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16 Abstract

17 Random regression test-day model has become the most commonly adopted model 

18 for routine genetic evaluations for different dairy populations, which allows 

19 accurately accounting for genetic and environmental effects at different periods 

20 during lactation. The objective of this study was to explore appropriate random 

21 regression test-day model for genetic evaluation of milk yield in Chinese Holstein 

22 population. Data included 419,567 test-day records from 54,417 cows in the first 

23 lactation. Variance components and breeding values were estimated using random 

24 regression test-day model with different order (first order to fifth order) of Legendre 

25 polynomials, and accounted for homogeneous or heterogeneous residual variance 

26 across the lactation. The goodness of fit of the models was evaluated by total residual 
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27 variance (TRV) and . Further, the predictive ability of the models was ‒ 2𝑙𝑜𝑔𝐿

28 assessed by Spearman’s rank correlation between estimated breeding values for 305d 

29 milk yield (EBV305) from the full data set and reduced data set in which the records 

30 from the last calving year were masked. The results showed that random regression 

31 models using third order Legendre polynomials (LP3) with heterogeneous residual 

32 variance achieved the lower TRV and  value and the highest correlation for ‒ 2𝑙𝑜𝑔𝐿

33 EBV305 between full data and reduced data. Heritability estimated by this model was 

34 0.250 for 305d milk yield and ranged from 0.163 to 0.304 for test-day milk yield. We 

35 suggest random regression model with Legendre polynomial of order 3 and 

36 accounting for heterogeneous residual variances could be an appropriate model to be 

37 used for genetic evaluation of milk yield for Chinese Holstein population.

38
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44 INTRODUCTION

45 In China, the dairy herd improvement project (DHI) was firstly implemented in 4 

46 provinces in the 1990s. In 2006, the Ministry of Agriculture of China approved a 

47 project to promote DHI project in 8 provinces where there were many large dairy 

48 populations (1). Lately, the project has been expanded to 25 provinces in China, 

49 where provincial DHI laboratories and data centers have been established (2), and 

50 there were about 700,000 cows recorded milk production in China each year.

51 Random regression test-day model has been widely used in genetic evaluation for 

52 production traits in dairy cattle, which has many advantages including more 
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53 accurately accounting for genetic and environment effects at different stages of the 

54 lactation, thus resulting in more reliable genetic evaluation (3-7). It has been reported 

55 that test day model is significantly better than lactation model (using full and 

56 extended 305d lactation records) with 2-3% increase in accuracy for bulls and 6-8% 

57 for cows for milk yield first lactation (8). In addition, test-day model allows to predict 

58 estimated breeding value (EBV) for each test day, each particular period or the full 

59 lactation (305d) (7).

60 The functions generally used to model the lactation curve include Woods’s model (9), 

61 Wilmink’s function (10), Spline function (Pelmus,R.S.,et al. 2016) and Legendre 

62 polynomial function (11). Because of differences in production environments and 

63 management systems, optimal functions for test models in different countries may be 

64 different (12, 13). Several studies have shown that Legendre polynomials (LP) fit 

65 random regression test-day model well in general, but there is no “gold standard” 

66 reported in literatures on choosing optimal order of LP in the model, and the choice of 

67 the order of fit is highly depending on the practical data structures. For example, a 

68 fourth order LP (LP4) was used for national genetic evaluations in Canada and Italy, 

69 and a fifth order LP (LP5) was used in UK (14). The joint Nordic test-day model is a 

70 multivariate model for milk, protein and fat in lactation 1 to 3 (in total 9 traits). The 

71 genetic and permanent environment effects are modeled by second order LP extended 

72 with an exponential term (15).𝑒 ‒ 0.04 × 𝐷𝐼𝑀

73 Although a large number of new milk records are collected monthly in China, routine 

74 genetic evaluation has not been performed timely. In addition, genetic parameters are 

75 not updated regularly. To use data efficiently and reduce the cost of keeping candidate 

76 bulls, it is necessary to perform genetic evaluation frequently, such as, genetic 

77 evaluation is performed five times per year by Interbull (16). Moreover, there has 

78 been no study to investigate the impact of parametric functions for lactation curve on 

79 genetic evaluation in Chinese Holstein population.
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80 The aim of this study was to find an optimal order of Legendre polynomials for 

81 genetic evaluation of milk yield in Chinese Holstein population by comparing 

82 different orders of Legendre polynomials in random regression test day models in 

83 terms of goodness of fit and prediction accuracy. 

