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Abstract 
Defining a 'healthy' gut microbiome has been a challenge in the absence of detailed information 
on both host health and microbiome composition. Here, we analyzed a multi-omics dataset from 
hundreds of individuals (discovery n=399, validation n=540) enrolled in a consumer scientific 
wellness program to identify robust associations between host physiology and gut microbiome 
structure. We attempted to predict gut microbiome α-diversity from nearly 1000 analytes 
measured from blood, including clinical laboratory tests, proteomics and metabolomics. While a 
broad panel of 77 standard clinical laboratory tests and a set of 263 proteins from blood could 
not accurately predict gut microbial α-diversity, we found that 45% of the variance in microbial 
community diversity was explained by a subset of 40 blood metabolites, many of microbial 
origin. This relationship between the host metabolome and gut microbiome α-diversity was very 
robust, persisting across disease conditions and antibiotics use. Several of these novel metabolic 
biomarkers of gut microbial diversity were previously associated with host health (e.g. 
cardiovascular disease risk, diabetes, and kidney function). A subset of 11 metabolites classified 
participants with potentially problematic low α-diversity (ROC AUC=0.88, Precision-Recall 
AUC=0.76). Relationships between host metabolites and α-diversity remained consistent across 
most of the Body Mass Index (BMI) spectrum, but were modified in extreme obesity (class II/III, 
but not class I), suggesting a significant metabolic shift. Out-of-sample prediction accuracy of α-
diversity from the 40 identified blood metabolites in a validation cohort, whose microbiome 
samples were analyzed by a different vendor, confirmed the robust correspondence between gut 
microbiome structure and host physiology. Collectively, our results reveal a strong coupling 
between the human blood metabolome and gut microbial diversity, with implications for human 
health. 
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Background 
Changes in the composition or structure of the gut microbiome have been associated with 

an increasing number of human diseases, including diabetes, colorectal cancer and complex 
gastrointestinal disorders such as inflammatory bowel disease (IBD) 1,2. Each diverse bacterial 
community residing in each human gut can play various roles in human health, from 
metabolizing nutrients and bile acids to secreting hormones and maintaining healthy immune 
function 3-5. A recent study demonstrated that the fecal metabolome can account for close to 68% 
of the variance in inter-individual gut microbiome composition, demonstrating the strong 
association between the metabolic output and gut microbial structure 6. While fecal metabolites 
might be more reflective of the direct metabolic output of the microbiota, blood metabolites 
provide a window into which of these compounds make it into circulation to potentially impact 
host metabolism and health. The emergence of untargeted metabolomics has increased our 
understanding of the blood metabolome and has led to identification of unique molecules in 
circulation that are generated by the gut microbiota and that may exert biological effects in the 
host 7,8. However, many questions remain about how closely the blood metabolome reflects the 
composition of the gut microbiome, what metabolites in particular are most strongly associated 
with gut microbial diversity, and under what physiological conditions the gut microbiome-host 
metabolome relationship is perturbed. 

Shannon diversity is a common metric of α-diversity (within-sample diversity) that 
summarizes taxonomic richness (how many species are represented) and evenness (the degree to 
which these species are represented at the same level) (see Methods), and has been suggested as 
a marker for microbiome health. Lower Shannon diversity, relative to healthy controls, has been 
reported in individuals diagnosed with IBD, as well as enteric infections caused by Clostridium 
difficile or other bacterial pathogens 1,9,10. Conversely, increased Shannon diversity has been 
reported in hunter-gatherer communities compared to individuals in industrialized countries, 
suggesting an unprocessed diet, an active lifestyle, or increased exposure to intestinal parasites 
may contribute to a more diverse gut microbiome 11,12. Bristol Stool Scores indicative of 
constipation (i.e. harder stool) have also been associated with higher Shannon diversity 13, which 
suggests higher diversity may not be optimal for human health above some threshold. Therefore, 
the debate on how to define an optimal gut α-diversity, and whether such an optimum exists, 
continues. 

Regular, efficient monitoring of gut α-diversity in a clinical setting could have important 
implications for diagnosing, monitoring and treating disease. Such a test could be used to assess 
recovery from gastrointestinal illness, monitor gut health in chronic conditions such as IBD, or 
optimize interventions for improving gastrointestinal health. Commonly used medications such 
as antibiotics and proton pump inhibitors have been shown to decrease gut α-diversity and 
increase the risk of enteric infections, including recurrent Clostridium difficile infection (rCDI) 
14-16. rCDI kills thousands of patients each year 17 and is characterized by a substantial decrease 
in Shannon diversity relative to patients experiencing an initial CDI 10. Fecal microbiota 
transplants (FMTs) are the most promising line of treatment  for rCDI18, however, presently they 
are only approved for cases with multiple CDI recurrences and where other treatment options 
have fallen short. By creating an easy, reliable method for monitoring gut α-diversity, patients at 
high risk for rCDI could be identified earlier and FMT administered as first line of treatment, 
resulting in improved patient outcomes. 

Perhaps nowhere is the controversy about the gut microbiome and its relation to health 
greater than for obesity 19. Obesity is an established risk factor for many diseases, including 
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cardiovascular disease, diabetes, and several types of cancers 20. Changes in gut microbiota 
composition, including shifts in α-diversity, have been linked to obesity, although these 
associations are inconsistent across studies 1,19. Chronic inflammation underlies many obesity-
related health risks and is believed to be mediated by cytokines produced in the adipose tissue 
and/or by a low-fiber diet that promotes a pro-inflammatory microbiota 21. Even in the absence 
of metabolic abnormalities, obesity is associated with higher risk for cardiovascular and 
autoimmune diseases 22,23, prompting a deeper investigation into the host-microbiome 
relationship across the BMI spectrum. 

Previously, our research group published analyses incorporating proteomic, metabolomic, 
genetic, and microbiome data on 108 participants in the context of health and wellness 24. 
Through a partnership between the Institute for Systems Biology (ISB) and a spin-out company, 
Arivale, we have greatly expanded the cohort through individuals who have consented to allow 
their de-identified data to be used for scientific discovery. This wealth of data provides a unique 
research opportunity for investigating the host-microbiome interface, revealing novel insight into 
how the gut microbiota corresponds to human health. In this study, we utilized dense 
phenotyping of Arivale participants to assess the relationship between a multitude of blood 
analytes and gut microbial Shannon diversity. We demonstrate that a relatively small subset of 
40 of the 659 plasma metabolites measured can be used to predict Shannon diversity in the gut, 
which indicates a strong association between host physiology and the structure of the gut 
microbiome. We find little-to-no correspondence between 77 clinical lab analytes and Shannon 
diversity, which suggests that biomarkers that are relevant to the state of the microbiome are not 
routinely measured in clinical settings. Our results further indicate that specific metabolite-
Shannon diversity associations vary across BMI classes, particularly under severe obesity.  A 
great majority of the identified observations were confirmed in a validation cohort, that consists 
of participants who joined the Arivale program at an earlier date and whose stool and blood 
samples were analyzed by a different vendor, demonstrating the robustness of the identified 
relationships despite the added variability seen across different data generating pipelines 25. 
Collectively, the present study provides novel insight into the complex interactions between host 
health and the gut microbiome, with particular focus on the blood metabolome. 
 
Methods 
 
Cohort  
Subscribers to the Arivale Scientific Wellness™ program (Arivale, Inc., Seattle, WA) were 
included in the study if they gave permission to use their de-identified data for scientific 
discovery and met the inclusion criteria. The inclusion criteria required participants to have their 
initial blood draw taken within 21 days of their stool sample (no. of days from blood draw 
median=0, interquartile range (IQR)= -5 to 6).  This cutoff was chosen to prevent large gaps 
between when samples were collected for blood metabolomics and gut microbiome analysis. To 
be included in the discovery cohort, participants were further required to have their gut 
microbiome analyzed by DNA Genotek, one of two microbiome vendors used in the program, 
and their blood clinical labs by Labcorp of America (LCA) (N=399). Demographic information 
on the cohort is provided in Table 1, where participants were stratified based on BMI into four 
classes: normal weight (18<BMI<25), overweight (25≤BMI<30), World Health Organization 
(WHO) obese category I (obese I) (30≤BMI<35) and WHO obese categories II and III 
(35≤BMI). Our cohort was predominantly white with a mean age of 47 years and a greater 
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proportion of females (72%) than males. Overall our cohort represents a broad range of adults, 
with markers of health decreasing with increasing BMI. An additional 540 participants who met 
the 21-day cut off criteria, but whose gut microbiome was analyzed by Second Genome were 
included as a validation cohort. Demographic information on the validation cohort is provided in 
Supplementary Table 1. 
 
