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Background: There is evidence that transcranial direct current stimulation (tDCS) can improve learning 

performance. Arguably, this effect is related to long term potentiation (LTP), but the precise biophysical 

mechanisms remain unknown.  

Hypothesis: We propose that direct current stimulation (DCS) causes small changes in postsynaptic 

membrane potential during ongoing endogenous synaptic activity.  The altered voltage dynamics in the 

postsynaptic neuron then modify synaptic strength via the machinery of endogenous voltage-dependent 

Hebbian plasticity.  This hypothesis predicts that DCS should exhibit Hebbian properties, namely pathway 

specificity and associativity. 

Methods: We studied the effects of DCS applied during the induction of LTP in the CA1 region of rat 

hippocampal slices and using a biophysical computational model. 

Results: DCS enhanced LTP, but only at synapses that were undergoing plasticity, confirming that DCS 

respects Hebbian pathway specificity. When different synaptic pathways cooperated to produce LTP, DCS 

enhanced this cooperation, boosting Hebbian associativity.  Further slice experiments and computer 

simulations support a model where polarization of postsynaptic pyramidal neurons drives these plasticity 

effects through endogenous Hebbian mechanisms.  The model is able to reconcile several experimental 

results by capturing the complex interaction between the induced electric field, neuron morphology, and 

endogenous neural activity. 

Conclusions: These results suggest that tDCS can enhance associative learning.  We propose that clinical 

tDCS should be applied during tasks that induce Hebbian plasticity to harness this phenomenon, and that 

the effects should be task specific through their interaction with endogenous plasticity mechanisms.  

Models that incorporate brain state and plasticity mechanisms may help to improve prediction of tDCS 

outcomes. 

 

Keywords: synaptic plasticity, transcranial electrical stimulation, transcranial direct current stimulation, 

LTP, tDCS, Hebbian   

 

Abbreviations: tDCS (transcranial direct current stimulation); DCS (direct current stimulation); LTP (long 

term potentiation); TBS (theta burst stimulation); STDP (spike-timing dependent plasticity) 

 

 

 

 

 

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 9, 2019. ; https://doi.org/10.1101/562322doi: bioRxiv preprint 

https://doi.org/10.1101/562322
http://creativecommons.org/licenses/by-nd/4.0/


 

Introduction 
         Transcranial direct current stimulation (tDCS) studies in humans have recently exploded in number 

and scope (1–4). While these studies have seen varying degrees of success (1), in aggregate they suggest 

that stimulation with weak constant current can have long term effects on cognitive function (5). One of 

the predominant theories to explain these long term effects is that stimulation affects synaptic plasticity 

(6), although a variety of alternatives have also been proposed (7,8) and are being explored (9). The 

synaptic plasticity theory is consistent with an array of findings from pharmacological studies in humans 

(10) as well as animal electrophysiology studies conducted in-vivo (9,11,12) and in-vitro (13–16).  

However, the biophysical mechanism for such plasticity effects is unknown. 

Polarization of neuronal membranes in response to extracellular electric fields has been well 

characterized (17–23), as has the membrane potential-dependence of Hebbian plasticity (24–27).  While 

it is straightforward to draw a connection between these phenomena, their interaction can be complex.  

For example, we previously observed that the effects of DCS depend on both the location of active synapses 

and the precise temporal patterns of activity used to induce plasticity (14).  These results suggest that the 

effects of DCS depend on the interaction between the induced electric field, neuron morphology, and the 

endogenous brain dynamics.  Given this complexity, it is perhaps no surprise that results from human 

clinical trials with tDCS have remained inconclusive (28–31), or that optimization of tDCS protocols has 

been slow. For example, there is an ongoing debate as to whether tDCS should be applied before, during, 

or after a behavioral or cognitive task (32–34). 

We propose that DCS causes small changes in postsynaptic membrane potential during ongoing 

endogenous synaptic activity.  The altered voltage dynamics in the postsynaptic neuron then modify 

synaptic strength via the machinery of endogenous voltage-dependent Hebbian plasticity.  An implication 

of this hypothesis is that the effects of DCS should exhibit similar properties as the endogenous Hebbian 

plasticity that it is paired with.  Two of these properties, pathway specificity and pathway associativity 

(19,20), support functionally specific learning of cell assemblies in neural networks (21,22).  tDCS may 

therefore enhance functionally specific learning by acting through this Hebbian mechanism.  

We induced LTP in hippocampal brain slices using theta rhythms (theta burst stimulation, TBS), and 

confirm that this form of “endogenous” plasticity is pathway specific and associative. Applying DCS during 

plasticity induction boosted the amount of LTP, while maintaining the pathway-specific and associative 

properties of the underlying endogenous plasticity.  Additional experiments and computer simulations 

support the hypothesized model in which DCS achieves these effects through altered neuronal excitability 

and subthreshold depolarization in dendrites during ongoing synaptic input.   

We present what is, to our knowledge, the first computational model of the effects of DCS on 

synaptic plasticity, which reconciles several experimental results.  The model makes specific and testable 

predictions for both how tDCS should alter plasticity when paired with various endogenous brain states, 

and how this can inform the design of tDCS protocols. Specifically, the most effective tDCS interventions 

should be those that pair stimulation concurrently with behavioral training and that performance gains 

should be specific to the learned task.  

 

Results 
Anodal DCS boosts LTP 
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To mimic learning during a training task we induced LTP by applying TBS in the hippocampal 

Schaffer collateral pathway (4 pulses at 100 Hz repeated for 15 bursts at 5 Hz, 3 seconds total).  We applied 

acute anodal or cathodal DCS (see Methods) for the duration of the LTP-induction protocol (20 V/m; Fig. 

1A). When paired with anodal DCS, the resulting LTP was increased compared to TBS alone (Figure 1B; 

control: 1.287+-0.025, N=52 slices; anodal: 1.397+-0.047, N=32 slices, p=0.027).  However, cathodal 

stimulation had no significant effect (Figure 1B; cathodal: 1.243+-0.031, N=12 slices, p=0.424). 

 
Figure 1. Soma-depolarizing electric fields enhance TBS-induced LTP in hippocampal Schaffer Collateral pathway. A) Top: Schematic 

of the experimental setup, showing the orientation of anodal (red) and cathodal (blue) electric fields generated by parallel wires (black 

horizontal lines). Location of stimulation (Stim) with TBS and recording (Rec) of field excitatory postsynaptic potentials (fEPSP) are indicated 

relative to a CA1 pyramidal neuron soma (black triangle). Bottom: Membrane polarization throughout a model pyramidal neuron in response 

to 20 V/m anodal (red) or cathodal (blue) DCS.  Green compartments are depolarized due to DCS, while magenta compartments are 

hyperpolarized by DCS. B) Constant current stimulation applied during TBS modulates the resulting LTP measured as a change in fEPSP 

normalized to baseline. C) Alternating current stimulation (5Hz)  was applied and TBS bursts were timed to either the peak (red) or the trough 

(blue) of the sinusoidal alternating current.  Note that the applied electric field at the peak of the alternating current is identical to anodal 

constant current, as is the case for the trough of the alternating current and cathodal constant current.  The effects of alternating currents are 

similar to those of the analogous constant current paradigm, indicating that plasticity modulation is consistent with the instantaneous 

incremental membrane polarization on a millisecond timescale.  LTP induction is applied at the 20 minute mark. All data are normalized to 

the mean of the 20 baseline responses before induction and are represented as mean±s.e.m across slices.  

 

Electric field interacts with plasticity induction on millisecond timescale 

Membrane polarization during DCS has been well characterized (17–22) and is well described by 

cable models of stimulated neurons (Figure 1A)(21–23).  We previously argued that the effects of DCS on 

tetanus-induced LTP are due to membrane polarization (14). If this is the case for TBS-induced LTP as well, 

then there is no need for the DCS to be constant over long periods of time. It would suffice for the DCS field 

to coincide with TBS synaptic inputs on the time scale of the neuronal membrane time constant (e.g. 

30ms)(18). To test for this, we applied theta-frequency alternating current stimulation (sinusoidal 5 Hz at 

20 V/m) during TBS induction. The peak phase of this alternating current corresponds to the same electric 

field as anodal DCS, while trough corresponds to cathodal DCS.   When TBS bursts were timed to coincide 

with the peak of the alternating current, LTP was enhanced, as with anodal DCS (Figure 1C; control: 1.287+-

0.025, N=52; peak: 1.467+-0.093, N=9, p=0.014; N here and below indicates the number of slices). TBS 

timed to the trough of the alternating current had no significant effect on LTP, as with cathodal DCS (Figure 

1C; trough: 1.184+-0.035, N=6, p=0.173). These data suggest that the electric field need only coincide with 

potentiating synaptic input on the millisecond timescale, and does not require any prolonged buildup of 

DCS effects in order to affect LTP.  This is consistent with the notion that instantaneous membrane 

polarization due to DCS is what interacts with synaptic activity to modulate the resulting plasticity (14).  
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Effect of DCS on LTP is pathway specific 

 Hebbian synaptic plasticity is classically characterized as a pathway specific process, i.e. only 

pathways that are coactive with the postsynaptic neuron are strengthened (35).  Our proposal that DCS 

enhances LTP through membrane potential implies that the effects of DCS should follow this pathway 

specificity.  We tested this by monitoring two independent synaptic pathways in CA1 (Figure 2A).  During 

induction, the strong pathway received TBS while the other inactive pathway was not stimulated.  As 

expected, LTP was observed in the strong pathway (Figure 2B black; 1.377+-0.052, N=16, p=2.8E-6), but 

not the inactive pathway (Figure 2B gray; 0.986+-0.031, N=14, p=0.657), demonstrating the well-

established pathway specificity of LTP (35).  When this induction protocol was paired with anodal DCS, 

LTP was enhanced only in the strong pathway (Figure 2B red; 1.613+-0.071, N=14, p=0.011 vs. control), 

while the inactive pathway was unaffected (Figure 2B light red; 0.971+-0.028, N=14, p=0.724 vs. control), 

showing that the effects of DCS is specific to the potentiated pathway. 

