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Abstract

Defining a 'healthy' gut microbiome has been a challenge in the absence of detailed information
on both host health and microbiome composition. Here, we analyzed a multi-omics dataset from
hundreds of individuals (discovery n=399, validation n=540) enrolled in a consumer scientific
wellness program to identify robust associations between host physiology and gut microbiome
structure. We attempted to predict gut microbiome a-diversity from nearly 1000 analytes
measured from blood, including clinical laboratory tests, proteomics and metabolomics. While a
broad panel of 77 standard clinical laboratory tests and a set of 263 proteins from blood could
not accurately predict gut microbial a-diversity, we found that 45% of the variance in microbial
community diversity was explained by a subset of 40 blood metabolites, many of microbial
origin. This relationship between the host metabolome and gut microbiome a-diversity was very
robust, persisting across disease conditions and antibiotics use. Several of these novel metabolic
biomarkers of gut microbial diversity were previously associated with host health (e.g.
cardiovascular disease risk, diabetes, and kidney function). A subset of 11 metabolites classified
participants with potentially problematic low a-diversity (ROC AUC=0.88, Precision-Recall
AUC=0.76). Relationships between host metabolites and a-diversity remained consistent across
most of the Body Mass Index (BMI) spectrum, but were modified in extreme obesity (class II/I11,
but not class 1), suggesting a significant metabolic shift. Out-of-sample prediction accuracy of a-
diversity from the 40 identified blood metabolites in a validation cohort, whose microbiome
samples were analyzed by a different vendor, confirmed the robust correspondence between gut
microbiome structure and host physiology. Collectively, our results reveal a strong coupling

between the human blood metabolome and gut microbial diversity, with implications for human
health.
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Background

Changes in the composition or structure of the gut microbiome have been associated with
an increasing number of human diseases, including diabetes, colorectal cancer and complex
gastrointestinal disorders such as inflammatory bowel disease (IBD) !2. Each diverse bacterial
community residing in each human gut can play various roles in human health, from
metabolizing nutrients and bile acids to secreting hormones and maintaining healthy immune
function 3. A recent study demonstrated that the fecal metabolome can account for close to 68%
of the variance in inter-individual gut microbiome composition, demonstrating the strong
association between the metabolic output and gut microbial structure 6. While fecal metabolites
might be more reflective of the direct metabolic output of the microbiota, blood metabolites
provide a window into which of these compounds make it into circulation to potentially impact
host metabolism and health. The emergence of untargeted metabolomics has increased our
understanding of the blood metabolome and has led to identification of unique molecules in
circulation that are generated by the gut microbiota and that may exert biological effects in the
host 78, However, many questions remain about how closely the blood metabolome reflects the
composition of the gut microbiome, what metabolites in particular are most strongly associated
with gut microbial diversity, and under what physiological conditions the gut microbiome-host
metabolome relationship is perturbed.

Shannon diversity is a common metric of a-diversity (within-sample diversity) that
summarizes taxonomic richness (how many species are represented) and evenness (the degree to
which these species are represented at the same level) (see Methods), and has been suggested as
a marker for microbiome health. Lower Shannon diversity, relative to healthy controls, has been
reported in individuals diagnosed with IBD, as well as enteric infections caused by Clostridium
difficile or other bacterial pathogens '*-1°. Conversely, increased Shannon diversity has been
reported in hunter-gatherer communities compared to individuals in industrialized countries,
suggesting an unprocessed diet, an active lifestyle, or increased exposure to intestinal parasites
may contribute to a more diverse gut microbiome 2. Bristol Stool Scores indicative of
constipation (i.e. harder stool) have also been associated with higher Shannon diversity '3, which
suggests higher diversity may not be optimal for human health above some threshold. Therefore,
the debate on how to define an optimal gut a-diversity, and whether such an optimum exists,
continues.

Regular, efficient monitoring of gut a-diversity in a clinical setting could have important
implications for diagnosing, monitoring and treating disease. Such a test could be used to assess
recovery from gastrointestinal illness, monitor gut health in chronic conditions such as IBD, or
optimize interventions for improving gastrointestinal health. Commonly used medications such
as antibiotics and proton pump inhibitors have been shown to decrease gut a-diversity and
increase the risk of enteric infections, including recurrent Clostridium difficile infection (rCDI)
14-16 +CDI kills thousands of patients each year !” and is characterized by a substantial decrease
in Shannon diversity relative to patients experiencing an initial CDI !°, Fecal microbiota
transplants (FMTs) are the most promising line of treatment for rCDI'®, however, presently they
are only approved for cases with multiple CDI recurrences and where other treatment options
have fallen short. By creating an easy, reliable method for monitoring gut a-diversity, patients at
high risk for rCDI could be identified earlier and FMT administered as first line of treatment,
resulting in improved patient outcomes.

Perhaps nowhere is the controversy about the gut microbiome and its relation to health
greater than for obesity !°. Obesity is an established risk factor for many diseases, including
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cardiovascular disease, diabetes, and several types of cancers 2°. Changes in gut microbiota
composition, including shifts in a-diversity, have been linked to obesity, although these
associations are inconsistent across studies !°. Chronic inflammation underlies many obesity-
related health risks and is believed to be mediated by cytokines produced in the adipose tissue
and/or by a low-fiber diet that promotes a pro-inflammatory microbiota 2!. Even in the absence
of metabolic abnormalities, obesity is associated with higher risk for cardiovascular and
autoimmune diseases %23, prompting a deeper investigation into the host-microbiome
relationship across the BMI spectrum.

Previously, our research group published analyses incorporating proteomic, metabolomic,
genetic, and microbiome data on 108 participants in the context of health and wellness 4.
Through a partnership between the Institute for Systems Biology (ISB) and a spin-out company,
Arivale, we have greatly expanded the cohort through individuals who have consented to allow
their de-identified data to be used for scientific discovery. This wealth of data provides a unique
research opportunity for investigating the host-microbiome interface, revealing novel insight into
how the gut microbiota corresponds to human health. In this study, we utilized dense
phenotyping of Arivale participants to assess the relationship between a multitude of blood
analytes and gut microbial Shannon diversity. We demonstrate that a relatively small subset of
40 of the 659 plasma metabolites measured can be used to predict Shannon diversity in the gut,
which indicates a strong association between host physiology and the structure of the gut
microbiome. We find little-to-no correspondence between 77 clinical lab analytes and Shannon
diversity, which suggests that biomarkers that are relevant to the state of the microbiome are not
routinely measured in clinical settings. Our results further indicate that specific metabolite-
Shannon diversity associations vary across BMI classes, particularly under severe obesity. A
great majority of the identified observations were confirmed in a validation cohort, that consists
of participants who joined the Arivale program at an earlier date and whose stool and blood
samples were analyzed by a different vendor, demonstrating the robustness of the identified
relationships despite the added variability seen across different data generating pipelines °.
Collectively, the present study provides novel insight into the complex interactions between host
health and the gut microbiome, with particular focus on the blood metabolome.