Clinical Laboratory Tests 
All blood draws for all assays were performed by trained phlebotomists at LCA or Quest service 
centers. Blood samples for clinical labs were obtained at the same time as the metabolomics 
blood draw, within 21 days of the gut microbiome sample. Participants were required to avoid 
alcohol, vigorous exercise, aspartame, and monosodium glutamate 24 hours prior to the blood 
draw, and to begin fasting 12 hours in advance. All clinical labs were analyzed by LCA in the 
discovery cohort, and by Quest (62% of samples) or LCA (38%) in the validation cohort. At the 
time of each blood draw, weight and height were measured, and BMI was calculated using the 
formula: 𝐵𝑀𝐼 = '()*+,	(/*)

(+()*+,	(1))2
. A threshold of less than 5% missing values was set for each 

clinical lab, which was passed by 77 different analytes. Median imputation was performed on the 
resulting analytes, which were then used for further analysis. 
 
Proteomics 
Plasma protein levels were measured using the ProSeek Cardiovascular II, Cardiovascular III, 
and Inflammation arrays (Olink Biosciences, Uppsala, Sweden), processed and batch corrected 
as described before 26. For analysis, a threshold of less than 5% missing values was set for each 
protein, which was passed by 263 different analytes. The number of participants who met the 
initial inclusion criteria and whose proteomics measurement was obtained within 21 days of the 
gut microbiome sample was 262. Missing values for the proteins were imputed to be the 
minimum observed value for that protein. 
 
Metabolomics  
Metabolon (North Carolina) conducted the metabolomics assays on participant plasma samples. 
Sample handling, quality control, and data extraction, along with biochemical identification, data 
curation, quantification, and data normalizations have been previously described 27. For analysis, 
the raw metabolomics data were median scaled within each batch such that the median value for 
each metabolite was one. To adjust for possible batch effect, further normalization across batches 
was performed by dividing the median-scaled value of each metabolite by the corresponding 
average value for the same metabolite in QC samples of the same batch. Missing values for 
metabolites were imputed to be the minimum observed value for that metabolite. Values for each 
metabolite were log transformed. A total of 659 different plasma metabolites were measured for 
each participant in the discovery and validation cohorts. 
  
Microbiome  
Stool specimens were taken at participants’ homes using a standardized kit supplied by 
DNAgenotek (Ottawa, ON, Canada) in the discovery cohort and Second Genome (South San 
Francisco, CA) in the validation cohort. Microbial DNA was isolated from 250 mL of 
homogenized stool, using an automated protocol and MoBio’s PowerMag (+ClearMag) 
microbiome DNA isolation kit on the KingFisher Flex instrument. The extraction protocol 
involved a precursory bead-beating step with glass beads and plate shaker for recovery of more 
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DNA from a more diverse microbial community. Concentrations of extracted DNA from each 
sample were determined by Qubit measurement, and an estimate of sample purity was 
determined with spectrophotometry by measuring the A260/A280 absorbance ratio. Gut 
microbiome sequencing data in the form of FASTQ files were provided based on either the 300-
bp paired-end MiSeq profiling of the 16S V3+V4 region (DNAgenotek) or 250-bp paired-end 
MiSeq profiling of the 16S V4 region (Second Genome). Operational taxonomic unit (OTU) read 
counts were calculated using the QIIME pipeline 28 (version 1.9.1; default parameters) with 
closed-reference OTU picking against the Greengenes database (version 13_08) 29. Rare OTUs, 
defined here as those not representing 0.01% of at least one sample, were removed. Remaining 
OTU counts were unit normalized. For α-diversity calculations, OTUs were rarefied at 30,000 
reads. Gut α-diversity was calculated by 1) Shannon’s index, calculated by  𝐻 = −𝛴6789 𝑝)𝑙𝑛𝑝), 
where 𝑝) is the proportion of the community represented by OTUi, 2) Chao1, calculated by 
𝑆>+?@8 = 𝑆@AB +

DE2

FD2
, where 𝑆@AB is the number of observed species, n1 is the number of 

singletons (species captured once), and n2 is the number of doubletons (species captured twice) 
30, and by 3) PD whole tree - defined as the minimum total length of all the phylogenetic 
branches required to span a given set of taxa on the phylogenetic tree 31. Participants with 
Shannon diversity values greater or less than 3.0 standard deviations from the mean were 
removed prior to analysis (n=4 for the discovery cohort, n=6 for the validation cohort). For 
microbiome genera-metabolite correlation analysis, only genera that had less than 5% zero 
values and a mean greater than 5 counts were used. This decreased the number of genera from 
550 to 96. Spearman correlations were then used to compare each of the 11 metabolites retained 
by all 10 LASSO models with each of the 96 genera, correcting for multiple hypothesis testing 
(FDR<0.05). 
 
Gastrointestinal Health Metrics 
Measures of gastrointestinal health and antibiotics use (Figure 4C&D) were obtained through 
self-administered questionnaires completed by the participants during their initial assessment. 
For reporting antibiotics use, participants chose from three possible responses (‘not in the past 
year’, ‘in the past year’, and ‘in the past three months’) which were re-coded into ordinal 
variables 0, 1, and 2 respectively. Participants chose one of several possible frequencies in 
response to multiple questions related to gastrointestinal health (abdominal pain, acid reflux, 
bloating, diarrhea, gas, lack of appetite, nausea) that were re-coded as follows: 
‘infrequently/never’=0, ‘once a week or less’=1, ‘more than once a week’=2, ‘daily’=2. The only 
exception was a question referring to frequency of bowel movement (constipation).  In this case, 
participants chose among the following four answers which were re-coded to the accompanying 
numerical values: ‘2 or fewer times per week’ = 2, ‘3-6 times per week’=1, ‘1-3 times daily’=0 
& ‘4+ times daily’=0. The relationship of each self-reported measure with Shannon diversity was 
then analyzed independently using linear regression with Shannon and the metabolome-predicted 
Shannon diversity (mShannon) as the dependent variables and age, sex, and BMI included as 
covariates. As our cohort consists of self-enrolled participants, response rates of health 
questionnaires were incomplete; 320 of 399 participants completed the questionnaire on 
gastrointestinal health and 318 responded to the question regarding antibiotics use. Only 
responders were used in this particular analysis. 
 
Analysis of Microbiota and Metabolomic Profiles.  
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A 10-fold cross-validation (CV) implementation of Least Absolute Shrinkage and Selection 
Operator method (LASSO) was used to predict Shannon diversity from plasma metabolomics 
data using the Python (version 2.7/3.5+) machine-learning library Scikit-learn. LASSO is a 
computationally efficient penalized regression method designed to find sparse linear models in 
large datasets 32. All analytes were standardized to mean 0 and unit variance prior to analysis. 
Ridge regression was also used to compare its performance in predicting Shannon diversity 
relative to LASSO. Both LASSO and Ridge were fitted with an intercept. A 10-fold CV predict 
implementation was used to generate a metabolome-predicted Shannon diversity (mShannon) 
value for each participant. In this approach, each penalized regression model is trained on 90% 
of the cohort with 10-fold CV, and mShannon diversity is predicted for the 10% of the 
participants who were not used for model optimization. This process is repeated ten-fold 
resulting in a ‘test set’ mShannon value for each participant and ten different 𝛽-coefficients for 
each metabolite. Using an internal 10-fold CV in each training set and evaluating accuracy of the 
models using only out-of-sample predictions are meant to control overfitting and provide a 
conservative estimate of model performance. All metabolites with a non-zero 𝛽-coefficient in at 
least one of the ten LASSO models (n=40) were included in further analysis. The R2 score was 
computed by taking the mean of all the R2 scores across the 10 out-of-sample predictions. 
Pearson r was calculated using observed Shannon and mShannon values for the entire cohort. 
 
