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16  Abstract

17 Random regression test-day model has become the most commonly adopted model
18  for routine genetic evaluations for different dairy populations, which allows
19  accurately accounting for genetic and environmental effects at different periods
20  during lactation. The objective of this study was to explore appropriate random
21  regression test-day model for genetic evaluation of milk yield in Chinese Holstein
22 population. Data included 419,567 test-day records from 54,417 cows in the first
23 lactation. Variance components and breeding values were estimated using random
24 regression test-day model with different order (first order to fifth order) of Legendre
25  polynomials, and accounted for homogeneous or heterogeneous residual variance

26 across the lactation. The goodness of fit of the models was evaluated by total residual
1


mailto:msdljb@163.com
mailto:guosheng.su@mbg.au.dk
https://doi.org/10.1101/562991
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/562991; this version posted February 27, 2019. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

27  variance (TRV) and - 2logL. Further, the predictive ability of the models was
28  assessed by Spearman’s rank correlation between estimated breeding values for 305d
29  milk yield (EBV3;5) from the full data set and reduced data set in which the records
30 from the last calving year were masked. The results showed that random regression
31  models using third order Legendre polynomials (LP3) with heterogeneous residual
32 variance achieved the lower TRV and - 2logL value and the highest correlation for
33  EBVj3¢5 between full data and reduced data. Heritability estimated by this model was
34 0.250 for 305d milk yield and ranged from 0.163 to 0.304 for test-day milk yield. We
35 suggest random regression model with Legendre polynomial of order 3 and
36  accounting for heterogeneous residual variances could be an appropriate model to be

37  used for genetic evaluation of milk yield for Chinese Holstein population.

38

39 KEYWORDS
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42
43
44  INTRODUCTION

45 In China, the dairy herd improvement project (DHI) was firstly implemented in 4
46  provinces in the 1990s. In 2006, the Ministry of Agriculture of China approved a
47  project to promote DHI project in 8 provinces where there were many large dairy
48  populations (1). Lately, the project has been expanded to 25 provinces in China,
49  where provincial DHI laboratories and data centers have been established (2), and

50 there were about 700,000 cows recorded milk production in China each year.

51  Random regression test-day model has been widely used in genetic evaluation for

52  production traits in dairy cattle, which has many advantages including more
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53  accurately accounting for genetic and environment effects at different stages of the
54  lactation, thus resulting in more reliable genetic evaluation (3-7). It has been reported
55 that test day model is significantly better than lactation model (using full and
56  extended 305d lactation records) with 2-3% increase in accuracy for bulls and 6-8%
57  for cows for milk yield first lactation (8). In addition, test-day model allows to predict
58  estimated breeding value (EBV) for each test day, each particular period or the full
59 lactation (305d) (7).

60  The functions generally used to model the lactation curve include Woods’s model (9),
61  Wilmink’s function (10), Spline function (Pelmus,R.S.,et al. 2016) and Legendre
62  polynomial function (11). Because of differences in production environments and
63  management systems, optimal functions for test models in different countries may be
64  different (12, 13). Several studies have shown that Legendre polynomials (LP) fit
65 random regression test-day model well in general, but there is no “gold standard”
66  reported in literatures on choosing optimal order of LP in the model, and the choice of
67  the order of fit is highly depending on the practical data structures. For example, a
68  fourth order LP (LP4) was used for national genetic evaluations in Canada and Italy,
69 and a fifth order LP (LP5) was used in UK (14). The joint Nordic test-day model is a
70  multivariate model for milk, protein and fat in lactation 1 to 3 (in total 9 traits). The
71 genetic and permanent environment effects are modeled by second order LP extended

72 with an exponential term e ~ %94 X PIM(]5),

73 Although a large number of new milk records are collected monthly in China, routine
74  genetic evaluation has not been performed timely. In addition, genetic parameters are
75  not updated regularly. To use data efficiently and reduce the cost of keeping candidate
76  bulls, it is necessary to perform genetic evaluation frequently, such as, genetic
77  evaluation is performed five times per year by Interbull (16). Moreover, there has
78  been no study to investigate the impact of parametric functions for lactation curve on

79  genetic evaluation in Chinese Holstein population.
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80 The aim of this study was to find an optimal order of Legendre polynomials for
81  genetic evaluation of milk yield in Chinese Holstein population by comparing
82  different orders of Legendre polynomials in random regression test day models in

83  terms of goodness of fit and prediction accuracy.
84 MATERIALS AND METHODS
85 Data

86 Data were obtained from the database at Dairy Cattle Research Centre DHI Lab,
87  Shandong Academy of Agricultural Sciences. First lactation records from 2004-2015
88  which fulfill the following criteria: ages at calving between 20 and 38 months, and
89  daily milk yield between 5 and 80kg, days in milk (DIM) between 5 and 305, and
90 cows with at least 3test day records were extracted. The final data consisted of
91 419,567 test day records from 54,417 cows. Number of records in each DIM class
92 ranged from 576 to 1,768. Descriptive statistics of the data are presented in Table 1.

