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Estimation of neural network model
parameters from local field potentials (LFPs)

Jan-Eirik W. Skaar∗1, Alexander J. Stasik†2, Espen Hagen2,
Torbjørn V. Ness1, and Gaute T. Einevoll1, 2‡

1Faculty of Science and Technology, Norwegian University of Life
Sciences, Aas, Norway

2Department of Physics, University of Oslo, Norway

Abstract1

Most modeling in systems neuroscience has been descriptive where neural2

representations, that is, ‘receptive fields’, have been found by statistically3

correlating neural activity to sensory input. In the traditional physics approach4

to modelling, hypotheses are represented by mechanistic models based on the5

underlying building blocks of the system, and candidate models are validated6

by comparing with experiments. Until now validation of mechanistic cortical7

network models has been based on comparison with neuronal spikes, found8

from the high-frequency part of extracellular electrical potentials. In this9
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computational study we investigated to what extent the low-frequency part of10

the signal, the local field potential (LFP), can be used to infer properties of the11

neuronal network. In particular, we asked the question whether the LFP can12

be used to accurately estimate synaptic connection weights in the underlying13

network. We considered the thoroughly analysed Brunel network comprising14

an excitatory and an inhibitory population of recurrently connected integrate-15

and-fire (LIF) neurons. This model exhibits a high diversity of spiking16

network dynamics depending on the values of only three synaptic weight17

parameters. The LFP generated by the network was computed using a hybrid18

scheme where spikes computed from the point-neuron network were replayed19

on biophysically detailed multicompartmental neurons. We assessed how20

accurately the three model parameters could be estimated from power spectra21

of stationary ‘background’ LFP signals by application of convolutional neural22

nets (CNNs). All network parameters could be very accurately estimated,23

suggesting that LFPs indeed can be used for network model validation.24

Significance statement25

Most of what we have learned about brain networks in vivo have come from the26

measurement of spikes (action potentials) recorded by extracellular electrodes.27

The low-frequency part of these signals, the local field potential (LFP),28

contains unique information about how dendrites in neuronal populations29

integrate synaptic inputs, but has so far played a lesser role. To investigate30

whether the LFP can be used to validate network models, we computed LFP31

signals for a recurrent network model (the Brunel network) for which the32
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ground-truth parameters are known. By application of convolutional neural33

nets (CNNs) we found that the synaptic weights indeed could be accurately34

estimated from ‘background’ LFP signals, suggesting a future key role for35

LFP in development of network models.36

1 Introduction37

The traditional physics approach to modeling typically involves four steps:38

(i) A hypothesis is formulated in terms of a candidate mechanistic mathemat-39

ical model, that is, a model based on interactions between building blocks of40

the system, (ii) predictions of experimentally measurable quantities are calcu-41

lated from the model, (iii) the predictions are compared with experiments, and42

(iv) if necessary, the hypothesis is adjusted, that is, a new candidate model43

is proposed. In neuroscience, a descriptive or statistical approach has been44

more common, in particular in systems neuroscience aiming to understand45

neural network behaviour in vivo. Here statistical techniques are used to46

look, for example, for correlations between measured neural activity and sen-47

sory stimuli presented to the animal to estimate receptive fields (Dayan and48

Abbott, 2001, Ch. 2). While descriptive models can inform us about neural49

representations in various brain areas, they do not as mechanistic models50

inform about the biological mechanisms underlying these representations.51

At present, mechanistic network models mimicking specific neural circuits52

are scarce. For small networks like the circuit in the crustacean stomatogas-53

tric nervous system comprising a few tens of neurons, some excellent models54

have been developed (Marder and Goaillard, 2006). For cortical networks55
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important pioneering efforts to construct comprehensive networks with tens56

of thousands of neurons mimicking cortical columns in mammalian sensory57

cortices, have been pursued, e.g., Traub et al. (2005); Potjans and Dies-58

mann (2014); Markram et al. (2015); Arkhipov et al. (2018). These models59

were found to predict spiking activity in rough qualitative accordance with60

some observed population phenomena (spiking statistics, spike oscillations,61

...). Fitting of cortical network models to trial-averaged multi-unit activity62

(MUA) recorded in somatosensory cortex has been pursued for population63

firing-rate models (Blomquist et al., 2009). However, we do not yet have64

validated, general-purpose network models that accurately predict experimen-65

tally recorded neural activity both in the various ‘background’ states and as66

a response to sensory stimulation.67

The cortical models above have been compared with experimental spiking68

activity, that is, the high-frequency part of extracellular electrical potentials.69

The low-frequency part, the local field potential (LFP), in contrast largely70

reflects how synaptic inputs are processed by dendrites in the populations71

of neurons surrounding the electrode contacts (Buzsáki et al., 2012; Einevoll72

et al., 2013; Pesaran et al., 2018). Several methods for analysis of cortical73

LFP signals have been developed, see Einevoll et al. (2013); Pesaran et al.74

(2018) for reviews. However, the LFP signal has only rarely been used to75

validate specific mechanistic models for cortical networks, but see Mazzoni76

et al. (2008, 2011).77

In the present work we explore to what extent the LFP signal generated by78

a neuronal network model can be used to extract the connectivity parameters79

of the same network. As a model network we consider the so-called Brunel80
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network comprising an excitatory and an inhibitory population of recurrently81

connected integrate-and-fire (LIF) neurons (Brunel, 2000). Point neurons do82

not generate extracellular potentials, however, and to compute corresponding83

LFPs we use a hybrid LFP scheme (Hagen et al., 2016): First the spiking84

activity is computed by use of the simulator NEST (Kunkel et al., 2017), and85

next the computed spikes are replayed as presynaptic spikes onto biophysically86

detailed multicompartmental neuron models to compute the LFP using LFPy87

(Lindén et al., 2014; Hagen et al., 2018). The LFP generated by a network88

depends crucially on the level of temporal correlations of synaptic input onto89

the neurons (Lindén et al., 2011; Łęski et al., 2013; Mazzoni et al., 2015;90

Hagen et al., 2016). Thus the LFPs generated by the Brunel network will,91

as the spiking activity, vary strongly between the different network states as92

obtained for different choices of network model parameters.93

We assess how well network model parameters can be estimated from the94

stationary ‘background’ LFP signal. For this, we first train convolutional95

neural nets (CNNs) (Rawat and Wang, 2017) with LFP training data for96

which the underlying model parameters are known, and then test the accuracy97

of parameter estimation on a separate set of LFP test data. As it turns out,98

a relatively simple CNN is sufficient for the task and is indeed found to99

accurately estimate the network model parameters. Thus for the present100

example, the LFP signal contains sufficient information to accurately recover101

the underlying model parameters. This suggest that not only spiking data,102

but also LFPs, can be used to validate candidate network models.103
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2 Methods104

2.1 Point-neuron network model105

The Brunel network (Brunel, 2000) consists of two local populations, one106

with excitatory and one with inhibitory neurons. These populations of size107

NE and NI, respectively, consist of leaky integrate-and-fire (LIF) neurons in-108

terconnected with current-based delta-shaped synapses. Inputs from external109

connections are modeled as uncorrelated excitatory synaptic input currents110

with activation governed by a fixed-rate Poisson process with rate νext.111

The sub-threshold dynamics of the point-neurons obey a first-order dif-112

ferential equation, cf. Equation (1) and 2 in Table 1. When the membrane113

potential of a neuron reaches its firing threshold θ, the neuron emits a spike,114

the synapses onto all its postsynaptic neurons are activated after a time delay115

td, and the neuron’s membrane potential is clamped to a potential Vreset for a116

refractory period of tref . Each neuron receives a fixed number of incoming117

connections (fixed in-degree) from a fraction ε of all other local neurons in the118

network in addition to the external input. The synaptic connection strengths119

are constant for each population, for excitatory neurons and external input120

it is given by JE = J and for inhibitory neurons JI = −gJ . The amount of121

input the local neurons receive from the external population is determined by122

the parameter η = νext/νthr, where νthr = θ/(Jτm) is the minimum constant123

rate input that by itself will drive a neuron to its firing threshold, and τm is124

the membrane time constant. A complete description of the point-network125

model is given in Table 1, with specific parameter values given in Table 2.126
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Table 1: Description of point-neuron network following the guidelines of Nordlie et al. (2009).