Methods

Cohort

Subscribers to the Arivale Scientific Wellness™ program (Arivale, Inc., Seattle, WA) were
included in the study if they gave permission to use their de-identified data for scientific
discovery and met the inclusion criteria. The inclusion criteria required participants to have their
initial blood draw taken within 21 days of their stool sample (no. of days from blood draw
median=0, interquartile range (IQR)= -5 to 6). This cutoff was chosen to prevent large gaps
between when samples were collected for blood metabolomics and gut microbiome analysis. To
be included in the discovery cohort, participants were further required to have their gut
microbiome analyzed by DNA Genotek, one of two microbiome vendors used in the program,
and their blood clinical labs by Labcorp of America (LCA) (N=399). Demographic information
on the cohort is provided in Table 1, where participants were stratified based on BMI into four
classes: normal weight (18<BMI<25), overweight (25<BMI<30), World Health Organization
(WHO) obese category I (obese I) (30<BMI<35) and WHO obese categories I and III
(35<BMI). Our cohort was predominantly white with a mean age of 47 years and a greater
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proportion of females (72%) than males. Overall our cohort represents a broad range of adults,
with markers of health decreasing with increasing BMI. An additional 540 participants who met
the 21-day cut off criteria, but whose gut microbiome was analyzed by Second Genome were
included as a validation cohort. Demographic information on the validation cohort is provided in
Supplementary Table 1.

Clinical Laboratory Tests

All blood draws for all assays were performed by trained phlebotomists at LCA or Quest service
centers. Blood samples for clinical labs were obtained at the same time as the metabolomics
blood draw, within 21 days of the gut microbiome sample. Participants were required to avoid
alcohol, vigorous exercise, aspartame, and monosodium glutamate 24 hours prior to the blood
draw, and to begin fasting 12 hours in advance. All clinical labs were analyzed by LCA in the
discovery cohort, and by Quest (62% of samples) or LCA (38%) in the validation cohort. At the
time of each blood draw, weight and height were measured, and BMI was calculated using the

formula: BMI = We,igh—t(kg)z. A threshold of less than 5% missing values was set for each
(height (m))

clinical lab, which was passed by 77 different analytes. Median imputation was performed on the
resulting analytes, which were then used for further analysis.

Proteomics

Plasma protein levels were measured using the ProSeek Cardiovascular II, Cardiovascular III,
and Inflammation arrays (Olink Biosciences, Uppsala, Sweden), processed and batch corrected
as described before 26, For analysis, a threshold of less than 5% missing values was set for each
protein, which was passed by 263 different analytes. The number of participants who met the
initial inclusion criteria and whose proteomics measurement was obtained within 21 days of the
gut microbiome sample was 262. Missing values for the proteins were imputed to be the
minimum observed value for that protein.

Metabolomics

Metabolon (North Carolina) conducted the metabolomics assays on participant plasma samples.
Sample handling, quality control, and data extraction, along with biochemical identification, data
curation, quantification, and data normalizations have been previously described ?’. For analysis,
the raw metabolomics data were median scaled within each batch such that the median value for
each metabolite was one. To adjust for possible batch effect, further normalization across batches
was performed by dividing the median-scaled value of each metabolite by the corresponding
average value for the same metabolite in QC samples of the same batch. Missing values for
metabolites were imputed to be the minimum observed value for that metabolite. Values for each
metabolite were log transformed. A total of 659 different plasma metabolites were measured for
each participant in the discovery and validation cohorts.

Microbiome

Stool specimens were taken at participants’ homes using a standardized kit supplied by
DNAgenotek (Ottawa, ON, Canada) in the discovery cohort and Second Genome (South San
Francisco, CA) in the validation cohort. Microbial DNA was isolated from 250 mL of
homogenized stool, using an automated protocol and MoBio’s PowerMag (+ClearMag)
microbiome DNA isolation kit on the KingFisher Flex instrument. The extraction protocol
involved a precursory bead-beating step with glass beads and plate shaker for recovery of more
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DNA from a more diverse microbial community. Concentrations of extracted DNA from each
sample were determined by Qubit measurement, and an estimate of sample purity was
determined with spectrophotometry by measuring the A260/A280 absorbance ratio. Gut
microbiome sequencing data in the form of FASTQ files were provided based on either the 300-
bp paired-end MiSeq profiling of the 16S V3+V4 region (DNAgenotek) or 250-bp paired-end
MiSeq profiling of the 16S V4 region (Second Genome). Operational taxonomic unit (OTU) read
counts were calculated using the QIIME pipeline 2% (version 1.9.1; default parameters) with
closed-reference OTU picking against the Greengenes database (version 13_08) ?°. Rare OTUs,
defined here as those not representing 0.01% of at least one sample, were removed. Remaining
OTU counts were unit normalized. For a-diversity calculations, OTUs were rarefied at 30,000

reads. Gut a-diversity was calculated by 1) Shannon’s index, calculated by H = —st=1pilnpi,

where p; is the proportion of the community represented by OTU;, 2) Chaol, calculated by
2

Schao1 = Sops T+ znTl’ where S, is the number of observed species, n; is the number of
2

singletons (species captured once), and n; is the number of doubletons (species captured twice)
30 and by 3) PD whole tree - defined as the minimum total length of all the phylogenetic
branches required to span a given set of taxa on the phylogenetic tree 3!. Participants with
Shannon diversity values greater or less than 3.0 standard deviations from the mean were
removed prior to analysis (n=4 for the discovery cohort, n=6 for the validation cohort). For
microbiome genera-metabolite correlation analysis, only genera that had less than 5% zero
values and a mean greater than 5 counts were used. This decreased the number of genera from
550 to 96. Spearman correlations were then used to compare each of the 11 metabolites retained
by all 10 LASSO models with each of the 96 genera, correcting for multiple hypothesis testing
(FDR<0.05).

Gastrointestinal Health Metrics

Measures of gastrointestinal health and antibiotics use (Figure 4C&D) were obtained through
self-administered questionnaires completed by the participants during their initial assessment.
For reporting antibiotics use, participants chose from three possible responses (‘not in the past
year’, ‘in the past year’, and ‘in the past three months’) which were re-coded into ordinal
variables 0, 1, and 2 respectively. Participants chose one of several possible frequencies in
response to multiple questions related to gastrointestinal health (abdominal pain, acid reflux,
bloating, diarrhea, gas, lack of appetite, nausea) that were re-coded as follows:
‘infrequently/never’=0, ‘once a week or less’=1, ‘more than once a week’=2, ‘daily’=2. The only
exception was a question referring to frequency of bowel movement (constipation). In this case,
participants chose among the following four answers which were re-coded to the accompanying
numerical values: ‘2 or fewer times per week’ =2, 3-6 times per week’=1, ‘1-3 times daily’=0
& ‘4+ times daily’=0. The relationship of each self-reported measure with Shannon diversity was
then analyzed independently using linear regression with Shannon and the metabolome-predicted
Shannon diversity (mShannon) as the dependent variables and age, sex, and BMI included as
covariates. As our cohort consists of self-enrolled participants, response rates of health
questionnaires were incomplete; 320 of 399 participants completed the questionnaire on
gastrointestinal health and 318 responded to the question regarding antibiotics use. Only
responders were used in this particular analysis.

Analysis of Microbiota and Metabolomic Profiles.
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A 10-fold cross-validation (CV) implementation of Least Absolute Shrinkage and Selection
Operator method (LASSO) was used to predict Shannon diversity from plasma metabolomics
data using the Python (version 2.7/3.5+) machine-learning library Scikit-learn. LASSO is a
computationally efficient penalized regression method designed to find sparse linear models in
large datasets 32. All analytes were standardized to mean 0 and unit variance prior to analysis.
Ridge regression was also used to compare its performance in predicting Shannon diversity
relative to LASSO. Both LASSO and Ridge were fitted with an intercept. A 10-fold CV predict
implementation was used to generate a metabolome-predicted Shannon diversity (mShannon)
value for each participant. In this approach, each penalized regression model is trained on 90%
of the cohort with 10-fold CV, and mShannon diversity is predicted for the 10% of the
participants who were not used for model optimization. This process is repeated ten-fold
resulting in a ‘test set” mShannon value for each participant and ten different 5-coefficients for
each metabolite. Using an internal 10-fold CV in each training set and evaluating accuracy of the
models using only out-of-sample predictions are meant to control overfitting and provide a
conservative estimate of model performance. All metabolites with a non-zero f-coefficient in at
least one of the ten LASSO models (n=40) were included in further analysis. The R? score was
computed by taking the mean of all the R? scores across the 10 out-of-sample predictions.
Pearson r was calculated using observed Shannon and mShannon values for the entire cohort.