93  The traced pedigree included 104,884 individuals.
94  Model

95  We used first order to fifth order Legendre polynomial (LP1 to LP5) to fit random

96 regression test day model, respectively. The model equation was as follows:
. Ng n
97 Yijim = hysi + agej + dim+ X" \amnz_ + X" PmnZ_ + €gjim (1)

98  Where yjjum is the observation within ith herd-year-season effect, the jth age
99 classes, the kth DIM effect on Ith test day of cow m; hys; is the ith fixed
100  herd-year-season effect; age; is the jth fixed calving age effect; dimy is the kth
101 fixed DIM effect; a,,, is the nth random regression coefficients for additive genetic
102 effect of cow m; p,,, is the nth random regression coefficients for permanent
103 environmental effect of cow m; 2z, is Legendre polynomials on DIM, and n,, n,

104  are orders (from 1 to 5) of Legendre polynomials for additive genetic and permanent
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105  environmental effects, respectively; and e;jyy, is residual effect.

106  In this study, March, April, May, September, and October were defined as calving
107  seasonl, June, July, and August as calving season2, November, December, January,
108  and February as calving season3, and there were 1,891 herd-year-season classes in
109 total. Calving age was classified into 4 levels: 20-23mo, 24-27mo, 28-31mo, 32mo or
110  later. Residual variance was assumed either homogeneous or heterogeneous across
111 lactation. For models with heterogeneous residual variances, residuals were divided
112 intol0 classes (5-30, 31-60, 61-90, 91-120, 121-150, 151-180, 181-210, 211-240,
113 241-270, and 270- 305 DIM) (17). Bayesian method with Gibbs sampling was used to
114  generate the posterior samples for models with heterogeneous residual variances. The
115  length of MCMC chain was set to 55 000 with a burn-in of 5 000 iterations.
116  Convergence diagnostics for MCMC were assessed using R package boa (18) and all
117  parameters investigated had converged to the posterior distribution. The estimates of
118  residual variances for different periods are shown in Table2. To compare models with
119  different orders of Legendre Polynomials, the heterogeneous residual variances were

120  handled by putting different weights on residual variance for different periods of

121 DIM. The weights were calculated by w; = ;, where v; is the posterior means for

122 residual variance of ith DIM class obtained from the Bayesian analysis, U is the

123  mean of residual variances.

124  Additive genetic variance for a particular DIM was calculated as agzk = szzk, Zj 1S
125 a column vector of LP coefficients at kth DIM, G is covariance matrix of additive

126  genetic effect. Permanent environmental variance for a particular DIM was

127 apzk = szzk, matrix P is covariance matrix of permanent environmental effect, z;

128 is same as above; EBV of a particular animal at a particular DIM was calculated as
129  EBV,,;, =za, a is column vector of additive genetic random regression coefficients

130  of a particular animal, z, is same as above; The EBV for the whole lactation was


https://doi.org/10.1101/562991
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/562991; this version posted February 27, 2019. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

305 oL .
131 calculated as EBV,,305 = 2, ;- sEBVyy. The estimation of variance components and

132 prediction of breeding values using different models were carried out by the DMU

133 package (19).
134  Model comparison

135  Models with different orders of Legendre polynomials were compared using

136  following methods based on full and reduced data sets:

137  a. Residual variance of 305d milk yield (062(30561)):062(30”) = 1322 O'f(i) ,Gf(l.) is
138 residual variance of each TD, which is the same in each TD when considering
139 homogeneous variance, however, different but same in each class in lactation
140 when considering heterogeneous variance. A smaller o7, indicates a better

141 fitting of the regression model.

142 b. Log-likelihood ratio test (LRT) was used to test the differences between the

143 reduced order model and the subsequently augmented model with addition of one
144 extra order (LP1 vs. LP2, LP2 vs. LP3, LP3 vs. LP4, LP4 vs. LP5). The LRT
145 between models with successive order iSLRT; = — 2logL; - (- 2logL; ; {)with
146 dfi=nP; . 1 —nP;. In this study, -2logL; i1s - 2logL value for the model
147 with ith order, nP is the number of parameters in the corresponding model.