A Model summary
Populations One excitatory, one inhibitory
Network
model

Fixed indegree, random convergent connections

Neuron
model

Local populations: leaky integrate-and-fire, external: Poisson generator

Synapse
model

Current-based delta-shaped, fixed strength for each population

B Populations
Names Excitatory: E

Inhibitory: I

C Network model
Connectivity Fixed number of incoming connections CE = εNE from excitatory

population and CI = εNI from inhibitory population
Input Poissonian synaptic input with fixed rate νext for each neuron

D Neuron model
Type Leaky integrate-and-fire neuron
Description Dynamics of membrane potential Vi(t) (neuron i ∈ [1, N ]):

- Spike emission at times til with Vi(t
i
l) ≥ θ

- Subthreshold dynamics:

τm
dVi(t)

dt
= −Vi(t) +RmIi(t) if ∀l : t /∈ (til, t

i
l + tref] (1)

where τm is the membrane time constant, V the membrane
potential, Rm the membrane resistance, and I the synaptic
inputs.

- Reset + refractoriness: Vi(t) = Vreset if ∀l : t ∈ (til, t
i
l + tref]

Exact integration with temporal resolution dt
Uniform distribution of membrane potentials Vi ∈ [Vreset, θ) at t = 0

D Synapse model
Type Delta-shaped postsynaptic current
Description

RmIi(t) = τm
∑
j

Jij
∑
l

δ(t− tjl − td) (2)

where the first sum is over all the presynaptic neurons j, including
the external ones, and the second sum is over the spike times of those
neurons. tjl is the lth spike of presynaptic neuron j, and td is the
synaptic delay. δ denotes the Dirac delta function.

Jij =

{
J, j ∈ E,Eext

−gJ, j ∈ I

8
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Table 2: Point-neuron network parameters.

Point-neuron parameters
Symbol Description Value
η relative amount of external input [0.8, 4.0]
g relative strength of inhibitory synapses [3.5, 8.0]
J absolute excitatory strength [0.05, 0.4] mV
τm membrane time constant 20 ms
Cm membrane capacitance 250 pF
td synaptic delay period 1.5 ms
tref absolute refractory period 2 ms
θ firing threshold 20 mV
Vreset reset membrane potential 10 mV
NE number of excitatory neurons 10000
NI number of inhibitory neurons 2500
ε connection probability 0.1
CE number of incoming excitatory synapses 1000
CI number of incoming inhibitory synapses 250

Simulation parameters
Training and validation data
Tsim simulation duration 3 s
Ttransient start-up transient duration 150 ms
dt time resolution 0.1 ms
Model exploration data
Tsim simulation duration 30.5 s
Ttransient start-up transient duration 500 ms
dt time resolution 0.1 ms

2.2 Forward-model predictions of LFPs127

In order to compute local field potentials (LFPs) from the point-neuron128

network, we utilized the recently introduced ‘hybrid LFP scheme’ (Hagen et al.,129

2016) (github.com/INM-6/hybridLFPy), illustrated in Figure 1. The scheme130

allows for the decoupling of the simulation of spiking dynamics (here computed131

using point neurons) and predictions of extracellularly recorded LFPs. The132

latter part relies on reconstructed cell morphologies and multicompartment133

modeling in conjunction with an electrostatic forward model. As the complete134

description of the scheme (including the biophysics-based forward model) and135

9

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 1, 2019. ; https://doi.org/10.1101/564765doi: bioRxiv preprint 

https://github.com/INM-6/hybridLFPy
https://doi.org/10.1101/564765
http://creativecommons.org/licenses/by-nc-nd/4.0/


its application with a cortical microcircuit model (Potjans and Diesmann,136

2014) is given in Hagen et al. (2016), we here only briefly summarize the137

main steps taken to predict LFPs from the two-population network described138

above: To represent each network population we chose one layer-4 pyramidal139

neuron and one interneuron reconstruction for the excitatory and inhibitory140

populations, respectively (Figure 1B). The corresponding morphology files141

L4E_53rpy1_cut.hoc and L4I_oi26rbc1.hoc were also used in Hagen et al.142

(2016) (cf. their Table 7), but the apical dendrite of the pyramidal neuron was143

cut to make it shorter to better fit our smaller column. The somatic positions144

of all NE +NI neurons were drawn randomly with homogeneous probability145

within a cylinder with radius r and height ∆z (Figure 1B). Each excitatory146

cell morphology was oriented with their apical dendrite pointing upwards in147

the direction of the positive z−axis and rotated with a random angle around148

that axis, while inhibitory neurons were rotated randomly around all three149

axes. The membranes of each morphology were fully passive, with the same150

membrane time constant τm as in the point-neuron network.151

In the present hybrid scheme the activity in the LFP-generating popula-152

tions of multicompartment neurons are obtained by mapping spikes generated153

by individual LIF neurons in the point-neuron network to synapse activation154

times at specific positions on their equivalent multicompartment neurons. To155

obtain the synaptic connectivity onto the different positions on the morpholo-156

gies of the multicompartment neurons, we defined an ‘upper’ and ‘lower’ layer157

(homologous to e.g., layer 2/3 and 4) on the depth intervals [0, z1) and [z1, z2),158

see Figure 1B. The layer-specificity of connections (Hagen et al., 2016, p.159

4470–4473) was equal between layers for excitatory synapses onto excitatory160

10

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 1, 2019. ; https://doi.org/10.1101/564765doi: bioRxiv preprint 

https://doi.org/10.1101/564765
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 1: Overview of hybrid scheme for computing local field potentials (LFPs). Top row:
First, the dynamics of a network is simulated using a point-neuron simulation (A), and the resulting
spike times are saved to file. Orange and blue color indicate excitatory and inhibitory neurons. In a
separate simulation, the obtained spike times are replayed as synaptic input currents onto reconstructed
neuron morphologies representing postsynaptic target neurons (B, only one excitatory in orange and one
inhibitory neuron in blue are shown). Based on the resulting transmembrane currents of the postsynaptic
target neurons in this second simulation, the LFP is calculated (C). Bottom row: Prediction of LFPs
from population firing histograms. Instead of running the full hybrid scheme, the LFP can be predicted
by the convolution of the population firing histograms (lower figure in A) with kernels representing the
average contribution to the LFP by a single spike in each population (lower figure in B). These kernels
are computed using the hybrid scheme, see Hagen et al. (2016, Figure 13).

