a
o7a plateau after a certain amount of training epochs. Note that with increasing
275 stimulation duration of the data, the loss got smaller. This was due the
76 larger variation in the computed PSDs for shorter simulations. With longer
277 duration of the LFP signals used in the PSD calculations, the variations will
27 be smaller. The results in the figure suggested that a simulation duration of
279 about 1800 ms would be a good choice, as shorter simulation times decreased
280 the performance. Figure shows the scaling of the minimal test loss (that
231 18, loss obtained in the limit where more training epochs do not improve
22 results) as a function of simulation duration. The ~ 1//t least squares fit
283 was motivated by the scaling of the error of the mean, which gives the square
23a root dependence of the standard error of the mean. This scaling assumes
2gs  uncorrelated experiments, which is not the case when using Welch’s method
2ss as we do. Nevertheless, the fact that this scaling held also for our estimator

287 gave a hint when the uncertainty is still limited by statistical fluctuations.

0.0200 A B

w300 ms == 1800 ms 0.008 1] @® mimimal loss
0.0175 600ms == 2400 ms ‘ — - IVEfit
0.0150 — 900 ms 2850 ms 0.007 7,

w1200 ms 41
0.0125 0.006 11

0.0100 0.005

test loss
test loss

0.0075 0004 @
0.0050 0.003 1 9.
O~
0.0025 0.002 1 -9 -¢ -e
KJ

0.0000 0.001 . , : o

0 50 100 150 200 250 300 300 900 1500 2100 2700

epoch simulation length [ms]

Figure 4: A, Test loss as a function of number of training epochs of the CNN for different simulation
lengths. B, Minimal loss (that is, smallest loss in panel A) as a function of simulation length. A function
with ~ 1/+/t shape was fitted to the data to illustrate that the scaling is dominated by limited statistics.
The R? score was 0.994.
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s 2.7 Technical details
230 2.7.1 Reproducibility

200 The simulated results presented here were done using Python v2.7.12. All
201 point-network simulations were done with the NEST simulator v2.12.0 (Kunkel
202 et all 2017). The forward-modeling of the LFP was done using hybridLFPy
203 v0.1.3 (Hagen et al., 2016), with NEURON v7.5 (Hines et al., [2009). All simu-
204 lations were run on the Stallo high-performance computing cluster consisting
20 of 2.6 GHz Intel Xeon E5 2670 and 2.8 GHz Intel Xeon E5 2680 CPUs.

206 The convolutional neural networks were trained using Python v3.5.2 using

207 Keras v2.2 with TensorFlow v1.10.0 as backend.

» 3 Results

200 The aim of this study is to investigate the possibility of estimating network
300 model parameters for the Brunel two-population spiking-network model (Brunel,
so1 2000) from the stationary ‘background’ LFP signal. We start by describing
302 this spiking model and its salient dynamical properties and further describe
303 how the resulting spikes can be used in a hybrid scheme to calculate associated
sa LFPs (Hagen et al., [2016)). Then we discuss the estimation performance of a
s convolutional neural network (CNN) to predict network parameters of the

306 Brunel network model based on LFP data only.
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00 3.1  Network model and LFPs

;8 The presently used Brunel network produces four different network states
30 dependent on the post-synaptic potential amplitude of excitatory connections
si0 J, the ratio of inhibitory to excitatory connection strength g, and the strength
su  of the external input 7 relative to the threshold rate, see Figure 2l In the
sz synchronous regular (SR) state the neurons fire regularly and in synchrony.
a1z The asynchronous regular (AR) state is characterised by regularly firing
s+ neurons which largely fires unsynchronised with respect to each other. The
a5 third state is the asynchronous irregular (Al) state, where individual neurons
si6 have an irregular firing rate and very little synchronization. The fourth state
17 is the synchronous irregular (SI) state, characterised by oscillatory population
sis firing rates, yet highly irregular firing of individual neurons. Example spike
a0 raster plots and population firing rates for SR, Al and SI states of the network
320 are shown in the top rows of Figure Al states are commonly believed to
a1 be realised in most healthy neural networks n vivo, often characterized by
;22 low average pairwise spike-train correlations (see e.g., Ecker et al.| (2010)) and
23 irregular spike trains (see e.g., [Mochizuki et al. (2016)).

