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Abstract	
Coordinated	skills	 such	as	 speech	or	dance	 involve	 sequences	of	actions	 that	 follow	syntactic	
rules	in	which	transitions	between	elements	depend	on	the	identity	and	order	of	past	actions.	
Canary	 songs	 are	 comprised	 of	 repeated	 syllables,	 called	 phrases,	 and	 the	 ordering	 of	 these	
phrases	follows	long-range	rules,	where	the	choice	of	what	to	sing	depends	on	song	structure	
many	 seconds	 prior.	 The	 neural	 substrates	 that	 support	 these	 long-range	 correlations	 are	
unknown.	Using	miniature	head-mounted	microscopes	and	cell-type-specific	genetic	tools,	we	
observed	 neural	 activity	 in	 the	 premotor	 nucleus	 HVC	 as	 canaries	 explore	 various	 phrase	
sequences	in	their	repertoire.	We	find	neurons	that	encode	past	transitions,	extending	over	4	
phrases	and	spanning	up	to	4	seconds	and	40	syllables.	These	neurons	preferentially	encode	past	
actions	rather	than	future	actions,	can	reflect	more	than	a	single	song	history,	and	occur	mostly	
during	 the	 rare	 phrases	 that	 involve	 history-dependent	 transitions	 in	 song.	 These	 findings	
demonstrate	 that	 network	 dynamics	 in	 HVC	 reflect	 preceding	 behavior	 context	 relevant	 to	
flexible	transitions.	
	

Main	body	
	

Flexible	behavior	often	contains	complex	transitions	-	points	where	the	next	action	depends	on	
memory	of	choices	made	several	steps	in	the	past.	Canary	song	provides	a	highly	tractable	model	
for	studying	flexible	sequence	production.	These	songs	are	highly	complex,	but	are	composed	of	
well-defined	 units	 or	 syllables.	 These	 syllables	 are	 produced	 in	 trilled	 repetitions	 known	 as	
phrases	(Figure	1a)	that	are	approximately	one	second	long.	Phrases	are	organized	in	sequences	
to	produce	songs	that	are	typically	20-40	seconds	 long,	and	the	sequences	of	phrases	exhibit	
long-range	syntax	rules1.	Specifically,	phrase	transitions	following	about	15%	of	the	phrase	types	
show	 strong	 context	 dependence	 that	 extends	 2-5	 phrases	 into	 the	 past.	 These	 long-range	
correlations	extend	over	dozens	of	syllables,	spanning	time	intervals	of	several	seconds	(Figure	
1b,c).	In	premotor	brain	regions,	neural	activity	supporting	long-range	complex	transitions	will	
reflect	 context	 information	 as	 redundant	 representations	 of	 ongoing	 behavior2–5.	 Such	
representations,	referred	to	here	as	‘hidden	neural	states’,	are	predicted	in	models	of	memory-
guided	 behavior	 control6,	 but	 are	 challenging	 to	 observe	 during	 unconstrained	 motion	 in	
mammals7–14	or	in	songbirds	with	simple	syntax	rules15.		
	
Like	motor	control	 in	many	vertebrate	species,	canary	song	is	governed	by	a	‘cortico-thalamic	
loop’	that	includes	the	premotor	nucleus	HVC16–18.	In	stereotyped	songs	of	zebra	finches,	HVC	
projection	 neurons	 produce	 stereotyped	 bursts	 of	 activity	 time-locked	 to	 song17.	 This	 neural	
precision	drives	reliable	motor	outputs	and	relays	timing	reference	to	the	basal	ganglia19,	integral	
to	both	cortical7,20	and	striatal21	mechanisms	of	sequence	generation22–27.	In	the	more	variable	
syllable	sequences	of	Bengalese	finches,	the	same	projection	neurons	fire	differently	depending	
on	 the	 neighboring	 syllables15,	 supporting	 sequence	 generation	 models	 that	 include	 hidden	
states6.	 However,	 the	 time-frame	 of	 the	 song-sequence	 neural	 correlations	 in	 that	 seminal	
experiment	was	relatively	short	 (under	100ms).	 In	contrast,	 long-range	correlations	 in	human	
syntax	can	extend	for	tens	of	seconds	and	beyond	and	exhibit	long-order	rules.	At	present	it	is	
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not	known	if	redundant	premotor	representations	in	songbirds	can	support	working	memory	for	
syntax	control	over	timescales	longer	than	100ms	and	whether	this	activity	is	phasic28,	or	takes	
sustained8	or	ramping	forms.	To	further	dissect	the	mechanisms	of	working	memory	for	song,	we	
examined	motor	control	of	song	in	the	canary,	serinus	canaria,	a	species	with	long-range	syntax	
rules1.		
	
We	used	custom	head	mounted	miniature	microscopes	to	record	HVC	activity	during	the	song	
production	 in	freely	moving	canaries	(Figure	2b).	 In	repeating	sequences,	spanning	up	to	four	
phrases,	we	 found	 that	 individual	neurons	are	active	differently	depending	on	 the	 identity	of	
previous,	or	upcoming	non-adjacent	phrases	 -	 reflecting	phrase-locked	hidden	network	states	
encoding	 song	 ‘context’	 beyond	 the	 ongoing	 behavior.	 	 The	 context-dependent	 changes	 in	
canaries	extend	over	4000ms,	demonstrating	a	deep	many-to-one	mapping	between	HVC	state	
and	song	syllables	 in	 this	species.	We	find	that	neural	activity	correlates	more	often	with	 the	
song’s	 past	 than	 its	 future,	 and	 that	 complex,	 context-dependent	 neural	 activity	 occurs	
selectively	in	complex	parts	of	the	behavior,	where	phrases	are	followed	by	context-dependent	
transitions.	Additionally,	we	find	that	HVC	neurons	can	be	selective	to	a	single	song	context	or	
exhibit	 mixed	 selectivity	 –	 showing	 strong	 activity	 dependent	 on	 multiple	 song	 histories.	
Together,	these	findings	reveal	a	previously	un-described	pattern	of	neural	dynamics	that	can	
support	structured,	context-dependent	song	transitions	and	validate	predictions	of	long-range	
syntax	generation	by	hidden	neural	states6,29	in	a	complex	vocal	learner.	
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Results	
	

Canary	songs	are	characterized	by	structure	on	three	time-scales:	syllables,	phrases,	and	
phrase	sequence	syntax	
	

Inspired	 by	 the	 success	 of	 machine	 learning	 methods	 for	 human	 speech	 recognition30,	 we	
developed	a	song	segmentation	and	annotation	algorithm	that	automated	working	with	 large	
datasets	(>5000	songs	from	3	birds;	Supplementary	Figure	1	-	1,	methods).	The	birds’	repertoire	
included	24-37	different	syllables	with	typical	durations	between	10-350	msec	(Supplementary	
Figure	1	-	2c,d).	The	average	number	of	syllable	repeats	per	phrase	type	ranged	from	1	to	38	with	
extreme	 cases	 of	 individual	 phrases	 exceeding	 10	 seconds	 and	 120	 syllables	 (Supplementary	
Figure	1	-	2a,b).	Transitions	between	phrases	can	be	completely	deterministic,	where	one	phrase	
type	always	follows	another,	or	flexible,	where	multiple	phrase	types	can	follow	a	given	phrase	
(sonograms	in	Figure	1a,	stack	in	Figure	1b).	Phrase	transitions	are	well	identified	by	the	change	
of	 the	 repeated	 syllable	 with	 no	 confusion	 by	 other	 sequence	 components	 -	 within-phrase	
syllable	 acoustics,	 phrase	 and	 inter-phrase	 gap	 durations	 (Supplementary	 Figure	 1	 -	 3	 and	
Supplementary	Figure	1	-	5	illustrate	this	for	single	phrase	sequences	and	syllable	repertoires).	In	
very	rare	cases,	transitions	can	contain	an	aberrant	syllable	that	cannot	be	stably	classified	(c.f.	
Supplementary	Figure	1	-	6).	
	
In	the	following	analysis,	we	focused	on	neural	activity	that	is	correlated	with	phrase	sequence	
variability.	In	our	dataset,	95%	of	all	phrases	are	trills	of	multiple	syllables	and	only	6.1%	of	those	
are	shorter	than	the	decay	time	constant	of	the	calcium	indicator	we	used	(GCaMP6f,	400	msec31,	
Supplementary	 Figure	 1	 -	 2f).	 As	 in	 finches,	we	 found	 that	HVC	projection	 neuron	 activity	 in	
canaries	was	sparse	in	time.	This,	combined	with	the	long	phrase	duration	(Supplementary	Figure	
1	 -	 2d),	 allowed	us	 to	 resolve	 phrase	 level	 sequence	 correlations	with	 little	 or	 no	 limitations	
resulting	from	the	calcium	indicator’s	temporal	resolution.		
	

A	small	set	of	phrase	types	precede	complex	transitions		
	
To	investigate	long-range	syntax	rules	in	canary	song	we	examined	the	context	dependence	of	
phrase	transitions.	As	shown	previously	in	another	strain	of	canaries1,	we	find	that	a	small	subset	
of	phrase	types	precede	‘complex’	transitions	-	behavioral	transitions	that	depend	on	the	multi-
step	context	of	preceding	phrases.	Specifically,	the	probability	of	transition	outcomes	can	change	
by	almost	an	order	of	magnitude	depending	on	the	identity	of	the	3	preceding	phrases	(Figure	
1b).	 Such	 song	 context	 dependence	 is	 captured	by	 a	 3rd	 order	Markov	 chain.	 Supplementary	
Figure	1	-	4	shows	the	significant	long-range	context-dependent	transitions	for	two	birds.			
	

HVC	neural	activity	reflects	long-range	sequence	information		
	
To	 characterize	 the	 neural	 activity	 supporting	 complex	 transitions,	 we	 imaged	 neurons	 that	
expressed	 the	 genetically-encoded	 calcium	 indicator	 GCaMP6f	 in	 freely-behaving	 adult	 male	
canaries	(Serinus	canaria,	n=3,	age	>	1yr,	recording	in	left	hemisphere	HVC16).	The	indicator	is	
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selectively	expressed	in	excitatory	neurons	(Supplementary	Figure	2	-	1).	With	this	technique,	we	
are	able	to	record	neural	activity	via	fluorescence	dynamics	extracted	from	annotated	regions	of	
interest	(ROIs,	Supplementary	Figure	2	-	4,	see	methods).	
	
Fluorescence	signals	 in	these	ROIs	was	sparse	 in	time,	and	time-locked	to	specific	syllables	or	
phrases,	which	is	consistent	with	findings	 in	other	species	with	simpler	songs15,17	(Figure	2a,c,	
Supplementary	Figure	2	-	6).	Out	of	N	=	2010	daily	annotated	ROIs	from	3	birds	(35	+/-	15,	mean	
+/-	 SD	 ROIs	 per	 animal	 per	 day),	 about	 90%	 are	 active	 in	 just	 one	 or	 two	 phrase	 types.	
Additionally,	we	find	that	the	pattern	of	phrase-locked	activity	in	some	ROIs	changes	depending	
on	song	context.	For	example,	some	ROIs	showed	weaker	or	no	activity	in	one	song	context	while	
demonstrating	strong	activity	in	another	song	context	(Figure	2a).	
	