cells, otherwise all other synapses were made in the lower layer. Within161

each layer, the probabilities for synaptic connections were proportional to162

the surface area of each compartment normalized by the total compartment163

surface area within the layer. Only inhibitory synapses were allowed on the164

soma compartments. The per-neuron synaptic in-degrees were preserved165

from the network. As the delta-shaped postsynaptic currents (PSCs) of166

the point-neuron network cannot be accurately represented in the multicom-167

partment neuron modeling scheme due to numerical discretization of time,168

alpha-function shaped PSCs (Equation (7) in Table 3) with synaptic time169

constant τs were used instead. The amplitude of the PSCs was chosen so that170

the total transferred charge is equal for both synapse types (thus preserving171
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the total synaptic input current between the network and multicompartment172

neurons). A full description of the multi-compartment neuron model is given173

in Tables 3 and 4.174

The presently used choice of current-based synapses and morphologies with175

passive membranes in the multicompartment neuron models introduces a linear176

relationship between any presynaptic spike event and contributions to the LFP177

resulting from evoked currents in all postsynaptic multicompartment neurons.178

Thus the LFP contribution φiX(r, t) at position r from a single presynaptic179

point-neuron neuron i in population X can, in general, be calculated by180

the convolution of its spike train νiX(t) ≡
∑

k δ(t− tki ) with a unique kernel181

H i
XY (r, τ) as φiX(r, t) =

∑
Y (νiX ∗H i

XY )(r, t). This kernel encompasses effects182

of the postsynaptic neuron morphologies and biophysics, the electrostatic183

forward model, the synaptic connectivity pattern, conduction delay and PSCs.184

The resulting LFP due to spikes in a presynaptic population X is then

given by (Hagen et al., 2016)

φX(r, t) =
∑
Y

∑
i∈X

(νiX ∗H i
XY )(r, t) . (9)

The evaluation of this sum is computationally expensive for large population185

sizes. For our purposes where the calculation of of LFP signals lasting seconds186

must be repeated tens of thousands of times to have training and test data187

for the CNNs, this scheme is not feasible.188

Following Hagen et al. (2016, Figure 13) we instead use a firing-rate ap-

proximation and compute the LFP by a convolution of population firing rates

νX(t) ≡
∑

i∈X ν
i
X(t) and averaged kernelsHX(r, τ) ≡ 1/NX

∑
Y

∑
i∈X H

i
XY (r, τ),

12
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Table 3: Description of multi-compartment neuron populations.

A Model summary
Populations Local excitatory and inhibitory populations
Neuron
model

Multi-compartment neurons with passive cable formalism

Synapse
model

Current-based α-function shaped, fixed strength for each population

Topology Cylinder of 1 mm2 cross-section with somas of both populations positioned in
single layer of thickness 0.1 mm.

B Neuron models
Type Reconstructed multi-compartment morphologies with passive electrical properties
Description For each neuron, the membrane potential Vn of compartment n connected to

m other compartments k, with a surface area an, length ln and diameter dn is
given by:

m∑
k=1

gakn(Vk − Vn) = Cmn
dVn
dt

+ Imn (3)

Cmn = cman (4)

gakn = π(d2n + d2k)/(4ra(ln + lk)) (5)

Imn = gLn(Vn − EL) +
∑
j

Ijn , (6)

where for compartment n, Cmn is the membrane capacitance, gakn the axial
conductance from compartment k, Imn the membrane current, gLn the membrane
leak conductance, EL the extracellular reversal potential, and Ijn the synaptic
current from presynaptic neuron j.

C Synapse model
Synapse
type

α-function shaped postsynaptic current

Description
I(t) = H(t− ta)JCte1−t/τs (7)

H(t) = 0 for t ≤ 0, otherwise 1 . (8)

Here ta is the activation time of the synapse, J the synaptic strength, and τs is the
synaptic time constant. C is a constant chosen so that JC

∫∞
0
te1−t/τsdt = CmJ ,

assuring that the same total charge is transferred as in the δ-function synapse in
the point-neuron network.

D Topology
Type Cylinder with radius 1/

√
π mm and height 0.5 mm containing two vertical

sections
Description - Cylinder extends from z=-500 µm to z = 0

- All somas are randomly placed with a uniform distribution within the
boundaries r ≤ 564 µm and −450 µm ≤ z ≤ −350 µm

- Two regions separated by the plane z = −300 µm
- Synapses on inhibitory neurons are placed in lower region
- Inhibitory synapses on excitatory neurons are placed in lower region
- Excitatory synapses on excitatory neurons are split equally between
regions

13
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Table 4: Multi-compartment neuron parameters.

Multi-compartment neuron parameters
Symbol Description Value
τm membrane time constant 20 ms
Cm membrane capacitance 1.0 µF/cm2

Rm membrane resistivity τm/Cm
Ra axial resistivity 150 Ωcm
τs synaptic time constant 5 ms
EL passive leak reversal potential 0 mV
Vinit membrane potentials at t = 0 ms 0 mV
σe extracellular conductivity 0.3 Sm−1

that is,

φX(r, t) = (νX ∗HX)(r, t) . (10)

Similar to Hagen et al. (2016), these averaged kernels HX(r, τ) were here189

measured using the full hybrid-scheme set up by replacing ongoing spiking190

activity in the point-neuron network populations by fully synchronous spike191

events, that is, νiX(t) ≡ δ(t− tX) where tX is the timing of the synchronous192

event in population X. In this way the computational resources needed to193

run LFP simulations are reduced by several orders of magnitude compared194

to direct use of Equation 9. To test the accuracy of the approximation of195

using Equation 10 instead of Equation 9, we compared their LFP predictions196

for a set of example parameter sets and found in general excellent agreement197

between the resulting power spectra. A comparison is shown in the lower198

panels of Figure 5 in Results.199

The kernel HX will scale linearly with the postsynaptic strengths of200

population X, and is therefore dependent on the parameters J for X ∈ [E, I]201

and g for X ∈ [I]. The kernels were thus computed only once for a set of202
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reference values for J and g, and for each simulation these reference kernels203

were scaled accordingly to the particular values of J and g. The LFP was204

computed across depth through the center of the cylindric volume with a205

spatial resolution d as illustrated in Figure 1B for the same duration as the206

network simulations.207

2.3 Statistical methods208

LFP spectral analysis209

The power spectral densities Pφ(r, f) of LFPs φ(r, t) in each location r were210

estimated using Welch’s average periodogram method (Welch, 1967). For this211

we used the implementation from the Python SciPy package (Jones et al.,212

2001–) (scipy.signal.welch), with parameters listed in Table 5.213

Table 5: Parameters for Welch’s method for computing power spectral density (PSD) of LFP.

