

1 REGULAR ARTICLE

2 **The effect of drought and intercropping
3 on chicory nutrient uptake from below 2
4 m studied in a multiple tracer setup**

5
6 Camilla Ruø Rasmussen (crr@plen.ku.dk, +45 35 32 08 71)^{1*}, Kristian Thorup-Kristensen¹ and Dorte Bodin
7 Dresbøll¹

8
9 ¹ Department of Plant and Environmental Sciences, University of Copenhagen, Taastrup, Denmark

10 * Corresponding author

11

12 **Keywords**

13 *Cichorium intybus* L.; Deep root growth; Deep nutrient uptake; Drought resistance; Intercropping; trace
14 element tracer

15

16 **Abstract**

17 *Aims* We tested if chicory acquires nutrients from soil layers down to 3.5 m depth and whether the deep
18 nutrient uptake increases as a result of topsoil drought or topsoil resource competition. We also tested
19 whether application of the trace elements Cs, Li, Rb, Sr, and Se, as tracers result in similar uptake rates.

20

21 *Methods* The methodological tests were primarily carried out in a pilot experiment where the five tracers
22 were applied to 1 m depth in lucerne and red beet grown in tube rhizotrons. The dynamics of deep nutrient
23 uptake in chicory was studied in large 4 m deep rhizoboxes. A drought was imposed when roots had
24 reached around 2 m depth.

25

26 *Results* Chicory acquired tracers applied to 3.5 m depth, but we found no compensatory tracer uptake with
27 depth during drought. We found some indications of a compensatory tracer uptake from 2.3 and 2.9 m
28 depth in intercropped chicory. Application of equimolar amounts of trace elements resulted in similar
29 excess tracer concentrations within species.

30

31 *Conclusion* Chicory acquires nutrients from below 3 m but does not increase deep nutrient uptake as a
32 response to limited topsoil nutrient availability.

33

34 **Introduction**

35 The key advantage of deep roots growing below 1 m depth or even further down is classically perceived to
36 be the access to larger water pools, contributing to water uptake both under dry and well-watered
37 conditions (Gregory et al. 1978; Nepstad et al. 1994; Jackson et al. 1999; Elliott et al. 2006; Maeght et al.
38 2013). Deep roots have also shown to play a significant role in the uptake of nitrogen (N) deep in the soil
39 profile (Buresh and Tian 1997; Thorup-Kristensen 2001). N is mobile in the soil and surplus precipitation is
40 causing N to leach (van Noordwijk M 1989; Jobbágy and Jackson 2001) making downward root expansion
41 more valuable than increasing root densities in an already occupied soil volume (McMurtrie et al. 2012).

42 Efficient utilisation of less mobile nutrients requires a higher root density, and uptake is therefore
43 generally associated with topsoil root activity. The higher organic matter content and fertilisation in
44 cropping systems, ensure the release of nutrients in the topsoil. However, uptake of nutrients deeper in the
45 soil profile might be an overlooked resource at some places. Considerable amounts of plant available
46 nutrients can be present below 1 m depth (Stone and Comerford 1994; Jobbágy and Jackson 2001;
47 McCulley et al. 2004). Lehmann (2003) stressed that despite the usually lower relative root activity in the
48 subsoil compared to the topsoil, the large volume of subsoil in comparison to the mostly narrow band of
49 topsoil represents an important resource for nutrient uptake.

50 Even though the highest concentration of nutrients is often found in the topsoil, the availability of
51 these nutrients decreases when the topsoil dries out. This occurs especially in semi-arid environments
52 (reviewed by da Silva et al. 2011a), and nutrient uptake from deeper soil layers becomes increasingly
53 important here (Lehmann 2003; Ma et al. 2009). Moving towards more sustainable cropping systems with
54 lower nutrient inputs might also increase the importance of utilising available nutrients deep in the profile
55 (Lynch 2007). In addition, it is not unreasonable to assume that increasing the average rooting depth in
56 cropping systems for various purposes such as drought tolerance, carbon sequestration, soil fertility, and

57 reduced soil compaction will itself increase nutrient deposition deeper in the profile, as it is seen for carbon
58 deposition (Rasse et al. 2005; Kell 2011).

59 Methods using trace elements as tracers have shown to be valuable in detecting temporal and spatial
60 patterns of nutrient uptake in plants and plant mixtures (Sayre and Morris 1940; Martin et al. 1982; Casper
61 et al. 2003; Hoekstra et al. 2014). Substances qualify as tracers if they naturally occur in very low quantities,
62 are chemically equivalent to the nutrients of interest and are non-toxic for plants in concentrations that are
63 readily determinable (Pinkerton and Simpson 1979). Strontium (Sr) is physiologically an analogue to calcium
64 (Ca) and is absorbed following the plant's metabolic requirements for Ca (Kabata-Pendias 2011). Lithium
65 (Li), cesium (Cs) and rubidium (Rb) all form monovalent cations that appears to share the K⁺ transport
66 carrier (Isaure et al. 2006; Valdez-Aguilar and Reed 2008; Kabata-Pendias 2011). Selenium (Se) is mainly
67 taken up as SeO₄²⁻, and is thus an analogue to sulfur (Terry et al. 2000)

68 Despite the different uptake transport carriers, the cation trace elements are also used
69 interchangeable simply as root activity tracers, potentially allowing injection into multiple depths of the
70 same plot (Fitter 1986; Carlen et al. 2002). Compared to using one tracer in each plot this reduces the
71 between-plot variability, but few studies have rigorously tested the feasibility of the strategy (Hoekstra et
72 al. 2014).

73 Most studies making use of trace elements as tracers are focusing on the upper 1 m of soil or even
74 shallower. To the author's knowledge only three studies are placing trace elements deeper, of which two
75 are focusing on eucalyptus trees (da Silva et al. 2011a; Bordron et al. 2019) and only one on an agricultural
76 crop, that is lucerne (Fox and Lipps 1964). All three studies documented significant uptake of Sr, and the
77 eucalyptus studies also of Rb at 3 m depth, demonstrating the feasibility of the method.

78 In the field, placing tracer at great depths can be challenging compared to shallower placement,
79 limiting the number of sites of placement. Also, the risk of damaging the root system increases with the
80 depth of placement as fewer roots are usually reaching the greater depths. Thus causing damage to these
81 critical structures for deep nutrient acquisition can alter the plant behaviour. However, decreasing the
82 number of placement sites causes an increase in variation in uptake (Fox and Lipps 1964; Hoekstra et al.
83 2014), which presumably increases with depth as the root system is less dense. It might in some
84 experiments be relevant to be able to remove the tracer-infused soil again, allowing repeated placement of
85 tracers at the same site at different times. If this is the case, the tracer cannot be distributed evenly, and
86 the number must be limited.

87 In this study, we used Cs, Li, Rb, Se and Sr to test the possibility of using the trace elements
88 interchangeable as tracers and to test the feasibility of placing the tracers via ingrowth cores, letting roots
89 grow into tracer infused soil placed at various depths. We also examined the effect of topsoil drought and
90 intercropping on deep nutrient uptake in chicory. More specifically, we tested the hypotheses that 1)
91 application of the less soil mobile trace elements Cs, Li, Rb and Sr as tracers result in similar uptake rates,
92 whereas the mobile trace element Se is taken up at a higher rate, 2) placing trace element tracers in
93 ingrowth cores is a feasible method to avoid contamination of the soil, enabling repeated use of tracers in
94 experimental setups, 3) chicory acquire both mobile and less mobile nutrients from soil layers down to 3 m,
95 and 4) the deep nutrient uptake increases as a result of topsoil drought or topsoil resource competition.

96 To test hypothesis 1) we set up a pilot study where we applied the five trace element tracers to 1 m
97 depth in lucerne and red beet grown in 1 m tall tube rhizotrons. To test hypothesis 2) and 3) we grew
98 chicory (*Cichorium intybus* L.) as a sole crop and intercropped with the two shallow-rooted species ryegrass
99 (*Lolium perenne* L.) and black medic (*Medicago lupulina* L.) in 4 m tall rhizoboxes. We allowed the roots to
100 reach around 2 m depth before imposing a drought, as our focus was on the potential of deep roots to
101 acquire nutrients and not on deep root growth during drought. Details on soil water content during the
102 experiment and the implications of the depth of plant water uptake has been reported in Rasmussen et al.

103 (2019a, preprint) together with repeated observations of root development obtained from the transparent
104 surfaces of the rhizoboxes.

105

106 Methods

107 Both experiments were placed outside and situated at University of Copenhagen, Taastrup, Denmark
108 (55°40'08.5"N 12°18'19.4"E).

109

110 Pilot experiment

111 We grew lucerne (*Medicago sativa L.*) and red beet (*Beta vulgaris L.*) in 1 m tall transparent acrylic glass
112 tubes with a diameter of 150 mm in 2 x 4 replicates for pre- and post-tracer harvest. The tubes were placed
113 on wooden frames outside and wrapped in white non-transparent plastic to avoid light exposure of soil and
114 roots.

115 Growth medium was a sandy loam soil from a research farm in Taastrup, Denmark (Table 1),
116 belonging to University of Copenhagen. The bottom 0.75 m of the tubes was filled with soil from the lower
117 horizon (0.2–0.6 m) and the top 0.25 m of the tubes was filled with soil from the upper horizon (0–0.2 m).
118 We sieved the soil through a 15 mm sieve and mixed it thoroughly before filling it into the tubes
119 compacting it for each 0.03 m to a bulk density of approximately 1.33 g cm⁻³. A plastic net covered the
120 bottom of the tubes, and they were placed on a wick to allow water to drain. Seeds of lucerne and red beet
121 were sown in 40 x 40 mm pots in a greenhouse and transplanted into the tubes on 20 June 2015, one week
122 after sowing. After transplanting, we fertilized the plants with NPK 5-1-4 fertilizer equivalent to 50 kg N ha⁻¹
123¹. During the experiment, plants were exposed to precipitation and were further irrigated using ceramic
124 cups that ensured slow water infiltration when necessary.

125 On 6 August, we placed a 2 l plastic pot filled with subsoil under each tube of the post-tracer harvest
126 replicates. Roots could grow through the plastic net and into the pots. In each pot, we had applied Cs, Li,
127 Se, Rb, Sr to trace root activity. We did this by dissolving CsNO₃, LiNO₃, Na₂SeO₄, RbNO₃ and Sr(NO₃)₂ in
128 water to a concentration resulting in an application of 3 g, 0.2 mg, 2 g, 2 g, 2 g m⁻², equivalent to 23, 29,
129 0.025, 23 and 23 mmol m⁻² respectively, and mixing it into the soil. We harvested aboveground biomass of
130 the pre-tracer replicates 10 August and the post-tracer harvest replicates 1 September. All biomass samples
131 were dried at 80°C for 48 hours. Samples were ground and the concentration of the trace elements was
132 determined on an ICP-MS (Thermo-Fisher Scientific iCAP-Q; Thermo Fisher Scientific, Bremen, Germany) at
133 University of Nottingham, School of Biosciences laboratory. We calculated excess tracer concentration in
134 aboveground biomass as the increase in concentration of each of the trace elements from the pre-tracer
135 harvest to the post-tracer harvest.

136 Root development was documented every week by photographing the roots growing at the soil-tube
137 interface, with an Olympus Tough TG-860 compact camera. We took 10 photos to cover the tube from top
138 to bottom and at four different positions at each height. In total, the images covered 40% of the tube
139 surface. We recorded the roots using the line intersects method (Newman 1966) modified to grid lines
140 (Marsh 1971; Tennant 1975) to calculate root intensity, which is the number of root intersections m⁻¹ grid
141 line in each panel (Thorup-Kristensen 2001). The grid we used was 10 x 10 mm.

142

143 Experimental facility – main experiment

144 We conducted the main experiment in a semi-field facility and repeated it for two consecutive seasons,
145 2016 and 2017. We grew the crops in 4 m deep rhizoboxes placed outside. The boxes were 1.2 x 0.6 m and
146 divided lengthwise into an east- and a west-facing chamber. On the wide east- and west-facing sides of the
147 boxes, 20 removable panels allowed us to access to the soil column at all depths. All sides of the boxes
148 were covered in white plates of foamed PVC of 10 mm thickness.

149 We used field soil as growth medium. We filled the bottom 3.75 m of the rhizoboxes with subsoil
150 taken from below the plow layer at Store Havelse, Denmark (55°89'83.9"N, 12°06'52.8"E, Table 1), and the
151 upper 0.25 m with a topsoil mix of clay loam and sandy loam half of each, both from the University's
152 experimental farm in Taastrup, Denmark. Soil bulk density was 1.6 g m⁻³, which is close to field conditions
153 for this soil type. We filled the boxes in August 2015 and did not replace the soil during the two
154 experimental years. Rainout shelters constructed of tarpaulin were mounted to control precipitation. Drip
155 irrigation with a controlled water flow of 15 mm hour⁻¹ was installed in each chamber. For a thorough
156 description of the facility, see Rasmussen et al. (2019a, preprint).

157

158 **Table 1** Main characteristics of the soil used in the tubes and the rhizoboxes

Experiment	Depth (m)	Organic matter ^{*1} (%)	Clay (%) <0.002 mm	Silt (%) 0.002-0.02 mm	Fine sand (%) 0.02-0.2 mm	Coarse sand (%) 0.2-2.0 mm	pH ^{*2}
Tubes	0.00-0.25	2.3	7	6	55	30	6.8
	0.25-0.75	0.6	6	5	57	32	6.4
	0.00-0.25	2.0	8.7	8.6	46.0	35.0	6.8
Rhizoboxes		0.25-4.00	0.2	10.3	9.0	47.7	33.0
^{*1} Assuming that organic matter contains 58.7 % Carbon.							
^{*2} pH = Reaction Number (Rt) – 0.5. Measured in a 0.01 M CaCl ₂ suspension, soil:suspension ratio 1:2.5.							

159 ^{*1} Assuming that organic matter contains 58.7 % Carbon.

160 ^{*2} pH = Reaction Number (Rt) – 0.5. Measured in a 0.01 M CaCl₂ suspension, soil:suspension ratio 1:2.5.

161 *Experimental design*

162 We had two treatments in 2016 and four treatments in 2017. In both years we grew chicory (*Cichorium*
163 *intybus L.*, 2016: Spadona from Hunsballe frø. 2017: Chicoree Zoom F1 from Kiepenkerl) in monoculture
164 under well-watered (WW) and drought stress (DS) conditions. We chose to work with a hybrid salad cultivar
165 the second year to reduce the variation among plants in size and in development speed seen in the forage
166 type used the first year. In 2017, we also grew chicory intercropped with either ryegrass (*Lolium perenne L.*)
167 or black medic (*Medicago lupulina*), both in a WW treatment. In 2016, we transplanted four chicory plants
168 into each chamber and in 2017, we increased the number to six in order to reduce within-chamber
169 variation. For the two intercropping treatments in 2017, we transplanted five plants of ryegrass or black
170 medic in between the chicory plants.

171 For the 2016 season, chicory plants were sown in May 2015 in small pots in the greenhouse and they
172 were transplanted into the chambers 30 September. Despite our attempt to compact the soil, precipitation
173 made the soil settle around 10 % during the first winter. Therefore, 29 February 2016, we carefully dug up
174 the chicory plants, removed the topsoil, filled in more subsoil to reach 3.75 m, before filling topsoil back in,
175 and replanting the chicory plants. A few chicory plants did not survive the replanting and in March, we
176 replaced them with spare plants sown at the same time as the original ones and grown in pots next to the
177 rhizoboxes. In 2017, we sowed chicory in pots in the greenhouse 11 April and transplanted them to the
178 chambers 3 May (Table 2). Chicory is perennial, it produces a rosette of leaves the first year and the second
179 year it grows stems and flowers. Due to the different sowing strategies, we worked with second-year plants
180 in 2016 and first-year plants in 2017.

181 We grew all treatments in three randomized replicates. The soil inside the six chambers not used for
182 the experiment 2016 but included in 2017 had also sunken during the 2015/2016 winter and we used the
183 same procedure of filling in more soil for these chambers.

184 In 2016, we had two experimental rounds using the same plants. For the 1st round, we started drying
185 out the DS treatments 26 June and ended the round by cutting aboveground biomass 28 July. Hereafter we
186 let the plants regrow until we again started drying out the DS treatments 12 August for the 2nd round. We
187 swopped treatments so that chambers used for DS treatments in the 1st round were used for WW
188 treatments in the 2nd round and vice versa. We pruned the plants at 0.5 m several times between 24 May

189 and 12 July 2016 to postpone flowering and induce leaf and root growth. In 2017, we only had one round,
190 starting the drying out on 13 July 2017. We fertilized all chambers with NPK 5-1-4 fertilizer equivalent to 50
191 kg N ha⁻¹ on 1 April and 21 June in 2016 and again on 29 July before the 2nd round in 2016. In 2017, we
192 fertilized all chambers 3 May and 1 June following the same procedure.

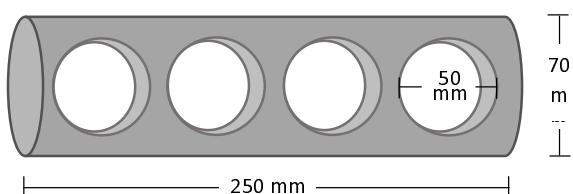
193 In the DS treatment, we stopped irrigation and mounted the rainout shelters. In WW treatments
194 including the intercropping treatment in 2017, we irrigated regularly. In 2017, we chose to supply the same
195 amount of water in all chambers, apart from in the DS treatment, which led to different levels of soil water
196 content due to differences in evapotranspiration. In 2017, two chambers were accidentally over-irrigated
197 mid-June 2017 and we re-fertilized them 16 June.