Classification Analysis 

Eleven metabolites with non-zero β-coefficients across all ten LASSO models generated 
(Supplementary Table 2) were used to classify participants with low α-diversity using Random 
forests implemented in Python (version 2.7/3.5+) machine-learning library Scikit-learn. In 3 
separate analyses, the cohort was stratified into quartiles based on either Shannon, PD whole 
tree, or Chao1 diversity metrics. In each analysis, participants in the bottom quartiles were coded 
as cases (1) while the rest of the cohort was coded as controls (0). Random forests parameters 
were optimized separately for metabolomics and clinical labs using the GridSearchCV function 
in Scikit-learn. To confirm the robustness of the identified metabolites as biomarkers for gut 
diversity, an additional classification was conducted using Shannon diversity as the α-diversity 
metric in part of the Arivale cohort whose stool samples were analyzed by a different vendor and 
who were not used for discovery (validation cohort). The same Random forest parameters were 
used in the validation cohort as the discovery cohort. Mean out-of-sample classification scores 
and area under the curve (AUC) were calculated using  the mean out-of-sample scores across the 
10-fold CV. 
 
Statistical Analysis 

Data preprocessing and analysis were both conducted using Python (version 2.7/3.5+). All analytes 
(proteomics, metabolomics, clinical labs) were scaled and centered prior to analysis. Ordinary 
Least Square (OLS) linear regression was used to assess the individual relationship between each 
metabolite retained in at least one of the ten LASSO models (n=40) and Shannon diversity with 
sex, age, and BMI included as covariates. When assessing the relationships of the strongest 
metabolite predictors identified using LASSO with Shannon diversity across BMI classes, the 
cohort was stratified into four groups based on predefined BMI WHO cutoffs. Linear regression 
was performed on each metabolite individually for each group with Shannon diversity as the 
dependent variable and sex and age included as covariates. All statistical tests in this study were 
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performed using a two-sided hypothesis. When multiple comparisons were performed, false 
discovery rate (FDR) was controlled using the method of Benjamini and Hochberg33. 

Results 
 
A small subset of plasma metabolites is strongly predictive of gut microbial α-diversity 
In order to investigate the relationship between the host metabolome and gut microbiome 
diversity, we applied LASSO to baseline plasma metabolomics data of the cohort to generate 
out-of-sample predictions of Shannon diversity. Of the 659 metabolites measured for each 
participant in the cohort, only 40 metabolites were retained in the final models (Table 2 & 
Supplementary Table 2). The small subset of plasma metabolites retained by LASSO was 
strongly predictive of Shannon diversity, explaining an average 45% of the variance (mean out-
of-sample R2 score=0.45, Pearson r=0.68 for metabolome-predicted Shannon diversity 
(mShannon) versus observed Shannon) (Figure 1A). The identified metabolites belonged 
primarily to the Xenobiotics, Lipid, and Amino Acid superfamilies with a particularly high 
frequency of phenylalanine/tyrosine metabolites (Figure 1B). While 40 metabolites were retained 
in at least one of the 10 models generated in the 10-fold CV, only 11 metabolites were retained 
in all 10 models, and were the most influential in predicting Shannon diversity (Figure 1C, 
Supplementary Table 2). Ridge regression, which tends to perform better when there is high 
collinearity among predictor variables and when there is a large number of small effects 
distributed across the predictor variables 32, was outperformed by the LASSO model in our 
analysis. Ridge with 10-fold CV explained only an average of 35% of variance in Shannon 
diversity, suggesting that it is indeed a small subset of largely independent plasma metabolites 
that most strongly reflects gut microbial diversity in our cohort. 
 We investigated potential collinearity among the 40 metabolites identified through 
LASSO. Of the 1560 metabolite-metabolite comparisons, only six were identified to be highly 
collinear (|r|>0.80) (Supplementary Figure 1 A&B). These included correlations among three 1-
carboxyethyl amino acids (leucine, phenylalanine, valine). Of the three, 1-
carboxyethylphenylalanine was retained across all 10 models while the other two carboxyethyl 
compounds were retained in two (valine) and three (leucine) models. The low collinearity among 
predictor variables is consistent with the way LASSO generates a regression model. When 
analytes are highly collinear, LASSO will retain one of the analytes in the model while pushing 
the 𝛽-coefficients of the other analytes toward zero 32. 
 We further assessed the capacity of the 40 identified metabolites to predict other metrics 
of gut microbial α-diversity including PD whole tree and Chao1 (Figure 1D). The first of these 
two metrics incorporates phylogenetic differences in the diversity score, while the second is a 
measure of species richness. A LASSO model fitted using 10-fold CV with only the 40 identified 
metabolites explained an average 50% of out-of-sample variance in PD whole tree diversity and 
36% in Chao1. Importantly, using the whole plasma metabolome did not improve the predictive 
capacity for either of the two metrics, confirming that the small subset of metabolites identified 
is sufficient to capture majority of the explainable variability in gut microbial α-diversity. 

Many of the strongest identified predictors of Shannon diversity in the models generated 
using LASSO were human-microbial co-metabolites: metabolites either initially synthesized by 
the host and then subsequently metabolized by the microbiome (e.g. bile acids) or vice versa 
(e.g. hippurate) (Figure 1C and Table 2). Our results confirm previously identified metabolites 
such as hippurate, and p-cresol sulfate 8, as well as identify novel candidate biomarkers of 
Shannon diversity (Figure 1C, Table 2). In particular, the testosterone metabolite 5α-androstan-
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3𝛽-17α-diol disulfate (5α-androstan-3𝛽-17α) had the highest mean positive β-coefficient across 
all LASSO models generated (Figure 1C). Plasma concentrations of 5α-androstan-3𝛽-17α were 
significantly higher in men than in women, while no significant sex dependent differences were 
observed in Shannon diversity (linear models adjusted for age and BMI) (Figure 2A&B). There 
was a significant positive association between Shannon diversity and 5α-androstan-3𝛽-17α for 
both men and women. While there appeared to be a variable relationship between Shannon 
diversity and 5α-androstan-3𝛽-17α (Figure 2C) across sex, a sex by 5α-androstan-3𝛽-17α 
interaction term in a regression model adjusted for age and BMI did not reach significance 
(𝛽(men*5α-androstan-3𝛽-17α)(95%CI) =0.072(-0.034, 0.18), P-Value=0.18).  

Two secondary bile acids, isoursodeoxycholate and glycolithocholate sulfate, were also 
retained in all 10 LASSO models (Supplementary Table 2). Interestingly, they demonstrated 
opposite associations with Shannon diversity in our cohort (Figure 2D&E). When the top 11 
metabolites from LASSO were correlated with bacterial genera, the two bile acids consistently 
demonstrated opposite associations; glycolithocholate sulfate was anticorrelated with the most 
abundant Bacteroidetes genus, Bacteroides, while isoursodeoxycholate demonstrated a positive 
association. The opposite was true for several Firmicutes genera (Figure 3 & Supplementary 
Figure 2). Bacteroides was also anti-correlated with the strongest positive predictor 5α-
androstan-3𝛽-17α, indicating that increasing dominance of this taxon is related to reduced 
Shannon diversity in our cohort. 