 

 
Figure 2.  DCS effect is specific to the potentiated pathway. A) Schematic of the experimental setup. Two synaptic pathways are monitored 

before and after plasticity induction.  During induction, one pathway is activated with TBS (black, strong), while the other pathway is inactive 

(grey), and anodal DCS is applied across the slice throughout the duration of induction (3 s, red).  B) Plasticity is pathway specific and so are 

DCS effects.  LTP was observed only in the pathway that received TBS (black trace), demonstrating pathway specificity.  Anodal DCS  enhanced 

LTP only in the potentiated pathway (red vs black) and had no effect on the inactive pathway (light red vs. gray), upholding Hebbian specificity.  

fEPSP slopes are normalized to the mean of the 20 of baseline responses prior to induction.  Induction is applied at the 20 minute mark. C) 

Summary of pathway specific effects of DCS.  The mean of the last 10 normalized slopes (51-60 min after induction) are used for each slice. 

Data are represented as mean±s.e.m across slices.  

 

DCS boosts Hebbian associativity 

 Another important property of Hebbian plasticity is pathway associativity, which is a cellular 

mechanism thought to underlie the formation of cell assemblies and associative learning (35–37).  Pathway 

associativity refers to the potentiation of separate synaptic pathways arriving onto the same postsynaptic 

neuron when they cooperate to drive the postsynaptic cell.  For example, a synaptic input that is too weak 

on its own to induce plasticity can undergo plasticity if it is coactivated with a strong input that helps to 

drive the postsynaptic cell. 

 We tested how DCS affects Hebbian associativity by again monitoring two synaptic pathways.  First, 

only a weak input (15 pulses at 5 Hz) was used during induction (Figure 3A).  In the absence of DCS, no 

lasting plasticity was observed in this weakly activated pathway (Figure 3A gray; 0.998+-0.041, N=13, 

p=0.966) or the other inactive pathway (Figure 3A black; 0.958+-0.037, N=13, p=0.275).  DCS also had no 

effect on the weak (Figure 3A light red; 1.041+-0.038, N=13, p=0.445) or inactive pathway (Figure 3A red; 

0.963+-0.011, N=13, p=0.908).  This result further confirms the specificity of DCS effects, in that pathways 

that are not undergoing plasticity are unaffected by DCS.   

 In a second experiment, the weak input is now paired with a strong input (TBS) during induction 

(Figure 3B).  During induction, weak pathway inputs are timed to arrive at precisely the same time as the 
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second pulse of each theta burst.  This induces LTP in the strong pathway as before  (Figure 3B black; 

1.435+-0.067, N=13, p=3.1E-5), but now the weak pathway is also potentiated (Figure 3B gray; 1.115+-

0.031, N=13, p=0.003), replicating classic associativity between the two pathways (35).  If this protocol is 

paired with DCS during induction, LTP is now boosted in both the strong (Figure 3B red c.f. black; 1.705+-

0.094, N=13, p=0.029) and the weak pathway (Figure 3B light red c.f. gray; 1.242+-0.029, N=13, p=0.006).  

DCS therefore enhances the Hebbian associativity between the strong and weak pathways (Figure 3D).  We 

note that plasticity was similar in the strong (TBS) pathway, regardless of whether it was paired with the 

weak pathway (Figure 3C black), and that the effect of DCS on the strong pathway was indifferent to pairing 

as well (Figure 3C red). 
 

 
Figure 3. DCS enhances associativity between synaptic pathways. A) Top: schematic of experimental design.  Two synaptic pathways 

were monitored.  During induction, one pathway was weakly activated at 5 Hz with 15 pulses (grey), while the other pathway was inactive 

(black).  Anodal DCS was applied throughout induction (3 s, red). Bottom: weak synaptic activation had no lasting effect on synaptic strength 

in either pathway with DCS (red, light red) or without DCS (grey, black). B) Top: schematic of experimental design.  Again, two synaptic 

pathways were monitored.  Now during induction, one pathway was activated with a TBS protocol (strong, black).  The other pathway was 

activated with 15 pulses at 5 Hz (weak, grey).  Weak pathway pulses were temporally aligned to the second pulse in each TBS burst.  Bottom: 

without DCS, the strong pathway was potentiated (black) and the weak pathway was now also potentiated (grey), demonstrating associative 

plasticity between these pathways.  With DCS, LTP was enhanced in the strong pathway (red) and the weak pathway (light red), demonstrating 

that the associativity between pathways was enhanced.  C) Summary of LTP experiments in the strong pathway.  Pairing with the weak 

pathway did not increase strong pathway LTP, and  DCS had a similar effect on LTP in both cases. D)  Summary of LTP experiments in the weak 

pathway.  fEPSP slopes are normalized to the mean of the 20 of baseline responses prior to induction.  Induction is applied at the 20 minute 

mark in panels A,B.  The mean of the last 10 normalized slopes (51-60 min after induction) are used for each slice in panels C,D. Data are 

represented as mean±s.e.m. across slices. 

 

Effects are consistent with DCS modulation of somatic spiking  

We hypothesized that the effects of DCS on TBS-induced LTP are due to membrane polarization.  

However, DCS will alter membrane potential in both the soma and apical dendrites of pyramidal neurons, 

but with opposite polarities (18,23).   We therefore aimed to test whether the effects of DCS on LTP were 

consistent with somatic or dendritic membrane polarization.  To do so, we took a similar approach as in 

previous work (14).  LTP was induced by stimulation of Schaffer collaterals with TBS in either apical or 

basal dendritic compartments of CA1 (Figure 4B).  DCS is expected to have opposite effects on dendritic 

membrane potential in basal as opposed to apical dendrites (Figure 5A)(18,23).  Effects due to DCS-

induced dendritic polarization should therefore be opposite when synapses are activated in apical or basal 

dendrites.  However, effects due to DCS-induced somatic polarization should be the same, regardless of the 
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location of synaptic activation (i.e. there is only one soma per neuron).  Therefore, observing different 

effects in apical and basal compartments would rule out somatic polarization as a main determinant of the 

plasticity modulation.  

Here we found that DCS had the same effect on LTP in both basal and apical dendrites (Figure 4C,D).  

This result is consistent with plasticity effects of DCS being driven primarily by effects on somatic spiking.  

To further test this, we looked at measures of dendritic integration and somatic spiking in each condition 

(Figure 4A, see Methods for details of analysis).  Indeed, we found that DCS had a similar effect on somatic 

spiking (Figure 4E), but opposite effects on dendritic integration in apical versus basal dendrites (Figure 

4F). Thus, the effect of DCS polarity on LTP mirrors that of the effect on the soma, but not dendrites.  

 
Figure 4.  DCS modulation of TBS-LTP is consistent with modulation of somatic spiking rather than dendritic integration. LTP was 

induced with TBS in either apical (top row, B-F) or basal (bottom row, B-F) dendritic regions of CA1.  TBS induction was paired with anodal 

(red), cathodal (blue), or no DCS (black).  A) Schematic of experiments and methods for deriving somatic and dendritic activity metrics.  For 

both apical and basal protocols, one recording electrode was placed in the dendrites (Dend) near the bipolar stimulating electrode (Apical or 

Basal) and one electrode was placed near the CA1 somatic layer (Soma). Examples of raw voltage traces from each recording electrode during 

a single burst of the induction protocol are displayed in the middle panel.  To derive a measure of dendritic integration, the dendritic recording 

was low-pass filtered, and the integral of this filtered signal was taken for each burst during TBS (gray area).  To derive a measure of somatic 

population spiking, the somatic recording was high-pass filtered, and the integral of this signal’s envelope during each burst was used (gray 

area; excludes periods of stimulation artefacts; see methods).  B) Schematic of apical (top row) and basal (bottom row) experiments. C) Anodal 

DCS (red) boosts LTP in both and apical and basal dendrites compared to control (black).  Cathodal DCS (blue) had no significant effect in 

either apical of basal dendrites.  TBS was applied with or without DCS at the 20 minute mark. Note that the top panel is identical to Figure 1A 

(shown again here for comparison). D)  Summary of the data in C. The mean of the last ten normalized responses were used for each slice.  E) 

Population spiking measured for the first bipolar input pulse of the last burst (see Supplemental Figure S2C for all pulses during induction). 

F) Population dendritic integration for the last burst of TBS (see Supplemental Figure S2F for all bursts during induction).  All data normalized 

to the mean of the 20 baseline responses before induction and error bars represent standard error of the mean.  

 

Computational model  
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 To further understand how changes in membrane potential due to DCS lead to the observed changes 

in plasticity, we turned to a computational model.  We modeled a CA1 pyramidal neuron based on a 

previously validated biophysical model, using the NEURON software package (38–40).  To simulate the 

effects of DCS, we applied a uniform extracellular electric field (voltage gradient) with NEURON’s 

extracellular mechanism (23). This extracellular field is known to polarize the cellular membrane with 

opposite polarities in apical and basal compartment (Figure 5A)(18).  To calculate activity-dependent 

synaptic plasticity, we used a voltage-based plasticity rule (41) that has been used previously to replicate 

a wealth of synaptic plasticity data (41–43).  Here we manually selected parameters for this plasticity rule 

such that we could qualitatively reproduce canonical spike-timing dependent plasticity (STDP) 

experiments (26,43)(Supplemental Figure S1) and the effects of DCS on synaptic plasticity in our own TBS 

experiments (compare experiments of Figure 4D-F with model results of Figure 5).  The model also 

reproduces the experimental results with alternating current stimulation (compare experiment of Figure 

1C with model results of Figure S3). All simulation results that follow use the same parameters unless 

specified otherwise (Supplemental Tables). 