Importantly,	we	find	that	this	context-dependent	activity	is	strongly	influenced	by	the	identity	of	
non-adjacent	phrases.	 For	example,	 Figure	2d	 shows	 the	de-noised	 fluorescence	 signal	 raster	
from	a	ROI,	locked	to	the	phrase	type	marked	in	pink,	displaying	a	dramatic	variation	in	activity	
( 𝛥𝑓/𝑓$ %&'()*&%,	methods)	depending	on	the	2nd	phrase	 in	the	sequence’s	past	–	a	2nd	order	
correlation.	 This	 sequence	 preference	 is	 quantified	 by	 integrating	 the	 ROI-averaged	 signal	
(Supplementary	Figure	2	-	2a,	1-way	ANOVA,	p	<	1e-8,	Supplementary	Figure	2	-	3g,h	show	the	
source	ROI).	We	find	ROIs	with	signals	that	relate	to	the	identity	of	past	and	future	non-adjacent	
phrase	in	all	3	birds	(Supplementary	Figure	2	-	3).	Across	all	animals,	18.2%	of	the	daily	annotated	
ROIs	showed	sequence	correlations	extending	beyond	the	current	active	syllable.	15%	had	1st	
order	 correlations	 where	 activity	 during	 one	 phrase	 depends	 on	 the	 identity	 of	 an	 adjacent	
phrase,	and	5.6%	had	≥2nd	order	relations	(Figure	2d,	Supplementary	Figure	2	-	9).			
	
These	sequence	dependencies	could	potentially	be	explained	by	other	factors	 inherent	to	the	
song	that	may	be	more	predictive	of	phrase	sequence	than	HVC	activity.	For	example,	transition	
probabilities	following	a	given	phrase	could	potentially	depend	on	the	phrase	duration1,	on	the	
onset	and	offset	timing	of	previous	phrases,	and	on	the	global	time	since	the	start	of	the	song	–	
implicating	processes	such	as	neuromodulator	tone,	temperature	buildup,	or	slow	adaptation	to	
auditory	feedback32–37	(c.f.	Supplementary	Figure	2	-	7a,b,	Supplementary	Figure	2	-	8).	To	rule	
out	 these	 explanations,	 we	 used	 multivariate	 linear	 regression	 and	 repeated	 the	 tests	 for	
sequence-correlated	neural	activity	after	discounting	the	effect	of	these	variables	on	the	neural	
signals.	We	found	that	31.9%	(31/97	from	3	birds)	of	≥2nd	order	relations	and	56.8%	(129/227	
from	 3	 birds)	 of	 the	 1st	 order	 relations	 remain	 significant	 (Supplementary	 Figure	 2	 -	 7c,	
Supplementary	Figure	2	-	2).	

 
The	sequence-correlated	ROIs	tend	to	reflect	past	events	more	often	than	future	events.	Out	of	
N	=	324	significant	phrase	sequence-neural	activity	correlations,	66%	reflect	preceding	phrase	
identities	 (p	<	1e-10,	binomial	 z-test).	This	bias	 is	also	 found	separately	 in	1st	or	higher	order	
correlations	(Figure	2e,	68.2%	and	60.8%	respectively.	Both	percentages	are	significantly	larger	
than	chance,	p	<	1e-10,	p	<	0.002,	binomial	z-test).	This	bias	persists	 if	we	consider	ROIs	that	
overlap	in	footprint	and	sequence	correlation	across	days	as	a	unified	representation	(Appendix	
A). 
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These	findings	suggest	that	for	a	subset	of	HVC	neurons,	calcium	signals	are	not	just	related	to	
present	motor	actions,	but	convey	the	context	of	past	events	across	multiple	syllables.	
	

Sequence-correlated	ROIs	reflect	preceding	phrase	identities	up	to	four	steps	apart	
	

To	 produce	 songs	 with	 long-range	 syntax	 rules,	 a	 memory	 of	 previous	 elements	 sung	 must	
influence	the	current	syllable	choice.	It	is	not	known	how	this	information	about	past	choices	is	
carried	forward	in	time	during	canary	song.	Clues	for	such	a	process	can	be	seen	in	one	example	
where,	 in	 a	 fixed	 sequence	of	 four	 phrases,	we	 found	ROIs	 that	 carry	 information	 about	 the	
identity	 of	 an	 early	 phrase	 during	 each	 phrase	 in	 the	 following	 sequence	 (Figure	 3a,b,	
Supplementary	Figure	3	-	1a,	1-way	ANOVA	showing	significant	modulation	of	neural	activity	with	
the	 identity	of	 the	past	phrase).	 In	 this	example,	 the	ROIs	 that	 reflect	 long-range	 information	
continue	 to	 do	 so	 even	 if	 the	 final	 phrase	 in	 the	 sequence	 is	 replaced	 by	 the	 end	 of	 song,	
suggesting	 that	 their	 activity	 reflects	 prior	 song	 context	 rather	 than	 some	 upcoming	 future	
syllable	choice.	(Supplementary	Figure	3	-	1b,	1-way	ANOVA,	p	<	5e-6	and	p	<	0.08	for	ROIs	50	
and	36,	when	replacing	the	last	phrase	with	the	end	of	song).	This	example	suggests	that	a	chain	
of	 neurons	 reflecting	 “hidden	 states”	 or	 information	 about	 past	 choices	 could	 provide	 the	
necessary	working	memory	for	complex	phrase	transition	rules.	
	
Sequence-correlated	ROIs	are	predominantly	found	during	context-dependent	transitions	
	

The	phrases	in	Figure	3	are	phrase	types	that	lead	to	complex	transitions	or	directly	follow	them	
(in	Figure	1).	 If	HVC	neurons	are	 involved	 in	driving	phrase	 transitions	 that	 follow	 long-range	
syntax	 rules,	 then	 they	 should	 represent	 song	 context	 information	 predominately	 around	
complex	behavior	transitions,	when	such	information	is	needed	to	bias	transition	probabilities.	
Accordingly,	at	 the	population	 level,	we	 find	more	sequence-correlated	ROIs	around	complex	
transitions;	about	70%	of	sequence-correlated	ROIs	are	found	during	the	rare	phrase	types	that	
participate	in	complex	transitions	(Figure	3c,	Supplementary	Figure	3	-	2).	This	bias	persists	if	we	
consider	 ROIs	 that	 overlap	 in	 footprint	 and	 sequence	 correlation	 across	 days	 as	 a	 unified	
representation	(Appendix	A).	Separating	representation	of	past	context	and	future	action	we	find	
that,	 in	complex	 transitions,	ROIs	predominately	 represent	 the	 identity	of	a	preceding	phrase	
(Supplementary	 Figure	 3	 -	 4a,b,	 multi-way	 ANOVA	 test	 effects	 of	 preceding	 and	 following	
phrases,	 revealing	 a	 3:1	 bias	 in	 representing	 past	 context	 in	 complex	 transitions.	 p	 <	 1e-13,	
binomial	z-test).	This	bias	does	not	occur	outside	of	complex	transitions	(Supplementary	Figure	
3	 -	4c,	p	>	0.2	binomial	 z-test),	 suggesting	 that	neural	 coding	 for	past	 context	 is	dominant	 in	
transitions	depending	on	this	information.		 
	
Sequence-correlated	ROIs	can	prefer	more	than	one	song	context		
	
The	concentration	of	sequence-correlated	ROIs	in	complex	transitions	suggests	that	HVC	neurons	
can	encode	behaviorally	relevant	song	contexts.	Examining	the	song	contexts	preferred	by	single	
ROIs,	we	find	that	some	are	selective	to	a	single	prior	context,	i.e.,	their	mean	activity,	following	
one	context	is	significantly	larger	than	for	all	others	(methods).	Additionally,	many	ROIs	have	a	
clear	preference	to	more	than	a	single	past	(Figure	4a,b,	Supplementary	Figure	4	-	1).	Among	all	
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context-selective	ROIs,	19%	and	14%	have	such	mixed	context	selectivity	in	1st	order	and	≥	2nd	
order	 sequence	 correlations	 respectively.	 Additionally,	 44%	 and	 48%	of	 the	 context-selective	
ROIs	 strictly	 prefer	 one	 past	 out	 of	 several	 contexts	 in	 1st	 order	 and	≥2nd	 order	 correlations	
(Figure	4c,	from	3	birds).	
	

Jointly-recorded	ROIs	predict	behavior	prior	to	a	complex	transition	
	

Neurons	with	distinct	song	context	preferences	can,	jointly,	complement	each	other	to	provide	
more	information	about	song	history	than	cells	with	identical	context	preferences	(Figure	4a	and	
Figure	3	ROIs	21,	45,	50,	Figure	2d).	In	our	dataset	of	sparsely	labelled	neurons,	ROIs	were	rarely	
active	 in	 the	same	phrase.	Figure	4d,	shows	 four	ROIs	 that	were	 jointly	active	during	a	single	
phrase	type	(pink	in	Figure	4d).	One	ROI’s	activity	was	specific	to	a	single	context	(Figure	4d	ROI	
10.	c.f.	as	in	15)	and	the	other	three	were	active	in	multiple	contexts	(Figure	4d,	ROIs	24,	29,	31).	
The	phrase	during	which	these	ROIs	were	recorded	precedes	a	complex	transition	and	the	type	
of	the	preceding	phrase	poorly	predicts	the	transition	outcome	(right	bar	in	Figure	4e,	0.08	out	
of	1	bit,	bootstrapped	mutual	information	estimate,	methods).	However,	looking	at	multiple	ROIs	
together	we	 found	 that	 the	network	holds	 significantly	more	 information	about	 the	past	and	
future	 phrase	 types	 (Figure	 4e,	 0.42,	 0.33	 bit,	 Bootstrapped	 z-test	 p<1e-6).	 This	 increased	
predictive	 power	 suggests	 that	 population	 responses	 can	 contain	 the	 long-range	 information	
required	in	the	complex	transition.	Furthermore,	in	this	example	the	network	holds	significantly	
more	 information	 about	 the	 past	 than	 the	 future	 (Figure	 4e,	 bootstrapped	 z-test,	 p<1e-4,	
Supplementary	Figure	4	-	2),	suggesting	that	information	is	lost	during	the	complex	transition,	as	
also	 demonstrated	 by	 the	 bias	 in	 encoding	 past	 contexts	 by	 individual	 ROIs	 (Figure	 2e).		
	
Taken	together,	these	findings	demonstrate	that	neural	activity	in	canary	HVC	carries	long	range	
song	context	information.	These	activity	patterns	can	be	described	as	“hidden	states”	since	they	
relate	primarily	to	past	or	future	song	elements	and	do	not	alter	the	syllable	class	being	sung	(c.f.	
Supplementary	Figure	1	-	7	illustrating	this	class	distinction	for	the	transition	in	Figure	1).	These	
patterns	 of	 activity	 contain	 the	 information	 necessary	 to	 drive	 complex,	 context-dependent	
phrase	transitions.	

