

1 **Comparison of different orders of Legendre polynomials in random regression**
2 **model for estimation of genetic parameters and breeding values of milk yield in**
3 **the Chinese Holstein population**

4

5 Jianbin Li¹†*, Hongding Gao²†, Per Madsen², Wenhao Liu¹, Peng Bao¹, Guanghui

6 Xue¹, Jun Yang¹, Yundong Gao¹, Guosheng Su²*

7 ¹Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, Jinan,
8 China

9 ²Center for Quantitative Genetics and Genomics, Department of Molecular Biology
10 and Genetics, Aarhus University, Tjele, Denmark

11

12 †Contributed equally

13 * Corresponding authors: msdljb@163.com, guosheng.su@mbg.au.dk

14

15

16 **Abstract**

17 Random regression test-day model has become the most commonly adopted model
18 for routine genetic evaluations for different dairy populations, which allows
19 accurately accounting for genetic and environmental effects at different periods
20 during lactation. The objective of this study was to explore appropriate random
21 regression test-day model for genetic evaluation of milk yield in Chinese Holstein
22 population. Data included 419,567 test-day records from 54,417 cows in the first
23 lactation. Variance components and breeding values were estimated using random
24 regression test-day model with different order (first order to fifth order) of Legendre
25 polynomials, and accounted for homogeneous or heterogeneous residual variance
26 across the lactation. The goodness of fit of the models was evaluated by total residual

27 variance (TRV) and $-\log L$. Further, the predictive ability of the models was
28 assessed by Spearman's rank correlation between estimated breeding values for 305d
29 milk yield (EBV₃₀₅) from the full data set and reduced data set in which the records
30 from the last calving year were masked. The results showed that random regression
31 models using third order Legendre polynomials (LP3) with heterogeneous residual
32 variance achieved the lower TRV and $-\log L$ value and the highest correlation for
33 EBV₃₀₅ between full data and reduced data. Heritability estimated by this model was
34 0.250 for 305d milk yield and ranged from 0.163 to 0.304 for test-day milk yield. We
35 suggest random regression model with Legendre polynomial of order 3 and
36 accounting for heterogeneous residual variances could be an appropriate model to be
37 used for genetic evaluation of milk yield for Chinese Holstein population.

38

39 **KEYWORDS**

40 Chinese Holstein cattle, Genetic parameters, Legendre polynomial, Random
41 regression model, Test-day records

42

43

44 **INTRODUCTION**

45 In China, the dairy herd improvement project (DHI) was firstly implemented in 4
46 provinces in the 1990s. In 2006, the Ministry of Agriculture of China approved a
47 project to promote DHI project in 8 provinces where there were many large dairy
48 populations (1). Lately, the project has been expanded to 25 provinces in China,
49 where provincial DHI laboratories and data centers have been established (2), and
50 there were about 700,000 cows recorded milk production in China each year.

51 Random regression test-day model has been widely used in genetic evaluation for
52 production traits in dairy cattle, which has many advantages including more

53 accurately accounting for genetic and environment effects at different stages of the
54 lactation, thus resulting in more reliable genetic evaluation (3-7). It has been reported
55 that test day model is significantly better than lactation model (using full and
56 extended 305d lactation records) with 2-3% increase in accuracy for bulls and 6-8%
57 for cows for milk yield first lactation (8). In addition, test-day model allows to predict
58 estimated breeding value (EBV) for each test day, each particular period or the full
59 lactation (305d) (7).

60 The functions generally used to model the lactation curve include Woods's model (9),
61 Wilmink's function (10), Spline function (Pelmus,R.S.,et al. 2016) and Legendre
62 polynomial function (11). Because of differences in production environments and
63 management systems, optimal functions for test models in different countries may be
64 different (12, 13). Several studies have shown that Legendre polynomials (LP) fit
65 random regression test-day model well in general, but there is no "gold standard"
66 reported in literatures on choosing optimal order of LP in the model, and the choice of
67 the order of fit is highly depending on the practical data structures. For example, a
68 fourth order LP (LP4) was used for national genetic evaluations in Canada and Italy,
69 and a fifth order LP (LP5) was used in UK (14). The joint Nordic test-day model is a
70 multivariate model for milk, protein and fat in lactation 1 to 3 (in total 9 traits). The
71 genetic and permanent environment effects are modeled by second order LP extended
72 with an exponential term $e^{-0.04 \times DIM}$ (15).

73 Although a large number of new milk records are collected monthly in China, routine
74 genetic evaluation has not been performed timely. In addition, genetic parameters are
75 not updated regularly. To use data efficiently and reduce the cost of keeping candidate
76 bulls, it is necessary to perform genetic evaluation frequently, such as, genetic
77 evaluation is performed five times per year by Interbull (16). Moreover, there has
78 been no study to investigate the impact of parametric functions for lactation curve on
79 genetic evaluation in Chinese Holstein population.

80 The aim of this study was to find an optimal order of Legendre polynomials for
81 genetic evaluation of milk yield in Chinese Holstein population by comparing
82 different orders of Legendre polynomials in random regression test day models in
83 terms of goodness of fit and prediction accuracy.

84 **MATERIALS AND METHODS**

85 **Data**

86 Data were obtained from the database at Dairy Cattle Research Centre DHI Lab,
87 Shandong Academy of Agricultural Sciences. First lactation records from 2004-2015
88 which fulfill the following criteria: ages at calving between 20 and 38 months, and
89 daily milk yield between 5 and 80kg, days in milk (DIM) between 5 and 305, and
90 cows with at least 3test day records were extracted. The final data consisted of
91 419,567 test day records from 54,417 cows. Number of records in each DIM class
92 ranged from 576 to 1,768. Descriptive statistics of the data are presented in Table 1.
93 The traced pedigree included 104,884 individuals.

94 **Model**

95 We used first order to fifth order Legendre polynomial (LP1 to LP5) to fit random
96 regression test day model, respectively. The model equation was as follows:

97
$$y_{ijklm} = hys_i + age_j + dim_k + \sum_{n=1}^{n_a} a_{mn} z_{mnl} + \sum_{n=1}^{n_p} p_{mn} z_{mnl} + e_{ijklm} \quad (1)$$

98 Where y_{ijklm} is the observation within ith herd-year-season effect, the jth age
99 classes, the kth DIM effect on lth test day of cow m ; hys_i is the ith fixed
100 herd-year-season effect; age_j is the jth fixed calving age effect; dim_k is the kth
101 fixed DIM effect; a_{mn} is the nth random regression coefficients for additive genetic
102 effect of cow m ; p_{mn} is the nth random regression coefficients for permanent
103 environmental effect of cow m ; z_{mnl} is Legendre polynomials on DIM, and n_a , n_p
104 are orders (from 1 to 5) of Legendre polynomials for additive genetic and permanent

105 environmental effects, respectively; and e_{ijklm} is residual effect.

106 In this study, March, April, May, September, and October were defined as calving
107 season1, June, July, and August as calving season2, November, December, January,
108 and February as calving season3, and there were 1,891 herd-year-season classes in
109 total. Calving age was classified into 4 levels: 20-23mo, 24-27mo, 28-31mo, 32mo or
110 later. Residual variance was assumed either homogeneous or heterogeneous across
111 lactation. For models with heterogeneous residual variances, residuals were divided
112 into 10 classes (5-30, 31-60, 61-90, 91-120, 121-150, 151-180, 181-210, 211-240,
113 241-270, and 270- 305 DIM) (17). Bayesian method with Gibbs sampling was used to
114 generate the posterior samples for models with heterogeneous residual variances. The
115 length of MCMC chain was set to 55 000 with a burn-in of 5 000 iterations.
116 Convergence diagnostics for MCMC were assessed using R package *boa* (18) and all
117 parameters investigated had converged to the posterior distribution. The estimates of
118 residual variances for different periods are shown in Table2. To compare models with
119 different orders of Legendre Polynomials, the heterogeneous residual variances were
120 handled by putting different weights on residual variance for different periods of
121 DIM. The weights were calculated by $w_i = \frac{\bar{v}}{v_i}$, where v_i is the posterior means for
122 residual variance of i th DIM class obtained from the Bayesian analysis, \bar{v} is the
123 mean of residual variances.