The relationship between each metabolite that had a non-zero 𝛽-coefficient in at least one 
of the 10 LASSO models generated and Shannon diversity was next independently assessed 
using linear regression with sex, age, and BMI included as covariates. Of the 40 identified 
metabolites, 35 were significantly associated with Shannon diversity (FDR<0.05) 
(Supplementary Table 1). Shannon diversity was also regressed independently against each 
metabolite of the 40 identified using LASSO. Cinnamoylglycine alone explained the greatest 
percent of variance (25.6%) of all metabolites (Figure 4A). An additional 8 metabolites 
explained over 10% of variance in Shannon diversity each. However, no single metabolite 
explained a similar percent of variance as LASSO predicted mShannon, demonstrating that a 
combination of plasma metabolites is substantially more reflective of Shannon diversity than any 
one metabolite alone. 

As mentioned previously, only 11 of the 40 metabolites identified were retained in all 10 
LASSO models (Figure 1C). These metabolites were next used to classify participants with low 
α-diversity (bottom quartile) using a 10-fold CV implementation of Random forests. The 11 
metabolites alone were able to classify participants based on not only Shannon (mean 
Sensitivity=0.72, Specificity=0.90, Precision=0.72) but also other metrics of α-diversity (PD 
whole tree: mean Sensitivity=0.68, Specificity=0.89, Precision=0.67; Chao1: mean 
Sensitivity=0.64, Specificity=0.88, Precision=0.65). Together these results indicate a potential 
use for the 11 identified metabolites as biomarkers for gut microbial diversity. 
 
Clinical laboratory tests are not predictive of gut microbial diversity 
To date, blood clinical laboratory tests are still the most commonly used molecular metric for 
routinely evaluating the health state of an individual. However, it is unclear whether or how 
effectively laboratory tests may capture the structure of the gut microbiome. To assess whether 
common clinical labs reflect the state of the gut microbiome, we utilized the same methods as 
with metabolomics in order to predict Shannon diversity from a wide panel of clinical analytes. 
A set of 77 clinical labs could not accurately predict individual Shannon diversity scores (mean 
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LASSO R2= 0.01, mean Ridge R2=0.05). The weak association of clinical labs and Shannon 
diversity was further confirmed when linear regression was used to assess the relationship of 
each clinical lab and Shannon diversity independently. Of 77 clinical labs, 28 were significantly 
associated with Shannon diversity (FDR<0.05) (Figure 4B, Supplementary Table 3). However, 
no clinical analyte explained more than 6% of variance in Shannon diversity alone, with markers 
of metabolic health (lipoprotein insulin resistance (LPIR) Score, triglycerides, insulin) ranking 
the highest of all analytes (Figure 4B). By comparison, BMI alone explained 7.5% of variance in 
Shannon diversity, explaining a greater percent of variance in Shannon diversity than any single 
clinical analyte. When individual clinical analyte models were adjusted for sex, age and BMI, 
only LPIR Score and blood triglycerides remained significantly associated with Shannon 
diversity (Supplementary Table 3) (FDR<0.05). Concordantly, a Random forests classification 
model based on clinical labs optimized to identify participants with low Shannon diversity 
(bottom quartile) demonstrated low performance (sensitivity=0.50, specificity=0.80, 
precision=0.45) (Supplementary Figure 3). 
 
Metabolic health related blood proteins are associated with Shannon diversity 
In addition to clinical labs and metabolomics, 263 unique blood proteins were measured for 262 
of 399 participants in our cohort. Using linear regression and adjusting for multiple hypothesis 
testing, 41 of the 263 proteins were identified to be significantly associated with Shannon 
diversity (FDR<0.05) (Supplementary Table 4). Similar to results of the clinical labs (Figure 
4B), the most strongly associated analytes were proteins involved in metabolic health including 
Paraoxonase 3 (PON3) (𝛽(95%CI)=0.13 (0.084, 0.18), P-Value=4.7e-08), Leptin (LEP) 
(𝛽(95%CI)= -0.14 (-0.20,-0.088), P-Value=5.1e-07) and Low-Density Lipoprotein Receptor 
(LDLR) (𝛽(95%CI)= -0.12 (-0.17,-0.064), P-Value=2.9e-05). PON3 is an enzyme that associates 
with HDL and may prevent oxidation of LDL 34, while LEP is an adipocyte derived hormone 
that is elevated in obesity 35. After adjusting for covariates, only three proteins remained 
significantly associated with gut microbial diversity, including LDLR, hydroxyacid oxidase 1 
(HAO1), and serine protease 8 (PRSS8) (Supplementary Table 4). Finally, the same penalized 
regression methods were used as with metabolomics in order to evaluate how strongly blood 
proteins measured reflect Shannon diversity. The plasma proteome was more predictive of 
Shannon than clinical labs, explaining an average 13% of variance (mean LASSO R2 Score= 
0.11, mean Ridge R2 Score=0.13). However, the prediction was still substantially weaker than 
that of the plasma metabolome. 
 
mShannon reflects perturbations associated with gastrointestinal health 
 Given that the plasma metabolome was the strongest predictor of gut microbiome 
structure, we moved forward with our mShannon predictions to assess whether host physiology 
reflects perturbations in the gut microbiota associated with several lifestyle and medical factors 
reported previously. Using information from lifestyle and health questionnaires completed by 
Arivale participants, Shannon diversity was regressed against self-reported measures of 
gastrointestinal health as well as antibiotics use, adjusting for covariates (see Methods). Several 
factors significantly associated with major perturbations in Shannon diversity were also reflected 
in the host’s metabolome, as shown by significant β-coefficients in models predicting both 
Shannon and mShannon (Figure 4C). In particular, reported frequency of diarrhea and abdominal 
pain demonstrated a strong negative association with Shannon diversity, which was reflected in 
mShannon as well (Figure 4C&D). Antibiotics use was significantly associated with lower 
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Shannon diversity, with the same trend observed in mShannon (P-value=0.06). Lower frequency 
of bowel movements (constipation) was positively associated with both Shannon diversity and 
mShannon (Figure 4C). Together these results suggest that events associated with major changes 
in gut microbial structure and gut health are strongly reflected in the host metabolome.  
  
Plasma metabolites associated with Shannon diversity vary across BMI classes 
Obesity has been consistently linked to metabolic perturbations 36 as well substantial changes in 
the blood metabolome 37. Additionally, some but not all studies have reported a decrease in 
Shannon diversity in obese versus normal weight individuals 19. To explore the relationship 
between Shannon diversity, obesity and the plasma metabolome further, the cohort was stratified 
based on BMI into four groups (Table 1). Because the risks associated with obesity vary by the 
degree of BMI increase, obesity is typically divided into three classes (Class I = 30-34.9 kg/m2, 
Class II = 35-39.9 kg/m2, and Class III ≥40 kg/m2).  For this analysis we combined Class II and 
class III obesity but looked at Class I (“low-risk obesity”) separately. 38,39 All three metrics of gut 
α-diversity were significantly decreased with increasing BMI, with participants in the obese II/III 
class demonstrating the lowest diversity scores of all groups (Table 1). In particular, for both 
Chao1 and PD whole tree diversity, participants in the obese II/III group had a significantly 
lower score than all other BMI classes, including obese I. Molecular markers of health were 
progressively worse across BMI classes, however markers of inflammation, such as Interleukin-6 
and C-Reactive Protein, were particularly elevated in the obese II/III group (Table 1, Figure 5A). 
 To evaluate whether there is variability in the reflection of Shannon diversity in the 
plasma metabolome across BMI classes, the relationship between Shannon and the five strongest 
metabolite predictors retained by all 10 LASSO models (greatest absolute value of mean 𝛽-
coefficients) was assessed within each BMI class, adjusted for age and sex (Figure 5B). While 
the 𝛽-coefficients were similar across all BMI classes for most metabolites, 5α-androstan-3𝛽-
17α demonstrated no significant association with Shannon diversity in the obese II/III group, yet 
a significant positive association among all other participants (Figure 5C&D). When the analysis 
was extended to all 11 metabolites that were retained by the 10 LASSO models generated 
(Supplementary Figure 4A), other differences emerged, including a significant relationship 
between Shannon and the bile acid intermediate 3𝛽-hydroxy-5-cholestenoate in the obese I class 
but not all other BMI classes, and a stronger relationship between Shannon and 
perfluorooctanesulfonic acid (PFOS) in the obese II/III class relative to all other groups. PFOS 
alone explained 22.4% (Pearson r=0.48, P-Value=2.0e-04) of variance in Shannon in obese II/III 
participants, while no significant relationship was detected in normal weight participants 
independently (Pearson r=0.09, P-Value=0.30) and after adjusting for covariates (𝛽(95%CI)= 
0.04 (-0.036,0.11), P-Value=0.32) (Supplementary Figure 3B). Only a weak association between 
PFOS and Shannon was observed when all non-obese II/III participants were pooled together 
(Pearson r=0.20, P-Value=2.2e-04), highlighting the variable reflection of gut α-diversity in the 
host metabolome across the BMI spectrum. 
 