 

 
Figure 5. Model captures the effects of DCS on long term potentiation, somatic spiking and dendritic integration. A) Membrane 

polarization throughout model pyramidal neuron in response to 20 V/m anodal (red) or cathodal (blue) DCS.  Green compartments are 

depolarized due to DCS, while magenta compartments are hyperpolarized by DCS.  Gray circles indicate the location of synapses in apical (top 

row) or basal (bottom row) compartments that are activated with TBS.  B) Model predictions of changes in synaptic weights qualitatively 

match LTP experiments (c.f. Figure 4D).  The vertical axis (Norm. weight) is the average weight of all activated synapses at the end of 

simulation, calculated offline using the learning rule (41). C) Effects of DCS on somatic activity qualitatively match experimental measurements 

(c.f. Figure 4E).  The vertical axis is the average across all neuron somas of the integral of the high-pass filtered voltage  envelope (see methods). 

D) Effects of DCS on dendritic integration qualitatively match experimental measurements (c.f. Figure 4F).  The vertical axis is the average 

across all recorded dendritic locations of the high-pass filtered envelope of the voltage (see methods). 
 

Associativity is enhanced through somatic spiking in simulations 

 Using the computational model, we then aimed to understand how DCS modulates TBS-induced 

LTP, while preserving specificity and associativity.  Pathway specificity is explicitly built into the voltage-

based plasticity rule of the model (41), following well established experimental results (35), namely 

synaptic weights are only allowed to change at active presynaptic inputs (see Methods).  Since DCS does 

not by itself cause presynaptic activity, it cannot affect synaptic efficacy of the inactive pathway. Thus, the 

incremental membrane polarization due to DCS upholds Hebbian synapse specificity. 

It is less clear however, exactly how DCS is able to boost associativity between the weak and strong 

pathways (Figure 3).  We hypothesized that DCS boosted associativity through a boost of somatic spikes, 
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which propagate to both weak and strong pathway synapses.  To test this in the model, we simulated the 

experiments of Figure 3, by activating one pathway with TBS (strong) and the other pathway with the 5 Hz 

stimulation (weak).  When the weak pathway was activated alone no spikes were generated and only very 

weak plasticity was observed (Figure 6D, weak only, black).  Applying DCS in this case led to only minor 

changes in plasticity, as in our experiments (Figure 6D, weak only, compare red and black).  However, when 

the weak input was paired with the strong input, action potentials were generated in the soma that back-

propagated to weak pathway synapses (Figure 6B, black), and LTP was observed (Figure 6D, weak+strong, 

black).  Therefore, the weak and strong pathway become associated by cooperating to produce somatic 

spikes, which are then shared by both pathways. 

When strong and weak pathways were paired, DCS facilitated the initiation of somatic spikes 

(Figure 6B) and advanced their timing relative to the presynaptic input (Figure 6C), due to increased 

depolarization of the soma.  This led to a boost in weak pathway plasticity only when paired with the strong 

input (Figure 6D, weak+strong), as observed experimentally (Figure 6E; same as Figure 3D).  

To further validate the role of somatically initiated spikes in generating this DCS effect, we repeated 

the previous simulations, but set the voltage-gated sodium conductance to zero in the soma and axon 

(Figure 6A bottom).  This is analogous to the local application of TTX at the soma (44), preventing the 

initiation of spikes there.  If the strength of synaptic stimulation is increased, spikes can still be generated, 

but they initiate locally in the dendrite (Figure 6B bottom).  Anodal DCS now reduces the probability of 

these spikes (Figure 6B bottom) and delayed their timing relative to the weak pathway input (Figure 6C 

bottom), due to DCS-induced hyperpolarization of the apical dendrites.  A prediction of this model is 

therefore that TTX applied locally at the soma, would cause anodal DCS to have the opposite effect on 

pathway associativity (Figure 6D bottom), namely anodal DCS weakens rather than boosts LTP. 

Taken together, the results of Figure 6 suggest that DCS can enhance associativity by facilitating the 

initiation of somatic spikes.  The additional spikes can spread to synapses in both pathways and increase 

LTP, leading to a stronger association between the pathways.  

 
Figure 6. Boost of associative LTP is also explained by the effect of DCS on somatic spikes in computational model.  Top row: A) 

Simulated neuron morphology, showing an example of how synapses are distributed in the weak (5 Hz, light pink) and strong (TBS, magenta) 

pathways.  B) Distribution of time delays between spikes observed in the soma and at weak pathway synapses for 20 V/m anodal stimulation 

(red) or control (black).  Negative time delays correspond to spikes that occur in the soma first. Due to variable propagation delays between 

synapses, it is possible for a spike initiated in the dendrite to reach the soma before other synapses.  This produces a negative delay between 

the soma and these delayed synapses, even though the spike was dendritically initiated.  It is not possible however,  for a spike initiated in the 

soma to show a positive delay. C) Distribution of spike times recorded at all weak pathway synapses.  Spike times are shown relative to the 

onset of the corresponding burst. D) Model prediction comparing plasticity in the weak pathway when it is unpaired (weak only) and paired 
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(weak+strong).  The vertical axis (Norm. weight) is the average weight of all weak pathway synapses at the end of simulation, calculated offline 

using the voltage-based learning rule (41). E) Experimental data (same as Figure 3D) shown again for comparison with panel D here.  Both 

model and experiment show that anodal DCS increases LTP in the weak pathway only when it is paired with strong pathway activation.  

Bottom row: simulations and methods are identical to the top row, with two exceptions.  First, we emulated the application of locally applied 

somatic TTX by setting voltage-gated sodium conductance to zero in the soma and axon, preventing the initiation of spikes in these 

compartments.  Second, the number of synapses in each pathway was doubled, increasing the likelihood of spike generation, which now 

occurred in the dendrite.  The testable prediction of the model is that in the presence of TTX now DCS will no longer boost LTP.  

 

Interaction between synapse location and induction protocol 

 In a previous study, we used 20 Hz tetanic stimulation to induce LTP.  We observed that a boost in 

LTP required opposite DCS polarities for apical and basal dendrites, suggesting that dendritic rather than 

somatic effects were dominant for this protocol (14), (Figure 7B, top two rows).  This appears inconsistent 

with the previous claim that DCS effects are mediated primarily through somatic spiking (Figures 4-6).  

However, the computational model can readily reconcile these results if we consider the different 

endogenous membrane voltage dynamics during 20 Hz tetanus and TBS protocols.  For 20 Hz tetanic 

stimulation, inputs arriving early in the tetanus may elicit somatic spiking (Figure 7D), but these inputs 

quickly become subthreshold due to short term synaptic depression (Figure 7E).  Since the majority of 

input pulses remain subthreshold, plasticity at these synapses is dominated by the local subthreshold 

dendritic potential (Figure 7F). Because the DCS-induced polarization is opposite in apical and basal 

dendritic compartments, the effects on plasticity are also opposite there (Figure 7B,C; compare 20 Hz apical 

to 20 Hz basal). 
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Figure 7. Model captures interaction between dendritic location and induction protocol. A) Simulated neuron morphology, showing 

distribution of activated synapses for 20 Hz (top two rows) and TBS (bottom two rows). Arrows indicate the direction of the DC fields for 

anodal (red) and cathodal (blue) stimulation.   B) Experimental LTP results for each condition.  The vertical axis is the average of the last ten 

normalized fEPSP responses.  The top two panels are reproduced from data in (14).  The bottom two panels are identical to figure 4D, shown 

again here for comparison. C) Model LTP predictions qualitatively match experimental LTP results (c.f. C; same direction of DCS effect). The 

vertical axis (Norm. weight) is the average weight of all activated synapses at the end of simulation, calculated offline using the learning rule 

of (41). D) Example simulated voltage traces for individual cells recorded only at activated synapses during the first four input pulses.  Traces 

are averaged over all activated synapses for the example cell.  Spikes that back-propagate from the soma are indicated with arrows.  E) Same 

as D, but at a later time point in the simulation (pulses 10-13 for 20 Hz tetanic stimulation; pulses 13-16 for TBS simulations).  Note that for 

20 Hz stimulation synaptic depolarization is reduced due to short term depression and somatic spiking ceases very early in the simulation.  

During this subthreshold period, DCS causes a small shift in membrane potential and the resulting plasticity.  Since DCS causes opposite 

subthreshold polarization  in apical and basal dendrites, the effect on LTP is also opposite in apical and basal dendrites (C, top two rows). For 

TBS simulations, recovery from short term depression between bursts allows bursts later in the simulation to produce somatic spikes.  

Plasticity throughout the simulation is controlled by somatic spikes, and is similar in apical and basal dendrites (C, bottom two rows) F) 

Dynamics of synaptic weights during the full simulation, averaged over the entire population of activated synapses.  For TBS simulations, the 

weight change is approximately linear in the number of bursts, as each successive burst is equally effective at inducing plasticity.  For 20 Hz 

stimulation, the weight change saturates with the number of pulses, as each successive pulse is weaker due to short term depression. Only the 

weight at the end of the simulation is used to predict the resulting LTP in experiments (C).  Gray boxes in F indicate time periods for early 

(dark gray) and late induction (light gray) that are plotted in D and E, respectively. A schematic of the input pulse train and relative timing of 

early (dark gray) and late (light gray) induction pulses are shown at the top.  All data are represented as mean±s.e.m.  

 

During TBS on the other hand, each burst in the induction is close to threshold at the soma.  Somatic 

action potentials are generated throughout the induction, and plasticity at each synapse is dominated by 

the back-propagation of these spikes (Figure 7D,E; bottom two rows).   Effects of DCS on plasticity therefore 
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follow the effects on somatic spike generation, regardless of the dendritic location of the synapses (Figure 

7B,C; compare TBS apical to TBS basal).  Indeed, our experimental recordings of somatic spikes and 

dendritic integration in the CA1 population support this notion (Figure 4).  Performing a similar analysis 

in the model recapitulates this result (Figure 5, c.f. Figure 4D-F).   