198 **Table 2** Timeline of the experiments in 2016 and 2017

	2016	2017
Sowing	May 2015	11 April
Transplanting	29 February	3 May
Onset of drying out	26 June	13 July
Insertion of ingrowth cores	12 July	15 August
Removal of ingrowth cores	28 July	11 September
Cut of aboveground biomass	28 July	11 September
Onset of drying out	12 August	
Insertion of ingrowth cores	23 August	
Removal of ingrowth cores	22 September	
Cut of aboveground biomass	22 September	

199

200 *Soil water content*


201 We installed time-domain reflectometry sensors (TDR-315/TDR-315L, Acclima Inc., Meridian, Idaho) at two
202 depths to measure volumetric water content (VWC) in the soil. In 2016, the sensors were installed at 0.5
203 and 1.7 m depth. In 2017, the sensors were installed at 0.5 and 2.3 m depth. Soil water content was
204 recorded every 5 min in 2016 and every 10 min in 2017 on a datalogger (CR6, Campbell Scientific Inc,
205 Logan, Utah).

206

207 *Ingrowth cores and tracer application*

208 We made ingrowth cores out of PVC pipes with a diameter of 70 mm and a length of 250 mm. We drilled
209 four holes, 50 mm in diameter on each side of the cores. When placed horizontally with holes facing up-
210 and downwards, the holes allowed roots to grow into the cores from the upper side and out below the
211 cores (Figure 1). In 2016, we filled the cores with 1900 g of moist soil. We later dried three samples from
212 each soil batch and calculated that in all cases soil bulk density was between 1.55 and 1.59 m⁻³ and
213 volumetric water content was between 27.4 and 29.9 %. In 2017, we followed the same procedure but did
214 not check the water content.

215

216 **Fig. 1** Representation of an empty ingrowth core seen from above/below. The cores were placed horizontally with the holes facing
217 up and down, allowing roots to grow into the cores and through it

223 We applied the tracers Cs, Li, Se, Rb, and Sr by mixing them into the soil in the cores. During the first tracer
224 round in 2016, Cs and Li were placed at 0.5 and 2.3 m depth respectively. During the 2nd round Rb, Sr, and
225 Se were placed at 0.5, 2.3 and 3.5 m depth respectively. In 2017 Cs, Li + Sr and Se + Rb was placed at 0.5,
226 2.3 and 2.9 m depth respectively (Table 3). Tracers were applied in the same concentrations as in the pilot
227 experiment. However, in 2017, Sr application was doubled. For each core, 25 ml of the solution containing
228 the tracer(s) in question was thoroughly mixed into the soil before filling it into the core.

229 We used a metal auger with the same diameter as the ingrowth cores to drill a hole, before placing
230 the ingrowth core. We placed two ingrowth cores in each of the designated depths. The soil drilled out was
231 stored frozen for later root washing and estimation of root length density (RLD), to give an indication of
232 RLD prior to core insertion. For the 2nd round in 2016 and the 2017 experiment, we reused as many holes as
233 possible, therefore pre-samples do not exist for all treatments, and for some treatments only in fewer
234 replicates. No pre-samples exist for the 1st round for 0.5 m. Ingrowth cores were inserted 12 July and 23
235 August for the 1st and 2nd tracer round respectively in 2016 and removed again 28 July and 22 September
236 respectively. In 2017, ingrowth cores were inserted 15 August and removed again 11 September (Table 2).
237 The ingrowth cores were also stored frozen for later root washing.

238 We carefully washed the roots out of the ingrowth cores and the sampled bulk soil. We stored the
239 roots in water at 5° C for up to 5 days until further measurement. To obtain RLD we placed the roots on a
240 200 x 250 mm tray and scanned using an Epson Perfection V700 PHOTO scanner on an 8-bit grayscale and
241 600 dpi. Root length measurements were obtained using WinRhizo® software (Regent Instruments Canada
242 Inc., 2006). The images were filtered using the WinRhizo setting of removing objects having a length:width
243 ratio smaller than 4. In the setting of pixel classification, the automatic threshold was used.

244 We also used ¹⁵N as a tracer. We injected it into the soil volume at 3.5 and 2.9 m depth in 2016 and
245 2017 respectively. In 2016, we mixed 3 g Ca(¹⁵NO₃)₂ into 600 ml distilled water. Assuming that the soil
246 contained 50 kg N ha⁻¹ and that 10 % of the tracer would be taken up, this would result in a 2.3 times higher
247 enrichment after application of tracer. In 2017, we used 2.82 g resulting in a calculated 1.65 times higher
248 enrichment after application of tracer. We distributed the ¹⁵N solution among 100 sites, like this: We made
249 two horizontal rows of each 10 equally distributed holes 5 cm above and below 2.3 m depth respectively. In
250 each of these 20 holes, we injected 5 ml tracer distributed between five sites: 25, 20, 15, 10 and 5 cm from
251 the horizontal soil surface. We injected tracer 19 July in 2016 and 15 August in 2017.

252 Table 3: Depth of placement of each of the tracers during the 1st and the 2nd round in 2016 and in 2017.

Depth (m)	2016 1 st drought	2016 2 nd drought	2017
0.5	Cs	Rb	Cs
2.3	Li	Sr	Li + Sr
2.9			Rb + Se + ¹⁵ N
3.5		Se + ¹⁵ N	

253

254 *Biomass and tracer uptake*

255 We harvested aboveground biomass 28 July and 22 September for the 1st and 2nd round respectively in
256 2016 and 11 September in 2017. We dried the biomass at 80°C for 48 hours. We also sampled and dried 2-3
257 leaves on 12 July 2016 and 14 August 2017 to be used as control samples for the tracer uptake. 1st round
258 biomass samples were used as a control for the 2nd round in 2016, which was possible because a different
259 set of tracers were used in the two rounds.

260 Samples were ground and analysed for tracer concentration. In 2016, the analyses of trace elements
261 were made on an ICP-MS (Thermo-Fisher Scientific iCAP-Q; Thermo Fisher Scientific, Bremen, Germany) at
262 University of Nottingham, School of Biosciences laboratory, and in 2017 they were analysed on an ICP-
263 SFMS (ELEMENT XR, ThermoScientific, Bremen, Germany) at ALS lab, Luleå, Sweden. Analysis of ¹⁵N

264 concentration was done by UC Davis stable isotope facility using a PDZ Europa ANCA-GSL elemental
265 analyser interfaced to a PDZ Europa 20-20 isotope ratio mass spectrometer (Sercon Ltd., Cheshire, UK).
266 Excess tracer concentration was calculated as in the pilot experiment
267 In order to identify whether tracer was present in a sample, we adapted the criteria proposed by Kulmatiski
268 (2010) and modified by Beyer et al. (2016). If a sample had a concentration of a trace element at least 4
269 standard deviations (σ) higher than the control samples, tracer was assumed to be present.
270

271 *Statistics*

272 In the pilot experiment, the effect of species (lucerne vs red beet) on aboveground biomass was tested in a
273 one-way ANOVA, and the effect of soil depth and species on root intensity was tested in a mixed effects
274 two-way ANOVA. Tube was included as a random effect to account for the fact that the different depths
275 are not independent. We tested whether application of tracers resulted in a significant increase in uptake
276 of each of the five trace elements from before to after application (Excess tracer concentration) in a three-
277 way repeated measurements ANOVA with time (before/control & after tracer application), species and
278 tracer type as factors. Furthermore, we tested whether excess tracer concentration differed among trace
279 elements and species in a two-way ANOVA, using the control measurements as a baseline. Both
280 approaches called for log transformation to meet the assumption of homoscedasticity, preventing us from
281 testing both research questions in the same model. Se concentration was multiplied by 10^3 as it was
282 applied in a concentration of 10^{-3} compared to the other tracers.

283 In the rhizobox experiment the effect of treatment on aboveground biomass of chicory, black medic
284 and ryegrass was tested in a mixed effects one-way ANOVA. Separate harvest of single plants allowed the
285 inclusion of chamber as a random effect to account for the fact that the two intercropped species are not
286 independent. The effect of treatment on RLD in the bulk soil and in the ingrowth cores was tested in a
287 mixed effects one-way ANOVA, which was done because there were two ingrowth cores in each depth. We
288 correlated RLD and the root intensities reported in Rasmussen et al. (2019a, preprint) obtained from
289 observations of root development on the transparent surfaces of the rhizoboxes. We tested whether the
290 correlation differed between bulk soil and ingrowth cores.

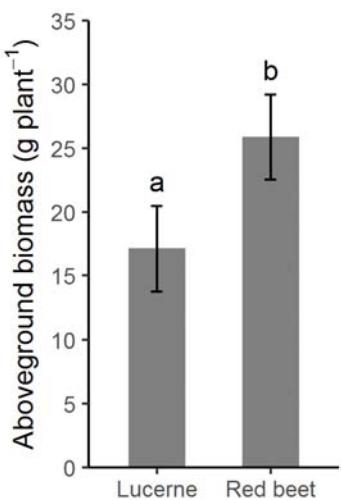
291 Test of significant tracer uptake and treatment effects on excess tracer concentration was tested as
292 in the pilot experiment, with the exception that the tracers were tested in separate models. As for the
293 biomass mixed effects models were used to account for single plant samples. We log-transformed
294 whenever needed to meet the assumption of homoscedasticity. Effect of treatment on N concentration in
295 chicory was tested in a mixed effects one-way ANOVA. We used separate models for each round and year
296 in all cases. We correlated RLD and Li uptake from 2.3 m and tested the effect of treatment in a one-way
297 ANOVA.

298 Differences were considered significant at $P < 0.05$. Data analyses were conducted in R version 3.4.4 (R Core
299 team 2018). Tukey test P-values for pairwise comparisons were adjusted for multiplicity, by single step
300 correction to control the family-wise error rate, using the multcomp package (Hothorn et al. 2008). Error
301 bars represent 95 % confidence intervals.

302

303 **Results**

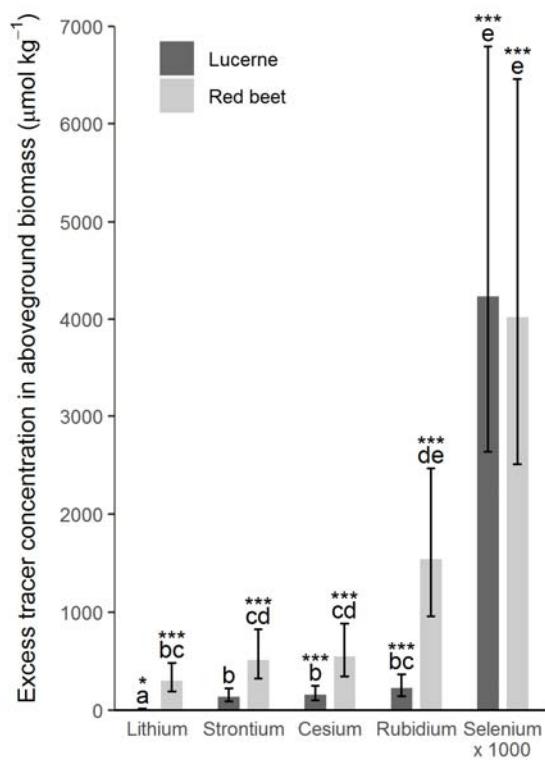
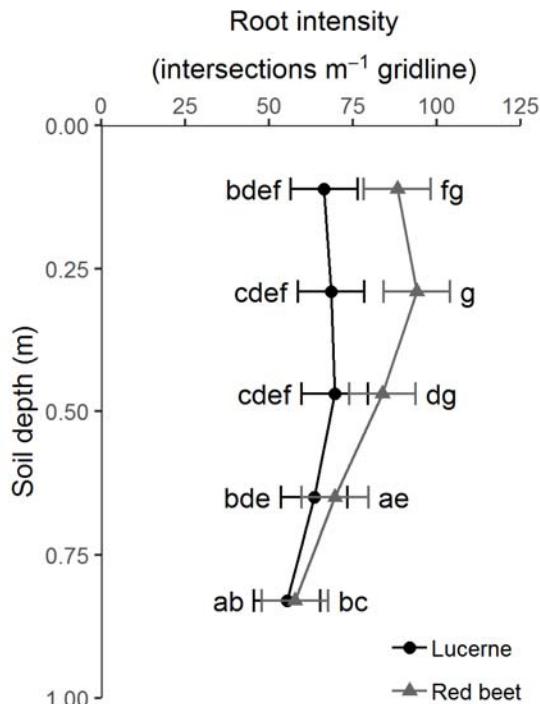
304 *Pilot experiment*


305 Both lucerne and red beet grew well. At harvest 1 September, 10 weeks after transplanting, lucerne
306 aboveground biomass was 17.1 g and red beet biomass including the tuber was 25.8 g, which was
307 significantly higher than lucerne biomass (Figure 2). Red beet had reached the bottom of the tube 20 July,
308 just 4 weeks after transplanting, whereas lucerne roots were not observed in the bottom of the tubes
309 before 3 August, 6 weeks after transplanting (data not shown). 10 August, 4 days after placing the pots with

310 tracer below the tubes, root intensity was alike for the two species in the lower part of the tube. In the
311 upper part of the tubes, red beet had more roots than lucerne (Figure 3).

312 Background concentration of the trace elements in lucerne was 6.6, 462, 0.22, 77, 0.13 $\mu\text{mol kg}^{-1}$ for
313 Li, Sr, Cs, Rb and Se respectively and likewise 6.5, 238, 0.19, 107, 0.12 $\mu\text{mol kg}^{-1}$ for red beet. The
314 differences among species were not significant but among trace elements it was (data not shown). Tracer
315 application increased the concentration of all the applied tracers in both species apart from Sr in lucerne.
316 For lucerne, the increase was a factor 2.3, 1.3, 793, 4.1, 37 for Li, Sr, Cs, Rb, and Se respectively and likewise
317 48, 3.2, 3244, 16 and 35 for red beet. Differences in background levels among trace elements were not
318 reflected in the levels of excess tracer concentration.

319 Red beet took up significantly more Li, Sr, Cs and Rb tracer than lucerne. The uptake of Se did not
320 differ among the two species (Figure 4). For lucerne, the excess tracer concentration did not differ among
321 Sr, Cs, and Rb. For Red beet, this was the case for Li, Sr, and Cs.



322

323

324 **Fig. 2** Biomass of lucerne and red beet harvested 1 September, 10 weeks after transplanting. Error bars denote 95 % confidence
325 intervals and letters indicate significant differences

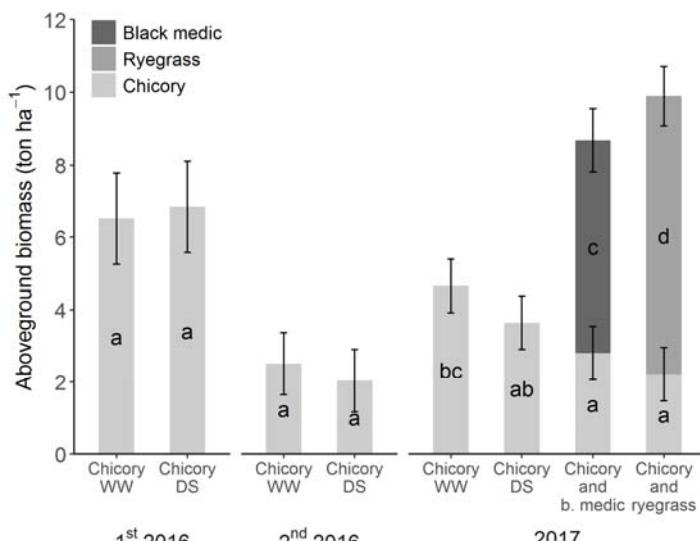
326

333 **Fig. 4** Excess tracer concentration of Cs, Li, Rb, Sr and Se x 1000 in aboveground biomass of lucerne and red beet after placing the
334 tracers at 1 m depth. Error bars denote 95 % confidence intervals, letters indicate significant differences and *, ** and *** indicate
335 that the excess tracer concentration is significantly different from 0 at P < 0.05, 0.01 and 0.001, respectively. Excess tracer
336 concentration of Se has been multiplied by 1000 to normalize the amount of tracer applied among the tracers

337

338 *Main experiment*

339 Plants grew well both years. In 2016, the chicory plants were in their second growth year and started
340 flowering ultimo May, and in 2017 we used first-year chicory plants, which stayed in the vegetative state
341 during the season. The three drought treatments lasted 31, 41 and 29 days, during which 135, 73 and 97
342 mm of water was excluded from the DS treatment in the 1st and 2nd round of 2016 and in 2017 respectively
343 compared to the other treatments.


344

345 *Biomass and N content*

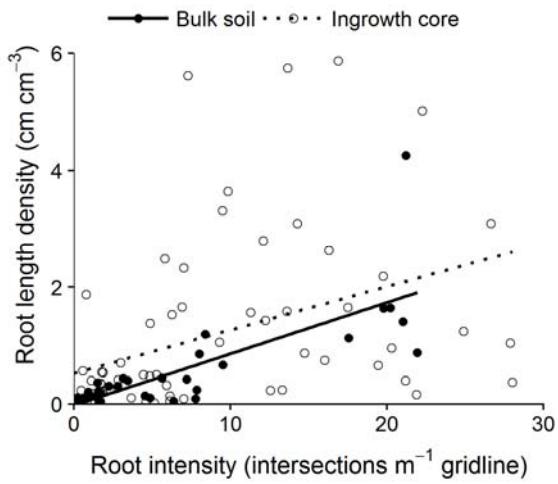
346 We found no treatment effects on biomass in either of the rounds in 2016 (Figure 5). In the 1st round,
347 aboveground biomass harvested 28 July was 6.52 and 6.85 ton ha⁻¹ in the WW and DS treatment
348 respectively. In the 2nd round harvested 22 September, plants were not allowed to regrow to their original
349 size, and biomass was 2.51 and 2.03 ha⁻¹ in the WW and the DS treatment respectively. In 2017, we
350 harvested 11 September and chicory biomass was 4.65 and 3.64 ton ha⁻¹ in the WW and DS treatment
351 respectively, and 2.80 and 2.21 ton ha⁻¹ when intercropped with black medic or ryegrass respectively.
352 Biomass of black medic and ryegrass differed significantly and was 5.89 and 7.68 ton ha⁻¹ respectively. Both
353 intercropping treatments significantly reduced chicory biomass compared to the WW treatment (Figure 5).
354 Biomass for the 1st round 2016 and for 2017 has also been reported in Rasmussen et al. (2019a, preprint).