The host metabolome/gut microbiome relationship is consistent in a validation cohort 
To confirm our findings, major observations from the discovery cohort were explored in a 
separate group of Arivale participants who joined the program at an earlier date and whose blood 
and microbiome samples were analyzed by different vendors (clinical labs: LCA (38%), Quest 
Diagnostics (62%), microbiome= Second Genome (100%), N=540). Of the 35 metabolites 
significantly associated with Shannon diversity after adjusting for covariates and multiple 
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hypothesis testing in the discovery cohort, 29 were confirmed in the validation cohort 
(Supplementary Table 2). Similarly, 66% of the significant microbiome genera-plasma 
metabolite correlations identified in our discovery cohort were confirmed in the validation set 
(FDR<0.05) (Supplementary Figure 5&6). A LASSO model using only the 40 metabolites 
identified in the discovery cohort was further fitted to predict Shannon diversity in the validation 
cohort using 10-fold CV. Out-of-sample prediction accuracy for the 40-metabolite LASSO 
model was lower but similar to that in the discovery cohort (mean R2=0.34, Pearson r=0.60, 
Figure 6A&C). Additionally, 𝛽-coefficients for the 11 metabolites that were retained across all 
LASSO models in the discovery cohort were compared to the mean 𝛽-coefficients fitted on the 
validation cohort using 10-fold CV, showing a strong correlation between models (Pearson 
r=0.94, P-value= 2.05e-05, Figure 6B). The 40 metabolites alone explained majority of the 
variance in Shannon diversity captured by the blood metabolome in the validation set. 
Generating a separate LASSO model using the whole metabolome (659 metabolites) improved 
the predictive capacity of the model only marginally (mean R2=0.38, Figure 6C), with the mean 
difference in performance across the 10-fold CV not being significantly different between the 40 
metabolite and the whole metabolome model (P-value=0.30). The whole metabolome LASSO 
model in the validation cohort retained 58 metabolites across the 10 CVs. Of the 58, 15 
overlapped with the discovery cohort set of 40 metabolites (Supplementary Table 2). This is 
unsurprising given the various demographic differences across the two cohorts (Supplementary 
Table 2) and the way in which LASSO retains analytes in the model. Despite the moderate 
overlap between metabolites retained independently by applying LASSO in the discovery and 
validation sets, mean 𝛽-coefficients across the 10-CVs for the 11 strongest metabolite predictors 
still showed strong correlation between models (spearman r=0.91, P-value=9.2e-05, Pearson 
r=0.90, P-value=1.9e-4). The predictive capacities of clinical labs and proteomics were also 
investigated in the validation cohort. Consistent with our initial findings, clinical labs 
demonstrated little to no correspondence with Shannon diversity (Figure 6C). Only 176 of the 
540 participants in the validation set had available proteomics data. In this sub-group of the 
validation cohort, we were unable to confirm the moderate capacity of the blood proteome to 
predict Shannon diversity, with the mean variance explained lower than clinical labs (Figure 6C). 
Finally, classification of participants with low Shannon diversity (bottom quartile) using the 11 
strongest Shannon diversity predictors identified in the discovery cohort was investigated in the 
validation set where similar Sensitivity (0.65), Specificity (0.87), and Precision (0.64) were 
achieved (Figure 6D&E). Collectively these findings increase our confidence in the strong 
relationship between the 40, and in particular the core 11, identified metabolites and gut 
microbiome diversity. 

We next explored key differences in the host metabolome/gut microbiome relationship 
across obesity identified in the discovery cohort. However, the number of participants in the 
obese II/III group in the validation set was substantially lower than in the discovery cohort 
(n=34), limiting our statistical power. Consistent with our initial findings, PFOS was weakly 
positively associated with Shannon diversity in normal weight participants (BMI<25) (Pearson 
r=0.17, P-Value=0.01). This relationship was once again stronger in obese II/III participants 
(Pearson r=0.35, P-Value=0.04), though to a lesser extent than in the discovery cohort 
(Supplementary Figure 4C). After adjusting for covariates, PFOS was no longer significantly 
associated with Shannon in the obese II/III group (𝛽(95%CI)= 0.11 (-0.04,0.24), P-Value=0.15). 
The sex steroid hormone 5α-androstan-3b-17α demonstrated a significant positive correlation 
with Shannon diversity across participants with BMI ≤35, consistent with the discovery cohort 
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(Supplementary Figure 4C). The metabolite also remained one of the strongest positive 
predictors in the LASSO models generated (Figure 6B). However, no significant relationship 
was observed in obese II/III participants between Shannon diversity and 5α-androstan-3b-17α 
independently (Pearson r=-0.01, P-Value= 0.95) and after adjusting for covariates (𝛽(95%CI)= 
0.14 (-0.02,0.30), P-Value=0.08) (Supplementary Figure 3D). To increase statistical power, obese 
II/III participants were pooled together from both the discovery and validation cohorts (n=90) 
and the relationship between 5α-androstan-3b-17α and Shannon diversity was assessed using 
linear regression, adjusting for sex, age, and microbiome vendor. Even with increased power, 
there was no significant association between 5α-androstan-3b-17α and Shannon (𝛽(95%CI)= 
0.03 (-0.10,0.15), P-Value=0.70), providing further evidence for a lack of relationship of this 
metabolite with Shannon diversity under severe obesity. 
 
Discussion 
The goal of this study was to examine the relationship between gut microbiome α-diversity and a 
broad set of analytes measured in the blood. We generated and analyzed baseline data from a 
cohort of hundreds of individuals participating in a wellness program, including numerous blood 
measurements (metabolomes, proteomes, and clinical lab tests) and fecal microbiomes taken 
within 21 days of each other. The key findings of this study were: (1) 40 plasma metabolites, but 
not a wide clinical lab panel or a set of 263 proteins, were able to predict gut microbiome 
Shannon diversity in a cohort of predominantly healthy US adults; (2) specific metabolites 
associated with Shannon diversity in our study are also related to human health, such as the 
microbial metabolites  trimethylamine N-oxide (TMAO), imidazole propionate  and p-cresol 
sulfate; (3) Shannon diversity predictions accurately reflected changes in gut microbial diversity 
associated with gastrointestinal health, demonstrating a strong connection between gut 
microbiome structure and host physiology; and (4) there was a variable relationship between 
specific metabolites and Shannon diversity across the BMI spectrum, with particular disruption 
to this relationship in severe (class II/III) obesity. Collectively, our results provide novel insight 
into the intimate relationship between host physiology and the gut microbiome and characterize 
the host metabolome as an important interface between the gut ecosystem and human health. 
 The weak capacity of clinical labs to predict Shannon diversity scores and accurately 
classify participants with low gut microbial diversity highlights the need for more refined 
molecular biomarkers for assessing gut microbiome health. The strong imprint of Shannon 
diversity in the plasma metabolome is perhaps unsurprising, given that our untargeted 
metabolomics panel captures many metabolites of microbial origin. The advantage of analyzing 
the plasma metabolome as a marker of gut microbiome structure is the ease of sample collection 
and processing, as well as the biological relevance of metabolomics obtained from the blood. 
Unlike fecal metabolites that have been previously shown to be strongly related to gut microbial 
composition 6, the plasma metabolome captures analytes that have greater potential to exert a 
biological effect in the host. We anticipate that many of the metabolites identified in our analysis 
can be investigated further to better understand the impact of the gut microbiome on human 
health. 