Classification Analysis

Eleven metabolites with non-zero B-coefficients across all ten LASSO models generated
(Supplementary Table 2) were used to classify participants with low a-diversity using Random
forests implemented in Python (version 2.7/3.5+) machine-learning library Scikit-learn. In 3
separate analyses, the cohort was stratified into quartiles based on either Shannon, PD whole
tree, or Chaol diversity metrics. In each analysis, participants in the bottom quartiles were coded
as cases (1) while the rest of the cohort was coded as controls (0). Random forests parameters
were optimized separately for metabolomics and clinical labs using the GridSearchCV function
in Scikit-learn. To confirm the robustness of the identified metabolites as biomarkers for gut
diversity, an additional classification was conducted using Shannon diversity as the a-diversity
metric in part of the Arivale cohort whose stool samples were analyzed by a different vendor and
who were not used for discovery (validation cohort). The same Random forest parameters were
used in the validation cohort as the discovery cohort. Mean out-of-sample classification scores

and area under the curve (AUC) were calculated using the mean out-of-sample scores across the
10-fold CV.

Statistical Analysis

Data preprocessing and analysis were both conducted using Python (version 2.7/3.5+). All analytes
(proteomics, metabolomics, clinical labs) were scaled and centered prior to analysis. Ordinary
Least Square (OLS) linear regression was used to assess the individual relationship between each
metabolite retained in at least one of the ten LASSO models (n=40) and Shannon diversity with
sex, age, and BMI included as covariates. When assessing the relationships of the strongest
metabolite predictors identified using LASSO with Shannon diversity across BMI classes, the
cohort was stratified into four groups based on predefined BMI WHO cutoffs. Linear regression
was performed on each metabolite individually for each group with Shannon diversity as the
dependent variable and sex and age included as covariates. All statistical tests in this study were
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performed using a two-sided hypothesis. When multiple comparisons were performed, false
discovery rate (FDR) was controlled using the method of Benjamini and Hochberg??.

Results

A small subset of plasma metabolites is strongly predictive of gut microbial a-diversity

In order to investigate the relationship between the host metabolome and gut microbiome
diversity, we applied LASSO to baseline plasma metabolomics data of the cohort to generate
out-of-sample predictions of Shannon diversity. Of the 659 metabolites measured for each
participant in the cohort, only 40 metabolites were retained in the final models (Table 2 &
Supplementary Table 2). The small subset of plasma metabolites retained by LASSO was
strongly predictive of Shannon diversity, explaining an average 45% of the variance (mean out-
of-sample R? score=0.45, Pearson r=0.68 for metabolome-predicted Shannon diversity
(mShannon) versus observed Shannon) (Figure 1A). The identified metabolites belonged
primarily to the Xenobiotics, Lipid, and Amino Acid superfamilies with a particularly high
frequency of phenylalanine/tyrosine metabolites (Figure 1B). While 40 metabolites were retained
in at least one of the 10 models generated in the 10-fold CV, only 11 metabolites were retained
in all 10 models, and were the most influential in predicting Shannon diversity (Figure 1C,
Supplementary Table 2). Ridge regression, which tends to perform better when there is high
collinearity among predictor variables and when there is a large number of small effects
distributed across the predictor variables 32, was outperformed by the LASSO model in our
analysis. Ridge with 10-fold CV explained only an average of 35% of variance in Shannon
diversity, suggesting that it is indeed a small subset of largely independent plasma metabolites
that most strongly reflects gut microbial diversity in our cohort.

We investigated potential collinearity among the 40 metabolites identified through
LASSO. Of the 1560 metabolite-metabolite comparisons, only six were identified to be highly
collinear (|r[>0.80) (Supplementary Figure 1 A&B). These included correlations among three 1-
carboxyethyl amino acids (leucine, phenylalanine, valine). Of the three, 1-
carboxyethylphenylalanine was retained across all 10 models while the other two carboxyethyl
compounds were retained in two (valine) and three (leucine) models. The low collinearity among
predictor variables is consistent with the way LASSO generates a regression model. When
analytes are highly collinear, LASSO will retain one of the analytes in the model while pushing
the B-coefficients of the other analytes toward zero *2.

We further assessed the capacity of the 40 identified metabolites to predict other metrics
of gut microbial a-diversity including PD whole tree and Chaol (Figure 1D). The first of these
two metrics incorporates phylogenetic differences in the diversity score, while the second is a
measure of species richness. A LASSO model fitted using 10-fold CV with only the 40 identified
metabolites explained an average 50% of out-of-sample variance in PD whole tree diversity and
36% in Chaol. Importantly, using the whole plasma metabolome did not improve the predictive
capacity for either of the two metrics, confirming that the small subset of metabolites identified
is sufficient to capture majority of the explainable variability in gut microbial a-diversity.

Many of the strongest identified predictors of Shannon diversity in the models generated
using LASSO were human-microbial co-metabolites: metabolites either initially synthesized by
the host and then subsequently metabolized by the microbiome (e.g. bile acids) or vice versa
(e.g. hippurate) (Figure 1C and Table 2). Our results confirm previously identified metabolites
such as hippurate, and p-cresol sulfate , as well as identify novel candidate biomarkers of
Shannon diversity (Figure 1C, Table 2). In particular, the testosterone metabolite Sa-androstan-
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3p3-17a-diol disulfate (Sa-androstan-3-17a) had the highest mean positive B-coefficient across
all LASSO models generated (Figure 1C). Plasma concentrations of Sa-androstan-35-170 were
significantly higher in men than in women, while no significant sex dependent differences were
observed in Shannon diversity (linear models adjusted for age and BMI) (Figure 2A&B). There
was a significant positive association between Shannon diversity and Sa-androstan-35-17a for
both men and women. While there appeared to be a variable relationship between Shannon
diversity and 5a-androstan-35-17a (Figure 2C) across sex, a sex by Sa-androstan-35-17a
interaction term in a regression model adjusted for age and BMI did not reach significance
(B(men*5a-androstan-3-17a)(95%CI) =0.072(-0.034, 0.18), P-Value=0.18).

Two secondary bile acids, isoursodeoxycholate and glycolithocholate sulfate, were also
retained in all 10 LASSO models (Supplementary Table 2). Interestingly, they demonstrated
opposite associations with Shannon diversity in our cohort (Figure 2D&E). When the top 11
metabolites from LASSO were correlated with bacterial genera, the two bile acids consistently
demonstrated opposite associations; glycolithocholate sulfate was anticorrelated with the most
abundant Bacteroidetes genus, Bacteroides, while isoursodeoxycholate demonstrated a positive
association. The opposite was true for several Firmicutes genera (Figure 3 & Supplementary
Figure 2). Bacteroides was also anti-correlated with the strongest positive predictor So-
androstan-3-17a, indicating that increasing dominance of this taxon is related to reduced
Shannon diversity in our cohort.

The relationship between each metabolite that had a non-zero f-coefficient in at least one
of the 10 LASSO models generated and Shannon diversity was next independently assessed
using linear regression with sex, age, and BMI included as covariates. Of the 40 identified
metabolites, 35 were significantly associated with Shannon diversity (FDR<0.05)
(Supplementary Table 1). Shannon diversity was also regressed independently against each
metabolite of the 40 identified using LASSO. Cinnamoylglycine alone explained the greatest
percent of variance (25.6%) of all metabolites (Figure 4A). An additional 8 metabolites
explained over 10% of variance in Shannon diversity each. However, no single metabolite
explained a similar percent of variance as LASSO predicted mShannon, demonstrating that a
combination of plasma metabolites is substantially more reflective of Shannon diversity than any
one metabolite alone.