Power spectrum estimation
Symbol Description Value
NFFT window length 300 ms
noverlap segment overlap 150 ms
Fs sampling frequency 1 kHz
window window function Hann

Statistical measures of activity214

Two statistical measures were employed to probe the spiking network activity215

in the different regions of the parameter space. Simulations of 30.5 seconds216

of the activity were run and used to calculate the statistics, where the first217

500 ms of the simulations were discarded.218
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The mean network firing rate, including both the excitatory and inhibitory

populations was calculated as

ν =
1

(NE +NI)(Tsim − Ttransient)
∑
i

∑
l

∫ Tsim

Ttransient

δ(t− til)dt, (11)

over all neurons i and their spikes l at spike times til. The coefficient of

variation (CV) of the inter-spike intervals (ISI) of individual neurons was

used as a measure of the irregularity of firing (Grün and Rotter, 2010). The

presently used mean CV was defined as

CV =
1

N

N∑
i

σISI,i
µISI,i

, (12)

averaged over all neurons i.219

As a measure of the degree to which the LFP power spectrum is spread

out over different frequencies, we employed the entropy of the normalized

power spectrum of the LFP measured in the uppermost channel, defined as

S = −
∑
n

P̃φ(fn) log P̃φ(fn) , (13)

where P̃φ(fn) is the power spectrum of the LFP φ(r, t) at frequency fn220

normalized to unity. Since the power spectrum is computed numerically using221

Welch’s method, this introduces a discretisation in frequency space.222
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2.4 Simulation of training and validation data223

Two different sets of training and validation data were created for this study.224

The first set was generated by a wide parameter space wherein the point-225

neuron network parameters η ∈ [0.8, 4.0], g ∈ [3.5, 8.0] and J ∈ [0.05, 0.4]mV226

were 50000 parameter triplets were randomly selected with homogeneous227

probability. This first set thus encompassed the four different activity states228

that are displayed by the Brunel network, illustrated in Figure 2. These229

activities include synchronous regular (SR), asynchronous irregular (AI),230

synchronous irregular (SI) with either slow or fast oscillations. This wide-231

spanning parameter space is illustrated by the orange outline. The second232

training and validation data set was generated by drawing 50000 parameter233

combinations from a narrower parameter space where η ∈ [1.5, 3.0], g ∈234

[4.5, 6.0] and J ∈ [0.1, 0.25] mV. This second data set encompassed AI activity235

states, as illustrated by the blue outline in Figure 2. All other parameters236

(Table 2) were kept constant in the simulations, which each was run for a237

duration of Tsim = 3 s. Start-up transients with duration Ttransient = 150 ms238

were discarded. LFP signals for all spiking output were computed as outlined239

above, and as final training and validation data we estimated the power240

spectrum Pφ(r, f) in each LFP channel.241

2.5 Parameter estimation by convolutional neural net-242

works243

The CNN architecture is illustrated in Figure 3 and fully described in Table 6,244

and was set up using the Keras machine learning framework (Chollet et al.,245
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Figure 2: Brunel model network and phase diagram. A, Illustration of network. Solid lines
represent excitatory connections, dashed lines inhibitory connections. B, Phase diagram, adapted from
Brunel (2000), Figure 2A. Different network states arise depending on the parameters η = νext/νthr and
g (where in the present example a fixed synaptic delay td of 1.5 ms is used). SR stands for synchronous
regular, SI for synchronous irregular, and AI asynchronous irregular. Orange box shows the extent of of
parameters we simulated and blue box when we restricted the simulations to the AI state. Note that this
plot shows a slice of the parameter space for a given value of J = 0.1. We considered different values of
J in the study, so the actual parameter space is a cube, with the third axis being in the J-direction. The
red dots labeled A–E indicate the η and g values of the example activities shown in Figure 5.

2015) running on top of TensorFlow (Abadi et al., 2015). It consisted of three246

convolutional layers with 20 filters, each followed by max pooling layers, and247

two fully connected layers before the output layer. The rectified linear unit248

(ReLU) function f(x) = max(0, x) was used as the activation function for249

all layers apart from the output layer, and biases were only used in the fully250

connected layers. As input, it took the PSD of each LFP channel, a 6 by 151251

matrix. The convolutions were done in one dimension, with kernels extending252

over all LFP channels. There were two fully connected layers, with 128 nodes253

each, before the output layer consisting of 3 nodes. Each node in the output254

layer corresponded to a single parameter η, g and J .255

The LFP PSD was normalized for each channel by the mean of the256

sum of the PSD over all frequencies, serving to diminish the variation in257
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LFP PSD

convolutional layers

max pool

fully connected

output

Figure 3: Illustration of convolutional neural network (CNN). The PSDs of all six LFP channels
are taken as input. The three convolutional layers consist of 20 filters each, and are followed by max
pooling. Two fully connected layers precede the output layer which consists of 3 nodes, one for each
parameter.

amplitude across the different LFP PSDs input to the network, while keeping258

the variation in amplitude across channels for each single LFP PSDs. For259

labels, each parameter was linearly mapped to the interval [0, 1].260

The network was trained by batch gradient descent on 40000 of the

simulated LFPs, while the final 10000 simulated LFPs were reserved for

validation. To train the CNN, we required a loss function which was minimized

during training. We defined the loss as the mean squared error of the estimator

loss =
〈
(â− atrue)2

〉
(14)

where â is the estimate (output from the CNN) and atrue is the truth (‘ground-261

truth’ value) of any network parameter a.262

The Adam optimizer (Kingma and Ba, 2014) was used, with a batch size263

of 100, learning rate of 0.001 and the β1, β2 and εAdam parameters at their264

suggested default values. The networks were trained for 400 epochs, and the265

network weights with the lowest loss were saved.266
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Table 6: Detailed specification of presently used convolutional neural network (CNN). The
convolutional kernel dimensions are given as [frequency, channels in, channels out], the strides and window
sizes are given in the frequency dimension.

Convolutional neural network
Layer Description
Conv. layer 1 kernel size: 12x6x20

stride: 1
activation: ReLU
bias: no

Max pool 1 window size: 2
stride: 2

Conv. layer 2 kernel size: 3x20x20
stride: 1
activation: ReLU
bias: no

Max pool 2 window size: 2
stride: 2

Conv. layer 3 kernel size: 3x20x20
stride: 1
activation: ReLU
bias: no

Max pool 3 window size: 2
stride: 2

Dense layer 1 nodes: 128
activation: ReLU
bias: yes

Dense layer 2 nodes: 128
activation: ReLU
bias: yes

Output layer nodes: 3
activation: None
bias: no

2.6 Effect of duration of LFP signals267

It was a priori not known what duration of the data are required to obtain268

stable results. To test this, the duration of each LFP simulation was succes-269

sively extended, the PSD of the LFP was computed using the Welch method270

(cf. Section 2.3), and the CNN was trained with the data to predict the271

three parameters simultaneously. The test loss during training is shown in272
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Figure 4A. Overall, the loss decreased with training duration and reached a273

plateau after a certain amount of training epochs. Note that with increasing274

stimulation duration of the data, the loss got smaller. This was due the275

larger variation in the computed PSDs for shorter simulations. With longer276

duration of the LFP signals used in the PSD calculations, the variations will277

be smaller. The results in the figure suggested that a simulation duration of278

about 1800 ms would be a good choice, as shorter simulation times decreased279

the performance. Figure 4B shows the scaling of the minimal test loss (that280

is, loss obtained in the limit where more training epochs do not improve281

results) as a function of simulation duration. The ∼ 1/
√
t least squares fit282

was motivated by the scaling of the error of the mean, which gives the square283

root dependence of the standard error of the mean. This scaling assumes284

uncorrelated experiments, which is not the case when using Welch’s method285

as we do. Nevertheless, the fact that this scaling held also for our estimator286

gave a hint when the uncertainty is still limited by statistical fluctuations.287
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Figure 4: A, Test loss as a function of number of training epochs of the CNN for different simulation
lengths. B, Minimal loss (that is, smallest loss in panel A) as a function of simulation length. A function
with ∼ 1/

√
t shape was fitted to the data to illustrate that the scaling is dominated by limited statistics.