Discussion	
	
Motor	sequences	with	long-range	order	dependencies	are	common	in	choreographed	behaviors,	
like	language,	but	the	neural	mechanisms	are	largely	unknown.	
Several	landmark	experiments	demonstrate	that	HVC	projection	neuron	activity	in	zebra	finches	
is	highly	stereotyped	during	the	production	of	syllables17,38.	Hidden	premotor	states6	driving	the	
same	 syllable	 in	 different	 contexts	 provide	 tight	 neural-motor	 correlations	 in	 the	moment	 to	
moment	execution	of	song	syllables	while	also	supporting	sequence-dependent	transitions	at	the	
level	of	phrases.		Here	we	validate	four	key	predictions	of	this	many-to-one	hypothesis,	and	show	
that	HVC	contains	the	 information	necessary	to	follow	long	range	syntax	rules;	consecutively-
active	ROIs	reporting	the	identity	of	phrases	up	to	four	steps	in	the	past,	ROIs	that	predict	phrase	
types	two	steps	into	the	future,	concentration	of	song-context-correlates	in	complex	transitions,	
and	ROIs	selective	to	multiple	contexts.	These	observations	resemble	the	many-to-one	relation	
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between	neural	activity	and	behavior	states6,29,33	proposed	in	some	models	to	relay	information	
across	time	and,	expanding	on	observations	in	other	species7–14,39,	support	syntactic	rules.	Our	
findings	also	expand	on	a	prior	study	in	Bengalese	finches15,	that	showed	neural	correlations	to	
song-sequence	 up	 to	 100ms	 apart,	 and	 demonstrate	 hidden	 states	 related	 to	 long-range	
memory-guided	syntax	rules	extending	over	several	seconds.	
	
However,	there	are	also	clues	that	HVC	does	not	contain	all	the	information	required	to	select	a	
phrase	transition	–	since	more	neurons	correlate	to	the	sequence’s	past	than	to	its	future	it	is	
possible	that	sequence	information	in	HVC	is	lost,	perhaps	supporting	stochastic	transitions.	The	
source	of	residual	stochasticity	in	HVC	could	be	intrinsic	to	the	dynamics	of	HVC	–	for	example	
the	 “noise”	 terms	 commonly	 added	 in	 sequence	 generating	 models24,40,41	 or	 may	 enter	
downstream	as	well-documented	noise	sources	in	the	basal	ganglia	also	converge	on	pre-motor	
cortical	areas	downstream	of	HVC.	These	early	findings	require	further	investigation	of	the	neural	
dynamics	during	flexible	transitions	and	may	provide	a	tractable	model	for	studying	stochastic	
cognitive	functions	–	mechanisms	in	working	memory	and	sensory-motor	integration	that	remain	
extremely	challenging	to	quantify	in	most	spontaneous	behaviors	in	mammals.			
	
Finally,	 it	 is	worth	noting	that	recent	dramatic	progress	in	speech	recognition	algorithms	have	
employed	recurrent	neural	networks	with	several	architectures	designed	to	capture	sequence	
dependencies	 with	 hidden	 states.	 Examples	 include	 LSTM42,	 hierarchal	 time	 scales43,	 hidden	
memory	relations44,	and	attention	networks45.	 It	 is	possible	that	machine	learning	models	will	
help	to	interpret	the	complex	dynamics	of	HVC,	and	help	inform	new	models	of	many	to	one,	
history	dependent	mappings	between	brain	state	and	behavior29.		
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Main	Figures	and	Legends	
	

	
Figure	1	|	Long	range	syntax	rules	in	canary	song.	a.	Two	example	spectrograms	of	Canary	song.	The	colored	bars	
indicate	the	identity	of	the	phrase,	which	is	composed	of	basic	elements	called	syllables.		Both	of	these	examples	
contain	a	common	phrase	transition	(orange	to	pink)	but	differ	in	the	preceding	and	following	phrases.	b.	A	summary	
of	all	phrase	sequences	that	contain	this	common	transition	reveals	that	the	choice	of	what	to	sing	after	the	pink	
phrase	 depends	 on	 the	 phrases	 that	were	 produced	 earlier.	 Lines	 represent	 phrase	 identity	 and	duration.	 Song	
sequences	are	stacked	(vertical	axis)	sorted	by	the	identity	of	the	1st	phrase,	the	last	phrase	and	then	the	center	
phrases’	duration.	Pie	charts	show	the	frequency	of	phrases	that	follow	the	pink	phrase,	calculated	in	the	subset	of	
songs	that	share	a	preceding	sequence	context	(separated	by	dashed	lines).		Grey	represents	the	song	end,	and	other	
colors	represent	a	phrase	pictured	in	the	first	panel.	The	pink	phrase	precedes	a	‘complex	transition’,	the	likelihood	
that	a	particular	phrase	will	follow	it	is	dependent	on	transitions	several	phrases	in	the	past.	c.	Percent	of	phrases	
that	precede	complex	transitions	of	different	orders.	Bars	and	error	bars	show	mean	and	SE	in	5	birds.		
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Figure	2	|	HVC	projection	neuron	activity	reflects	long-range	information	about	phrase	transitions.	a.	Fluorescence	
(𝛥𝑓/𝑓$)	of	multiple	ROIs	during	a	singing	bout	reveals	sparse,	phrase-type-specific	activity.	Phrase	types	are	color	
coded	 in	 the	audio	amplitude	 trace,	 and	dashed	 lines	mark	phrase	onsets.	Context-dependent	 cells	 show	 larger	
phrase-specific	signal	in	one	context	(blue	frames)	than	another	(connected	red	frames).	b.	Experimental	paradigm.	
Miniature	microscopes	were	used	to	image	GCaMP6f-expressing	neurons	in	HVC,	transduced	via	lentivirus	injection.	
c.	Most	cells	are	phrase-type-specific.	Neural	activity	 is	aligned	to	the	onset	of	phrases	with	 long	(left)	and	short	
(right)	syllables.	Songs	(y-axis)	are	sorted	by	the	phrase	duration,	and	white	ticks	indicate	phrase	onsets.	Pie	shows	
fractions	of	neurons	that	are	active	during	just	one,	two	or	three	separate	phrase	types	(methods).	d.	ROI	activity	
during	a	phrase	that	is	strongly	related	to	2nd	upstream	phrase	identity.	Neural	activity	is	aligned	to	the	onset	of	the	
current	phrase.	Songs	are	arranged	by	the	ending	phrase	identity	(right,	color	patches),	then	by	the	phrase	sequence	
context	(left,	color	patches),	and	then	by	duration	of	the	pink	phrase.	White	ticks	indicate	phrase	onsets.	e.	More	
neural	 representations	 reflect	 past	 events	 than	 future	 events.	 258	 different	 ROIs	 had	 a	 total	 of	 324	 significant	
correlations	with	adjacent	(1st	order,	2	left	bars)	and	non-adjacent	(≥2nd	order,	2	right	bars)	phrases.	The	correlations	
are	separated	by	phrases	that	precede	(P)	or	follow	(F)	the	phrase,	during	which	the	signal	is	integrated.	Binomial	z-
test	evaluate	significant	differences	(â:	p	<	1e-10, ‡: p < 0.002).	
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Figure	3	|	Sequence-correlated	HVC	neurons	reflect	preceding	context	up	to	four	phrases	apart	and	aggregate	
around	 context-dependent	 transitions.	 a.	 A	 sequence	 of	 four	 phrases	 (i-iv,	 color	 coded)	 is	 preceded	 by	 two	
upstream	phrase	types	(red	or	cyan).	Average	maximum	projection	denoised	 images	(methods)	are	calculated	 in	
each	sequence	context	during	each	phrase	in	the	sequence	(i-iv)	and	overlaid	in	complementary	colors	(red,	cyan)	
to	reveal	context-preferring	neurons.	b.	 𝛥𝑓/𝑓$ %&'()*&%		rasters	for	the	ROIs	in	panel	(a).	Songs	are	ordered	by	the	
preceding	phrase	type	(colored	bars).	Supplementary	Figure	3	-	1a	shows	the	statistical	significance	of	song	context	
relation.	 c.	 Fraction	 of	 sequence-correlated	 neurons	 found	 in	 complex	 transitions	 (e.g.	 in	 Figure	 1).	 Pie	 charts	
separate	1st	order	and	higher	order	(≥2nd)	sequence	correlations.	Dark	grey	summarizes	the	total	fraction	for	two	
birds.	
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Figure	4	|	HVC	neurons	can	be	tuned	to	distinct,	and	complementary,	preceding	contexts.	a,b.		ROIs	can	respond	
to	multiple	preceding	contexts.	 𝛥𝑓/𝑓$ %&'()*&%	traces	are	aligned	to	a	specific	phrase	onset,	arranged	by	identity	of	
preceding	phrase	(color	barcode).	White	ticks	indicate	phrase	onsets.	c.	Context-correlated	ROIs	significantly	prefer	
one	 (purple)	 or	more	 (red)	 song	 contexts.	 Pies	 separate	 ROIs	 with	 selectivity	 to	 the	 1st	 (top)	 and	 2nd	 (bottom)	
preceding	phrases.	d.	Four	example	jointly-recorded	ROIs	that	exhibit	complementary	context	selectivity.	Color	bars	
indicate	the	phrase	identities	preceding	and	following	a	fixed	phrase	(pink).	For	each	ROI	(rasters),	 𝛥𝑓/𝑓$ %&'()*&%	
traces	are	aligned	to	the	onset	of	the	pink	phrase	(x-axis,	bar	marks	1	sec)	arranged	by	the	identity	of	the	preceding	
phrase,	by	the	following	phrase	and	finally	by	the	duration	of	pink	phrase.	White	ticks	indicate	phrase	onsets.	e.	The	
network	holds	transition-relevant	context	information	in	panel	(d).	Mutual	information	between	the	identity	of	past	
(P)	 and	 future	 (F)	 phrase	 types	 (right	 bar.	 Variables	match	 barcode	 in	 panel	 d)	 is	 significantly	 smaller	 than	 the	
information	held	by	the	network	states	about	the	past	and	future	contexts	(left	bars.	N	is	the	4-ROIs	activity).	Dots	
mark	bootstrap	assessment	shuffles.	Bars	mark	the	mean.	Red	lines	mark	the	95%	level	of	the	mean	in	shuffled	data	
(methods).	*:	p<1e-4,	**:	p<	1e-6,	bootstrapped	z-test.	
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Supplementary	Figures	and	Legends	
	

	

	
Supplementary	Figure	1	-	1	|	Architecture	of	syllable	segmentation	and	annotation	machine	learning	algorithm.	a.	
A	spectrogram	as	a	2D	input	matrix	is	fed	to	the	algorithm	in	segments	of	1	second.	b.	Convolutional	and	max-pooling	
layers	allow	learning	local	spectral	and	temporal	filters.	c.	Bidirectional	recurrent	Long-Short-Term-Memory	(LSTM)	
layer	allows	learning	temporal	sequencing	features.	d.	Projection	onto	syllable	classes	assigns	a	probability	for	each	
2.7	millisecond	time	bin	and	syllable.	