324 To generate training and test data for the convolutional neural net (CNN),
s we simulated the network for many combinations of parameters (n € [0.8, 4],
2 ¢ € [3.5,8] and J € [0.05,0.4] mV). This parameter space includes parameter
327 combinations giving three of the states described above: Al SI, and SR (see
128 orange rectangle in Figure . For details of the simulation procedure, see
320 Section 2.4

330 The LFPs were simulated using the so-called hybrid scheme introduced by
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Figure 5: Examples of simulated spiking network activity and LFPs for different sets of
network parameters (7,9 and J). For each simulation, A-E, the first row shows spike trains from
100 randomly selected neurons across both populations. The second and third row show the population
firing rate (including both the excitatory and inhibitory neurons) and its power spectral density (PSD).
The final two rows show the LFP signal from all six channels and the PSD of channel 1, respectively.
The dashed red lines in the lowest panel shows the LFP PSD computed from spikes in individual neurons
(Equation@[) rather than with the presently used population firing-rate approach (Equation black lines)
which is computationally much less demanding. In general, the agreement is seen to be very high, the
only discrepancy is seen for the SR-state example where the height of the peak around 300 Hz differs. The
network states for the five examples (SR/SI(fast)/SI(slow)/Al, see text) are indicated at the top.

s Hagen et al.| (2016). In this scheme, neuronal network activity is predicted by a

322 point-neuron network (here the Brunel network), and the corresponding LFPs
;33 are estimated in a latter step by ‘playing back’ spike times as activation times of
;3¢ synapses distributed across reconstructed neuron morphologies representative
;35 for each population type. The LFP is then computed from the resulting
136 transmembrane currents combined with an electrostatic forward model derived

337 from volume-conductor theory, as detailed in Section 2.2l An overview over
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;33 the hybrid scheme, including the geometrical organisation of the ‘cortical

330 column’ used in the LFP-generating step, is shown in Figure

.0 3.1.1 Exemplary LFPs for different network states

s In the presently used model set-up, the LFP is linearly dependent on the
sz point-neuron network spiking activity (see Section [2.1 and Section [2.2). Any
;a3 network parameter change affecting ongoing spiking activity will therefore
saa  directly affect the LFP. The panels in the lower two rows of Figure [5{ show the
a5 resulting LFP and LFP power spectra for five different network parameter
;6 combinations of 1, g and J.

347 An example synchronous regular state (SR) is shown in panel A. The
ss simulation showed high regularity and synchrony of the individual spike
;a0 trains and a strongly oscillating population firing rate. The corresponding
5o LFP generally had a similar time course over all channels, though with
351 opposite phases for the topmost and lower recording channels. The power
2 spectral density (PSD) of the LFP showed a decrease in power with increasing
153 frequency, though with a clear peak at around 333 Hz. This peak was also
;s seen in the PSD of the firing-rate, reflecting the tight relationship between
355 spikes and LFPs.

356 Two examples of the synchronous irregular state (SI) are illustrated
7 in Figure fB,C, characterised by synchrony of the firing of neurons while
;58 individual neurons fire irregularly. In panel B an example with high firing
350 and fast oscillations is shown. Here the power spectrum of the LFP showed
0 two peaks at around 175 and 350 Hz, respectively. Again, the same peaks are

361 found also in the firing rate spectra. In contrast, panel C shows a low-firing

25


https://doi.org/10.1101/564765
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/564765; this version posted March 1, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

362 Sl state with more slowly varying population firing rates, though without any
363 notable peak in the firing-rate or LFP power spectra.