 The results of Figure 7 highlight the complex interaction between endogenous synaptic input 

dynamics, synapse location, and DCS-induced polarization.   Despite the complexity, Figure 7 also points to 

a simple and more general principle: when endogenous plasticity is primarily driven by somatic sources of 

depolarization (e.g. backpropagating somatic spikes), DCS-induced polarization at the soma determines 

effects on plasticity.  This is what we observe with TBS (Figure 7 bottom two rows).  When endogenous 

plasticity is primarily driven by dendritic sources of depolarization (e.g. subthreshold depolarization or 

dendritic spikes), DCS-induced polarization at the dendrite determines effects on plasticity.  This is what 

we observe with 20 Hz tetanus (Figure 7 top two rows) or when we block somatic spiking (Figure 6 bottom 

row).   

 

Dose response and distribution of plasticity effects 

 We are ultimately interested in understanding the effects of weaker electric fields that occur in the 

human brain during clinical tDCS, which are on the order of 1 V/m (45,46).  The model presented above is 

able to reproduce several experimental effects of DCS (Figures 5-7, Supplemental Figure S3)  and canonical 

synaptic plasticity results (Supplemental Figure S1) with the same set of parameters (Supplemental Table 

1).  Because the model includes the actual morphology of CA1 pyramidal neurons, the electric field 

magnitude in simulations has a precise mapping to the electric field in experiments.  We therefore used the 

model to make predictions for how weaker electric fields would influence synaptic plasticity.   

We first measured the passive membrane polarization throughout the model neuron in response to 

DCS (Figure 8A).  As observed experimentally (18), we found that the subthreshold membrane polarization 

is linear in the electric field magnitude, with opposite polarization in the soma and apical dendrites (Figure 

8B).  Next we repeated simulations of TBS with DCS at varying electric field magnitudes (+- 1, 2, 5,10,15,20 

V/m).  For a given electric field magnitude, we quantified the effect of DCS at each synapse and averaged 

over all active synapses in the apical dendrite (gray circles in Figure 8A; see Methods). We found that the 

mean effect of DCS on plasticity is monotonic in the electric field magnitude (Figure 8E).  While each 

polarity of electric field produces an approximately linear dose response, we observed a greater slope for 

anodal (positive) electric fields.  This asymmetry of anodal and cathodal effects is consistent with our 

experimental observations (Figure 1B).   

If we consider the distribution of DCS effects over all apical synapses, we find that for weak fields 

the mean effect of DCS is predominantly driven by the tail of this distribution, where very few synapses 

have large changes in plasticity (Figure 8D). For a small number of cells that are close to threshold, a weak 

field may cause a spike that would have otherwise not happened.  This causes a large jump in all synaptic 

weights for a few highly sensitive cells.  While most synapses see very small effects on their weights due to 

small effects on spike timing and subthreshold polarization, a small number of synapses experience a large 

effect on their weights due to the initiation of new spikes.   

 We next experimentally tested the dose response by varying the DCS electric field (-5, 0, 2.5, 5, 20 

V/m; cathodal negative; anodal positive).  Consistent with the prediction of the model, there was a 

monotonic relationship between electric field and the magnitude of LTP (Figure 8F): -5 V/m (1.41+-0.049, 

N=16), 0 V/m (1.46+-0.060, N=20), 2.5 V/m (1.52+-0.068, N=15), 5 V/m (1.57+-0.057, N=14), 20 V/m 
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(1.67+-0.051, N=18), with larger effects for anodal stimulation (see also Figure 1B). Unlike the model 

however, the effect of anodal stimulation appears to be saturating at 20 V/m, perhaps reflecting saturation 

of LTP itself. This discrepancy can be accounted for by considering that synaptic weights in the model can 

grow without bound, unlike biological synapses (47).   

 
Figure 8. Dose response for computational model of TBS in apical dendrites. A) Membrane polarization of a CA1 pyramidal cell in 

response to 20 V/m cathodal (left) and anodal (right) electric field.  B) Membrane polarization in response to varying electric field magnitude.  

On the horizontal axis positive values correspond to anodal DCS and negative values correspond to cathodal DCS.  The gray curve is averaged 

over all segments in the apical dendrite, and the black curve is measured at the soma. C,D)  Distribution of DCS effects on synaptic weight in 

response to TBS in apical dendrites.  The horizontal axis is the the final synaptic weight during a simulation with DCS divided by the final 

synaptic weight in the same cell under control conditions.  ΔWDCS therefore measures the change in weight caused by DCS for each synapse.  

Inset shows example voltage traces for synapses in the tail of the distribution. These synapses correspond to cases where the control 

simulation brought the cell to slightly below threshold, such that DCS was able to cause firing and produce a large change in the weight. E) 

Mean of the synaptic weight change (ΔWDCS) due to TBS, averaged over all simulated apical synapses, as a function of DCS electric field.  F) 

Experimental LTP as a function of DCS electric field.  All data are represented as mean±s.e.m.  

 

Discussion 
         Synaptic plasticity is critical for many forms of learning and tDCS has been thought to alter synaptic 

plasticity (6,48).  How stimulation may interact with ongoing synaptic activity to alter plasticity remains 

poorly understood.  Here we found that weak electrical stimulation with constant direct currents can 

enhance LTP, while maintaining input specificity and associativity.  We propose a model in which DCS 

boosts endogenous Hebbian synaptic plasticity through modulation of pyramidal neuron membrane 

potential dynamics.  As this model predicts, the effects of DCS also reflect the input specificity and input 

associativity of the endogenous Hebbian plasticity.   

This framework produces a number of testable predictions for clinical experimentation.  First, the 

efficacy of clinical protocols should improve when tDCS is paired with a learning task which induces 

plasticity, instead of the common practice of pairing tDCS with “rest”.  Second, when tDCS is paired with a 

learning task, we postulate that the effects should be highly specific to the trained task.  Finally, the pairing 

of tDCS with Hebbian plasticity and learning can be thought of as a method for functional targeting, since 
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tDCS should only affect synaptic pathways that are already undergoing plasticity due to the paired task.  

This may alleviate the prevailing concern that focal stimulation of a desired target in the brain is not 

possible with transcranial electrical stimulation.  

 

Hebbian plasticity 

 Hebb originally proposed that coincident pre and postsynaptic firing was required for enhanced 

synaptic efficacy (49).  Over time the concept of Hebbian plasticity has come to incorporate forms of 

plasticity that depend on correlated pre and postsynaptic activity variables, regardless of the exact 

biophysical implementation (50). While we do not directly measure or manipulate postsynaptic firing here, 

TBS-induced LTP at CA1 Schaffer collaterals has been shown to be Hebbian in that it depends on pre and 

postsynaptic activity and exhibits classic Hebbian properties of input specificity and associativity (51).  The 

synaptic plasticity rule in our model is similarly Hebbian in that plasticity depends on correlated pre and 

postsynaptic activity in the form of presynaptic spike arrival and postsynaptic membrane voltage (41). 

 

Input specificity 

         Input specificity is a property of Hebbian plasticity whereby only synaptic inputs that are coactive 

with the postsynaptic neuron, and presumably relevant for the current task, are strengthened (35).  The 

computational significance of this specificity has been recognized for some time, as it allows a network of 

neurons to learn sparse, non-overlapping neural representations (52).  In practice, this is implemented in 

the brain by molecular machinery which responds to elevated activity specifically at task-relevant 

synapses (53).  Here we show that DCS enhances LTP in a manner that respects this input specificity.  DCS 

only boosts the strength of synapses that are active and already undergoing endogenous plasticity.  Based 

on this observation, we make two predictions for the optimization of tDCS effects in humans.  

First, tDCS effects in humans should similarly exhibit synaptic input specificity, which would be 

reflected as task specificity in the cognitive domain.  Indeed, there is good evidence for task-specific effects 

of tDCS, despite its lack of spatial focality in the brain (54,55).  This property may be central to the broad 

application of tDCS. It implies that tDCS can be used flexibly in combination with many different tasks and 

with limited side effects, despite stimulation reaching large regions of the brain.  Second, tDCS effects may 

be most pronounced when paired concurrently with training that induces plasticity.  Again, there is 

evidence for this in the human literature (33,56). It may be possible to leverage these properties further 

by pairing stimulation with forms of learning that are known to rely heavily on Hebbian mechanisms (57–

59). 

  

Associativity 

         Associativity refers to the potentiation of a weak synaptic input when it is paired with strong input 

at other synapses to the same neuron.  In this sense the weak input becomes associated with the strong 

input. This can serve as a cellular mechanism to bind previously unrelated information as in classical 

conditioning (60), and to form cell assemblies for associative learning (35–37).  Here we show that anodal 

DCS can further enhance this associativity, which may manifest as an increased probability of forming 

associations between stimuli during learning that involves Hebbian plasticity. We did not explore 

associativity under cathodal DCS as we saw no effect on LTP for the single pathway experiment, but we 

cannot rule out an associative effect of cathodal DCS.  
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Asymmetry 

As in our previous work (14,61) and in many tDCS studies (28,62,63), we observe asymmetric 

results with respect to DCS polarity.  Anodal DCS enhanced LTP, while cathodal DCS had no discernible 

effect with the current sample sizes. This stands in contrast to the symmetric membrane polarization 

observed with opposing field polarities (18). Of course, the brain exhibits highly nonlinear responses to 

changes in membrane voltage, from the level of ion channels to the propagation of activity in a recurrent 

network.  In this sense, it is perhaps not surprising that responses to DCS are nonlinear.  However, it 

remains a crucial topic to understand which sources of nonlinearity are most relevant for DCS, and whether 

these persist in human tDCS.  Below we speculate on some of these potential sources, although we are 

unable to disambiguate them here, as it is beyond the scope of the current study. 