	
	

	
Supplementary	Figure	1	-	2	|	Syllable	and	phrase	statistics.	a.	Histogram	of	the	number	of	phrases	per	song	for	3	
birds	used	 in	 this	 study.	b.	Histogram	of	 song	durations	 for	3	birds.	c.	Histogram	of	mean	syllable	durations,	85	
syllable	classes	from	3	birds.	Red	arrow	marks	the	duration,	below	which	all	trill	types	have	more	than	10	repetitions	
on	average.	d.	Relation	between	syllable	classes’	duration	mean	(x-axis)	and	standard	deviation	(y-axis).	Syllables	
classes	(dots)	of	3	birds	are	colored	by	the	bird	number.	Dashed	line	marks	450	msec,	an	upper	limit	for	the	decay	
time	constant	of	GCaMP6f.	e.	Range	of	mean	number	of	syllables	per	phrase	(y-axis)	for	all	syllable	types	with	mean	
duration	shorter	than	the	x-axis	value.	Red	line	is	the	median,	light	gray	marks	the	25%,	75%	quantiles	and	dark	gray	
mark	the	5%,	95%	quantile.	The	red	arrow	matches	the	arrow	 in	panel	c.	 f.	Cumulative	histogram	of	 trill	phrase	
durations.	
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Supplementary	Figure	1	-	3	|	More	examples	of	canary	song	phrase	sequences.	a.	Additional	spectrograms	of	phrase	
sequences	(colors	above	the	spectrograms	indicate	phrase	identity),	leading	to	a	repeating	pair	of	phrases	(pink	and	
yellow).	b.	Examples	of	flexible	phrase	sequencing	comprised	of	pitch	changes	(from	bird	#3).	c.	Examples	of	phrase	
transitions	with	 a	 pitch	 change	 from	 bird	 #2.	d-f.	 Phrase	 sequences	 showing	 changes	 in	 spectral	 and	 temporal	
parameters.	d,	bird	#1,	changes	from	up	sweep	(purple)	to	down	sweep	(dark	red)	through	intermediate	phrases	of	
intermediate	acoustic	structure.	e,	bird	#1,	a	change	in	inter-syllable	gaps.	f,	from	bird	#2,	changes	in	pitch	sweep	
rate.	
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Supplementary	Figure	1	-	4	|	All	complex	phrase	transitions	with	≥2nd	order	dependence	on	song	history	context	
(for	birds	#1,	#2).	For	each	phrase	type	that	precedes	a	complex	transition,	the	context	dependence	is	visualized	by	
a	graph	called	a	Probabilistic	Suffix	Tree	(methods).	Transition	outcome	probabilities	are	marked	by	pies	at	the	center	
of	each	node.	The	song	context—phrase	sequence—that	leads	to	the	transition,	is	marked	by	concentric	circles,	the	
inner	most	being	the	phrase	type	preceding	the	transition.	Nodes	are	connected	to	indicate	the	sequences	in	which	
they	are	added	in	the	search	for	longer	Markov	chains	that	describe	context	dependence	(e.g.	i-iii	for	1st	to	3rd	order	
Markov	chains).	Grey	arrows	indicate	additional	incoming	links	that	are	not	shown	for	simplicity.	

	
	

	
Supplementary	Figure	1	-	5	|	The	syllables’	acoustic	variability	cannot	lead	to	phrase	sequence	errors.	A	support	
vector	machine	(SVM)	classifier	was	used	to	assess	the	pairwise	confusion	between	all	syllables	classes	of	bird	#1	
(methods).	The	test	set	confusion	matrix	(right)	and	its	histogram	(left)	show	that	in	rare	cases	the	error	exceeded	
1%	 and	 at	most	 reached	 6%.	 Since	 the	 higher	 values	 occurred	 only	 in	 phrases	with	 10s	 of	 syllables	 this	metric	
guarantees	that	most	of	 the	syllables	 in	every	phrase	cannot	be	confused	as	belonging	to	another	syllable	class.	
Accordingly,	the	possibility	for	making	a	mistake	in	identifying	a	phrase	type	is	negligible.	
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Supplementary	 Figure	 1	 -	 6	 |	 Examples	 of	 rare	 inter-phrase	 gaps	 and	 aberrant	 syllables.	 a.	 Top	 and	 bottom	
sonograms	compare	the	same	phrase	transitions	where	the	inter-phrase	gap	varies.	b,	c.	The	top	sonogram	includes	
a	rare	vocalization	in	the	beginning	of	the	2nd	phrase	(highlighted)	that,	in	panel	c,	resemble	the	onset	of	an	orange	
phrase	type.	

	

	
Supplementary	 Figure	1	 -	 7	 |	An	example	 in	which	 context-dependence	of	 syllable	 acoustics	prior	 to	 complex	
transitions	 is	too	small	 for	clear	distinction.	a.	Repeats	main	figure	1b.	A	summary	of	all	phrase	sequences	that	
contain	a	common	transition	reveals	that	the	choice	of	what	to	sing	after	the	pink	phrase	depends	on	the	phrases	
that	were	produced	earlier.	Lines	represent	phrase	identity	and	duration.	Song	sequences	are	stacked	(vertical	axis)	
sorted	by	the	identity	of	the	1st	phrase,	the	last	phrase	and	then	the	center	phrases’	duration.	b.	The	discriminability	
(d’,	 x-axis)	measures	 the	acoustic	distance	between	pairs	of	 syllable	classes	 in	units	of	 the	within-class	 standard	
deviation	(methods).	Bars	show	the	histogram	across	all	pairs	of	syllables	identified	by	human	observers	(methods)	
corresponding	to	about	99%	or	larger	identification	success	(in	Supp.	Figure	1-5).	The	pink	ticks	mark	the	d’	values	
for	 6	within-class	 comparison	 of	 the	main	 4	 contexts	 in	 panel	 a.	 The	 orange	 tick	marks	 the	 d’	 another	 context	
comparison	in	a	different	syllable	that	precedes	a	complex	transition	for	this	bird.	c.	The	pairwise	comparison	of	
distributions	matching	the	pink	ticks	in	panel	b.	Each	inset	shows	overlays	of	two	distributions	marked	by	contours	
at	the	0.1	and	0.5	values	of	the	peak	and	colored	by	the	context	in	panel	a.	The	distributions	are	projected	onto	the	
2	leading	principle	components	of	the	acoustic	features	(methods).	While	some	of	these	distributions	are	statistically	
distinct	they	only	allow	for	~70%	context	identification	success	in	the	most	distinct	case.	
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Supplementary	Figure	2	-	1	|	Calcium	indicator	is	expressed	exclusively	in	HVC	excitatory	neurons.	a.	Sagittal	slice	
of	HVC	showing	GCaMP	expressing	projection	neurons.	b.	We	observed	no	overlap	between	transduced	GCaMP6f-
expressing	neurons,	and	neurons	stained	for	the	inhibitory	neurons	markers	calretinin,	calbindin,	and	parvalbumin	
(CR	stain	shown).	

	

	
Supplementary	Figure	2	-	2	|	Statistics	of	one	example	sequence-correlated	neuron.	a.	Quantification	of	the	2nd	
order	context	correlation	for	the	neuron	in	Figure	2d	using	1-way	ANOVA	(F,p),	to	test	the	effect	of	contexts	(x-axis,	
2nd	preceding	phrase	type)	on	the	signal	 integral	 (y-axis,	∫ 𝛥𝑓/𝑓$ %&'()*&%),	 that	occurs	during	the	target	phrase	
(marked	 by	★).	b-d.	 The	 sequence	 correlation	 in	 panel	 (a)	 remains	 significant	 after	 accounting	 for	 confounding	
variables.	ANOVA	tests	are	carried	out	using	the	residuals	from	the	signal	 integral	during	the	target	phrase	after	
removing	the	cumulative	linear	dependence	on:	b.	The	duration	of	the	target	phrase.	c.	The	relative	timing	of	onset	
and	offset	edges	of	two	fixed	phrases.	d.	Also	including	the	absolute	onset	time	of	the	target	phrase	in	each	rendition.		
Colors	in	this	figure	correspond	to	phrases	represented	in	Figure	2d.	
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Supplementary	Figure	2	-	3	|	Additional	examples	of	phrase-sequence-correlated	ROIs	from	3	birds.	ROI	activity	
during	a	target	phrase	(marked	by	∑)	that	is	strongly	related	to	non-adjacent	phrase	identities	(empty	ovals	in	color	
coded	phrase	sequence	above	the	raster).	Neural	activity	is	aligned	to	the	onset	of	the	current	phrase.	Songs	are	
arranged	by	the	phrase	sequence	context	(left	or	right	color	patches	for	past	and	future	phrase	types).	White	ticks	
indicate	phrase	onsets.	Box	plots	show	the	1-way	ANOVA	(F,p),	used	to	test	the	effect	of	contexts	(x-axis,	phrase	
type	 in	 the	 empty	 oval)	 on	 the	 signal	 integral	 (y-axis,	∫ 𝛥𝑓/𝑓$ %&'()*&% ),	 that	 occurs	 during	 the	 target	 phrase.	
Additionally,	the	context-dependent	ROIs	are	visualized	by	comparing	maximum	projection	images	in	the	contrasted	
contexts	(methods).	In	the	top	insets	in	panels	a-f	and	in	panel	g,	the	projection	images	are	overlaid	in	orthogonal	
colors	(red	and	cyan)	to	reveal	context-dependent	regions	in	color.	In	the	bottom	insets	in	panels	a-f	and	in	panel	h,	
the	maximum	projection	images	are	subtracted.	a,b.	Similar	to	main	Figure	2d,	 𝛥𝑓/𝑓$ %&'()*&%	from	ROIs	with	2nd	
order	 upstream	 sequence	 (color	 coded)	 from	 two	 more	 birds.	 c.	 3rd	 order	 upstream	 relation.	 d,e.	 2nd	 order	
downstream	relations.	f.	1st	order	downstream	relation	from	another	bird.	g.	Average	maximum	fluorescence	images	
during	the	pink	phrase	in	Figure	2d,	compare	the	two	most	common	contexts	in	orthogonal	colors	(red	and	cyan).	
Scale	bar	is	50𝜇m.	h.	The	difference	of	the	overlaid	images	in	panel	g.	ROI	57	outlined	in	green.	
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Supplementary	 Figure	 2	 -	 4	 |	 Example	 of	 daily	 ROI	 annotation	 in	 3	 birds.	Colored	 circles	mark	 different	 ROIs,	
manually	annotated	on	maximum	fluorescence	projection	images	an	exemplary	day	(see	methods).	Panel	a-c	are	for	
birds	1-3.	

	

	
Supplementary	Figure	2	-	5	|	Maximum	projection	images	over	2	weeks	(bird	#1).	Maximum	fluorescence	images	
(methods)	revealing	the	fluorescence	sources	including	sparsely	active	cells	in	the	imaging	window	across	multiple	
days.	