364 Two examples of the asynchronous irregular state (AI) are shown in the
35 last two panels (Figure ,E). As suggested by the name, this state is defined
6 by lack of synchrony between different neurons and irregular firing patterns
367 of each neuron. For the example in panel D, the firing-rate PSD exhibited
s three high-frequency peaks, with the peak at the highest frequency (~200 Hz)
360 being highest. The same three peaks were found also in the LFP PSD, but
sno now the peak at the lowest frequency (~70 Hz) was highest. This reflects
sn low-pass filtering effects of the LFP from synaptic and intrinsic dendritic
sz filtering (Lindén et al., 2010; Leski et al., |2013)). In panel E the recurrent
373 excitation J is much increased compared to the example in panel D. This
sza - combined with a reduction of the relative inhibition g, gave much larger LFP
srs  signals, as reflected in the high power of the LFP seen for the low frequencies
sre in the LFP PSD. For this parameter set the firing-rate PSD exhibited a broad
sz peak around 100 Hz, but this peak was absent in the corresponding LFP PSD

srs  due to synaptic and intrinsic dendritic low-pass filtering.

79 3.1.2 Model behaviour across parameter space

ss0 1o extract network model parameters from recordings of neural activity such
;s as the LFP, the network model parameters must necessarily be reflected in
;2 these recordings. After the qualitative discussion above, we proceed to discuss
33 how the network behaves over the entire parameter space. We therefore give
s34 an overview of how different spike- and LFP-based measures of neural activity

385 vValy aCross parameter sSpace.
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;86 Spikes. Panel A in Figure [0] shows how the mean network firing rate varied
;g7 over the parameter space. The overall trend was that with increasing ¢, the
;g8 firing rate decreased since inhibition was increased. The transition at g = 4
;0 resulted from the fact that there are four times more excitatory neurons
300 than inhibitory, and thus for g < 4 excitation dominates network behaviour.
51 For J 2 0.15, three separable regions with smooth transitions emerged: A
302 region of high firing rate on the left border of the plots (¢ < 4), a region
303 of low firing rate on the bottom of the plots (¢ 2 5, n < 1), and a region
;04 Of intermediate firing rate in the upper right of the parameter space. For
305 smaller values of J (J < 0.1) the transition between the high-firing region
36 and the intermediate-firing region became smoother. Thus, large values of J
307 amplified the differences between the regions. These distinct regions in the
308 firing-rate phase diagram correspond well with the phase diagrams derived
0 by Brunel| (2000), see Figure 2]

400 Panel B in Figure [6] correspondingly displays the parameter dependence of
a1 the average coefficient of variation (CV) of the inter-spike intervals. Similar
a2 to the population firing rate, one can see a boundary at about g &~ 4 over a
a3 large part of the considered parameter range of J and 7. In the region with
s low 1 and high g (n < 1.5, g 2 5) there was also a distinct area with low CV,
as reflecting the expected lower CV of the slow-oscillation SI state compared
s to the Al state for larger values of 1. For small values of J (J < 0.1), there
a7 was a region of larger CV visible in the upper right corner of the parameter
a8 space (g 2 6 and n 2 3.6). This region overlaps with fast-oscillation SI state

a0 described by Brunel| (2000 (see phase diagram in Figure [2)).
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Figure 6: Statistical measures of network activity for different combinations of network pa-
rameters (n,g and J). A, Average population firing rates, that is, average firing rate over all neurons
and times. The red dots show the parameter values of the examples in Figure [f] B, Mean coefficient of
variation (Equation ) of the inter-spike intervals over all neurons as a measure of the spiking irreg-
ularity. C, Square root of the variance of the LFP signal integrated over time for the topmost channel
(channel 1). This measure corresponds to the square root of integral of the power spectrum of the LFP
over all frequencies (Lindén et a1.|, 2011), and is referred to as the standard deviation of the LFP (LFP
STD). D, LFP Entropy, cf. Equati

a0 LFP. The example LFP patterns in Figure |5 showed substantial variability
a1 of the LFPs for different network parameter values. This suggests that it
a2 indeed may be possible to estimate network parameters from the LFP. To
a3 explore this in more detail, we show in panels C and D of Figure [ two
aa  different measures of LFP signals across the same parameter space.

