

The role of structural pleiotropy and regulatory evolution in the retention of heteromers of paralogs

Axelle Marchant^{1,2,3,4#}, Angel F. Cisneros^{1,2,3#}, Alexandre K Dubé^{1,2,3,4}, Isabelle Gagnon-Arsenault^{1,2,3,4}, Diana Ascencio^{1,2,3,4}, Honey A. Jain^{1,2,3,9}, Simon Aubé^{1,2,3}, Chris Eberlein^{2,3,4}, Daniel Evans-Yamamoto^{5,6,7}, Nozomu Yachie^{5,6,7,8} & Christian R Landry^{1,2,3,4*}

9 1. Département de Biochimie, Microbiologie et Bio-informatique, Faculté des sciences et de
10 génie, Université Laval, Québec, Québec, G1V 0A6, Canada

11 2. PROTEO, Le réseau québécois de recherche sur la fonction, la structure et l'ingénierie des
12 protéines, Université Laval, Québec, Québec, G1V 0A6, Canada

13 3. Centre de Recherche en Données Massives (CRDM), Université Laval, Québec, Québec,
14 G1V 0A6, Canada

15 4. Département de Biologie, Faculté des sciences et de génie, Université Laval, Québec,
16 Québec, G1V 0A6, Canada

17 5. Research Center for Advanced Science and Technology, University of Tokyo, 4-6-1 Komaba,
18 Meguro-ku, Tokyo 153-8904, Japan.

19 6. Institute for Advanced Biosciences, Keio University, 14-1 Baba-cho, Tsuruoka, Yamagata 997-
20 0035, Japan

21 7. Graduate School of Media and Governance, Keio University, 5322 Endo, Fujisawa, Kanagawa
22 252-0882, Japan

23 8. Department of Biological Sciences, Graduate School of Science, University of Tokyo, 7-3-1
24 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan

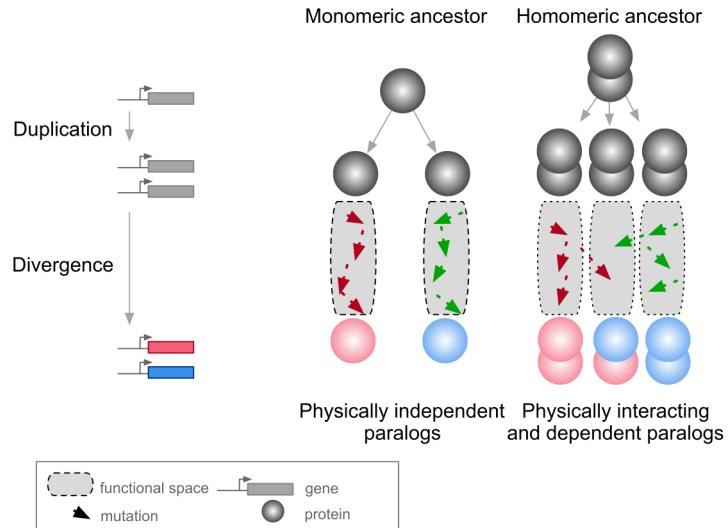
25 9. Department of Biological Sciences, Birla Institute of Technology and Sciences-Pilani, Goa-
26 India

27 #Contributed equally to this work

*Corresponding author: Christian R Landry
1030, Avenue de la Médecine
Université Laval
Québec (Québec) G1V 0A6
Canada
Phone: 418-656-3954
christian.landry@bio.ulaval.ca

36 Keywords: gene duplication, protein-protein interaction networks, homomers, heteromers,
37 pleiotropy, epistasis, regulatory evolution, functional divergence.

38 **Abstract**


39
40 Gene duplication is a driver of the evolution of new functions. The duplication of genes encoding
41 homomeric proteins leads to the formation of homomers and heteromers of paralogs, creating
42 new complexes after a single duplication event. The loss of these heteromers may be required
43 for the two paralogs to evolve independent functions. Using yeast as a model, we find that
44 heteromerization is frequent among duplicated homomers and correlates with functional
45 similarity between paralogs. Using *in silico* evolution, we show that for homomers and
46 heteromers sharing binding interfaces, mutations in one paralog can have structural pleiotropic
47 effects on both interactions, resulting in highly correlated responses of the complexes to
48 selection. Therefore, heteromerization could be preserved indirectly due to selection for the
49 maintenance of homomers, thus slowing down functional divergence between paralogs. We
50 suggest that paralogs can overcome the obstacle of structural pleiotropy by regulatory evolution
51 at the transcriptional and post-translational levels.

52
53 **Introduction**

54
55 Proteins assemble into molecular complexes that perform and regulate structural, metabolic and
56 signalling functions (Janin et al., 2008; Marsh and Teichmann, 2015; Pandey et al., 2017; Scott
57 and Pawson, 2009; Vidal et al., 2011; Wan et al., 2015). The assembly of complexes is necessary
58 for protein function and thus constrains the sequence space available for protein evolution. One
59 direct consequence of protein-protein interactions (PPIs) is that a mutation in a given gene can
60 have pleiotropic effects on other genes' functions through physical associations. Therefore, to
61 understand how genes and cellular systems evolve, we need to consider physical interactions
62 as part of the environmental factors shaping a gene's evolutionary trajectory (Landry et al., 2013;
63 Levy et al., 2012).

64
65 A context in which PPIs and pleiotropy may be particularly important is during the evolution of
66 new genes after duplication events (Amoutzias et al., 2008; Baker et al., 2013; Diss et al., 2017;
67 Kaltenegger and Ober, 2015). The molecular environment of a protein in this context includes its
68 paralog if the duplicates derived from an ancestral gene encoding a self-interacting protein
69 (homomer) (Figure 1). In this case, mutations in one paralog could have functional consequences
70 for the other copy because the duplication of a homomeric protein (HM) leads not only to the
71 formation of two new homomers (HMs) but also to a new heteromer (HET) (Figure 1) (Pereira-
72 Leal et al., 2007; Wagner, 2003). We refer to these complexes as homomers and heteromers of
73 paralogs.

74

75
76
**Figure 1: Mutations in paralogous proteins originating from an ancestral homomer are likely to
77 have pleiotropic effects on each other's function due to their physical association.**
78

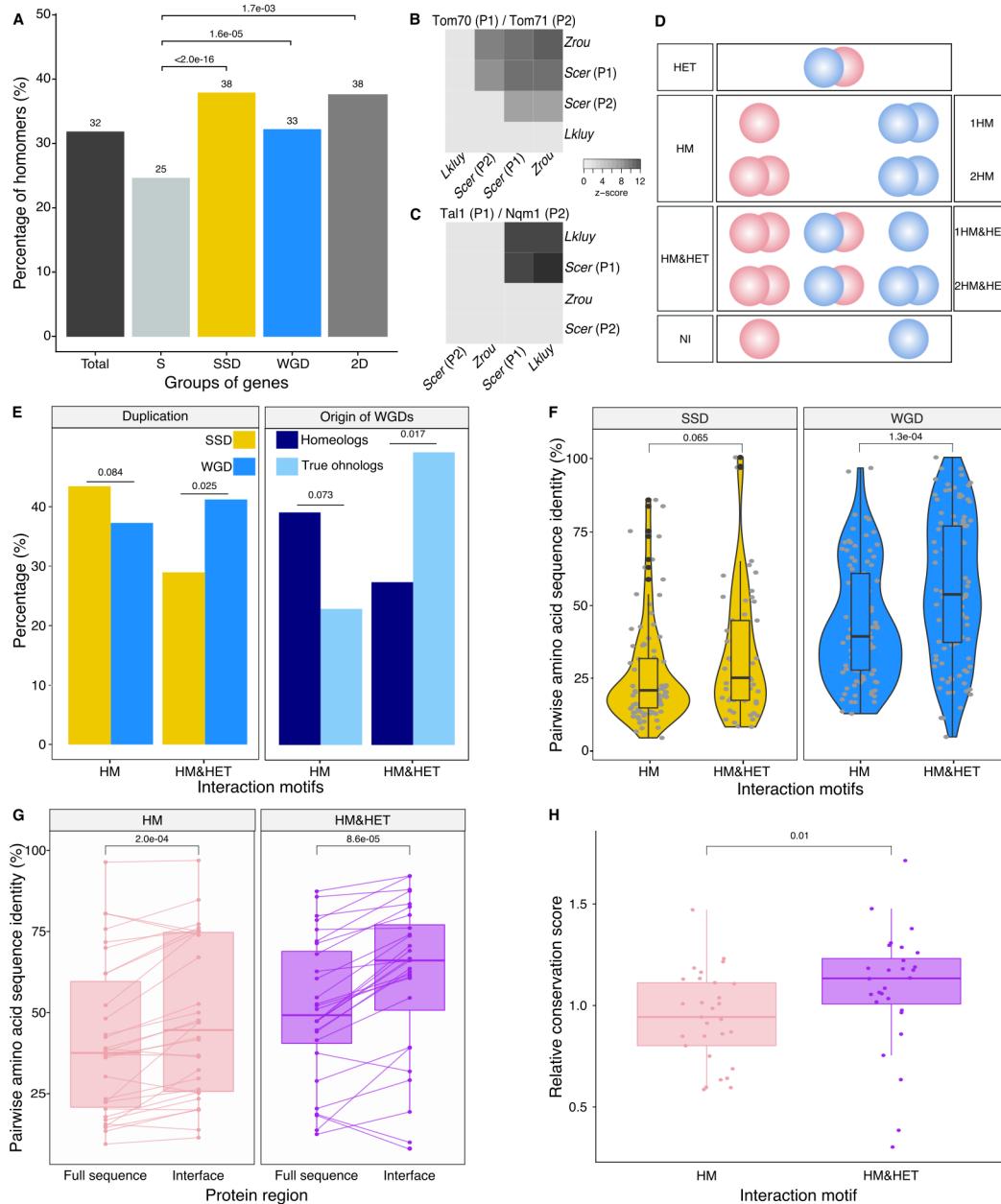
79 Gene duplication leads to physically interacting paralogs when they derive from an ancestral homomeric
80 protein. The evolutionary fates of the physically associated paralogs tend to be interdependent because
81 mutations in one gene can impact on the function of the other copy through heteromerization.

82 Paralogs originating from HMs are physically associated as HETs when they arise. Subsequent
83 evolution can lead to the maintenance or the loss of these HETs. Consequently, paralogs that
84 maintained the ability to form HETs have often evolved new functional relationships (Amoutzias
85 et al., 2008; Baker et al., 2013; Kaltenegger and Ober, 2015). Examples include a paralog
86 degenerating and becoming a repressor of the other copy (Bridgham et al., 2008), and pairs of
87 paralogs that split the functions of the ancestral HM between one of the HMs and the HET (Baker
88 et al., 2013), that cross-stabilize and thus need each other to perform their function (Diss et al.,
89 2017) or that evolved a new function together as a HET (Boncoeur et al., 2012). However, there
90 are also paralogs that do form HMs but that have lost the ability to form HETs through evolution.
91 Among these are duplicated histidine kinases (Ashenberg et al., 2011) and many heat-shock
92 proteins (Hochberg et al., 2018). For the majority of HETs, we do not know what novel functions,
93 if any, contribute to their maintenance.

94
95 Therefore, one important question to examine is: what are the evolutionary forces at work for the
96 maintenance or the disruption of HETs arising from HMs? Previous studies suggest that if a
97 paralog pair maintains its ability to form HMs, it is very likely to maintain the HET complex as well
98 (Pereira-Leal et al., 2007). For instance, Lukatsky et al. (Lukatsky et al., 2007) showed that
99 proteins tend to intrinsically interact with themselves and that negative selection may be needed
100 to disrupt HMs. Given this, and since nascent paralogs are identical just after duplication, they
101 would tend to maintain a high propensity to assemble with each other. Hence, the two paralogs
102 would form both HMs and HETs until mutations that destabilize one or the other specifically
103 accumulate (Ashenberg et al., 2011; Hochberg et al., 2018). In addition, the rate at which the
104 HET is lost may depend on the combined effects of mutations in the different subunits since
105 epistasis may cause mutations together to be more or less disruptive for the HET than for the
106 HMs (Diss and Lehner, 2018; Starr and Thornton, 2016). Here, we hypothesize that the
107 association of paralogs forming HETs acts as a constraint that may slow the functional
108 divergence of paralogs by keeping gene products physically associated.

109 Previous studies have shown that HMs are enriched in eukaryotic PPI networks (Lynch, 2012;
110 Pereira-Leal et al., 2007). However, the extent to which paralogs interact with each other has not
111 been comprehensively quantified in any species. We therefore examine the physical assembly
112 of paralogous proteins (HETs) exhaustively in a eukaryotic interactome by integrating data from
113 the literature and by performing a large-scale PPI screening experiment. Second, using
114 functional data analysis, we examine the consequences of losing HET formation for HM forming
115 paralogs. We perform *in silico* evolution experiments to examine whether the molecular
116 pleiotropy of mutations, caused by shared binding interfaces between HM and HET complexes,
117 could contribute to maintain interactions between paralogs originating from ancestral HMs. We
118 show that selection to maintain HMs alone may be sufficient to prevent the loss of HETs. Finally,
119 we find that regulatory evolution, either at the level of gene transcription or protein localization,
120 may relieve the pleiotropic constraints maintaining the interaction of paralogous proteins.
121

122 **Results**


123 **Homomers among singletons and paralogs in the yeast PPI network**

124 We first examined the extent of homomerization across the yeast proteome (see dataset in
125 methods and the supplementary text) for two classes of paralogs, those that are small-scale
126 duplicates (SSDs) and those that are whole-genome duplicates (WGDs). We considered these
127 two sets separately because they may have been retained through different mechanisms (see
128 below). The dataset for this analysis, which includes previously reported PPIs and novel DHFR
129 Protein-fragment Complementation Assay experiments (referred to as PCA, see methods and
130 supplementary text), covers 2521 singletons, 2547 SSDs, 866 WGDs and 136 genes that are
131 both SSDs and WGDs (henceforth referred to as 2D) (Tables S1 and S2). We find that among
132 the 6070 tested yeast proteins, 1944 (32%) form HMs, which agrees with previous estimates
133 from crystal structures (Lynch, 2012). The proportion of HMs among singletons ($n = 630$, 25%)
134 is lower than for all duplicates: SSDs ($n = 980$, 38%, p -value $< 2.0\text{e-}16$), WGDs ($n = 283$, 33%,
135 p -value = $1.6\text{e-}05$) and 2D ($n = 51$, 38%, p -value = $1.7\text{e-}03$) (Figure 2. A, Tables S1 and S2).
136

137 Although a large number of PPIs have been previously reported in *S. cerevisiae*, it is possible
138 that the frequency of HMs is slightly underestimated because they were not systematically and
139 comprehensively tested (see methods). Another reason could be that some interactions could
140 not be detected due to low expression levels. We measured mRNA abundance in cells grown in
141 PCA conditions and used available yeast protein abundance data (Wang et al., 2012) to test this
142 possibility (Tables S3, S4, S5 and S6). As previously observed (Celaj et al., 2017; Freschi et al.,
143 2013), we found a correlation between PCA signal from our experiments and expression level,
144 both at the level of mRNA and protein abundance (Spearman $r = 0.33$, p -value = $3.5\text{e-}13$ and
145 Spearman $r = 0.46$, p -value $< 2.2\text{e-}16$ respectively). When focusing only on HMs previously
146 reported, we also observed both correlations (Spearman $r = 0.37$, p -value = $3.9\text{e-}08$ and
147 Spearman $r = 0.38$, p -value = $6.0\text{e-}08$ respectively). The association between PCA signal and
148 expression translates into a roughly two-fold increase in the probability of HM detection when
149 mRNA levels change by one order of magnitude (Figure 2—figure supplement 3. A). We also
150 generally detected stronger PCA signal for the HM of the most expressed paralog of a pair,
151 confirming the effect of expression on our ability to detect PPIs (Figure 2—figure supplement 3.
152 B). Finally, we found that HMs reported in the literature but not detected by PCA have on average
153

156 lower expression levels (Figure 2–figure supplement 3. B-C). We therefore conclude that some
157 HMs (and also HETs) remain undetected because of low expression levels.
158

159 The overrepresentation of HMs among duplicates was initially observed for human paralogs
160 (Pérez-Bercoff et al., 2010). One potential mechanism to explain this finding is that homomeric
161 proteins are more likely to be maintained as pairs after duplication because they might become
162 dependent on each other for their stability that is enhanced through the formation of HET (Diss
163 et al., 2017). Another explanation is that proteins forming HMs could be expressed at higher
164 levels and therefore, easier to detect, as shown above. High expression could also itself increase
165 the long term probability of genes to persist after duplication (Gout et al., 2010; Gout and Lynch,
166 2015). We indeed observed that both SSDs and WGDs are more expressed than singletons at
167 the mRNA and protein levels, with WGDs being more expressed than SSDs at the mRNA level
168 (Figure 2–figure supplement 4. A-B). However, expression level (and thus PPI detectability) does
169 not explain completely the enrichment of HMs among duplicated proteins. Both factors,
170 expression and duplication, have significant effects on the probability of proteins to form HMs
171 (Table S7. A). It is therefore likely that the overrepresentation of HMs among paralogs is linked
172 to their higher expression but other factors are also involved.
173