As mentioned previously, only 11 of the 40 metabolites identified were retained in all 10
LASSO models (Figure 1C). These metabolites were next used to classify participants with low
a-diversity (bottom quartile) using a 10-fold CV implementation of Random forests. The 11
metabolites alone were able to classify participants based on not only Shannon (mean
Sensitivity=0.72, Specificity=0.90, Precision=0.72) but also other metrics of a-diversity (PD
whole tree: mean Sensitivity=0.68, Specificity=0.89, Precision=0.67; Chaol: mean
Sensitivity=0.64, Specificity=0.88, Precision=0.65). Together these results indicate a potential
use for the 11 identified metabolites as biomarkers for gut microbial diversity.

Clinical laboratory tests are not predictive of gut microbial diversity

To date, blood clinical laboratory tests are still the most commonly used molecular metric for
routinely evaluating the health state of an individual. However, it is unclear whether or how
effectively laboratory tests may capture the structure of the gut microbiome. To assess whether
common clinical labs reflect the state of the gut microbiome, we utilized the same methods as
with metabolomics in order to predict Shannon diversity from a wide panel of clinical analytes.
A set of 77 clinical labs could not accurately predict individual Shannon diversity scores (mean
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LASSO R?= 0.01, mean Ridge R?>=0.05). The weak association of clinical labs and Shannon
diversity was further confirmed when linear regression was used to assess the relationship of
each clinical lab and Shannon diversity independently. Of 77 clinical labs, 28 were significantly
associated with Shannon diversity (FDR<0.05) (Figure 4B, Supplementary Table 3). However,
no clinical analyte explained more than 6% of variance in Shannon diversity alone, with markers
of metabolic health (lipoprotein insulin resistance (LPIR) Score, triglycerides, insulin) ranking
the highest of all analytes (Figure 4B). By comparison, BMI alone explained 7.5% of variance in
Shannon diversity, explaining a greater percent of variance in Shannon diversity than any single
clinical analyte. When individual clinical analyte models were adjusted for sex, age and BMI,
only LPIR Score and blood triglycerides remained significantly associated with Shannon
diversity (Supplementary Table 3) (FDR<0.05). Concordantly, a Random forests classification
model based on clinical labs optimized to identify participants with low Shannon diversity
(bottom quartile) demonstrated low performance (sensitivity=0.50, specificity=0.80,
precision=0.45) (Supplementary Figure 3).

Metabolic health related blood proteins are associated with Shannon diversity

In addition to clinical labs and metabolomics, 263 unique blood proteins were measured for 262
of 399 participants in our cohort. Using linear regression and adjusting for multiple hypothesis
testing, 41 of the 263 proteins were identified to be significantly associated with Shannon
diversity (FDR<0.05) (Supplementary Table 4). Similar to results of the clinical labs (Figure
4B), the most strongly associated analytes were proteins involved in metabolic health including
Paraoxonase 3 (PON3) ($(95%CI)=0.13 (0.084, 0.18), P-Value=4.7¢-08), Leptin (LEP)
(B(95%CI)=-0.14 (-0.20,-0.088), P-Value=5.1e-07) and Low-Density Lipoprotein Receptor
(LDLR) (£(95%CI)=-0.12 (-0.17,-0.064), P-Value=2.9¢-05). PON3 is an enzyme that associates
with HDL and may prevent oxidation of LDL 34, while LEP is an adipocyte derived hormone
that is elevated in obesity *°. After adjusting for covariates, only three proteins remained
significantly associated with gut microbial diversity, including LDLR, hydroxyacid oxidase 1
(HAO1), and serine protease 8 (PRSS8) (Supplementary Table 4). Finally, the same penalized
regression methods were used as with metabolomics in order to evaluate how strongly blood
proteins measured reflect Shannon diversity. The plasma proteome was more predictive of
Shannon than clinical labs, explaining an average 13% of variance (mean LASSO R? Score=
0.11, mean Ridge R? Score=0.13). However, the prediction was still substantially weaker than
that of the plasma metabolome.

mShannon reflects perturbations associated with gastrointestinal health

Given that the plasma metabolome was the strongest predictor of gut microbiome
structure, we moved forward with our mShannon predictions to assess whether host physiology
reflects perturbations in the gut microbiota associated with several lifestyle and medical factors
reported previously. Using information from lifestyle and health questionnaires completed by
Arivale participants, Shannon diversity was regressed against self-reported measures of
gastrointestinal health as well as antibiotics use, adjusting for covariates (see Methods). Several
factors significantly associated with major perturbations in Shannon diversity were also reflected
in the host’s metabolome, as shown by significant -coefficients in models predicting both
Shannon and mShannon (Figure 4C). In particular, reported frequency of diarrhea and abdominal
pain demonstrated a strong negative association with Shannon diversity, which was reflected in
mShannon as well (Figure 4C&D). Antibiotics use was significantly associated with lower
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Shannon diversity, with the same trend observed in mShannon (P-value=0.06). Lower frequency
of bowel movements (constipation) was positively associated with both Shannon diversity and
mShannon (Figure 4C). Together these results suggest that events associated with major changes
in gut microbial structure and gut health are strongly reflected in the host metabolome.

Plasma metabolites associated with Shannon diversity vary across BMI classes
Obesity has been consistently linked to metabolic perturbations 3¢ as well substantial changes in
the blood metabolome 37. Additionally, some but not all studies have reported a decrease in
Shannon diversity in obese versus normal weight individuals !°. To explore the relationship
between Shannon diversity, obesity and the plasma metabolome further, the cohort was stratified
based on BMI into four groups (Table 1). Because the risks associated with obesity vary by the
degree of BMI increase, obesity is typically divided into three classes (Class I = 30-34.9 kg/m?,
Class IT = 35-39.9 kg/m?, and Class III >40 kg/m?). For this analysis we combined Class I and
class I1I obesity but looked at Class I (“low-risk obesity”) separately. 3¥-° All three metrics of gut
a-diversity were significantly decreased with increasing BMI, with participants in the obese II/111
class demonstrating the lowest diversity scores of all groups (Table 1). In particular, for both
Chaol and PD whole tree diversity, participants in the obese II/III group had a significantly
lower score than all other BMI classes, including obese I. Molecular markers of health were
progressively worse across BMI classes, however markers of inflammation, such as Interleukin-6
and C-Reactive Protein, were particularly elevated in the obese II/III group (Table 1, Figure 5A).
To evaluate whether there is variability in the reflection of Shannon diversity in the
plasma metabolome across BMI classes, the relationship between Shannon and the five strongest
metabolite predictors retained by all 10 LASSO models (greatest absolute value of mean (-
coefficients) was assessed within each BMI class, adjusted for age and sex (Figure 5B). While
the f-coefficients were similar across all BMI classes for most metabolites, Sa-androstan-3 /-
170 demonstrated no significant association with Shannon diversity in the obese II/III group, yet
a significant positive association among all other participants (Figure 5SC&D). When the analysis
was extended to all 11 metabolites that were retained by the 10 LASSO models generated
(Supplementary Figure 4A), other differences emerged, including a significant relationship
between Shannon and the bile acid intermediate 35-hydroxy-5-cholestenoate in the obese I class
but not all other BMI classes, and a stronger relationship between Shannon and
perfluorooctanesulfonic acid (PFOS) in the obese II/III class relative to all other groups. PFOS
alone explained 22.4% (Pearson r=0.48, P-Value=2.0e-04) of variance in Shannon in obese II/II1
participants, while no significant relationship was detected in normal weight participants
independently (Pearson r=0.09, P-Value=0.30) and after adjusting for covariates (8(95%CI)=
0.04 (-0.036,0.11), P-Value=0.32) (Supplementary Figure 3B). Only a weak association between
PFOS and Shannon was observed when all non-obese II/III participants were pooled together
(Pearson 1=0.20, P-Value=2.2e-04), highlighting the variable reflection of gut a-diversity in the
host metabolome across the BMI spectrum.