A more diverse microbiome is often assumed to be a healthier microbiome 40-42. 
Consistent with this assumption, several metabolites with positive 𝛽-coefficients in the LASSO 
models generated to predict Shannon diversity in our study have been previously linked to 
microbial metabolism of health-promoting polyphenolic compounds (e.g. benzoate that is 
conjugated in the liver to hippurate, as well as hydrocinnamate) 43-45. Polyphenols are a diverse 
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group of phytochemical compounds found in fruits, vegetables, and cereals as well as coffee, tea 
and red wine 46. The positive association between polyphenolic microbial metabolites and 
Shannon diversity suggests a diverse microbiome may reflect a polyphenol rich diet. Similarly, 
the potentially detrimental microbial metabolite imidazole propionate was negatively associated 
with Shannon diversity across both the discovery and validation cohorts. A recent study 
demonstrated that imidazole propionate is synthesized in greater abundance in the gut microbiota 
of diabetic patients, and that it is able to impair insulin signaling in animal models 47. Its negative 
association with α-diversity in our study supports the notion that host health increases with 
increased microbial diversity. However, our results also suggest that there may be an optimal 
range of α-diversity, rather than a monotonic relationship between microbiome diversity and 
human health. For example, p-cresol sulfate was positively correlated with Shannon diversity 
and is a potentially toxic uremic compound formed from the putrefaction of undigested dietary 
proteins by colonic bacteria and subsequent modification by the liver 48. Similarly, the human-
microbial co-metabolite TMAO was positively associated with Shannon diversity in both the 
discovery and validation cohorts, independent of age, sex, and BMI. TMAO is associated with 
diets high in red meat. The negative effects of TMAO on health are still emerging, but growing 
evidence suggests it may promote cardiovascular disease 26,49. Fermentation of dietary protein 
accelerates when dietary fiber is exhausted in the stool. Thus, higher levels of protein 
fermentation are found in people on high-protein/low-fiber diets and in people suffering from 
constipation 50. Consistently, participants who reported constipation in our study also showed 
higher metabolome-predicted Shannon diversity. We suggest that, above a threshold, higher α-
diversity may be associated with unhealthy blood levels of particular microbial metabolites. 
Alternatively, we found that very low Shannon and mShannon diversity scores were associated 
with participant-reported diarrhea and abdominal pain. Together, these results provide evidence 
for the existence of a ‘Goldilocks Zone’ for gut microbiome diversity.  

The relationship between the human gut microbiome and obesity has been inconsistent in 
the literature 19. Previous work has often grouped participants into just two categories: healthy 
and obese. In this study, we stratified participants into multiple BMI classes. We hypothesized 
that participants who are in the obese II or III class, which are both associated with a higher risk 
of a spectrum of diseases compared to obese I individuals 38,39, will show a greater disruption to 
their gut microbiome. Through this refined stratification, we were able to demonstrate that the 
associations between the plasma metabolome and microbiome diversity were qualitatively 
different across different BMI classes. In particular, the sex steroid 5α-androstan-3𝛽-17α 
emerged as one of the strongest positive predictors of Shannon diversity in both the discovery 
and validation cohorts, while demonstrating no significant correlation with Shannon diversity in 
obese II/III individuals. Previous studies have shown that the gut microbiome is capable of 
altering sex steroid hormone levels (testosterone) in the host 4, providing a potential direct link 
between the identified testosterone metabolite and the gut microbiota. The lack of relationship 
between gut diversity and 5α-androstan-3𝛽-17α in obese II/III participants may have potential 
health implications. Alternatively, the known impact of severe obesity on sex steroids may be 
playing a role in the differential findings in obese II/III participants 51.  However, further studies 
are needed to fully elucidate the relationship between the identified hormone, the gut 
microbiome, and metabolic health. The environmental pollutant PFOS showed a positive 
association with Shannon diversity in obese II/III participants, but no significant association in 
normal weight individuals in the discovery cohort and a weak association in the validation 
cohort. These differences highlight the importance of refining our definitions of obesity when 
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investigating the impact of the gut microbiome on health and also stress context when assessing 
the relationship between microbial diversity and host physiology. 
 Despite the hundreds of associations between the gut microbiome and disease that have 
been identified over the last decade, we still do not yet understand what constitutes a ‘healthy’ 
microbiome-host relationship. It is likely that the connection between microbiome community 
structure and human health is highly contextual and complex, depending on diet, behavior, 
exposure to pathogens, history of antibiotic exposure, genetics, and other myriad factors. Our 
work integrates multi-omics data from a large cohort of individual people to provide a path 
forward for elucidating the properties of a ‘healthy’ microbiome-host interaction. We provide 
new insight based on the metabolic states of individual hosts and identify severe obesity as a 
crucial factor for stratifying patient populations. While we cannot establish causality, this work 
advances our knowledge of how host metabolism and microbial community structure are inter-
connected. Understanding this interplay in a multi-omics context will enable future experimental 
work and the development of personalized, multimodal interventions aimed at promoting 
wellness and treating disease. 
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Tables: 
Table 1. Baseline discovery cohort characteristics overall and by BMI class. Values with 
different superscript letters are significantly different (P<0.05). 

  
Normal Weight 

(n=142) 
Overweight 

(n=134) 
Obese I 
(n=66) 

Obese II/III 
(n=57) 

Total 
(N=399) 

Mean Age 
(SD) 

45.0a 
(9.1) 

47.7b 
(10.6) 

48.6b 
(10.6) 

48.8b 
(9.7) 

47.0 
(10.1) 

Male  
(%) 27.5a 37.3b 27.3a 7.0c 27.8 

Non-white  
(%) 26.0 24.6 21.2 24.6 24.6 

Median BMI 
(IQR) 

22.8a 
(21.1-24.1) 

27.2b 
(26.2-28.5) 

31.9c 
(30.7-33.2) 

40.9d 
(36.9-45.8) 

26.8 
(23.0-
29.1) 

Mean HDL (mg/dL) 
(SD) 

67.7a 
(17.8) 

60.8b 
(15.9) 

55.5c 
(12.2) 

52.7c 
(13.9) 

61.2 
(16.7) 

Mean Blood 
Triglycerides 
(mg/dL) (SD) 

81.5a 
(32.9) 

96.6b 
(39.0) 

111.0c 
(41.9) 

131.3d 
(65.8) 

98.6 
(45.7) 

Median IL-6 
(pg/mL) (IQR) 

0.70a 
(0.70-1.4) 

0.95b 
(0.70-1.7) 

1.5c 
(0.80-2.3) 

3.1d 
(2.0-5.2) 

1.1 
(0.70-2.3) 

Median 
C-Reactive Protein 
(ng/mL)(IQR) 

0.75a 
(0.39-1.12) 

1.12b 
(0.55-2.88) 

2.20c 
(1.10-3.16) 

4.50d 
(2.53-8.82) 

1.27 
(0.62-
2.95) 

Self-reported 
Probiotic Use (%) 14.1 11.9 13.6 8.8 12.5 

Mean Shannon 
Diversity (SD) 

4.11a 
(0.40) 

4.02b 
(0.41) 

3.89b,c 
(0.50) 

3.77c 
(0.50) 

4.00 
(0.45) 

Mean PD whole tree 
Diversity (SD) 

35.7a 
(6.33) 

34.1b 
(6.21) 

32.7b 
(7.64) 

30.0c 
(6.78) 

33.86 
(6.86) 

Mean Chao1  
(SD) 

971.8a 
(180.2) 

921.9b 
(185.0) 

898.2a,b 
(229.0) 

817.0c 
(218.5) 

920.7 
(202.7) 
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Table 2: Relationships of the 40 identified metabolites with human health and gut microbiome 
structure. The family, subfamily, as well as mean 𝛽-coefficient across the 10 LASSO models 
generated are provided. ‘#’ indicates a human microbial co-metabolite. The 11 metabolites that 
were retained across all 10 LASSO models are bolded.  