174

175 **Figure 2: Homomers and heteromers of paralogs are frequent in the yeast protein interaction**
176 **network.**

177 **(A)** The percentage of homomeric proteins in *S. cerevisiae* varies among singletons (S, n = 2521 tested),
178 small-scale duplicates (SSDs, n = 2547 tested), whole-genome duplicates (WGDs, n = 866 tested) and
179 genes duplicated by the two types of duplication (2D, n = 136 tested) (global Chi-square test: p-value <
180 2.2e-16). Each category is compared with the singletons using a Fisher's exact test. P-values are reported
181 on the graph. **(B and C)** Interactions between *S. cerevisiae* paralogs and pre-whole-genome duplication
182 orthologs using DHFR PCA. The gray tone shows the PCA signal intensity converted to z-scores.
183 Experiments are performed in *S. cerevisiae*. Interactions are tested among: **(B)** *S. cerevisiae* (Scer) paralogs
184 Tom70 (P1) and Tom71 (P2) and their orthologs in *Lachancea kluyveri* (Lkluy, SAKL0E10956g) and in *Zygosaccharomyces rouxii* (Zrou, ZYR00G06512g) and **(C)** *S. cerevisiae* paralogs Tal1 (P1) and
185

186 Nqm1 (P2) and their orthologs in *L. kluyveri* (*Lkluy*, SAKL0B04642g) and in *Z. rouxii* (*Zrou*,
187 ZYRO0A12914g). **(D)** Paralogs show six interaction motifs that we grouped in four categories according
188 to their patterns. HET pairs show heteromers only. HM pairs show at least one homomer (one for 1HM or
189 two for 2HM). HM&HET pairs show at least one homomer (one for 1HM&HET or two for 2HM&HET) and
190 the heteromer. NI (non-interacting) pairs show no interaction. We focused our analysis on pairs derived
191 from an ancestral HM, which we assume are pairs showing the HM and HM&HET motifs. **(E)** Percentage
192 of HM and HM&HET among SSDs (202 pairs considered, yellow) and WGDs (260 pairs considered, blue)
193 (left panel), homeologs that originated from inter-species hybridization (47 pairs annotated and considered,
194 dark blue) (right panel) and true ohnologs from the whole-genome duplication (82 pairs annotated and
195 considered, light blue). P-values are from Fisher's exact tests. **(F)** Percentage of pairwise amino acid
196 sequence identity between paralogs for HM and HM&HET motifs for SSDs and WGDs. P-values are from
197 Wilcoxon tests. **(G)** Pairwise amino acid sequence identity for the full sequences of paralogs and their
198 binding interfaces for the two motifs HM and HM&HET. P-values are from paired Wilcoxon tests. **(H)**
199 Relative conservation scores for the two motifs of paralogs. Conservation scores are the percentage of
200 sequence identity at the binding interface divided by the percentage of sequence identity outside the
201 interface. Data shown include 30 interfaces for the HM group and 28 interfaces for the HM&HET group
202 (22 homomers and 3 heterodimers of paralogs) (Table S13). P-value is from a Wilcoxon test.
203 Figure 2 - figure supplements 1 to 8.

204

205

206 Paralogous heteromers frequently derive from ancestral homomers

207

208 The model presented in Figure 1 assumes that the ancestral protein leading to HET formed a
209 HM before duplication. Under the principle of parsimony, we can assume that when at least one
210 paralog forms a HM, the ancestral protein was also a HM. This was shown to be true in general
211 by (Diss et al., 2017) that compared yeast WGDs to their orthologs from *Schizosaccharomyces*
212 *pombe*. To further support this observation, we used PCA to test for HM formation for orthologs
213 from species that diverged prior to the whole-genome duplication event (*Lachancea kluyveri* and
214 *Zygosaccharomyces rouxii*). We looked at the mitochondrial translocon complex and at the
215 transaldolase, which both show HETs (see methods). We confirm that when one HM was
216 observed in *S. cerevisiae*, at least one ortholog from pre-whole-genome duplication species
217 formed a HM (Figure 2. B-C). We also detected interactions between orthologs, suggesting that
218 ability to interact has been preserved despite the millions of years of evolution separating these
219 species. The absence of interactions for some of these orthologous proteins may be due to the
220 incompatibility of their expression in *S. cerevisiae*.

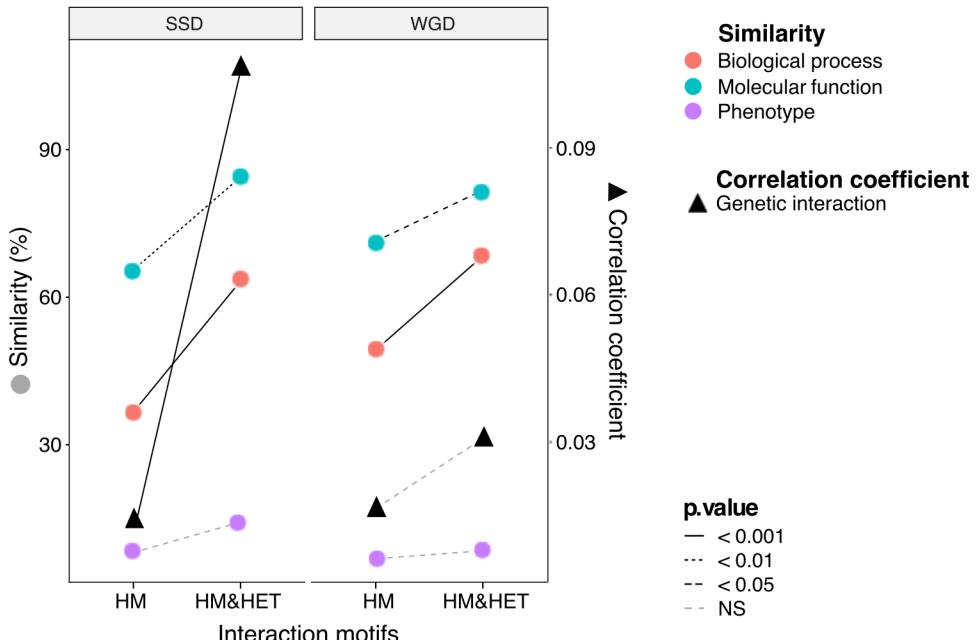
221

222 We then focused on HMs and HETs for 202 pairs of small-scale duplicates (SSDs) and 260 pairs
223 of whole-genome duplicates (WGDs). It is a reduced dataset compared to the previous section
224 because we needed to consider only pairs for which there was no missing PPI data (see
225 methods). We combined public data with our own PCA experimental data on 86 SSDs and 149
226 WGDs (see supplementary text, Figure 2-figure supplement 1 and 2). Overall, the data
227 represents a total of 462 pairs of paralogs (202 SSDs and 260 WGDs) covering 53% of the SSDs
228 and 50% of the WGDs (Tables S3 and S4). This dataset covers 493 binary interactions of
229 paralogs with themselves (HMs) and 214 interactions with their sister copy (HET).

230

231 We classified paralog pairs into four classes according to whether they show only the HET (HET,
232 10%), at least one HM but no HET (HM, 39%), at least one of the HM and the HET (HM&HET,
233 37%) or no interaction (NI, 15%) (Figure 2. D, supplementary text). Overall, most pairs forming
234 HETs also form at least one HM (79%, Table S3). For the rest of the study, we focused our
235 analysis and comparisons on HM and HM&HET pairs because they most likely derive from an

236 ancestral HM. Previous observations showed that paralogs are enriched in protein complexes
237 comprising more than two distinct subunits, partly because complexes evolved by the initial
238 establishment of self-interactions followed by duplication of homomeric proteins (Musso et al.,
239 2007; Pereira-Leal et al., 2007). However, we find that the majority of HM&HETs could be simple
240 oligomers of paralogs that do not involve other proteins and are thus not part of large complexes.
241 Only 70 (41%) of the 169 cases of HM&HET are in complexes with more than two distinct
242 subunits among a set of 5,535 complexes reported in databases (see methods).


243
244 We observed that the correlation between HM and HET formation is affected by whether paralogs
245 derived from SSD or WGD (Figure 2. E). WGDs tend to form HETs more often when they form
246 at least one HM, resulting in a larger proportion of HM&HET motif than SSDs. We hypothesize
247 that since SSDs have appeared at different evolutionary times, many of them could be older than
248 WGDs, which could be accompanied by a loss of interactions between paralogs. Indeed, we
249 observed that the distribution of sequence divergence shows lower identity for SSDs than for
250 WGDs, suggesting the presence of ancient duplicates that predate the whole-genome
251 duplication (Figure 2–figure supplement 5. A). Higher protein sequence divergence could lead to
252 the loss of HET complexes because it increases the probability of divergence at the binding
253 interface. We indeed found that among SSDs, those forming HM&HET tend to show a marginally
254 higher overall sequence identity ($p=0.065$, Figure 2. F, Figure 2–figure supplement 5. B and C).
255 We also observed a significantly higher sequence identity for WGD pairs forming HM&HET, albeit
256 with a wider distribution (Figure 2. F, Figure 2–figure supplement B C). This wider distribution at
257 least partly derives from the mixed origin of WGDs (Figure 2–figure supplement 5). Recently,
258 Marcket-Houben and Gabaldón (Marcket-Houben and Gabaldón, 2015; Wolfe, 2015) showed that
259 WGDs likely have two distinct origins: actual duplication (generating true ohnologs) and
260 hybridization between species (generating homeologs). For pairs whose ancestral state was a
261 HM, we observed that true ohnologs have a tendency to form HET more frequently than
262 homeologs (Figure 2. E). Because homeologs had already diverged before the hybridization
263 event, they are older than ohnologs, as shown by their lower pairwise sequence identity (Figure
264 2–figure supplement 5. D). This observation supports the fact that younger paralogs derived from
265 HMs are more likely to form HETs than older ones.

266
267 Amino acid sequence conservation could also have a direct effect on the retention of HETs,
268 independently of the age of the duplication. For instance, among WGDs (either within true
269 ohnologs or homeologs), which all have the same age in their own category, HM&HET pairs
270 have higher sequence identity than HM pairs (Figure 2–figure supplement 5. B, C and E). This
271 is also apparent for pairs of paralogs whose HM or HET structures have been solved by
272 crystallography (Table S3). Indeed, we found that pairwise amino acid sequence identity was
273 higher for HM&HET than for HM pairs for both entire proteins and for their binding interfaces
274 (Figure 2. G). Furthermore, the conservation ratio of the binding interface to the non-interface
275 regions within the available structures is higher for those forming HM&HET, suggesting a causal
276 link between sequence identity at the interface and assembly of HM&HETs (Figure 2. H). We
277 extended these analyses to a dataset of human paralogs (Lan and Pritchard, 2016; Singh et al.,
278 2015) to evaluate if these trends are generalized. Whereas interfaces within PDB structures
279 ($n=65$ interfaces) are more conserved than the full sequence for both HM and HM&HET motifs
280 (Figure 2–figure supplement 6. A), we did not observe differences in the ratio of conservation of
281 interfaces to non-interfaces (Figure 2–figure supplement 6. B). The reasons for this difference
282 between yeast and humans remain to be explored but it could be caused by mechanisms that
283 do not depend on interfaces to separate paralogous proteins in humans, for instance tissue-
284 specific expression.

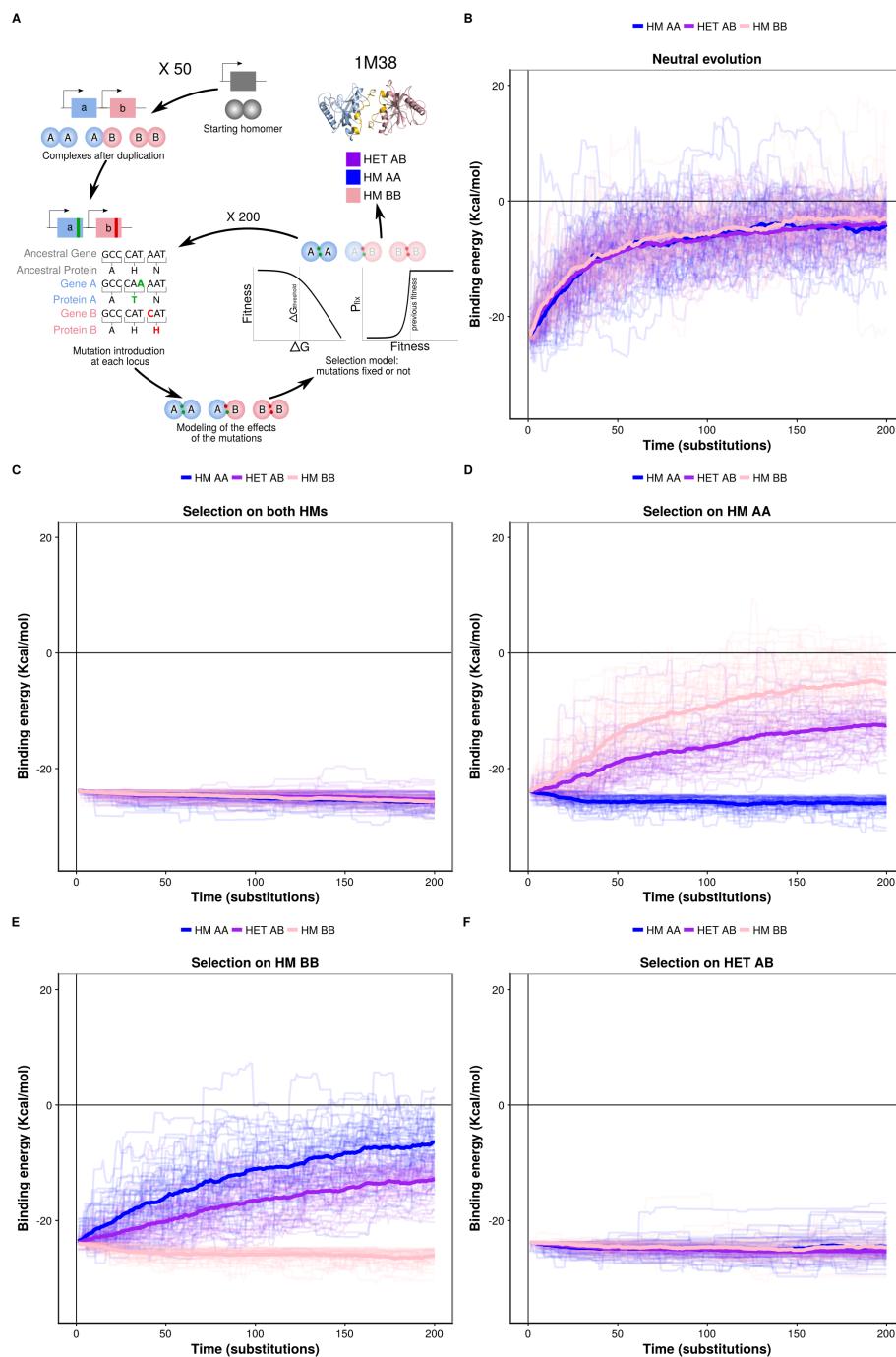
285
286 Considering that stable interactions are often mediated by protein domains, we looked at the
287 domain composition of paralogs using the Protein Families Database (Pfam) (El-Gebali et al.,
288 2019). We tested if differences in domain composition could explain the frequency of different
289 interaction motifs. We found that 367 of 448 pairs of paralogs (82%) shared all their domain
290 annotations (Table S3). Additionally, HM&HET paralogs tend to have more domains in common
291 but the differences are non-significant and appear to be caused by overall sequence divergence
292 (Figure 3–figure supplement 1. A-B). Domain gains and losses are therefore unlikely to contribute
293 to the loss of HET complexes following the duplication of homomers.
294

295 **Heteromer formation correlates with functional conservation**

296 To test if the retention of HETs correlates with the functional similarity of HM and HM&HET
297 paralogs, we used the similarity of Gene Ontology (GO) terms, known growth phenotypes of
298 loss-of-function mutants and patterns of genome-wide genetic interactions. These features
299 represent the relationship of genes with cell growth and the gene-gene relationships underlying
300 cell growth. The use of GO terms could bias the analysis because they are often predicted based
301 on sequence features. However, phenotypes and genetic interactions are derived from unbiased
302 experiments because interactions are tested without *a priori* consideration of a paralogs'
303 functions (Costanzo et al., 2016). We found that HM&HET pairs are more similar than HM for
304 SSDs (Figure 3 and Figure 3–figure supplement 2). We observed the same trends for WGDs,
305 although some of the comparisons are either marginally significant or non-significant (Figure 3–
306 comparison between true ohnologs and homeologs in Figure 3–figure supplement 3). The higher
307 functional similarity observed for HM&HET pairs could be the result of the higher sequence
308 identity described above. However, for a similar level of sequence identity, HM&HET pairs have
309 higher correlation of genetic interaction profiles, higher GO molecular function (for SSDs) and
310 higher GO biological process similarity (for both SSDs and WGDs) than HM pairs (Figure 3–
311 figure supplement 4 and GLM test in Table S7. B). Overall, the retention of HETs after the
312 duplication of HMs appears to correlate with functional similarity, independently of sequence
313 conservation.
314

315
316

317 **Figure 3: Maintenance of heteromerization between paralogs leads to greater functional similarity.**
318 The similarity score is the average proportion of shared terms (Jaccard's index x 100) across pairs of
319 paralogs for GO molecular functions, GO biological processes and gene deletion phenotypes. The mean
320 values of similarity scores and of the correlation of genetic interaction profiles are compared between HM
321 and HM&HET pairs for SSDs and WGDs. P-values are from Wilcoxon tests.
322 Figure 3 - figure supplements 1 to 4.