The asymmetry may result from the interaction between DCS effects on different neuronal 

compartments.  For example, during cathodal stimulation, depolarization of apical dendrites can counteract 

hyperpolarization of somas so that there is no reduction in LTP (61)(Figure 8A,B).  However, this 

mechanism cannot explain the asymmetry we observed for LTP in basal dendrites (Figure 4C,D; bottom 

row), as the direction of polarization is the same in both basal dendrites and somas (Supplemental Figure 

S5A,B). While our model does predict a nonlinear dose response in basal dendrites (Supplemental Figure 

S5E), this is more likely due to nonlinear responses of voltage-gated ion channels or the synaptic plasticity 

molecular machinery. 

A nonlinear dose response may also result from the distribution of initial synaptic states in the cell 

population that we record from.  For example, the prior history of the recorded synapses may be such that 

they are biased towards an increase in strength (64).  Similarly, it could reflect the distribution of cell 

excitability, such that cells are biased toward an increase in firing. With this in mind, we analyzed the input-

output relationship between fEPSP’s and population spikes in our baseline recordings.  Indeed, we found 

that our experiments are run near a nonlinearity in this input-output relationship, such that population 

spiking could be more readily increased than decreased (Supplemental Figure S4). 

Mirroring the asymmetric effect of DC polarity, the effects with respect to phase of AC stimulation 

was also asymmetric.  This suggests that even in the absence of information about the precise timing of 

synaptic inputs when tACS is applied in humans, a net enhancement of LTP may be expected when tACS is 

paired with synaptic plasticity induction. Notably, the boost in LTP was also larger here for ACS than DCS, 

perhaps owing to the frequency response properties of pyramidal neuron membranes showing a peak at 

theta frequencies (20,65).    

         

Mechanism 

         Perhaps the most well characterized cellular effect of electrical stimulation is the modulation of 

somatic membrane potential and firing probability (18,20,61,65–70).  In human tDCS studies, it is the 

modulation of motor-evoked potentials, which have been linked to long-term plasticity (48,71,72).  Here 

we propose a model which translates acute changes in firing probability and timing into long term changes 

in synaptic plasticity.  In addition to several other phenomena (7,8,73,74), previous studies have pointed 

to the effects of DCS on BDNF release (12,13,15,75).  While the precise mechanisms remain unclear, BDNF 

appears to be released in response to postsynaptic depolarization and involved in LTP induction (76–78).  

BDNF may therefore be an essential part of the molecular machinery that translates DCS-induced effects 

on membrane potential dynamics into changes in plasticity.   
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Electric fields are also known to alter cell motility and immune responses (79,80).  However, these 

effects unfold over the course over many minutes to hours.  During prolonged stimulation, it is likely that 

various effects on cellular physiology begin to take hold simultaneously, with interactions between them.  

However, robust effects were generated here with remarkably short stimulation duration (3 s), which 

depended on stimulation polarity with sub-second timing (100 ms, Figure 1C).  Polarization of neuronal 

membranes is the only known effect of stimulation that acts on these timescales, making it a likely source 

of effects here. Inhibitory neurons were not included in our model as the effects of DCS are expected to be 

small, at least for neurons with symmetric morphology (19). However, we cannot rule out that DCS 

polarizes inhibitory neurons on a rapid time scale, which in turn may affect plasticity either directly or 

through network effects. Prolonged stimulation necessarily includes effects operating on both short 

timescales (membrane polarization, plasticity induction) and longer timescales (cell motility and immune 

responses), e.g. (81).  However, shortening the stimulation and pairing it with quicker (sub-minute) bouts 

of training as we have done here, could be a useful strategy to isolate effects based on Hebbian plasticity 

induction, which operate on faster timescales.   

Our experiments and computer simulations support a model in which DCS affects TBS-induced LTP 

primarily by somatic polarization and changes in somatic spiking (Figures 4-6).  However, DCS-induced 

dendritic polarization is also likely to contribute to plasticity, as we suspect for 20 Hz tetanus experiments 

(Figure 6)(14).  Our computational model can reconcile these results by considering the voltage dynamics 

during induction (Figure 6).  

We propose a general principle that emerges from this result: when endogenous plasticity is 

primarily driven by somatic sources of depolarization (e.g. spikes), DCS-induced polarization at the soma 

determines effects on plasticity. When endogenous plasticity is primarily driven by dendritic sources of 

depolarization (e.g. subthreshold depolarization or dendritic spikes), DCS-induced polarization at the 

dendrite determines effects on plasticity.  The relative contribution of somatic and dendritic DCS effects, 

and therefore the overall effect on plasticity, is not always obvious.  The spatial location and temporal 

pattern of active synapses (including background synaptic input), as well as neuromodulator 

concentrations and intrinsic excitability can  all shift the endogenous voltage dynamics towards somatic or 

dendritic dominance.  Computational models, such as the one presented here, can help in this regard by 

exploring how DCS interacts with this large parameter space of endogenous synaptic activity.  This should 

be an important next step for future work. 

 

Brain region 

         While electric current does reach the hippocampus and subcortical structures during stimulation 

(82), tDCS is thought to primarily act on neocortex.  Here we chose hippocampus as a model system for the 

wealth of studies on hippocampal synaptic plasticity and the much neater organization of input pathways.  

While not identical, many excitatory plasticity mechanisms are conserved in pyramidal neurons between 

cortex and hippocampus (83), making our observations here informative for cortex as well.  Indeed, the 

plasticity rule used here in our model has also been used to describe plasticity at neocortical excitatory 

synapses (26,41,43).  Of course, further work is needed to validate this relationship with respect to DCS 

effects.  It is also worth noting that this work, in addition to other recent studies (12,15,84), motivates the 

hippocampus as a target for tDCS. 

 

Dose response  
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Here we used a 20 V/m electric field in order resolve effects with a reasonable number of animals.  

Electric fields in the brain during typical tDCS experiments are expected to be 1 V/m or less (45). While we 

do not measure effects with this intensity, our computational model predicts a monotonic relationship 

between the population-mean synaptic plasticity and electric field magnitude (Figure 8C). For a given DCS 

polarity, the model predicts a linear relationship between field magnitude and mean plasticity effects 

(Figure 8E).  To first order this implies population mean effects of ~1% for fields of 1V/m (we observe 

~20% effects for 20 V/m), in line with effect sizes observed for acute effects of DCS (70). However, 

experimentally we observe a saturation with increasing stimulation intensity (Figure 8F).  This linear 

approximation may therefore underestimate effect sizes with weaker fields.  

We also note recent efforts to increase stimulation intensity up to 6mA in humans by distributing 

current across multiple electrodes (85), which can achieve electric fields of 3 V/m in the brain (82).  Given 

our estimates here, this would generate effects on synaptic plasticity of ~3%, notably affecting a few 

synapses most strongly (Figure 8D).  Recent in vivo rodent work suggests that a motor learning task leads 

to potentiation of ~1-2% of synaptic spines in a given volume of cortex (86), which is comparable to what 

we expect tDCS to achieve.  Effect sizes of tDCS on synaptic plasticity in humans are therefore likely to be 

in a behaviorally relevant range. 

Methods 

All animal experiments were carried out in accordance with guidelines and protocols approved by the 

Institutional Animal Care and Use Committee (IACUC) at The City College of New York, CUNY (Protocol 

846.3 and 2016-24). 

  

Brain slice preparation 

Hippocampal brain slices were prepared from male Wistar rats aged 3–5 weeks old, which were deeply 

anaesthetized with ketamine (7.4 mg kg−1) and xylazine (0.7 mg kg−1) applied I.P., and sacrificed by cervical 

dislocation. The brain was quickly removed and immersed in chilled (2–6 °C) dissecting artificial 

cerebrospinal fluid (aCSF) solution containing (in mM): Choline chloride, 110; KCl, 3.2; NaH2PO4, 1.25; 

MgCl2, 7; CaCl2, 0.5; NaHCO3, 26; d-glucose, 10; sodium ascorbate, 2; sodium pyruvate, 3.  Transverse slices 

(400 µm thick) were cut using a vibrating microtome (Campden Instruments) and transferred to a chamber 

containing a recovery aCSF at 34 °C :  NaCl, 124; KCl, 3.2; NaH2PO4, 1.25; MgCl2, 1.3; CaCl, 2.5; NaHCO3, 26; 

d-glucose, 25; sodium ascorbate, 2; sodium pyruvate, 3. After 30 minutes in the recovery solution, slices 

were transferred to a holding chamber containing recording aCSF at 30 °C: NaCl, 124; KCl, 3.2; NaH2PO4, 

1.25; MgCl2, 1.3; CaCl, 2.5; NaHCO3, 26; d-glucose, 25; for at least 30 minutes.  Finally, slices were 

transferred to a fluid–gas interface chamber (Harvard Apparatus) perfused with warmed recording aCSF 

(30.0 ± 0.1 °C) at 2.0 ml min−1.  Slices were allowed to acclimate to the recording chamber for at least 30 

minutes before recording started.  The humidified atmosphere over the slices was saturated with a mixture 

of 95% O2–5% CO2. All aCSF solutions were bubbled with a mixture of 95% O2–5% CO2.  Recordings started 

approximately 2 h after the animal was sacrificed. 