a15 Panel C shows a measure of the overall signal power of the LFP signal,
s that is, the standard deviation (STD) for the topmost channel (channel 1).

a1z This measure corresponds to the square root of the variance of the LFP

ss signal integrated over all frequencies (Lindén et al., 2011). In panel C a first
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a0 observation was that large values of the excitatory weight J led to higher
a20 values of the LFP STD, not surprising given the stronger excitatory synaptic
an inputs. Likewise, it was seen that the LFP STD generally decreased when
a2 inhibition, that is, g, increased. Interestingly, despite the very high firing
a3 activity for values of g smaller than 4, the LFP STD was small for these
w24 parameter values. This can be understood by inspection of panel A in Figure
a2s which shows results for an example state with ¢ = 3.5: Even if there are
226 strong bombardments of synaptic inputs onto the LFP-generating excitatory
a2z neurons, the input is so clock-like and regular that there is little power in the
a2 LFP signal at the lower frequencies. The only strong LFP signal contribution
a20 was obtained for frequencies over ~300 Hz, corresponding to the peak seen in
a3 the firing rate PSD.

a31 The LFP STD measure considered in panel C measures the overall LFP
a2 signal strength across frequencies. In contrast, the measure labeled ‘LFP
a3 Entropy’ in panel D measures how much the overall LFP power is spread
a3a across the different frequencies, cf. Equation in Methods. The largest
a5 entropy value was observed for the smallest excitatory weight (J = 0.05 mV),
a6 but the detailed parameter dependence of the LFP entropy was not the
a3 main point here. The most important observation was that the parameter
a3s  dependence of LFP Entropy was qualitatively different from the parameter
a9 dependence of LFP STD. This implied that the frequency-resolved PSD
a0 contained more information regarding the underlying network parameters
sa1 than either the overall amplitude (LFP STD) or the frequency spread (LFP
s> Entropy) alone. This provided cautious optimism that the variation of the

a3 LFP PSD is sufficiently strong across parameter space to allow for estimation
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aas of network parameter values with a suitable estimation methods.

«s 3.2 Network parameters are accurately estimated from

a6 LFP

a7 After this rough survey over how the LFP for the Brunel network model vary
ass  across parameter space, we now ask the question: Can the network parameters
ao  be estimated from this LFP by use of Convolutional Neural Networks (CNNs)?
a0 We chose to use CNNs because they do not rely on manual feature extraction,
a1 and our analysis thus do not depend on any assumption of how the model
w2 network parameters are reflected in the LFP. Further, we used the power
a3 spectral density (PSD) of the LEFP for this analysis, that is, used the PSD as
asa input to the CNNs. This approach removes phase information in the LFP.
a5 However, since we only considered LFP data from stationary network activity,
ase  the hypothesis was that most of the available relevant information regarding
a7 network parameters should the contained in the PSD.

ass Our CNN consisted of three convolutional layers followed by two fully
0 connected layers. An illustration can be seen in Figure [3, and detailed
a0 specifications are given in Section in Methods. We generated several pairs
w61 of training and testing data sets for different scenarios. The parameter space
w62 was both sampled randomly and on a regular grid. We also generated a
w63 training and test data set on a subset of the parameter space, but with the
s6a equal amount of simulations.

465 While several approaches were tested and compared, we defined the

w6 following set-up as the standard set-up: The data was simulated using
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sz randomly distributed parameters 7, g and J with a simulated duration of 2.85
w8 seconds for each trial, see Section [2.4. From the simulated LFP, the power
a0 spectral densities (PSD) for six recording channels were computed and used
a0 as input to the CNN. Then, a single CNN network was trained to predict the
s parameter vector p'= (7, g, J) simultaneously, and all three parameters were
a2 set to contribute equally to the loss function, Equation [I4 To achieve this,
a3 the parameter ranges of 7, g and J were all scaled to the unit interval [0, 1]
aza  for the considered part of the parameter space.

a75 To quantify and illustrate the accuracy of the parameter estimation we
aze  used the estimation error a — g Where aine was the true value and a the
a7 estimated value. Figure [7] (orange lines) shows the accuracy of the three
ars network parameters when considering the full parameter space (n € [0.8,4),
a9 g €[3.5,8) and J € [0.05,0.4) mV). As observed, the estimation errors are
w0 1n all cases generally smaller than 5%. Also, the estimations had small biases,
a1 that is, the mean errors were close to zero.