323 **Pleiotropy contributes to the maintenance of heteromers**
324 Since molecular interactions between paralogs predate their functional divergence, it is likely that
325 physical association by itself affects the retention of functional similarity among paralogs. Any
326 feature of paralogs that contributes to the maintenance of the HET state could therefore have a
327 strong impact on the fate of new genes emerging from the duplication of HMs. A large fraction of
328 HMs and HETs use the same binding interface (Bergendahl and Marsh, 2017), so mutations at
329 the interface may have pleiotropic effects on both HMs and HETs (Figure 1) and correlated
330 responses to selection. If we assume that HMs need to self-interact in order to perform their
331 function, it is expected that natural selection would favor the maintenance of self-assembly.
332 Negative selection on HM interfaces would act on their pleiotropic residues and thus also
333 preserve HET interfaces, preventing the loss of HETs as a correlated response.
334

335 We tested this correlated selection model using *in silico* evolution of HM and HET protein
336 complexes (Figure 4. A). We used a set of six representative high-quality structures of HMs (Dey
337 et al., 2018). We evolved these HM complexes by duplicating them and following the binding
338 energies of the resulting two HMs and HET. We let mutations occur at the binding interface 1) in
339 the absence of selection (neutral model) and 2) in the presence of negative selection maintaining
340 only one HM or 3) both HMs. In these three cases, we applied no selection on binding energy of
341 the HET. In the fourth scenario, we apply selection on the HET but not on the HMs to examine if
342 selection maintaining the HET could also favor the maintenance of HMs. Mutations that have

343 deleterious effects on the complex under selection were lost or allowed to fix with exponentially
344 decaying probability depending on the fitness effect (see methods) (Figure 4. A).

345
346 We find that neutral evolution leads to the destabilization of all complexes derived from the
347 simulated duplication of a HM (PDB: 1M38) (Figure 4. B), as is expected given that there are
348 more destabilizing mutations than stabilizing ones (Brender and Zhang, 2015; Guerois et al.,
349 2002). Selection to maintain one HM or both HMs significantly slows down the loss of the HET
350 with respect to the neutral scenario (Figure 4. C-E). Interestingly, the HET is being destabilized
351 more slowly than the second HM when only one HM is under negative selection. The difficulty of
352 losing the HET in the simulations could explain why for some paralog pairs, only one HM and the
353 HET are preserved, as well as why there are few pairs of paralogs that specifically lose the HET
354 (Figure 4—figure supplement 1). The reciprocal situation is also true, i.e. negative selection on
355 HET significantly decelerates the loss of stability of both HMs (Figure 4. F). These observations
356 hold when simulating the evolution of duplication of five other structures (Figure 4—figure
357 supplement 2) and when simulating evolution under different combinations of parameters
358 controlling the efficiency of selection and the length of the simulations (Figure 4—figure
359 supplement 3). By examining the effects that single mutants (only one of the loci gets a
360 nonsynonymous mutation) have on HMs and HET, we find that, as expected, their effects are
361 strongly correlated and thus highly pleiotropic (Pearson's r between 0.64 and 0.9 (Figure 4—figure
362 supplement 4)). We observe strong pleiotropic effects of mutations for the six structures tested,
363 which can explain the correlated responses to selection in the *in silico* evolution. Additionally,
364 mutations tend to have greater effects on the HM than on the HET (Figure 4—figure supplement
365 4), which agrees with observations on HMs having a greater variance of binding energies than
366 HETs (André et al., 2008; Lukatsky et al., 2007, 2006). As a consequence, HMs that are not
367 under selection in our simulations show higher variability in their binding energy than HETs that
368 are not under selection.

369
370
371
372

Figure 4: Negative selection to maintain homomers also maintains heteromers.


(A) The duplication of a gene encoding a homomeric protein and the evolution of the complexes is simulated by applying mutations to the corresponding subunits A and B. Only mutations that would require a single nucleotide change are allowed and stop codons are disallowed. After introducing mutations, the selection model is applied to complexes and mutations are fixed or lost. (B to F) The binding energy of the HMs and the HET resulting from the duplication of a HM (PDB: 1M38) is followed through time under different selection regimes applied on protein stability and binding energy. More positive values indicate less favorable binding and more negative values indicate more favorable binding. (B) Accumulation and neutral fixation of mutations. (C) Selection on both HMs while the HET evolves neutrally. (D) Selection on HET while the HMs evolve neutrally. (E) Selection on HM AA or (F) HM BB: selection

418 maintains one HM while the HET and the other HM evolve neutrally. Mean binding energies among
419 replicates are shown in thick lines and the individual replicates are shown with thin lines. Fifty replicate
420 populations are monitored in each case and followed for 200 substitutions. PDB structure 1M38 was
421 visualized with PyMOL (Schrödinger, 2015). The number of substitutions that are fixed on average during
422 the simulations are shown in Table S8.
423 Figure 4 - figure supplements 1 to 4.

424

425 We examined the effects of double mutants (the two loci get a non-synonymous mutation at the
426 interface) on HET formation to study how epistasis may influence the maintenance or loss of
427 HET and HMs when the former or the latter are under selection. We defined epistatic effects as
428 deviations between the observed and the expected effects of mutations on binding energy.
429 Expected effects on HETs were calculated as the average of the effects on the HMs, which have
430 each two subunits with the same mutation (Figure 5-figure supplement 2). We defined positive
431 epistasis as cases where observed binding is stronger than expected (more negative $\Delta\Delta G$) and
432 negative when the effect is a reduced binding (more positive $\Delta\Delta G$) compared to the expectation.
433 In terms of evolutionary responses, positive epistasis would contribute to the retention of the HET
434 because mutations that are slightly destabilizing HMs and thus tolerated under selection for HM
435 stability would have less destabilizing effects on HET, slowing down its loss. On the other hand,
436 negative epistasis could lead to the faster loss of HMs when the HET is under selection because
437 slightly destabilizing and tolerated mutations on the HET would have stronger effects on the HMs.

438 Regardless of the selection scenario, the mutations sampled are slightly enriched for positive
439 epistasis, since the slopes of regression models are smaller than one (0.91 and 0.89 under
440 selection on HMs and HET respectively). When the HMs are maintained by selection, this slightly
441 positive epistasis is also visible in the mutations that are fixed because the epistatic effects are
442 not selected upon. This results in a similar slope for the selected mutations as for rejected ones.
443 Positive epistasis may therefore contribute to the maintenance of the HET (Figure 5. A). On the
444 other hand, selection on the HET results in a further enrichment of mutations with positive
445 epistasis (slope = 0.51, Figure 5. B). In this case, mutations tolerated in the HETs and thus fixed
446 are more destabilizing to the HMs. This is also visible in the higher number of fixed substitutions
447 (Table S8) when selection acts on the HET than when it acts on both HMs, particularly for
448 mutations having opposite effects on the HMs (Figure 5-figure supplement 3). This is also
449 manifested in significantly stronger positive epistasis among fixed pairs of mutations when the
450 HET is under negative selection (t-test, p-value = 0.009). These observations suggest that
451 epistasis may make HETs more robust to mutations than HMs with respect to protein complex
452 assembly, contributing to their maintenance when the HMs are under selection and contributing
453 to the loss of HMs when HET is under negative selection. This effect is visible in our simulations
454 since selection on the HET results in a slow destabilization of the two HMs (Figure 4, Figure 4-
455 figure supplement 2), especially when more mutations are attempted (Figure 4-figure supplement
456 3).

457

458 **Figure 5: Epistasis favors the maintenance of HETs and the loss of HMs.**

459 (A and B) Observed effects of double mutants on HET (y-axis) are compared to their expected effects (x-
460 axis) based on the average of their effects on the HMs when selection is applied on both HMs (n = 6777
461 pairs of mutations) (A) or on the HET (n = 6760 pairs of mutations) (B). Dashed lines indicate the diagonal
462 for perfect agreement between observations and expectations (no epistasis), black regression lines
463 indicate the best fit for the lost mutants, and red regression lines indicate the best fit for the fixed mutants.
464 Data were obtained from simulations with PDB structure 1M38. The regression coefficients, intercepts and
465 R² values are indicated on the figure for fixed and lost mutations. A regression coefficient lower than one
466 means that pairs of mutations have a less destabilizing effects on the HET than expected based on their
467 average effects on the HMs.

468 Figure 5 - figure supplements 1 to 3.

469

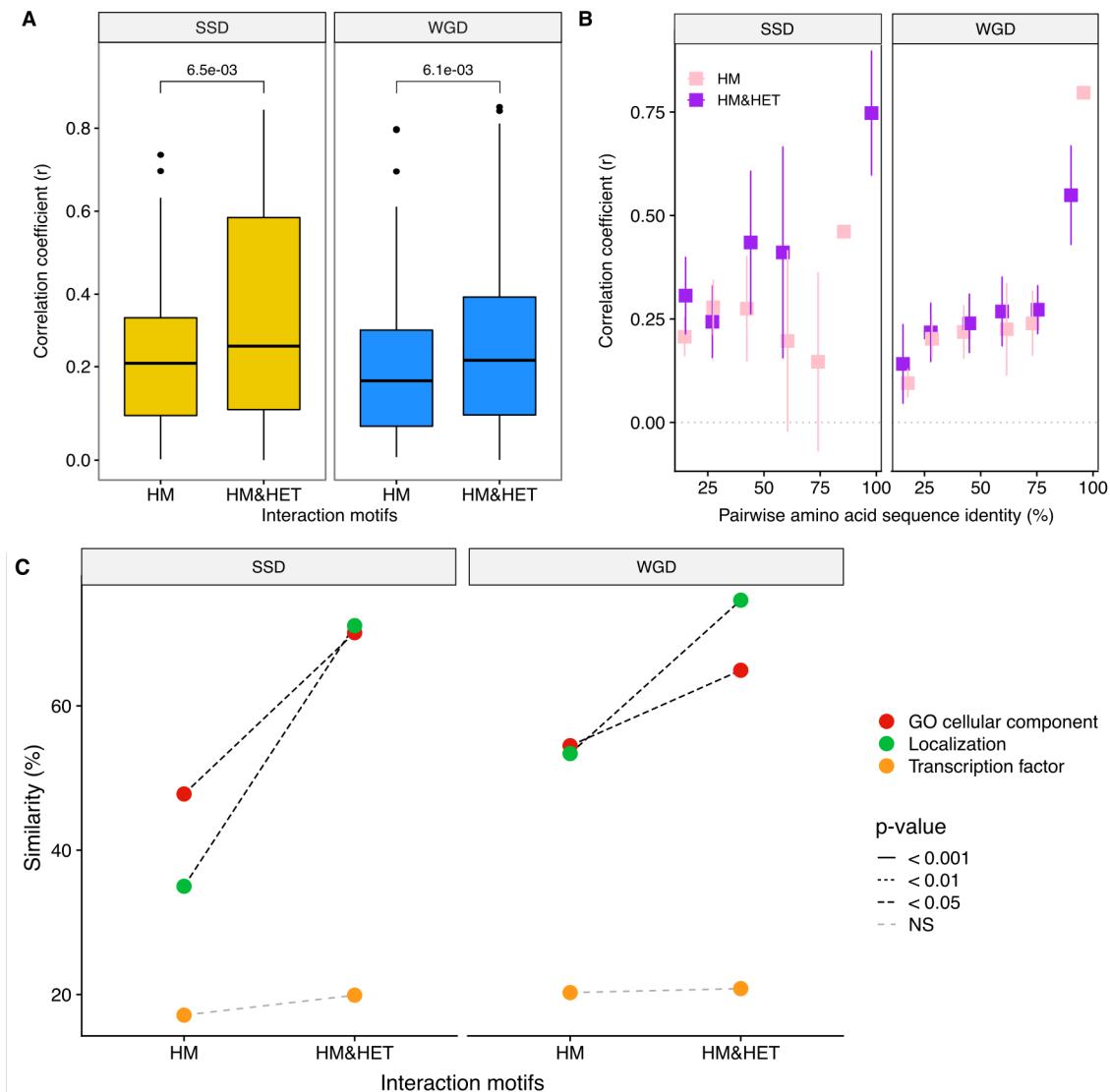
470

471 **Regulatory evolution may break down molecular pleiotropy**

472 The results from simulations show that the loss of HET after the duplication of a HM occurs at a
473 slow rate if HMs are maintained by selection and that specific rare mutations may be required for
474 HETs to be destabilized. However, the simulations only consider the evolution of binding
475 interfaces, which limits the modification of interactions to a subset of all mutations that can
476 ultimately affect PPIs (Hochberg et al., 2018). Other mechanisms could involve transcriptional
477 regulation or cell compartment localization such that paralogs are not present at the same time
478 or in the same cell compartment. To test how regulatory evolution affects interactions, we
479 measured the correlation coefficient of expression profiles of paralogs using mRNA microarray
480 measurements across more than 1000 growth conditions (Ihmels et al., 2004). These expression
481 profiles are more correlated for both SSD and WGD paralogs forming HM&HET than for those
482 forming only HM (p-value = 6.5e-03 and 6.1e-03 respectively, Figure 6. A). This result holds
483 using available single-cell RNAseq data (Gasch et al., 2017) although the trend is not significant
484 for WGDs (Figure 6–figure supplement 1 A). Because we found that sequence identity was
485 correlated with both the probability of observing HM&HET and the co-expression of paralogs, we

486 tested if co-expression had an effect on HET formation when controlling for sequence identity.
487 For SSDs, co-expression shows significant effects on HM&HET formation (Figure 6. C, Figure
488 6-figure supplement 1 B. and Table S7. B) but not for WGDs (Figure 6. C, Figure 6-figure
489 supplement 1 B. and Table S7. B). This is true also when considering the two origins of WGDs
490 separately (Figure 6-figure supplement 3. A-F). The differences of expression correlation
491 between HM and HM&HET could be caused by *cis* regulatory divergence, for instance, HM&HET
492 pairs might have more similar transcription factor binding sites. While we do observe a marginally
493 higher transcription factor binding site similarity for HM&HET pairs than for HM pairs, the
494 tendency is not significant, suggesting other causes for the divergence and similarity of
495 expression profiles (Figure 6. B, Figure 6-figure supplement 2 and Table S7. B).

496


497 Finally, we find that HM&HET paralogs are more similar than HM for both SSDs and WGDs in
498 terms of cellular compartments (GO) and cellular localization derived from experimental data
499 (Figure 6. C, Figure 6-figure supplement 2. B and C). For a similar level of sequence identity,
500 HM&HET pairs have higher cellular compartment and cellular localization similarity (for both
501 SSDs and WGDs) than HM pairs (Figure 6-figure supplement 4 and GLM test in Table S7. B).
502 The same tendencies are observed when considering the two classes of WGDs separately
503 (Figure 6-figure supplement 3. G-I).

504

505 Overall, coexpression, localization and GO cellular component comparison results suggest that
506 changes in gene and protein regulation could prevent the interaction between paralogs that
507 derive from ancestral HMs, reducing the role of structural pleiotropy in maintaining their
508 associations.

509

510

511
 512
 513
 514
 515
 516
 517
 518
 519
 520

Figure 6: Loss of heteromerization between paralogs may result from regulatory divergence.

(A) Correlation coefficients (Spearman's r) between the expression profiles of paralogs. The data derives from mRNA relative expression across 1000 growth conditions (Ihmels et al., 2004). HM and HM&HET are compared for SSDs (yellow) and WGDs (blue). P-values are from t-tests. (B) Correlation of expression profiles between paralogs forming only HM (pink) or HM&HET (purple) as a function of their amino acid sequence identity. The data was binned into six equal categories for representation only. (C) Similarity of GO cellular component, GFP-based localization, and transcription factor binding sites (100* Jaccard's index) are compared between HM and HM&HET for SSDs and WGDs. P-values are from Wilcoxon tests. Figure 6 - figure supplements 1 to 4.