355 No treatment effects were seen on the N concentration in the plants in either of the rounds in 2016
356 or in 2017 (data not shown).

357

358

359 **Fig. 5** Biomass harvested 28 July and 22 September for the 1st and 2nd round in 2016 respectively and 11 September 2017. Error
360 bars denote 95 % confidence intervals, and letters indicate significant differences. Each round and year was tested in separate
361 models. Part of the data in the figure has also been shown in (Rasmussen et al. 2019b, preprint)

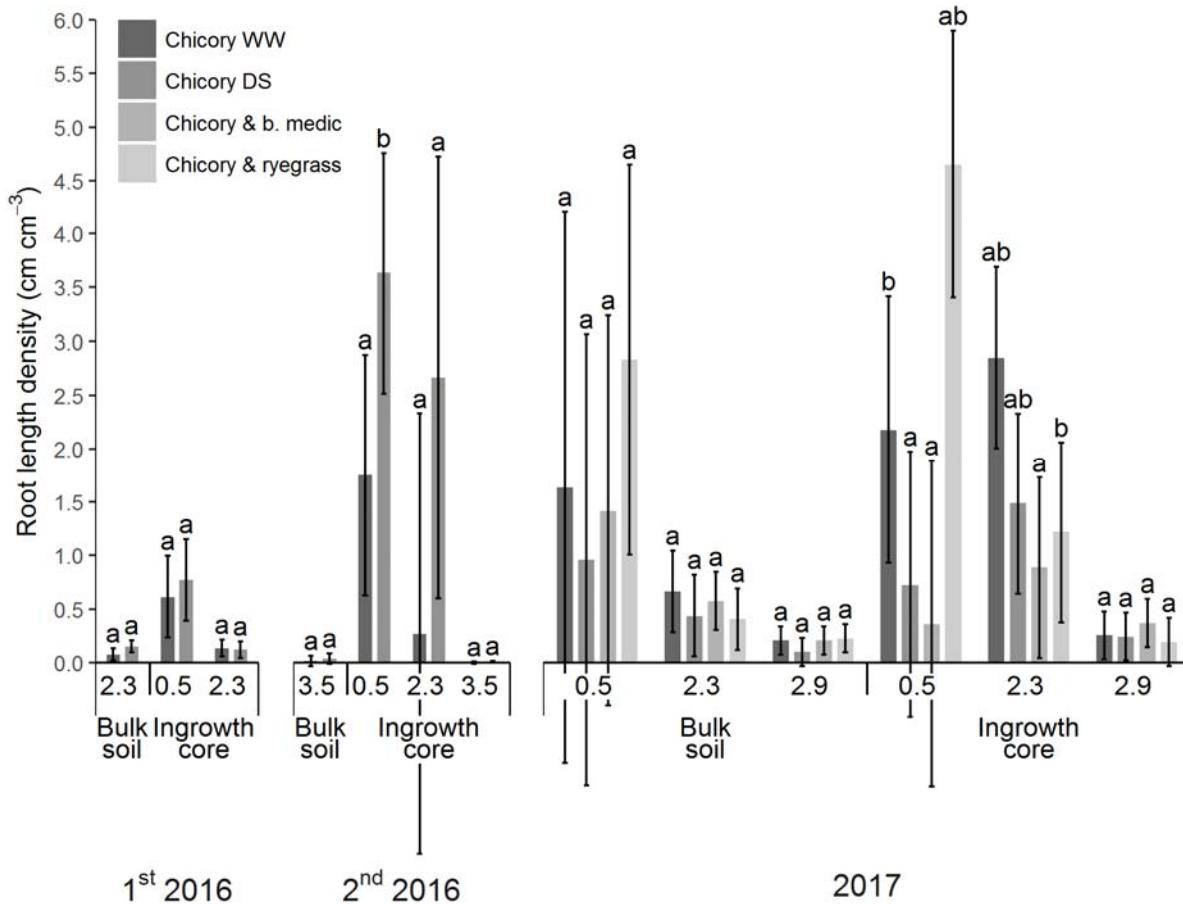

362

363 *Root length density*

364 We correlated the RLD with the root intensities reported in Rasmussen et al. (2019a, preprint) obtained
365 from observations of root development on the transparent surfaces of the rhizoboxes (Figure 6). We found
366 that RLD in the bulk soil correlated well with root intensity ($R^2 = 0.5894$). Roots grew into the ingrowth
367 cores and there tended to be slightly higher RLD in the cores than in the bulk soil. The correlation with root
368 intensity for RLD in ingrowth cores was weaker than for the bulk soil ($R^2 = 0.1622$), due to increased
369 variation.

370 We did not find any treatment effect in the RLD in the 1st round in 2016. In the 2nd round in 2016, we
371 found higher RLD in the DS than in the WW treatment in both 0.5 and 2.3 m depth, however only
372 significant for the former. In 2017 we found a consistent tendency to a decreased RLD in the DS and the
373 two intercropping treatments compared to WW at 2.3 m depth. This was also the case for 0.5 m depth,
374 apart from the chicory and ryegrass having the most roots at this depth (Figure 7).

375

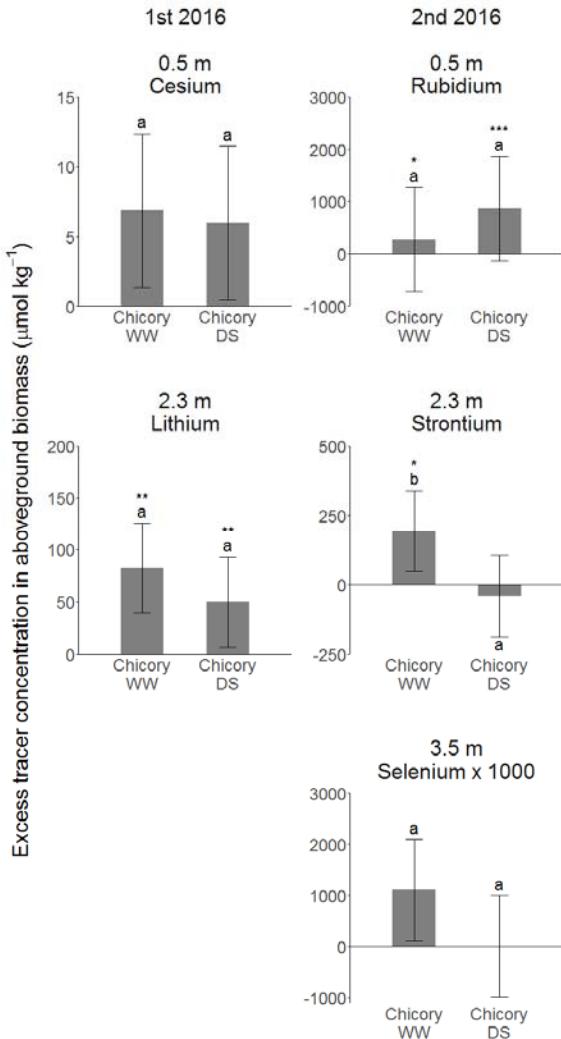


376

377 **Fig 6** Regression between root intensity and root length density in bulk soil and ingrowth cores. R^2 for the regressions is 0.5894 and
378 0.1622 for bulk soil at ingrowth cores respectively

379

380

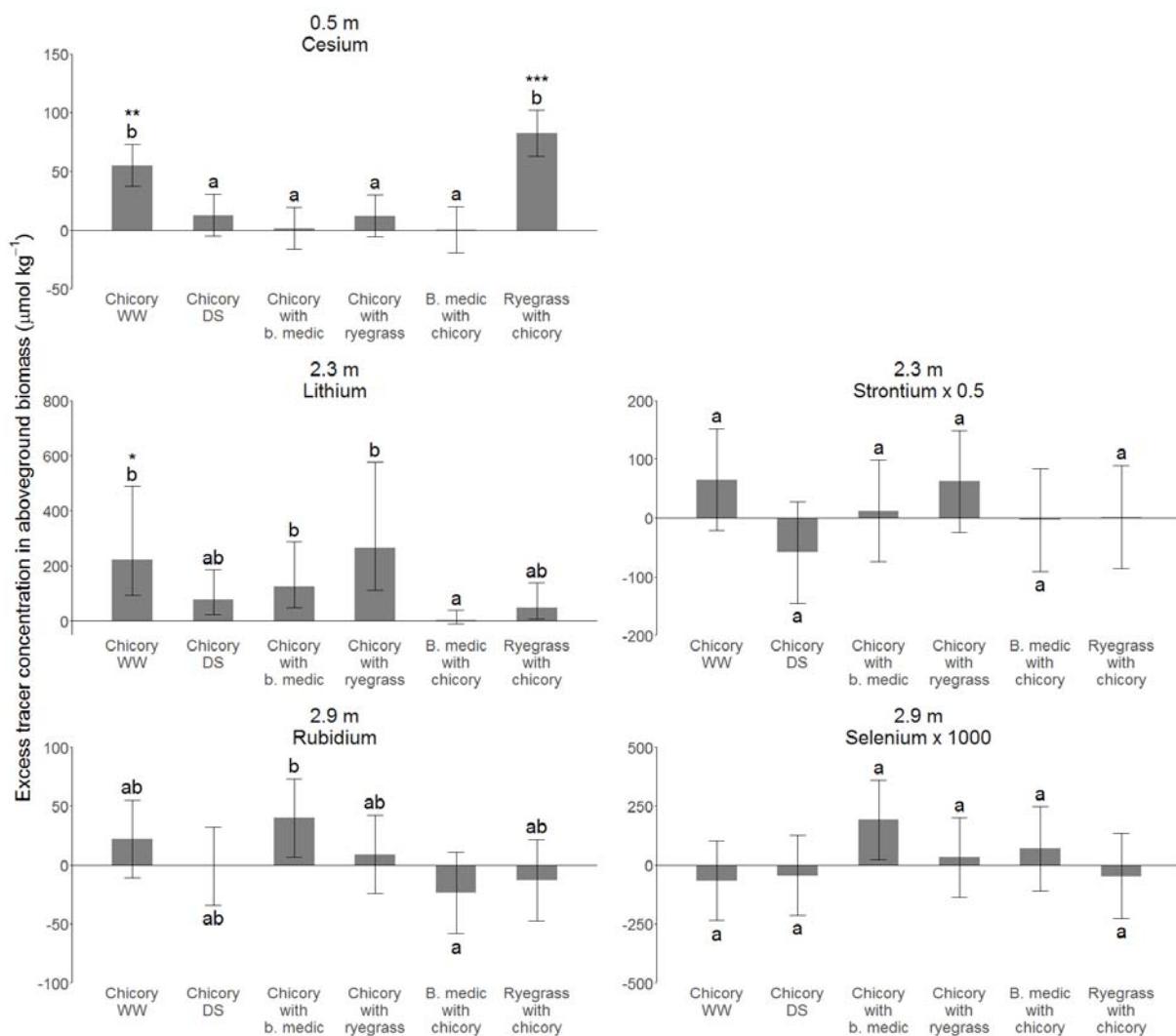


381

382 **Fig 7** Root length density in the soil samples taken out when inserting the ingrowth cores (bulk soil),
383 and in the ingrowth cores (ingrowth core). Ingrowth cores were inserted 12-28 July and 23 August to 22 September in 1st and 2nd tracer round in 2016
384 respectively. In 2017, ingrowth cores were inserted 15 August to 11 September. Error bars denote 95 % confidence intervals and
385 letters indicate significant differences among treatments within round and depth

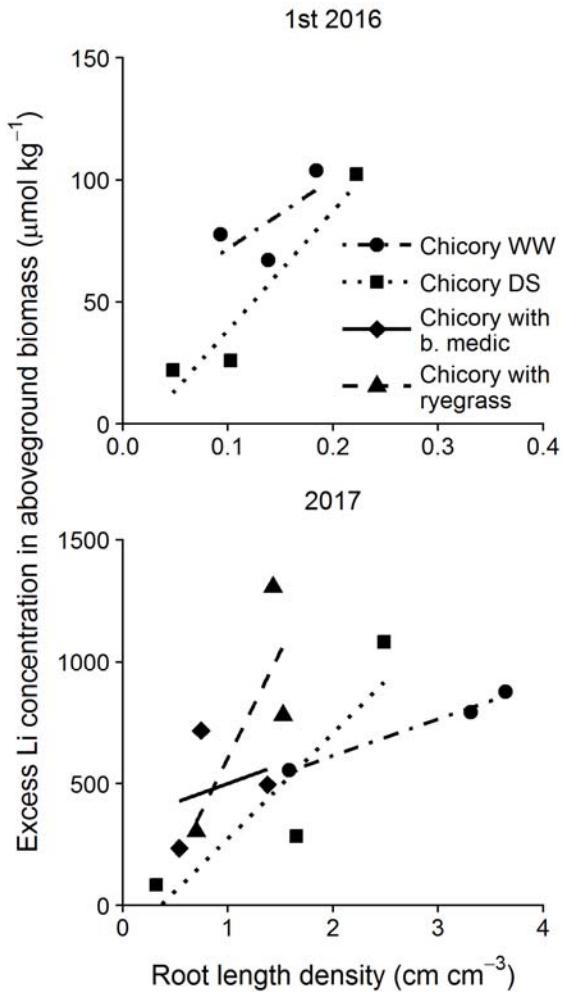
386 *Tracer uptake*

387 In the 1st round in 2016, we found a significant uptake of the Li tracer, which had been injected at 2.3 m
388 depth but not of Cs which had been injected at 0.5 m depth. In the second round, we found a significant
389 uptake of the Rb tracer injected at 0.5 m and of Sr injected into 2.3 m depth, but only in the wet treatment.
390 For the tracers injected into 2.3 and 3.5 m depth, there was a tendency to a higher excess tracer
391 concentration in WW chicory than in DS chicory, but the difference was only significant for Sr taken up from
392 2.3 m (Figure 8).
393



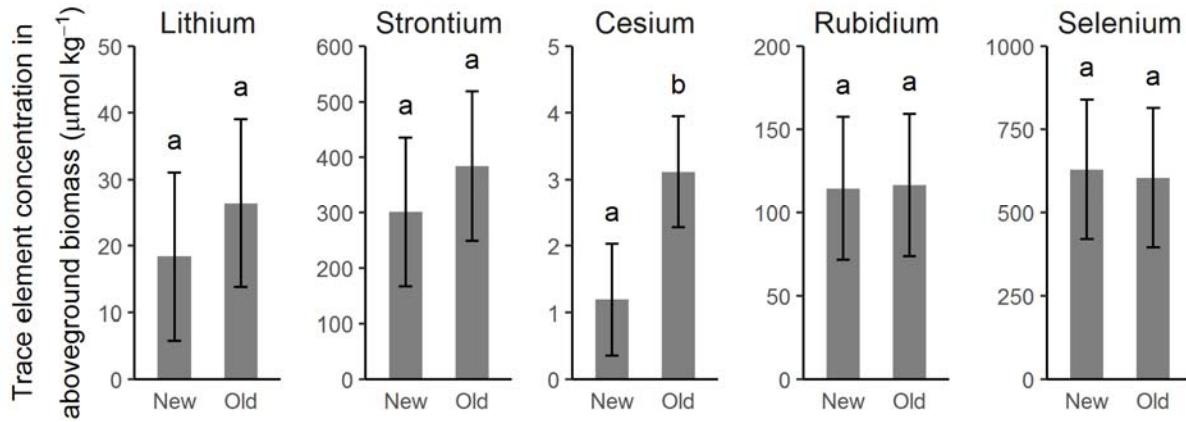
394

395 **Fig 8** Excess tracer concentration in aboveground biomass after injection of Cs at 0.5 m and Li at 2.3 m depth at the 1st round in
396 2016 and injection of Rb at 0.5 m, Sr at 2.3 m and Se at 3.5 m depth at the 2nd round in 2016. Error bars denote 95 % confidence
397 intervals, letters indicate significant differences and *, ** and *** indicate that the excess tracer concentration is significantly
398 different from 0 at $P < 0.05$, 0.01 and 0.001, respectively. Excess tracer concentration of Se has been multiplied by 1000 to
399 normalize the amount of tracer applied among the tracers


400 In 2017, we only found that tracer application significantly increased uptake of Cs from 0.5 in WW chicory
401 and in ryegrass intercropped with chicory and of Li from 2.3 m depth in WW chicory. Excess tracer
402 concentration of Cs was also significantly higher in WW chicory and ryegrass intercropped with chicory than
403 in black medic or chicory in the other treatments. Excess tracer concentration of Li was higher in WW
404 chicory, chicory intercropped with black medic or ryegrass than in black medic intercropped with chicory.
405 Whereas we did not find tracer uptake to be significant for Rb injected into 2.9 m depth we did find
406 significant treatment effects, as chicory intercropped with black medic had a higher excess tracer
407 concentration than black medic intercropped with chicory. Though not significant, we did find a general
408 pattern of the tracers taken up from 2.3 and 2.9 m depth, as excess tracer concentration was higher in the
409 WW chicory and chicory intercropped with black medic or ryegrass than in the other chicory treatments
410 (Figure 9).