Family Subfamily Metabolite 
Mean 

LASSO 
Coefficient 

Microbial 
Previously Known 
Relation to Health/ 
Gut Microbiome 

Lipid Steroid 5α-androstan-3β-17α-diol 
disulfate 0.0784962    

Xenobiotics Benzoate metabolism hippurate 0.0574415 X# 7 ¯ Metabolic Syndrome 8 
­ Shannon diversity 8 

Xenobiotics Food component plant cinnamoylglycine 0.0566116 X# 7 ¯ Obesity 37 

Amino acid Phenylalanine and 
tyrosine metabolism p-cresol sulfate 0.0516428 X# 7 

­ Uremic toxicity 52 
­ CVD risk 53 
­ Shannon diversity 8 

Xenobiotics Food component plant methyl glucopyranoside (α + β) 0.0278401     

Xenobiotics Chemical perfluorooctanesulfonic acid 
(PFOS) 0.0252762  

­ Neurotoxicity 54,55 
Modulation of gut 
microbiota 56 
­ Metabolic Syndrome 56 

Lipid Sterol 3β-hydroxy-5-cholestenoate 0.0177682    

Lipid Secondary bile acid 
metabolism glycolithocholate sulfate* 0.0150048 X# 57   

Xenobiotics Food component plant carotene diol (1) 0.004524467  
Vitamin A metabolism 
Modulation of gut 
microbiota 58 

Lipid Phospholipid metabolism 1-margaroyl-2-docosahexaenoyl-
GPC (17:0/22:6)* 0.003237268  

DHA containing lipid 
Modulation of gut 
microbiota 59 

Amino acid Phenylalanine and tyrosine 
metabolism phenylacetylglutamine 0.002800293 X# 60 ­ CVD risk 53,61 

­ Shannon diversity 8 

Amino acid Urea cycle/arginine and 
proline metabolism N2,N5-diacetylornithine 0.002605358    

Amino acid Phenylalanine and tyrosine 
metabolism 

3-phenylpropionate 
(hydrocinnamate) 0.002165223 X 62 ­ Shannon diversity 8 

Lipid Plasmalogen 
1-(1-enyl-stearoyl)-2-
docosahexaenoyl-GPE (P-
18:0/22:6)* 

0.001651744  
DHA containing lipid 
Modulation of gut 
microbiota 59 

Lipid Phospholipid metabolism trimethylamine N-oxide 0.001640824 X# 49 ­ CVD risk 49,53 
Xenobiotics Chemical 4-hydroxychlorothalonil 0.001254034    
Lipid Steroid pregnanediol-3-glucuronide 0.001187553    
Lipid Medium chain fatty acid 10-undecenoate (11:1n1) 0.001014393    

Xenobiotics Food component plant β-cryptoxanthin 0.000767241  
Vitamin A metabolism 
Modulation of gut 
microbiota 58 

Lipid Phospholipid metabolism 1-pentadecanoyl-2-
docosahexaenoyl-GPC (15:0/22:6) 0.000566379  

DHA containing lipid 
Modulation of gut 
microbiota 59 

Lipid Steroid etiocholanolone glucuronide 0.000528226    

Amino acid Guanidino and acetamido 
metabolism 4-guanidinobutanoate 0.000384957 X 63   

Lipid Carnitine metabolism deoxycarnitine 0.000111031    
Amino acid Tryptophan metabolism Indole propionate 4.65E-05 X 7 ­ Shannon diversity 8 

Nucleotide Pyrimidine metabolism 
uracil containing 2'-O-methyluridine 4.48E-05    

Lipid Lysolipid 1-docosahexaenoyl-GPC (22:6)* 2.49E-05  DHA containing lipid 
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Modulation of gut 
microbiota 59 

Lipid Secondary bile acid 
metabolism glycoursodeoxycholate -1.02E-05 X# 57   

Lipid Sphingolipid metabolism N-stearoyl-sphinganine 
(d18:0/18:0)* -1.64E-05    

Peptide Gamma glutamyl Amino 
acid gamma-glutamylphenylalanine -0.000306837    

Lipid Phospholipid metabolism 1-myristoyl-2-linoleoyl-GPC 
(14:0/18:2)* -0.000318581    

Lipid Fatty acid  monohydroxy 3-hydroxysebacate -0.000333015    
Amino acid Lysine metabolism 5-hydroxylysine -0.000672111    

Lipid Diacylglycerol palmitoyl-linoleoyl-glycerol 
(16:0/18:2)[1] -0.000672376    

Lipid Diacylglycerol palmitoyl-linoleoyl-glycerol 
(16:0/18:2)[2] -0.000676054    

Amino acid Histidine metabolism imidazole propionate -0.000752868 X 47  ­ Insulin Resistance 47 
 Unnamed Unnamed 1 carboxyethylleucine -0.001122231    
 Unnamed Unnamed 1 carboxyethylvaline -0.00194082    

Amino acid Phenylalanine and 
tyrosine metabolism 3-(3-hydroxyphenyl)propionate -0.015908 X 45   

 Unnamed Unnamed 1 carboxyethylphenylalanine -0.0272732    

Lipid Secondary bile acid 
metabolism isoursodeoxycholate -0.0909496 X# 64   
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Figures: 
 