521 Discussion

522

523 Upon duplication, the properties of proteins are inherited from their ancestors, which may affect
524 how paralogs subsequently evolve. Here, we examined the extent to which physical interactions
525 between paralogs are preserved after the duplication of HMs and how these interactions affect
526 functional divergence. Using reported PPI data, crystal structures and new experimental data,
527 we found that paralogs originating from ancestral HMs are more likely to functionally diverge if
528 they lost their ability to form HETs. We propose that non-adaptive mechanisms could play a role
529 in the retention of physical interactions and in turn, impact on functional divergence. By
530 developing a model of *in silico* evolution of PPIs, we found that molecular pleiotropic and epistatic
531 effects of mutations on binding interfaces can constrain the maintenance of HET complexes even
532 if they are not under selection. We hypothesize that this non-adaptive constraint could play a role
533 in slowing down the divergence of paralogs but that it could be counteracted at least partly by
534 regulatory evolution.

535

536 The proportions of HMs and HETs among yeast paralogs were first studied more than 15 years
537 ago (Wagner, 2003). It was then suggested that most paralogs forming HETs do not have the
538 ability to form HMs and thus, that evolution of new interactions was rapid. Since then, many PPI
539 experiments have been performed (Chatr-Aryamontri et al., 2017; Kim et al., 2019; Stark et al.,
540 2006; Stynen et al., 2018) and the resulting global picture is different. We found that most of the
541 paralogs forming HETs also form HMs, suggesting that interactions between paralogs are
542 inherited rather than gained *de novo*. This idea is supported by models predicting interaction
543 losses to be much more likely than interaction gains after gene duplication (Gibson and Goldberg,
544 2009; Presser et al., 2008). Accordingly, the HM&HET state can be more readily achieved by the
545 duplication of an ancestral HM than by the duplication of a monomeric protein followed by the
546 gain of the HMs and of the HET. Interacting paralogs are therefore more likely to derive from
547 ancestral HMs, as also shown by (Diss et al., 2017) using limited comparative data. For some
548 pairs of *S. cerevisiae* paralogs presenting the HM&HET motif, we indeed detected HM formation
549 of their orthologs from pre-whole-genome duplication species, supporting the model by which
550 self-interaction and cross-interactions are inherited from the duplication. We did not detect HMs
551 for both pre-whole-genome duplication species, which may reflect the incorrect expression of
552 these proteins in *S. cerevisiae* rather than their lack of interaction.

553

554 We observed an enrichment of HMs among yeast duplicated proteins compared to singletons,
555 as reported in previous studies (Ispolatov et al., 2005; Pereira-Leal et al., 2007; Pérez-Bercoff et
556 al., 2010; Yang et al., 2003). Also, analyses of PPIs from large-scale experiments have shown
557 that interactions between paralogous proteins are more common than expected by chance
558 (Ispolatov et al., 2005; Musso et al., 2007; Pereira-Leal et al., 2007). Several adaptive
559 hypotheses have been suggested to explain the over-representation of interacting paralogous
560 proteins. For instance, HMs may be preferentially retained, over other duplicates, due to their
561 ability as a source of new adaptive traits by gaining novel functions (neofunctionalization) or by
562 splitting the original ones (subfunctionalization). For example, symmetrical HM proteins could
563 have key advantages over monomeric ones for protein stability and regulation (André et al., 2008;
564 Bergendahl and Marsh, 2017). Levy and Teichmann (Levy and Teichmann, 2013) suggested
565 that the duplication of HM proteins serves as a seed for the growth of protein complexes. These
566 duplications would allow the diversification of complexes by the asymmetric gain or loss of

567 interactions, which would ultimately lead to the specialization of the duplicates. It is also possible
568 that the presence of HETs itself offers a rapid way to evolve new functions. Examples include
569 bacterial multidrug efflux transporters (Boncoeur et al., 2012) and regulatory mechanisms that
570 evolved this way (Baker et al., 2013; Bridgham et al., 2008; De Smet et al., 2013; Kaltenegger
571 and Ober, 2015). Finally, Natan et al. (Natan et al., 2018) showed that cotranslational folding can
572 be a problem for homomeric proteins because of premature assembly, particularly for proteins
573 with interfaces closer to their N-terminus. The replacement of such HMs by HETs could solve
574 this issue by separating the translation of the proteins to be assembled on two distinct mRNAs.
575

576 Non-adaptive mechanisms could also be at play to maintain HETs. Our simulated evolution of
577 the duplication of HMs leads to the proposal of a simple mechanism for the maintenance of HET
578 that does not require adaptive mechanisms. A large fraction of HMs and HETs use the same
579 binding interface (Bergendahl and Marsh, 2017) and as a consequence, negative selection on
580 HM interfaces will also preserve HET interfaces. Our results show that mutations have correlated
581 effects on HM and HET, which slows down the divergence of these complexes. Diss et al. (Diss
582 et al., 2017) also suggested a non-adaptive mechanism for the maintenance of HET by showing
583 that in the absence of their paralog, some proteins are unstable and lose their capacity to interact
584 with other proteins. Notably, these proteins are enriched for paralogs forming HET, suggesting
585 that the individual proteins depend on each other through these physical interactions (Diss et al.,
586 2017). Independent observations by (DeLuna et al., 2010) also showed that the deletion of a
587 paralog was sometimes associated with the degradation of the sister copy, particularly among
588 HET paralogs. The Diss et al. and DeLuna et al. observations led to the proposal that paralogs
589 could accumulate complementary degenerative mutations at the structural level after the
590 duplication of a HM (Diss et al., 2017; Kaltenegger and Ober, 2015). This scenario would lead to
591 the maintenance of the HET because destabilizing mutations in one subunit can be compensated
592 by stabilizing mutations in the other, keeping binding energy and overall stability near the
593 optimum. While compensatory mutations could also occur at different positions within identical
594 subunits of the HMs (Uguzzoni et al., 2017), the HET would have access to those same
595 mutations plus combinations of mutations in the two paralogous genes. As a result, the number
596 of available compensatory mutations for the HET would be higher than that for the HM.
597

598 Furthermore, FoldX in our simulations predicts a slight overall enrichment towards positive
599 epistasis for mutations affecting the two genes whose effects are combined in the HET. This
600 would also contribute to the retention of the HET without adaptive mutations. Together, the
601 smaller effect sizes of individual mutations on HET, the expanded number of compensatory
602 mutations, and the mutational bias toward positive epistasis for the HET observed in our
603 simulations suggest that the assembly of HET might be more robust to mutations than that of
604 HMs. Thus, our simulations show higher potential for the specific retention of the HET than for
605 the specific retention of the two HMs. The next step will be to test these models experimentally.
606

607 One of our observations is that WGDs present proportionally more HM&HET motifs than SSDs.
608 We propose that this is at least partly due to the age of paralogs, which would lead to more
609 divergence. This proposal was based on the fact that SSDs in yeast show lower sequence
610 conservation and are thus likely older than WGDs and that even among WGDs, homeologs show
611 less frequent HM&HET than HMs compared to true ohnologs, which are by definition younger.
612 However, the mode of duplication itself could also impact HET maintenance. For instance, upon

613 a whole-genome duplication event, all subunits of complexes are duplicated at the same time,
614 which may contribute to the increased retention of WGDs in complexes compared to SSDs and
615 thus maintain HETs. Indeed, small-scale duplications perturb the stoichiometry of complexes
616 whereas whole-genome duplication preserves it (Birchler and Veitia, 2012; Hakes et al., 2007;
617 Papp et al., 2003; Rice and McLysaght, 2017). In addition, Fares et al. (Fares et al., 2013)
618 suggested that SSDs display higher evolutionary rates than WGDs, which could lead to the loss
619 of their interactions. Another factor that differs is that some WGDs are maintained due to
620 selection for higher gene dosage (Ascencio et al., 2017; Edger and Pires, 2009; Gout and Lynch,
621 2015; Sugino and Innan, 2006; Thompson et al., 2016). Therefore, the ancestral gene sequence,
622 regulation and function are conserved, which ultimately favors the maintenance of HETs among
623 WGDs.

624
625 We noticed a significant fraction of paralogs forming only HMs but not HET, including some cases
626 of recent duplicates, indicating that the forces maintaining HETs can be overcome. Moreover,
627 although SSDs are more divergent than WGDs on average, the sequence divergence and
628 domain composition differ slightly (not significant) between HMs and HM&HETs, suggesting a
629 mechanism other than amino acid sequence divergence for HET loss. Duplicate genes in yeast
630 and other model systems often diverge quickly in terms of transcriptional regulation (Li et al.,
631 2005; Thompson et al., 2013) due to *cis* regulatory mutations (Dong et al., 2011). Because
632 transcriptional divergence of paralogs can directly change PPI profiles, expression changes
633 would be able to rapidly change a motif from HM&HET to HM. Indeed, Gagnon-Arsenault et al.
634 (Gagnon-Arsenault et al., 2013) showed that switching the coding sequences between
635 paralogous loci was sometimes sufficient to change PPI specificity in living cells. Protein
636 localization can also be an important factor affecting the ability of proteins to interact (Rochette
637 et al., 2014). We found that paralogs that derive from HMs and that have lost their ability to form
638 HETs are less co-regulated and less co-localized. This divergence suggests that regulatory
639 evolution could play a role in relieving duplicated homomeric proteins from the correlated effects
640 of mutations affecting shared protein interfaces.

641
642 Overall, our analyses show that the duplication of self-interacting proteins creates paralogs
643 whose evolution is constrained by pleiotropy in ways that are not expected for monomeric
644 paralogs. Pleiotropy has been known to influence the architecture of complex traits and thus to
645 shape their evolution (Wagner and Zhang, 2011). However, how it takes place at the molecular
646 level and how it can be overcome to allow molecular traits to evolve independently is still largely
647 unknown. Here, we provide a simple system in which the role of pleiotropy can be examined at
648 the molecular level. Because gene duplication is a major mechanism responsible for the
649 evolution of cellular networks and because a large fraction of proteins are oligomeric, the
650 pleiotropic and epistatic constraints described here could be an important force in shaping protein
651 networks. Another important result is that negative selection for the maintenance of heteromers
652 of paralogs is not needed for their preservation on the long term, further enhancing the role of
653 non-adaptive evolution in shaping the complexity of cellular structures (Lynch et al., 2014).

654

655

656 **Material and Methods**

657

658 The protein-protein interactions identified in this publication have been submitted to the IMEx
659 (<http://www.imexconsortium.org>) consortium through IntAct (Orchard et al., 2014) and are
660 assigned the identifier IM-26944. All scripts used to analyze the data are available at
661 https://github.com/landrylaboratory/Gene_duplication_2019.

662

663 **1. Characterization of paralogs in *S. cerevisiae* genome**

664

665 **1.1 Classification of paralogs by mechanism of duplication**

666 We classified duplicated genes in three categories according to their mechanism of duplication:
667 small-scale duplicates (SSDs); whole-genome duplicates (WGDs) (Byrne and Wolfe, 2005); and
668 double duplicates (2D, SSDs and WGDs). We removed WGDs from the paralogs defined in
669 (Guan et al., 2007) to generate the list of SSDs. Among paralog pairs with less than 20% of
670 sequence identity in the multiple sequence alignments (data from MSA, (Edgar, 2004)), we kept
671 only those sharing the same phylome (PhylomeDB (Huerta-Cepas et al., 2008)) to make sure
672 they were true paralogs. If one of the two paralogs of an SSD pair is associated to another
673 paralog in a WGD pair, this paralog was considered a 2D (Tables S1 and S2). To decrease the
674 potential bias from multiple duplication events, we removed the 2Ds and paralogs from
675 successive small-scale genome duplications from the data on interaction motifs. We used data
676 from (Marcet-Houben and Gabaldón, 2015) to identify WGDs that are likely true ohnologs or that
677 originated from allopolyploidization (homeologs).

678

679 **1.2 Sequence similarity**

680

681 Conversion tables between PhylomeDB IDs and systematic yeast IDs were downloaded from
682 ftp://phylomedb.org/phylomedb/all_id_conversion.txt.gz on May 15th, 2019. Sequence identity
683 was calculated from multiple sequence alignments from phylome 0003 from PhylomeDB (Huerta-
684 Cepas et al., 2008). The yeast phylome consists of 60 completely sequenced fungal species,
685 with *Homo sapiens* and *Arabidopsis thaliana* as outgroups. Sequences in these phylomes were
686 aligned with MUSCLE v 3.6. When two paralogs were not found in the same multiple sequence
687 alignment from PhylomeDB (32 pairs out of 462 pairs), the sequences were taken from the
688 reference proteome of *S. cerevisiae* assembly R64-1-1 downloaded on April 16th, 2018 from the
689 Ensembl database at (<http://useast.ensembl.org/info/data/ftp/index.html>) (Zerbino et al., 2018)
690 and realigned to the rest of the phylome with MUSCLE version 3.8.31 (Edgar, 2004). For six
691 pairs of paralogs that did not have phylomeDB IDs assigned to them, pairwise alignments of their
692 sequences with MUSCLE version 3.8.31 (Edgar, 2004) were used.

693

694

695 **1.3 Function, transcription factor binding sites, localization protein complexes, and Pfam 696 annotations**

697 We obtained GO terms (GO slim) from SGD (Cherry et al., 2012) in September 2018. We
698 removed terms corresponding to missing data and created a list of annotations for each SSD
699 and WGD gene. Annotations were compared to measure the extent of similarity between two

700 members of a pair of duplicates. We calculated the similarity of molecular function, cellular
701 component and biological process taking the number of GO terms in common divided by the total
702 number of unique GO terms of the two paralogs combined (Jaccard index). We compared the
703 same way transcription factor binding sites using YEASTRACT data (Teixeira et al., 2018, 2006),
704 cellular localizations extracted from YeastGFP database (Huh et al., 2003) and many phenotypes
705 associated with the deletion of paralogs (data from SGD in September 2018). For the deletion
706 phenotypes, we kept only information with specific changes (a feature observed and a direction
707 of change relative to wild type). We compared the pairwise correlation of genetic interaction
708 profiles using the genetic interaction profile similarity (measured by Pearson's correlation
709 coefficient) of non-essential genes available in TheCellMap database (version of March 2016)
710 (Usaj et al., 2017). We used the median of correlation coefficients if more than one value was
711 available for a given pair. Non-redundant set of protein complexes was derived from the Complex
712 Portal (Meldal et al., 2015), the CYC2008 catalogue (Pu et al., 2009, 2007) and Benschop et al.,
713 (Benschop et al., 2010).

714
715 We downloaded Pfam domain annotations (El-Gebali et al., 2019) for the whole *S. cerevisiae*
716 reference proteome on May 2nd, 2019 from the UniprotKB database (The UniProt Consortium,
717 2019). We removed pairs of paralogs for which at least one of the proteins had no annotated
718 domains and calculated the Jaccard index (Table S3).

719
720 **2. HMs and HETs identified from databases**
721 To complement our experimental data, we extracted HMs and HETs published in BioGRID
722 version BIOGRID-3.5.166 (Chatr-Aryamontri et al., 2017, 2013). We used data derived from the
723 following detection methods: Affinity Capture-MS, Affinity Capture-Western, Reconstituted
724 Complex, Two-hybrid, Biochemical Activity, Co-crystal Structure, Far Western, FRET, Protein-
725 peptide, PCA and Affinity Capture-Luminescence.

726
727 It is possible that some HMs or HETs are absent from the database because they have been
728 tested but not detected. This negative information is not reported in databases. We therefore
729 attempted to discriminate non-tested interactions from truly non interacting pairs. A study in which
730 there was not a single HM reported was considered as missing data for all HMs. For both HMs
731 and HETs, the presence of a protein (or both proteins for HET) as both bait and prey but the
732 absence of interaction was considered as evidence for no interaction. Otherwise, it was
733 considered as missing data (coded NA).

734
735 We also considered data from crystal structures. If a HM was detected in the Protein Data Bank
736 (PDB) (Berman et al., 2000), we inferred that it was present. If the HM was not detected but the
737 monomer was reported, it is likely that there is no HM for this protein and it was thus considered
738 non-HM. If there was no monomer and no HM, the data were considered as missing. We
739 proceeded the same way for HETs.