124 Additive genetic variance for a particular DIM was calculated as $\sigma_{g_k}^2 = \mathbf{z}_k' \mathbf{G} \mathbf{z}_k$, \mathbf{z}_k is
125 a column vector of LP coefficients at k th DIM, \mathbf{G} is covariance matrix of additive
126 genetic effect. Permanent environmental variance for a particular DIM was
127 $\sigma_{p_k}^2 = \mathbf{z}_k' \mathbf{P} \mathbf{z}_k$, matrix \mathbf{P} is covariance matrix of permanent environmental effect, \mathbf{z}_k
128 is same as above; EBV of a particular animal at a particular DIM was calculated as
129 $EBV_{mk} = \mathbf{z}_k' \mathbf{a}$, \mathbf{a} is column vector of additive genetic random regression coefficients
130 of a particular animal, \mathbf{z}_k is same as above; The EBV for the whole lactation was

131 calculated as $EBV_{m305} = \sum_{t=5}^{305} EBV_{mk}$. The estimation of variance components and
132 prediction of breeding values using different models were carried out by the DMU
133 package (19).

134 **Model comparison**

135 Models with different orders of Legendre polynomials were compared using
136 following methods based on full and reduced data sets:

137 a. Residual variance of 305d milk yield ($\sigma_{e(305d)}^2$): $\sigma_{e(305d)}^2 = \sum_{i=5}^{305} \sigma_{e(i)}^2$, $\sigma_{e(i)}^2$ is
138 residual variance of each TD, which is the same in each TD when considering
139 homogeneous variance, however, different but same in each class in lactation
140 when considering heterogeneous variance. A smaller $\sigma_{e(305d)}^2$ indicates a better
141 fitting of the regression model.

142 b. Log-likelihood ratio test (LRT) was used to test the differences between the
143 reduced order model and the subsequently augmented model with addition of one
144 extra order (LP1 vs. LP2, LP2 vs. LP3, LP3 vs. LP4, LP4 vs. LP5). The LRT
145 between models with successive order is $LRT_i = -2\log L_i - (-2\log L_{i+1})$ with
146 $df_i = nP_{i+1} - nP_i$. In this study, $-2\log L_i$ is $-2\log L$ value for the model
147 with i th order, nP is the number of parameters in the corresponding model.

148 c. Spearman's rank correlation: It was used to evaluate predictability of model that
149 the spearman's rank correlation between EBV_{305} of animals calving in last year in
150 data, whose EBVs were estimated based on including their own phenotypes and
151 masking their phenotypes. The correlation was calculated as $\rho = 1 - \frac{6\sum d_i^2}{n(n^2 - 1)}$
152 (Bolboac, S.D.& Lorentz J. 2006), d_i is the difference between the two ranks, n is
153 the number of cows.

154

155 **RESULTS**

156 **General statistics of TD milk**

157 Mean for TD milk yield in the different class of lactation was showed in Table 1,
158 where means ranged from 21.4 kg to 26.6 kg with standard deviations from 7.45 kg to
159 8.20 kg. An increase in milk yield was found up to 53 DIM, followed by a gradual
160 decrease until the end of lactation. Averaged over different classes, TD milk was 24.2
161 kg with a standard deviation of 8.13 kg in first lactation Holstein cows.

162 **Goodness of fit**

163 Table 3 presents the estimated parameters using random regression test-day model
164 based on different assumption of residual variances (homogeneous or heterogeneous).
165 Number of parameters for random effects of models was increased from 7 to 43 when
166 increasing the order of LP from LP1 to LP5. The estimated residual variances $\sigma_{e(305d)}^2$
167 were decreased from 4661.46 to 3354.87 as order increased when assuming
168 homogeneous residual variance, and from 4557.65 to 3273.39 when assuming
169 heterogeneous residual variances. The differences between LP1 and LP5 were
170 1306.59 for homogeneous residual variance and 1284.26 for heterogeneous residual
171 variance. However, the differences were smaller between LP3 and LP4 and between
172 LP4 and LP5, which were 171.43 and 142.08 for homogeneous, 132.99 and 169.56
173 for heterogeneous variances, respectively. Differences of $\sigma_{e(305d)}^2$ between models
174 with homogeneous and with heterogeneous residual variances were 103.81, 60.03,
175 92.44, 54.00 and 81.48 corresponding LPs (from LP1 to LP5) respectively. That
176 means $\sigma_{e(305d)}^2$ were decreased when considering heterogeneous residual variances.

177 $-2LogL$ were decreased from 1757621.90 to 1726795.95 as order increased when
178 assuming homogeneous residual variance, $-2LogL$ decreased from 1725335.19 to
179 1713543.35 when assuming heterogeneous residual variance. The differences between

180 models tested by Chi-square statistic of LRT were significant ($P<0.005$). Thus, the
181 null hypothesis of equality of models with different orders was rejected. Differences
182 of $-2LogL$ between models with homogeneous and with heterogeneous residual
183 variances were 32286.71, 17149.44, 11523.58, 12607.29 and 13252.6 corresponding
184 LPs (from LP1 to LP5). That means $-2LogL$ were decreased when considered
185 heterogeneous residual variances.

186 **Comparison on estimated variances**

187 Figure 1 and Figure 2 show the genetic variances (σ_g^2), permanent environmental
188 variances (σ_p^2), residual variances (σ_e^2), heritabilities (h^2) and repeatabilities (Rep) at
189 each TD along the lactation calculating based on the estimated covariance function
190 coefficients. The curve of σ_g^2 for TD showed a sharp decreasing in early lactation
191 and then increasing from middle to the end of lactation. σ_p^2 for TD presented similar
192 trends as σ_g^2 . Estimates of σ_g^2 and σ_p^2 were somewhat different in models with
193 different orders. σ_e^2 for TD was same when considering homogenous in same model,
194 and not continuous when considering heterogeneous, however, they decreased with
195 the order increasing. For heterogeneous variance, residual variance decreased from
196 the beginning to the end lactation stage. The curve of heritability and repeatability
197 showed a sharp decrease in early lactation and then increased from middle to the end
198 of lactation.

199 Table 4 shows the heritability (h^2) and repeatability (Rep) for 305d milk yield and
200 minimum and maximum values of TD milk yield. h^2 for 305d estimated from models
201 with different LPs ranged from 0.250 to 0.257 and Rep were from 0.741 to 0.749
202 when considering homogeneous variance. When considering heterogeneous variance,
203 h^2 for 305d were between 0.250 to 0.260, and Rep were between 0.738 and 0.749. h^2
204 for TD from models with different LPs ranged from 0.142 to 0.372 and Rep were
205 between 0.566 and 0.786 when considering homogeneous variance. When considering
206 heterogeneous residual variances, h^2 for TD ranged from 0.143 to 0.326 and Rep were

207 between 0.520 and 0.821. It was observed that model with LP1 and LP2 led to higher
208 estimated heritability and lower repeatability than the models with higher order.

209 **Comparison on predictability of models**

210 Spearman's rank correlations between EBVs from full data and reduced data are
211 shown in Table 5. Correlations for models with different orders ranged from 0.703 to
212 0.731 and from 0.694 to 0.733 based on homogeneous and heterogeneous residual
213 variances, respectively. Correlations between EBVs increased from LP1 to LP3 and
214 then decreased from LP3 to LP5. The changes in correlation were the same for
215 models with homogeneous and heterogeneous residual variances. The highest
216 correlation of EBVs was found from LP3 and then followed by LP4 and LP5, the
217 lowest correlations between EBVs was from LP1.