	

	
Supplementary	Figure	2	-	6	|	Examples	of	syllable-locked	and	phrase-locked	cells.	Panels	show	sonogram	samples	
(3kHz	 frequency	 scale	bar)	on	 top	of	 rasters	 from	4	ROIs	 from	3	birds.	 	White	 ticks	 indicate	phrase	onsets.	 The	
timescale	of	the	fluorescent	calcium	indicator	is	able	to	resolve	individual	syllables	for	the	longer	syllables.	
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Supplementary	Figure	2	-	7	|	Phrases’	durations	and	onset	times	also	correlate	to	the	phrase	sequence,	but	cannot	
fully	account	for	HVC	activity.	a.	 𝛥𝑓/𝑓$ %&'()*&%	traces	(ROI	#18,	bird	#3)	during	a	single	phrase	type	(red)	arranged	
by	its	duration.	Colored	patches	mark	the	identity	of	the	final	phrase	in	the	sequence.	b.	Correlation	between	the	
signal	integral	and	the	red	phrase	duration	(markers	are	colored	by	the	identity	of	the	following	phrase,	matching	
the	barcode	in	panel	a,	Pearson	r,p	values).	c.	Distributions	of	1-way	ANOVA	p-values	(y-axis)	relating	phrase	identity	
and	signal	integral	for	adjacent	phrases	(1st	order	transitions,	left)	and	non-adjacent	phrases	(≥2nd	order,	right).	Tests	
are	also	done	on	residuals	of	signal	 integrals,	after	discounting	the	following	variables:	variance	explained	by	the	
target	phrase	duration,	 the	 timing	of	all	phrase	edges	 in	 the	 test	 sequence,	and	 the	 time-in-song	 (x-axis,	effects	
accumulated	left	to	right	by	multivariate	linear	regression,	see	methods).	Colored,	dashed	lines	mark	0.05	and	0.1	
p-values.	

	
	
	

	

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 1, 2019. ; https://doi.org/10.1101/561761doi: bioRxiv preprint 

https://doi.org/10.1101/561761
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

	
Supplementary	 Figure	 2	 -	 8	 |	Additional	 examples	 of	 the	 relationship	 between	 neural	 activity,	 sequence	 and	
duration	in	4	ROIs	recorded	in	the	same	day.	a.	Sonograms	show	two	main	phrase	sequences.	b-e.	Neural	activity	
of	4	ROIs	are	aligned	to	the	middle	phrase	(panels	b-d	to	its	offset,	panel	e	to	its	onset).	Songs	(y-axis)	are	ordered	
by	the	duration	of	the	middle	phrase	(b-d)	or	the	identity	of	the	first	phrase	(e,	color	coded	on	left	side)	and	show	a	
variety	of	properties	that	yield	signal	correlation	to	the	duration	of	the	middle	phrase	(scatter	plots,	dashed	lines	
indicate	significant	correlations.	Pearson	r,p	values	and	markers	are	colored	by	the	phrase	type	they	represent).	Box	
plots	show	1-way	ANOVA	(F,p)	between	the	signal	integral	(Σ)	in	each	song	and	the	label	of	the	1st	phrase	(color).	b.	
In	this	cell,	the	signal	correlation	with	the	intermediate	phrase	duration	is	completely	entangled	with	the	signal’s	
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sequence	preference	and	does	not	 apply	 in	 separate	preceding	 contexts	 (red,	 p	 >	 0.5).	c.	 In	 this	 cell,	 the	 signal	
correlation	with	the	intermediate	phrase	duration	is	influenced	by	the	signal’s	sequence	preference	but	also	exists	
in	the	preferred	sequence	context	separately	(red).	d.	For	this	cell,	the	signal’s	duration	correlation	is	observed	within	
each	single	preceding	context	separately,	but	the	correlation	reduces	across	all	songs.		e.	Similar	to	panel	a,	but	the	
signal	is	in	the	2nd	phrase,	not	the	3rd.	

		

	

	
Supplementary	Figure	2	-	9	|	Histogram	of	fractions	of	daily	annotated	ROIs	showing	sequence	correlation	in	all	3	
birds.	Colors	separate	1st	order	 relations	 from	all	 the	rest.	Each	ROI	can	be	counted	as	having	both	1st	and	≥2nd	
sequence	correlations.	A	ROI	that	has	sequence	correlation	of	the	same	order	in	more	than	one	context	is	counted	
only	once.	This	estimate	includes	all	ROIs,	including	sparsely	active	ones	(c.f.	Supplementary	Figure	2	-	5).	

	
	
	
	

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 1, 2019. ; https://doi.org/10.1101/561761doi: bioRxiv preprint 

https://doi.org/10.1101/561761
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

	
Supplementary	Figure	3	-	1	|	Statistical	tests	for	ROIs	in	Figure	3.	a.	Distribution	of	signal	integrals	(y-axis)	for	ROIs	
in	Figure	3a.	(Text	label	is	color	coded	by	phrase	type	in	sub-panels	i-iv).	F-numbers	and	p-values	for	1-way	ANOVA	
relating	history	 (x-axis)	 and	 signal	 (y-axis).	b.	 ROIs	 in	panel	 (a)	 retain	 their	 song-context	bias	 also	 for	 songs	 that	
happen	to	terminate	at	end	of	the	third	phrase	rather	than	continue.		Box	plots	repeat	the	ANOVA	tests	in	panel	(a)	
for	songs	in	which	the	last	phrase	is	replaced	by	end-of-song.	

	
Supplementary	Figure	3	-	2	|	ROIs	with	significant	context-dependent	correlations	are	more	frequently	found	in	
complex	 transitions	 -	points	 in	 the	behavior	 that	depend	on	 long	 range	context–	data	 from	2	birds.	Dark	grey	
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indicates	the	fraction	of	correlations	occurring	in	complex	behavioral	transitions.	a,b.	the	data	in	Figure	3c	separated	
to	the	two	birds.	c,d.	Normalizes	the	distributions	in	panels	a,b	by	the	frequency	of	each	phrase	type.	

	
Supplementary	Figure	3	-	3	|	Maximum	fluorescence	images	replicate	the	context	sensitive	ROIs	in	de-noised	video	
data.	Figure	3a	showed	maximum	projection	images,	calculated	with	de-noised	videos	(methods).	The	algorithm,	
CNMF-E46,	 involves	 estimating	 the	 source	 ROI	 shapes,	 de-convolving	 spike	 times	 as	 well	 as	 estimating	 the	
background	noise.	Here,	recreating	the	maximum	projection	images	with	the	original	fluorescence	videos	shows	the	
background	as	well	but	the	preceding-context-sensitive	neurons	remain	the	same.	Namely,	the	same	ROI	footprints	
annotated	in	panels	i-iv	show	the	color	bias	(cyan	or	red)	that	indicates	coding	of	the	past	phrase	with	the	same	
color.		

	
Supplementary	 Figure	 3	 -	 4	 |	 Sequence-correlated	 ROIs	 in	 complex	 transitions	 are	 biased	 to	 represent	 past	
contexts.	a.	 In	 sequence-correlated	ROIs,	multi-way	ANOVA	 is	used	 to	 separate	 the	effect	of	 the	preceding	and	
following	phrase	 types	on	 the	 signal	 (methods).	Pie	 shows	 the	percent	of	 sequence-correlated	ROIs	 significantly	
influenced	by	the	past,	future,	or	both	phrase	identities.	b.	Restricting	analysis	to	complex	transitions,	more	ROIs	
correlated	to	the	preceding	phrase	type	(blue)	than	to	following	(red).	This	is	true	in	both	Naive	signal	values	(left)	
and	after	removing	dependencies	on	phrase	durations	and	time-in-song	(right).	(binomial	z-test:	â:	p	<	1e-13, ‡: p 
< 0.0001). c. Restricting to phrase types not in complex transitions reveals More ROIs correlated with the 
future phrase type but the difference is not significant (binomial z-test, p > 0.2)	
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Supplementary	Figure	4	-	1	|	ROIs	in	Figure	4	reflect	several	preceding	song	contexts.	a,b.	Rasters	repeat	Figure	
4a,b.	Box	plot	shows	distributions	of	 𝛥𝑓/𝑓$ %&'()*&%	integrals	(y-axis,	summation	in	the	phrase	marked	by	★)	for	
various	song	contexts	(x-axis).	F-number	and	p-value	show	the	significance	of	separation	by	song	context	(1-way	
ANOVA)	and	â	marks	contexts	 that	 lead	 to	 larger	mean	activity	compared	to	another	context	 (Tukey’s	multiple	
comparisons,	p<0.001).	Average	maximum	projection	images	(methods)	during	the	aligned	phrase	compare	the	song	
contexts	that	lead	to	significantly	higher	activity	to	the	other	contexts	in	orthogonal	colors	(cyan	and	red	for	high	
and	 low	activity).	 Bar	 is	 50𝜇m.	c-e.	Neurons	with	 similar	 context	preference	 like	 the	examples	 in	 Figure	4a,b	 in	
adjacent	days.	
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Supplementary	Figure	4	-	2	|	The	4-ROI	network	states	in	Figure	4d	form	more	separable	clusters	when	labeled	by	
the	past	context	compared	to	the	future	context.	a.	Signal	integrals	from	the	4	ROIs	in	Figure	4d	are	plotted	for	
each	song	(dots)	on	the	3	most	informative	principle	components.	Dots	are	colored	by	the	identity	of	the	preceding	
phrase.	Clustering	accuracy	measures	the	‘leave-one-out’	label	prediction	for	each	preceding	phrase	(true	positive),	
calculated	by	assigning	each	dot	to	the	nearest	centroid	(L2).	Dashed	line	marks	chance	level.	b.	Similar	to	panel	a	
but	for	the	1st	following	phrase.	
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Supplementary	videos	
	

Supplementary	videos	1-7	
Video	frames	show	stacks	of	confocal	microscopy	section	(3µm	thick)	that	were	used	to	test	the	
specificity	of	GCaMP	expression	to	excitatory	neurons	(methods).	In	all	movies,	GCaMP	is	stained	
in	green	and	the	inhibitory	neuron	markers	(CB,CR,PV	annotated	in	the	file	names)		are	stained	
in	blue.		
	

Supplementary	video	8	
The	results	of	the	CNMFE46	algorithm	that	was	used	to	de-noise	the	fluorescence	videos	to	
visualize	context	dependent	neurons	in	Figure	3a.		
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Materials	and	Methods	
Ethics	declaration	
All	procedures	were	approved	by	the	 Institutional	Animal	Care	and	Use	Committee	of	Boston	
University	(protocol	numbers	14-028	and	14-029).		Imaging	data	were	collected	from	n	=	3	adult	
male	canaries.	Birds	were	individually	housed	for	the	entire	duration	of	the	experiment	and	kept	
on	a	light–dark	cycle	matching	the	daylight	cycle	in	Boston	(42.3601	N).	The	birds	were	not	used	
in	any	other	experiments.	
	

Data	availability	
The	datasets	are	available	from	the	corresponding	author	on	request.	
	