740
741 Data on genome-wide HM screens was obtained from (Kim et al., 2019; Stynen et al., 2018).
742 The two methods relied on Protein-fragment complementation assays (PCA), the first one using
743 the dihydrofolate reductase (DHFR) enzyme as a reporter and the second one, a fluorescent
744 protein (also known as Bimolecular fluorescence complementation (BiFC)). We discarded
745 proteins from (Stynen et al., 2018) flagged as problematic by (Rochette et al., 2014; Stynen et

746 al., 2018; Tarassov et al., 2008) and false positives identified by (Kim et al., 2019). All discarded
747 data was considered as missing data. We examined all proteins tested and considered them as
748 HM if they were reported as positive and as non-HM if tested but not reported as positive.
749

750 **3. Experimental Protein-fragment complementation assay**

751 We performed a screen using PCA based on DHFR (Tarassov et al., 2008) following standard
752 procedures (Rochette et al., 2014; Tarassov et al., 2008). The composition of all following media
753 used in this study is described in Table S11.
754

755 **3.1 DHFR strains**

756 We identified 485 pairs of SSDs and 156 pairs of WGDs present in the Yeast Protein Interactome
757 Collection (Tarassov et al., 2008) and another set of 155 strains constructed by (Diss et al.,
758 2017). We retrieved strains from the collection (Tarassov et al., 2008) and we let them grow on
759 NAT (DHFR F[1,2] strains) and HygB (DHFR F[3] strains) media. We confirmed the insertion of
760 the DHFR fragments at the correct location by colony PCR using a specific forward Oligo-C
761 targeting a few hundred base pairs upstream of the fusion and a reverse complement
762 oligonucleotide ADHterm_R located in the ADH terminator after the DHFR fragment sequence
763 (Table S11). Cells from colonies were lysed in 40 µL of 20 mM NaOH for 20 min at 95°C. Tubes
764 were centrifuged for 5 min at 1792 g and 2.5 µL of supernatant was added to a PCR mix
765 composed of 16.85 µL of DNase free water, 2.5 µL of 10X Taq buffer (BioShop Canada Inc.,
766 Canada), 1.5 µL of 25 mM MgCl₂, 0.5 µL of 10 mM dNTP (Bio Basic Inc., Canada), 0.15 µL of 5
767 U/µL Taq DNA polymerase (BioShop Canada Inc., Canada), 0.5 µL of 10 µM Oligo-C and 0.5 µL
768 of 10 µM ADHterm_R. The initial denaturation was performed for 5 min at 95°C and was followed
769 by 35 cycles of 30 sec of denaturation at 94°C, 30 sec of annealing at 55°C, 1 min of extension
770 at 72°C and by a 3 min final extension at 72°C. We confirmed by PCR 2025 out of the 6585
771 strains from the DHFR collection and 126 strains out of the 154 from (Diss et al., 2017) (Tables
772 S9, S10, and S12).
773

774 The missing or non-validated strains were constructed *de novo* using the standard DHFR strain
775 construction protocol (Michnick et al., 2016; Rochette et al., 2015). The DHFR fragments and
776 associated resistance modules were amplified from plasmids pAG25-linker-F[1,2]-ADHterm
777 (NAT resistance marker) and pAG32-linker-F[3]-ADHterm (HygB resistance marker) (Tarassov
778 et al., 2008) using oligonucleotides defined in (Table S12). PCR mix was composed of 16.45 µL
779 of DNase free water, 1 µL of 10 ng/µL plasmid, 5 µL of 5X Kapa Buffer (Kapa Biosystems, Inc.,
780 A Roche Company, Canada), 0.75 µL of 10 mM dNTPs, 0.3 µL of 1 U/µL Kapa HiFi HotStart
781 DNA polymerase (Kapa Biosystems, Inc., A Roche Company, Canada) and 0.75 µL of both
782 forward and reverse 10 µM oligos. The initial denaturation was performed for 5 min at 95°C and
783 was followed by 32 cycles of 20 sec of denaturation at 98°C, 15 sec of annealing at 64.4°C, 2.5
784 min of extension at 72°C and 5 min of a final extension at 72°C.
785

786 We performed strain construction in BY4741 (MAT^a *his3Δ leu2Δ met15Δ ura3Δ*) and BY4742
787 (MAT^a *his3Δ leu2Δ lys2Δ ura3Δ*) competent cells prepared as in (Gagnon-Arsenault et al., 2013)
788 for the DHFR F[1,2] and DHFR F[3] fusions, respectively. Competent cells (20 µL) were
789 combined with 8 µL of PCR product (~0.5-1 µg/µL) and 100 µL of Plate Mixture (PEG3350 40%,
790 100 mM of LiOAc, 10 mM of Tris-Cl pH 7.5 and 1 mM of EDTA). Cells were vortexed and
791 incubated at room temperature without agitation for 30 min. After adding 15 µL of DMSO and

792 mixing thoroughly, heat shock was then performed by incubating in a water bath at 42°C for 15-
793 20 min. Following the heat shock, cells were spun down at 400 g for 3 min. Supernatant was
794 removed by aspiration and cell pellets were resuspended in 100 µL of YPD. Cells were allowed
795 to recover from heat shock for 4 hours at 30°C before being plated on NAT (DHFR F[1,2] strains)
796 or HygB (DHFR F[3] strains) plates. Cells were incubated at 30°C for 3 days. The correct
797 integration of DHFR fragments was confirmed by colony PCR as described above and later by
798 sequencing (Plateforme de séquençage et de génotypage des génomes, CRCHUL, Canada) for
799 specific cases where the interaction patterns suggested a construction problem, for instance
800 when the HET was observed in one direction only or when one HM was missing for a given pair.
801 At the end, we reconstructed and validated 146 new strains (Tables S9 and S10). From all
802 available strains, we selected pairs of paralogs for which we had both proteins tagged with both
803 DHFR fragments (four different strains per pair). This resulted in 1172 strains corresponding to
804 293 pairs of paralogs (Tables S9 and S10). We finally discarded pairs considered as forming
805 false positives by (Tarassov et al., 2008), which resulted in 235 pairs.
806

807 **3.2 Construction of DHFR plasmids for orthologous gene expression**

808 For the plasmid-based PCA, Gateway cloning-compatible destination plasmids pDEST-DHFR
809 F[1,2] (TRP1 and LEU2) and pDEST-DHFR F[3] (TRP1 and LEU2) were constructed based on
810 the CEN/ARS low-copy yeast two-hybrid (Y2H) destination plasmids pDEST-AD (TRP1) and
811 pDEST-DB (LEU2) (Rual et al., 2005). A DNA fragment having I-CeuI restriction site was
812 amplified using DEY001 and DEY002 primers (Table S12) without template and another
813 fragment having PI-PspI/I-SceI restriction site was amplified using DEY003 and DEY004 primers
814 (Table S11) without template. pDEST-AD and pDEST-DB plasmids were each digested by PstI
815 and SacI and mixed with the I-CeuI fragment (destined to the PstI locus) and PI-PspI/I-SceI
816 fragment (destined to the SacI locus) for Gibson DNA assembly (Gibson et al., 2009) to generate
817 pDN0501 (TRP1) and pDN0502 (LEU2). Four DNA fragments were then prepared to construct
818 the pDEST-DHFR F[1,2] vectors: (i) a fragment containing ADH1 promoter; (ii) a fragment
819 containing Gateway destination site; (iii) a DHFR F[1,2] fragment; and (iv) a backbone plasmid
820 fragment. The ADH1 promoter fragment was amplified from pDN0501 using DEY005 and
821 DEY006 primers (Table S12) and the Gateway destination site fragment was amplified from
822 pDN0501 using DEY007 and DEY008 primers (Table S12). The DHFR-F[1,2] fragment was
823 amplified from pAG25-linker-F[1,2]-ADHterm (Tarassov et al., 2008) using DEY009 and DEY010
824 primers (Table S12).
825

826 The backbone fragment was prepared by restriction digestion of pDN0501 or pDN0502 using I-
827 CeuI and PI-PspI and purified by size-selection. The four fragments were assembled by Gibson
828 DNA assembly where each fragment pair was overlapping with more than 30 bp, producing
829 pHMA1001 (TRP1) or pHMA1003 (LEU2). The PstI-SacI region of the plasmids was finally
830 replaced with a DNA fragment containing an amino acid flexible polypeptide linker (GGGS)
831 prepared by PstI/SacI double digestion of a synthetic DNA fragment DEY011 to produce pDEST-
832 DHFR F[1,2] (TRP1) and pDEST-DHFR F[1,2] (LEU2). The DHFR F[3] fragment was then
833 amplified from pAG32-linker-F[3]-ADHterm with DEY012 and DEY013 primers (Table S11),
834 digested by SphI and PI-PspI, and used to replace the SphI-PI-PspI region of the pDEST-DHFR
835 F[1,2] plasmids, producing pDEST-DHFR F[3] (TRP1) and pDEST-DHFR F[3] (LEU2) plasmids.
836 In this study, we used pDEST-DHFR F[1,2] (TRP1) and pDEST-DHFR F[3] (LEU2) for the
837 plasmid-based DHFR PCA. After Gateway LR cloning of Entry Clones to these destination

838 plasmids, the expression plasmids encode protein fused to the DHFR fragments via an
839 NPAFLYKVVGGSSTS linker.

840
841 We obtained the orthologous gene sequences for the mitochondrial translocon complex and the
842 transaldolase proteins of *Lachancea kluyveri* and *Zygosaccharomyces rouxii* from the Yeast
843 Gene Order Browser (YGOB) (Byrne and Wolfe, 2005). Each ORF was amplified using
844 oligonucleotides listed in Table S11. We used 300 ng of purified PCR product to set a BPII
845 recombination reaction (5 μ L) into the Gateway Entry Vector pDONR201 (150 ng) according to
846 the manufacturer's instructions (Invitrogen, USA). BPII reaction mix was incubated overnight at
847 25°C. The reaction was inactivated with proteinase K. The whole reaction was used to transform
848 MC1061 competent *E. coli* cells (Green and Rogers, 2013), followed by selection on solid 2YT
849 medium supplemented with 50 mg/L of kanamycin (BioShop Inc., Canada) at 37°C. Positive
850 clones were detected by PCR using an ORF specific oligonucleotide and a general pDONR201
851 primer (Table S12). We then extracted the positive Entry Clones using Presto™ Mini Plasmid Kit
852 (Geneaid Biotech Ltd, Taiwan) for downstream application.

853
854 LRII reactions were performed by mixing 150 ng of the Entry Clone and 150 ng of expression
855 plasmids (pDEST-DHFR F[1,2]-TRP1 or pDEST-DHFR F[3]-LEU2) according to manufacturer's
856 instructions (Invitrogen, USA). The reactions were incubated overnight at 25°C and inactivated
857 with proteinase K. We used the whole reaction to transform MC1061 competent *E. coli* cells,
858 followed by selection on solid 2YT medium supplemented with 100 mg/L ampicillin (BioShop Inc.,
859 Canada) at 37°C. Positive clones were confirmed by PCR using a ORF specific primer and a
860 plasmid universal primer. The sequence-verified expression plasmids bearing the orthologous
861 fusions with DHFR F[1,2] and DHFR F[3] fragments were used to transform the yeast strains
862 YY3094 (MAT α *leu2-3,112 trp1-901 his3-200 ura3-52 gal4 Δ gal80 Δ LYS2::P_{GAL1}-HIS3
863 MET2::P_{GAL7}-lacZ cyh2^R can1 Δ ::P_{CMV}-rtTA-KanMX4) and YY3095 (MAT α *leu2-3,112 trp1-901
864 his3-200 ura3-52 gal4 Δ gal80 Δ LYS2::P_{GAL1}-HIS3 MET2::P_{GAL7}-lacZ cyh2^R can1 Δ ::T_{ADH1}-P_{tetO2}-
865 Cre-T_{CYC1}-KanMX4), respectively. Selection was done on SC -trp -ade (YY3094) or on SC -leu -
866 ade (YY3095). The strains YY3094 and YY3095 were generated from BFG-Y2H toolkit strains
867 RY1010 and RY1030 (Yachie et al., 2016), respectively, by restoring their wild type *ADE2* genes.
868 The *ADE2* gene was restored by homologous recombination of the wild type sequence cassette
869 amplified from the laboratory strain BY4741 using primers DEY014 and DEY015 (Table S12).
870 SC -ade plates were used to obtain successful transformants.**

871
872 **3.3 DHFR PCA experiments**
873 Three DHFR PCA experiments were performed, hereafter referred to as PCA1, PCA2 and PCA3.
874 The configuration of strains on plates and the screenings were performed using robotically
875 manipulated pin tools (BM5-SC1, S&P Robotics Inc., Toronto, Canada (Rochette et al., 2015)).
876 We first organized haploid strains in 384 colony arrays containing a border of control strains
877 using a cherry-picking 96-pin tool (Figure 2—figure supplement 7). We constructed four haploid
878 arrays corresponding to paralog 1 and 2 (P1 and P2) and mating type: MAT α P1-DHFR F[1,2];
879 MAT α P2-DHFR F[1,2] (on NAT medium); MAT α P1-DHFR F[3]; MAT α P2-DHFR F[3] (on HygB
880 medium). Border control strains known to show interaction by PCA (MAT α LSM8-DHFR F[1-2]
881 and MAT α CDC39-DHFR F[3]) were incorporated respectively in all MAT α DHFR F[1,2] and
882 MAT α DHFR F[3] plates in the first and last columns and rows. The strains were organized as
883 described in Figure 2—figure supplement 7. The two haploid P1 and P2 384 plates of the same

884 mating type were condensated into a 1536 colony array using a 384-pintool. The two 1536 arrays
885 (one MAT α DHFR F[1,2], one MAT α DHFR F[3]) were crossed on YPD to systematically test P1-
886 DHFR F[1,2] / P1-DHFR F[3], P1-DHFR F[1,2]/P2-DHFR F[3], P2-DHFR F[1,2]/P1-DHFR F[3]
887 and P2-DHFR F[1,2]/P2-DHFR F[3] interactions in adjacent positions. We performed two rounds
888 of diploid selection (S1 to S2) by replicating the YPD plates onto NAT+HygB and growing for 48
889 hours. The resulting 1536 diploid plates were replicated twice for 96 hours on DMSO -ade -lys -
890 met control plates (for PCA1 and PCA2) and twice for 96 hours on the selective MTX -ade -lys -
891 met medium (for all runs). Five 1536 PCA plates (PCA1-plate1, PCA1-plate2, PCA2, PCA3-
892 plate1 and PCA3-plate2) were generated this way. We tested the interactions between 277 pairs
893 in five to twenty replicates each (Table S3).

894

895 We also used the robotic platform to generate three bait and three prey 1536 arrays for the DHFR
896 plasmid-based PCA, testing each pairwise interaction at least four times. We mated all MAT α
897 DHFR F[1,2] and MAT α DHFR F[3] strains on YPD medium at room temperature for 24 hours.
898 We performed two successive steps of diploid selection (SC -leu -trp -ade) followed by two steps
899 on DMSO and MTX media (DMSO -leu -trp -ade and MTX -leu -trp -ade). We incubated the
900 plates of diploid selection at 30°C for 48 hours. Finally, plates from both MTX steps were
901 incubated and monitored for 96 hours at 30°C.

902

903 3.4. Analysis of DHFR PCA results

904

905 3.4.1 Image analysis and colony size quantification

906 All images were analysed the same way, including images from (Stynen et al., 2018). Images of
907 plates were taken with a EOS Rebel T5i camera (Canon, Tokyo, Japan) every two hours during
908 the entire course of the PCA experiments. Incubation and imaging were performed in a splmager
909 custom platform (S&P Robotics Inc., Toronto, Canada). We considered images after two days of
910 growth for diploid selection plates and after four days of growth for DMSO and MTX plates.
911 Images were analysed using *gitter* (R package version 1.1.1 (Wagih and Parts, 2014)) to quantify
912 colony sizes defining a square around the colony center and measuring the foreground pixel
913 intensity minus the background pixel intensity.

914

915 3.4.2 Data filtering

916 For the images from (Stynen et al., 2018), we filtered data based on the diploid selection plates.
917 Colonies smaller than 200 pixels were considered as missing data rather than as non-interacting
918 strains. For PCA1, PCA2 and PCA3, colonies flagged as irregular by *gitter* (as S (colony spill or
919 edge interference) or S, C (low colony circularity) flags) or that did not grow on the last diploid
920 selection step or on DMSO medium (smaller than quantile 25 minus the interquartile range) were
921 considered as missing data. We considered only bait-prey pairs with at least four replicates and
922 used the median of colony sizes as PCA signal. The data was finally filtered based on the
923 completeness of paralogous pairs so we could test HMs and HETs systematically. Thus, we
924 finally obtained results for 241 paralogous pairs (Tables S3 and S4). Median colony sizes were
925 log₂ transformed after adding a value of 1 to all data to obtain PCA scores. The results of (Stynen
926 et al., 2018) and PCA1, PCA2 and PCA3 were strongly correlated (Figure 2–figure supplement
927 1. B). Similarly, the results correlate well with those reported by (Tarassov et al., 2008) (Figure
928 2–figure supplement 1. C).

929

930 **3.4.3 Detection of protein-protein interactions**

931 The distribution of PCA scores was modeled per duplication type (SSD and WGD) and per
932 interaction tested (HM or HET) as in (Diss et al., 2017) with the *normalmixEM* function (default
933 parameters) available in the R mixtools package (Benaglia et al., 2009). The background signal
934 on MTX was used as a null distribution to which interactions were compared. The size of colonies
935 (PCA scores (PCA_s)) were converted to z-scores using the mean (μ_b) and standard deviation
936 (sd_b) of the background distribution ($Z_s = (PCA_s - \mu_b)/sd_b$). PPI were considered detected if Z_s of
937 the bait-prey pair was greater than 2.5 (Figure 2—figure supplement 8) (Chrétien et al., 2018).

938
939 We observed 24 cases in which only one of the two possible HET interactions was detected (P1-
940 DHFR F[1,2] x P2-DHFR F[3] or P2-DHFR F[1,2] x P1-DHFR F[3]). It is typical for PCA assays
941 to detect interactions in only one orientation or the other (See (Tarassov et al., 2008)). However,
942 this could also be caused by one of the four strains having an abnormal fusion sequence. We
943 verified by PCR and sequenced the fusion sequences to make sure this was not the case. The
944 correct strains were conserved and the other ones were re-constructed and retested. No cases
945 of unidirectional HET were observed in our final results. For all 71 pairs after reconstruction, both
946 reciprocal interactions were detected.