148 c¢. Spearman’s rank correlation: It was used to evaluate predictability of model that

149 the spearman’s rank correlation between EBV3(s of animals calving in last year in
150 data, whose EBVs were estimated based on including their own phenotypes and
151 masking their phenotypes. The correlation was calculated as p=1- n(ﬁi)
152 (Bolboac, S.D.& Lorentz J. 2006), d;is the difference between the two ranks, 7 is
153 the number of cows.

154


https://doi.org/10.1101/562991
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/562991; this version posted February 27, 2019. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

155 RESULTS
156 General statistics of TD milk

157  Mean for TD milk yield in the different class of lactation was showed in Table 1,
158  where means ranged from 21.4 kg to 26.6 kg with standard deviations from 7.45 kg to
159  8.20 kg. An increase in milk yield was found up to 53 DIM, followed by a gradual
160  decrease until the end of lactation. Averaged over different classes, TD milk was 24.2

161 kg with a standard deviation of 8.13 kg in first lactation Holstein cows.
162  Goodness of fit

163  Table 3 presents the estimated parameters using random regression test-day model
164  based on different assumption of residual variances (homogeneous or heterogeneous).

165  Number of parameters for random effects of models was increased from 7 to 43 when
166  increasing the order of LP from LP1 to LPS. The estimated residual variances 0'62(305 0
167 were decreased from 4661.46 to 3354.87 as order increased when assuming
168  homogeneous residual variance, and from 4557.65 to 3273.39 when assuming
169  heterogeneous residual variances. The differences between LP1 and LP5 were
170 1306.59 for homogeneous residual variance and 1284.26 for heterogeneous residual

171 variance. However, the differences were smaller between LP3 and LP4 and between

172 LP4 and LPS5, which were 171.43 and 142.08 for homogeneous, 132.99 and 169.56

173 for heterogeneous variances, respectively. Differences of 03(305 . between models

174  with homogeneous and with heterogeneous residual variances were 103.81, 60.03,

175  92.44, 54.00 and 81.48 corresponding LPs (from LP1 to LP5) respectively. That

176 means o5, Were decreased when considering heterogeneous residual variances.

177 -2LogL were decreased from 1757621.90 to 1726795.95 as order increased when
178  assuming homogeneous residual variance, -2LogLl decreased from 1725335.19 to

179 1713543.35 when assuming heterogeneous residual variance. The differences between
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180  models tested by Chi-square statistic of LRT were significant (P<0.005). Thus, the
181  null hypothesis of equality of models with different orders was rejected. Differences
182  of -2LogL between models with homogeneous and with heterogeneous residual
183  variances were 32286.71, 17149.44, 11523.58, 12607.29 and 13252.6 corresponding
184  LPs (from LP1 to LP5). That means -2Logl were decreased when considered

185  heterogeneous residual variances.
186  Comparison on estimated variances

187  Figure 1 and Figure 2 show the genetic variances (af,), permanent environmental

188  variances (af;), residual variances (02), heritabilities (h?) and repeatabilities (Rep) at
189  each TD along the lactation calculating based on the estimated covariance function
190  coefficients. The curve of aé for TD showed a sharp decreasing in early lactation
191  and then increasing from middle to the end of lactation.a,% for TD presented similar
192  trends as 05. Estimates of 05 and azz, were somewhat different in models with

193  different orders. o2 for TD was same when considering homogenous in same model,
194  and not continuous when considering heterogeneous, however, they decreased with
195  the order increasing. For heterogeneous variance, residual variance decreased from
196  the beginning to the end lactation stage. The curve of heritability and repeatability
197  showed a sharp decrease in early lactation and then increased from middle to the end

198  of lactation.

199  Table 4 shows the heritability (4?) and repeatability (Rep) for 305d milk yield and
200 minimum and maximum values of TD milk yield. 4% for 305d estimated from models
201 with different LPs ranged from 0.250 to 0.257 and Rep were from 0.741 to 0.749
202  when considering homogeneous variance. When considering heterogeneous variance,
203 h?for 305d were between 0.250 to 0.260, and Rep were between 0.738 and 0.749. h?
204  for TD from models with different LPs ranged from 0.142 to 0.372 and Rep were
205  between 0.566 and 0.786 when considering homogeneous variance. When considering

206  heterogeneous residual variances, 4 for TD ranged from 0.143 to 0.326 and Rep were

8


https://doi.org/10.1101/562991
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/562991; this version posted February 27, 2019. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

207  between 0.520 and 0.821. It was observed that model with LP1 and LP2 led to higher

208  estimated heritability and lower repeatability than the models with higher order.
209 Comparison on predictability of models

210  Spearman’s rank correlations between EBVs from full data and reduced data are
211 shown in Table 5. Correlations for models with different orders ranged from 0.703 to
212 0.731 and from 0.694 to 0.733 based on homogeneous and heterogeneous residual
213 variances, respectively. Correlations between EBVs increased from LP1 to LP3 and
214  then decreased from LP3 to LP5. The changes in correlation were the same for
215 models with homogeneous and heterogeneous residual variances. The highest
216  correlation of EBVs was found from LP3 and then followed by LP4 and LPS5, the

217  lowest correlations between EBVs was from LP1.