482 The full parameter space considered above covered four of the characteristic
a3 network states seen for the Brunel network, see orange rectangle in Figure [2]
asa  Here the network-generated LFP can be expected to vary substantially across
ass  parameter space making the CNN estimation easier. We thus next explored
ass  to what extent CNNs could estimate network parameters within a particular
as7  state, that is, the Al state which is thought to be most relevant for cortex.
288 Training and validation of the CNN were repeated using a second data
a0 set, fully contained within the AI region (n € [1.5,3), g € [4.5,6) and
wo J €[0.1—0.25) mV), see blue rectangle in Figure[2] The same amount of

s01 training and test data were used as for the full parameter space, so effectively
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a2 the restricted parameter space was more densely sampled. Estimation errors
w3 are shown in Figure[7] (blue lines). With a similarly-sized data set containing
a0s only the Al state, the observed error was even smaller than for the full
a0s parameter space. Thus focusing on a single network state within which there
a6 expectedly is less variation in the LFP, increased the accuracy. However,
a7 when using the CNN trained with the data from the full parameter space,
a8 the estimation accuracy for a restricted test set containing only the Al state,
a0 was reduced (Figure [7] purple lines). The accuracy was still better than when
s0 estimating parameters across the full parameters space, though, that is, the
so1 purple line always was always positioned between the yellow and blue lines in
se2 the cumulative plots in Figure [7B. Further, independent of which data set
sos was used, the g parameter was always the one with the largest prediction

so4 accuracy compared with n and J.

s 3.3 Highest prediction accuracy of network parameters

506 in Al state

soz  Next, the variation of the parameter estimations errors across the full param-
s0s eter set was investigated (Figure[§)). The estimation of 1 (left panel of Figure
500 was less reliable in the region of low g (¢ < 4) which corresponds to the
si0 SR state of the network model (Brunel, 2000). The estimation performance
su  of J (right panel) was instead worse for the smallest values of 7, that is, in
s2 and around the region of parameters where the network model is in an SI
si3 state. The estimation of g was generally very accurate for all states of the

si network (middle panel of Figure . Taken together this implies that the
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Figure 7: Accuracy of network parameter estimation. A, Estimation error distributions for 7, g
and J averaged over the entire parameter space. In the plots all parameter ranges were rescaled to the
interval [0, 1] for easier comparison on the lower x-axis, the upper x-axis shows the original values The
vertical line indicates the mean of both distributions. The orange curve shows the result when using the
full parameter set (n € [0.8,4], g € [3.5,8] and J € [0.05,0.4]) and the blue curve when the parameter
set only contains the Al state (n € [1.5,3], g € [4.5,6] and J € [0.1 — 0.25]). The purple line gives the
estimation error of the CNN trained for the full parameter set, but evaluated on the restricted parameter
set containing the Al state only. To compare the full parameter data set and the Al-only data set, they
were both scaled to the range of the full parameter set. B, Cumulative error distributions, the proportion
of absolute errors that fall below a given value, also with all parameters rescaled to [0, 1]. The dashed
black lines indicate the 90% coverage interval.
si5  highest prediction accuracy of the three network parameters is obtained for
si6 the Al state.
517 We next considered the estimation accuracies across the restricted param-
sis  eter space corresponding to the Al network state only (n € [1.5,3], g € [4.5, 6]
s and J € [0.1 — 0.25]), see Figure[9] Also within the Al state, g was predicted
s20 with the highest accuracy, and J had the lowest estimation accuracy. Further,
sz while the estimation accuracy of g and n was almost constant across the
s22 restricted parameter space, the estimation of J became worse with increasing

522 values of J and g (right panel of Figure [9).
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Figure 8: Mean absolute prediction error using full parameter space. Each voxel in the panels
shows the error on the validation dataset averaged across the parameter ranges, defined by the pixel size
of the grid and the value of J indicated above.
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Figure 9: Mean absolute prediction error using restricted parameter set containing only Al
state. See caption of F igureEI for detailed description.