The host metabolome/gut microbiome relationship is consistent in a validation cohort

To confirm our findings, major observations from the discovery cohort were explored in a
separate group of Arivale participants who joined the program at an earlier date and whose blood
and microbiome samples were analyzed by different vendors (clinical labs: LCA (38%), Quest
Diagnostics (62%), microbiome= Second Genome (100%), N=540). Of the 35 metabolites
significantly associated with Shannon diversity after adjusting for covariates and multiple
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hypothesis testing in the discovery cohort, 29 were confirmed in the validation cohort
(Supplementary Table 2). Similarly, 66% of the significant microbiome genera-plasma
metabolite correlations identified in our discovery cohort were confirmed in the validation set
(FDR<0.05) (Supplementary Figure 5&6). A LASSO model using only the 40 metabolites
identified in the discovery cohort was further fitted to predict Shannon diversity in the validation
cohort using 10-fold CV. Out-of-sample prediction accuracy for the 40-metabolite LASSO
model was lower but similar to that in the discovery cohort (mean R?=0.34, Pearson r=0.60,
Figure 6A&C). Additionally, f-coefficients for the 11 metabolites that were retained across all
LASSO models in the discovery cohort were compared to the mean [-coefficients fitted on the
validation cohort using 10-fold CV, showing a strong correlation between models (Pearson
r=0.94, P-value= 2.05¢-05, Figure 6B). The 40 metabolites alone explained majority of the
variance in Shannon diversity captured by the blood metabolome in the validation set.
Generating a separate LASSO model using the whole metabolome (659 metabolites) improved
the predictive capacity of the model only marginally (mean R?>=0.38, Figure 6C), with the mean
difference in performance across the 10-fold CV not being significantly different between the 40
metabolite and the whole metabolome model (P-value=0.30). The whole metabolome LASSO
model in the validation cohort retained 58 metabolites across the 10 CVs. Of the 58, 15
overlapped with the discovery cohort set of 40 metabolites (Supplementary Table 2). This is
unsurprising given the various demographic differences across the two cohorts (Supplementary
Table 2) and the way in which LASSO retains analytes in the model. Despite the moderate
overlap between metabolites retained independently by applying LASSO in the discovery and
validation sets, mean [-coefficients across the 10-CVs for the 11 strongest metabolite predictors
still showed strong correlation between models (spearman p=0.91, P-value=9.2¢-05, Pearson
r=0.90, P-value=1.9e-4). The predictive capacities of clinical labs and proteomics were also
investigated in the validation cohort. Consistent with our initial findings, clinical labs
demonstrated little to no correspondence with Shannon diversity (Figure 6C). Only 176 of the
540 participants in the validation set had available proteomics data. In this sub-group of the
validation cohort, we were unable to confirm the moderate capacity of the blood proteome to
predict Shannon diversity, with the mean variance explained lower than clinical labs (Figure 6C).
Finally, classification of participants with low Shannon diversity (bottom quartile) using the 11
strongest Shannon diversity predictors identified in the discovery cohort was investigated in the
validation set where similar Sensitivity (0.65), Specificity (0.87), and Precision (0.64) were
achieved (Figure 6D&E). Collectively these findings increase our confidence in the strong
relationship between the 40, and in particular the core 11, identified metabolites and gut
microbiome diversity.

We next explored key differences in the host metabolome/gut microbiome relationship
across obesity identified in the discovery cohort. However, the number of participants in the
obese II/III group in the validation set was substantially lower than in the discovery cohort
(n=34), limiting our statistical power. Consistent with our initial findings, PFOS was weakly
positively associated with Shannon diversity in normal weight participants (BMI<25) (Pearson
r=0.17, P-Value=0.01). This relationship was once again stronger in obese II/III participants
(Pearson r=0.35, P-Value=0.04), though to a lesser extent than in the discovery cohort
(Supplementary Figure 4C). After adjusting for covariates, PFOS was no longer significantly
associated with Shannon in the obese II/III group ($(95%CI)= 0.11 (-0.04,0.24), P-Value=0.15).
The sex steroid hormone Sa-androstan-33-17a demonstrated a significant positive correlation
with Shannon diversity across participants with BMI <35, consistent with the discovery cohort
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(Supplementary Figure 4C). The metabolite also remained one of the strongest positive
predictors in the LASSO models generated (Figure 6B). However, no significant relationship
was observed in obese II/III participants between Shannon diversity and Sa-androstan-33-17a
independently (Pearson r=-0.01, P-Value= 0.95) and after adjusting for covariates ($(95%CI)=
0.14 (-0.02,0.30), P-Value=0.08) (Supplementary Figure 3D). To increase statistical power, obese
II/IIT participants were pooled together from both the discovery and validation cohorts (n=90)
and the relationship between Sa-androstan-33-17a and Shannon diversity was assessed using
linear regression, adjusting for sex, age, and microbiome vendor. Even with increased power,
there was no significant association between Sa-androstan-33-17a and Shannon (5(95%CI)=
0.03 (-0.10,0.15), P-Value=0.70), providing further evidence for a lack of relationship of this
metabolite with Shannon diversity under severe obesity.

Discussion

The goal of this study was to examine the relationship between gut microbiome a-diversity and a
broad set of analytes measured in the blood. We generated and analyzed baseline data from a
cohort of hundreds of individuals participating in a wellness program, including numerous blood
measurements (metabolomes, proteomes, and clinical lab tests) and fecal microbiomes taken
within 21 days of each other. The key findings of this study were: (1) 40 plasma metabolites, but
not a wide clinical lab panel or a set of 263 proteins, were able to predict gut microbiome
Shannon diversity in a cohort of predominantly healthy US adults; (2) specific metabolites
associated with Shannon diversity in our study are also related to human health, such as the
microbial metabolites trimethylamine N-oxide (TMAOQO), imidazole propionate and p-cresol
sulfate; (3) Shannon diversity predictions accurately reflected changes in gut microbial diversity
associated with gastrointestinal health, demonstrating a strong connection between gut
microbiome structure and host physiology; and (4) there was a variable relationship between
specific metabolites and Shannon diversity across the BMI spectrum, with particular disruption
to this relationship in severe (class II/I1I) obesity. Collectively, our results provide novel insight
into the intimate relationship between host physiology and the gut microbiome and characterize
the host metabolome as an important interface between the gut ecosystem and human health.

The weak capacity of clinical labs to predict Shannon diversity scores and accurately
classify participants with low gut microbial diversity highlights the need for more refined
molecular biomarkers for assessing gut microbiome health. The strong imprint of Shannon
diversity in the plasma metabolome is perhaps unsurprising, given that our untargeted
metabolomics panel captures many metabolites of microbial origin. The advantage of analyzing
the plasma metabolome as a marker of gut microbiome structure is the ease of sample collection
and processing, as well as the biological relevance of metabolomics obtained from the blood.
Unlike fecal metabolites that have been previously shown to be strongly related to gut microbial
composition ¢, the plasma metabolome captures analytes that have greater potential to exert a
biological effect in the host. We anticipate that many of the metabolites identified in our analysis
can be investigated further to better understand the impact of the gut microbiome on human
health.