218

219 **DISCUSSION**

220 In this study, various criteria were used to compare random regression test day models
221 with different order of Legendre polynomials. Comparison criteria for models have
222 been discussed by (20-22). In general, the smaller $\sigma_{e(305d)}^2$ and $-2LogL$, the better
223 goodness of fit for models. In our study, models with higher order obtained lower
224 $\sigma_{e(305d)}^2$ and $-2LogL$ values, which was in line with previous studies (17). This means
225 model with LP5 fits data best in terms of residual variance and the likelihood-ratio
226 test. However, models with higher orders introduced more parameters resulting in
227 higher computational demanding (20). Therefore, model selection needs to balance
228 between goodness of fit and computational requirement.

229 Furthermore, the improvements of goodness of fit became smaller as increasing order
230 of LP in model. For example, the reduction in $\sigma_{e(305d)}^2$ was 14.50% (13.87%), 7.96%
231 (8.90%), 4.67% (3.72%), and 4.06% (4.92%) when comparing successive order LP2,

232 LP3, LP4, LP5 for homogeneous (heterogeneous) residual variances respectively, and
233 for $-2\text{Log}L$, the reduction was 1.05% (0.02%), 0.40% (0.03%), 0.19% (0.03%) and
234 0.12% (0.03%) correspondingly. Especially, there were smaller improvement from
235 LP3 to LP4 and from LP4 to LP5 based on $\sigma_{e(305d)}^2$ or $-2\text{Log}L$. Similar reductions
236 were observed by (23, 24). This means it might be enough to select LP3 or LP4 based
237 on using Comparison criteria and computational requirement.

238 The trajectory of additive genetic variances and permanent environmental variances
239 showed a quick decreasing in the beginning of lactation and then increased until end
240 of the lactation. This trend is consistent with previous studies in Chinese Holsteins
241 from (1), Brazilian Holsteins by (17, 25). Particularly, (1) used a random regression
242 test-day model with LP4 to estimate parameters for milk yield, they found almost the
243 same curves as the current study for additive genetic variances and permanent
244 environmental variances in Chinese first lactation Holstein cows.

245 Higher additive genetic variances were in the beginning and end of lactation, which
246 might be attributed to variations in the number of TD records, milk yield level, or
247 non-genetic factors for example pregnancy effects (26). This was coincident with
248 higher genetic variances at the beginning and end of lactation but lower at middle.
249 Other studies have shown that fitting higher order of LP produced higher estimates of
250 genetic variances at the edges of lactation and oscillatory pattern along the lactation
251 trajectory, which might be unlikely biologically (24, 27, 28). This indicates that a
252 model with higher order (e.g., LP5) may not be optimal than a model with lower order
253 (e.g., LP3 or LP4).

254 The rank correlation of EBVs for 305d from full data and reduced data increased from
255 LP1 (0.703) to LP3 (0.731), then decreased from LP3 to LP5 (0.729). Rank
256 correlations between EBVs using random regression model and EBVs predicted from
257 linear model were between 0.86 to 0.96 for bulls and 0.80 to 0.87 for cows. Random
258 regression model fitted by fourth order Legendre polynomials is recommended for

259 genetic evaluations of Brazilian Holstein cattle (28). In this study, the model with
260 third order and heterogeneous variances had the best predictive ability. Future
261 research should consider using records from different parities and multiple traits such
262 as fat and protein yields.

263 **Conclusion**

264 This study showed that a random regression test-day model using LP3 or LP4 and
265 accounting for heterogeneous residual variance could achieve reasonable good
266 estimates of variance components. Moreover, model with LP3 and heterogeneous
267 variances had the best prediction ability. This model could be used as an initial model
268 for the implementation of a genetic improvement program in the Chinese Holstein
269 population.

270

271 **CONFLICT OF INTEREST**

272 The authors declare no conflict of interest.

273

274

275 **ACKNOWLEDGMENTS**

276 We acknowledge the funding from Natural Science Foundation of Shandong Province
277 (ZR2016CM37), Key Research and Development Plan of Shandong Province
278 (2018GNC113003), China Agriculture Research System (CARS-36), Agricultural
279 scientific and technological innovation project of Shandong Academy of Agricultural
280 Sciences (CXGC2016A04), and Agricultural improved varieties project of Shandong
281 Province (2016LZGC027), Jinan International Cooperation Plan on Science and
282 Technology (201401353). We thank Dr. Lingzhao Fang and Binjie Li for helping with
283 the calculation of EBV.

284 **REFERENCES**

285 1. Miglior F, Gong W, Wang Y, Kistemaker GJ, Sewalem A, Jamrozik J. Genetic
286 parameters of production traits in Chinese Holsteins using a random regression
287 test-day model. *J Dairy Sci.* 2009;92(9):4697-706.

288 2. Yearbook CD. China Dairy Yearbook. 2016.

289 3. Schaeffer LR, Dekkers JCM, editors. Random regressions in animal models for
290 test-day production in dairy cattle. 5th World Congr Genet Appl Livest Prod; 1994;
291 Guelph, Canada.

292 4. Schaeffer LR. Application of random regression models in animal breeding.
293 *Livest Prod Sci.* 2004;86(1-3):35-45.

294 5. Jensen J. Genetic evaluation of dairy cattle using test-day models. *J Dairy Sci.*
295 2001;84(12):2803-12.

296 6. Schaeffer LR, Jamrozik J, Kistemaker GJ, Van Doormaal BJ. Experience with a
297 test-day model. *J Dairy Sci.* 2000;83(5):1135-44.

298 7. Jamrozik J, Schaeffer LR, Dekkers JCM. Genetic evaluation of dairy cattle using
299 test day yields and random regression model. *J Dairy Sci.* 1997;80(6):1217-26.

300 8. Kistemaker GJ. The comparison of random regression testday models and a
301 305-d model for evaluation of milk yield in dairy cattle.: University of Guelph; 1997.

302 9. Wood P. Algebraic model of the lactation curve in cattle. *Nature.*
303 1967;216(5111):164.

304 10. Wilmink JBM. Adjustment of Test-Day Milk, Fat and Protein Yield for Age,
305 Season and Stage of Lactation. *Livest Prod Sci.* 1987;16(4):335-48.

306 11. Kirkpatrick M, Lofsvold D, Bulmer M. Analysis of the inheritance, selection and
307 evolution of growth trajectories. *Genetics.* 1990;124(4):979-93.

308 12. Reinhardt F, Liu Z, Bünger A, Dopp L, Reents R, editors. Impact of application
309 of a random regression test day model to production trait genetic evaluations in dairy

310 cattle. *Interbull Bull*; 2002; Interlaken, Switzerland

311 13. Mrode RA, Swanson GJT, Paget MF, editors. Implementation of a test day model
312 for production traits in the UK. *Interbull Bull*; 2003; Rome, Italy.

313 14. Muir BL, Kistemaker G, Jamrozik J, Canavesi F. Genetic parameters for a
314 multiple-trait multiple-lactation random regression test-day model in Italian Holsteins.
315 *J Dairy Sci*. 2007;90(3):1564-74.

316 15. Lidauer MH, Poso J, Pedersen J, Lassen J, Madsen P, Mantysaari EA, et al.
317 Across-country test-day model evaluations for Holstein, Nordic Red Cattle, and
318 Jersey. *J Dairy Sci*. 2015;98(2):1296-309.

319 16. Philipsson J, editor *Interbull developments, global genetic trends and role in the*
320 *era of genomics*. *Interbull Bull*; 2011; Uppsala, Sweden.

321 17. Pereira RJ, Bignardi AB, El Faro L, Verneque RS, Vercesi AE, Albuquerque LG.
322 Random regression models using Legendre polynomials or linear splines for test-day
323 milk yield of dairy Gyr (*Bos indicus*) cattle. *J Dairy Sci*. 2013;96(1):565-74.

324 18. Smith BJ. *boa: An R package for MCMC output convergence assessment and*
325 *posterior inference*. *J Stat Softw*. 2007;21(11):1-37.

326 19. Madsen P, Su G, Labouriau R, Christensen O, editors. *DMU—A package for*
327 *analyzing multivariate mixed models*. 9th World Congr Genet Appl Livest Prod;
328 2010; Leipzig, Germany.