The R2 score was 0.994.
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2.7 Technical details288

2.7.1 Reproducibility289

The simulated results presented here were done using Python v2.7.12. All290

point-network simulations were done with the NEST simulator v2.12.0 (Kunkel291

et al., 2017). The forward-modeling of the LFP was done using hybridLFPy292

v0.1.3 (Hagen et al., 2016), with NEURON v7.5 (Hines et al., 2009). All simu-293

lations were run on the Stallo high-performance computing cluster consisting294

of 2.6 GHz Intel Xeon E5 2670 and 2.8 GHz Intel Xeon E5 2680 CPUs.295

The convolutional neural networks were trained using Python v3.5.2 using296

Keras v2.2 with TensorFlow v1.10.0 as backend.297

3 Results298

The aim of this study is to investigate the possibility of estimating network299

model parameters for the Brunel two-population spiking-network model (Brunel,300

2000) from the stationary ‘background’ LFP signal. We start by describing301

this spiking model and its salient dynamical properties and further describe302

how the resulting spikes can be used in a hybrid scheme to calculate associated303

LFPs (Hagen et al., 2016). Then we discuss the estimation performance of a304

convolutional neural network (CNN) to predict network parameters of the305

Brunel network model based on LFP data only.306
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3.1 Network model and LFPs307

The presently used Brunel network produces four different network states308

dependent on the post-synaptic potential amplitude of excitatory connections309

J , the ratio of inhibitory to excitatory connection strength g, and the strength310

of the external input η relative to the threshold rate, see Figure 2. In the311

synchronous regular (SR) state the neurons fire regularly and in synchrony.312

The asynchronous regular (AR) state is characterised by regularly firing313

neurons which largely fires unsynchronised with respect to each other. The314

third state is the asynchronous irregular (AI) state, where individual neurons315

have an irregular firing rate and very little synchronization. The fourth state316

is the synchronous irregular (SI) state, characterised by oscillatory population317

firing rates, yet highly irregular firing of individual neurons. Example spike318

raster plots and population firing rates for SR, AI and SI states of the network319

are shown in the top rows of Figure 5. AI states are commonly believed to320

be realised in most healthy neural networks in vivo, often characterized by321

low average pairwise spike-train correlations (see e.g., Ecker et al. (2010)) and322

irregular spike trains (see e.g., Mochizuki et al. (2016)).323

To generate training and test data for the convolutional neural net (CNN),324

we simulated the network for many combinations of parameters (η ∈ [0.8, 4],325

g ∈ [3.5, 8] and J ∈ [0.05, 0.4] mV). This parameter space includes parameter326

combinations giving three of the states described above: AI, SI, and SR (see327

orange rectangle in Figure 2). For details of the simulation procedure, see328

Section 2.4.329

The LFPs were simulated using the so-called hybrid scheme introduced by330
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Figure 5: Examples of simulated spiking network activity and LFPs for different sets of
network parameters (η, g and J). For each simulation, A–E, the first row shows spike trains from
100 randomly selected neurons across both populations. The second and third row show the population
firing rate (including both the excitatory and inhibitory neurons) and its power spectral density (PSD).
The final two rows show the LFP signal from all six channels and the PSD of channel 1, respectively.
The dashed red lines in the lowest panel shows the LFP PSD computed from spikes in individual neurons
(Equation 9) rather than with the presently used population firing-rate approach (Equation 10, black lines)
which is computationally much less demanding. In general, the agreement is seen to be very high, the
only discrepancy is seen for the SR-state example where the height of the peak around 300 Hz differs. The
network states for the five examples (SR/SI(fast)/SI(slow)/AI, see text) are indicated at the top.

Hagen et al. (2016). In this scheme, neuronal network activity is predicted by a331

point-neuron network (here the Brunel network), and the corresponding LFPs332

are estimated in a latter step by ‘playing back’ spike times as activation times of333

synapses distributed across reconstructed neuron morphologies representative334

for each population type. The LFP is then computed from the resulting335

transmembrane currents combined with an electrostatic forward model derived336

from volume-conductor theory, as detailed in Section 2.2. An overview over337
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the hybrid scheme, including the geometrical organisation of the ‘cortical338

column’ used in the LFP-generating step, is shown in Figure 1.339

3.1.1 Exemplary LFPs for different network states340

In the presently used model set-up, the LFP is linearly dependent on the341

point-neuron network spiking activity (see Section 2.1 and Section 2.2). Any342

network parameter change affecting ongoing spiking activity will therefore343

directly affect the LFP. The panels in the lower two rows of Figure 5 show the344

resulting LFP and LFP power spectra for five different network parameter345

combinations of η, g and J .346

An example synchronous regular state (SR) is shown in panel A. The347

simulation showed high regularity and synchrony of the individual spike348

trains and a strongly oscillating population firing rate. The corresponding349

LFP generally had a similar time course over all channels, though with350

opposite phases for the topmost and lower recording channels. The power351

spectral density (PSD) of the LFP showed a decrease in power with increasing352

frequency, though with a clear peak at around 333 Hz. This peak was also353

seen in the PSD of the firing-rate, reflecting the tight relationship between354

spikes and LFPs.355

Two examples of the synchronous irregular state (SI) are illustrated356

in Figure 5B,C, characterised by synchrony of the firing of neurons while357

individual neurons fire irregularly. In panel B an example with high firing358

and fast oscillations is shown. Here the power spectrum of the LFP showed359

two peaks at around 175 and 350 Hz, respectively. Again, the same peaks are360

found also in the firing rate spectra. In contrast, panel C shows a low-firing361
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SI state with more slowly varying population firing rates, though without any362

notable peak in the firing-rate or LFP power spectra.363

Two examples of the asynchronous irregular state (AI) are shown in the364

last two panels (Figure 5D,E). As suggested by the name, this state is defined365

by lack of synchrony between different neurons and irregular firing patterns366

of each neuron. For the example in panel D, the firing-rate PSD exhibited367

three high-frequency peaks, with the peak at the highest frequency (∼200 Hz)368

being highest. The same three peaks were found also in the LFP PSD, but369

now the peak at the lowest frequency (∼70 Hz) was highest. This reflects370

low-pass filtering effects of the LFP from synaptic and intrinsic dendritic371

filtering (Lindén et al., 2010; Łęski et al., 2013). In panel E the recurrent372

excitation J is much increased compared to the example in panel D. This373

combined with a reduction of the relative inhibition g, gave much larger LFP374

signals, as reflected in the high power of the LFP seen for the low frequencies375

in the LFP PSD. For this parameter set the firing-rate PSD exhibited a broad376

peak around 100 Hz, but this peak was absent in the corresponding LFP PSD377

due to synaptic and intrinsic dendritic low-pass filtering.378

3.1.2 Model behaviour across parameter space379

To extract network model parameters from recordings of neural activity such380

as the LFP, the network model parameters must necessarily be reflected in381

these recordings. After the qualitative discussion above, we proceed to discuss382

how the network behaves over the entire parameter space. We therefore give383

an overview of how different spike- and LFP-based measures of neural activity384

vary across parameter space.385
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Spikes. Panel A in Figure 6 shows how the mean network firing rate varied386

over the parameter space. The overall trend was that with increasing g, the387

firing rate decreased since inhibition was increased. The transition at g = 4388

resulted from the fact that there are four times more excitatory neurons389

than inhibitory, and thus for g < 4 excitation dominates network behaviour.390

For J & 0.15, three separable regions with smooth transitions emerged: A391

region of high firing rate on the left border of the plots (g . 4), a region392

of low firing rate on the bottom of the plots (g & 5, η . 1), and a region393

of intermediate firing rate in the upper right of the parameter space. For394

smaller values of J (J . 0.1) the transition between the high-firing region395

and the intermediate-firing region became smoother. Thus, large values of J396

amplified the differences between the regions. These distinct regions in the397

firing-rate phase diagram correspond well with the phase diagrams derived398

by Brunel (2000), see Figure 2.399

Panel B in Figure 6 correspondingly displays the parameter dependence of400

the average coefficient of variation (CV) of the inter-spike intervals. Similar401