A more diverse microbiome is often assumed to be a healthier microbiome
Consistent with this assumption, several metabolites with positive S-coefficients in the LASSO
models generated to predict Shannon diversity in our study have been previously linked to
microbial metabolism of health-promoting polyphenolic compounds (e.g. benzoate that is
conjugated in the liver to hippurate, as well as hydrocinnamate) 434, Polyphenols are a diverse

40-42
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group of phytochemical compounds found in fruits, vegetables, and cereals as well as coffee, tea
and red wine %6, The positive association between polyphenolic microbial metabolites and
Shannon diversity suggests a diverse microbiome may reflect a polyphenol rich diet. Similarly,
the potentially detrimental microbial metabolite imidazole propionate was negatively associated
with Shannon diversity across both the discovery and validation cohorts. A recent study
demonstrated that imidazole propionate is synthesized in greater abundance in the gut microbiota
of diabetic patients, and that it is able to impair insulin signaling in animal models *. Its negative
association with a-diversity in our study supports the notion that host health increases with
increased microbial diversity. However, our results also suggest that there may be an optimal
range of a-diversity, rather than a monotonic relationship between microbiome diversity and
human health. For example, p-cresol sulfate was positively correlated with Shannon diversity
and is a potentially toxic uremic compound formed from the putrefaction of undigested dietary
proteins by colonic bacteria and subsequent modification by the liver 8. Similarly, the human-
microbial co-metabolite TMAO was positively associated with Shannon diversity in both the
discovery and validation cohorts, independent of age, sex, and BMI. TMAO is associated with
diets high in red meat. The negative effects of TMAO on health are still emerging, but growing
evidence suggests it may promote cardiovascular disease 2%*°. Fermentation of dietary protein
accelerates when dietary fiber is exhausted in the stool. Thus, higher levels of protein
fermentation are found in people on high-protein/low-fiber diets and in people suffering from
constipation *°. Consistently, participants who reported constipation in our study also showed
higher metabolome-predicted Shannon diversity. We suggest that, above a threshold, higher a-
diversity may be associated with unhealthy blood levels of particular microbial metabolites.
Alternatively, we found that very low Shannon and mShannon diversity scores were associated
with participant-reported diarrhea and abdominal pain. Together, these results provide evidence
for the existence of a ‘Goldilocks Zone’ for gut microbiome diversity.

The relationship between the human gut microbiome and obesity has been inconsistent in
the literature '°. Previous work has often grouped participants into just two categories: healthy
and obese. In this study, we stratified participants into multiple BMI classes. We hypothesized
that participants who are in the obese II or III class, which are both associated with a higher risk
of a spectrum of diseases compared to obese I individuals *33°, will show a greater disruption to
their gut microbiome. Through this refined stratification, we were able to demonstrate that the
associations between the plasma metabolome and microbiome diversity were qualitatively
different across different BMI classes. In particular, the sex steroid Sa-androstan-35-17a
emerged as one of the strongest positive predictors of Shannon diversity in both the discovery
and validation cohorts, while demonstrating no significant correlation with Shannon diversity in
obese II/III individuals. Previous studies have shown that the gut microbiome is capable of
altering sex steroid hormone levels (testosterone) in the host 4, providing a potential direct link
between the identified testosterone metabolite and the gut microbiota. The lack of relationship
between gut diversity and Sa-androstan-35-17a in obese II/I1I participants may have potential
health implications. Alternatively, the known impact of severe obesity on sex steroids may be
playing a role in the differential findings in obese II/III participants >!. However, further studies
are needed to fully elucidate the relationship between the identified hormone, the gut
microbiome, and metabolic health. The environmental pollutant PFOS showed a positive
association with Shannon diversity in obese II/III participants, but no significant association in
normal weight individuals in the discovery cohort and a weak association in the validation
cohort. These differences highlight the importance of refining our definitions of obesity when
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investigating the impact of the gut microbiome on health and also stress context when assessing
the relationship between microbial diversity and host physiology.

Despite the hundreds of associations between the gut microbiome and disease that have
been identified over the last decade, we still do not yet understand what constitutes a ‘healthy’
microbiome-host relationship. It is likely that the connection between microbiome community
structure and human health is highly contextual and complex, depending on diet, behavior,
exposure to pathogens, history of antibiotic exposure, genetics, and other myriad factors. Our
work integrates multi-omics data from a large cohort of individual people to provide a path
forward for elucidating the properties of a ‘healthy’ microbiome-host interaction. We provide
new insight based on the metabolic states of individual hosts and identify severe obesity as a
crucial factor for stratifying patient populations. While we cannot establish causality, this work
advances our knowledge of how host metabolism and microbial community structure are inter-
connected. Understanding this interplay in a multi-omics context will enable future experimental
work and the development of personalized, multimodal interventions aimed at promoting
wellness and treating disease.

Institutional Review Board Approval for the Study

Procedures for the current study were run under the Western Institutional Review Board (WIRB)
with Institutional Review Board (IRB) Study Number 20170658 at the Institute for Systems
Biology and 1178906 at Arivale (both in Seattle, WA).

Data and Code Availability

The model summary statistics for all metabolites, proteins and clinical labs analyzed are
available to download in Supplementary Tables 2-4. Researchers can request to access the full
de-identified dataset of microbiome and metabolomics by signing the Arivale data access
agreement: arivale.com/legal/data-access. The necessary packages and code will be made
available at https://github.com/PriceLab/ShannonMets.
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Tables:

Table 1. Baseline discovery cohort characteristics overall and by BMI class. Values with
different superscript letters are significantly different (P<0.05).

Normal Weight Overweight Obese 1 Obese II/IIT Total
(n=142) (n=134) (n=66) (n=57) (N=399)

Mean Age 45.02 47.7° 48.6 48.8° 47.0
(SD) 9.1) (10.6) (10.6) 9.7 (10.1)
Male a b a C
(%) 27.5 37.3 27.3 7.0 27.8
Non-white
(%) 26.0 24.6 21.2 24.6 24.6

. a b . d 26.8
Median BMI 22.8 27.2 31.9 40.9 (23.0-
(IQR) (21.1-24.1) (26.2-28.5) (30.7-33.2) (36.9-45.8) 29 '1)
Mean HDL (mg/dL) 67.7% 60.8° 55.5¢ 52.7° 61.2
(SD) (17.8) (15.9) (12.2) (13.9) (16.7)
%el;‘y E;’i‘:i‘ls 81.5° 96.6" 111.0° 131.3¢ 98.6
(mg/dL) (SD) (32.9) (39.0) (41.9) (65.8) (45.7)
Median IL-6 0.70? 0.95b 1.5¢ 3.14 1.1
(pg/mL) (IQR) (0.70-1.4) (0.70-1.7) (0.80-2.3) (2.0-5.2) (0.70-2.3)
Median a b . g 1.27

0.75 1.12 2.20 4.50

C-Reactive Protein (0.62-
(ng/mL)(IQR) (0.39-1.12) (0.55-2.88) (1.10-3.16) (2.53-8.82) 2.95)
Self-reported
Probiotic Use (%) 14.1 11.9 13.6 8.8 12.5
Mean Shannon 4112 4.02° 3.89b¢ 3.77° 4.00
Diversity (SD) (0.40) (0.41) (0.50) (0.50) (0.45)
Mean PD whole tree 35.7% 34.1° 32.7° 30.0° 33.86
Diversity (SD) (6.33) (6.21) (7.64) (6.78) (6.86)
Mean Chaol 971.8% 921.9 898.2ab 817.0° 920.7
(SD) (180.2) (185.0) (229.0) (218.5) (202.7)
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Table 2: Relationships of the 40 identified metabolites with human health and gut microbiome
structure. The family, subfamily, as well as mean [-coefficient across the 10 LASSO models

generated are provided. ‘¥ indicates a human microbial co-metabolite. The 11 metabolites that
were retained across all 10 LASSO models are bolded.