329 20. Druet T, Jaffrezic F, Boichard D, Ducrocq V. Modeling lactation curves and
330 estimation of genetic parameters for first lactation test-day records of French Holstein
331 cows. *J Dairy Sci*. 2003;86(7):2480-90.

332 21. Odegard J, Jensen J, Klemetsdal G, Madsen P, Heringstad B. Genetic analysis of
333 somatic cell score in Norwegian cattle using random regression test-day models. *J*
334 *Dairy Sci*. 2003;86(12):4103-14.

335 22. Welham SJ, Thompson R. Likelihood ratio tests for fixed model terms using
336 residual maximum likelihood. *J R Stat Soc Series B Stat Methodo*.

337 1997;59(3):701-14.

338 23. Pool MH, Meuwissen THE. Prediction of daily milk yields from a limited
339 number of test days using test day models. *J Dairy Sci.* 1999;82(7):1555-64.

340 24. Lopez-Romero P, Carabano W. Comparing alternative random regression models
341 to analyse first lactation daily milk yield data in Holstein-Friesian cattle. *Livest Prod
342 Sci.* 2003;82(1):81-96.

343 25. Bignardi AB, El Faro L, Torres RAA, Cardoso VL, Machado PF, Albuquerque
344 LG. Random regression models using different functions to model test-day milk yield
345 of Brazilian Holstein cows. *Genet Mol Res.* 2011;10(4):3565-75.

346 26. Bohmanova J, Miglior F, Jamrozik J, Misztal I, Sullivan PG. Comparison of
347 random regression models with legendre polynomials and linear splines for
348 production traits and somatic cell score of Canadian Holstein cows. *J Dairy Sci.*
349 2008;91(9):3627-38.

350 27. Meyer K. Random regression analyses using B-splines to model growth of
351 Australian Angus cattle. *Genet Sel Evol.* 2005;37(5):473-500.

352 28. Padilha AH, Cobuci JA, Costa CN, Neto JB. Random Regression Models Are
353 Suitable to Substitute the Traditional 305-Day Lactation Model in Genetic
354 Evaluations of Holstein Cattle in Brazil. *Asian-Australas J Anim Sci.*
355 2016;29(6):759-67.

356

357

358 **Figure 1** Genetic variances (V_g), permanent environmental variances (V_{pe}),
359 residual variances (V_e) at each test day along the lactation from models with
360 different orders of Legendre polynomials (LP) based on assumption of homogeneous
361 residual variance (left column) or assumption of heterogeneous residual variance
362 (right column)

363

364 **Figure 2** Heritabilities and repeatabilities at each test day along the lactation from
365 models with different orders of Legendre polynomials (LP) based on assumption of
366 homogeneous residual variance (left column) or assumption of heterogeneous residual
367 variance (right column)

368

369

370 **Table 1. Number of records in each days in milk (DIM) class (N), Mean,**

371 **Standard deviation (Std)**

DIM class	N	Mean(Kg)	Std(Kg)
5-30	28704	23.7	7.45
31-60	37991	26.6	7.79
61-90	41787	26.5	7.92
91-120	43506	26.0	7.89
121-150	44033	25.1	7.89
151-180	44781	24.4	7.93
181-210	45873	23.7	7.99
211-240	45688	22.9	8.04
241-270	44373	22.0	8.10
271-305	42831	21.4	8.20
Total	419567	24.2	8.13

372

373

374

375

376

377

378

379 **Table 2. Estimated residual variances (v_{li})¹ for different classes of days in milk**

380 **and different Legendre polynomials**

DIM class	v_{1i}	v_{2i}	v_{3i}	v_{4i}	v_{5i}
-----------	----------	----------	----------	----------	----------

5-30	29.20	18.76	13.95	14.54	15.32
31-60	17.24	15.29	15.44	14.04	12.61
61-90	14.33	14.70	13.05	11.88	11.90
91-120	14.92	14.12	12.18	12.23	11.40
121-150	15.34	12.99	12.45	11.80	11.33
151-180	15.30	12.54	12.48	11.39	11.26
181-210	14.06	12.63	11.57	11.43	10.54
211-240	12.53	12.75	11.23	11.15	10.80
241-270	11.60	11.12	10.97	9.95	9.64
271-305	16.21	10.38	8.64	9.57	9.80
Total	16.07	13.53	12.20	11.80	11.46

381 $^1v_{li}$ is the residual variance of ith class in lactation with LP of order 1 in model obtained from the
382 Bayesian analysis.

383

384

385

386

387

388

389 **Table 3. Number of additive genetic effect (nA) and permanent environment
390 effect (nPE), and estimates of residual variance of cumulative 305d milk yield (**
391 $\sigma_{e(305d)}^2$ **), -2LogL, the log-likelihood ratio test (LRT) between the reduced order
392 model and the subsequently augmented model with addition of one extra order,
393 degree of freedom (df) and χ^2 of LRT**

394

	LP	nA	nPE	$\sigma_{e(305d)}^2$	-2LogL	LTR ³	df	$\chi^2_{0.05}$
HO ¹	LP1	3	3	4661.46	1757621.90	18462.74*	6	18.548
	LP2	6	6	3985.43	1739159.16	7013.04*	8	21.955
	LP3	10	10	3668.38	1732146.12	3292.53*	10	25.188
	LP4	15	15	3496.95	1728853.59	2057.64*	12	28.299
	LP5	21	21	3354.87	1726795.95	-	-	-
	LP1	3	3	4557.65	1725335.19	3325.47*	6	18.548
	LP2	6	6	3925.40	1722009.72	1387.18*	8	21.955
	LP3	10	10	3575.94	1720622.54	4376.24*	10	25.188
	LP4	15	15	3442.95	1716246.30	2702.95*	12	28.299
	LP5	21	21	3273.39	1713543.35	-	-	-

395 ¹ HO was homogeneous residual variance; ²HE was heterogeneous residual variance,

396 ³LRT between LP1 and LP2, LP2 and LP3, LP3 and LP4, LP4 and LP5

397 * P<0.005

398

399 **Table 4. Heritabilities (h^2) and Repeatabilities (Rep) for 305d milk yield, and**
400 **minimal (Min) and maximal (Max) h^2 and Rep for TD in different Legendre**
401 **Polynomials (LP) considering homogeneous (HO) and heterogeneous (HE)**
402 **residual variances**

LP	HO			HE		
	305D	Min for TD	Max for TD	305D	Min for TD	Max for TD
h^2	LP1	0.257	0.142	0.264	0.260	0.143
	LP2	0.254	0.169	0.273	0.254	0.163
	LP3	0.250	0.179	0.259	0.250	0.163
	LP4	0.250	0.177	0.317	0.249	0.170
	LP5	0.250	0.179	0.372	0.249	0.171
Rep	LP1	0.741	0.566	0.747	0.738	0.520
	LP2	0.744	0.641	0.782	0.744	0.628

LP3	0.748	0.685	0.788	0.748	0.639	0.821
LP4	0.749	0.697	0.791	0.749	0.682	0.799
LP5	0.748	0.708	0.786	0.749	0.688	0.799

403

404

405 **Table 5. Spearman's rank correlations between *EBVs* for 305d obtained from**
406 **full and reduced data for models with different order of Legendre Polynomials**
407 **(LP) and with homogeneous (HO) or Heterogeneous (HE) residual variance**

Residual Variance	LP1	LP2	LP3	LP4	LP5
HO	0.703	0.713	0.731	0.730	0.729
HE	0.694	0.711	0.733	0.732	0.729

