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Abstract 
	
Brain	atlases	that	encompass	detailed	anatomical	or	physiological	features	are	instrumental	
in	the	research	and	surgical	planning	of	various	neurological	conditions.	Magnetic	resonance	
imaging	 (MRI)	 has	 played	 important	 roles	 in	 neuro-image	 analysis	 while	 histological	 data	
remain	 crucial	 as	 a	 gold	 standard	 to	 guide	 and	 validate	 such	 analyses.	With	 cellular-scale	
resolution,	 the	BigBrain	atlas	offers	3D	histology	of	 a	 complete	human	brain,	 and	 is	highly	
valuable	to	the	research	and	clinical	community.	To	bridge	the	insights	at	macro-	and	micro-
levels,	accurate	mapping	of	BigBrain	and	established	MRI	brain	atlases	is	necessary,	but	the	
existing	 registration	 is	unsatisfactory.	 The	described	dataset	 includes	 co-registration	of	 the	
BigBrain	 atlas	 to	 the	 MNI	 PD25	 atlas	 and	 the	 ICBM152	 2009b	 atlases	 (symmetric	 and	
asymmetric	versions)	 in	addition	to	manual	segmentation	of	the	basal	ganglia,	red	nucleus,	
and	hippocampus	for	all	mentioned	atlases.	The	dataset	intends	to	provide	a	bridge	between	
insights	from	histological	data	and	MRI	studies	 in	research	and	neurosurgical	planning.	The	
registered	 atlases,	 anatomical	 segmentations,	 and	 deformation	 matrices	 are	 available	 at:	
https://osf.io/xkqb3/.	
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Background & Summary 
Brain	 atlases	 are	 essential	 tools	 in	 neuroimage	 analysis	 and	 in	 neurosurgery,	 where	 they	
provide	 the	 reference	 to	 help	 navigate	 the	 anatomical	 and	 physiological	 features	 of	 the	
brain.	 While	 the	 foundational	 histology-derived	 atlases,	 such	 as	 Talairach1	 and	
Schaltenbrand2	 atlases	 established	 the	 seminal	 brain-based	 coordinate	 system	 for	
neurological	navigation,	 their	application	was	somewhat	 limited	by	the	 lack	of	accurate	3D	
reconstruction.	 The	 development	 of	 magnetic	 resonance	 imaging	 (MRI)	 has	 allowed	
sophisticated	 computational	 algorithms3-5	 to	 reveal	 structural	 and	 functional	 variations	 in	
living	brains	due	to	neurological	developments	and	disorders.	Often	averaged	from	multiple	
subjects,	 the	 newer	MRI	 brain	 atlases6-9	 provide	 high-quality	 anatomical	 and	 physiological	
information,	 which	 can	 be	 mapped	 to	 an	 individual’s	 brain	 to	 facilitate	 further	 analyses.	
Despite	 the	 advancements	 to	 improve	 resolution,	 MRI	 signals	 remain	 at	 macroscopic	
resolutions.	The	BigBrain	atlas10	is	a	3D	digitized	model	of	a	human	brain	at	a	near-cellular	20	
micrometer	resolution.	It	is	a	unique	tool	to	help	integrate	cytoarchitectural	knowledge	with	
MRI	insights	to	study	brain	functions	and	to	define	anatomical	structures	that	can	be	difficult	
to	 image	in	MRI	(e.g.,	the	subthalamic	nucleus)	for	clinical	practice	and	research.	To	bridge	
histological	data	with	MRI,	an	accurate	mapping	between	BigBrain	and	MRI	brain	atlases	 is	
necessary.	 Previously,	 a	 nonlinear	 registration	 between	 BigBrain	 and	 the	 ICBM152-2009b	
symmetric	 brain	 template8	 was	 provided	 at	 bigbrain.loris.ca.	 This	 co-registration	 was	
achieved	by	deforming	BigBrain	with	an	 inverted	 intensity	profile	to	a	population-averaged	
T1	 map	 that	 is	 co-registered	 to	 the	 MNI	 space,	 with	 the	 SyN	 algorithm11	 and	 cross-
correlation	 similarity	metric.	However,	 this	anatomical	alignment,	especially	 for	 subcortical	
structures,	 is	 not	 satisfactory,	 likely	 due	 to	 the	 discrepancy	 in	 tissue	 contrasts	 between	
BigBrain	 and	 the	 T1	 map.	 As	 a	 result,	 more	 accurate	 alignment	 is	 greatly	 beneficial	 for	
various	studies	and	surgical	planning.	
	