= 3.4 Predicting all parameters at once almost as good as

525 using individually trained CNNs

52 In the above application all three network parameters were predicted by a

s27 - single convolutional neural net (CNN). We next investigated to what extent
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528 the estimation accuracy changed when CNNs were trained to estimate each
s20 parameter separately. The results when considering the full parameter space
s30 are shown in Figure [I0] As expected the estimation accuracy was always
531 better for these ‘single-prediction” CNN networks: The error distribution of
s22 the n prediction was more centered, that is, less biased, for a single prediction
s33 network, compared to the ‘combined-prediction’ network (left panel). For the
53¢ estimation of g, the single-prediction network displayed a more narrow peak,
s35  also highlighting a slightly better performance. For J, the two approaches gave
536 very similar results. Overall, we conclude that merely small gains are achieved
s37 for the present application in terms of estimation accuracy by training a

s3s separate CNN for each of the three network parameters.

n g J
0.3

combined
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single
I predictions
]

| /r( L.‘\._ i _,- I'.k A
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Figure 10: Parameter estimation errors for a single versus multiple CNNs. Comparison of the
parameter estimation error, when (i) a single CNN is trained to optimise all three parameters n, g and J
simultaneously (combined predictions), with (ii) three CNNs each trained to estimate a single parameter
(single predictions). All parameters were rescaled to the interval [0, 1].

s 3.5 Randomly sampled training-data preferable

se0 The above estimations were based on CNNs trained by LFPs with random
sa1  network parameters drawn from uniform distributions. To test if the way the
sz parameter space was sampled had an effect on the accuracy of the estimator,
53 we also generated the same amount of training data on a regular grid, spanning

s« the same parameter space and repeated the training. The estimation accuracy
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ses was then computed using a randomly generated test data set, and results are

s6 shown in Figure

n g J
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Figure 11: Grid-sampled vs. randomly sampled training data. The plots show error distributions
for CNNs trained on data randomly sampled from the parameter set (blue) and from the same amount of
training data taken from a regular grid (yellow). All parameters were rescaled to the interval [0, 1].
547 For the prediction of 7, there was almost no difference in performance
s between the CNNs trained with grid-sampled and randomly sampled data
se0 (left panel in Figure . For g, however, the grid-trained data showed a
sso substantial bias towards lower values of g (middle panel). Such a bias was
51 also seen in the estimation of J, but not so pronounced (right panel).
552 We speculate that training on grid-sampled data introduces a certain lower
553 resolution to the CNN estimators. Randomly sampled data does not contain
ss« such a grid scale and eventually (with sufficient training data) enables the
sss network to learn to interpolate on arbitrary small scales. This intrinsic scale
sse  Oof the grid data might thus be the explanation for the poorer performance of

ss7 the CNN trained with randomly sampled data.

= 4 Discussion

sso In the present work we have investigated to what extent the local field po-

seo tential (LFP), that is, the low-frequency part of an extracellular electrical
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se1  signal, can be used to extract information about synaptic connection weights
se2 and external inputs in the underlying network. As a model we considered the
ses well-known and thoroughly analysed Brunel network comprising an excitatory
sea and an inhibitory population of recurrently connected integrate-and-fire (LIF)
ses neurons (Brunel, 2000). Despite its simplicity, only three parameters (7, g, J)
see describe external input rate and the weight of the network connections, the
se7  model exhibits a high diversity of network dynamics, that is, regular or irreg-
ses Ular spiking patterns of individual neurons and synchronous or asynchronous
seo  spiking across populations.