411 We found a tendency to a steeper increase in excess Li tracer concentration in the biomass per root
412 length in chicory DS and chicory intercropped with ryegrass than chicory in the two other treatments in
413 2017, indicating a more effective Li uptake from 2.3 m depth in these treatments. The differences were not
414 significant though excess tracer concentration per root length density was 3 and 6 times higher
415 respectively. We did not find the same tendency in the 1st round in 2016. Similar correlations could not be
416 carried out for other tracers injected into either 2.3 or 3.5 m depth, due to too many samples without
417 tracer uptake (Figure 10).
418

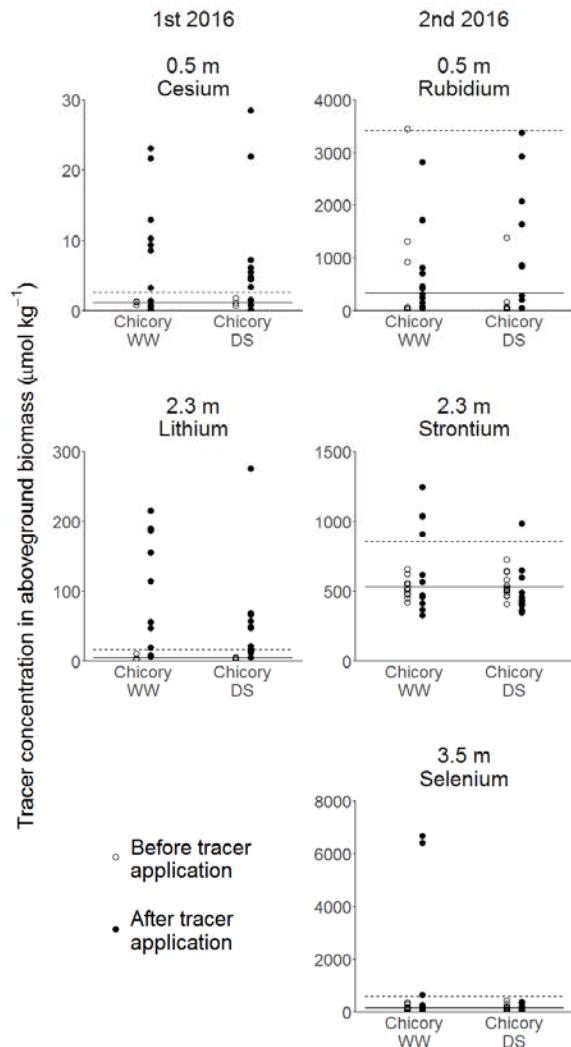
419
420 **Fig 9** Excess tracer concentration in aboveground biomass after injection of Cs at 0.5 m depth, Li and Sr at 2.3 m depth and Rb and
421 Se at 2.9 m depth in 2017. Error bars denote 95 % confidence intervals, letters indicate significant differences and *, ** and ***
422 indicate that the excess tracer concentration is significantly different from 0 at P < 0.05, 0.01 and 0.001, respectively. Excess tracer
423 concentration of Sr has been multiplied by 0.5 and Se by 1000 to normalize the amount of tracer applied among the tracers


424

425

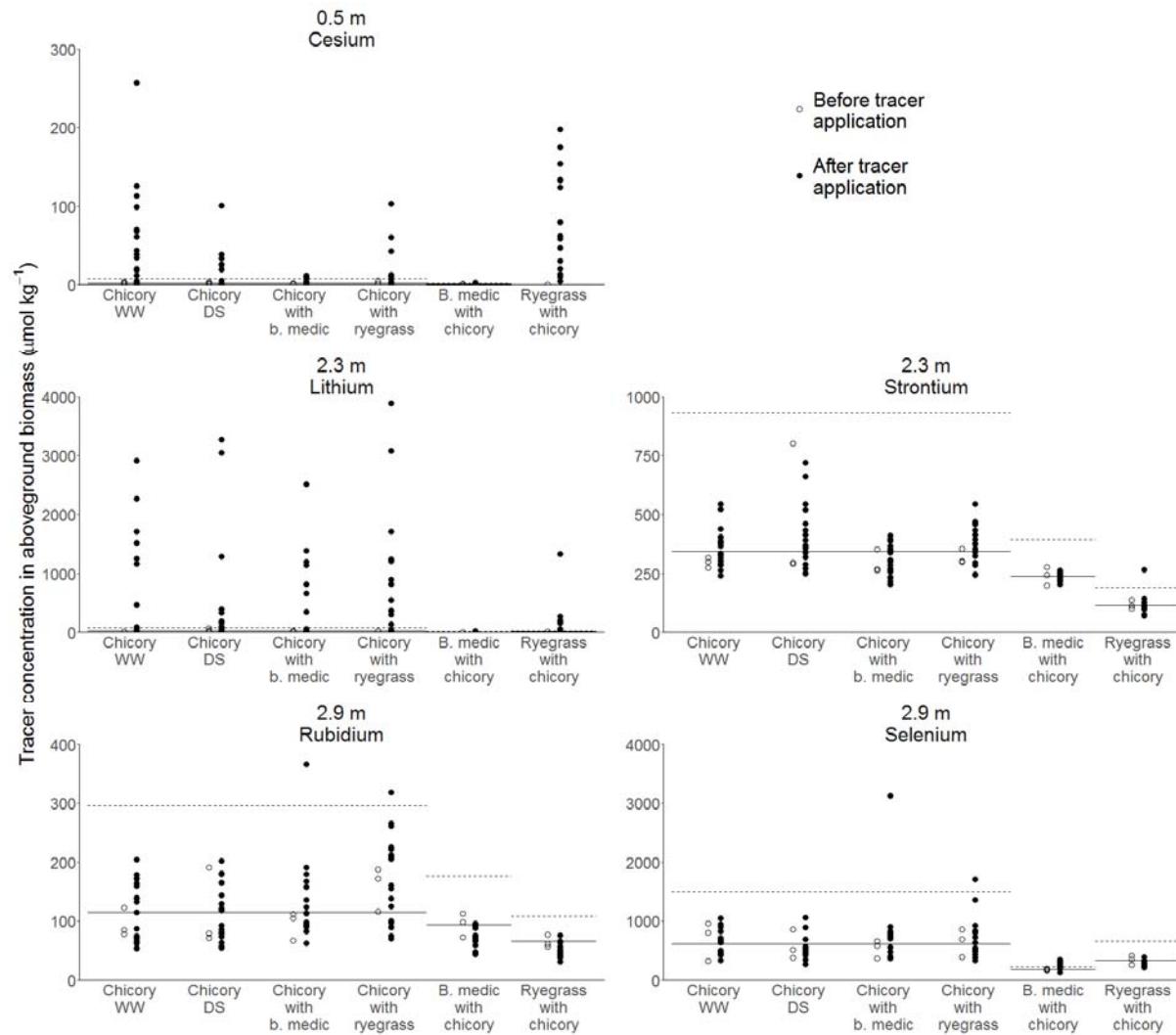
426 Fig 10 Regression between root length density in the ingrowth cores at 2.3 m depth and excess tracer concentration of Li in
427 aboveground biomass in the 1st round in 2016 and in 2017. As black medic and ryegrass are shallow rooted, the roots are assumed
428 to originate from chicory only. Note the factor 10 between the axes of the two plots

429 By comparing the concentration of the five trace elements in the control samples taken before applying
430 tracers in 2017, we could test whether tracer application in 2016 had contaminated the chambers as three
431 of the chambers had not been used for tracer application in 2016. We found that the background
432 concentration of Li, Sr, and Cs was higher in the chambers used in 2016 than those only included in 2017,
433 however only significant for Cs (Figure 11). ¹⁵N had been used in all chambers in 2016 and the ¹⁵N
434 concentration in the control samples increased significantly from 22.5 mg kg⁻¹ (95 % confidence interval 8.2
435 – 36.7) in 2016 to 64.9 mg kg⁻¹ (56.6 – 71.1) in 2017.
436



437

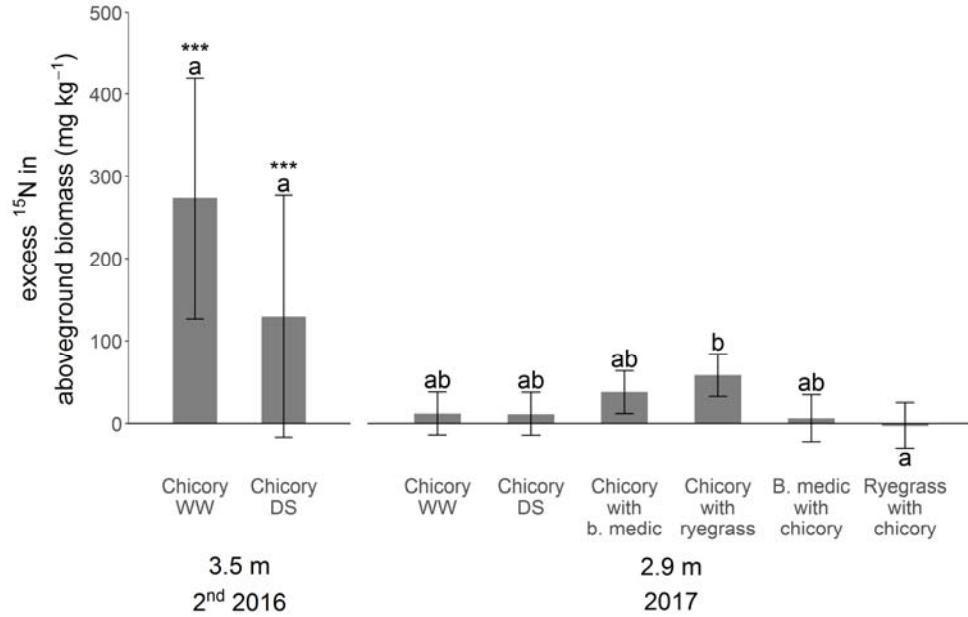
438 **Fig 11** Concentration of the trace elements Li, Sr, Cs, Rb, and Se in aboveground biomass before applying tracers in 2017. New
439 chambers denote plants grown in chambers where tracers have never been applied, and reused chambers denote plants grown in
440 chambers receiving tracers in 2016. Error bars denote 95 % confidence intervals and letters indicate significant differences between
441 plants grown in new and reused chambers for each trace element


442 Placing the trace element tracers in two ingrowth cores per depth limited the number of plants accessing
443 the tracers. In the 1st round in 2016 and in 2017 we found that 40-75 % of the chicory plants exposed to
444 tracer application at 0.5 and 2.3 m depth had trace element concentrations at least 4σ higher than the
445 mean of the control samples, which according to our criteria indicated that these plants had taken up
446 tracer (Figure 12 and 13). This, however, did not apply to Sr in 2017, which was not taken up by any of the
447 chicory plants. In the 2nd round in 2016 no chicory plants took up tracer from 0.5 m depth and only 25 % of
448 the chicory plants from 2.3 m. 13 % of the chicory plants took up tracer from 3.5 m depth in the 2nd round
449 in 2016 and 3 % from 2.9 m depth in 2017.

450 All the ryegrass plants and 7 % of the black medic plants took up tracer from 0.5 m depth in 2017.
451 From 2.3 m depth, 53 % and 7 % of the ryegrass plants took up Li and Sr respectively, whereas this only
452 applied to 7 and 0 % of the black medic plants. Ryegrass did not access tracer from 2.9 m, but 67% of the
453 black medic did according to our criteria. However, the σ was very low in this case, making the criteria
454 misleading.

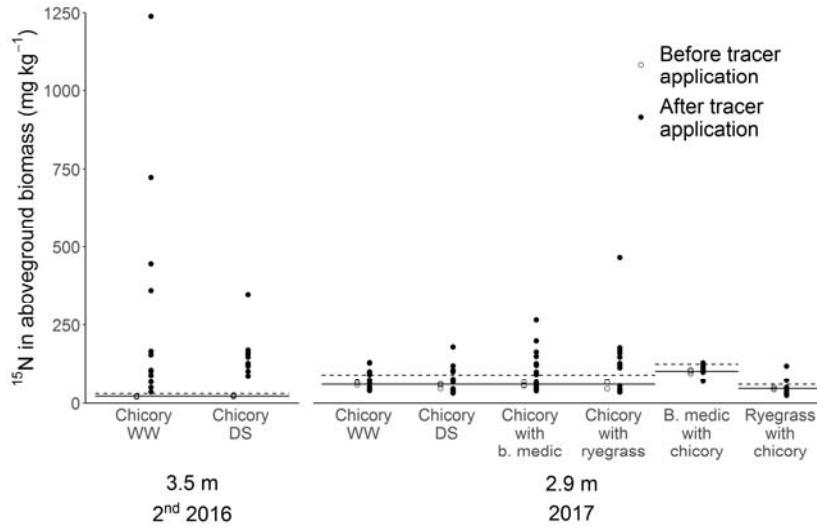
455

456 **Fig. 12** Trace element concentration in single plant aboveground biomass before and after injection of Cs at 0.5 m and Li at 2.3 m
457 depth at the 1st round in 2016 and injection of Rb at 0.5 m, Sr at 2.3 m and Se at 3.5 m depth at the 2nd round in 2016. Solid and
458 dashed lines denote mean and 4 standard deviations (σ) above mean concentration before tracer application. n=3 for a 1st round
459 before tracer application and n=12 for the rest


460

461 Fig 13 Trace element concentration in single plant aboveground biomass after injection of Cs at 0.5 m depth, Li and Sr at 2.3 m
462 depth and Rb and Se at 2.9 m depth in 2017. Solid and dashed lines denote mean and 4 standard deviations (σ) above mean
463 concentration before tracer application for each species. n=3 for before tracer application and n=18 for chicory and n=15 for black
464 medic and ryegrass after tracer application

465 ^{15}N concentration in the biomass significantly increased after tracer application in 2016, but not in 2017.
466 Excess tracer concentration was decreased by 50 % in the DS treatment compared to the WW treatment in
467 2016, but the difference was not significant. In 2017, excess tracer concentration was significantly higher in
468 chicory than in ryegrass when the two species were intercropped (Figure 14).


469 According to our criteria, all chicory plants took up tracer from 3.5 m depth in 2016, and 41 % in
470 2017. Also, 13 % of the black medic and the ryegrass plants took up tracer. The fact that variation among
471 control samples was very small these numbers might be misleading (Figure 15). A visual evaluation suggests
472 that 5 chicory plants took up tracer in 2016 and 1-3 in 2017, as these are showing ^{15}N concentrations
473 substantially higher than the other plants.

474

475

476 **Fig 14** ^{15}N concentration aboveground biomass after injection at 3.5 m depth at the 2nd round in 2016 and 2.9 m depth in 2017.
477 Error bars denote 95 % confidence intervals, letters indicate significant differences and *, ** and *** indicate that the excess tracer
478 concentration is significantly different from 0 at $P < 0.05$, 0.01 and 0.001, respectively. Each year was tested in separate models

479

480 **Fig 15** ^{15}N concentration in single plant aboveground biomass after injection at 3.5 m depth at the 2nd round in 2016 and 2.9 m
481 depth in 2017. Solid and dashed lines denote mean and 4 standard deviations (σ) above mean concentration before tracer
482 application. n=3 for before tracer application in the 2nd round in 2016 and n=12 after tracer application. In 2017 n=3 for before
483 tracer application and n=18 for chicory and n=15 for black medic and ryegrass after tracer application

484 Discussion

485 Comparability among trace element tracers

486 Our pilot study confirmed that applying the trace elements Cs, Li, Rb, Sr, and Se could trace root activity at
487 1 m depth. For the less mobile trace elements, excess tracer concentration was higher in red beet than in
488 lucerne, whereas no differences were seen for Se which has a higher soil mobility. As the background
489 concentrations of the trace elements did not vary between the two species, the difference does not seem

490 to originate from variation in affinity. Red beet had more roots in the profile at tracer injection, suggesting
491 that it was able to grow more roots into the pot with tracers, explaining the higher uptake of Cs, Li, Rb and
492 Sr in red beet than in lucerne. The mobile Se can probably be exploited to the same extent by both species
493 despite differences in root density. Contrary to our findings, others have found differences in tracer affinity
494 among species (Tofinga and Snaydon 1992; Hoekstra et al. 2014).

495 Application of equimolar amounts of the four less mobile trace elements resulted in similar excess
496 tracer concentrations within species. Thus, data from our pilot study suggest that the trace elements can
497 substitute each other in multiple tracer studies. In such studies, different trace elements representing the
498 same nutrient or simply representing uptake activity are injected into different soil depths within the same
499 experimental units. However, Sr and Li excess tracer levels were not comparable in our main experiment in
500 2017 despite that they were both mixed into the same ingrowth cores at 2.3 m. Though some studies have
501 found strong correlations between uptake of various pairs of trace element tracers, the number of studies
502 examining the relationships are still limited and discrepancies exist regarding which tracer pairs correlate
503 well and under which circumstances. Hoekstra et al. (2014) found a strong correlation between plant
504 excess tracer concentrations of Li, Rb, and Cs, but found that the correlation was affected by a drought
505 treatment and that a correction factor between pairs of tracers is required for quantitative comparison.
506 Collander (1941) too, found that the uptake Rb and Cs was very similar by a range of plant species from
507 nutrient solutions and Gockele et al. (2014) confirmed the strong correlation between uptake of Li and Rb.
508 Mamolos et al. (1995) on the other hand found that the correlation between Cs and Li uptake was only
509 significant in some of the tested cases, but found a strong correlation between Sr and Cs uptake. Both
510 Gockele et al. (2014) and Mamolos et al. (1995) found a weak correlation between the uptake of Sr and Li.
511 These findings concurrently emphasize the prospects of using the trace elements Cs, Li, Rb, and Sr as
512 multiple tracers within experimental units to reduce between-plot variation. However, they also call
513 attention to possible limitations of direct quantitative comparisons, and especially in comparisons among
514 species. The correlations might be affected by the concentration of other nutrients such as potassium and
515 calcium (Cline and Hungate 1960; Ozaki et al. 2005; Kobayashi et al. 2016)

516

517 *Deep root activity*

518 Our results demonstrated that chicory acquired trace element tracers applied to 2.3 m depth and N from
519 3.5 m. We also found indications of trace element uptake from 2.9 and 3.5 m. Contrary to our expectations
520 we found an overall tendency to a lower excess tracer concentration from all depths in chicory exposed to
521 drought than in well-watered chicory, however only significant for Sr taken up from 2.3 m in 2016. I.e. even
522 where drought tended to decrease biomass of chicory, nutrient uptake was decreased even more than the
523 biomass and no compensatory uptake from deeper soil layers was observed. Hoekstra et al. (2015) found
524 that the proportional Rb and ^{15}N uptake from 0.35 m depth compared to 0.05 m depth in chicory increased
525 as a response to drought, but this was mainly due to a decrease in uptake from 0.05 m depth during
526 drought. They also found that during drought chicory had a higher proportional uptake of both tracers from
527 0.35 m soil depth than ryegrass, and this actually originated from a different amount of water taken up at
528 0.35 m depth. However, it could be caused by differences in the depth of drought, as the two species might
529 not have had the same water use, thus we question whether this higher proportional uptake can be
530 explained by differences in rooting depth. Our results indicate that both species have dense root systems
531 still at 0.5 m depth and that even intercropped ryegrass has more roots than sole cropped chicory at this
532 depth.