84 MATERIALS AND METHODS

85 Data

86 Data were obtained from the database at Dairy Cattle Research Centre DHI Lab, 

87 Shandong Academy of Agricultural Sciences. First lactation records from 2004-2015 

88 which fulfill the following criteria: ages at calving between 20 and 38 months, and 

89 daily milk yield between 5 and 80kg, days in milk (DIM) between 5 and 305, and 

90 cows with at least 3test day records were extracted. The final data consisted of 

91 419,567 test day records from 54,417 cows. Number of records in each DIM class 

92 ranged from 576 to 1,768. Descriptive statistics of the data are presented in Table 1. 

93 The traced pedigree included 104,884 individuals.

94 Model

95 We used first order to fifth order Legendre polynomial (LP1 to LP5) to fit random 

96 regression test day model, respectively. The model equation was as follows:

97   (1)𝑦𝑖𝑗𝑘𝑙𝑚 = ℎ𝑦𝑠𝑖 + 𝑎𝑔𝑒𝑗 + 𝑑𝑖𝑚𝑘 + ∑𝑛𝑎

𝑛 = 1𝑎𝑚𝑛𝑧
𝑚𝑛𝑙

+ ∑𝑛𝑝

𝑛 = 1𝑝𝑚𝑛𝑧
𝑚𝑛𝑙

+ 𝑒𝑖𝑗𝑘𝑙𝑚

98 Where  is the observation within ith herd-year-season effect, the jth age 𝑦𝑖𝑗𝑘𝑙𝑚

99 classes, the kth DIM effect on lth test day of cow m;  is the ith fixed ℎ𝑦𝑠𝑖

100 herd-year-season effect;  is the jth fixed calving age effect;  is the kth 𝑎𝑔𝑒𝑗 𝑑𝑖𝑚𝑘

101 fixed DIM effect;  is the nth random regression coefficients for additive genetic 𝑎𝑚𝑛

102 effect of cow m;  is the nth random regression coefficients for permanent 𝑝𝑚𝑛

103 environmental effect of cow m; is Legendre polynomials on DIM, and ,  𝑧𝑚𝑛𝑙 𝑛𝑎 𝑛𝑝

104 are orders (from 1 to 5) of Legendre polynomials for additive genetic and permanent 
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105 environmental effects, respectively; and  is residual effect.𝑒𝑖𝑗𝑘𝑙𝑚

106 In this study, March, April, May, September, and October were defined as calving 

107 season1, June, July, and August as calving season2, November, December, January, 

108 and February as calving season3, and there were 1,891 herd-year-season classes in 

109 total. Calving age was classified into 4 levels: 20-23mo, 24-27mo, 28-31mo, 32mo or 

110 later. Residual variance was assumed either homogeneous or heterogeneous across 

111 lactation. For models with heterogeneous residual variances, residuals were divided 

112 into10 classes (5-30, 31-60, 61-90, 91-120, 121-150, 151-180, 181-210, 211-240, 

113 241-270, and 270- 305 DIM) (17). Bayesian method with Gibbs sampling was used to 

114 generate the posterior samples for models with heterogeneous residual variances. The 

115 length of MCMC chain was set to 55 000 with a burn-in of 5 000 iterations. 

116 Convergence diagnostics for MCMC were assessed using R package boa (18) and all 

117 parameters investigated had converged to the posterior distribution. The estimates of 

118 residual variances for different periods are shown in Table2. To compare models with 

119 different orders of Legendre Polynomials, the heterogeneous residual variances were 

120 handled by putting different weights on residual variance for different periods of 

121 DIM. The weights were calculated by , where  is the posterior means for 𝑤𝑖 =
𝑣
𝑣𝑖

𝑣𝑖

122 residual variance of ith DIM class obtained from the Bayesian analysis,  is the 𝑣

123 mean of residual variances.