570 The LFP generated by the network was computed using a hybrid scheme (Ha-
sngen et al., [2016): Spikes computed by the point-neuron Brunel network where
sz replayed as presynaptic spikes onto biophysically detailed multicompartmen-
s73 tal neuron models to compute the LFP as predicted by volume-conductor
s7a theory (Lindén et al., 2014} Hagen et al., 2018)). We then assessed how well
s7s  the values of the three model parameters could be estimated from the power
sz6 - spectrum of the stationary ‘background’ LFP signal by application of a con-
s77 volutional neural net (CNN) (Rawat and Wang), 2017) and indeed found that
szs  all parameters could be very accurately estimated. This was the case even
s when LFPs stemmed from network in different dynamic states (Figures [7]g)),
s0 but even more so when the LFPs stemmed from the asynchronous irregular

s (Al) state only (Figure [J)).
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=2 4.1 Generalization to more complex network models

53 An obvious question is whether the present successful estimation of network
ssa  parameters from LFPs will extend to more complex network models with
sss more than three parameters specifying the connections like in the Brunel
sss network. Of particular interest here is multilayered cortical network models
ss7 where several neuronal populations contribute to the LFP signal (Reimann
sss et al., 2013} |Gtabska et al.) 2014; Tomsett et al., 2015} |Gtabska et al., [2016;
sso Hagen et al., 2016)).

500 The estimation problem will expectedly become more difficult as the num-
so1  ber of parameters to estimate increases. However, in the present application
s we only used the power-spectral density (PSD) of the LEP signals from the
s03 stationary background state in the parameter estimation. A ‘richer’ LFP
soa signal which may separate the LFP signals for different parameters better,
ss can be obtained by also including the phase information of the LFP Fourier
so6 components, but maybe more importantly by also using stimulus-evoked
sor transient LFP signals. Further, in the present application, the parameters
sos  were estimated by LFPs from six channels spanning a depth of 0.5 mm. With
s0 only a single population contributing to the LFP as in the present case,
s00 fewer channels would in fact have sufficed. When several cortical neuronal
so1 populations positioned at different depths contribute to the LFP, the spatial
s02 variation of the signal contains more information on the network activity.
e0s Here the use of a larger number of channels, spanning all cortical layers,
soa should expectedly improve parameter estimation.

605 To compute the three-second long LFP signals 50000 times to train and
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e0s test the CNNs in the present study, it was computationally unfeasible to ex-
so7 plicitly sum over LFP contributions from each individual presynaptic neuron.
eos Instead we used the approximate formula in Equation [10| based on population
e0o firing rates to compute the LFPs, reducing the required computer time by sev-
610 eral orders of magnitude. The accuracy of this approximation for the present
su1 network was demonstrated for a set of representative examples (Figure . In
12 Hagen et al.| (2016) where the eight-population Potjans-Diesmann (Potjans
e13 [and Diesmann), 2014)) cortical network model was considered, the same ap-
s14 proximation was seen to give fairly accurate LFPs as well (Hagen et al.| 2016,
e1s Fig. 13), although not as accurate as in the present case as judged by the
e16 example tests. Thus the use of the approximation in Equation [10] to compute
s17 the LFPs in future applications should be tested on a case-to-case basis.

618 The choice of using convolutional neural networks (CNNs) within the
s10 Keras framework (Chollet et al. 2015]) for doing the parameter estimation
620 was made out of convenience. Other machine learning techniques, see [smail
21 |Fawaz et al. (2018)) for a recent review, could likely have done as good, or
622 even better. Further, the architecture of the CNNs was not optimised in any
623 Systematic way. A systematic study of the best machine learning method to
62« use for LFP-based parameter estimation for more complex network models

625 should be pursued, but is beyond the scope of the present paper.

s 4.2 Implications for analysis of LFPs

27 For single neurons, biophysics-based modeling is well established (Koch/ [1999;

e2s \Dayan and Abbott} 2001} Sterratt et al., [2011)) and numerous biophysically
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620 detailed models with anatomically reconstructed dendrites have been made
e30 by fitting to experimental data, for example, Migliore et al.| (1995); Hay et al.
es1 (2011); Halnes et al. (2011); Markram et al. (2015)). These models have mainly
632 been fitted to intracellular electrical recordings, but extracellular recordings
33 (Gold et al., [2007) and calcium concentrations (Méaki-Marttunen et al., [2018)
e3¢ can also be used.