  

fEPSP recordings 

Field excitatory postsynaptic potentials (fEPSP’s) were evoked using a platinum–iridium bipolar 

stimulating electrode placed in either stratum radiatum (apical experiments) or stratum oriens (basal 
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experiments) of CA1 within 200 μm of the somatic layer. Recording electrodes were made from glass 

micropipettes pulled by a Sutter Instruments P-97 and filled with recording aCSF (resistance 1–8 MΩ).  A 

“dendritic” recording electrode was placed in stratum radiatum (apical) or stratum oriens (basal) 

approximately 400 µm from the stimulating electrode in CA1 to record fEPSP’s.  The stimulating electrode 

and dendritic recording electrode were placed at approximately the same distance from the CA1 somatic 

layer. For all experiments, a second “somatic” recording electrode was placed in the CA1 somatic layer to 

record population spikes.  For two-pathway experiments (Figures 2 and 3), a second stimulating electrode 

was placed on the opposite side of the recording electrode.  

fEPSP’s were quantified by the average initial slope, taken during the first 0.5 ms after the onset of 

the fEPSP. The bipolar stimulus intensity was set to evoke fEPSP’s with 30-40% of the maximum slope, 

which was determined at the onset of recording. Baseline fEPSP’s were recorded once a minute for at least 

20 minutes before any plasticity induction was applied and only if a stable baseline was observed. For two 

pathway experiments, stimulation of each pathway was interleaved with an offset of 30 s.  After plasticity 

induction, fEPSP’s were again recorded once per minute for 60 minutes.  To measure synaptic plasticity, all 

fEPSP slopes were normalized to the mean of the 20 fEPSP’s immediately preceding induction.  The amount 

of LTP in each slice is quantified as the mean of the last 10 minutes of normalized responses (51-60 minutes 

after induction).  Group data are reported as mean and standard error of the mean across slices.  Number 

of slices is indicated with variable N wherever statistics are reported. 

 

DCS 

Uniform extracellular electric fields (±20 V/m) were generated by passing constant current (D/A driven 

analog follower; A-M Systems, WA, USA) between two large Ag-AgCl wires (1 mm diameter, 12 mm length) 

positioned in the bath across the slice starting 0.5 s before the onset of TBS and ending 0.5 S after the end 

of TBS (4 s total). Slices were oriented such that the somato-dendritic axis of CA1 pyramidal neurons was 

parallel to the electric field between the DCS wires (Fig. 1A). We name each polarity of DCS based on the 

orientation of the field relative to CA1 pyramidal neurons, and how pyramidal neurons are expected to be 

polarized.  Here, anodal DCS depolarizes CA1 pyramidal neuron somas as it is expected to do in cortical 

pyramidal neurons under an anode in tDCS.  Cathodal stimulation refers to the opposite polarity. Before 

each recording, DCS current intensity was calibrated to produce a 20 V/m electric field across each slice 

(typically 100–200 µA) by adjusting the current so that two recording electrodes separated by 0.8 mm in 

the slice measured a voltage difference of 16 mV (16 mV/0.8 mm = 20 V/m). 

 

Quantifying population somatic activity 

To quantify the amount of somatic activity in response to synaptic input we used the following method.  

Raw voltage data recorded in the somatic layer was filtered with a 300 Hz highpass ARMA filter.  The filter 

was designed using the butterworth algorithm via the signal.iirdesign function in the scipy package (design 

parameters: fs=10000; nyquist=fs/2; wp=300/nyquist; ws=200/nyquist; gpass=1; gstop=20; 

ftype=’butter’).  We then defined somatic activity for each evoked response, 𝑠, as the integral of the high 

frequency envelope: 

𝑠𝑖𝑗 = ∫ 𝑑𝑡 𝑒𝑛𝑣(𝑡)
𝑡𝑖𝑗+8 𝑚𝑠

𝑡𝑖𝑗+2 𝑚𝑠

 

𝑒𝑛𝑣(𝑡) = |𝐻 (𝑥𝑠𝑜𝑚𝑎
ℎ𝑖𝑔ℎ (𝑡))| 
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where 𝑥𝑠𝑜𝑚𝑎
ℎ𝑖𝑔ℎ

 is the highpassed extracellular voltage recorded in the somatic layer, and H() is the hilbert 

transform calculated in python using signal.hilbert from the scipy package. tij is the onset time for the ith 

input of the jth burst, where 𝑖 ∈ {1,2,3,4}and 𝑗 ∈ {1,2, . . .15}.  The somatic activity was calculated as the 

integral of this high frequency envelope in the time window 2-8 ms after tij, chosen to avoid including the 

bipolar stimulus artifact.  Somatic activity was then normalized to the mean of baseline values (20 

responses prior to induction).  The same method was used to calculate somatic activity in the population 

of model neurons (Figure 5C), except the recorded extracellular voltage in the somatic layer was replaced 

with the intracellular somatic voltage averaged over all simulated model neurons. 

 

Quantifying population spike timing 

We expected that DCS would cause a shift in the average spike timing in the population during TBS 

(Supplemental Figure S2E).  To create a measure of the mean spike timing, we performed a center of mass 

calculation on the somatic activity envelope 

𝑡𝑗̅ = ∑
1

𝑠𝑖𝑗
∫ 𝑑𝑡 𝑡 ∙ 𝑒𝑛𝑣(𝑡)

𝑡𝑖𝑗+8 𝑚𝑠

𝑡𝑖𝑗+2 𝑚𝑠

 

𝑖

 

where 𝑡𝑗  is the population spike timing of the jth burst, env is the envelope of the highpassed extracellular 

voltage (see above), tij is the onset time for the  ith input of the jth burst, where 𝑖 ∈ {1,2,3,4} and 𝑗 ∈

{1,2, . . .15}, and sij is the somatic activity as in the previous section.  Again, we restrict the integrals to 

between 2 and 8 ms after each input pulse to avoid contributions of the bipolar stimulus artifact.  𝑡𝑗  can be 

thought of as the temporal center of mass of the somatic activity during a burst.  If more neurons in the 

population fire earlier during the jth burst, then  𝑡𝑗  should decrease. 

 

Quantifying dendritic integration 

To quantify the amount of dendritic integration in response to synaptic input we used the following 

method.  Raw voltage data recorded in the dendrites (either stratum radiatum or stratum oriens) was 

filtered with a 5-50 Hz bandpass ARMA filter.  The filter was designed using the butterworth algorithm via 

the signal.iirdesign function from the scipy package (parameters: fs=10000; nyquist=fs/2; wp=[5/nyquist, 

50/nyquist]; ws=[0.1/nyquist, 100/nyquist]; gpass=1; gstop=20; ftype=’butter’).  We then defined 

dendritic integration, 𝑑,  for each burst during TBS as the integral of the band-passed signal: 

𝑑𝑗 = ∫ 𝑑𝑡|𝑥𝑑𝑒𝑛𝑑
𝑙𝑜𝑤 (𝑡)|

𝑡𝑗+100𝑚𝑠

𝑡𝑗+2𝑚𝑠

 

where 𝑥𝑑𝑒𝑛𝑑
𝑙𝑜𝑤  is the band-passed extracellular voltage recorded in the dendrite. For each evoked burst, j, the 

dendritic integration was calculated as the integral of this low frequency signal in the time window 2-100 

ms after the onset of the burst, tj.  Dendritic integration was then normalized to the mean of baseline values 

calculated for each fEPSP (20 responses prior to induction).  The same method was used to calculate 

dendritic integration in the population of model neurons (Figure 5D), except the recorded dendritic 

extracellular voltage was replaced with the intracellular voltage averaged over all recorded dendritic 

segments in the simulated population of cells. 

 

Neuron model 

Individual pyramidal cells were modeled in Python using the NEURON simulation package (87).  To 

construct the model neuron, we reproduced the detailed biophysical neuron model of Migliore et al. (38), 
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and then added parameter changes based on more recent studies. Unless otherwise specified, parameters 

are the same as in (38).   

An L-type calcium channel was added throughout the cell as in (88).  Sodium conductance in the 

axon was increased to replicate spike initiation in the axon initial segment (89).  Synapses were set to have 

both AMPA and NMDA receptors, which were modeled as the difference of two exponentials.   NMDAR 

conductance was modified by a voltage dependent mechanism as done previously (88,90,91). See 

supplemental tables for the full set of NEURON model parameters.  

Synaptic conductances were modified by presynaptic short-term plasticity model as in (92). 

Specifically, AMPAR and NMDAR conductances were multiplied by a factor A, which captures short-term 

facilitation and depression dynamics at presynaptic terminals.  A is the product of a facilitation variable F, 

and 3 depression variables D1, D2, D3 

𝐴 = 𝐴0𝐹𝐷1𝐷2𝐷3, 

 

where A0 is a constant parameter, which we set to 1 at the start of simulations.  At the time of each 

presynaptic spike, D is multiplied by a factor d such that  

𝐷 → 𝐷𝑑 

while a factor f is added to F such that 

𝐹 → 𝐹 + 𝑓 

Both F and D decay exponentially back towards 1 between spikes according to 

𝜏𝐷

𝑑𝐷(𝑡)

𝑑𝑡
= 1 − 𝐷(𝑡) 

𝜏𝐹

𝑑𝐹(𝑡)

𝑑𝑡
= 1 − 𝐹(𝑡) 

Each depression variable D1, D2, D3 follows the same dynamics, but with different parameters 𝜏𝐷and d.  The 

parameters of this short-term plasticity model were fit to the dynamics of fEPSP slopes during the various 

plasticity induction protocols in (14)(i.e. 0.5, 1, 5, 20 Hz trains) and during TBS in this study.  The fit was 

constructed to minimize the squared error between values of A and the normalized fEPSP during induction 

using the lsqcurvefit function in matlab.  See supplemental Table 2 for the resulting parameters. 

The response of an individual pyramidal neuron to the bipolar stimulus in our brain slice 

experiments was modeled by randomly selecting a group of dendritic segments.  AMPAR and NMDAR 

conductances were then activated simultaneously in the selected segments.  In our experiments we expect 

that the bipolar stimulus will elicit this synaptic input in a population of pyramidal cells, with the number 

and location of synapses that are activated varying between cells.   