124 Additive genetic variance for a particular DIM was calculated as ,  is 𝜎 2
𝑔𝑘 = 𝐳 '

𝑘𝐆𝐳
𝑘

𝐳𝑘

125 a column vector of LP coefficients at kth DIM, G is covariance matrix of additive 

126 genetic effect. Permanent environmental variance for a particular DIM was 

127  matrix  is covariance matrix of permanent environmental effect,  𝜎 2
𝑝𝑘 = 𝐳 '

𝑘𝐏𝐳
𝑘
, 𝐏 𝐳𝑘

128 is same as above; EBV of a particular animal at a particular DIM was calculated as 

129 ,  is column vector of additive genetic random regression coefficients EBV𝑚𝑘 = 𝐳 '
𝑘𝒂 𝒂

130 of a particular animal,  is same as above; The EBV for the whole lactation was 𝐳𝑘
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131 calculated as . The estimation of variance components and EBV𝑚305 = ∑305
𝑡 = 5EBV𝑚𝑘

132 prediction of breeding values using different models were carried out by the DMU 

133 package (19). 

134 Model comparison 

135 Models with different orders of Legendre polynomials were compared using 

136 following methods based on full and reduced data sets:

137 a. Residual variance of 305d milk yield ( ): ,  is 2
)305( de  


305

5
2

)(
2

)305( i iede  2
)(ie

138 residual variance of each TD, which is the same in each TD when considering 

139 homogeneous variance, however, different but same in each class in lactation 

140 when considering heterogeneous variance. A smaller  indicates a better 2
)305( de

141 fitting of the regression model.

142 b. Log-likelihood ratio test (LRT) was used to test the differences between the 

143 reduced order model and the subsequently augmented model with addition of one 

144 extra order (LP1 vs. LP2, LP2 vs. LP3, LP3 vs. LP4, LP4 vs. LP5). The LRT 

145 between models with successive order is with𝐿𝑅𝑇𝑖 = ‒ 2𝑙𝑜𝑔𝐿𝑖 ‒ ( ‒ 2𝑙𝑜𝑔𝐿i + 1)

146 . In this study,  is  value for the model 𝑑𝑓𝑖 = 𝑛𝑃i + 1 ‒ 𝑛𝑃𝑖 ‒ 2𝑙𝑜𝑔𝐿𝑖 ‒ 2𝑙𝑜𝑔𝐿

147 with ith order,  is the number of parameters in the corresponding model.𝑛𝑃

148 c. Spearman’s rank correlation: It was used to evaluate predictability of model that 

149 the spearman’s rank correlation between EBV305 of animals calving in last year in 

150 data, whose EBVs were estimated based on including their own phenotypes and 

151 masking their phenotypes. The correlation was calculated as 𝜌 = 1 ‒
6∑𝑑2

𝑖

𝑛(𝑛2 ‒ 1) 

152 (Bolboac, S.D.& Lorentz J. 2006), is the difference between the two ranks, n is 𝑑𝑖 

153 the number of cows.

154
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155 RESULTS

156 General statistics of TD milk

157 Mean for TD milk yield in the different class of lactation was showed in Table 1, 

158 where means ranged from 21.4 kg to 26.6 kg with standard deviations from 7.45 kg to 

159 8.20 kg. An increase in milk yield was found up to 53 DIM, followed by a gradual 

160 decrease until the end of lactation. Averaged over different classes, TD milk was 24.2 

161 kg with a standard deviation of 8.13 kg in first lactation Holstein cows. 

162 Goodness of fit

163 Table 3 presents the estimated parameters using random regression test-day model 

164 based on different assumption of residual variances (homogeneous or heterogeneous). 

165 Number of parameters for random effects of models was increased from 7 to 43 when 

166 increasing the order of LP from LP1 to LP5. The estimated residual variances 2
)305( de

167 were decreased from 4661.46 to 3354.87 as order increased when assuming 

168 homogeneous residual variance, and from 4557.65 to 3273.39 when assuming 

169 heterogeneous residual variances. The differences between LP1 and LP5 were 

170 1306.59 for homogeneous residual variance and 1284.26 for heterogeneous residual 

171 variance. However, the differences were smaller between LP3 and LP4 and between 

172 LP4 and LP5, which were 171.43 and 142.08 for homogeneous, 132.99 and 169.56 

173 for heterogeneous variances, respectively. Differences of  between models 2
)305( de

174 with homogeneous and with heterogeneous residual variances were 103.81, 60.03, 