to the population firing rate, one can see a boundary at about g ≈ 4 over a402

large part of the considered parameter range of J and η. In the region with403

low η and high g (η . 1.5, g & 5) there was also a distinct area with low CV,404

reflecting the expected lower CV of the slow-oscillation SI state compared405

to the AI state for larger values of η. For small values of J (J . 0.1), there406

was a region of larger CV visible in the upper right corner of the parameter407

space (g & 6 and η & 3.6). This region overlaps with fast-oscillation SI state408

described by Brunel (2000) (see phase diagram in Figure 2).409
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Figure 6: Statistical measures of network activity for different combinations of network pa-
rameters (η, g and J). A, Average population firing rates, that is, average firing rate over all neurons
and times. The red dots show the parameter values of the examples in Figure 5. B, Mean coefficient of
variation (Equation (12)) of the inter-spike intervals over all neurons as a measure of the spiking irreg-
ularity. C, Square root of the variance of the LFP signal integrated over time for the topmost channel
(channel 1). This measure corresponds to the square root of integral of the power spectrum of the LFP
over all frequencies (Lindén et al., 2011), and is referred to as the standard deviation of the LFP (LFP
STD). D, LFP Entropy, cf. Equation 13.

LFP. The example LFP patterns in Figure 5 showed substantial variability410

of the LFPs for different network parameter values. This suggests that it411

indeed may be possible to estimate network parameters from the LFP. To412

explore this in more detail, we show in panels C and D of Figure 6 two413

different measures of LFP signals across the same parameter space.414

Panel C shows a measure of the overall signal power of the LFP signal,415

that is, the standard deviation (STD) for the topmost channel (channel 1).416

This measure corresponds to the square root of the variance of the LFP417

signal integrated over all frequencies (Lindén et al., 2011). In panel C a first418
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observation was that large values of the excitatory weight J led to higher419

values of the LFP STD, not surprising given the stronger excitatory synaptic420

inputs. Likewise, it was seen that the LFP STD generally decreased when421

inhibition, that is, g, increased. Interestingly, despite the very high firing422

activity for values of g smaller than 4, the LFP STD was small for these423

parameter values. This can be understood by inspection of panel A in Figure 5424

which shows results for an example state with g = 3.5: Even if there are425

strong bombardments of synaptic inputs onto the LFP-generating excitatory426

neurons, the input is so clock-like and regular that there is little power in the427

LFP signal at the lower frequencies. The only strong LFP signal contribution428

was obtained for frequencies over ∼300 Hz, corresponding to the peak seen in429

the firing rate PSD.430

The LFP STD measure considered in panel C measures the overall LFP431

signal strength across frequencies. In contrast, the measure labeled ‘LFP432

Entropy’ in panel D measures how much the overall LFP power is spread433

across the different frequencies, cf. Equation 13 in Methods. The largest434

entropy value was observed for the smallest excitatory weight (J = 0.05 mV),435

but the detailed parameter dependence of the LFP entropy was not the436

main point here. The most important observation was that the parameter437

dependence of LFP Entropy was qualitatively different from the parameter438

dependence of LFP STD. This implied that the frequency-resolved PSD439

contained more information regarding the underlying network parameters440

than either the overall amplitude (LFP STD) or the frequency spread (LFP441

Entropy) alone. This provided cautious optimism that the variation of the442

LFP PSD is sufficiently strong across parameter space to allow for estimation443
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of network parameter values with a suitable estimation methods.444

3.2 Network parameters are accurately estimated from445

LFP446

After this rough survey over how the LFP for the Brunel network model vary447

across parameter space, we now ask the question: Can the network parameters448

be estimated from this LFP by use of Convolutional Neural Networks (CNNs)?449

We chose to use CNNs because they do not rely on manual feature extraction,450

and our analysis thus do not depend on any assumption of how the model451

network parameters are reflected in the LFP. Further, we used the power452

spectral density (PSD) of the LFP for this analysis, that is, used the PSD as453

input to the CNNs. This approach removes phase information in the LFP.454

However, since we only considered LFP data from stationary network activity,455

the hypothesis was that most of the available relevant information regarding456

network parameters should the contained in the PSD.457

Our CNN consisted of three convolutional layers followed by two fully458

connected layers. An illustration can be seen in Figure 3, and detailed459

specifications are given in Section 2.5 in Methods. We generated several pairs460

of training and testing data sets for different scenarios. The parameter space461

was both sampled randomly and on a regular grid. We also generated a462

training and test data set on a subset of the parameter space, but with the463

equal amount of simulations.464

While several approaches were tested and compared, we defined the465

following set-up as the standard set-up: The data was simulated using466
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randomly distributed parameters η, g and J with a simulated duration of 2.85467

seconds for each trial, see Section 2.4. From the simulated LFP, the power468

spectral densities (PSD) for six recording channels were computed and used469

as input to the CNN. Then, a single CNN network was trained to predict the470

parameter vector ~p = (η, g, J) simultaneously, and all three parameters were471

set to contribute equally to the loss function, Equation 14. To achieve this,472

the parameter ranges of η, g and J were all scaled to the unit interval [0, 1]473

for the considered part of the parameter space.474

To quantify and illustrate the accuracy of the parameter estimation we475

used the estimation error â− atrue where atrue was the true value and â the476

estimated value. Figure 7 (orange lines) shows the accuracy of the three477

network parameters when considering the full parameter space (η ∈ [0.8, 4),478

g ∈ [3.5, 8) and J ∈ [0.05, 0.4) mV). As observed, the estimation errors are479

in all cases generally smaller than 5%. Also, the estimations had small biases,480

that is, the mean errors were close to zero.481

The full parameter space considered above covered four of the characteristic482

network states seen for the Brunel network, see orange rectangle in Figure 2.483

Here the network-generated LFP can be expected to vary substantially across484

parameter space making the CNN estimation easier. We thus next explored485

to what extent CNNs could estimate network parameters within a particular486

state, that is, the AI state which is thought to be most relevant for cortex.487

Training and validation of the CNN were repeated using a second data488

set, fully contained within the AI region (η ∈ [1.5, 3), g ∈ [4.5, 6) and489

J ∈ [0.1 − 0.25) mV), see blue rectangle in Figure 2. The same amount of490

training and test data were used as for the full parameter space, so effectively491
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the restricted parameter space was more densely sampled. Estimation errors492

are shown in Figure 7 (blue lines). With a similarly-sized data set containing493

only the AI state, the observed error was even smaller than for the full494

parameter space. Thus focusing on a single network state within which there495

expectedly is less variation in the LFP, increased the accuracy. However,496

when using the CNN trained with the data from the full parameter space,497

the estimation accuracy for a restricted test set containing only the AI state,498

was reduced (Figure 7, purple lines). The accuracy was still better than when499

estimating parameters across the full parameters space, though, that is, the500

purple line always was always positioned between the yellow and blue lines in501

the cumulative plots in Figure 7B. Further, independent of which data set502

was used, the g parameter was always the one with the largest prediction503

accuracy compared with η and J .504

3.3 Highest prediction accuracy of network parameters505

in AI state506

Next, the variation of the parameter estimations errors across the full param-507

eter set was investigated (Figure 8). The estimation of η (left panel of Figure508

8) was less reliable in the region of low g (g < 4) which corresponds to the509

SR state of the network model (Brunel, 2000). The estimation performance510

of J (right panel) was instead worse for the smallest values of η, that is, in511

and around the region of parameters where the network model is in an SI512

state. The estimation of g was generally very accurate for all states of the513

network (middle panel of Figure 8). Taken together this implies that the514

32

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 1, 2019. ; https://doi.org/10.1101/564765doi: bioRxiv preprint 

https://doi.org/10.1101/564765
http://creativecommons.org/licenses/by-nc-nd/4.0/


0.10 0.05 0.00 0.05 0.10
error

0.0

0.1

0.2

0.3

er
ro

r d
ist

.