408

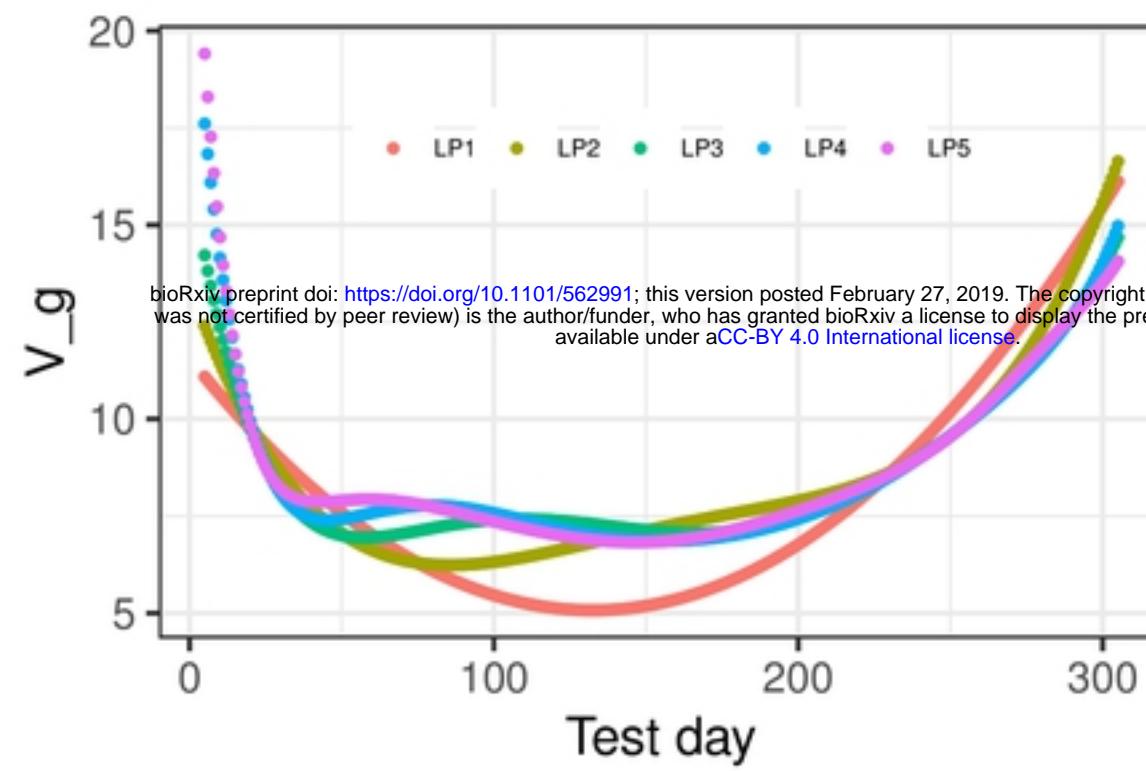
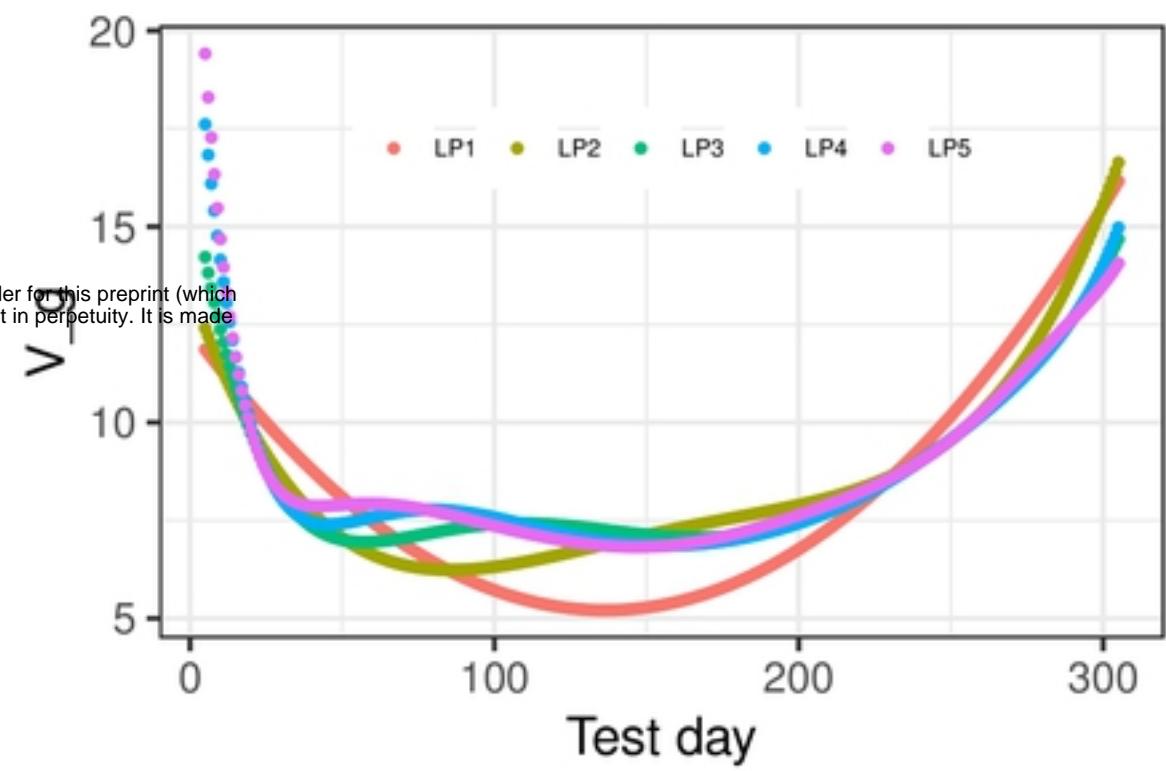
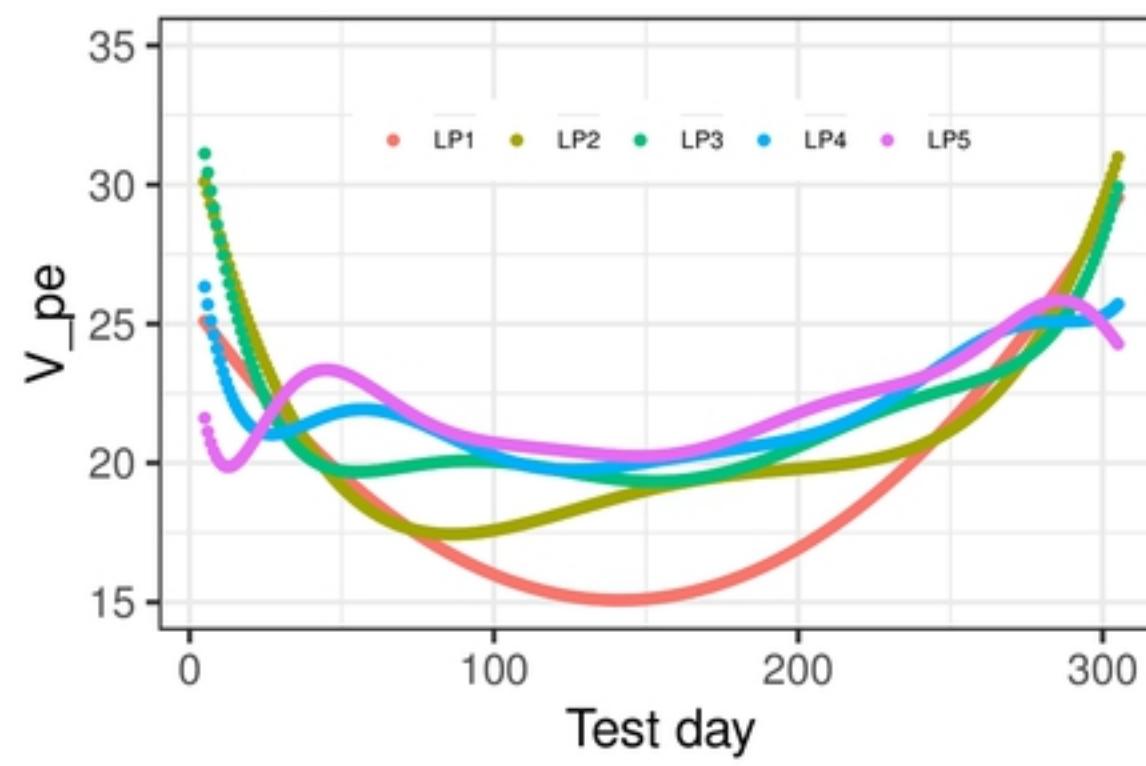