For simplicity, we assume that an integer number of synapses ranging from 5 to 16 can be activated 

on each cell.  This range was selected empirically so that the mean number of synapses produced somatic 

responses that were close to firing threshold during simulation of TBS.  For each integer number of 

activated synapses, the synapses are randomly distributed on the dendrites, and this was repeated 20 

times independently to create a population of 12*20=240 cells.  For each cell, synapse locations were 

drawn randomly and with replacement from a uniform distribution over all dendritic segments that are 

allowed by the given experiment (e.g. basal dendrites or apical dendrites within 300 μm from the soma).  

By sampling with replacement, we allow multiple synapses to be activated on the same dendritic segment, 

mimicking the random activation of clustered synaptic inputs. 
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The electric field during DCS was modeled as uniform extracellular voltage gradient.  The 

extracellular voltage at each point in space is then conveyed to each segment of the neuron by NEURON’s 

extracellular mechanism, as has been done previously (23).  Since we are interested primarily in the effect 

of the extracellular field, for each simulation that applies an electric field there is a corresponding control 

simulation in which the NEURON model is identical except for the extracellular applied voltage.  The effect 

of the applied field can therefore be compared to a precise counterfactual, where all other aspects of the 

model are identical. 

 

Voltage-based long-term plasticity rule 

 We are interested in how synaptic input and postsynaptic voltage dynamics during induction leads 

to long-term synaptic plasticity (and how DCS can modulate this plasticity).  To simulate long-term synaptic 

plasticity in the model, we use the voltage-dependent plasticity rule of Clopath et al. (41). As done 

previously, we assume that actual changes in long-term synaptic strength are delayed relative to the 

induction period and do not contribute to the dynamics during induction.  The plasticity rule is therefore 

used as a method to compute the final weight change expected at the end of induction and this calculation 

was done “offline”, after simulating the induction protocol.  The synaptic weight change is calculated with 

the following rule (see (41) for further details), which requires information that is derived solely from 

presynaptic input arrival times and postsynaptic membrane potential measured locally at the synapse: 
𝑑

𝑑𝑡
𝑤𝑖(𝑡) = −𝐴𝐿𝑇𝐷𝑋𝑖(𝑡)[𝑢−(𝑡) − 𝜃−]+  +  𝐴𝐿𝑇𝑃𝑥𝑖(𝑡)[𝑢(𝑡) − 𝜃+]+[𝑢+(𝑡) − 𝜃−]+ 

where wi is the weight of the ith synapse, ALTD is a parameter that controls the rate of long-term depression 

(LTD), ALTD is a parameter that controls the rate of LTP, Xi is the presynaptic spike train, 𝑥𝑖  is a lowpass 

filtered version of the presynaptic spike train, u is the postsynaptic membrane potential measured locally 

at the synapse, 𝑢− and 𝑢+ are lowpass filtered versions of the postsynaptic potential,  𝜃− is an LTD threshold 

parameter, 𝜃+ is an LTP threshold parameter, and [⋅]+indicates positive rectification.  The dynamics of 𝑢−, 

𝑢+, and 𝑥𝑖  are given by 

𝜏−

𝑑

𝑑𝑡
𝑢−(𝑡) = −𝑢−(𝑡) + 𝑢(𝑡) 

𝜏+

𝑑

𝑑𝑡
𝑢+(𝑡) = −𝑢+(𝑡) + 𝑢(𝑡) 

𝜏𝑥

𝑑

𝑑𝑡
𝑥𝑖(𝑡) = −𝑥𝑖(𝑡) + 𝑋𝑖(𝑡) 

where 𝜏−, 𝜏+, and 𝜏𝑥 are time constants.   We note that in the original learning rule of Clopath et al. (41), 

ALTD is a function of time and postsynaptic voltage, i.e. ALTD(t,u), which implements homeostatic plasticity. 

Because we compute synaptic weight changes offline, a homeostatic mechanism is not needed to stabilize 

the voltage dynamics.  To reduce the number of parameters of our model, we therefore treat ALTD as a 

constant.  We apply a lower bound to all synapses such that wi is set to zero if wi crosses zero from above. 

  Parameters for the plasticity model were manually selected so as to replicate classic spike-timing 

dependent plasticity experiments (Supplemental Figure S1) and to qualitatively reproduce the effects of 

DCS on LTP.  We are mainly concerned with relative changes in LTP due to DCS (or spike timing/frequency 

in the case of replicating STDP experiments) and so do not adjust parameters to quantitatively reproduce 

the amount of LTP in each experiment.  Under these constraints we were able to use the same set of 

parameters for each simulation (Supplemental Table 1).  Numerical integration using the forward euler 

method (0.025 ms time step) was used to solve for wi(t) 
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Additional simulation details for Figure 6 

To emulate the two-pathway experiments of Figure 3, a population of cells was generated as 

described above, but now two groups of synapses were selected to be activated on each cell, a strong and 

a weak group.  Note that because synapses were selected randomly with replacement, a given synapse was 

allowed to be part of both groups, although this was rare. As in our experiments, three sets of simulations 

were run: activation of only the weak pathway at 5 Hz, activation of only the strong pathway with TBS, or 

activation of both pathways simultaneously.   

We hypothesized that pairing the two pathways boosted LTP by facilitating spikes that 

backpropagate from the soma to synapses in both pathways. To test this hypothesis in our model we 

wanted to measure spikes that occurred at each synapse, and importantly whether a given spike was 

initiated in the soma. Of course, if a spike is initiated in the soma, it should occur before a spike is observed 

in the dendrite.  To evaluate this time difference, we first detected the onset of spikes in each segment of 

the model neuron by measuring the time at which the voltage crossed a threshold of -30 mV from below.  

For each segment, a binary vector of spike times was therefore created, with each entry 

corresponding to a time step in the simulation (1=spike detected, 0=no spike detected).  The cross 

correlation was computed between this spike vector and the corresponding vector measured at the soma.  

This yields binary vector for each segment, where each entry corresponds to a possible time delay between 

that segment and the soma.  A value of 1 in this vector indicates that the corresponding delay was observed.  

By averaging this cross correlation over all activated synaptic locations, we get a probability density over 

different spike delays between the soma and dendrite.  In general, a spike can propagate throughout the 

entire neuron within ~2 ms.  We therefore assume that temporal correlations occurring within this +-2 ms 

window correspond to delays that are due to the propagation of a single spike, while correlations that are 

outside of this +-2 ms window correspond to delays between different spikes.  We have set up the analysis 

so negative time delays correspond to spikes that appeared in the soma first.  Spikes that initiate in the 

soma and propagate to the dendrite should therefore add density between -2 and 0 ms (Figure 6B). 

The metric based on spike cross-correlation only captures spike events that occur in both the soma 

and dendrite. However, spikes can also initiate in the dendrite, but may not propagate completely to the 

soma.  These local spikes would also make a large contribution to synaptic plasticity at a subset of local 

synapses, but do not contribute to the cross correlation metric. We therefore also considered the overall 

number of dendritic spikes (global and local) as a function of time during each theta burst at which they 

occurred.  We divided the simulation into individual theta bursts, and within each burst, the simulation 

was divided into 1 ms time bins.  Spikes were counted in these time bins across all synapses.  By summing 

across all synapses, we get the total number of dendritic spikes that occur as a function of the time since 

burst onset (Figure 6C). 

 

Simulation details for Figure 8 

Membrane polarization (Figure 8A,B) was calculated by simulating a single cell without synaptic 

input for 100 ms with varying applied electric field.  Membrane polarization due to DCS was calculated in 

each compartment as the voltage at the end of the simulation minus the corresponding voltage in the 

control simulation without DCS. 

For each simulation and each activated synapse k, we calculate the effect of DCS on plasticity 
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∆𝑊𝐷𝐶𝑆
𝑘 =

𝑊𝐷𝐶𝑆
𝑘 (𝑇)

𝑊𝑐𝑜𝑛𝑡𝑟𝑜𝑙
𝑘 (𝑇)

 

where T is the duration of the simulation, 𝑊𝐷𝐶𝑆
𝑘 (𝑇) is the final weight of the kth synapse at the end of the 

simulation with DCS, 𝑊𝑐𝑜𝑛𝑡𝑟𝑜𝑙
𝑘 (𝑇) is the weight at the end of the corresponding control simulation where 

no DCS was applied.  Note that all DCS simulations have a control simulation in which all other details are 

identical.  Therefore, any deviation of ∆𝑊𝐷𝐶𝑆
𝑘  from 1 represents the effect of DCS on the kth synaptic weight. 

 For a given DCS waveform (polarity and magnitude), we are interested in the distribution of ∆𝑊𝐷𝐶𝑆
𝑘  

over all k synapses in the population.  Figure 8E displays the mean of this distribution as a function of DCS 

intensity. 
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Supplemental Material 
 

Simulation of STDP experiments 

To help constrain our computational model, we simulated canonical STDP results in the literature (26,43).  

First, we simulated STDP by pairing spiking generated at the soma with synaptic inputs on the proximal 

apical dendrites (5 synapses, randomly distributed).  Somatic spikes were evoked by a 5 ms, 1 nA current 

injection in the soma at varying temporal offsets from synaptic input (Δt), with positive Δt corresponding 

to pre before post pairing (pre-post) and negative Δt corresponding to post before pre pairing (post-pre). 

Synaptic weights at the end of the simulation were normalized to the initial baseline value and plotted as 

a function of Δt (Figure S1A).  The detailed neuron model with the specified plasticity parameters (Table 

1) qualitatively reproduces the canonical STDP window (Figure S1A), where pre-post pairing leads to 

potentiation and post-pre pairing leads to depression.  We next simulated the experimentally observed 

frequency-dependence of STDP (26,43).  Here we performed similar simulations but with Δt fixed at either 

-10 or +10 ms and varied the frequency of pre and postsynaptic pairings (1, 5, 10, 20, 30, 40, 50, 75, 100 

Hz, Figure S1B). 