0.10 0.05 0.00 0.05 0.10
error

0.0

0.1

0.2

0.3

g

0.10 0.05 0.00 0.05 0.10
error

0.0

0.1

0.2

0.3

J
0.2 0.0 0.2 0.4 0.2 0.0 0.2 0.4 0.02 0.00 0.02

0.00 0.02 0.04 0.06 0.08
abs. error

0.00

0.25

0.50

0.75

1.00

cu
m

ul
at

iv
e 

di
st

.

0.00 0.02 0.04 0.06 0.08
abs. error

0.00

0.25

0.50

0.75

1.00

Full parameter
AI state only
Full parameter
evaluated on
AI state only

0.00 0.02 0.04 0.06 0.08
abs. error

0.00

0.25

0.50

0.75

1.00

A

B

Figure 7: Accuracy of network parameter estimation. A, Estimation error distributions for η, g
and J averaged over the entire parameter space. In the plots all parameter ranges were rescaled to the
interval [0, 1] for easier comparison on the lower x-axis, the upper x-axis shows the original values The
vertical line indicates the mean of both distributions. The orange curve shows the result when using the
full parameter set (η ∈ [0.8, 4], g ∈ [3.5, 8] and J ∈ [0.05, 0.4]) and the blue curve when the parameter
set only contains the AI state (η ∈ [1.5, 3], g ∈ [4.5, 6] and J ∈ [0.1 − 0.25]). The purple line gives the
estimation error of the CNN trained for the full parameter set, but evaluated on the restricted parameter
set containing the AI state only. To compare the full parameter data set and the AI-only data set, they
were both scaled to the range of the full parameter set. B, Cumulative error distributions, the proportion
of absolute errors that fall below a given value, also with all parameters rescaled to [0, 1]. The dashed
black lines indicate the 90% coverage interval.

highest prediction accuracy of the three network parameters is obtained for515

the AI state.516

We next considered the estimation accuracies across the restricted param-517

eter space corresponding to the AI network state only (η ∈ [1.5, 3], g ∈ [4.5, 6]518

and J ∈ [0.1− 0.25]), see Figure 9. Also within the AI state, g was predicted519

with the highest accuracy, and J had the lowest estimation accuracy. Further,520

while the estimation accuracy of g and η was almost constant across the521

restricted parameter space, the estimation of J became worse with increasing522

values of J and g (right panel of Figure 9).523
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Figure 8: Mean absolute prediction error using full parameter space. Each voxel in the panels
shows the error on the validation dataset averaged across the parameter ranges, defined by the pixel size
of the grid and the value of J indicated above.

J [0.10, 0.15)

J [0.15, 0.20)

4.5 5.0 5.5
g

1.5

2.0

2.5
J [0.20, 0.25]

J [0.10, 0.15)

J [0.15, 0.20)

J [0.20, 0.25]

J [0.10, 0.15)

J [0.15, 0.20)

J [0.20, 0.25]
0.000
0.005
0.010
0.015
0.020
0.025
0.030

g J

Figure 9: Mean absolute prediction error using restricted parameter set containing only AI
state. See caption of Figure 8 for detailed description.

3.4 Predicting all parameters at once almost as good as524

using individually trained CNNs525

In the above application all three network parameters were predicted by a526

single convolutional neural net (CNN). We next investigated to what extent527
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the estimation accuracy changed when CNNs were trained to estimate each528

parameter separately. The results when considering the full parameter space529

are shown in Figure 10. As expected the estimation accuracy was always530

better for these ‘single-prediction’ CNN networks: The error distribution of531

the η prediction was more centered, that is, less biased, for a single prediction532

network, compared to the ‘combined-prediction’ network (left panel). For the533

estimation of g, the single-prediction network displayed a more narrow peak,534

also highlighting a slightly better performance. For J , the two approaches gave535

very similar results. Overall, we conclude that merely small gains are achieved536

for the present application in terms of estimation accuracy by training a537

separate CNN for each of the three network parameters.538
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Figure 10: Parameter estimation errors for a single versus multiple CNNs. Comparison of the
parameter estimation error, when (i) a single CNN is trained to optimise all three parameters η, g and J
simultaneously (combined predictions), with (ii) three CNNs each trained to estimate a single parameter
(single predictions). All parameters were rescaled to the interval [0, 1].

3.5 Randomly sampled training-data preferable539

The above estimations were based on CNNs trained by LFPs with random540

network parameters drawn from uniform distributions. To test if the way the541

parameter space was sampled had an effect on the accuracy of the estimator,542

we also generated the same amount of training data on a regular grid, spanning543

the same parameter space and repeated the training. The estimation accuracy544
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was then computed using a randomly generated test data set, and results are545

shown in Figure 11.546

0.10 0.05 0.00 0.05 0.10
0.0

0.1

0.2

0.3

er
ro

r d
ist

.

0.10 0.05 0.00 0.05 0.10

g

randomly
sampled
grid-
sampled

0.10 0.05 0.00 0.05 0.10

J

Figure 11: Grid-sampled vs. randomly sampled training data. The plots show error distributions
for CNNs trained on data randomly sampled from the parameter set (blue) and from the same amount of
training data taken from a regular grid (yellow). All parameters were rescaled to the interval [0, 1].

For the prediction of η, there was almost no difference in performance547

between the CNNs trained with grid-sampled and randomly sampled data548

(left panel in Figure 11). For g, however, the grid-trained data showed a549

substantial bias towards lower values of g (middle panel). Such a bias was550

also seen in the estimation of J , but not so pronounced (right panel).551

We speculate that training on grid-sampled data introduces a certain lower552

resolution to the CNN estimators. Randomly sampled data does not contain553

such a grid scale and eventually (with sufficient training data) enables the554

network to learn to interpolate on arbitrary small scales. This intrinsic scale555

of the grid data might thus be the explanation for the poorer performance of556

the CNN trained with randomly sampled data.557

4 Discussion558

In the present work we have investigated to what extent the local field po-559

tential (LFP), that is, the low-frequency part of an extracellular electrical560
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signal, can be used to extract information about synaptic connection weights561

and external inputs in the underlying network. As a model we considered the562

well-known and thoroughly analysed Brunel network comprising an excitatory563

and an inhibitory population of recurrently connected integrate-and-fire (LIF)564

neurons (Brunel, 2000). Despite its simplicity, only three parameters (η, g, J)565

describe external input rate and the weight of the network connections, the566

model exhibits a high diversity of network dynamics, that is, regular or irreg-567

ular spiking patterns of individual neurons and synchronous or asynchronous568

spiking across populations.569

The LFP generated by the network was computed using a hybrid scheme (Ha-570

gen et al., 2016): Spikes computed by the point-neuron Brunel network where571

replayed as presynaptic spikes onto biophysically detailed multicompartmen-572

tal neuron models to compute the LFP as predicted by volume-conductor573

theory (Lindén et al., 2014; Hagen et al., 2018). We then assessed how well574

the values of the three model parameters could be estimated from the power575

spectrum of the stationary ‘background’ LFP signal by application of a con-576

volutional neural net (CNN) (Rawat and Wang, 2017) and indeed found that577

all parameters could be very accurately estimated. This was the case even578

when LFPs stemmed from network in different dynamic states (Figures 7,8),579

but even more so when the LFPs stemmed from the asynchronous irregular580

(AI) state only (Figure 9).581
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4.1 Generalization to more complex network models582