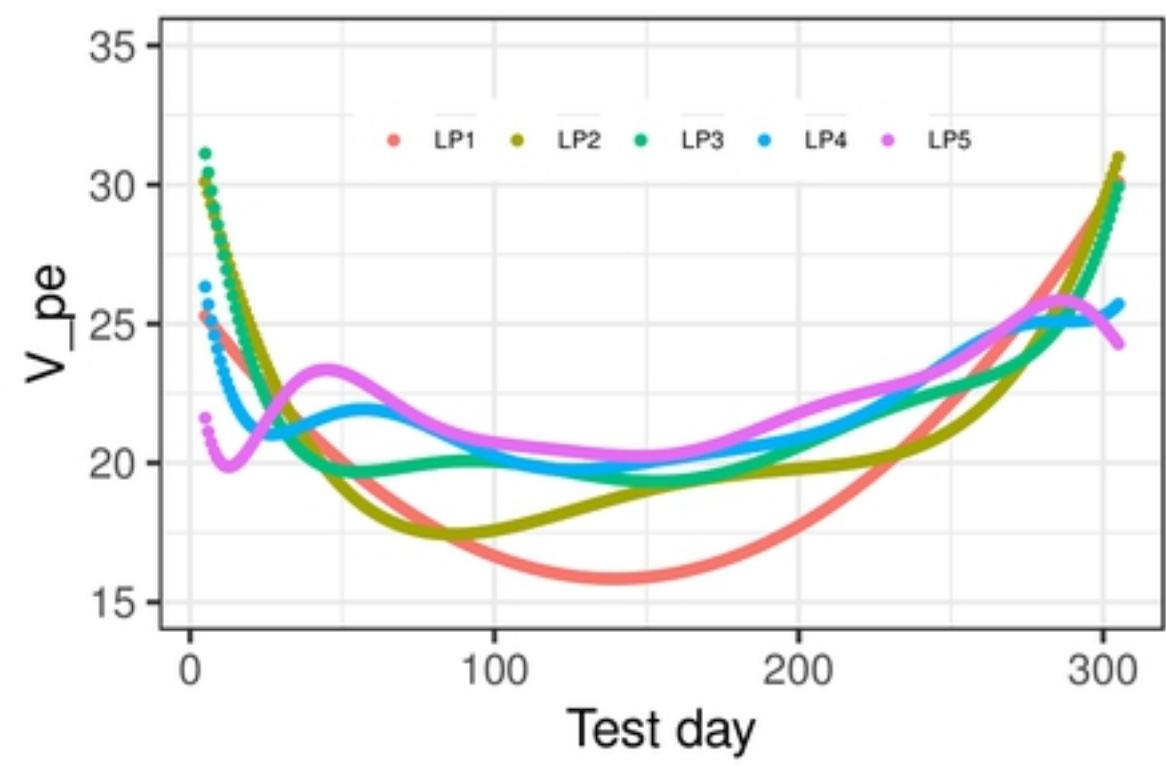
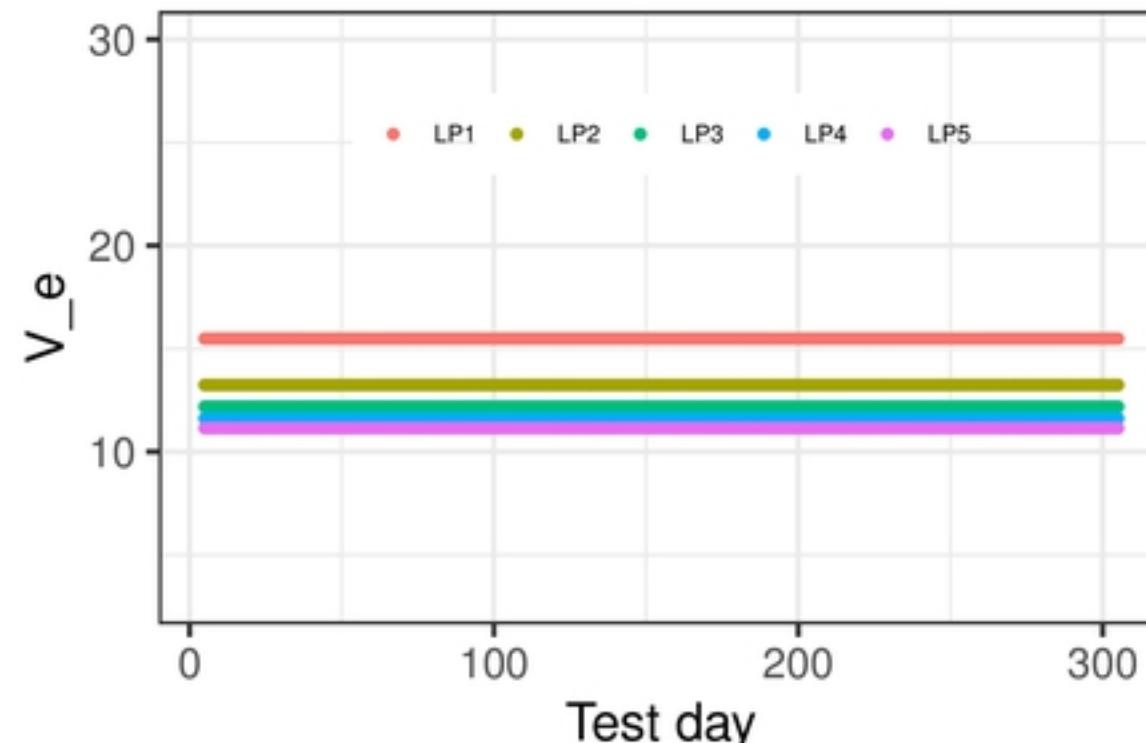
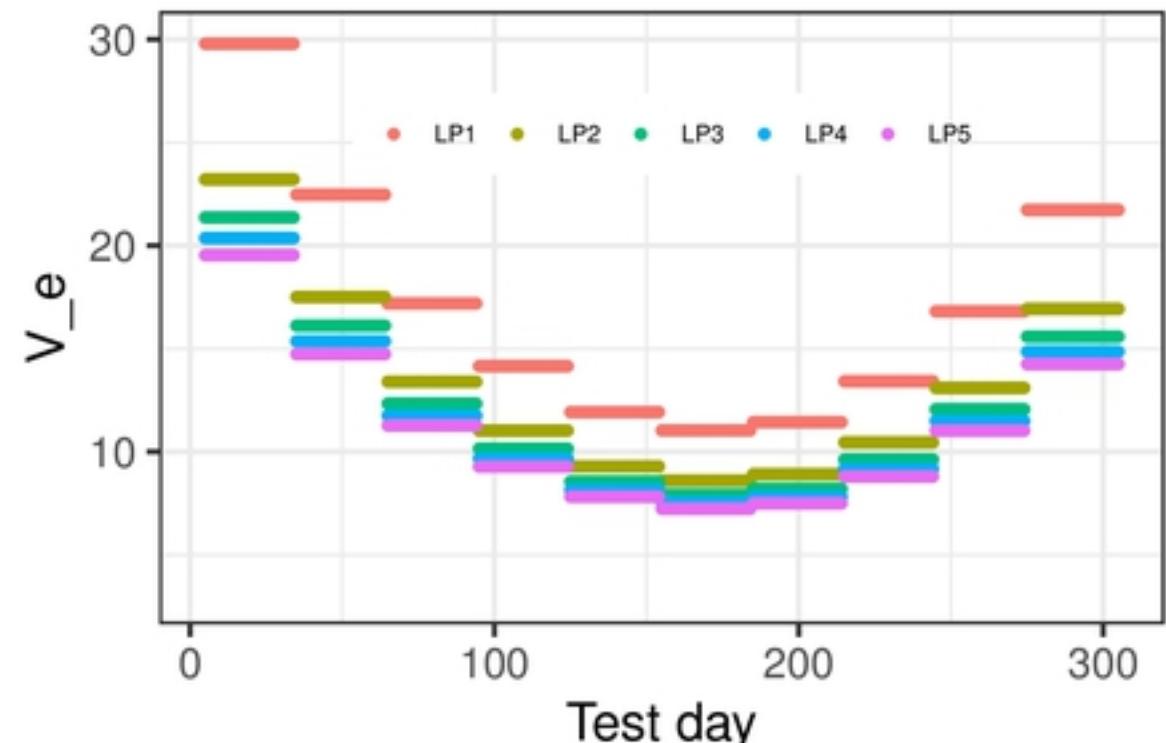