533 Our results concurrently gave indications of a compensatory tracer uptake from 2.3 and 2.9 m depth
534 in intercropped chicory compared to well-watered chicory, which is supported by the fact that chicory
535 plants only showed tracer concentrations higher than 4σ above mean of control when intercropped. In

536 addition, ^{15}N tracer concentration in chicory intercropped with ryegrass was significantly higher than in
537 ryegrass, though the tracer uptake in itself was not significant. Whereas the drought was imposed during
538 the season, chicory was influenced by intercropping from the beginning, which might explain why we
539 observe an effect of intercropping, but not of drought.

540 Though we did not observe increased deep nutrient uptake in absolute terms as a response to the
541 drought we did find a relative increase, as nutrient uptake per root length increased at 2.3 m depth in 2017,
542 though not significant. This was also the case for the chicory when intercropped with ryegrass. Ryegrass is
543 unlikely to reach 2.3 m depth in the field (Thorup-Kristensen 2006), but the fact that half of the ryegrass
544 plants had Li concentrations above 4σ in our study, showed that ryegrass to some extent did so in the
545 repacked soil. Thus, as some of the roots in the cores at 2.3 m depth must have contained ryegrass roots,
546 the relationship between chicory Li uptake and RLD at 2.3 m depth was even steeper than the data shows.
547 In a study of eucalyptus trees, da Silva et al. (2011b) likewise found that uptake rate per unit of fine root
548 length density increased with depth down to 3 m, to some extent counterbalancing the lower root length
549 density in deeper soil layers.

550 In the 1st round in 2016, the drought treatment had little impact on plant behavior. RLD in the bulk
551 soil and in the ingrowth cores did not differ among the two treatments, neither did root intensity estimated
552 from root growth on the soil-rhizotron interface (Further details in Rasmussen et al. 2019a, preprint),
553 aboveground biomass, N concentration in aboveground biomass nor tracer uptake from 0.5 and 2.3 m.
554 Though water uptake was impaired at 0.5 m (Rasmussen et al. 2019a, preprint), this was not reflected in
555 the nutrient uptake. The drought might have been too short to affect biomass and nutrient uptake.

556 In the 2nd round, biomass reduced more than 50 % compared to the first round because the plants
557 did not have time to regrow to the same size after being cut at ground-level. Still, root growth into the
558 ingrowth cores was more than 3 times as high as at 0.5 m depth, and in the dry treatment also at 2.3 m
559 depth compared to the 1st round. RLD in the ingrowth cores were higher in chicory exposed to drought than
560 when well-watered in both 0.5 and 2.3 m, but the treatments did not differ in either aboveground biomass
561 or N concentration in aboveground biomass. This result was puzzling, especially because the opposite was
562 observed in 2017. We suggest that the higher root growth in the drought-stressed chicory could be a result
563 of these plants being in the well-watered treatment before cutting, as we swapped the chambers used for
564 the two treatments after the 1st round. The prior well-watered plants could thus have been stronger and
565 have a head start, offsetting the 2nd round drought stress. Despite the higher RLD in the drought-stressed
566 chicory at 2.3 m we found a significant higher Sr excess tracer concentration in the well-watered chicory
567 and a tendency to a higher Se and ^{15}N uptake from 3.5 m depth.

568

569 *Reflections on methodology*

570 We placed the trace element tracers in ingrowth cores to avoid contamination of the soil in the facility. Still,
571 we did find a tendency to contamination, which could potentially increase over time by repeated use of the
572 same tracers. The contamination could originate from either tracer leaching from the ingrowth cores into
573 the bulk soil or turnover of roots containing tracers from first years experiment. Sayre and Morris (1940)
574 did not find signs of Li leaching during a growing season. Others found some leaching but never more than
575 10 cm (Pinkerton and Simpson 1979; Hoekstra et al. 2014; Gockele et al. 2014), which is of little importance
576 for tracer experiment like ours with large distances between tracer application depths.

577 The use of ingrowth cores gave a patchy distribution of the tracers, which especially in the deeper
578 application sites, critically limited the number of plants accessing the tracer. Comparing the number of
579 plants taking up Se and ^{15}N tracer from 3.5 m depth in the 2nd round in 2016 shows that a more evenly
580 distribution of tracer does increase the number on plants getting in contact with the tracer. This would call
581 for placing more ingrowth cores with the current concentration of the tracers rather than increasing the

582 concentration to detect differences in deep nutrient uptake among treatments. However, the higher
583 number of plants containing Li than Sr tracer in 2017 indicates that the Sr tracer concentration was too low,
584 as the tracers are taken up from the exact same ingrowth cores inserted into 2.3 m depth. This was the
585 case despite that we had doubled the Sr application rate in 2017, and that we found similar uptake rates of
586 Li and Sr in our pilot study. Placing more ingrowth cores calls for drilling the holes, and placing ingrowth
587 cores dummies before the roots are growing into the soil, to avoid disturbance of the root system when
588 inserting ingrowth cores. Hoekstra et al. (2014) found that even increasing the number of injection sites
589 from 36 to 144 m⁻² of Li injection into 5 cm depth tended to decrease variability of tracer uptake, but such
590 high number of sites are not compatible with ingrowth cores. Fox and Lipps (1964) found that tracer uptake
591 was lower but so was the variability when increasing the number of injection sites from 1 to 4 holes 0.3 m⁻².

592 We found a tendency to a higher RLD in the cores than in the bulk soil, which is likely caused by the
593 nitrogen hotspots created by the application of NO₃ based tracers in the cores. The variation in RLD also
594 tended to be higher in the cores than in the bulk soil, especially in layers with low root intensity, which was
595 primarily in the deeper soil layers. So what we found was not just that far from all plants reached an
596 ingrowth core in the deeper soil layers, but also that not all ingrowth cores in the selected depths were
597 colonized by roots. The fact that RLD in the cores is continuously increasing and that the age of the roots in
598 the cores does not reflect the age of the roots in the bulk soil prevents direct comparisons in nutrient
599 uptake from the cores and the bulk soil.

600 We speculate that placing the holes of the ingrowth cores facing towards the sides instead of up and
601 down or choosing a design with access on a larger part of the ingrowth cores surface could have increased
602 the number of colonized cores as more lateral roots could have found their way into the cores.

603

604 **Conclusions**

605 As hypothesized we found that application of the less soil mobile trace elements Cs, Li, Rb and Sr as tracers
606 result in similar uptake rates, whereas the more mobile trace element Se was taken up at a higher rate. As
607 we did not find differences in the background level of the trace elements between species we conclude
608 that the uptake of the less mobile trace elements is affected by RLD in the soil depth where the tracers
609 where placed.

610 We found that chicory acquired nitrogen from 3.5 m, but did not detect significant uptake of trace
611 element tracers from neither 2.9 nor 3.5 m. However, a substantial increase in tracer uptake in fewer single
612 individual plants indicated that uptake did happen, but our design did not capture this.

613 We found consistent indications of compensatory deep tracer uptake in chicory intercropped with
614 black medic or ryegrass. Thereto comes that chicory exposed to drought and intercropped with ryegrass
615 resulted in higher tracer uptake per cm of root in the ingrowth cores. Despite that nutrient uptake rate per
616 root length, increases as a response to limited nutrient availability in the topsoil, this is not always enough
617 to counterbalance the lower root length density.

618 Placing trace element tracers in ingrowth cores did not completely avoid contamination of the soil,
619 but showed to be a feasible design to place trace element tracers as deep as 3.5 m. Modifications of the
620 design such as increasing the number of ingrowth cores would likely improve the ability to use the ingrowth
621 cores in the deeper soil layers.

622

623 **Acknowledgments**

624 We thank statisticians Signe Marie Jensen and Helle Sørensen for advice regarding the statistical data
625 analyses and technician Jason Allen Teem for his contribution to the experimental work. All are affiliated
626 with University of Copenhagen. We thank Villum Foundation (DeepFrontier project, grant number
627 VKR023338) for financial support for this study.

628

629 **References**

630

631 Beyer M, Koeniger P, Gaj M, et al (2016) A Deuterium-based labeling technique for the investigation of
632 rooting depths, water uptake dynamics and unsaturated zone water transport in semiarid
633 environments. *J Hydrol* 533:627–643. doi: 10.1016/j.jhydrol.2015.12.037

634 Bordron B, Robin A, Oliveira IR, et al (2019) Fertilization increases the functional specialization of fine roots
635 in deep soil layers for young *Eucalyptus grandis* trees. *For Ecol Manage* 431:6–16. doi:
636 10.1016/j.foreco.2018.03.018

637 Buresh RJ, Tian G (1997) Soil improvement by trees in sub-Saharan Africa. *Agrofor Syst* 38:51–76. doi:
638 10.1023/A:1005948326499

639 Carlen C, Kolliker R, Reidy B, et al (2002) Effect of season and cutting frequency on root and shoot
640 competition between *Festuca pratensis* and *Dactylis glomerata*. *Grass Forage Sci* 57:247–254. doi:
641 10.1046/j.1365-2494.2002.00323.x

642 Casper BB, Schenk HJ, Jackson RB (2003) Defining a plant's belowground zone of influence. *Ecology*
643 84:2313–2321. doi: 10.1890/02-0287

644 Cline JF, Hungate FP (1960) Accumulation of potassium, cesium, and rubidium in bean plants grown in
645 nutrient solutions. *Plant Physiol* 35:826–9. doi: 10.1104/pp.35.6.826

646 Collander R (1941) Selective absorption of cation by higher plants. *Plant Physiol* 16:691–720. doi:
647 10.1104/pp.16.4.691

648 da Silva EC, Nogueira RJMC, da Silva MA, de Albuquerque MB (2011a) Drought stress and plant nutrition. In:
649 Gill S, Khan N, Anjum N, Tuteja N (eds) *Plant Stress 5* (Special Issue 1). pp 32–41

650 da Silva EV, Bouillet J-P, Gonçalves JL de M, et al (2011b) Functional specialization of *Eucalyptus* fine roots:
651 contrasting potential uptake rates for nitrogen, potassium and calcium tracers at varying soil depths.
652 *Funct Ecol* 25:996–1006. doi: 10.1111/j.1365-2435.2011.01867.x

653 Elliott S, Baker PJ, Borchert R (2006) Leaf flushing during the dry season: the paradox of Asian monsoon
654 forests. *Glob Ecol Biogeogr* 15:248–257. doi: 10.1111/j.1466-8238.2006.00213.x

655 Fitter AH (1986) Spatial and temporal patterns of root activity in a species-rich alluvial grassland. *Oecologia*
656 69:594–599. doi: 10.1007/BF00410368

657 Fox RL, Lipps RC (1964) A comparison of stable strontium and P32 as tracers for estimating alfalfa root
658 activity. *Plant Soil* 20:337–350. doi: 10.1007/BF01373824

659 Gockele A, Weigelt A, Gessler A, Scherer-Lorenzen M (2014) Quantifying resource use complementarity in
660 grassland species: A comparison of different nutrient tracers. *Pedobiologia (Jena)* 57:251–256. doi:
661 10.1016/j.pedobi.2014.09.001

662 Gregory PJ, McGowan M, Biscoe P V. (1978) Water relations of winter wheat: 2. Soil water relations. *J Agric
663 Sci* 91:103–116. doi: 10.1017/S0021859600056665

664 Hoekstra NJ, Finn J a, Buchmann N, et al (2014) Methodological tests of the use of trace elements as
665 tracers to assess root activity. *Plant Soil* 380:265–283. doi: 10.1007/s11104-014-2048-2

666 Hoekstra NJ, Suter M, Finn JA, et al (2015) Do belowground vertical niche differences between deep- and
667 shallow-rooted species enhance resource uptake and drought resistance in grassland mixtures? *Plant
668 Soil* 394:21–34. doi: 10.1007/s11104-014-2352-x

669 Hothorn T, Bretz F, Westfall P (2008) Simultaneous inference in general parametric models. *Biometrical J*
670 50:346–363. doi: 10.1002/bimj.200810425

671 Israure M-P, Fraysse A, Devès G, et al (2006) Micro-chemical imaging of cesium distribution in *Arabidopsis*
672 *thaliana* plant and its interaction with potassium and essential trace elements. *Biochimie* 88:1583–
673 90. doi: 10.1016/j.biochi.2006.08.006

674 Jackson RB, Moore LA, Hoffmann WA, et al (1999) Ecosystem rooting depth determined with caves and
675 DNA. *Proc Natl Acad Sci* 96:11387–11392. doi: 10.1073/pnas.96.20.11387

676 Jobbágy EG, Jackson RB (2001) The distribution of soil nutrients with depth: Global patterns and the imprint
677 of plants. *Biogeochemistry* 53:51–77. doi: 10.1023/A:1010760720215

678 Kabata-Pendias A (2011) Trace elements in soils and plants, 4th edn. CRC Press Book

679 Kell DB (2011) Breeding crop plants with deep roots: their role in sustainable carbon, nutrient and water
680 sequestration. *Ann Bot* 108:407–418. doi: 10.1093/aob/mcr175

681 Kobayashi NI, Sugita R, Nobori T, et al (2016) Tracer experiment using $^{42}\text{K}^+$ and $^{137}\text{Cs}^+$ revealed the
682 different transport rates of potassium and caesium within rice roots. *Funct Plant Biol* 43:151–160.
683 doi: 10.1071/FP15245

684 Kulmatiski A, Beard KH, Verweij RJT, February EC (2010) A depth-controlled tracer technique measures
685 vertical, horizontal and temporal patterns of water use by trees and grasses in a subtropical savanna.
686 *New Phytol* 188:199–209. doi: 10.1111/j.1469-8137.2010.03338.x

687 Lehmann J (2003) Subsoil root activity in tree-based cropping systems. *Plant Soil* 255:319–331. doi:
688 10.1023/A:1026195527076

689 Lynch JP (2007) Roots of the second green revolution. *Aust J Bot* 55:493–512. doi: 10.1071/BT06118

690 Ma Q, Rengel Z, Rose T (2009) The effectiveness of deep placement of fertilisers is determined by crop
691 species and edaphic conditions in Mediterranean-type environments: a review. *Aust J Soil Res* 47:19–
692 32. doi: 10.1071/SR08105

693 Maeght JL, Rewald B, Pierret A (2013) How to study deep roots - and why it matters. *Front Plant Sci* 4:1–14.
694 doi: 10.3389/fpls.2013.00299

695 Mamolos AP, Elisseou GK, Veresoglou DS (1995) Depth of root activity of coexisting grassland species in
696 relation to N and P additions, measured using nonradioactive tracers. *J Ecol* 83:643–652. doi:
697 10.2307/2261632

698 Marsh BA (1971) Measurement of length in random arrangements of lines. *J Appl Ecol* 8:265–267. doi:
699 10.2307/2402144

700 Martin MPLD, Snaydon RW, Drennan DSH (1982) Lithium as a non-radioactive tracer for roots of
701 intercropped species. *Plant Soil* 64:203–208. doi: 10.1007/BF02184251

702 McCulley RL, Jobbágy EG, Pockman WT, Jackson RB (2004) Nutrient uptake as a contributing explanation for
703 deep rooting in arid and semi-arid ecosystems. *Oecologia* 141:620–628. doi: 10.1007/s00442-004-
704 1687-z

705 McMurtrie RE, Iversen CM, Dewar RC, et al (2012) Plant root distributions and nitrogen uptake predicted by
706 a hypothesis of optimal root foraging. *Ecol Evol* 2:1235–1250. doi: 10.1002/ece3.266

707 Nepstad DC, De Carvalho CR, Davidson EA, et al (1994) The role of deep roots in the hydrological and
708 carbon cycles of Amazonian forests and pastures. *Nature* 372:666–669. doi: 10.1038/372666a0

709 Newman EI (1966) A method of estimating total length of root in a sample. *J Appl Ecol* 3:139–145. doi:
710 10.2307/2401670

711 Ozaki T, Ambe S, Abe T, Francis AJ (2005) Competitive inhibition and selectivity enhancement by Ca in the
712 uptake of inorganic elements (Be, Na, Mg, K, Ca, Sc, Mn, Co, Zn, Se, Rb, Sr, Y, Zr, Ce, Pm, Gd, Hf) by
713 carrot (*Daucus carota* cv. U.S. harumakigosun). *Biol Trace Elem Res* 103:69–82. doi:
714 10.1385/BTER:103:1:069

715 Pinkerton A, Simpson J (1979) The use of stable strontium as a chemical tracer for root penetration. *Aust J*
716 *Agric Res* 30:239. doi: 10.1071/AR9790239

717 R Core team (2018) A Language and Environment for Statistical Computing

718 Rasmussen CR, Thorup-Kristensen K, Dresbøll DB (2019a) Chicory demonstrates substantial water uptake
719 from below 2 m, but still did not escape topsoil drought. *bioRxiv*. doi: 10.1101/494906

720 Rasmussen CR, Thorup-Kristensen K, Dresbøll DB (2019b) Testing the effect of drought and intercropping
721 on nutrient uptake from below 2 m by chicory in a multiple tracer setup