947
948 **3.4.4 Dataset integration**

949 The PCA data was integrated with other data obtained from databases. The overlaps among the
950 different datasets and the results of our PCA experiments are shown in Figure 2—figure
951 supplement 2.

952
953 **4. Gene expression in MTX condition**

954
955 **4.1 Cell cultures for RNAseq**

956 We used the border control diploid strain from the DHFR PCA (MAT α *LSM8*-DHFR
957 F[1,2]/*LSM8* *CDC39*/*CDC39*-DHFR F[3]) to measure expression profile in MTX condition. Three
958 overnight pre-cultures were grown separately in 5 ml of NAT+HygB at 30°C with shaking at 250
959 rpm. A second set of pre-cultures were grown starting from a dilution at $OD_{600} = 0.01$ in 50 ml in
960 the same condition to an OD_{600} of 0.8 to 1. Final cultures were started at $OD_{600} = 0.03$ in 250 ml
961 of synthetic media supplemented with MTX or DMSO (MTX -ade -trp -leu or DMSO -ade -trp -
962 leu) at 30°C with shaking at 250 rpm. These cultures were transferred to 5 x 50 ml tubes when
963 they reached an OD_{600} of 0.6 to 0.7 and centrifuged at 1008 g at 4°C for 1 min. The supernatant
964 was discarded and cell pellets were frozen in liquid nitrogen and stored at -80°C until processing.
965 RNA extractions and library generation and amplification were performed as described in
966 (Eberlein et al., 2019). Briefly, the Quantseq 3' mRNA kit (Lexogen, Vienna, Austria) was used
967 for library preparation (Moll et al., 2014) following the manufacturer's protocol. The PCR cycles
968 number during library amplification was adjusted to 16. The six libraries were pooled and
969 sequenced on a single Ion Torrent chip (ThermoFisher Scientific, Waltham, United States) for a
970 total of 7,784,644 reads on average per library. Barcodes associated to the samples in this study
971 are listed in Table S5.

972
973 **4.2 RNAseq analysis**

974 Read quality statistics were retrieved from the program FastQC (Andrews, 2010). Reads were
975 cleaned using cutadapt (Martin, 2011). We removed the first 12 bp, trimmed the poly-A tail from

976 the 3' end, trimmed low-quality ends using a cutoff of 15 (phred quality + 33) and discarded reads
977 shorter than 30 bp. The number of reads before and after cleaning can be found in Table S5.
978 Raw sequences can be downloaded under the NCBI BioProject ID PRJNA480398.

979
980 Cleaned reads were aligned on the reference genome of S288c from SGD
981 (S288C_reference_genome_R64-2-1_20150113.fsa version) using bwa (Li and Durbin, 2009).
982 Because we used a 3'mRNA-Seq Library, reads mapped largely to 3'UTRs. We increased the
983 window of annotated genes in the SGD annotation (saccharomyces_cerevisiae_R64-2-
984 1_20150113.gff version) using the UTR annotation from (Nagalakshmi et al., 2008). Based on
985 this reference genes-UTR annotation, the number of mapped reads per genes was estimated
986 using htseq-count of the Python package HTSeq (Anders et al., 2015) and reported in Table S6.
987

988 **4.3 Correlation of gene expression profiles**

989 The correlation of expression profiles for paralogs was calculated using Spearman's correlation
990 from large-scale microarray data (Ihmels et al., 2004) over 1000 mRNA expression profiles from
991 different conditions and different cell cycle phases. These results were compared and confirmed
992 with a large-scale expression data from normalized RNAseq single cells of *S. cerevisiae* grown
993 in normal or stressful conditions (0.7 M NaCl) and from different cell cycle phases (Gasch et al.,
994 2017).

995 996 **5. Structural analyses**

997 998 **5.1. Sequence conservation in binding interfaces of yeast complexes**

1000 **5.1.1. Identification of crystal structures**

1001 The sequences of paralogs classified as SSDs or WGDs (Byrne and Wolfe, 2005; Guan et al.,
1002 2007) were taken from the reference proteome of *Saccharomyces cerevisiae* assembly R64-1-1
1003 and searched using BLASTP (version 2.6.0+) (Camacho et al., 2009) to all the protein sequences
1004 contained in the Protein Data Bank (PDB) downloaded on September 21st, 2017 (Berman et al.,
1005 2000). Due to the high sequence identity of some paralogs (up to 95%), their structures were
1006 assigned as protein subunits from the PDB that had a match with 100% sequence identity and
1007 an E-value lower than 1e-6. Only crystal structures that spanned more than 50% of the full protein
1008 length were kept for the following analyses. The same method was used to retrieve PDB
1009 structures for human paralogous proteins. The human reference proteome
1010 *Homo_sapiens.GRCh38.pep.all.fa* was downloaded on May 16th, 2019 from the Ensembl
1011 database (<http://useast.ensembl.org/info/data/ftp/index.html>) (Zerbino et al., 2018). Pairs of
1012 paralogs were retrieved from two different datasets (Lan and Pritchard, 2016; Singh et al., 2015).
1013 Protein interactions for those proteins were taken from a merged dataset from the BioGRID
1014 (Chatr-Aryamontri et al., 2017) and IntAct (Orchard et al., 2014) databases. The longest protein
1015 isoforms for each gene in the dataset were aligned using BLASTP to the set of sequences from
1016 the PDB. Matches with 100% sequence identity and E-values below 1e-6 were assigned to the
1017 subunits from the PDB structures.

1018 1019 **5.1.2. Identification of interfaces**

1020 Residue positions involved in protein binding interfaces were defined based on the distance of
1021 residues to the other subunit (Tsai et al., 1996). Contacting residues are defined as those whose

1022 two closest non-hydrogen atoms are separated by a distance smaller than the sum of their van
1023 der Waals radii plus 0.5 Å. Reference van der Waals radii were obtained with FreeSASA version
1024 2.0.1 (Mitternacht, 2016). Nearby residues are those whose alpha carbons are located at a
1025 distance smaller than 6 Å. All distances were measured using the Biopython library (version 1.70)
1026 (Cock et al., 2009).

1027

1028 **5.1.3. Sequence conservation within interfaces**

1029 The dataset of PDB files was then filtered to include only the crystallographic structures with the
1030 highest resolution available for each complex involving direct contacts between subunits of
1031 paralogs. Full-length protein sequences from the reference proteome were then aligned to their
1032 matching subunits from the PDB with MUSCLE version 3.8.31 (Edgar, 2004) to assign the
1033 structural data to the residues in the full-length protein sequence. These full-length sequences
1034 were then aligned to their paralogs and sequences from PhylomeDB phylogenies (phylome
1035 0003) (Huerta-Cepas et al., 2008) with MUSCLE version 3.8.31. Only three pairs of paralogs that
1036 needed realignment were included in this analysis. Sequence identity was calculated within
1037 interface regions, which considered the contacting and nearby residues. Paralogs were classified
1038 as HM or HM&HET based on the data shown in Table S3. PDB identifiers for structures included
1039 in this analysis are shown in Table S13. Pairs of paralogs for which the crystallized domain was
1040 only present in one of the proteins were not considered for this analysis.

1041

1042 A similar procedure was applied to the human proteins, with sequences aligned to their
1043 corresponding PhylomeDB phylogenies from phylome 0076 (A new human phylome release
1044 using current phylogenetic pipeline with updated proteomes) resulting from forward and reverse
1045 alignments obtained with MUSCLE 3.8, MAFFT v6.712b and DIALIGN-TX, and merged with M-
1046 COFFEE (Huerta-Cepas et al., 2008). Considering that human genes code for multiple isoforms,
1047 we took the isoforms from the two paralogs that had the highest sequence identity with respect
1048 to the PDB structure. When a gene coded for multiple isoforms that were annotated with identical
1049 protein sequence in the human reference proteome, we only kept one of them. This resulted in
1050 a set of 40 HM interfaces and 25 HM&HET interfaces for a total of 54 different pairs (35 HM pairs
1051 and 19 HM&HET). Pairs of paralogs were classified as HM or HM&HET based on the data in
1052 Tables S14 and S15.

1053

1054 **5.2. Simulations of coevolution of protein complexes**

1055

1056 **5.2.1 Mutation sampling during evolution of protein binding interfaces**

1057 Simulations were carried out with high quality crystal structures of homodimeric proteins from
1058 PDB (Berman et al., 2000). Four of them (PDB: 1M38, 2JKY, 3D8X, 4FGW) were taken from the
1059 above data set of structures that matched yeast paralogs and two others from the same tier of
1060 high quality structures (PDB: 1A82, 2O1V). The simulations model the duplication of the gene
1061 encoding the homodimer, giving rise to separate copies that can accumulate different mutations,
1062 leading to the formation of HMs and HETs as in Figure 1.

1063

1064 Mutations were introduced using a transition matrix whose substitution probabilities consider the
1065 genetic code and allow only substitutions that would require a single base change in the
1066 underlying codons (Thorvaldsen, 2016). Due to the degenerate nature of the genetic code, the
1067 model also allows synonymous mutations. Thus, the model explores the effects of mutations in

1068 both loci, as well as mutations in only one locus. The framework assumes equal mutation rates
1069 at both loci, as it proposes a mutation at each locus after every step in the simulation, with 50
1070 replicates of 200 steps of substitution in each simulation. Restricting the mutations to the
1071 interface maintains sequence identity above 40%, which has been described previously as the
1072 threshold at which protein fold remains similar (Addou et al., 2009; Todd et al., 2001; Wilson et
1073 al., 2000).

1074

1075 **5.2.2 Implementation of selection**

1076 Simulations were carried out using the FoldX suite version 4 (Guerois et al., 2002; Schymkowitz
1077 et al., 2005). Starting structures were repaired with the RepairPDB function, mutations were
1078 simulated with BuildModel followed by the Optimize function, and estimations of protein stability
1079 and binding energy of the complex were done with the Stability and Analyse Complex functions,
1080 respectively. Effects of mutations on complex fitness were calculated using methods previously
1081 described (Kachroo et al., 2015). The fitness of a complex was calculated from three components
1082 based on the stability of protein subunits and the binding energy of the complex using equation
1083 1:

1084

$$1085 x_i^k = -\log \left[e^{\beta(\Delta G_i^k - \Delta G_{threshold}^k)} + 1 \right] \quad (1)$$

1086

1087 where i is the index of the current substitution, k is the index of one of the model's three energetic
1088 parameters (stability of subunit A, stability of subunit B, or binding energy of the complex), x_i^k is
1089 the fitness component of the k^{th} parameter for the i^{th} substitution, β is a parameter that determines
1090 the smoothness of the fitness curve, ΔG_i^k is the free energy value of the k^{th} free energy parameter
1091 (stability of subunit A, stability of subunit B, or binding energy of the complex) for the i^{th}
1092 substitution, and $\Delta G_{threshold}^k$ is a threshold around which the fitness component starts to
1093 decrease. The total fitness of the complex after the i^{th} mutation was calculated as the sum of the
1094 three computed values for x_i^k , as shown in equation 2:

1095

$$1096 x_i = \sum_{k=1}^3 x_i^k \quad (2)$$

1097

1098 The fitness values of complexes were then used to calculate the probability of fixation (p_{fix}) or
1099 rejection of the substitutions using the Metropolis criterion, as in equation 3:

1100

$$1101 p_{fix} = \begin{cases} 1, & \text{if } x_j > x_i \\ e^{-2N(x_i - x_j)}, & \text{if } x_j \leq x_i \end{cases} \quad (3)$$

1102

1103 where p_{fix} is the probability of fixation, x_i is the total fitness value for the complex after i
1104 substitutions; x_j is the total fitness value for the complex after j substitutions, with $j = i + 1$; and
1105 N is the population size, which influences the efficiency of selection.

1106

1107 Different selection scenarios were examined depending on the complexes whose binding energy
1108 and subunit stabilities were under selection: neutral evolution (no selection applied on subunit
1109 stability and on the binding energy of the complex), selection on one homodimer, selection on
1110 the two homodimers, and selection on the heterodimer. β was set to 10, N was set to 1000 and
1111 the $\Delta G_{threshold}^k$ were set to 99.9% of the starting values for each complex, following the
1112 parameters described in (Kachroo et al., 2015). For the simulations with neutral evolution, β was
1113 set to 0. For simulations with other combinations of parameters, we varied β and N , one at a
1114 time, with β taking values of 1 and 20 and N taking values of 100 and 10000. The simulations
1115 with 500 substitutions were carried out with β set to 10, and N set to 1000.
1116

1117 **5.2.3 Analyses of simulations**

1118 The results from the simulations were then analyzed by distinguishing mutational steps with only
1119 one non-synonymous mutation (single mutants, between 29% and 34% of the steps in the
1120 simulations) from steps with two non-synonymous mutations (double mutants, between 61% and
1121 68% of the steps). The global data was used to follow the evolution of binding energies of the
1122 complexes over time, which are shown in Figure 4. The effects of mutations in HM and HET were
1123 compared using the single mutants (Figure 5-figure supplement 2). The double mutants were
1124 used to analyze epistatic and pleiotropic effects (Figure 5, Figure 5-figure supplement 1) and to
1125 compare the rates of mutation fixation based on their effects on the HMs (Figure 5-figure
1126 supplement 3).
1127
1128

1129 **Author contributions**

1130 CRL, AM and AFC designed this study. AM, AKD, IGA, DA, SA, CE and DEY performed the
1131 experiments. AFC performed the *in silico* evolution experiments and the analysis of protein
1132 structures. AM, AFC, HAJ and CRL analysed the results. CRL and NY supervised the research.
1133 AM, AFC and CRL wrote the manuscript with input from all authors.
1134

1135 **Acknowledgements**

1136 This work was supported by Canadian Institutes of Health Research grants 299432, 324265 and
1137 387697 to CRL. AM was supported by a FRQS postdoctoral scholarship. AFC was supported by
1138 fellowships from PROTEO, MITACS, and Université Laval, as well as joint funding from MEES
1139 and AMEXCID. SA was supported by an NSERC undergraduate scholarship. CRL holds the
1140 Canada Research Chair in Evolutionary Cells and Systems Biology. We thank SW Michnick for
1141 sharing data before publication. The authors thank Philippe Després, Johan Hallin and Anna
1142 Fijarczyk for comments on the paper, Rohan Dandage for both comments on the paper and
1143 assistance on gathering the data for human paralogs, Rong Shi for useful discussions, and
1144 Stéphane Larose for assistance on data management.
1145

1146 **Competing interests**

1147 The authors have no competing interests to declare.

1148 References

1149 Addou S, Rentzsch R, Lee D, Orengo CA. 2009. Domain-based and family-specific sequence identity
1150 thresholds increase the levels of reliable protein function transfer. *J Mol Biol* **387**:416–430.
1151 doi:10.1016/j.jmb.2008.12.045

1152 Amoutzias GD, Robertson DL, Van de Peer Y, Oliver SG. 2008. Choose your partners: dimerization
1153 in eukaryotic transcription factors. *Trends Biochem Sci* **33**:220–229.
1154 doi:10.1016/j.tibs.2008.02.002

1155 Anders S, Pyl PT, Huber W. 2015. HTSeq--a Python framework to work with high-throughput
1156 sequencing data. *Bioinformatics* **31**:166–169. doi:10.1093/bioinformatics/btu638

1157 André I, Strauss CEM, Kaplan DB, Bradley P, Baker D. 2008. Emergence of symmetry in
1158 homooligomeric biological assemblies. *Proc Natl Acad Sci U S A* **105**:16148–16152.
1159 doi:10.1073/pnas.0807576105

1160 Andrews S. 2010. FastQC A Quality Control tool for High Throughput Sequence Data.
1161 <http://www.bioinformatics.babraham.ac.uk/projects/fastqc/>

1162 Ascencio D, Ochoa S, Delaye L, DeLuna A. 2017. Increased rates of protein evolution and asymmetric
1163 deceleration after the whole-genome duplication in yeasts. *BMC Evol Biol* **17**.
1164 doi:10.1186/s12862-017-0895-1

1165 Ashenberg O, Rozen-Gagnon K, Laub MT, Keating AE. 2011. Determinants of homodimerization
1166 specificity in histidine kinases. *J Mol Biol* **413**:222–235. doi:10.1016/j.jmb.2011.08.011

1167 Baker CR, Hanson-Smith V, Johnson AD. 2013. Following Gene Duplication, Paralog Interference
1168 Constrains Transcriptional Circuit Evolution. *Science* **342**:104–108. doi:10.1126/science.1240810

1169 Benaglia T, Chauveau D, Hunter D, Young D. 2009. mixtools: An R Package for Analyzing Mixture
1170 Models. *Journal of Statistical Software, Articles* **32**:1–29. doi:10.18637/jss.v032.i06