Figure 1

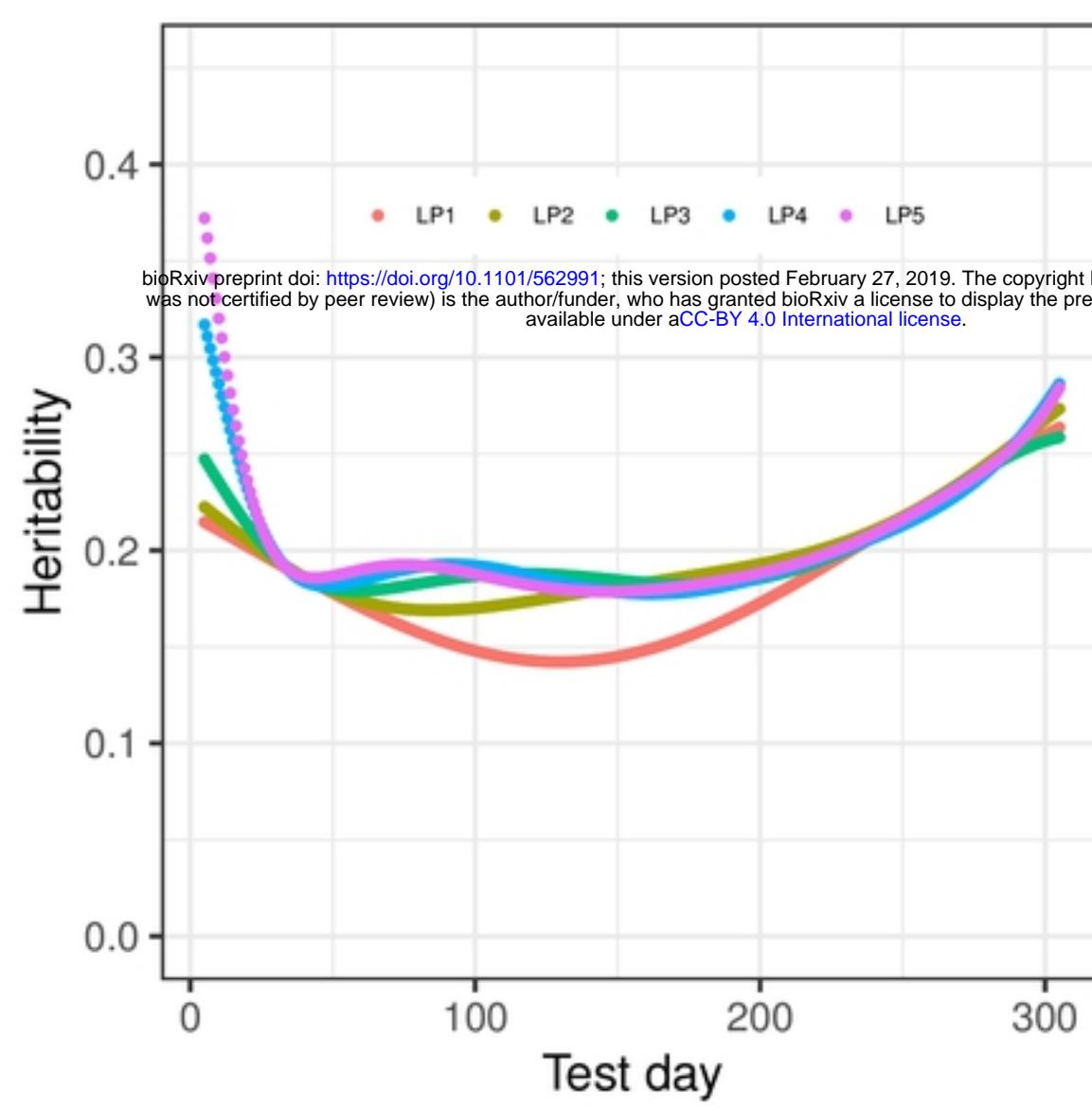
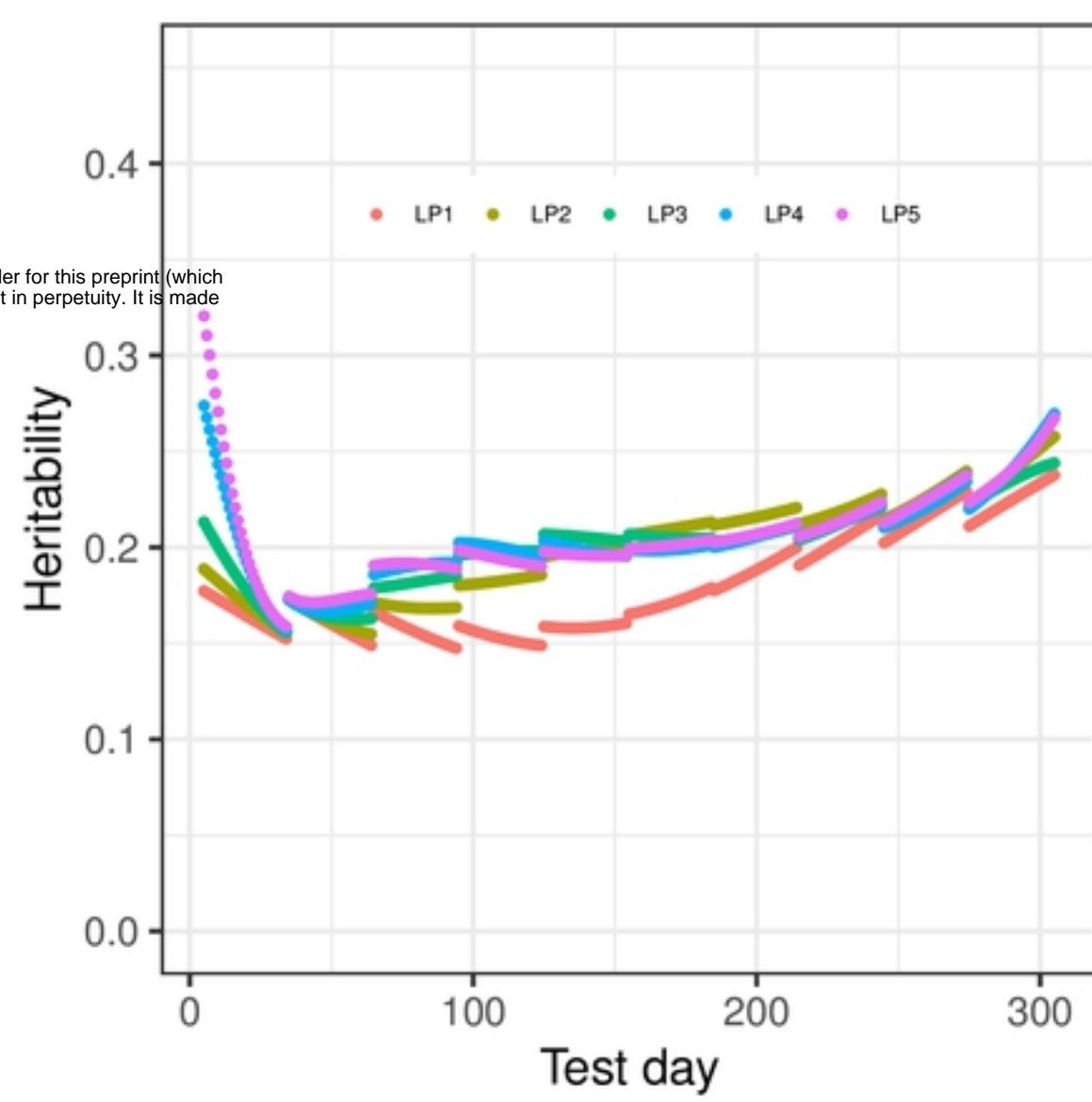