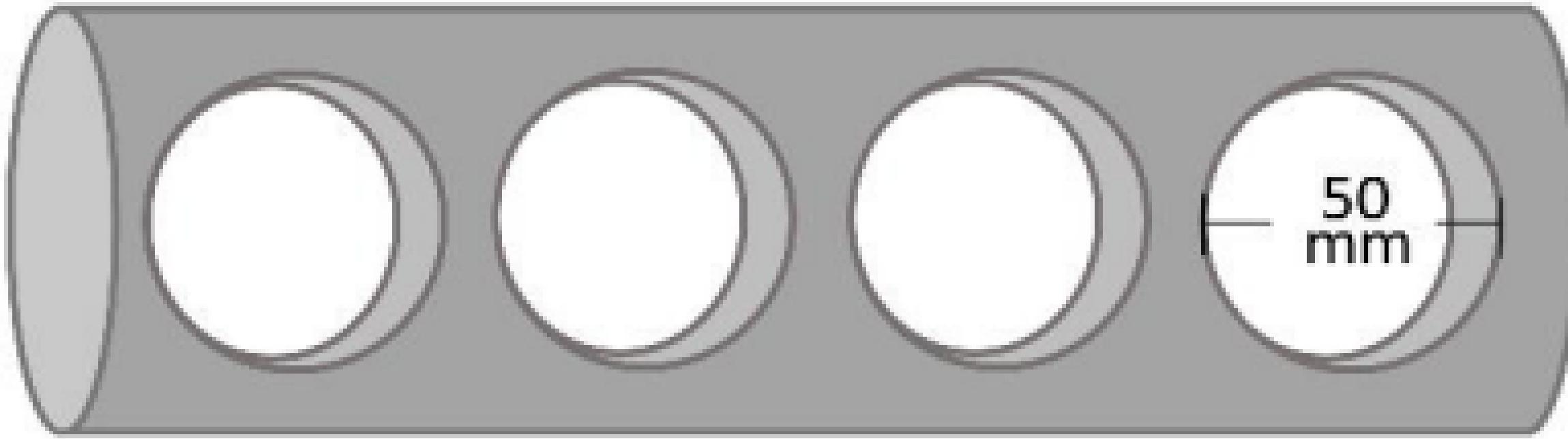
722 Rasse DP, Rumpel C, Dignac M-F (2005) Is soil carbon mostly root carbon? Mechanisms for a specific
723 stabilisation. *Plant Soil* 269:341–356. doi: 10.1007/s11104-004-0907-y

724 Sayre JD, Morris VH (1940) The lithium method of measuring the extent of corn root systems. *Plant Physiol*
725 15:761–4

726 Stone EL, Comerford NB (1994) Plant and animal activity below the solum. In: *Proceedings of a Symposium*
727 on Whole Regolith Pedology (Minneapolis, MN). pp 57–74

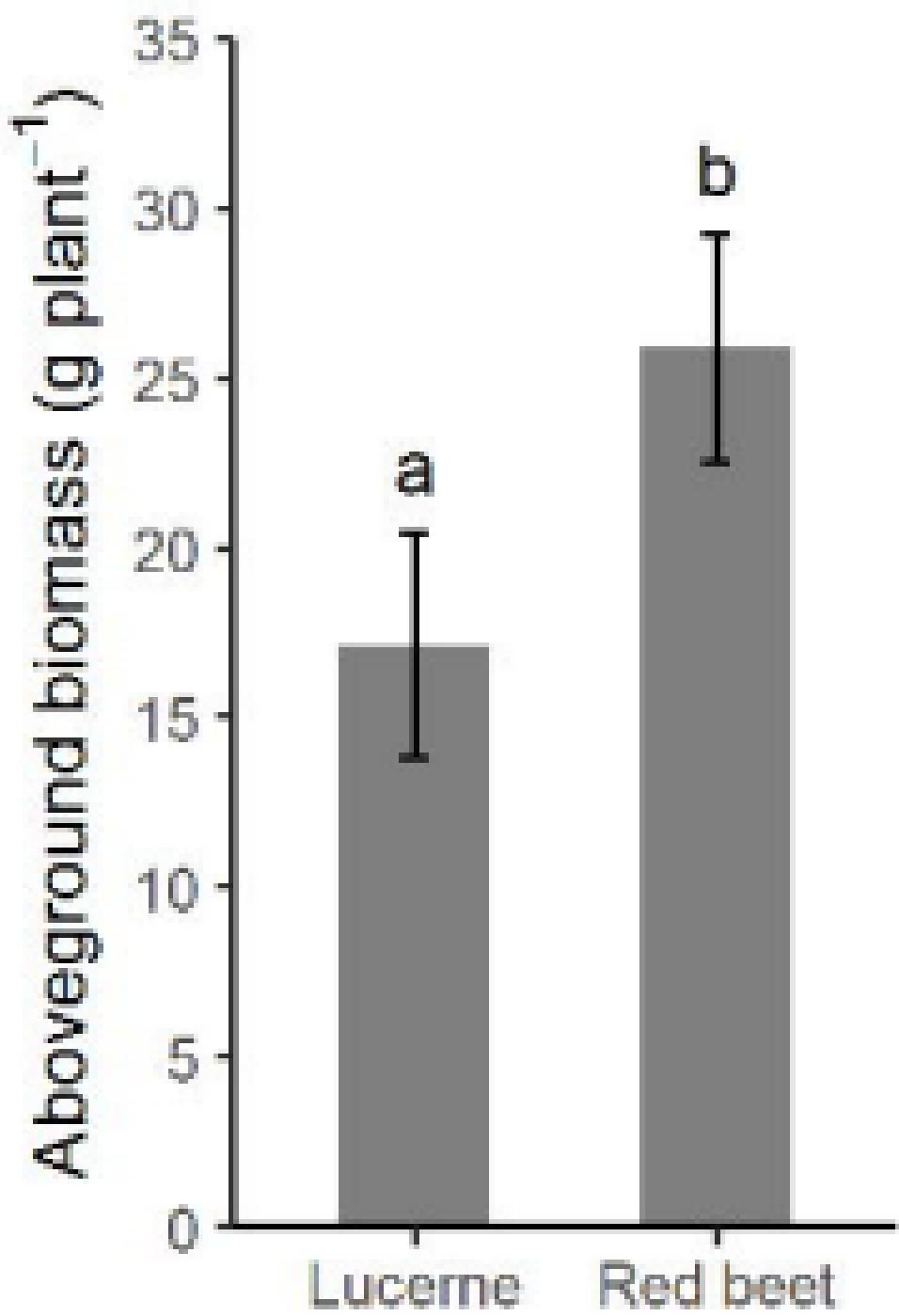
728 Tennant D (1975) Test of a modified line intersect method of estimating root length. *J Ecol* 63:995–1001.
729 doi: 10.2307/2258617

730 Terry N, Zayed AM, De Souza MP, Tarun AS (2000) Selenium in higher plants. *Annu Rev Plant Biol* 51:401–
731 432. doi: 10.1146/annurev.arplant.51.1.401

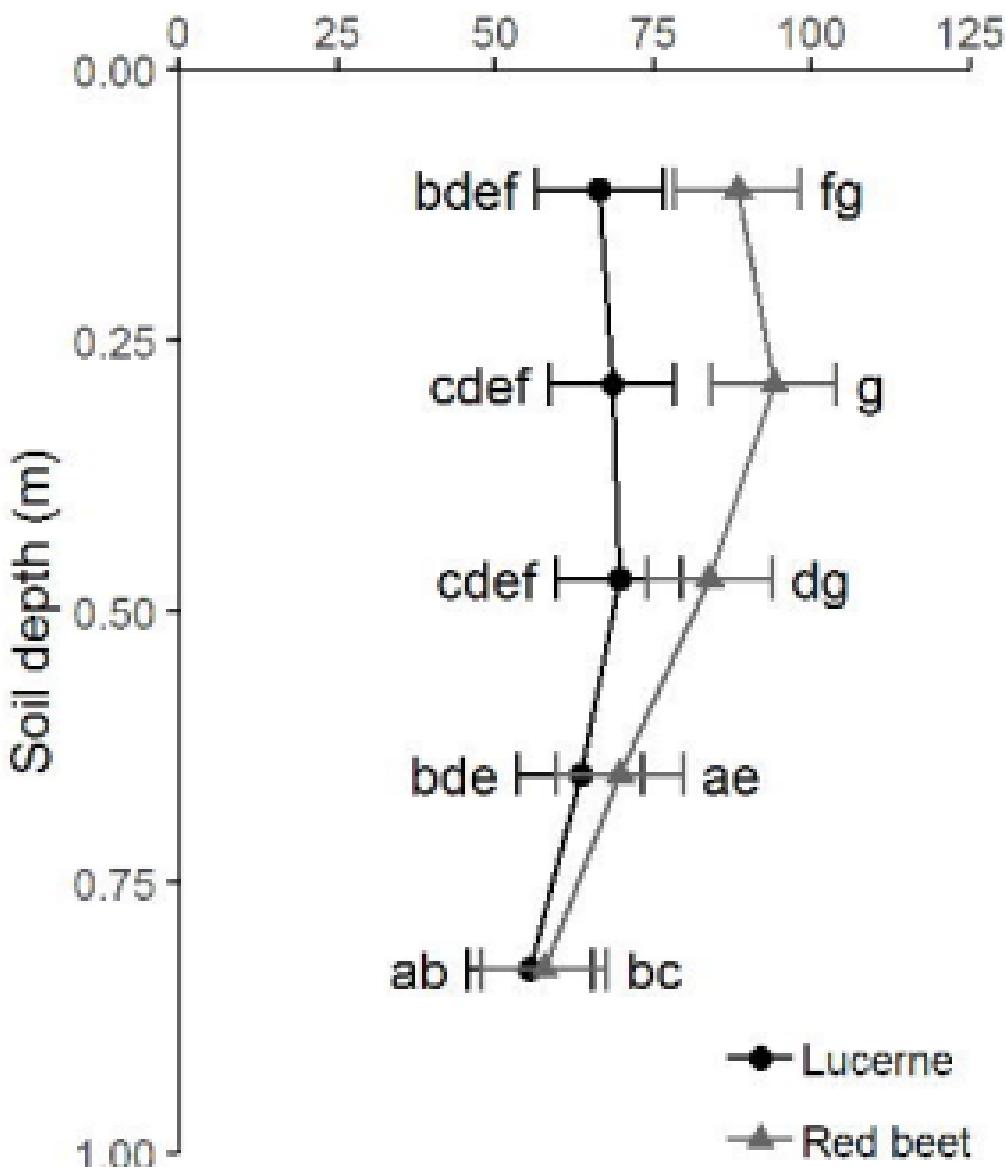

732 Thorup-Kristensen K (2001) Are differences in root growth of nitrogen catch crops important for their
733 ability to reduce soil nitrate-N content, and how can this be measured? *Plant Soil* 230:185–195. doi:
734 10.1023/A:101030642

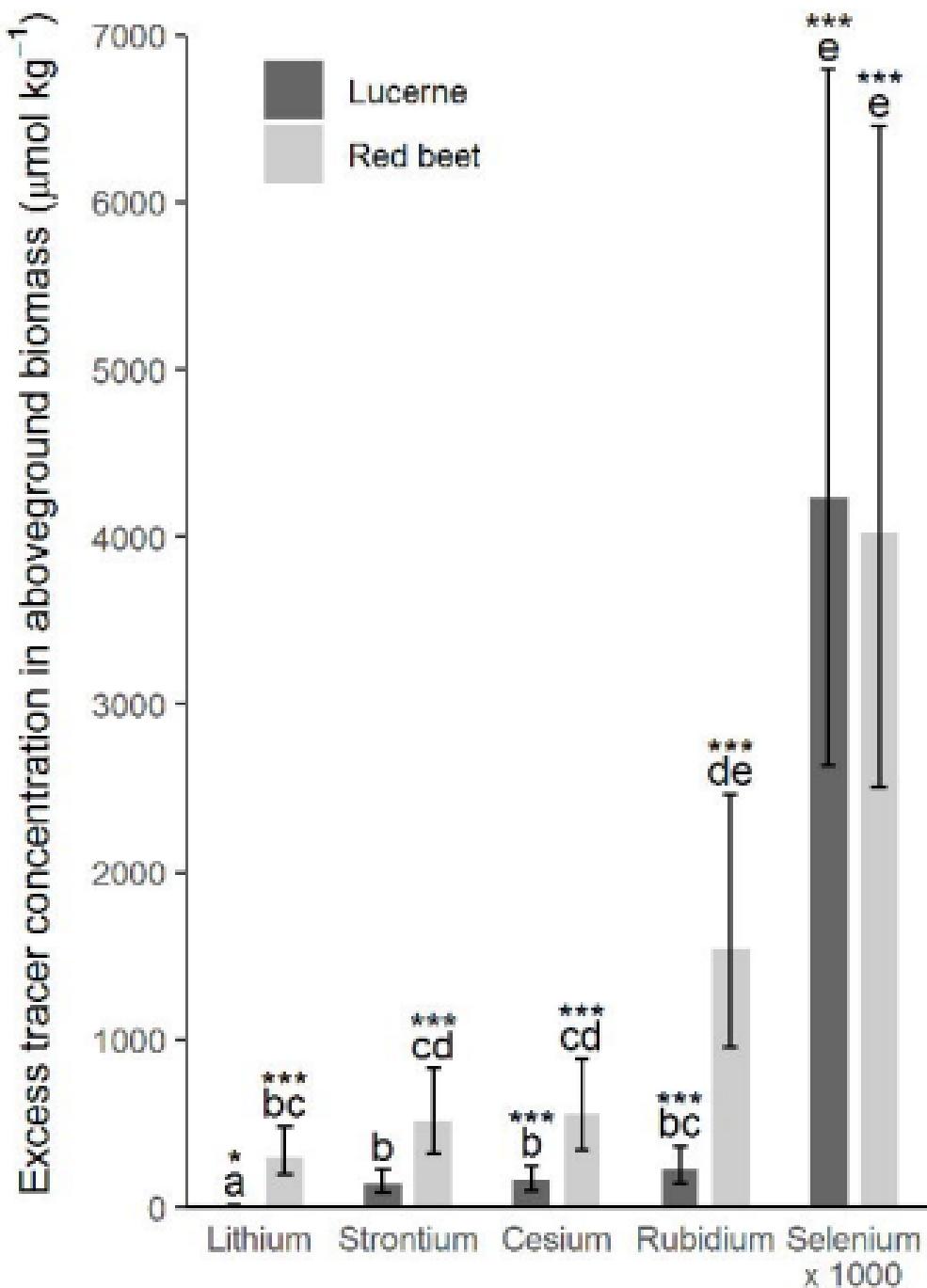
735 Thorup-Kristensen K (2006) Effect of deep and shallow root systems on the dynamics of soil inorganic N
736 during 3-year crop rotations. *Plant Soil* 288:233–248. doi: 10.1007/s11104-006-9110-7

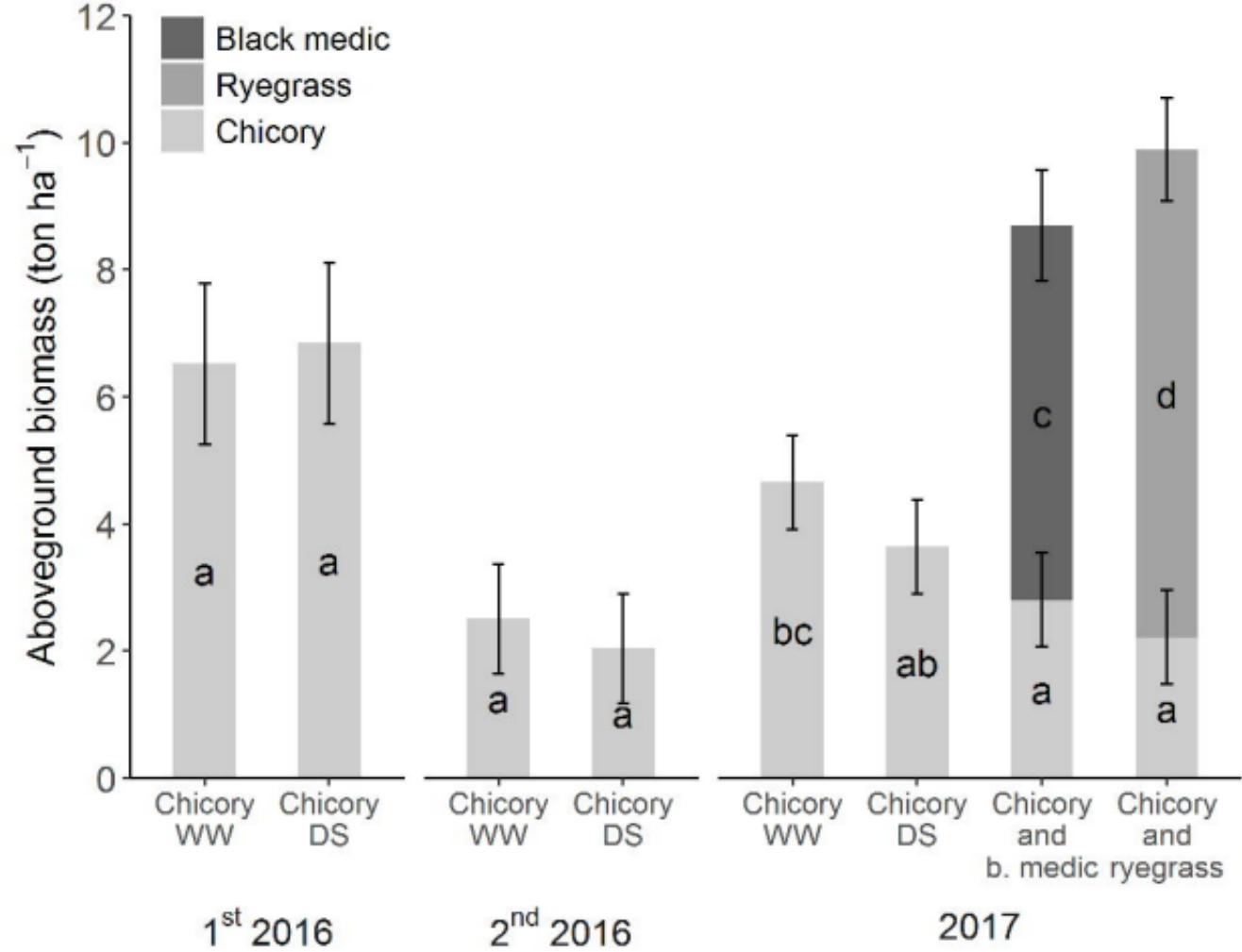
737 Tofinga MP, Snaydon RW (1992) The root activity of cereals and peas when grown in pure stands and
738 mixtures. *Plant Soil* 142:281–285. doi: 10.1007/BF00010973