Mean Previously Known
Family Subfamily Metabolite LASSO Microbial Relation to Health/
Coefficient Gut Microbiome
Lipid Steroid So-androstan-3f-170-diol 0.0784962
disulfate
: 8
Xenobiotics | Benzoate metabolism hippurate 0.0574415 X*7 ¥ Metabolic .‘Synd.rorrgle
1 Shannon diversity
Xenobiotics | Food component plant cinnamoylglycine 0.0566116 xX#7  Obesity 37
. T Uremic toxicity 32
Amino acia | henylalanine and p-cresol sulfate 0.0516428 X*7 1 CVD risk %3
tyrosine metabolism .o
1 Shannon diversity
Xenobiotics Food component plant methyl glucopyranoside (a + ) 0.0278401
1 Neurotoxicity 5453
. . perfluorooctanesulfonic acid Modulation of gut
Xenobiotics Chemical (PFOS) 0.0252762 microbiota 56
T Metabolic Syndrome 56
Lipid Sterol 3p-hydroxy-5-cholestenoate 0.0177682
Lipid Seconda.r y bile acid glycolithocholate sulfate* 0.0150048 X#57
metabolism
Vitamin A metabolism
Xenobiotics Food component plant carotene diol (1) 0.004524467 Modulation of gut
microbiota *®
|-marearovl-2-d ahexaenovl DHA containing lipid
Lipid Phospholipid metabolism | o &aroy’-~-cocosahexacnoyl- 0.003237268 Modulation of gut
GPC (17:0/22:6)* . I
microbiota
. . Phenylalanine and tyrosine . 460 1 CVD risk 336!
Amino acid metabolism phenylacetylglutamine 0.002800293 X 1 Shannon diversity ®
Amino acid | Urea cyclelarginineand 5 15 gia oty lornithine 0.002605358
proline metabolism
Amino acid Phenyla}amne and tyrosine 3-pheny_lpr0p10nate 0.002165223 X 6 1 Shannon diversity ©
metabolism (hydrocinnamate)
1-(1-enyl-stearoyl)-2- DHA containing lipid
Lipid Plasmalogen docosahexaenoyl-GPE (P- 0.001651744 Modulation of gut
18:0/22:6)* microbiota *°
Lipid Phospholipid metabolism | trimethylamine N-oxide 0.001640824 X# 49 1 CVD risk 93
Xenobiotics Chemical 4-hydroxychlorothalonil 0.001254034
Lipid Steroid pregnanediol-3-glucuronide 0.001187553
Lipid Medium chain fatty acid 10-undecenoate (11:1n1) 0.001014393
Vitamin A metabolism
Xenobiotics Food component plant B-cryptoxanthin 0.000767241 Modulation of gut
microbiota *®
1-pentadecanoyl-2- DHA containing lipid
Lipid Phospholipid metabolism docosahexaenoyl-GPC (15:0/22:6) 0.000566379 M_odulgtlonsgof gut
microbiota
Lipid Steroid etiocholanolone glucuronide 0.000528226
Aminoacid | Ovanidino andacetamido | 4 o\ i din sbutanoate 0.000384957 X 63
metabolism
Lipid Carnitine metabolism deoxycarnitine 0.000111031
Amino acid Tryptophan metabolism Indole propionate 4.65E-05 X7 1 Shannon diversity
Nucleotide | Pyrimidine metabolism . () |oiponiridine 4.48E-05
uracil containing
Lipid Lysolipid 1-docosahexaenoyl-GPC (22:6)* 2.49E-05 DHA containing lipid



https://doi.org/10.1101/561209
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/561209; this version posted February 26, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

Modulation of gut
microbiota *°
i Secondary bile acid 457
Lipid metabolism glycoursodeoxycholate -1.02E-05 X
Lipid Sphingolipid metabolism Z'ls;‘?gfi’g}(')s)ﬁhlnganlne -1.64E-05
Peptide Scz;dmma glutamyl Amino gamma-glutamylphenylalanine -0.000306837
Lipid Phospholipid metabolism (11 %ﬂsgf’g;z'll“"Ieoyl'GPC -0.000318581
Lipid Fatty acid monohydroxy 3-hydroxysebacate -0.000333015
Amino acid Lysine metabolism 5-hydroxylysine -0.000672111
Lipid Diacylglycerol ?fé%l/tl"g ;ﬁ?leoyl'glyceml -0.000672376
Lipid Diacylglycerol ?fé%l/tl"g ;i‘;ﬁ’leoyl'glyceml -0.000676054
Amino acid Histidine metabolism imidazole propionate -0.000752868 X4 1 Insulin Resistance 7
Unnamed Unnamed 1 carboxyethylleucine -0.001122231
Unnamed Unnamed 1 carboxyethylvaline -0.00194082
. . Phenylalanine and . . 45
Amino acid tyrosine metabolism 3-(3-hydroxyphenyl)propionate 0.015908 X
Unnamed Unnamed 1 carboxyethylphenylalanine -0.0272732
Lipid Secondary bile acid isoursodeoxycholate -0.0909496 X 64