 

 

 
Figure S1.  Model reproduces classic stdp with frequency dependence. A) Final synaptic weight (average across the entire 

population of synapses) as a function of pre-post timing for 6 pairings at 20 Hz.  Positive dt corresponds to pre-post pairings, 

while negative dt corresponds to post-pre pairings.  B) Final synaptic weight (average across the entire population of synapses) 

as a function of pairing frequency in STDP simulations.  The red curve corresponds to 6 post-pre pairings (Δt =-10 ms). The 
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blue curve corresponds to 6 pre-post pairings (Δt =+10 ms).  The cyan and magenta boxes mark data points that are from 

identical simulation in A and B 

 

 
Figure S2.  Extracellular voltage dynamics during induction. A) Schematic of experimental design for TBS experiments in  

apical (top row) and basal (bottom row) dendrites, depicting the orientation of anodal (red) and cathodal (blue) electric fields 

with respect to CA1 pyramidal cells.  Black traces indicate control experiments, where no electric field was applied.  B) DCS has 

no significant effect on fEPSP slopes recorded during induction. C) Anodal DCS enhances population spikes recorded at the soma 

in response to both apical and basal synaptic activity.  D) Same data as in C, but showing on the first pulse during each burst of 

the TBS protocol.  The effect of DCS is most pronounced on the first pulse.  E) DCS shifts average spike timing for each burst 

during induction (see methods “quantifying somatic activity” for details) F) DCS has opposite effects on dendritic integration in 

response to  apical or basal synaptic input.  The horizontal axes represent either the number of individual bipolar stimulus 

pulses (60 in total) or bursts (15 in total) applied to activate synapses during induction. All data normalized to the mean of the 

20 baseline responses before induction and are represented as mean±s.e.m.  

 

 

 

 
Figure S3. Model reproduces effects of AC stimulation. A) Schematic of experimental design (top) and model neuron 

morphology and synapse distribution (bottom).  B) Timing of synaptic inputs and applied electric field for both experiment and 

model.  C) For peak TBS (red), each burst during the TBS protocol is timed to the peak of the extracellular field, such that 

pyramidal cell somas are depolarized when the synaptic inputs arrive. For trough TBS (blue), each burst during the TBS protocol 

is timed to the trough of the extracellular field, such that pyramidal cell somas are hyperpolarized when the synaptic inputs 

arrive.  D) Example voltage traces from somatic compartment of model neuron during first two bursts of simulation. E) Resulting 

experimental LTP in each condition.  As in Figure 1C, fEPSP slopes are averaged over the last 10 minutes of recording in each 

condition.  F) Model LTP predictions qualitatively match (same direction of DCS effect) experimental LTP results (D). The 
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vertical axis (Norm. weight) is the average weight of all weak pathway synapses at the end of simulation, calculated offline using 

the learning rule (41).  

 

 
Figure S4. Input-output curve reveals that the baseline of our experiments  is set near a nonlinearity. Baseline population 

spike amplitude as a function of baseline fEPSP slope for all slices.  fEPSP slopes are normalized to the maximum value detected 

in the process of setting baseline bipolar stimulus intensity (see methods “fEPSP recordings”).  The horizontal axis can therefore 

be thought of as the fraction of activated synapses in the population.  Population spikes are normalized to the population spike 

magnitude recorded when the maximum fEPSP is established.  The gray box highlights approximately where baseline fEPSP’s 

were set before running LTP experiments (30-40% of maximum).  Note that experiments are run near a nonlinearity in the 

input-output curve, such that system is more responsive to increases in input rather than decreases in input. 

 

 
Figure S5. Dose response in computational model for TBS in basal dendrites. Same as Figure 8 but for basal dendrites.  

 

 

Acute effects on synaptic input 
To rule out potential effects of DCS directly on the recruitment of presynaptic axons, we analyzed acute effects of DCS 

on fiber volleys, acute fEPSP slope, and paired-pulse ratio (PPR).  To capture potential acute effects of DCS, all data are taken 

from the first pulse during induction (first two pulses for PPR), and normalized to the mean of baseline responses.  Fiber volleys 

were calculated by measuring the dendritic extracellular voltage at 1 ms and 2 ms after bipolar pulse onset.  A line was fit 
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between these two points, and the unnormalized fiber volleys were taken as the average voltage below this line.  Paired pulse 

ratio is taken as the ratio of the second to the first normalized fEPSP slope during TBS induction (10 ms inter-pulse interval).   

We found no significant effects of DCS on fEPSP slope (Figure S6A;  control 1.006±0.007, N=31; anodal 0.98±0.016, 

N=21, p=0.14 vs. control,  cathodal 1.017±0.014, N=11, p=0.505 vs. control), fiber volleys (Figure S6B;  control 1.012±0.038, 

N=28; anodal 1.039±0.03, N=13, p=0.65 vs. control; cathodal 1.007±0.084, N=3, p=0.966 vs. control), or paired pulse ratio 

(Figure S6C; control 0.766±0.022, N=31;  anodal 0.758±0.022, N=21, p=0.816 vs. control; cathodal 0.703±0.033, N=11, p=0.166 

vs. control).  We note that PPR is typically measured with longer inter-pulse interval (e.g. 50 ms).  However, if presynaptic release 

is altered by DCS, then this should be reflected in PPR measured with the interval used here.  Moreover, our previous study with 

an identical setup (14) found no effects on PPR with a 50 ms interval. 

 
Figure S6.  Acute effects of DCS on measures of presynaptic release.  DCS did not have significant effects on fEPSP slope (A), fiber volleys 

(B), or paired pulse ratio (C). 

 

 

 

Supplemental Table 1. Parameters for voltage-based plasticity rule 

Parameter Value Explanation 

𝐴𝐿𝑇𝐷 0.1 mV-1 LTD rate 

𝐴𝐿𝑇𝑃 0.04 mV-2 LTP rate 

𝜃− -70 mV LTD threshold 

𝜃+ -67 mV LTP threshold 

𝜏𝑥 8 ms presynaptic input trace lowpass time constant 

𝜏− 20 ms LTD voltage trace lowpass time constant 

𝜏+ 3 ms LTP voltage trace lowpass time constant 

 

Supplemental Table 2. Neuron model synaptic parameters 

Parameter Value Explanation 

𝜏𝑎𝑚𝑝𝑎
𝑜𝑝𝑒𝑛

 0.2 ms AMPA receptor conductance rise time constant 

𝜏𝑎𝑚𝑝𝑎
𝑐𝑙𝑜𝑠𝑒  2 ms AMPA receptor conductance decay time constant 

𝜏𝑛𝑚𝑑𝑎
𝑜𝑝𝑒𝑛

 1 ms NMDA receptor conductance rise time constant 

𝜏𝑛𝑚𝑑𝑎
𝑐𝑙𝑜𝑠𝑒  50 ms NMDA receptor conductance decay time constant 

𝑔𝑎𝑚𝑝𝑎 1 nS peak AMPA receptor conductance 

𝑔𝑛𝑚𝑑𝑎  1 nS peak NMDA receptor conductance 
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𝜏F 94 ms Facilitation time constant  

𝜏D1
 540 ms 1st depression time constant 

𝜏D2
 45 ms 2nd depression time constant 

𝜏D3
 120 s 3rd depression time constant 

𝑓 5 Additive facilitation factor 

𝑑1 0.45 1st Multiplicative depression factor 

𝑑2 0.12 2nd Multiplicative depression factor 

𝑑3 0.98 3rd Multiplicative depression factor 

 

Supplemental Table 3. Neuron model membrane conductance parameters 

Parameter Value Explanation 

𝑔𝑁𝑎+
𝑑𝑒𝑛𝑑  25 mS*cm-2  Voltage gated sodium conductance in 

dendrites 

𝑔𝑁𝑎+
𝑠𝑜𝑚𝑎  37.5 mS*cm-2  Voltage gated sodium conductance in soma 

𝑔𝑁𝑎+
𝑎𝑥𝑜𝑛  2500 mS*cm-2  Voltage gated sodium conductance in axon 

ENa+  55 mV  Sodium reversal potential 

EK+  -90 mV  Potassium reversal potential 

Eh -30 mV  H-current reversal potential 

ECa2+  140 mV Calcium reversal potential 

𝑔𝐾𝐷𝑅
+  10 mS*cm-2  Delayed rectifier potassium peak 

conductance 

𝑔𝐾𝐴
+  30 mS*cm-2  A-type potassium peak conductance 

gh .05*(1+3d/100) 
mS*cm-2  

H-channel conductance.  Linearly increasing 
with distance d (in µm) from the soma 

𝑔𝐶𝑎𝐿𝑣
2+  1.25 mS*cm-2  L-type calcium channel peak conductance 

𝑉
1/2

ℎ𝑝𝑟𝑜𝑥  -82 mV  Activation threshold for proximal (<100 µm 
from soma) h channel conductance 

𝑉1/2
ℎ𝑑𝑖𝑠𝑡  -90 mV  Activation threshold for distal (>100 µm 

from soma) h channel conductance 

𝜏𝑎𝑚𝑝𝑎
𝑐𝑙𝑜𝑠𝑒  2 ms AMPA receptor conductance decay time 

constant 

𝜏𝑛𝑚𝑑𝑎
𝑜𝑝𝑒𝑛

 1 ms NMDA receptor conductance rise time 
constant 

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 9, 2019. ; https://doi.org/10.1101/562322doi: bioRxiv preprint 

https://doi.org/10.1101/562322
http://creativecommons.org/licenses/by-nd/4.0/


 

𝜏𝑛𝑚𝑑𝑎
𝑐𝑙𝑜𝑠𝑒  50 ms NMDA receptor conductance decay time 

constant 

𝑔𝑎𝑚𝑝𝑎  1 nS peak AMPA receptor conductance 

𝑔𝑛𝑚𝑑𝑎  1 nS peak NMDA receptor conductance 
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