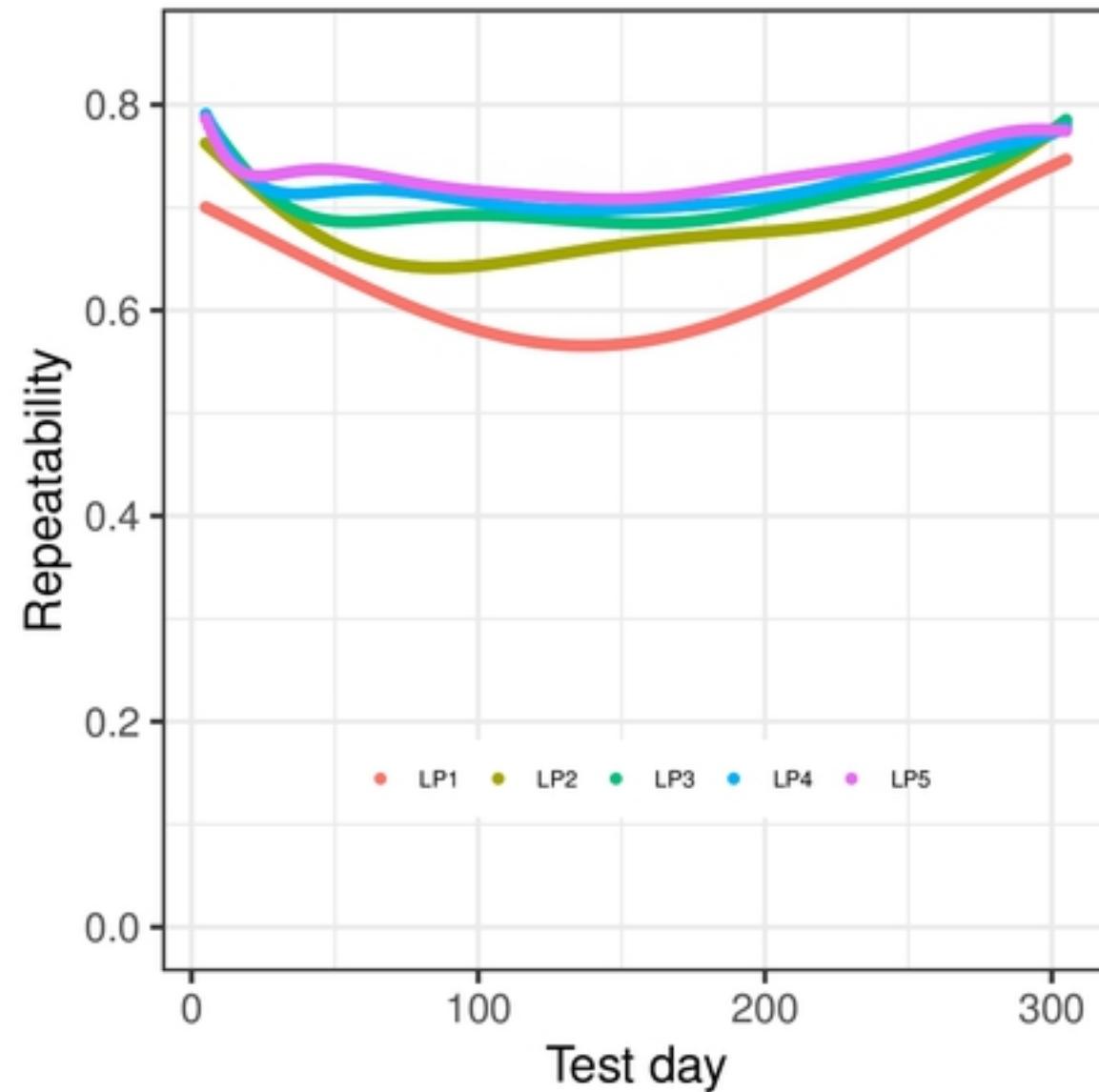
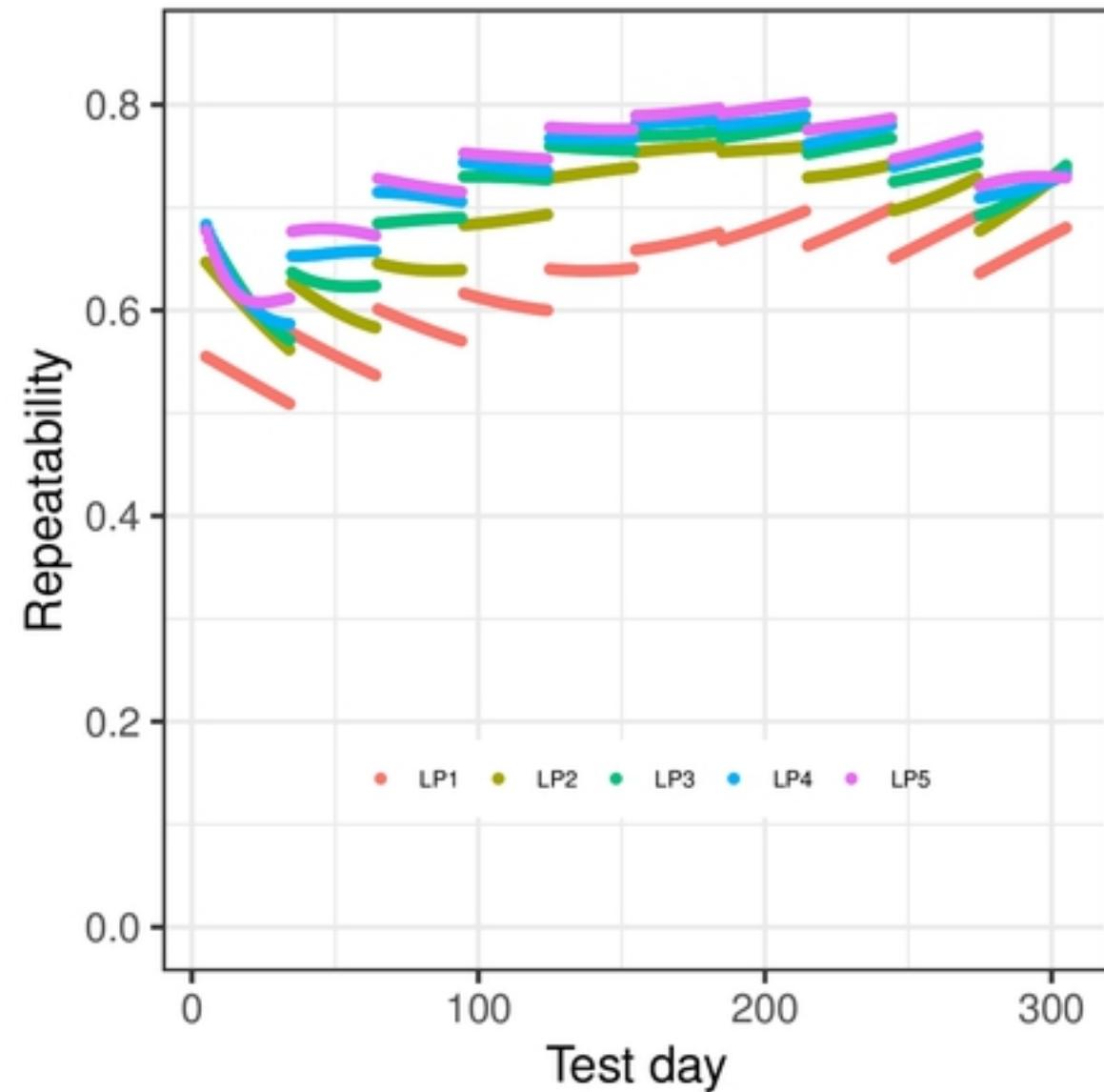


Figure 2