218

219  DISCUSSION

220 In this study, various criteria were used to compare random regression test day models
221 with different order of Legendre polynomials. Comparison criteria for models have
222 been discussed by (20-22). In general, the smaller o, and -2LogL, the better

223 goodness of fit for models. In our study, models with higher order obtained lower
224 03(305 s and -2LogL values, which was in line with previous studies (17). This means
225  model with LP5 fits data best in terms of residual variance and the likelihood-ratio
226 test. However, models with higher orders introduced more parameters resulting in

227  higher computational demanding (20). Therefore, model selection needs to balance

228  between goodness of fit and computational requirement.
229  Furthermore, the improvements of goodness of fit became smaller as increasing order
230  of LP in model. For example, the reduction in 0'62(305d) was 14.50% (13.87%), 7.96%

231 (8.90%), 4.67% (3.72%), and 4.06% (4.92%) when comparing successive order LP2,

9
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232 LP3, LP4, LP5 for homogeneous (heterogeneous) residual variances respectively, and
233 for -2LogL, the reduction was 1.05% (0.02%), 0.40% (0.03%), 0.19% (0.03%) and

234 0.12% (0.03%) correspondingly. Especially, there were smaller improvement from

235 LP3 to LP4 and from LP4 to LP5 based ono,y,, or -2LogL. Similar reductions

236  were observed by (23, 24). This means it might be enough to select LP3 or LP4 based

237  onusing Comparison criteria and computational requirement.

238  The trajectory of additive genetic variances and permanent environmental variances
239  showed a quick decreasing in the beginning of lactation and then increased until end
240  of the lactation. This trend is consistent with previous studies in Chinese Holsteins
241 from (1), Brazilian Holsteins by (17, 25). Particularly, (1) used a random regression
242 test-day model with LP4 to estimate parameters for milk yield, they found almost the
243  same curves as the current study for additive genetic variances and permanent

244  environmental variances in Chinese first lactation Holstein cows.

245  Higher additive genetic variances were in the beginning and end of lactation, which
246 might be attributed to variations in the number of TD records, milk yield level, or
247  non-genetic factors for example pregnancy effects (26). This was coincident with
248  higher genetic variances at the beginning and end of lactation but lower at middle.
249  Other studies have shown that fitting higher order of LP produced higher estimates of
250  genetic variances at the edges of lactation and oscillatory pattern along the lactation
251  trajectory, which might be unlikely biologically (24, 27, 28). This indicates that a
252 model with higher order (e.g., LP5) may not be optimal than a model with lower order

253  (e.g., LP3 or LP4).

254  The rank correlation of EBVs for 305d from full data and reduced data increased from
255 LPI (0.703) to LP3 (0.731), then decreased from LP3 to LP5 (0.729). Rank
256  correlations between EBVs using random regression model and EBVs predicted from
257  linear model were between 0.86 to 0.96 for bulls and 0.80 to 0.87 for cows. Random

258  regression model fitted by fourth order Legendre polynomials is recommended for
10
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259  genetic evaluations of Brazilian Holstein cattle (28). In this study, the model with
260  third order and heterogeneous variances had the best predictive ability. Future
261  research should consider using records from different parities and multiple traits such

262  as fat and protein yields.
263  Conclusion

264  This study showed that a random regression test-day model using LP3 or LP4 and
265 accounting for heterogeneous residual variance could achieve reasonable good
266  estimates of variance components. Moreover, model with LP3 and heterogeneous
267  variances had the best prediction ability. This model could be used as an initial model
268  for the implementation of a genetic improvement program in the Chinese Holstein

269  population.
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Figure 1 Genetic variances (V_g), permanent environmental variances (V_pe),
residual variances (V_e) at each test day along the lactation from models with
different orders of Legendre polynomials (LP) based on assumption of homogeneous
residual variance (left column) or assumption of heterogeneous residual variance