1171 Benschop JJ, Brabers N, van Leenen D, Bakker LV, van Deutekom HWM, van Berkum NL, Apweiler
1172 E, Lijnzaad P, Holstege FCP, Kemmeren P. 2010. A consensus of core protein complex
1173 compositions for *Saccharomyces cerevisiae*. *Mol Cell* **38**:916–928.
1174 doi:10.1016/j.molcel.2010.06.002

1175 Bergendahl LT, Marsh JA. 2017. Functional determinants of protein assembly into homomeric
1176 complexes. *Sci Rep* **7**:4932. doi:10.1038/s41598-017-05084-8

1177 Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE. 2000.
1178 The Protein Data Bank. *Nucleic Acids Res* **28**:235–242. doi:10.1093/nar/28.1.235

1179 Birchler JA, Veitia RA. 2012. Gene balance hypothesis: connecting issues of dosage sensitivity across
1180 biological disciplines. *Proc Natl Acad Sci U S A* **109**:14746–14753. doi:10.1073/pnas.1207726109

1181 Boncoeur E, Durmort C, Bernay B, Ebel C, Di Guilmi AM, Croizé J, Vernet T, Jault J-M. 2012. PatA
1182 and PatB form a functional heterodimeric ABC multidrug efflux transporter responsible for the
1183 resistance of *Streptococcus pneumoniae* to fluoroquinolones. *Biochemistry* **51**:7755–7765.
1184 doi:10.1021/bi300762p

1185 Brender JR, Zhang Y. 2015. Predicting the Effect of Mutations on Protein-Protein Binding Interactions
1186 through Structure-Based Interface Profiles. *PLoS Comput Biol* **11**:e1004494.
1187 doi:10.1371/journal.pcbi.1004494

1188 Bridgman JT, Brown JE, Rodríguez-Marí A, Catchen JM, Thornton JW. 2008. Evolution of a New
1189 Function by Degenerative Mutation in Cephalochordate Steroid Receptors. *PLoS Genet* **4**.
1190 doi:10.1371/journal.pgen.1000191

1191 Byrne KP, Wolfe KH. 2005. The Yeast Gene Order Browser: Combining curated homology and

1192 syntenic context reveals gene fate in polyploid species. *Genome Res* **15**:1456–1461.
1193 doi:10.1101/gr.3672305

1194 Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL. 2009. BLAST+:
1195 architecture and applications. *BMC Bioinformatics* **10**:421. doi:10.1186/1471-2105-10-421

1196 Celaj A, Schlecht U, Smith JD, Xu W, Suresh S, Miranda M, Aparicio AM, Proctor M, Davis RW, Roth
1197 FP, St Onge RP. 2017. Quantitative analysis of protein interaction network dynamics in yeast. *Mol
1198 Syst Biol* **13**:934. doi:10.1525/msb.20177532

1199 Chatr-Aryamontri A, Breitkreutz B-J, Heinicke S, Boucher L, Winter A, Stark C, Nixon J, Ramage L,
1200 Kolas N, O'Donnell L, Reguly T, Breitkreutz A, Sellam A, Chen D, Chang C, Rust J, Livstone M,
1201 Oughtred R, Dolinski K, Tyers M. 2013. The BioGRID interaction database: 2013 update. *Nucleic
1202 Acids Res* **41**:D816–D823. doi:10.1093/nar/gks1158

1203 Chatr-Aryamontri A, Oughtred R, Boucher L, Rust J, Chang C, Kolas NK, O'Donnell L, Oster S,
1204 Theesfeld C, Sellam A, Stark C, Breitkreutz B-J, Dolinski K, Tyers M. 2017. The BioGRID
1205 interaction database: 2017 update. *Nucleic Acids Res* **45**:D369–D379. doi:10.1093/nar/gkw1102

1206 Cherry JM, Hong EL, Amundsen C, Balakrishnan R, Binkley G, Chan ET, Christie KR, Costanzo MC,
1207 Dwight SS, Engel SR, Fisk DG, Hirschman JE, Hitz BC, Karra K, Krieger CJ, Miyasato SR, Nash
1208 RS, Park J, Skrzypek MS, Simison M, Weng S, Wong ED. 2012. Saccharomyces Genome
1209 Database: the genomics resource of budding yeast. *Nucleic Acids Res* **40**:D700–5.
1210 doi:10.1093/nar/gkr1029

1211 Chrétien A-È, Gagnon-Arsenault I, Dubé AK, Barbeau X, Després PC, Lamothe C, Dion-Côté A-M,
1212 Lagüe P, Landry CR. 2018. Extended Linkers Improve the Detection of Protein-protein
1213 Interactions (PPIs) by Dihydrofolate Reductase Protein-fragment Complementation Assay (DHFR
1214 PCA) in Living Cells. *Mol Cell Proteomics* **17**:373–383. doi:10.1074/mcp.TIR117.000385

1215 Cock PJA, Antao T, Chang JT, Chapman BA, Cox CJ, Dalke A, Friedberg I, Hamelryck T, Kauff F,
1216 Wilczynski B, de Hoon MJL. 2009. Biopython: freely available Python tools for computational
1217 molecular biology and bioinformatics. *Bioinformatics* **25**:1422–1423.
1218 doi:10.1093/bioinformatics/btp163

1219 Costanzo M, VanderSluis B, Koch EN, Baryshnikova A, Pons C, Tan G, Wang W, Usaj M, Hanchard
1220 J, Lee SD, Pelechano V, Styles EB, Billmann M, van Leeuwen J, van Dyk N, Lin Z-Y, Kuzmin E,
1221 Nelson J, Piotrowski JS, Srikumar T, Bahr S, Chen Y, Deshpande R, Kurat CF, Li SC, Li Z, Usaj
1222 MM, Okada H, Pascoe N, San Luis B-J, Sharifpoor S, Shuteriqi E, Simpkins SW, Snider J, Suresh
1223 HG, Tan Y, Zhu H, Malod-Dognin N, Janjic V, Przulj N, Troyanskaya OG, Stagljar I, Xia T, Ohya
1224 Y, Gingras A-C, Raught B, Boutros M, Steinmetz LM, Moore CL, Rosebrock AP, Caudy AA, Myers
1225 CL, Andrews B, Boone C. 2016. A global genetic interaction network maps a wiring diagram of
1226 cellular function. *Science* **353**. doi:10.1126/science.aaf1420

1227 DeLuna A, Springer M, Kirschner MW, Kishony R. 2010. Need-Based Up-Regulation of Protein Levels
1228 in Response to Deletion of Their Duplicate Genes. *PLoS Biol* **8**:e1000347.
1229 doi:10.1371/journal.pbio.1000347

1230 De Smet R, Adams KL, Vandepoele K, Van Montagu MCE, Maere S, Van de Peer Y. 2013. Convergent
1231 gene loss following gene and genome duplications creates single-copy families in flowering plants.
1232 *Proc Natl Acad Sci U S A* **110**:2898–2903. doi:10.1073/pnas.1300127110

1233 Dey S, Ritchie DW, Levy ED. 2018. PDB-wide identification of biological assemblies from conserved
1234 quaternary structure geometry. *Nat Methods* **15**:67–72. doi:10.1038/nmeth.4510

1235 Diss G, Gagnon-Arsenault I, Dion-Côté A-M, Vignaud H, Ascencio D, Berger CM, Landry CR. 2017.
1236 Gene duplication can impart fragility, not robustness in the yeast protein interaction network.
1237 *Science* **355**:630–634. doi:10.1126/science.aai7685

1238 Diss G, Lehner B. 2018. The genetic landscape of a physical interaction. *Elife* **7**.
1239 doi:10.7554/eLife.32472

1240 Dong D, Yuan Z, Zhang Z. 2011. Evidences for increased expression variation of duplicate genes in
1241 budding yeast: from cis- to trans-regulation effects. *Nucleic Acids Res* **39**:837–847.
1242 doi:10.1093/nar/gkq874

1243 Eberlein C, Hénault M, Fijarczyk A, Charron G, Bouvier M, Kohn LM, Anderson JB, Landry CR. 2019.
1244 Hybridization is a recurrent evolutionary stimulus in wild yeast speciation. *Nat Commun* **10**:923.
1245 doi:10.1038/s41467-019-10880-7

1246 Edgar RC. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput.
1247 *Nucleic Acids Res* **32**:1792–1797. doi:10.1093/nar/gkh340

1248 Edger PP, Pires JC. 2009. Gene and genome duplications: the impact of dosage-sensitivity on the fate
1249 of nuclear genes. *Chromosome Res* **17**:699–717. doi:10.1007/s10577-009-9055-9

1250 El-Gebali S, Mistry J, Bateman A, Eddy SR, Luciani A, Potter SC, Qureshi M, Richardson LJ, Salazar
1251 GA, Smart A, Sonnhammer ELL, Hirsh L, Paladin L, Piovesan D, Tosatto SCE, Finn RD. 2019.
1252 The Pfam protein families database in 2019. *Nucleic Acids Res* **47**:D427–D432.
1253 doi:10.1093/nar/gky995

1254 Fares MA, Keane OM, Toft C, Carretero-Paulet L, Jones GW. 2013. The Roles of Whole-Genome and
1255 Small-Scale Duplications in the Functional Specialization of *Saccharomyces cerevisiae* Genes.
1256 *PLoS Genet* **9**:e1003176.

1257 Freschi L, Torres-Quiroz F, Dubé AK, Landry CR. 2013. qPCA: a scalable assay to measure the
1258 perturbation of protein-protein interactions in living cells. *Mol Biosyst* **9**:36–43.
1259 doi:10.1039/c2mb25265a

1260 Gagnon-Arsenault I, Marois Blanchet F-C, Rochette S, Diss G, Dubé AK, Landry CR. 2013.
1261 Transcriptional divergence plays a role in the rewiring of protein interaction networks after gene
1262 duplication. *J Proteomics*, Special Issue: From protein structures to clinical applications **81**:112–
1263 125. doi:10.1016/j.jprot.2012.09.038

1264 Gasch AP, Yu FB, Hose J, Escalante LE, Place M, Bacher R, Kanbar J, Ciobanu D, Sandor L, Grigoriev
1265 IV, Kendziora C, Quake SR, McClean MN. 2017. Single-cell RNA sequencing reveals intrinsic
1266 and extrinsic regulatory heterogeneity in yeast responding to stress. *PLoS Biol* **15**:e2004050.
1267 doi:10.1371/journal.pbio.2004050

1268 Gibson DG, Young L, Chuang R-Y, Venter JC, Hutchison CA 3rd, Smith HO. 2009. Enzymatic
1269 assembly of DNA molecules up to several hundred kilobases. *Nat Methods* **6**:343–345.
1270 doi:10.1038/nmeth.1318

1271 Gibson TA, Goldberg DS. 2009. Questioning the ubiquity of neofunctionalization. *PLoS Comput Biol*
1272 **5**:e1000252. doi:10.1371/journal.pcbi.1000252

1273 Gout J-F, Kahn D, Duret L, Paramecium Post-Genomics Consortium. 2010. Correction: The
1274 Relationship among Gene Expression, the Evolution of Gene Dosage, and the Rate of Protein
1275 Evolution. *PLoS Genet* **6**:10.1371. doi:10.1371/annotation/c55d5089-ba2f-449d-8696-
1276 2bc8395978db

1277 Gout, Lynch. 2015. Maintenance and Loss of Duplicated Genes by Dosage Subfunctionalization. *Mol
1278 Biol Evol* **32**:2141–2148. doi:10.1093/molbev/msv095

1279 Green R, Rogers EJ. 2013. Transformation of chemically competent *E. coli*. *Methods Enzymol*
1280 **529**:329–336. doi:10.1016/B978-0-12-418687-3.00028-8

1281 Guan Y, Dunham MJ, Troyanskaya OG. 2007. Functional Analysis of Gene Duplications in
1282 *Saccharomyces cerevisiae*. *Genetics* **175**:933–943. doi:10.1534/genetics.106.064329

1283 Guerois R, Nielsen JE, Serrano L. 2002. Predicting changes in the stability of proteins and protein

1284 complexes: a study of more than 1000 mutations. *J Mol Biol* **320**:369–387. doi:10.1016/S0022-
1285 2836(02)00442-4

1286 Hakes L, Pinney JW, Lovell SC, Oliver SG, Robertson DL. 2007. All duplicates are not equal: the
1287 difference between small-scale and genome duplication. *Genome Biol* **8**:R209. doi:10.1186/gb-
1288 2007-8-10-r209

1289 Hochberg GKA, Shepherd DA, Marklund EG, Santhanagopalan I, Degiacomi MT, Laganowsky A,
1290 Allison TM, Basha E, Marty MT, Galpin MR, Struwe WB, Baldwin AJ, Vierling E, Benesch JLP.
1291 2018. Structural principles that enable oligomeric small heat-shock protein paralogs to evolve
1292 distinct functions. *Science* **359**:930–935. doi:10.1126/science.aam7229

1293 Huerta-Cepas J, Bueno A, Dopazo J, Gabaldón T. 2008. PhylomeDB: a database for genome-wide
1294 collections of gene phylogenies. *Nucleic Acids Res* **36**:D491–6. doi:10.1093/nar/gkm899

1295 Huh W-K, Falvo JV, Gerke LC, Carroll AS, Howson RW, Weissman JS, O’Shea EK. 2003. Global
1296 analysis of protein localization in budding yeast. *Nature* **425**:686–691. doi:10.1038/nature02026

1297 Ihmels J, Bergmann S, Barkai N. 2004. Defining transcription modules using large-scale gene
1298 expression data. *Bioinformatics* **20**:1993–2003. doi:10.1093/bioinformatics/bth166

1299 Ispolatov I, Yuryev A, Mazo I, Maslov S. 2005. Binding properties and evolution of homodimers in
1300 protein–protein interaction networks. *Nucleic Acids Res* **33**:3629–3635. doi:10.1093/nar/gki678

1301 Janin J, Bahadur RP, Chakrabarti P. 2008. Protein–protein interaction and quaternary structure. *Q Rev
1302 Biophys* **41**:133–180. doi:10.1017/S0033583508004708

1303 Kachroo AH, Laurent JM, Yellman CM, Meyer AG, Wilke CO, Marcotte EM. 2015. Evolution.
1304 Systematic humanization of yeast genes reveals conserved functions and genetic modularity.
1305 *Science* **348**:921–925. doi:10.1126/science.aaa0769

1306 Kaltenegger E, Ober D. 2015. Parologue Interference Affects the Dynamics after Gene Duplication.
1307 *Trends Plant Sci* **20**:814–821. doi:10.1016/j.tplants.2015.10.003

1308 Kim Y, Jung JP, Pack C-G, Huh W-K. 2019. Global analysis of protein homomerization in
1309 *Saccharomyces cerevisiae*. *Genome Res* **29**:135–145. doi:10.1101/gr.231860.117

1310 Landry CR, Levy ED, Abd Rabbo D, Tarassov K, Michnick SW. 2013. Extracting insight from noisy
1311 cellular networks. *Cell* **155**:983–989. doi:10.1016/j.cell.2013.11.003

1312 Lan X, Pritchard JK. 2016. Coregulation of tandem duplicate genes slows evolution of
1313 subfunctionalization in mammals. *Science* **352**:1009–1013. doi:10.1126/science.aad8411

1314 Levy ED, De S, Teichmann SA. 2012. Cellular crowding imposes global constraints on the chemistry
1315 and evolution of proteomes. *Proc Natl Acad Sci U S A* **109**:20461–20466.
1316 doi:10.1073/pnas.1209312109

1317 Levy, Teichmann. 2013. Chapter Two - Structural, Evolutionary, and Assembly Principles of Protein
1318 Oligomerization In: Giraldo J, Ciruela F, editors. *Progress in Molecular Biology and Translational
1319 Science*. Academic Press. pp. 25–51. doi:10.1016/B978-0-12-386931-9.00002-7

1320 Li H, Durbin R. 2009. Fast and accurate short read alignment with Burrows-Wheeler transform.
1321 *Bioinformatics* **25**:1754–1760. doi:10.1093/bioinformatics/btp324

1322 Li, Yang, Gu. 2005. Expression divergence between duplicate genes. *Trends Genet* **21**:602–607.
1323 doi:10.1016/j.tig.2005.08.006

1324 Lukatsky DB, Shakhnovich BE, Mintseris J, Shakhnovich EI. 2007. Structural similarity enhances
1325 interaction propensity of proteins. *J Mol Biol* **365**:1596–1606. doi:10.1016/j.jmb.2006.11.020

1326 Lukatsky DB, Zeldovich KB, Shakhnovich EI. 2006. Statistically enhanced self-attraction of random
1327 patterns. *Phys Rev Lett* **97**:178101. doi:10.1103/PhysRevLett.97.178101

1328 Lynch M. 2012. The evolution of multimeric protein assemblages. *Mol Biol Evol* **29**:1353–1366.
1329 doi:10.1093/molbev/msr300

1330 Lynch M, Field MC, Goodson HV, Malik HS, Pereira-Leal JB, Roos DS, Turkewitz AP, Sazer S. 2014.
1331 Evolutionary cell biology: two origins, one objective. *Proc Natl Acad Sci U S A* **111**:16990–16994.
1332 doi:10.1073/pnas.1415861111