Code	availability	
All	custom-made	code	 in	 this	manuscript	 is	publicly	available	 in	Github	repositories.	URLs	are	
provided	in	the	relevant	methods	descriptions	
	

Surgical	procedures	
Anesthesia	and	analgesia	
Prior	to	anesthetizing	the	birds,	they	were	injected	with	meloxicam	(intramuscular,	0.5mg/kg)	
and	deprived	of	food	and	water	for	a	minimum	of	30	minutes.	Birds	were	anesthetized	with	4%	
isoflurane	 and	 maintained	 at	 1–2%	 for	 the	 course	 of	 the	 surgery.	 Prior	 to	 skin	 incision,	
bupivacaine	(4	mg/kg	in	sterile	saline)	injected	subcutaneously	(volume	0.1-0.2	mL).		Meloxicam	
was	also	administered	for	3	days	after	surgery.		
	

Stereotactic	coordinates	
The	head	was	held	in	a	previously	described,	small	animal	stereotactic	instrument47.	To	increase	
anatomical	accuracy	and	ease	of	access,	we	deviated	from	the	published	atlas	coordinates47		and	
adapted	 the	 head	 angle	 reference	 to	 a	 commonly	 used	 forehead	 landmark	 parallel	 to	 the	
horizontal	 plane.	 The	 outer	 bone	 leaflet	 above	 the	 prominent	𝜆 	sinus	was	 removed	 and	 the	
medial	(positive	=	right)	and	anterior	(positive)	coordinates	are	measured	from	that	point.	The	
depth	is	measured	from	the	brain’s	dura	surface.	The	following	coordinates	were	used	(multiple	
values	indicate	multiple	injections):	

 HVC	 RA	 Area	X	

Head	Angle	 +65°	 +80°	 +20°	

Medial	(mm)	 -2.5	 -2.5	 -1.27,	-1.3	

Anterior	(mm)	 0.12	 -1.2	 5.65,	5.8	

Depth	(mm)	 0.15-0.7	 1.9-3	 2.65-2.95	
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HVC	demarcation	and	head	anchoring	
To	 target	 HVC,	 50-100nL	 of	 the	 DiI	 retrograde	 lipophilic	 tracer	 (5mg/ml	 solution	 in	
dimethylformamide,	DMF)	was	injected	into	the	left	area	X.	The	outer	bone	leaflet	was	removed	
above	 area	 X	 with	 a	 dental	 drill.	 The	 inner	 bone	 leaflet	 was	 thinned	 and	 removed	 with	 an	
ophthalmic	scalpel,	exposing	a	hole	of	~300	µm	diameter.	The	left	area	X	was	injected	using	a	
Drummond	Nanoject	 II	 (Drummond	pipette,	23nl/sec,	pulses	of	2.3nl).	 In	 the	same	surgery,	a	
head	anchoring	structure	was	created	by	curing	dental	acrylic	(Flow-It	ALC,	Pentron)	above	the	
exposed	skull	and	through	~100µm	holes	in	the	outer	bone	leaflet.		
	
Virus	injection	and	lens	implants	
A	lentivirus	that	was	developed	for	previous	work	in	zebra	finches	(containing	the	vector	pHAGE-
RSV-GCaMP6f;	 Addgene	 plasmid	 #80315)	was	 also	 used	 in	 canaries48.	 The	 outer	 skull	 leaflet	
above	HVC	was	removed	with	a	dental	drill.	The	inner	bone	leaflet	was	thinned	and	removed	
with	an	ophthalmic	scalpel,	exposing	~1.5-2mm	diameter	area	of	the	dura.	The	DiI	demarcation	
of	HVC	was	used	to	select	an	area	for	imaging.	The	lentivirus	was	injected	in	3-4	locations,	at	least	
0.2mm	apart,	at	a	range	of	depths	between	0.5-0.15mm.	In	total	800-1000nL	were	injected	into	
the	left	HVC.	After	the	injection,	the	dura	was	removed	and	the	parahippocampus	segment	above	
the	imaging	site	was	removed	with	a	dura	pick	and	a	custom	tissue	suction	nozzle.	A	relay	GRIN	
lens	(Grintech	GT-IFRL-100,	0.44	pitch	length,	0.47	NA)	was	immediately	positioned	on	top	of	the	
exposed	HVC	and	held	in	place	with	Kwik-Sil	(WPI).	Dental	acrylic	(Flow-It,	Pentron)	was	used	to	
attach	the	lens	to	the	head	plate	and	cover	the	surgery	area.	The	birds	were	allowed	to	recover	
for	1-2	weeks.	
	

Hardware	
To	 image	 calcium	 activity	 in	 HVC	 projection	 neurons	 during	 singing,	 we	 employed	 custom,	
lightweight	 (∼1.8	 g),	 commutable,	 3D-printed,	 single-photon	 head-mounted	 fluorescent	
microscopes	that	simultaneously	record	audio	and	video	(Figure	2).	These	microscopes	enabled	
recording	hundreds	of	songs	per	day,	and	all	songs	were	recorded	from	birds	longitudinally	in	
their	home	cage,	without	requiring	adjustment	or	removal	of	the	microscope	during	the	imaging	
period.	Birds	were	imaged	for	less	than	30	min	total	on	each	imaging	day,	and	LED	activation	and	
video	acquisition	were	triggered	on	song	using	previously	described	methods48.		
	

Microscope	design	
We	 used	 a	 custom,	 open-source	 microscope	 developed	 in	 the	 lab48.	 A	 blue	 LED	 produces	
excitation	 light	 (470-nm	peak,	 LUXEON	Rebel).	 A	 drum	 lens	 collects	 the	 LED	 emission,	which	
passes	through	a	4	mm	×	4	mm	excitation	filter,	deflects	off	a	dichroic	mirror,	and	enters	the	
imaging	pathway	via	a	0.25	pitch	gradient	refractive	index	(GRIN)	objective	lens.	Fluorescence	
from	the	sample	returns	through	the	objective,	the	dichroic,	an	emission	filter,	and	an	achromatic	
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doublet	lens	that	focuses	the	image	onto	an	analog	CMOS	sensor	with	640	×	480	pixels	mounted	
on	a	PCB	that	also	integrates	a	microphone.	The	frame	rate	of	the	camera	is	30	Hz,	and	the	field	
of	view	is	approximately	800	μm	×	600	μm.	The	housing	is	made	of	3D-printed	material	(Formlabs,	
black	 resin).	A	 total	of	5	electrical	wires	 run	out	 from	the	camera:	one	wire	each	 for	 camera	
power,	ground,	audio,	NTSC	analog	video	and	LED	power.	These	wires	run	through	a	custom	flex-
PCB	interconnect	(Rigiflex)	up	to	a	custom-built	active	commutator.	The	NTSC	video	signal	and	
analog	audio	are	digitized	through	a	USB	frame-grabber.	Custom	software	written	in	the	Swift	
programming	language	running	on	the	macOS	operating	system	(version	10.10)	leverages	native	
AVFoundation	 frameworks	 to	 communicate	 with	 the	 USB	 frame-grabber	 and	 capture	 the	
synchronized	audio–video	stream.	Video	and	audio	are	written	to	disk	in	MPEG-4	container	files	
with	video	encoded	at	full	resolution	using	either	H.264	or	lossless	MJPEG	Open	DML	codecs	and	
audio	encoded	using	the	AAC	codec	with	a	48-kHz	sampling	rate.	All	schematics	and	code	can	be	
found	 online	 https://github.com/gardner-lab/FinchScope	 and	 https://github.com/gardner-
lab/video-capture.				
	

Microscope	positioning	and	focusing	
Animals	 were	 anesthetized	 and	 head	 fixed.	 The	 miniaturized	 microscope	 was	 held	 by	 a	
manipulator	and	positioned	above	the	relay	lens.	The	objective	distance	above	the	relay	was	set	
such	that	blood	vessels	and	GCaMP6f	expressing	cells	were	in	focus.	The	birds	recovered	in	the	
recording	setup.	Within	the	first	couple	of	weeks,	the	microscopes	were	refocused	to	maximize	
the	number	of	observable	neurons.	
	
Histology	
DiI	was	injected	into	area	X	as	described	above.	Three	days	later,	~800nL	lentivirus	was	injected	
into	 HVC	 using	 the	 DiI	 demarcation.	 In	 finches,	 this	 virus	 infected	 predominately	 projection	
neurons.	 In	this	project	we	analyzed	neurons	with	sparse	activity	that	do	not	match	the	tonic	
activity	of	interneurons	in	HVC.	The	virus	was	injected	in	four	sites,	at	least	0.2mm	apart	and	at	
two	 depths	 (matching	 the	 experiment’s	 procedure).	 About	 four	 weeks	 later	 the	 bird	 was	
euthanized	(by	an	intracholemic	injection	of	0.2mL	10%	Euthasol,	Virbac,	ANADA	#200-071,	in	
saline)	and	perfused	by	first	running	saline	and	then	4%	paraformaldehyde	via	the	heart’s	left	
chamber	 and	 the	 contralateral	 neck	 vein.	 The	 brain	was	 extracted	 and	 kept	 overnight	 in	 4%	
paraformaldehyde	at	4°C.		
GCaMP6f	expression	(Supplementary	Figure	2	-	1a)	
The	 fixed	 tissue	was	 sectioned	 into	 70	 µm	 sagittal	 slices	 (Vibratome	 series	 1000),	 placed	 on	
microscope	slides,	and	sealed	with	cover	slips	and	nail	polish.	Epifluorescence	images	were	taken	
with	Nikon	Eclipse	Ni-E	tabletop	microscope.	
Expression	specificity	to	excitatory	neurons	(Supplementary	Figure	2	-	1b)	
The	fixed	tissue	was	immersed	in	20%	and	30%	sucrose	solutions	for	two	overnights,	frozen	and	
sectioned	into	30	µm	sagittal	slices	(Cryostat,	Leica	CM3050S).	Following	work	in	zebra	finches49,	
the	 slices	were	 stained	 for	 calcium	 binding	 interneuron	markers	 Calbindin	 (1:4000,	 SWANT),	
Calretinin	 (1:15000,	SWANT),	and	Parvalbumin	(1:1000,	SWANT)	by	overnight	 incubation	with	
the	primary	antibody	at	4°C	and	with	a	secondary	antibody	(coupled	to	Alexa	Fluor	647)	for	2	
hours	at	room	temperature.	Slices	were	mounted	on	microscope	slides,	and	sealed	with	cover	
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slips	and	nail	polish.	A	confocal	microscope	(Nikon	C2si)	was	used	to	image	GCaMP6f	and	the	
interneuron	markers	in	3µm-thick	sections	through	the	tissue.	The	images	were	inspected	for	co-
stained	cells	(e.g.	supplementary	videos	1-7).	The	results	ruled	out	any	co-expression	of	GCaMP	
and	Calbindin	or	Calretinin.	We	found	2	cells	expressing	Parvalbumin	and	GCaMP	(supplementary	
video	 5	 shows	 one	 example,	 <0.5%	 of	 PV	 stained	 cells,	 <0.01%	 of	 GCaMP	 expressing	 cells),	
possibly	replicating	previous	observation	of	PV	expression	in	HVC	projection	neurons49.						
	