(right column)
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Figure 2 Heritabilities and repeatabilities at each test day along the lactation from
models with different orders of Legendre polynomials (LP) based on assumption of
homogeneous residual variance (left column) or assumption of heterogeneous residual

variance (right column)
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369

370  Table 1. Number of records in each days in milk (DIM) class (N), Mean,

371 Standard deviation (Std)

DIM class N Mean(Kg) Std(Kg)
5-30 28704 23.7 7.45
31-60 37991 26.6 7.79
61-90 41787 26.5 7.92
91-1204 43506 26.0 7.89
121-150 44033 25.1 7.89
151-180 44781 24.4 7.93
181-210 45873 23.7 7.99
211-240 45688 22.9 8.04
241-270 44373 22.0 8.10
271-305 42831 21.4 8.20
Total 419567 24.2 8.13

372

373

374

375

376

377

378

379  Table 2. Estimated residual variances (v;)! for different classes of days in milk

380 and different Legendre polynomials

DIM class V1i V2i V3 V4 VUsi

16
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5-30 29.20 18.76 13.95 14.54 15.32
31-60 17.24 15.29 15.44 14.04 12.61
61-90 14.33 14.70 13.05 11.88 11.90
91-1204 14.92 14.12 12.18 12.23 11.40
121-150 15.34 12.99 12.45 11.80 11.33
151-180 15.30 12.54 12.48 11.39 11.26
181-210 14.06 12.63 11.57 11.43 10.54
211-240 12.53 12.75 11.23 11.15 10.80
241-270 11.60 11.12 10.97 9.95 9.64

271-305 16.21 10.38 8.64 9.57 9.80

Total 16.07 13.53 12.20 11.80 11.46

381 1y;; is the residual variance of ith class in lactation with LP of order | in model obtained from the

382  Bayesian analysis.
383
384
385
386
387
388

389  Table 3. Number of additive genetic effect (nA) and permanent environment
390 effect (nPE), and estimates of residual variance of cumulative 305d milk yield (

391 0-5(305 & )s ~2LogL, the log-likelihood ratio test (LRT) between the reduced order
392  model and the subsequently augmented model with addition of one extra order,

393  degree of freedom (df) and %2 of LRT

17
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394

LP nA nPE O,y  -2LogL LTR® df  yodos

LP1 3 3 4661.46 1757621.90 18462.74" 6  18.548
LP2 6 6 3985.43 1739159.16 7013.04" 8 21.955
HO! LP3 10 10 3668.38  1732146.12 3292.53" 10 25.188
LP4 15 15 3496.95 1728853.59 2057.64" 12 28.299
LP5 21 21 3354.87 172679595 - - -
LP1 3 3 4557.65 1725335.19 332547° 6  18.548
LP2 6 6 392540 1722009.72 1387.18" 8  21.955
HE? LP3 10 10 3575.94  1720622.54 4376.24° 10 25.188
LP4 15 15 344295 171624630 270295 12 28.299
LP5 21 21 327339 171354335 - - -

395 ! HO was homogeneous residual variance; 2HE was heterogeneous residual variance,

396 SLRT between LP1 and LP2, LP2 and LP3, LP3 and LP4, LP4 and LP5
397  “P<0.005

398

399  Table 4. Heritabilities (#?) and Repeatabilities (Rep) for 305d milk yield, and
400 minimal (Min) and maximal (Max) 42 and Rep for TD in different Legendre
401  Polynomials (LP) considering homogeneous (HO) and heterogeneous (HE)

402 residual variances

HO HE
LP 305D Min for TD Max for TD 305D Min for TD Max for TD
LPI 0257 0.142 0.264 0260 0.143 0.269
LP2 0254 0.169 0.273 0254 0.163 0.303

B LP3 0250 0.179 0.259 0250 0.163 0.304
LP4 0250 0.177 0317 0249 0.170 0.326
LP5 0250 0.179 0372 0249 0.171 0.303
LPI 0741 0.566 0.747 0.738  0.520 0.773

Rep 1 po 0744 0641 0.782 0.744  0.628 0.821

18


https://doi.org/10.1101/562991
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/562991; this version posted February 27, 2019. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

LP3 0.748 0.685 0.788 0.748 0.639 0.821
LP4 0.749 0.697 0.791 0.749 0.682 0.799
LP5S 0.748 0.708 0.786 0.749 0.688 0.799
403
404
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Table S. Spearman’s rank correlations between EBV’s for 305d obtained from
full and reduced data for models with different order of Legendre Polynomials

(LP) and with homogeneous (HO) or Heterogeneous (HE) residual variance

Residual

. LP1 LP2 LP3 LP4 LP5
Variance
HO 0.703 0.713 0.731 0.730 0.729
HE 0.694 0.711 0.733 0.732 0.729
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