1333 Marcet-Houben M, Gabaldón T. 2015. Beyond the Whole-Genome Duplication: Phylogenetic Evidence
1334 for an Ancient Interspecies Hybridization in the Baker's Yeast Lineage. *PLoS Biol* **13**:e1002220.
1335 doi:10.1371/journal.pbio.1002220

1336 Marsh JA, Teichmann SA. 2015. Structure, dynamics, assembly, and evolution of protein complexes.
1337 *Annu Rev Biochem* **84**:551–575. doi:10.1146/annurev-biochem-060614-034142

1338 Martin M. 2011. Cutadapt removes adapter sequences from high-throughput sequencing reads.
1339 *EMBnet.journal* **17**:10–12. doi:10.14806/ej.17.1.200

1340 Meldal BHM, Forner-Martinez O, Costanzo MC, Dana J, Demeter J, Dumousseau M, Dwight SS,
1341 Gaulton A, Licata L, Melidoni AN, Ricard-Blum S, Roechert B, Skysypek MS, Tiwari M, Velankar
1342 S, Wong ED, Hermjakob H, Orchard S. 2015. The complex portal—an encyclopaedia of
1343 macromolecular complexes. *Nucleic Acids Res* **43**:D479–84. doi:10.1093/nar/gku975

1344 Michnick SW, Levy ED, Landry CR, Kowarzyk J, Messier V. 2016. The Dihydrofolate Reductase
1345 Protein-Fragment Complementation Assay: A Survival-Selection Assay for Large-Scale Analysis
1346 of Protein-Protein Interactions. *Cold Spring Harb Protoc* **2016**. doi:10.1101/pdb.prot090027

1347 Mitternacht S. 2016. FreeSASA: An open source C library for solvent accessible surface area
1348 calculations. *F1000Res* **5**:189. doi:10.12688/f1000research.7931.1

1349 Moll P, Ante M, Seitz A, Reda T. 2014. QuantSeq 3' mRNA sequencing for RNA quantification. *Nat
1350 Methods* **11**:972. doi:10.1038/nmeth.f.376

1351 Musso G, Zhang Z, Emili A. 2007. Retention of protein complex membership by ancient duplicated
1352 gene products in budding yeast. *Trends Genet* **23**:266–269. doi:10.1016/j.tig.2007.03.012

1353 Nagalakshmi U, Wang Z, Waern K, Shou C, Raha D, Gerstein M, Snyder M. 2008. The Transcriptional
1354 Landscape of the Yeast Genome Defined by RNA Sequencing. *Science* **320**:1344–1349.
1355 doi:10.1126/science.1158441

1356 Natan E, Endoh T, Haim-Vilmovsky L, Flock T, Chalancon G, Hopper JTS, Kintses B, Horvath P,
1357 Daruka L, Fekete G, Pál C, Papp B, Oszi E, Magyar Z, Marsh JA, Elcock AH, Babu MM, Robinson
1358 CV, Sugimoto N, Teichmann SA. 2018. Cotranslational protein assembly imposes evolutionary
1359 constraints on homomeric proteins. *Nat Struct Mol Biol* **25**:279–288. doi:10.1038/s41594-018-
1360 0029-5

1361 Orchard S, Ammari M, Aranda B, Breuza L, Briganti L, Broackes-Carter F, Campbell NH, Chavali G,
1362 Chen C, del-Toro N, Duesbury M, Dumousseau M, Galeota E, Hinz U, Iannuccelli M, Jagannathan
1363 S, Jimenez R, Khadake J, Lagreid A, Licata L, Lovering RC, Meldal B, Melidoni AN, Milagros M,
1364 Peluso D, Perfetto L, Porras P, Raghunath A, Ricard-Blum S, Roechert B, Stutz A, Tognoli M,
1365 van Roey K, Cesareni G, Hermjakob H. 2014. The MIntAct project—IntAct as a common curation
1366 platform for 11 molecular interaction databases. *Nucleic Acids Res* **42**:D358–D363.
1367 doi:10.1093/nar/gkt1115

1368 Pandey AV, Henderson CJ, Ishii Y, Kranendonk M, Backes WL, Zanger UM. 2017. Editorial: Role of
1369 Protein-Protein Interactions in Metabolism: Genetics, Structure, Function. *Front Pharmacol* **8**:881.
1370 doi:10.3389/fphar.2017.00881

1371 Papp B, Pál C, Hurst LD. 2003. Dosage sensitivity and the evolution of gene families in yeast. *Nature*
1372 **424**:194–197. doi:10.1038/nature01771

1373 Pereira-Leal JB, Levy ED, Kamp C, Teichmann SA. 2007. Evolution of protein complexes by
1374 duplication of homomeric interactions. *Genome Biol* **8**:R51. doi:10.1186/gb-2007-8-4-r51

1375 Pérez-Bercoff A, Makino T, McLysaght A. 2010. Duplicability of self-interacting human genes. *BMC*

1376 *Evol Biol* **10**:160. doi:10.1186/1471-2148-10-160

1377 Presser A, Elowitz MB, Kellis M, Kishony R. 2008. The evolutionary dynamics of the *Saccharomyces*
1378 *cerevisiae* protein interaction network after duplication. *Proc Natl Acad Sci U S A* **105**:950–954.
1379 doi:10.1073/pnas.0707293105

1380 Pu S, Vlasblom J, Emili A, Greenblatt J, Wodak SJ. 2007. Identifying functional modules in the physical
1381 interactome of *Saccharomyces cerevisiae*. *Proteomics* **7**:944–960. doi:10.1002/pmic.200600636

1382 Pu S, Wong J, Turner B, Cho E, Wodak SJ. 2009. Up-to-date catalogues of yeast protein complexes.
1383 *Nucleic Acids Res* **37**:825–831. doi:10.1093/nar/gkn1005

1384 Rice AM, McLysaght A. 2017. Dosage-sensitive genes in evolution and disease. *BMC Biol* **15**:78.
1385 doi:10.1186/s12915-017-0418-y

1386 Rochette S, Diss G, Filteau M, Leducq J-B, Dubé AK, Landry CR. 2015. Genome-wide Protein-protein
1387 Interaction Screening by Protein-fragment Complementation Assay (PCA) in Living Cells. *J Vis
1388 Exp.* doi:10.3791/52255

1389 Rochette S, Gagnon-Arsenault I, Diss G, Landry CR. 2014. Modulation of the yeast protein interactome
1390 in response to DNA damage. *J Proteomics*, Special Issue: Can Proteomics Fill the Gap Between
1391 Genomics and Phenotypes? **100**:25–36. doi:10.1016/j.jprot.2013.11.007

1392 Rual J-F, Venkatesan K, Hao T, Hirozane-Kishikawa T, Dricot A, Li N, Berriz GF, Gibbons FD, Dreze
1393 M, Ayivi-Guedehoussou N, Klitgord N, Simon C, Boxem M, Milstein S, Rosenberg J, Goldberg
1394 DS, Zhang LV, Wong SL, Franklin G, Li S, Albala JS, Lim J, Fraughton C, Llamosas E, Cevik S,
1395 Bex C, Lamesch P, Sikorski RS, Vandenhoute J, Zoghbi HY, Smolyar A, Bosak S, Sequerra R,
1396 Doucette-Stamm L, Cusick ME, Hill DE, Roth FP, Vidal M. 2005. Towards a proteome-scale map
1397 of the human protein-protein interaction network. *Nature* **437**:1173–1178.
1398 doi:10.1038/nature04209

1399 Schrödinger LLC. 2015. The PyMOL Molecular Graphics System, Version 1.8.

1400 Schymkowitz J, Borg J, Stricher F, Nys R, Rousseau F, Serrano L. 2005. The FoldX web server: an
1401 online force field. *Nucleic Acids Res* **33**:W382–8. doi:10.1093/nar/gki387

1402 Scott JD, Pawson T. 2009. Cell Signaling in Space and Time: Where Proteins Come Together and
1403 When They're Apart. *Science* **326**:1220–1224. doi:10.1126/science.1175668

1404 Singh PP, Arora J, Isambert H. 2015. Identification of Ohnolog Genes Originating from Whole Genome
1405 Duplication in Early Vertebrates, Based on Synteny Comparison across Multiple Genomes. *PLoS
1406 Comput Biol* **11**:e1004394. doi:10.1371/journal.pcbi.1004394

1407 Stark C, Breitkreutz B-J, Reguly T, Boucher L, Breitkreutz A, Tyers M. 2006. BioGRID: a general
1408 repository for interaction datasets. *Nucleic Acids Res* **34**:D535–9. doi:10.1093/nar/gkj109

1409 Starr TN, Thornton JW. 2016. Epistasis in protein evolution. *Protein Sci* **25**:1204–1218.
1410 doi:10.1002/pro.2897

1411 Stynen B, Abd-Rabbo D, Kowarzyk J, Miller-Fleming L, Aulakh SK, Garneau P, Ralser M, Michnick
1412 SW. 2018. Changes of Cell Biochemical States Are Revealed in Protein Homomeric Complex
1413 Dynamics. *Cell* **175**:1418–1429.e9. doi:10.1016/j.cell.2018.09.050

1414 Sugino RP, Innan H. 2006. Selection for more of the same product as a force to enhance concerted
1415 evolution of duplicated genes. *Trends Genet* **22**:642–644. doi:10.1016/j.tig.2006.09.014

1416 Tarassov K, Messier V, Landry CR, Radinovic S, Molina MMS, Shames I, Malitskaya Y, Vogel J,
1417 Bussey H, Michnick SW. 2008. An in Vivo Map of the Yeast Protein Interactome. *Science*
1418 **320**:1465–1470. doi:10.1126/science.1153878

1419 Teixeira MC, Monteiro P, Jain P, Tenreiro S, Fernandes AR, Mira NP, Alenquer M, Freitas AT, Oliveira
1420 AL, Sá-Correia I. 2006. The YEASTRACT database: a tool for the analysis of transcription
1421 regulatory associations in *Saccharomyces cerevisiae*. *Nucleic Acids Res* **34**:D446–51.

1422 doi:10.1093/nar/gkj013
1423 Teixeira MC, Monteiro PT, Palma M, Costa C, Godinho CP, Pais P, Cavalheiro M, Antunes M, Lemos
1424 A, Pedreira T, Sá-Correia I. 2018. YEASTRACT: an upgraded database for the analysis of
1425 transcription regulatory networks in *Saccharomyces cerevisiae*. *Nucleic Acids Res* **46**:D348–
1426 D353. doi:10.1093/nar/gkx842
1427 The UniProt Consortium. 2019. UniProt: a worldwide hub of protein knowledge. *Nucleic Acids Res*
1428 **47**:D506–D515. doi:10.1093/nar/gky1049
1429 Thompson A, Zakon HH, Kirkpatrick M. 2016. Compensatory Drift and the Evolutionary Dynamics of
1430 Dosage-Sensitive Duplicate Genes. *Genetics* **202**:765–774. doi:10.1534/genetics.115.178137
1431 Thompson, Roy S, Chan M, Styczynsky MP, Pfiffner J, French C, Socha A, Thielke A, Napolitano S,
1432 Muller P, Kellis M, Konieczka JH, Wapinski I, Regev A. 2013. Evolutionary principles of modular
1433 gene regulation in yeasts. *eLife* **2**:e00603. doi:10.7554/eLife.00603
1434 Thorvaldsen S. 2016. A Mutation Model from First Principles of the Genetic Code. *IEEE/ACM Trans
1435 Comput Biol Bioinform* **13**:878–886. doi:10.1109/TCBB.2015.2489641
1436 Todd AE, Orengo CA, Thornton JM. 2001. Evolution of function in protein superfamilies, from a
1437 structural perspective. *J Mol Biol* **307**:1113–1143. doi:10.1006/jmbi.2001.4513
1438 Tsai CJ, Lin SL, Wolfson HJ, Nussinov R. 1996. Protein-protein interfaces: architectures and
1439 interactions in protein-protein interfaces and in protein cores. Their similarities and differences.
1440 *Crit Rev Biochem Mol Biol* **31**:127–152. doi:10.3109/10409239609106582
1441 Uguzzoni G, John Lovis S, Oteri F, Schug A, Szurmant H, Weigt M. 2017. Large-scale identification of
1442 coevolution signals across homo-oligomeric protein interfaces by direct coupling analysis. *Proc
1443 Natl Acad Sci U S A* **114**:E2662–E2671. doi:10.1073/pnas.1615068114
1444 Usaj M, Tan Y, Wang W, VanderSluis B, Zou A, Myers CL, Costanzo M, Andrews B, Boone C. 2017.
1445 TheCellMap.org: A Web-Accessible Database for Visualizing and Mining the Global Yeast Genetic
1446 Interaction Network. *G3* **7**:1539–1549. doi:10.1534/g3.117.040220
1447 Vidal M, Cusick ME, Barabási A-L. 2011. Interactome Networks and Human Disease. *Cell* **144**:986–
1448 998. doi:10.1016/j.cell.2011.02.016
1449 Wagih O, Parts L. 2014. gitter: A Robust and Accurate Method for Quantification of Colony Sizes From
1450 Plate Images. *G3* **4**:547–552. doi:10.1534/g3.113.009431
1451 Wagner. 2003. How the global structure of protein interaction networks evolves. *Proceedings of the
1452 Royal Society of London B: Biological Sciences* **270**:457–466. doi:10.1098/rspb.2002.2269
1453 Wagner GP, Zhang J. 2011. The pleiotropic structure of the genotype-phenotype map: the evolvability
1454 of complex organisms. *Nat Rev Genet* **12**:204–213. doi:10.1038/nrg2949
1455 Wan C, Borgeson B, Phanse S, Tu F, Drew K, Clark G, Xiong X, Kagan O, Kwan J, Bezginov A,
1456 Chessman K, Pal S, Cromar G, Papoulas O, Ni Z, Boutz DR, Stoilova S, Havugimana PC, Guo
1457 X, Malty RH, Sarov M, Greenblatt J, Babu M, Derry WB, Tillier ER, Wallingford JB, Parkinson J,
1458 Marcotte EM, Emili A. 2015. Panorama of ancient metazoan macromolecular complexes. *Nature*
1459 **525**:339–344. doi:10.1038/nature14877
1460 Wang M, Weiss M, Simonovic M, Haertinger G, Schrimpf SP, Hengartner MO, von Mering C. 2012.
1461 PaxDb, a database of protein abundance averages across all three domains of life. *Mol Cell
1462 Proteomics* **11**:492–500. doi:10.1074/mcp.O111.014704
1463 Wilson CA, Kreychman J, Gerstein M. 2000. Assessing annotation transfer for genomics: quantifying
1464 the relations between protein sequence, structure and function through traditional and probabilistic
1465 scores. *J Mol Biol* **297**:233–249. doi:10.1006/jmbi.2000.3550
1466 Wolfe KH. 2015. Origin of the Yeast Whole-Genome Duplication. *PLoS Biol* **13**:e1002221.
1467 doi:10.1371/journal.pbio.1002221

1468 Yachie N, Petsalaki E, Mellor JC, Weile J, Jacob Y, Verby M, Ozturk SB, Li S, Cote AG, Mosca R,
1469 Knapp JJ, Ko M, Yu A, Gebbia M, Sahni N, Yi S, Tyagi T, Sheykhkarimli D, Roth JF, Wong C,
1470 Musa L, Snider J, Liu Y-C, Yu H, Braun P, Stagljar I, Hao T, Calderwood MA, Pelletier L, Aloy P,
1471 Hill DE, Vidal M, Roth FP. 2016. Pooled-matrix protein interaction screens using Barcode Fusion
1472 Genetics. *Mol Syst Biol* **12**:863. doi:10.1525/msb.20156660

1473 Yang J, Lusk R, Li W-H. 2003. Organismal complexity, protein complexity, and gene duplicability. *Proc
1474 Natl Acad Sci U S A* **100**:15661–15665. doi:10.1073/pnas.2536672100

1475 Zerbino DR, Achuthan P, Akanni W, Amode MR, Barrell D, Bhai J, Billis K, Cummins C, Gall A, Girón
1476 CG, Gil L, Gordon L, Haggerty L, Haskell E, Hourlier T, Izuogu OG, Janacek SH, Juettemann T,
1477 To JK, Laird MR, Lavidas I, Liu Z, Loveland JE, Maurel T, McLaren W, Moore B, Mudge J, Murphy
1478 DN, Newman V, Nuhn M, Ogeh D, Ong CK, Parker A, Patricio M, Riat HS, Schuilenburg H,
1479 Sheppard D, Sparrow H, Taylor K, Thormann A, Vullo A, Walts B, Zadissa A, Frankish A, Hunt
1480 SE, Kostadima M, Langridge N, Martin FJ, Muffato M, Perry E, Ruffier M, Staines DM, Trevanion
1481 SJ, Aken BL, Cunningham F, Yates A, Flicek P. 2018. Ensembl 2018. *Nucleic Acids Res* **46**:D754–
1482 D761. doi:10.1093/nar/gkx1098

1483