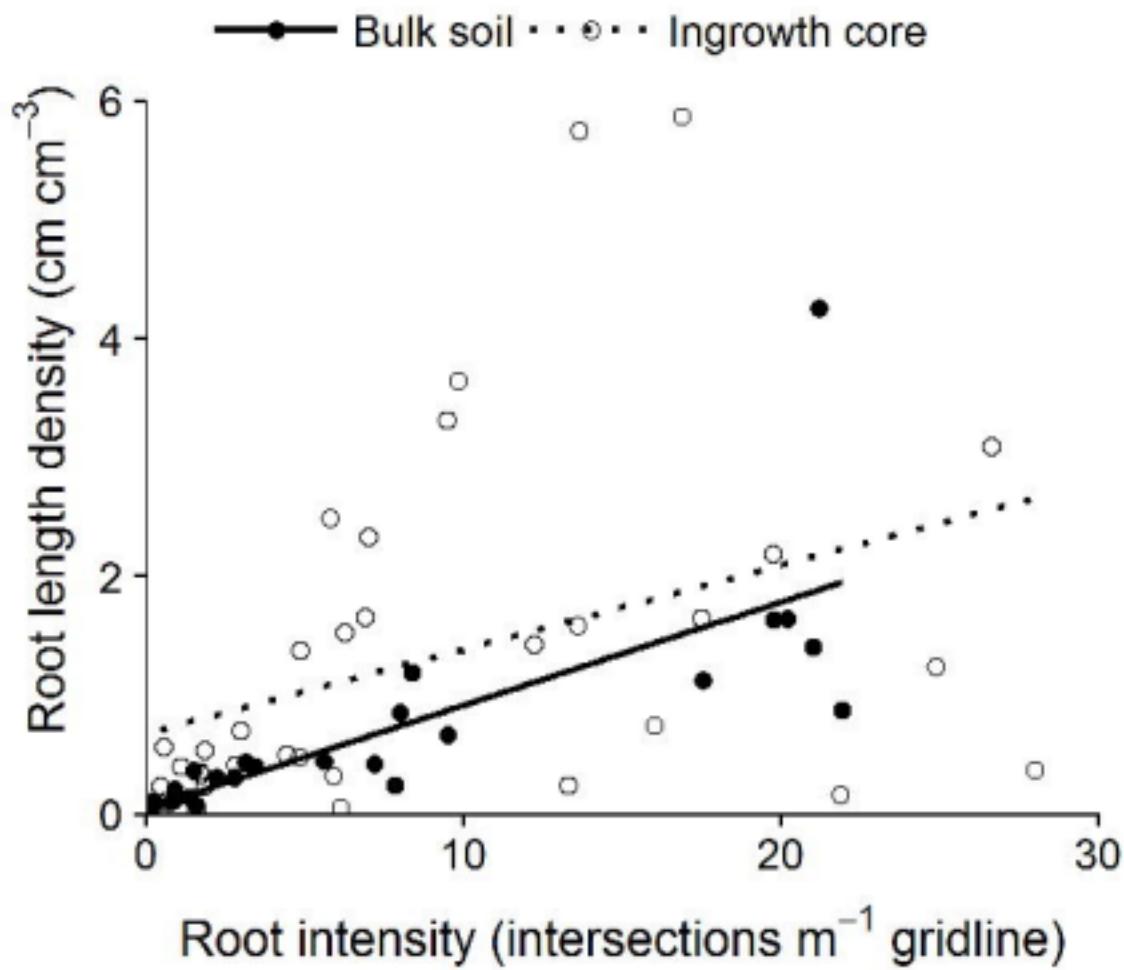

739 Valdez-Aguilar LA, Reed DW (2008) Influence of potassium substitution by rubidium and sodium on growth,
740 ion accumulation, and ion partitioning in bean under high alkalinity. *J Plant Nutr* 31:867–883. doi:
741 10.1080/01904160802043213

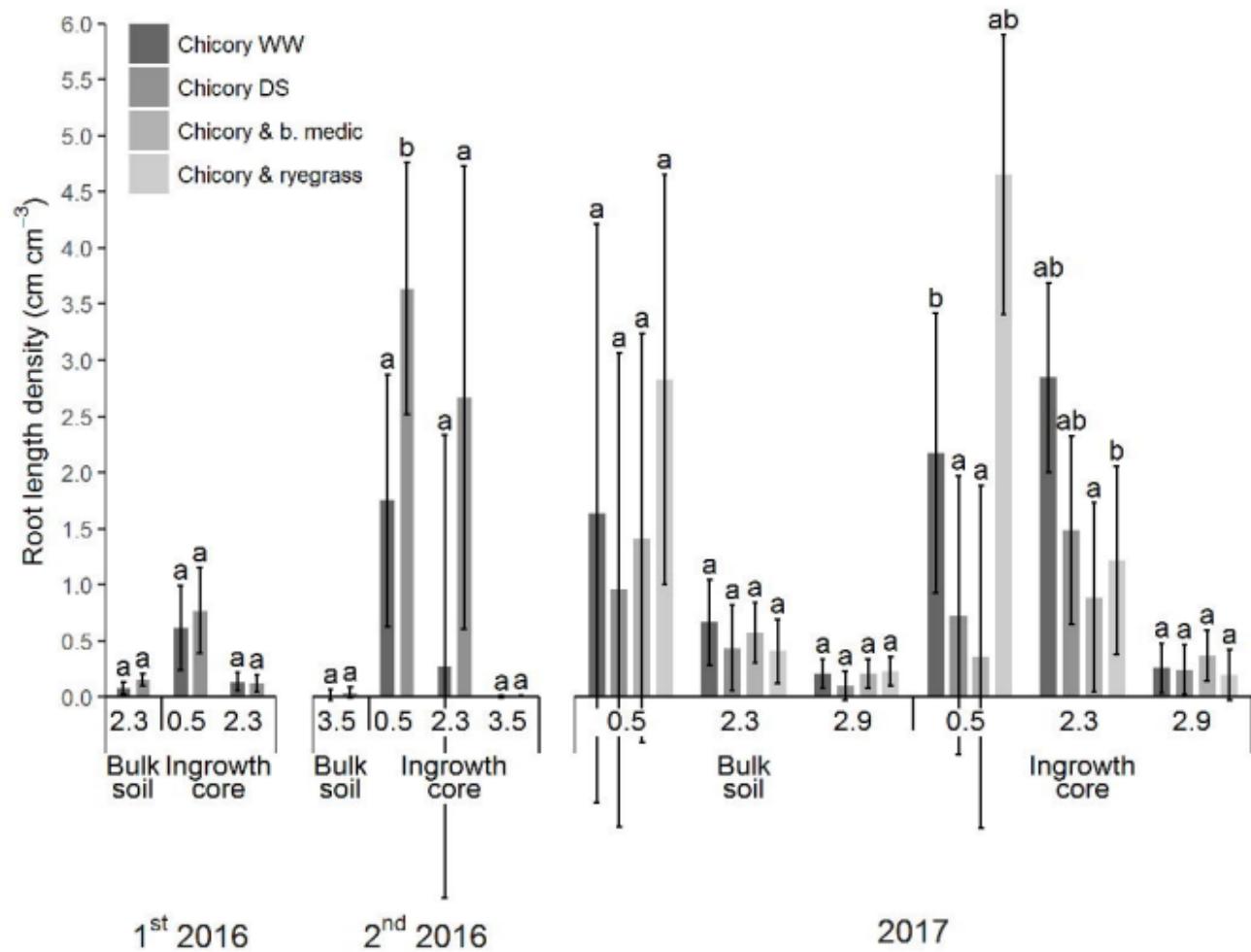
742 van Noordwijk M (1989) Rooting depth in cropping systems in the humid tropics in relation to nutrient use
743 efficiency. In: van der Heide J (ed) *Nutrient management for food crop production in tropical farming*
744 *Systems*. Institute for Soil Fertility, Haren, The Netherlands, pp 129–144