175 92.44, 54.00 and 81.48 corresponding LPs (from LP1 to LP5) respectively. That 

176 means were decreased when considering heterogeneous residual variances.2
)305( de

177 -2LogL were decreased from 1757621.90 to 1726795.95 as order increased when 

178 assuming homogeneous residual variance, -2LogL decreased from 1725335.19 to 

179 1713543.35 when assuming heterogeneous residual variance. The differences between 
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180 models tested by Chi-square statistic of LRT were significant (P<0.005). Thus, the 

181 null hypothesis of equality of models with different orders was rejected. Differences 

182 of -2LogL between models with homogeneous and with heterogeneous residual 

183 variances were 32286.71, 17149.44, 11523.58, 12607.29 and 13252.6 corresponding 

184 LPs (from LP1 to LP5). That means -2LogL were decreased when considered 

185 heterogeneous residual variances.

186 Comparison on estimated variances

187 Figure 1 and Figure 2 show the genetic variances ( ), permanent environmental 𝜎2
𝑔

188 variances ( ), residual variances ( ), heritabilities ( ) and repeatabilities  at 𝜎2
𝑝 𝜎2

𝑒 ℎ2 (𝑅𝑒𝑝)

189 each TD along the lactation calculating based on the estimated covariance function 

190 coefficients. The curve of  for TD showed a sharp decreasing in early lactation 𝜎2
𝑔

191 and then increasing from middle to the end of lactation.  for TD presented similar 𝜎2
𝑝

192 trends as . Estimates of  and  were somewhat different in models with 𝜎2
𝑔 𝜎2

𝑔 𝜎2
𝑝

193 different orders.  for TD was same when considering homogenous in same model, 𝜎2
𝑒

194 and not continuous when considering heterogeneous, however, they decreased with 

195 the order increasing. For heterogeneous variance, residual variance decreased from 

196 the beginning to the end lactation stage. The curve of heritability and repeatability 

197 showed a sharp decrease in early lactation and then increased from middle to the end 

198 of lactation.

199 Table 4 shows the heritability (h2) and repeatability (Rep) for 305d milk yield and 

200 minimum and maximum values of TD milk yield. h2 for 305d estimated from models 

201 with different LPs ranged from 0.250 to 0.257 and Rep were from 0.741 to 0.749 

202 when considering homogeneous variance. When considering heterogeneous variance, 

203 h2 for 305d were between 0.250 to 0.260, and Rep were between 0.738 and 0.749. h2 

204 for TD from models with different LPs ranged from 0.142 to 0.372 and Rep were 

205 between 0.566 and 0.786 when considering homogeneous variance. When considering 

206 heterogeneous residual variances, h2 for TD ranged from 0.143 to 0.326 and Rep were 
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207 between 0.520 and 0.821. It was observed that model with LP1 and LP2 led to higher 

208 estimated heritability and lower repeatability than the models with higher order. 

209 Comparison on predictability of models

210 Spearman’s rank correlations between EBVs from full data and reduced data are 

211 shown in Table 5. Correlations for models with different orders ranged from 0.703 to 

212 0.731 and from 0.694 to 0.733 based on homogeneous and heterogeneous residual 

213 variances, respectively. Correlations between EBVs increased from LP1 to LP3 and 

214 then decreased from LP3 to LP5. The changes in correlation were the same for 

215 models with homogeneous and heterogeneous residual variances. The highest 

216 correlation of EBVs was found from LP3 and then followed by LP4 and LP5, the 

217 lowest correlations between EBVs was from LP1. 

218

219 DISCUSSION

220 In this study, various criteria were used to compare random regression test day models 

221 with different order of Legendre polynomials. Comparison criteria for models have 

222 been discussed by (20-22). In general, the smaller and -2LogL, the better 2
)305( de

223 goodness of fit for models. In our study, models with higher order obtained lower

224 and -2LogL values, which was in line with previous studies (17). This means 2
)305( de

225 model with LP5 fits data best in terms of residual variance and the likelihood-ratio 

226 test. However, models with higher orders introduced more parameters resulting in 

227 higher computational demanding (20). Therefore, model selection needs to balance 

228 between goodness of fit and computational requirement. 