Data	collection	
Song	screening	
Birds	were	individually	housed	in	soundproof	boxes	and	recorded	for	3-5	days	(Audio-Technica	
AT831B	Lavalier	Condenser	Microphone,	M-Audio	Octane	amplifiers,	HDSPe	RayDAT	sound	card	
and	VOS	games’	Boom	Recorder	software	on	a	Mac	Pro	desktop	computer).	In-house	software	
was	used	to	detect	and	save	only	sound	segments	that	contained	vocalizations.	These	recordings	
were	used	to	select	subjects	that	are	copious	singers	(>=50	songs	per	day)	and	produce	at	least	
10	different	syllable	types. 
	

Video	and	audio	recording	
All	data	used	in	this	manuscript	was	acquired	between	late	February	and	early	July	–	a	period	
during	 which	 canaries	 perform	 their	 mating	 season	 songs.	 To	 avoid	 over	 exposure	 of	 the	
fluorescent	 proteins,	 data	 collection	was	 done	 during	 the	morning	 hours	 (from	 sunrise	 until	
about	10am)	and	 the	daily	 accumulated	 LED-on	 time	 rarely	exceeded	30	minutes.	Audio	and	
video	 data	 collection	 was	 triggered	 by	 the	 onset	 of	 song	 as	 previously	 described48	 with	 an	
additional	 threshold	 on	 the	 spectral	 entropy	 that	 improved	 detection	 of	 song	 periods	
dramatically.	Data	 files	 from	the	 first	couple	of	weeks,	a	period	during	which	 the	microscope	
focusing	took	place	and	the	birds	sang	very	little,	was	not	used	in	this	manuscript.	Additionally,	
data	files	from	(extremely	rare)	days	in	which	video	files	were	corrupted	because	of	tethering	
malfunctions,	were	not	used	in	this	manuscript.		
	
Data	Analysis	
Video	file	preprocessing	
Software	 developed	 in-house	 was	 used	 to	 load	 video	 frames	 and	 audio	 signal	 to	 MATLAB	
(https://github.com/gardner-lab/FinchScope/tree/master/Analysis%20Pipeline/extractmedia)	
along	with	the	accompanying	timestamps.	Video	frames	were	interpolated	in	time	and	aligned	
to	an	average	 frame	rate	of	30Hz.	Audio	samples	were	aligned	and	trimmed	 in	sync	with	the	
interpolated	 frame	 timestamps.	 To	 remove	 out-of-focus	 bulk	 fluorescence	 from	 the	 3-
dimensional	 representation	 of	 the	 video	 (rows	 x	 columns	 x	 frames),	 the	 background	 was	
subtracted	 from	 each	 frame	 by	 smoothing	 it	 with	 a	 145	 pixel-wide	 circular	 Gaussian	 kernel,	
resulting	in	3	dimensional	video	data,	𝑉 𝑥, 𝑦, 𝑡 .	
	

Audio	processing	
Song	syllables	were	segmented	and	annotated	in	a	semi-automatic	process:	
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• A	 set	 of	 ~100	 songs	 was	 manually	 annotated	 using	 a	 GUI	 developed	 in-house	
(https://github.com/yardencsGitHub/BirdSongBout/tree/master/helpers/GUI).	 This	 set	
was	chosen	to	include	all	potential	syllable	types	as	well	as	cage	noises.	

• The	manually	labeled	set	was	used	to	train	a	deep	learning	algorithm	developed	in-house	
(https://github.com/yardencsGitHub/tweetynet).	

• The	 trained	 algorithm	 annotated	 the	 rest	 of	 the	 data	 and	 its	 results	 were	 manually	
verified	and	corrected.	

• In	both	the	training	phase	of	TweetyNet	and	the	prediction	phase	for	new	annotations,	
data	is	fed	to	TweetyNet	in	segments	of	1	second	and	TweetyNet’s	output	is	the	most	
likely	label	for	each	2.7msec	time	bin	in	the	recording.		

	
Assuring	the	separation	of	syllable	classes	
To	make	sure	that	the	syllable	classes	are	well	separated	all	the	spectrograms	of	every	instance	
of	every	syllable,	as	segmented	in	the	previous	section,	were	zero-padded	to	the	same	duration,	
pooled	and	divided	into	two	equal	sets.	For	each	pair	of	syllable	types,	a	support	vector	machine	
classifier	was	trained	on	half	the	data	(the	training	set)	and	its	error	rate	was	calculated	on	the	
other	half	(the	test	set).	These	results	are	presented,	for	example,	in	Supplementary	Figure	1	-	5.	
	
Testing	for	within-class	separation	context-distinction	by	syllables	acoustics	
Apart	 from	the	clear	between-class	separation	of	different	syllables	 for	syllables	that	precede	
complex	 transitions	 we	 check	 the	 within-class	 distinction	 between	 contexts	 that	 affect	 the	
transition.	To	do	that	we	use	the	parameters	defined	in	Wohlgemuth	et	al.,	201050	and	treat	each	
syllable	rendition	as	a	point	in	an	8	dimensional	space	of	normalized	acoustic	features.	For	a	pair	
of	syllable	groups	(different	syllables	or	the	same	syllable	in	different	contexts)	we	calculate	the	
discriminability	coefficient:		
𝑑′𝐴𝐵=	

𝜇𝐴−𝜇𝐵

𝜎𝐴
2

2 +
𝜎𝐵
2

2

	,	

Where,	𝜇𝐴−𝜇𝐵	is	the	𝐿2	distance	between	the	centers	of	the	distributions	and	𝜎𝐴
2 ,	𝜎𝐵2 	are	the	

within-group	distance	variance	from	the	centers.	Supplementary Figure 1 - 7	demonstrates	that	
all	within-class	d’	values	are	smaller	than	all	between-class	d’	values.		
	
	

Identifying	complex	transitions	
Complex	transitions	were	identified	by	the	length	of	the	Markov	chain,	required	to	describe	the	
outcome	probabilities.	These	dependencies	were	found	using	a	previously-described	algorithm	
that	 extract	 the	 probabilistic	 suffix	 tree	 (PST1)	 for	 each	 transition	
(https://github.com/jmarkow/pst).	Briefly,	the	tree	is	a	directed	graph	in	which	each	phrase	type	
is	 a	 root	 node	 representing	 the	 first	 order	 (Markov)	 transition	 probabilities	 to	 downstream	
phrases,	 including	the	end	of	song.	The	pie	chart	 in	Supplementary	Figure	1	-	4(i)	shows	such	
probabilities.	 Upstream	 nodes	 represent	 higher	 order	 Markov	 chains,	 2nd	 and	 3rd	 in	
Supplementary	 Figure	 1	 -	 4(ii)	 and	 (iii)	 respectively,	 that	 are	 added	 sequentially	 if	 they	
significantly	add	information	about	the	transition.				
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ROI	selection,	DF/F	signal	extraction	and	de-noising	
Song-containing	movies	were	converted	 to	 images	by	calculating,	 for	each	pixel,	 the	maximal	
value	across	all	frames.	These	‘maximum	projection	images’	were	then	similarly	used	to	create	a	
daily	maximum	projection	image	and	also	concatenated	to	create	a	video.	The	daily	maximum	
projection	and	 song-wise	maximum	projection	 videos	were	used	 to	 select	 regions	of	 interest	
(ROIs),	purported	single	neurons,	in	which	fluorescence	fluctuated	across	songs.	
	
ROIs	were	never	smaller	than	the	expected	neuron	size,	did	not	overlap,	and	were	restricted	to	
connected	shapes,	rarely	deviating	from	simple	ellipses.	Importantly,	this	selection	method	did	
not	differentiate	between	sources	of	fixed	and	fluctuating	fluorescence.	The	footprint	of	each	
ROI	in	the	video	frames	was	used	to	extract	the	time	series,	𝐹 𝑡 = 𝛴 A,B ∈DEF𝑉 𝑥, 𝑦, 𝑡 ,	summing	
signal	 from	 all	 pixels	 within	 that	 ROI.	 Then,	 signals	 were	 converted	 to	 relative	 fluorescence	
changes,	GH I

HJ
= H I KHJ

HJ
	by	defining	𝐹$	to	be	the	0.05	quantile.		

	
The	de-noised	fluorescence,	 𝛥𝑓/𝑓$ %&'()*&%,	is	estimated	from	the	relative	fluorescence	change	
using	previously	published	modeling	of	the	calcium	concentration	dynamics	and	the	added	noise	
process	caused	by	the	fluorescence	measurement46				
	
Seeking	ROIs	with	sequence	correlations		
Since	each	ROI	was	sparsely	active	in	very	few	phrase	types	we	first	sought	ROIs	that	are	active	
during	a	phrase	type	and	then	tested	if	it	shows	correlations	to	preceding	or	following	phrase	
identities.	We	used	the	following	scheme:	

• The	entire	set	of	songs	of	each	bird	was	used	to	calculate	the	1st	order	phrase	transition	
probabilities,	𝑃MN = 𝑃(𝑎 → 𝑏),	for	all	phrases	‘a’,	‘b’.			

• Phrase-type-active	ROI	was	defined	by	requiring	signal	magnitude,	GH I
HJ

	as	defined	in	the	

previous	 section,	 to	 be	 larger	 than	 neighboring	 phrases	 and	 distinct	 from	 noise	
fluctuations	(for	each	ROI	and	repeats	of	each	phrase	type,	P):	

o The	0.9	quantile,	𝛥𝐹𝐹T$,	is	taken	as	a	measure	of	peak	values	–	reducing	outliers.	
o Signal	 and	 noise	 fluctuations	 are	 separated	 by	 fitting	 a	 2-state	 hidden	Markov	

model	with	Gaussian	emission	functions.	The	phrase-type-occupancy,	𝐻𝑀𝑀W,	 is	
the	fraction	of	phrase	‘P’	repetitions	that	contained	the	signal	state.			

o ROI	past	and	 future	phrase	 type	relationships	were	 investigated	 if	𝛥𝐹𝐹T$ > 0.1	
(i.e.	fluorescence	fluctuation	is	large),	𝐻𝑀𝑀W > 0.1	(i.e.	the	phrase	type	reliably	
carries	 signal),	 and	𝛥𝐹𝐹T$ 	is	 larger	 than	 the	 same	measure	 in	 the	 neighboring	
phrases	 (i.e.	 the	 phrase	 type	 carries	 a	 peak	 of	 signal	 value	 compared	 to	 its	
neighbors).		

• Sequence-signal	 correlations	 were	 not	 investigated	 if	 fewer	 than	 N	 =	 10	 repeats	
contributed	to	the	test.		

• 1st	 order	 relationships	 between	 the	 signal	 integral	 (summed	 across	 time	 bins	 in	 the	
phrase)	 and	 the	 upstream	 or	 downstream	 phrase	 identities	 were	 tested	 with	 1-way	
ANOVA.	
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• 2nd	order	relationships	were	tested	between	the	signal	integral	and	the	identity	of	the	2nd	
upstream	(downstream)	phrase	identity	for	all	intermediate	phrase	types	that	preceded	
(followed)	 the	 phrase-in-focus	 in	≥10%	 of	 the	 repeats	 (as	 indicated	 by	 the	 phrase	
transition	matrix)	

• Relations	were	discarded	if	the	label,	 leading	to	the	significant	ANOVA,	contained	only	
one	song.	