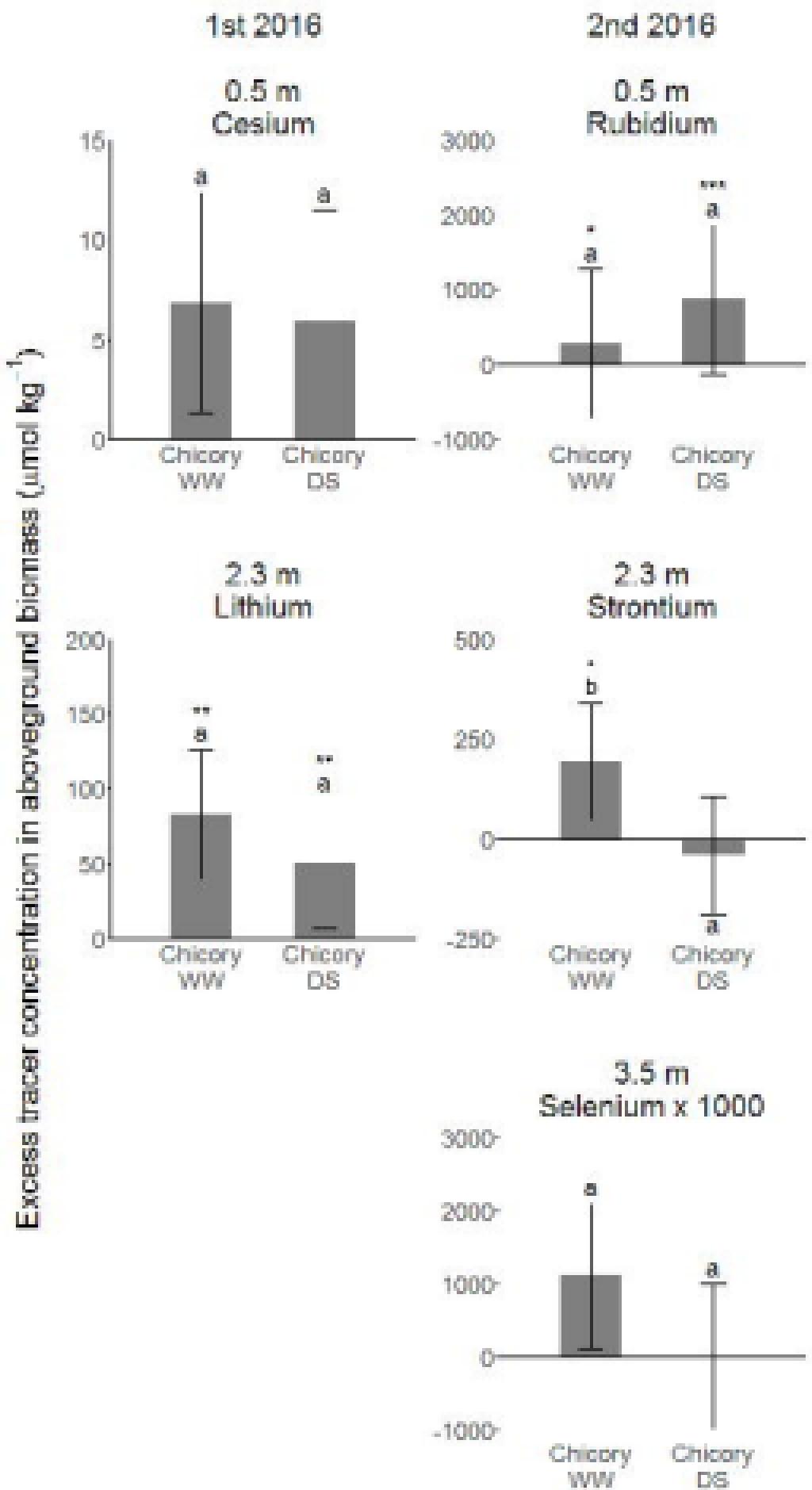

250 mm

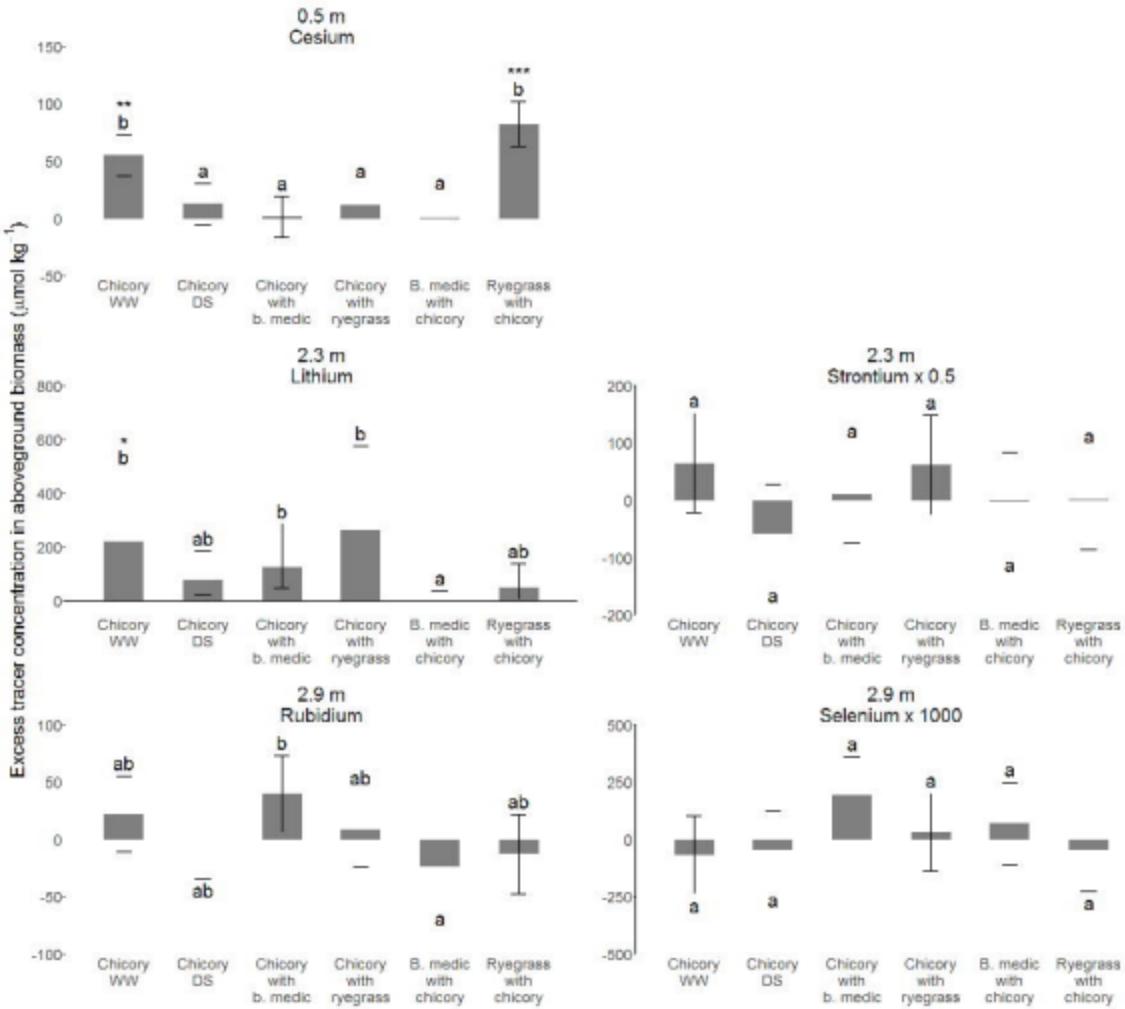

T
70 mm
—

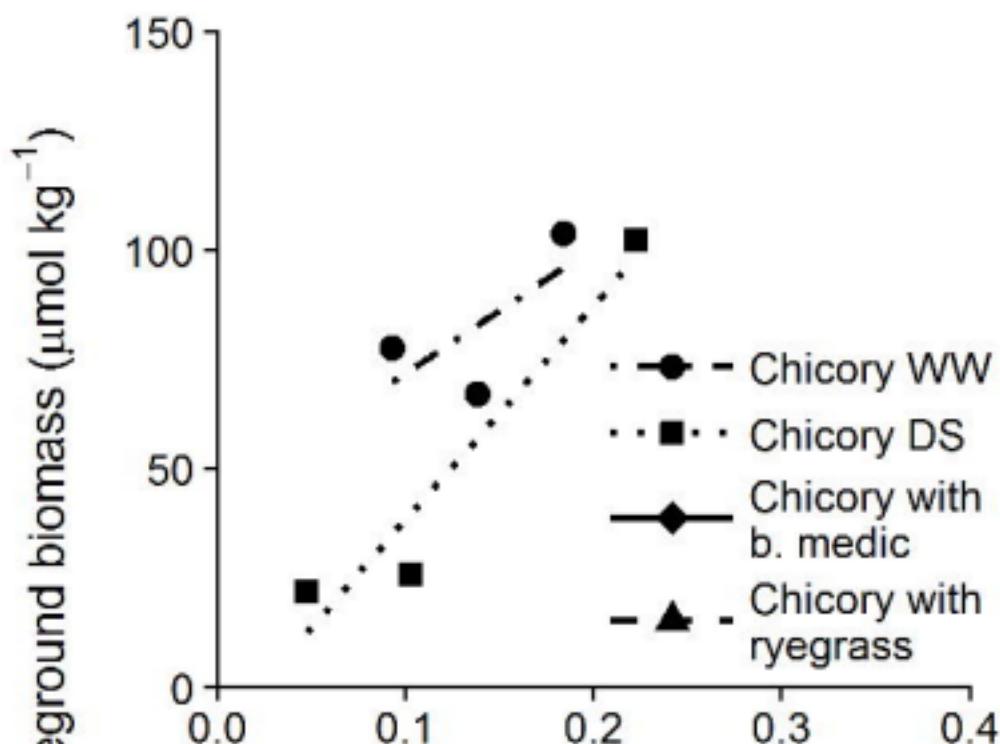


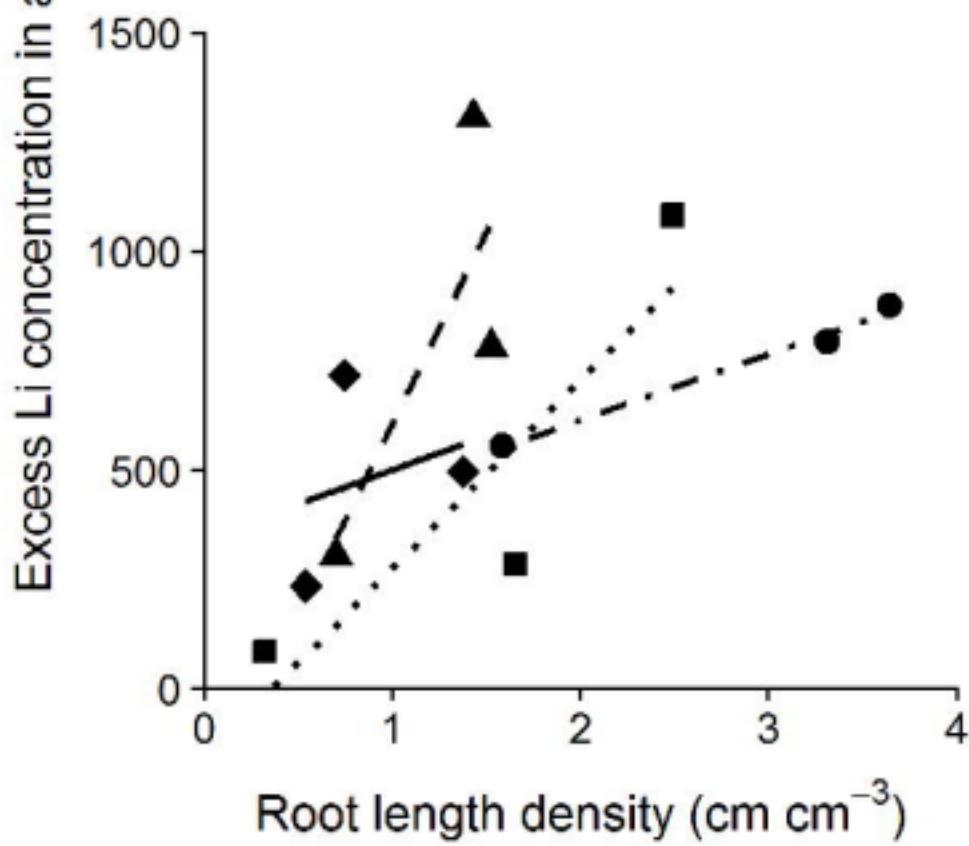

Root intensity

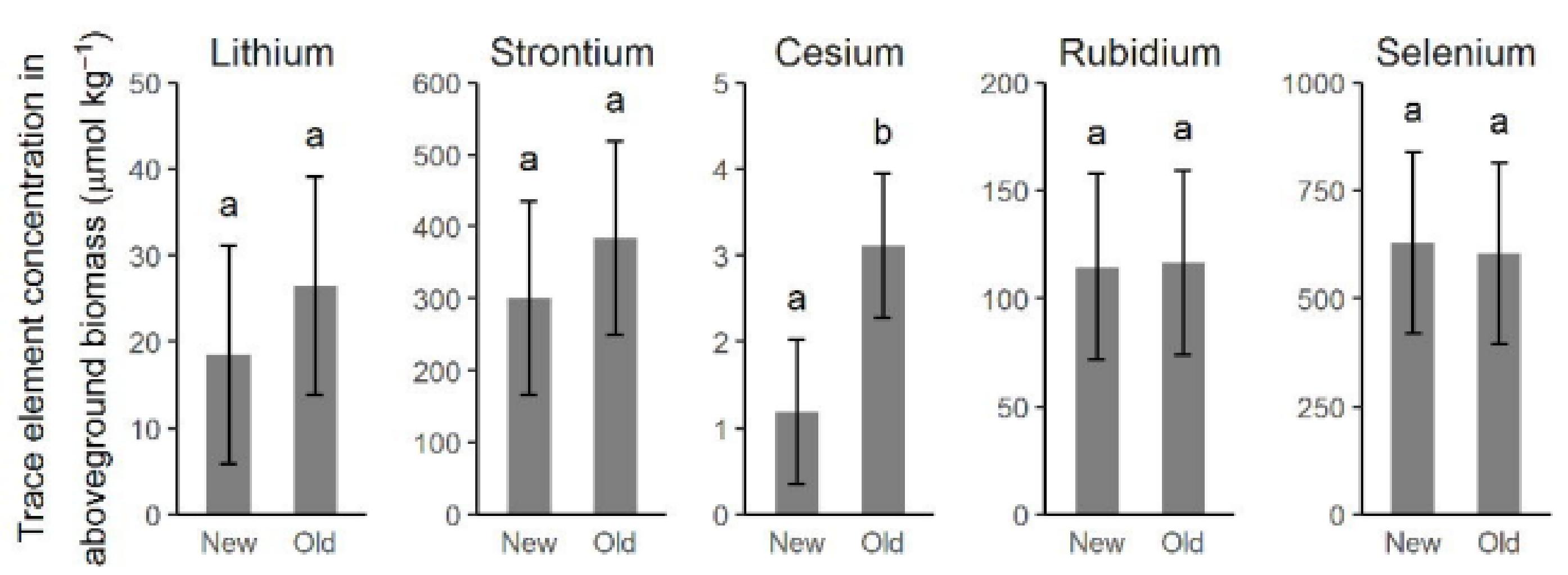

(intersections m^{-1} gridline)

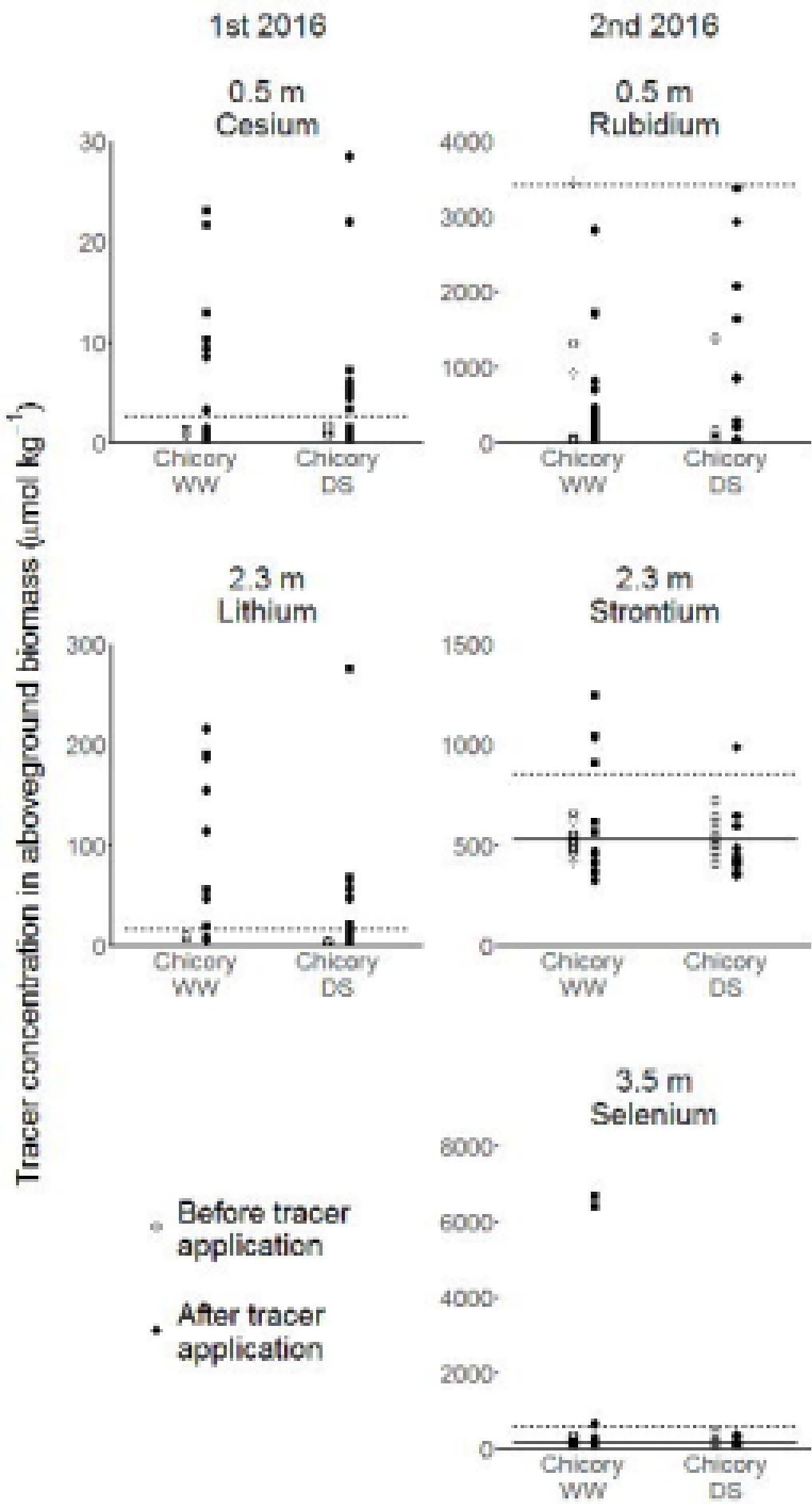


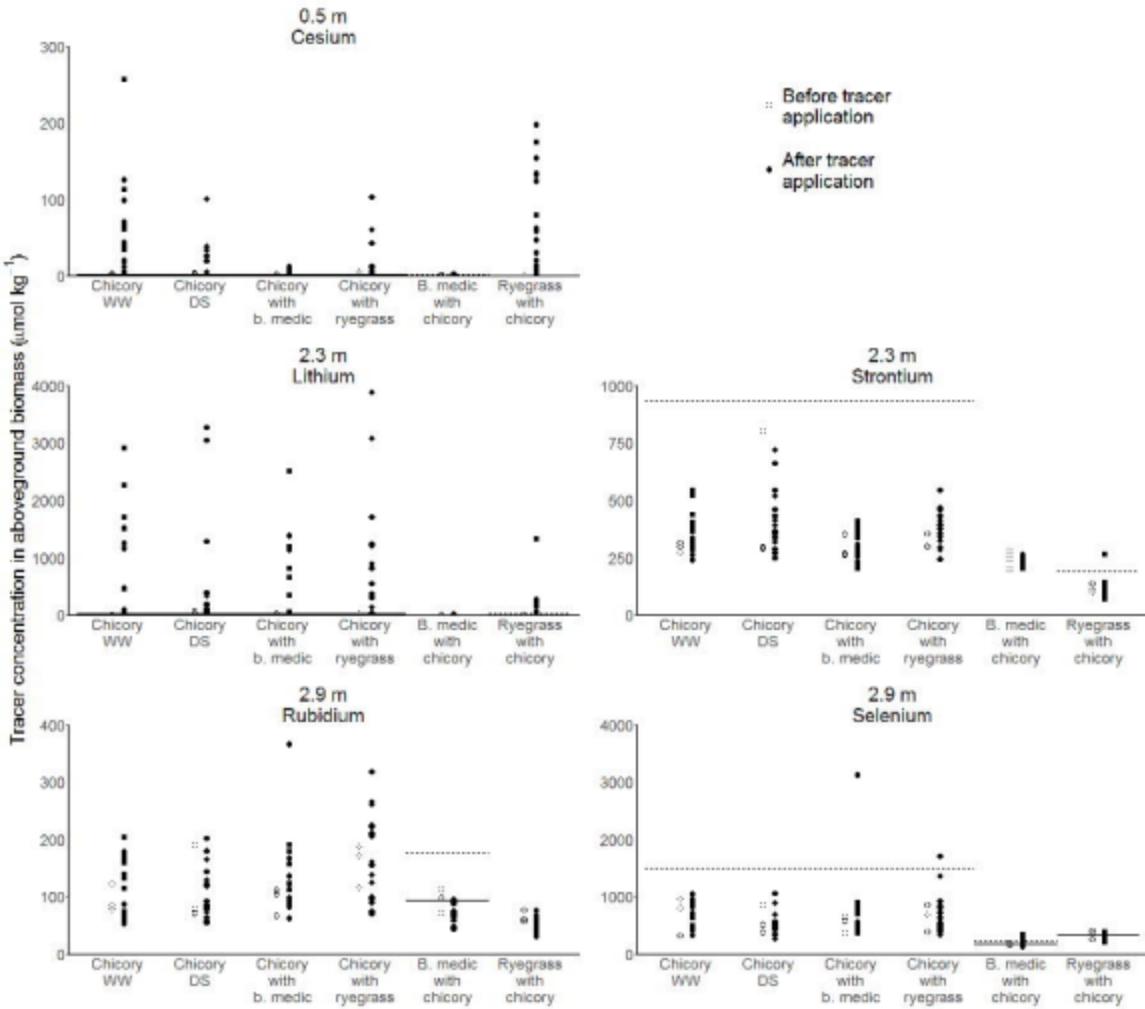


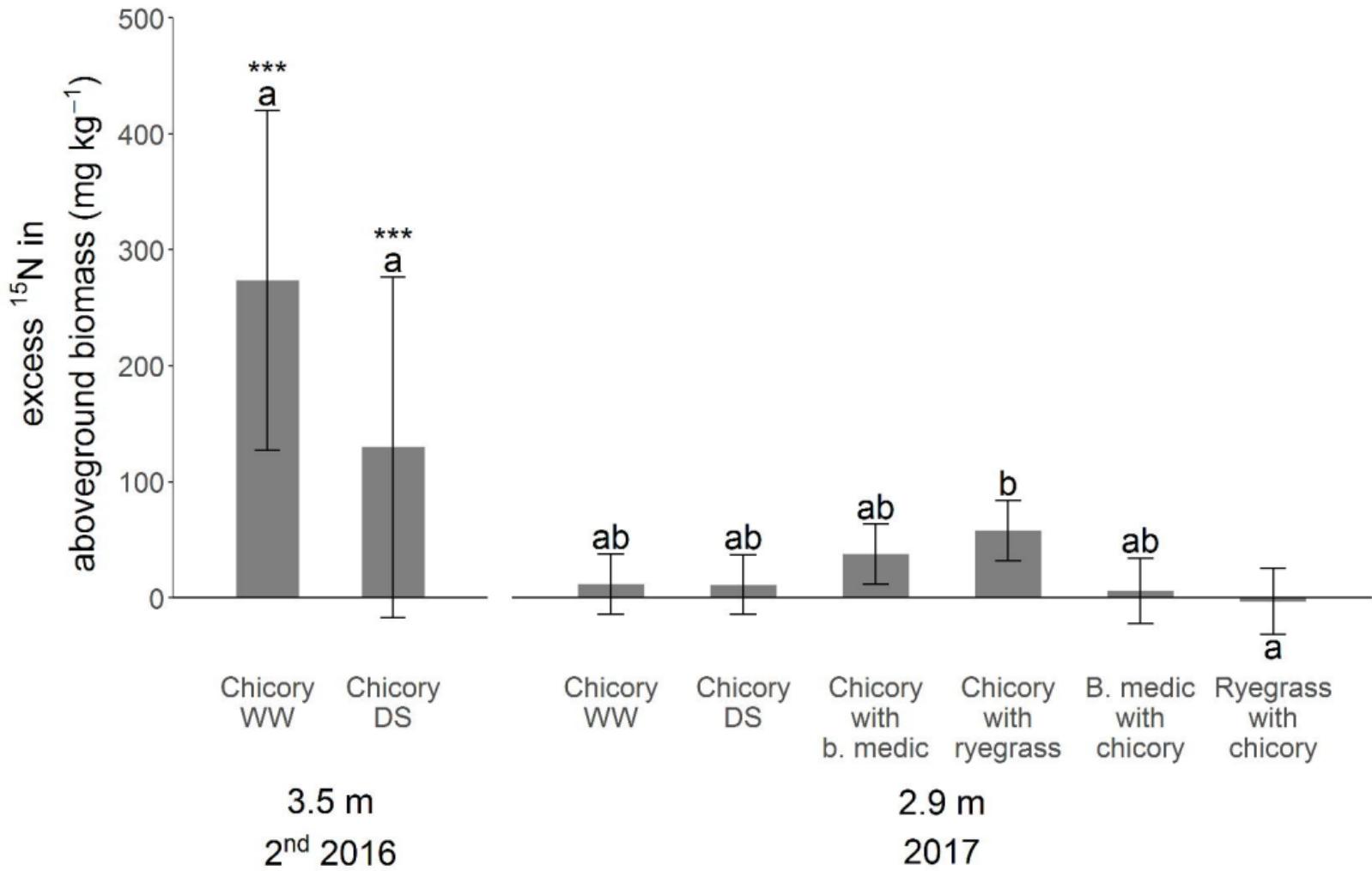







1st 2016




2017