metabolism
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Figure 1: The plasma metabolome is a strong predictor of Shannon diversity. A) A plot of out-
of-sample metabolome predicted (mShannon) versus observed Shannon diversity values using
LASSO with 10-fold cross-validation. The mean R? across the 10 cross validations, Pearson r of
observed versus mShannon values, and corresponding P-Value are shown. B) The super family
and subfamily classification of the metabolites (40 total) retained by at least one of the 10
LASSO models used to predict Shannon diversity. Three smaller pie charts correspond to the
subfamily classification of metabolites within the Lipid, Amino acid, and Xenobiotics super
families. C) A plot of mean B-coefficients corresponding to the 11 metabolites that were retained
across all 10 LASSO models. Each coefficient is represented as the mean [-coefficient across all
10 models +/- the standard deviation. Yellow dots are labelled and represent S-coefficients for
human-microbial co-metabolites. Also labelled is the strongest positive predictor Sa-androstan-
3B-170. D) Out-of-sample R? scores of models predicting PD whole tree diversity and Chaol
using either only the 40 metabolites identified (red), or the whole metabolome (grey). Only one
bar (dashed red/grey) is shown for Shannon diversity, since the 40 metabolites were identified
using LASSO on the whole metabolome. Values are presented as mean out-of-sample R? score
(n=10) +/- standard error of the mean. Abbreviations: So-androstan-3§-17a: Sa-androstan-33-
17a-diol disulfate; BA: bile acids.
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Figure 2: So-androstan-33-17a correlates with Shannon diversity in males and females. A)
Shannon diversity is not significantly different across sex. B) Sa-androstan-35-17a blood
concentration is higher in men (n=111) than women (n=288), adjusted for age and BMI. (P-
Value=3.79¢-13). C) Sa-androstan-3-17a is positively associated with Shannon diversity in both
males and females. D&E) Secondary bile acids retained by LASSO in the prediction model show
opposite association with Shannon diversity. Abbreviations: So-androstan-33-170.: So-
androstan-3-170-diol disulfate.
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Figure 3: Significant Spearman correlations of each of the 11 metabolites retained by all 10
LASSO models (rows) with the 10 most abundant microbiome genera (columns). Top color row
labels the phylum for each genus. Left color column labels the sign of the correlation between
the metabolite and Shannon diversity (blue - negative correlation, red - positive correlation). The
top bar graph represents the median fractional abundance of each genus across the cohort, with
bars colored by phylum. Non-significant correlations are colored in white (FDR<0.05).
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Figure 4: Reflection of Shannon diversity in clinical laboratory tests and the host metabolome.
A) The percent of variance in Shannon diversity explained by each plasma metabolite retained
by at least one of the 10 LASSO models generated individually. mShannon is included for
comparison. B) The percent of variance in Shannon diversity explained by each blood clinical
analyte significantly associated with Shannon (FDR<0.05) individually. BMI is included for
comparison. Red bars correspond to a negative, while green bars correspond to a positive, -
coefficient for each analyte. C) B-coefficients and 95% confidence intervals for each metric of
gastrointestinal health in a model with Shannon or mShannon Diversity as the dependent
variable and sex, age, and BMI included as covariates. Each metric of gastrointestinal health was
coded on a three-point scale (see Methods). Significant associations for both Shannon and
mShannon are highlighted in red. D) Box plots for Shannon and mShannon diversity stratified
across self-reported frequency of diarrhea (Infrequently/never n=150, 1x week or less n=127,
Daily/3-5x a week n=43).
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Figure 5: The gut microbiome-host metabolome relationship is perturbed under severe obesity.
A) CRP levels across BMI classes in the cohort. B) B-coefficients for each of the strongest 5
metabolite predictors of Shannon diversity identified through LASSO. The cohort was stratified
based on BMI class and Shannon was regressed against each metabolite individually with sex
and age included as covariates. C) Scatter plot representing the relationship between Sa-
androstan-3f-17a and Shannon diversity in participants with BMI < 35. Regression line was
fitted for males and females, separately. D) Scatter plot representing the relationship between 5a-
androstan-33-17a and Shannon diversity in obese II/III participants. A single regression line was
fitted due to the small number of men in the group (n=4). Pearson r and corresponding P-value
are shown. Abbreviations: Sa-androstan-3f-17a. Sa-androstan-3[-17a-diol disulfate.
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Figure 6: Gut-microbiome/host metabolome relationship is consistent in a validation cohort. A)
Scatter plot of observed Shannon diversity and mShannon diversity predicted in the validation
cohort using LASSO with only the 40 identified metabolites from the discovery cohort. Mean
out-of-sample R? across the 10 cross validations and Pearson r for mShannon versus observed
Shannon are shown. B) Mean LASSO f-coefficients for the 11 strongest metabolite predictors of
mShannon diversity from the discovery cohort strongly correlate with the Mean LASSO S-
coefficients for the same metabolites optimized in the validation cohort. C) Percent of variance
explained using penalized regression across omics platforms in the discovery and validation
cohorts. Values are presented as mean R? across 10-fold CV +/- standard error of the mean. The
grey bar for metabolomics corresponds to a model fitted using all 659 metabolites, while the
green bar corresponds to a model fitted using only the 40 metabolites identified in the discovery
cohort. D) Receiver Operator Characteristic curves classifying participants with low Shannon
diversity (bottom quartile) for the discovery and validation cohorts. E) Precision-Recall curves
classifying participants with low Shannon Diversity (bottom quartile) for the discovery and
validation cohorts. Mean area under the curve (AUC) values across 10-fold CV +/- standard
deviation are shown.
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Supplementary Tables:

Supplementary Table 1. Validation cohort characteristics overall and by BMI class. Values
with different superscript letters are significantly different (P<0.05). ** indicates P<0.001 and
*#% P<0.0001. NS — not significantly different between cohorts.

Change
?,&’:l‘;‘l?tl Overweight  Obesel  Obese II/III Total relative to
discovery
cohort
(n=256) (n=167) (n=83) (n=34) (N=540)
Mean Age 48.4 50.9 52.7 49.3 49.9 +2.9 yrs**
(SD) (11.9) (13.1)° (11.6)° (10.9)> (12.3)
Male (%) 39.8¢ 59.9° 48.28b 38.2 472 +19.6%***
Non-white (%) 23.4 18.6 24.1 23.5 22 NS
Median BMI 22.8° 27.0 31.4¢ 37.19 25.2 ~1.6 ***
(IQR) (21.3-24.1)  (25.8-28.1)  (30.8-32.6)  (36.2-40.3)  (23.0-29.2)
Probiotic Use 16.0° 17.40 7.0 11.8% 14.8 NS
(%)
Mean Shannon 4380 4350 4270 4.21° 435 +0.35% %
Diversity (SD) (0.34) (0.31) (0.34) (0.36) (0.34)
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Supplementary Figure 1: Investigating collinearity among the identified predictors of Shannon
diversity in the discovery cohort. A) Heatmap showing the strength of correlation between each
metabolite-metabolite pair. B) Histogram of all calculated Pearson r values for the 1560
metabolite-metabolite comparisons. Only six comparisons yielded a Pearson r value |r[>0.80.
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Supplementary Figure 2: Spearman correlation of each of the 11 metabolites retained by all 10
LASSO models (rows) with microbiome genera (columns), correcting for multiple hypothesis
testing (FDR<0.05). Only genera with at least one significant correlation value are displayed.
Top color row labels the phylum for each genus. Left color column labels the sign of the mean [3-
coefficient for that metabolite across the LASSO models predicting Shannon diversity (blue -
negative, red - positive). The top bar graph represents the fractional abundance of each genus,
with bars colored by phylum.
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Supplementary Figure 3. Comparison of (A) precision-recall curves and (B) receiver operator
characteristic (ROC) curves for clinical labs and 11 blood metabolites classifying participants in
the bottom quartile of Shannon diversity using 10-fold CV implementation of Random forests.
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Supplementary Figure 4: Relationship of the blood metabolome and Shannon diversity changes
across BMI classes. (A) [-coefficients for each of the 11 metabolites retained by all 10 LASSO
models from an OLS regression model with Shannon diversity as the dependent variable and sex
and age included as covariates in the discovery cohort. The cohort was stratified based on
defined BMI cutoffs and models were fitted independently for each BMI class. (B) Scatter plot
of PFOS and Shannon diversity for participants whose BMI is less than 25 (normal weight), and
greater than 35 (Obese II/I1]) in the discovery cohort. C) Comparison of strengths of correlations
for Sa-androstan-33-17a and PFOS with Shannon diversity across obesity in the discovery and
validation cohorts. D) Scatter plot of Sa-androstan-33-17a and Shannon diversity for participants
whose BMI is less than or equal to 35, and greater than 35 (Obese II/I1I) in the validation cohort.
Pearson r and P-values are shown. Abbreviations: Sa-androstan-3B-170.: So-androstan-33-17o-
diol disulfate; PFOS: perfluorooctanosulfic acid.
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Supplementary Figure 5: Spearman correlation of each of the 11 strongest metabolites
identified in the discovery set (rows) with microbiome genera (columns) in the validation cohort,
correcting for multiple hypothesis testing (FDR<0.05). Only genera metabolite correlations that
were significant in the discovery cohort were considered. Top color row labels the phylum for
each genus. Left color column labels the sign of the mean B-coefficient for that metabolite across
the LASSO models predicting Shannon diversity (blue - negative, red - positive). The top bar
graph represents the fractional abundance of each genus in the validation cohort, with bars
colored by phylum.
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Supplementary Figure 6: The number of significant Spearman correlations of each of the 11
metabolites retained by all 10 LASSO models (rows) with microbiome genera in the discovery
(light blue) and validation (dark blue) cohort, correcting for multiple hypothesis testing
(FDR<0.05). Only correlations significant in the discovery cohort were considered for validation.
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