• Data	used	for	ANOVA	tests	is	represented	in	supplementary	figures	by	box	plots	marking	
the	 median	 (center	 line);	 upper	 and	 lower	 quartiles	 (box	 limits);	 extreme	 values	
(whiskers),	and	outliers	(+	markers).	

• The	data	were	not	tested	for	normality	prior	to	performing	ANOVA	tests	for	 individual	
neurons	with	the	following	reasoning:	

o Statistics	 textbooks	 suggest	 that	 violating	 the	 normality	 requirement	 is	 not	
expected	to	have	a	significant	effect.	For	example,	Howell,	Statistical	Methods	in	
Psychology,	 Chapman	&	Hall,	 4th	 Ed	writes:	 “As	we	have	 seen,	 the	 analysis	 of	
variance	is	based	on	the	assumptions	of	normality	and	homogeneity	of	variance.	
In	practice,	however,	the	analysis	of	variance	is	a	robust	statistical	procedure,	and	
the	assumptions	frequently	can	be	violated	with	relatively	minor	effects.	This	is	
especially	 true	 for	 the	 normality	 assumption.	 For	 studies	 dealing	 with	 this	
problem,	 see	 Box	 (1953,	 1954a,	 1954b),	 Boneau	 (1960),	 Bradley	 (1964),	 and	
Grissom	(2000).”	

o Carrying	tests	for	normality	will	create	a	bias	in	our	analyses.	Each	neuron	tested	
for	 phrase	 sequence	 correlation	 is	 recorded	 in	 a	 different	 number	 of	 songs.	
Testing	for	normality	will	bias	towards	larger	numbers	of	songs	and	against	high-
order	correlations.	

o Nevertheless,	we	repeated	the	analyses	in	this	manuscript	with	non-parametric	
one-way	analysis	of	variance	(Kruskal	-	Wallis).	While	fewer	neurons	pass	the	more	
stringent	tests	(~15%	less),	all	the	results	in	the	manuscript	remain	the	same.	We	
include	 a	 summary	 of	 the	 non-parametric	 statistics	 as	 extended	 data.	
	

Note:	In	this	procedure,	sparsely	active	ROIs	or	ROIs	active	in	rare	phrase	types	were	not	tested	
for	 sequence	 correlation.	 In	 the	main	body	we	 reported	 that	18.2%	of	 the	entire	 set	of	ROIs	
showed	 sequence	 correlation.	 This	 percentage	 includes	 also	 ROIs	 that	 were	 not	 tested	 for	
sequence	correlations.	Out	of	 the	ROIs	 that	were	tested,	about	30%	had	significant	sequence	
correlations	(23%	and	10%	showed	1st	and	2nd	order	correlations)	
  
Phrase	specificity	
The	fractions	of	phrase	repetitions,	during	which	a	ROI	is	‘active’,	𝐻𝑀𝑀W,	were	also	used	to	
calculate	the	ROIs’	phrase	specificity	(in	Figure	2):	

• For	 each	 ROI,	 the	 fraction	 of	 activity	 in	 repetitions	 of	 each	 phrase	 was	 calculated	
separately.	

• These	measures	were	normalized	and	sorted	in	descending	order.	
• The	number	of	phrase	types	accounting	for	90%	of	the	ROI’s	activity	was	calculated.	
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Controlling	for	phrase	durations	and	time-in-song	confounds	
In	songs	that	contain	a	fixed	phrase	sequence,	as	in	Figure	2d,	we	calculated	the	significance	of	
the	relation	between	𝑠 = 𝛥𝑓/𝑓$ %&'()*&%I∈] ,	an	integral	of	the	signal	during	one	phrase	in	the	
sequence,	the	target	phrase	‘p’,	and	the	identity	of	an	upstream	phrase	that	changes	from	song	
to	song	using	a	1-way	ANOVA.	This	relation	can	be	carried	by	several	confounding	variables:	

• The	duration	of	the	target	phrase.	
• The	relative	timing	of	intermediate	phrase	edges,	between	the	changing	phrase	and	the	

target	phrase.	
• The	absolute	time-in-song	of	the	target	phrase.	

	
In	Supplementary	Figure	2	-	7c	we	account	for	these	variables	by	first	calculating	the	residuals	of	
a	multivariate	linear	regression	(a	general	 linear	model,	or	GLM)	between	those	variables	and	
𝑠 𝑡 ,	 and	 then	using	1-way	ANOVA	 to	 test	 the	 relation	of	 the	 residuals	 and	 the	upstream	or	
downstream	phrase	identity.			
	

Contrasting	influence	of	preceding	and	following	phrases	on	neural	activity	(Supplementary	
Figure	3	-	4)		
For	neurons	with	significant	sequence	correlations	(1-way	ANOVA	described	above)	we	adopted	
a	method	agnostic	to	correlation	order	(1st	or	higher,	as	defined	above)	and	direction	(past	or	
future).	We	used	multi-way	ANOVA	to	test	the	effect	of	the	identity	of	the	immediately	preceding	
and	immediately	following	phrase	types	on	the	neural	signal	(𝑠 = 𝛥𝑓/𝑓$ %&'()*&%I∈] ).	Using	a	
threshold	at	p	=	0.05	we	compare	the	fractions	of	sequence-correlated	ROIs	influenced	by	past	
phrases,	 future	phrases,	or	both.	This	comparison	 is	also	carried	separately	 for	ROIs	active	 in	
complex	transitions	or	outside	of	complex	transitions	(panels	b,c).	
	

Testing	if	sequence	correlated	neurons	prefer	one	or	more	song	contexts	(Figure	4c)	
For	 neurons	with	 significant	 sequence	 correlations	 (1-way	ANOVA	described	 above)	we	used	
Tukey’s	 post-hoc	 analysis	 to	 determine	 if	 this	 sequence	 correlation	 results	 from	 a	 significant	
single	preferred	context	or	significant	several	preferred	contexts.	A	neuron	was	declared	‘single	
context	preferring’	 if	 the	mean	signal	 in	only	 that	 context	was	 larger	 than	all	others	 (Tukey’s	
p<0.001).	A	neuron	was	declared	as	having	preference	to	more	than	a	single	past	context	if	the	
mean	signal	following	several	contexts	was	larger	than	another	context	(Tukey’s	p<0.001).	Since	
the	post-hoc	test	uses	a	subset	of	the	songs	it	is	weaker	than	the	1-way	ANOVA	and	some	neurons	
do	not	show	a	clear	preference	to	one	context	or	more	but	still	have	sequence	correlation	(gray	
in	Figure	4c)	
	

Maximum	projection	images	for	comparing	context-dependent	signals		
Maximum	fluorescence	images	
In	songs	that	contain	a	fixed	phrase	sequence	and	a	variable	context	element,	such	as	a	preceding	
phrase	identity,	maximum	projection	images	are	created,	as	above,	but	using	only	video	frames	
from	the	target	phrase	(e.g.	the	pink	phrase	in	Figure	2d).	Then,	the	sets	of	maximum	projection	
images	in	each	context	(e.g.	identity	of	upstream	phrase)	are	averaged,	assigned	orthogonal	color	
maps	(e.g.	red	and	cyan	in	Supplementary	Figure	2	-	3)	and	overlaid.		Consequentially,	regions	of	
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the	imaging	plane	that	have	no	sequence	preference	will	be	closer	to	gray	scale,	while	ROIs	with	
sequence	preference	will	be	colored.	In	Supplementary	Figure	2	-	3	and	Supplementary	Figure	4	
-	1	we	used	a	sigmoidal	transform	of	the	color	saturation	to	amplify	the	contrast	between	color	
and	gray	scale	without	changing	 the	sequence	preference	 information.	 	Additionally,	 to	show	
that	 pixels	 in	 the	 ROI	 are	 biased	 towards	 the	 same	 context	 preference,	 the	 above	 context-
averaged	 maximum	 projection	 images	 are	 subtracted	 and	 pseudo-colored	 (insets	 in	
Supplementary	Figure	2	-	3)	
De-noised	Maximum	projection	images	(Figure	3a)	
The	 above	 maximum	 projection	 images	 show	 the	 fluorescence	 signal,	 including	 background	
levels	that	are	typical	to	single-photon	microscopy.	To	emphasize	context-dependent	ROIs	we	
de-noised	 the	 fluorescence	 videos	 using	 the	 previously-published	 algorithm,	 CNMFE46,	 and	
created	maximum	projection	 images,	 as	 above,	 from	 the	 background-subtracted	 videos.	 The	
preceding	context	preferring	ROIs	from	this	estimation	algorithm	(Figure	3a)	completely	overlap	
with	the	manually	defined	ROIs,	used	to	extract	signal	rasters	(Figure	3b).	Supplementary	Figure	
3	-	3	replicates	Figure	3a	without	the	de-noising	algorithm	and	shows	that	the	same	ROIs	report	
the	same	context	dependence.	Supplementary	video	8	shows	all	the	de-noised	video	data,	used	
to	create	Figure	3a.	
	
Label	prediction	from	clustered	network	states	
The	signal	integral	during	a	target	phrase,	pink	in	Figure	4d,	is	used	to	create	network	states	–
vectors,	composed	of	signals	from	4	jointly-recorded	ROIs.	The	averages	of	the	vectors,	belonging	
to	the	contexts	defined	by	the	1st	upstream	(or	downstream)	phrase	label	define	label-centroids.	
Then,	labels	of	individual	songs	are	assigned	to	the	nearest	neighboring	centroid	(Euclidean).			
	

Bootstrapping	mutual	information	in	limited	song	numbers	
To	overcome	the	errors	introduced	by	limited	number	of	songs	in	Figure	4d,	the	mutual	
information	between	the	network	state	and	the	identity	of	the	1st	upstream	(or	downstream)	
phrase	is	estimated	in	a	bootstrapping	permutation	process	as	follows:	

• Sub-sampling	3	out	of	4	ROIs	in	each	permutation	and	converting	their	signal	to	binary	
values	by	thresholding	the	signal	integral.	

• Reducing	 the	 number	 of	 phrase	 labels	 by	merging.	 Specifically,	 in	 Figure	 4,	 the	 least	
common	label	in	downstream	states	is	randomly	merged	with	one	of	the	other	labels.	In	
the	upstream	 labels,	 the	 least	common	 label	 is	merged	after	a	 random	division	of	 the	
other	4	labels,	to	form	2	groups	of	2.	

• The	mutual	 information	measures	are	 then	calculated	 for	each	one	of	 the	48	possible	
state	 spaces	 –	 leading	 to	 the	 scatter	 Figure	 4e.	 The	 0.95	 quantile	 level	 of	 the	 null	
hypothesis	is	created	by	randomly	shuffling	each	variable	to	create	a	1000	surrogate	data	
sets	and	repeating	the	measures.		

• The	shuffled	set	is	used	to	create	a	sample	distribution	and	calculate	the	significance	of	
the	differences	in	Figure	4e	using	a	z-test	with	the	sample	mean	and	standard	deviation.	
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