An obvious question is whether the present successful estimation of network583

parameters from LFPs will extend to more complex network models with584

more than three parameters specifying the connections like in the Brunel585

network. Of particular interest here is multilayered cortical network models586

where several neuronal populations contribute to the LFP signal (Reimann587

et al., 2013; Głąbska et al., 2014; Tomsett et al., 2015; Głąbska et al., 2016;588

Hagen et al., 2016).589

The estimation problem will expectedly become more difficult as the num-590

ber of parameters to estimate increases. However, in the present application591

we only used the power-spectral density (PSD) of the LFP signals from the592

stationary background state in the parameter estimation. A ‘richer’ LFP593

signal which may separate the LFP signals for different parameters better,594

can be obtained by also including the phase information of the LFP Fourier595

components, but maybe more importantly by also using stimulus-evoked596

transient LFP signals. Further, in the present application, the parameters597

were estimated by LFPs from six channels spanning a depth of 0.5 mm. With598

only a single population contributing to the LFP as in the present case,599

fewer channels would in fact have sufficed. When several cortical neuronal600

populations positioned at different depths contribute to the LFP, the spatial601

variation of the signal contains more information on the network activity.602

Here the use of a larger number of channels, spanning all cortical layers,603

should expectedly improve parameter estimation.604

To compute the three-second long LFP signals 50000 times to train and605
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test the CNNs in the present study, it was computationally unfeasible to ex-606

plicitly sum over LFP contributions from each individual presynaptic neuron.607

Instead we used the approximate formula in Equation 10 based on population608

firing rates to compute the LFPs, reducing the required computer time by sev-609

eral orders of magnitude. The accuracy of this approximation for the present610

network was demonstrated for a set of representative examples (Figure 5). In611

Hagen et al. (2016) where the eight-population Potjans-Diesmann (Potjans612

and Diesmann, 2014) cortical network model was considered, the same ap-613

proximation was seen to give fairly accurate LFPs as well (Hagen et al., 2016,614

Fig. 13), although not as accurate as in the present case as judged by the615

example tests. Thus the use of the approximation in Equation 10 to compute616

the LFPs in future applications should be tested on a case-to-case basis.617

The choice of using convolutional neural networks (CNNs) within the618

Keras framework (Chollet et al., 2015) for doing the parameter estimation619

was made out of convenience. Other machine learning techniques, see Ismail620

Fawaz et al. (2018) for a recent review, could likely have done as good, or621

even better. Further, the architecture of the CNNs was not optimised in any622

systematic way. A systematic study of the best machine learning method to623

use for LFP-based parameter estimation for more complex network models624

should be pursued, but is beyond the scope of the present paper.625

4.2 Implications for analysis of LFPs626

For single neurons, biophysics-based modeling is well established (Koch, 1999;627

Dayan and Abbott, 2001; Sterratt et al., 2011) and numerous biophysically628
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detailed models with anatomically reconstructed dendrites have been made629

by fitting to experimental data, for example, Migliore et al. (1995); Hay et al.630

(2011); Halnes et al. (2011); Markram et al. (2015). These models have mainly631

been fitted to intracellular electrical recordings, but extracellular recordings632

(Gold et al., 2007) and calcium concentrations (Mäki-Marttunen et al., 2018)633

can also be used.634

Until now the analysis of LFPs have largely been based on statistical635

methods (Einevoll et al., 2013; Pesaran et al., 2018). An overall goal of the636

present project is to contribute to the investigation of to what extent LFPs637

also can be used to develop and validate network models in layered brain638

structures such as cortex and hippocampus. Spikes have already been used639

to distinguish candidate network models in cortex (Blomquist et al., 2009;640

Stimberg et al., 2009), and LFPs recorded in vitro have been used to fit641

hippocampal network models (Chatzikalymniou and Skinner, 2018). There is642

expectedly a clear link between the accuracy of which a parameter can be643

(i) estimated from and (ii) fitted to LFP signals. Thus the present observation644

that network parameters for the Brunel network can be accurately estimated645

from the background LFPs suggests that the same LFP signal also could be646

used to accurately fit the same network parameters given that the model647

structure was known a priori. This link between ‘estimatability’ and ‘fitability’648

should be properly investigated, not only for the Brunel model, but also for649

more complex network models. However, such a study is beyond the present650

scope. A related question that also should be investigated is to what extent651

LFPs used to distinguish between candidate models with a different network652

structure, not only different parameters.653
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4.3 Outlook654

The recording of single-unit and multi-unit activity (MUA) from the high-655

frequency part of the extracellular potentials, has historically been the most656

important method for studying in vivo activity in neurons and neural net-657

works. However, the interest in the low-frequency part, the LFP, has seen658

a resurgence in the last decades. One key reason is the development of new659

multicontact electrodes allowing for high-density electrical recordings across660

laminae and areas (as well as computers and hard drives allowing for the661

storage and analysis of the LFP signals). Another reason is the realisation662

that the LFP offers a unique window into how the dendrites of neurons inte-663

grate synaptic inputs for populations of thousands or more neurons (Lindén664

et al., 2011). In contrast, the MUA measure the output resulting from this665

dendritic integration, that is, spikes from a handful of neurons around the666

electrode contact (Buzsáki, 2004). Thus spikes and LFPs offer complemen-667

tary information about network activity. Since both signals are produced668

from the same network model, the combined use of spikes and LFPs appears669

particularly promising for estimation of network model parameters, or for670

assessing the merit of candidate network models. Such combined use of spikes671

and LFPs has been shown to be beneficial in identifying laminar neural popu-672

lations and their synaptic connectivity patterns from multielectrode cortical673

recordings (Einevoll et al., 2007; Głąbska et al., 2016). Thus combined use of674

spikes and LFPs in the estimation of model parameters should be explored in675

projects where more complex network models are considered where, unlike for676

the presently considered Brunel network model, the LFP signal is insufficient677
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to alone allow for accurate parameter estimation.678

Further, many new optical techniques for probing cortical activity have also679

been developed and refined, for example, two-photon calcium imaging (Helm-680

chen and Denk, 2005), and voltage-sensitive dye imaging (VSDI), measuring681

population-averaged membrane potentials (Grinvald and Hildesheim, 2004).682

Further, at the systems level one has methods such as electroencephalography683

(EEG) (Nunez and Srinivasan, 2006)), which measures electrical potentials at684

the scalp, and magnetoencephalography (MEG) (Hämäläinen et al., 1993))685

which measures the magnetic field outside the head. These measures can686

be computed from the activity of candidate network models (Brette and687

Destexhe, 2012), and tools to facilitate this has been developed (Lindén688

et al., 2014; Hagen et al., 2018; Gratiy et al., 2018). They can all be used to689

constrain and validate candidate network models, and used in combination690

they will likely be particularly powerful.691
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