229 Furthermore, the improvements of goodness of fit became smaller as increasing order 

230 of LP in model. For example, the reduction in was 14.50% (13.87%), 7.96% 2
)305( de

231 (8.90%), 4.67% (3.72%), and 4.06% (4.92%) when comparing successive order LP2, 
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232 LP3, LP4, LP5 for homogeneous (heterogeneous) residual variances respectively, and 

233 for -2LogL, the reduction was 1.05% (0.02%), 0.40% (0.03%), 0.19% (0.03%) and 

234 0.12% (0.03%) correspondingly. Especially, there were smaller improvement from 

235 LP3 to LP4 and from LP4 to LP5 based on  or -2LogL. Similar reductions 2
)305( de

236 were observed by (23, 24). This means it might be enough to select LP3 or LP4 based 

237 on using Comparison criteria and computational requirement.

238 The trajectory of additive genetic variances and permanent environmental variances 

239 showed a quick decreasing in the beginning of lactation and then increased until end 

240 of the lactation. This trend is consistent with previous studies in Chinese Holsteins 

241 from (1), Brazilian Holsteins by (17, 25). Particularly, (1) used a random regression 

242 test-day model with LP4 to estimate parameters for milk yield, they found almost the 

243 same curves as the current study for additive genetic variances and permanent 

244 environmental variances in Chinese first lactation Holstein cows. 

245 Higher additive genetic variances were in the beginning and end of lactation, which 

246 might be attributed to variations in the number of TD records, milk yield level, or 

247 non-genetic factors for example pregnancy effects (26). This was coincident with 

248 higher genetic variances at the beginning and end of lactation but lower at middle. 

249 Other studies have shown that fitting higher order of LP produced higher estimates of 

250 genetic variances at the edges of lactation and oscillatory pattern along the lactation 

251 trajectory, which might be unlikely biologically (24, 27, 28). This indicates that a 

252 model with higher order (e.g., LP5) may not be optimal than a model with lower order 

253 (e.g., LP3 or LP4).

254 The rank correlation of EBVs for 305d from full data and reduced data increased from 

255 LP1 (0.703) to LP3 (0.731), then decreased from LP3 to LP5 (0.729). Rank 

256 correlations between EBVs using random regression model and EBVs predicted from 

257 linear model were between 0.86 to 0.96 for bulls and 0.80 to 0.87 for cows. Random 

258 regression model fitted by fourth order Legendre polynomials is recommended for 
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259 genetic evaluations of Brazilian Holstein cattle (28). In this study, the model with 

260 third order and heterogeneous variances had the best predictive ability. Future 

261 research should consider using records from different parities and multiple traits such 

262 as fat and protein yields.

263 Conclusion

264 This study showed that a random regression test-day model using LP3 or LP4 and 

265 accounting for heterogeneous residual variance could achieve reasonable good 

266 estimates of variance components. Moreover, model with LP3 and heterogeneous 

267 variances had the best prediction ability. This model could be used as an initial model 

268 for the implementation of a genetic improvement program in the Chinese Holstein 

269 population. 
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358 Figure 1 Genetic variances (V_g), permanent environmental variances (V_pe), 

359 residual variances (V_e) at each test day along the lactation from models with 

360 different orders of Legendre polynomials (LP) based on assumption of homogeneous 

361 residual variance (left column) or assumption of heterogeneous residual variance 

362 (right column)

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted February 27, 2019. ; https://doi.org/10.1101/562991doi: bioRxiv preprint 

https://doi.org/10.1101/562991
http://creativecommons.org/licenses/by/4.0/


15

363

364 Figure 2 Heritabilities and repeatabilities at each test day along the lactation from 

365 models with different orders of Legendre polynomials (LP) based on assumption of 

366 homogeneous residual variance (left column) or assumption of heterogeneous residual 

367 variance (right column)

368
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369

370 Table 1. Number of records in each days in milk (DIM) class (N), Mean, 

371 Standard deviation (Std)

DIM class N Mean(Kg) Std(Kg)
5-30 28704 23.7 7.45
31-60 37991 26.6 7.79
61-90 41787 26.5 7.92
91-1204 43506 26.0 7.89
121-150 44033 25.1 7.89
151-180 44781 24.4 7.93
181-210 45873 23.7 7.99
211-240 45688 22.9 8.04
241-270 44373 22.0 8.10
271-305 42831 21.4 8.20
Total 419567 24.2 8.13