635 Until now the analysis of LFPs have largely been based on statistical
s3s methods (Einevoll et al., [2013; [Pesaran et al., 2018)). An overall goal of the
637 present project is to contribute to the investigation of to what extent LFPs
638 also can be used to develop and validate network models in layered brain
630 structures such as cortex and hippocampus. Spikes have already been used
es0 to distinguish candidate network models in cortex (Blomquist et al., [2009;
sa1 Stimberg et al., 2009), and LFPs recorded in witro have been used to fit
sz hippocampal network models (Chatzikalymniou and Skinner, [2018). There is
sz expectedly a clear link between the accuracy of which a parameter can be
saa (1) estimated from and (ii) fitted to LFP signals. Thus the present observation
ess that network parameters for the Brunel network can be accurately estimated
ess from the background LFPs suggests that the same LFP signal also could be
ez used to accurately fit the same network parameters given that the model
sas  structure was known a priori. This link between ‘estimatability’ and ‘fitability’
ss0 should be properly investigated, not only for the Brunel model, but also for
eso more complex network models. However, such a study is beyond the present
es1 scope. A related question that also should be investigated is to what extent
es2 LFPs used to distinguish between candidate models with a different network

es3  structure, not only different parameters.
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osa 4.3 Outlook

ess Lhe recording of single-unit and multi-unit activity (MUA) from the high-
ess frequency part of the extracellular potentials, has historically been the most
es7 important method for studying in vivo activity in neurons and neural net-
ess  works. However, the interest in the low-frequency part, the LFP, has seen
es0 a resurgence in the last decades. One key reason is the development of new
es0 multicontact electrodes allowing for high-density electrical recordings across
es1 laminae and areas (as well as computers and hard drives allowing for the
2 storage and analysis of the LFP signals). Another reason is the realisation
663 that the LFP offers a unique window into how the dendrites of neurons inte-
ees grate synaptic inputs for populations of thousands or more neurons (Lindén
ess |et al., [2011)). In contrast, the MUA measure the output resulting from this
ess dendritic integration, that is, spikes from a handful of neurons around the
es7 electrode contact (Buzsakil, 2004). Thus spikes and LFPs offer complemen-
ees tary information about network activity. Since both signals are produced
660 from the same network model, the combined use of spikes and LFPs appears
o0 particularly promising for estimation of network model parameters, or for
o1 assessing the merit of candidate network models. Such combined use of spikes
672 and LFPs has been shown to be beneficial in identifying laminar neural popu-
673 lations and their synaptic connectivity patterns from multielectrode cortical
era recordings (Einevoll et al., 2007, Glabska et al., 2016)). Thus combined use of
ers  spikes and LFPs in the estimation of model parameters should be explored in
676 projects where more complex network models are considered where, unlike for

ez the presently considered Brunel network model, the LFP signal is insufficient
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e7e  to alone allow for accurate parameter estimation.

679 Further, many new optical techniques for probing cortical activity have also
ss0  been developed and refined, for example, two-photon calcium imaging (Helm-+
es1 chen and Denk| 2005)), and voltage-sensitive dye imaging (VSDI), measuring
es2 population-averaged membrane potentials (Grinvald and Hildesheim), [2004).
es3 Further, at the systems level one has methods such as electroencephalography
s (EEG) (Nunez and Srinivasan, 2006)), which measures electrical potentials at
sss the scalp, and magnetoencephalography (MEG) (Haméldinen et al., 1993))
ess which measures the magnetic field outside the head. These measures can
s be computed from the activity of candidate network models (Brette and
sss Destexhe] 2012), and tools to facilitate this has been developed (Lindén
es0 et all 2014; |[Hagen et al., 2018; |Gratiy et al., | 2018). They can all be used to
e00 constrain and validate candidate network models, and used in combination

s01 they will likely be particularly powerful.
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