 
Figure 1: The plasma metabolome is a strong predictor of Shannon diversity. A) A plot of out-
of-sample metabolome predicted (mShannon) versus observed Shannon diversity values using 
LASSO with 10-fold cross-validation. The mean R2 across the 10 cross validations, Pearson r of 
observed versus mShannon values, and corresponding P-Value are shown. B) The super family 
and subfamily classification of the metabolites (40 total) retained by at least one of the 10 
LASSO models used to predict Shannon diversity. Three smaller pie charts correspond to the 
subfamily classification of metabolites within the Lipid, Amino acid, and Xenobiotics super 
families. C) A plot of mean β-coefficients corresponding to the 11 metabolites that were retained 
across all 10 LASSO models. Each coefficient is represented as the mean 𝛽-coefficient across all 
10 models +/- the standard deviation. Yellow dots are labelled and represent 𝛽-coefficients for 
human-microbial co-metabolites. Also labelled is the strongest positive predictor 5α-androstan-
3β-17α. D) Out-of-sample R2 scores of models predicting PD whole tree diversity and Chao1 
using either only the 40 metabolites identified (red), or the whole metabolome (grey). Only one 
bar (dashed red/grey) is shown for Shannon diversity, since the 40 metabolites were identified 
using LASSO on the whole metabolome. Values are presented as mean out-of-sample R2 score 
(n=10) +/- standard error of the mean. Abbreviations: 5α-androstan-3𝛽-17α: 5α-androstan-3𝛽-
17α-diol disulfate; BA: bile acids. 
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Figure 2: 5α-androstan-3𝛽-17α correlates with Shannon diversity in males and females. A) 
Shannon diversity is not significantly different across sex. B) 5α-androstan-3𝛽-17α blood 
concentration is higher in men (n=111) than women (n=288), adjusted for age and BMI. (P-
Value=3.79e-13). C) 5α-androstan-3𝛽-17α is positively associated with Shannon diversity in both 
males and females. D&E) Secondary bile acids retained by LASSO in the prediction model show 
opposite association with Shannon diversity. Abbreviations: 5α-androstan-3𝛽-17α: 5α-
androstan-3𝛽-17α-diol disulfate. 
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Figure 3:  Significant Spearman correlations of each of the 11 metabolites retained by all 10 
LASSO models (rows) with the 10 most abundant microbiome genera (columns). Top color row 
labels the phylum for each genus. Left color column labels the sign of the correlation between 
the metabolite and Shannon diversity (blue - negative correlation, red - positive correlation). The 
top bar graph represents the median fractional abundance of each genus across the cohort, with 
bars colored by phylum. Non-significant correlations are colored in white (FDR<0.05). 
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Figure 4: Reflection of Shannon diversity in clinical laboratory tests and the host metabolome. 
A) The percent of variance in Shannon diversity explained by each plasma metabolite retained 
by at least one of the 10 LASSO models generated individually. mShannon is included for 
comparison. B) The percent of variance in Shannon diversity explained by each blood clinical 
analyte significantly associated with Shannon (FDR<0.05) individually. BMI is included for 
comparison. Red bars correspond to a negative, while green bars correspond to a positive, β-
coefficient for each analyte. C) β-coefficients and 95% confidence intervals for each metric of 
gastrointestinal health in a model with Shannon or mShannon Diversity as the dependent 
variable and sex, age, and BMI included as covariates. Each metric of gastrointestinal health was 
coded on a three-point scale (see Methods). Significant associations for both Shannon and 
mShannon are highlighted in red. D) Box plots for Shannon and mShannon diversity stratified 
across self-reported frequency of diarrhea (Infrequently/never n=150, 1x week or less n=127, 
Daily/3-5x a week n=43). 
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Figure 5: The gut microbiome-host metabolome relationship is perturbed under severe obesity. 
A) CRP levels across BMI classes in the cohort. B) β-coefficients for each of the strongest 5 
metabolite predictors of Shannon diversity identified through LASSO. The cohort was stratified 
based on BMI class and Shannon was regressed against each metabolite individually with sex 
and age included as covariates. C) Scatter plot representing the relationship between 5α-
androstan-3𝛽-17α and Shannon diversity in participants with BMI ≤ 35. Regression line was 
fitted for males and females, separately. D) Scatter plot representing the relationship between 5α-
androstan-3𝛽-17α and Shannon diversity in obese II/III participants. A single regression line was 
fitted due to the small number of men in the group (n=4).  Pearson r and corresponding P-value 
are shown. Abbreviations: 5α-androstan-3𝛽-17α: 5α-androstan-3𝛽-17α-diol disulfate. 
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Figure 6: Gut-microbiome/host metabolome relationship is consistent in a validation cohort. A) 
Scatter plot of observed Shannon diversity and mShannon diversity predicted in the validation 
cohort using LASSO with only the 40 identified metabolites from the discovery cohort. Mean 
out-of-sample R2 across the 10 cross validations and Pearson r for mShannon versus observed 
Shannon are shown. B) Mean LASSO 𝛽-coefficients for the 11 strongest metabolite predictors of 
mShannon diversity from the discovery cohort strongly correlate with the Mean LASSO 𝛽-
coefficients for the same metabolites optimized in the validation cohort. C) Percent of variance 
explained using penalized regression across omics platforms in the discovery and validation 
cohorts. Values are presented as mean R2 across 10-fold CV +/- standard error of the mean. The 
grey bar for metabolomics corresponds to a model fitted using all 659 metabolites, while the 
green bar corresponds to a model fitted using only the 40 metabolites identified in the discovery 
cohort. D) Receiver Operator Characteristic curves classifying participants with low Shannon 
diversity (bottom quartile) for the discovery and validation cohorts. E) Precision-Recall curves 
classifying participants with low Shannon Diversity (bottom quartile) for the discovery and 
validation cohorts. Mean area under the curve (AUC) values across 10-fold CV +/- standard 
deviation are shown. 
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Supplementary Tables: 
 
Supplementary Table 1. Validation cohort characteristics overall and by BMI class. Values 
with different superscript letters are significantly different (P<0.05). ** indicates P<0.001 and 
*** P<0.0001. NS – not significantly different between cohorts. 

 
Normal 
Weight Overweight Obese I Obese II/III Total 

Change 
relative to 
discovery 

cohort 
(n=256) (n=167) (n=83) (n=34) (N=540) 

Mean Age 48.4 50.9 52.7 49.3 49.9 +2.9 yrs** 
(SD) (11.9)a (13.1)b (11.6)b (10.9)a,b (12.3)  

Male (%) 39.8a 59.9b 48.2a,b 38.2a 47.2 +19.6%*** 

Non-white (%) 23.4 18.6 24.1 23.5 22 NS 

Median BMI 
(IQR) 

22.8a 27.0b 31.4c 37.1d 25.2 -1.6 *** 
(21.3-24.1) (25.8-28.1) (30.8-32.6) (36.2-40.3) (23.0-29.2)  

Probiotic Use 
(%) 16.0a 17.4a 7.2b 11.8a,b 14.8 NS 

Mean Shannon 
Diversity (SD) 

4.38a 4.35a,b 4.27b 4.21b 4.35 +0.35*** 

(0.34) (0.31) (0.34) (0.36) (0.34)  
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Supplementary Figures: 

 
Supplementary Figure 1: Investigating collinearity among the identified predictors of Shannon 
diversity in the discovery cohort. A) Heatmap showing the strength of correlation between each 
metabolite-metabolite pair. B) Histogram of all calculated Pearson r values for the 1560 
metabolite-metabolite comparisons. Only six comparisons yielded a Pearson r value |r|>0.80. 
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Supplementary Figure 2:  Spearman correlation of each of the 11 metabolites retained by all 10 
LASSO models (rows) with microbiome genera (columns), correcting for multiple hypothesis 
testing (FDR<0.05). Only genera with at least one significant correlation value are displayed. 
Top color row labels the phylum for each genus. Left color column labels the sign of the mean β-
coefficient for that metabolite across the LASSO models predicting Shannon diversity (blue - 
negative, red - positive). The top bar graph represents the fractional abundance of each genus, 
with bars colored by phylum. 
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Supplementary Figure 3. Comparison of (A) precision-recall curves and (B) receiver operator 
characteristic (ROC) curves for clinical labs and 11 blood metabolites classifying participants in 
the bottom quartile of Shannon diversity using 10-fold CV implementation of Random forests. 
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Supplementary Figure 4: Relationship of the blood metabolome and Shannon diversity changes 
across BMI classes. (A) 𝛽-coefficients for each of the 11 metabolites retained by all 10 LASSO 
models from an OLS regression model with Shannon diversity as the dependent variable and sex 
and age included as covariates in the discovery cohort. The cohort was stratified based on 
defined BMI cutoffs and models were fitted independently for each BMI class. (B) Scatter plot 
of PFOS and Shannon diversity for participants whose BMI is less than 25 (normal weight), and 
greater than 35 (Obese II/III) in the discovery cohort. C) Comparison of strengths of correlations 
for 5α-androstan-3b-17α and PFOS with Shannon diversity across obesity in the discovery and 
validation cohorts. D) Scatter plot of 5α-androstan-3b-17α and Shannon diversity for participants 
whose BMI is less than or equal to 35, and greater than 35 (Obese II/III) in the validation cohort. 
Pearson r and P-values are shown. Abbreviations: 5α-androstan-3𝛽-17α: 5α-androstan-3𝛽-17α-
diol disulfate; PFOS: perfluorooctanosulfic acid. 
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Supplementary Figure 5:  Spearman correlation of each of the 11 strongest metabolites 
identified in the discovery set (rows) with microbiome genera (columns) in the validation cohort, 
correcting for multiple hypothesis testing (FDR<0.05). Only genera metabolite correlations that 
were significant in the discovery cohort were considered. Top color row labels the phylum for 
each genus. Left color column labels the sign of the mean β-coefficient for that metabolite across 
the LASSO models predicting Shannon diversity (blue - negative, red - positive). The top bar 
graph represents the fractional abundance of each genus in the validation cohort, with bars 
colored by phylum. 
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Supplementary Figure 6: The number of significant Spearman correlations of each of the 11 
metabolites retained by all 10 LASSO models (rows) with microbiome genera in the discovery 
(light blue) and validation (dark blue) cohort, correcting for multiple hypothesis testing 
(FDR<0.05). Only correlations significant in the discovery cohort were considered for validation. 
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