372

373

374

375

376

377

378

379 Table 2. Estimated residual variances ( )1 for different classes of days in milk 𝒗𝒍𝒊

380 and different Legendre polynomials

DIM class 𝒗𝟏𝒊 𝒗𝟐𝒊 𝒗𝟑𝒊 𝒗𝟒𝒊 𝒗𝟓𝒊
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5-30 29.20 18.76 13.95 14.54 15.32
31-60 17.24 15.29 15.44 14.04 12.61
61-90 14.33 14.70 13.05 11.88 11.90
91-1204 14.92 14.12 12.18 12.23 11.40
121-150 15.34 12.99 12.45 11.80 11.33
151-180 15.30 12.54 12.48 11.39 11.26
181-210 14.06 12.63 11.57 11.43 10.54
211-240 12.53 12.75 11.23 11.15 10.80
241-270 11.60 11.12 10.97 9.95 9.64
271-305 16.21 10.38 8.64 9.57 9.80
Total 16.07 13.53 12.20 11.80 11.46

381 1  is the residual variance of ith class in lactation with LP of order l in model obtained from the 𝑣𝑙𝑖

382 Bayesian analysis.

383

384

385

386

387

388

389 Table 3. Number of additive genetic effect (nA) and permanent environment 

390 effect (nPE), and estimates of residual variance of cumulative 305d milk yield (

391 ), -2LogL, the log-likelihood ratio test (LRT) between the reduced order 2
)305( de

392 model and the subsequently augmented model with addition of one extra order, 

393 degree of freedom (df) and  of LRT𝟐
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394

LP nA nPE 2
)305( de -2LogL LTR3 df  𝟐

𝟎.𝟎𝟎𝟓

LP1 3 3 4661.46 1757621.90 18462.74* 6 18.548

LP2 6 6 3985.43 1739159.16 7013.04* 8 21.955

LP3 10 10 3668.38 1732146.12 3292.53* 10 25.188

LP4 15 15 3496.95 1728853.59 2057.64* 12 28.299

HO1

LP5 21 21 3354.87 1726795.95 - - -

LP1 3 3 4557.65 1725335.19 3325.47* 6 18.548

LP2 6 6 3925.40 1722009.72 1387.18* 8 21.955

LP3 10 10 3575.94 1720622.54 4376.24* 10 25.188

LP4 15 15 3442.95 1716246.30 2702.95* 12 28.299

HE2

LP5 21 21 3273.39 1713543.35 - - -

395 1 HO was homogeneous residual variance; 2HE was heterogeneous residual variance, 

396 3LRT between LP1 and LP2, LP2 and LP3, LP3 and LP4, LP4 and LP5

397 * P<0.005

398

399 Table 4. Heritabilities (h2) and Repeatabilities (Rep) for 305d milk yield, and 

400 minimal (Min) and maximal (Max) h2 and Rep for TD in different Legendre 

401 Polynomials (LP) considering homogeneous (HO) and heterogeneous (HE) 

402 residual variances

HO HE
LP

305D Min for TD Max for TD 305D Min for TD Max for TD
LP1 0.257 0.142 0.264 0.260 0.143 0.269 
LP2 0.254 0.169 0.273 0.254 0.163 0.303 
LP3 0.250 0.179 0.259 0.250 0.163 0.304 
LP4 0.250 0.177 0.317 0.249 0.170 0.326 

h2

LP5 0.250 0.179 0.372 0.249 0.171 0.303 
LP1 0.741 0.566 0.747 0.738 0.520 0.773 

Rep
LP2 0.744 0.641 0.782 0.744 0.628 0.821 
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LP3 0.748 0.685 0.788 0.748 0.639 0.821 
LP4 0.749 0.697 0.791 0.749 0.682 0.799 
LP5 0.748 0.708 0.786 0.749 0.688 0.799 

403

404
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405 Table 5. Spearman’s rank correlations between EBVs for 305d obtained from 

406 full and reduced data for models with different order of Legendre Polynomials 

407 (LP) and with homogeneous (HO) or Heterogeneous (HE) residual variance

Residual
Variance LP1 LP2 LP3 LP4 LP5

HO 0.703 0.713 0.731 0.730 0.729
HE 0.694 0.711 0.733 0.732 0.729

408
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