The	ICBM152	brain	atlas	dataset8,	from	the	Montreal	Neurological	 Institute	(MNI)	 is	one	of	
the	 most	 influential	 tools	 in	 neuroimage	 analysis.	 In	 total,	 MRI	 brain	 scans	 of	 152	 young	
adults	at	1.5T	were	recruited	to	build	the	multi-contrast	atlas,	which	includes	T1w,	T2w,	and	
PDw	contrasts,	as	well	as	probabilistic	tissue	maps	and	brain	structural	labels.	After	the	initial	
edition	 with	 affine	 registration,	 the	 2009	 edition	 using	 group-wise	 nonlinear	 registration	
provides	unbiased	representation	of	 the	brain	anatomy	with	sharp	details.	For	this	edition,	
both	symmetric	and	asymmetric	atlases	were	offered	at	the	resolutions	of	0.5×0.5×0.5mm3	
(ICBM2009b)	and	1×1×1mm3	(ICBM2009c).	

As	both	natural	ageing	and	neurological	disorders	can	 influence	the	anatomical	 features	of	
the	 brain	 (e.g.,	 tissue	 atrophy),	 population-specific	 atlases7-9	 are	 created	 to	 ensure	 the	
quality	 of	 neuroimage	 analysis	 and	 surgical	 planning.	Aiming	 to	 facilitate	 the	 research	 and	
surgical	treatment	of	Parkinson’s	disease	(PD),	the	MNI	PD25	population-averaged	atlases7,12	
were	 constructed	 from	3T	MRI	 scans13	 of	 25	PD	patients,	 and	 contain	 five	different	 image	
contrasts,	 including	T1w,	T2*w,	T1–T2*	fusion,	phase,	and	an	R2*	map.	The	special	T1-T2*	
fusion	 atlas	 has	 the	 general	 T1w	 contrast	 for	 most	 of	 the	 brain	 while	 preserving	 the	
subcortical	structures,	such	as	the	basal	ganglia,	red	nucleus,	and	dentate	nucleus	as	shown	
in	 typical	 T2*w	 contrast,	which	often	 suffers	 from	 susceptibility	 artefacts	 near	 the	 cortical	
surface.	Furthermore,	the	dataset	is	co-registered	with	a	digitized	histological	atlas	with	123	
structures14	and	probabilistic	tissue	maps.	
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In	the	dataset	described	here,	we	introduce	an	accurate	nonlinear	registration	of	BigBrain	to	
the	 symmetric	 and	 asymmetric	 versions	 of	 ICBM2009b	 atlas	 and	 the	 MNI	 PD25	 atlas.	 As	
suggested	by	earlier	studies15,16,	T1w-to-T1w	registration	can	be	sub-optimal	for	subcortical	
structures	 (e.g.	 subthalamic	 nucleus)	 that	 are	 nearly	 invisible	 in	 T1w	MRI,	we	 employed	 a	
two-stage	 multi-contrast	 registration	 procedure	 with	 the	 PD25	 space	 as	 the	 medium,	 as	
shown	 in	 Fig.1.	 The	 proposed	 method	 takes	 advantage	 of	 the	 similar	 contrast	 between	
BigBrain	and	PD25	T1-T2*	fusion	atlases,	and	a	synthetic	T2w	PD25	template	to	ensure	the	
structural	 alignment	 between	MRI	 atlases	 since	 T2*w	 and	 T2w	MRIs	 differ	 greatly	 in	 the	
contrast	 of	 neuroanatomical	 structures,	with	 T2*w	particularly	 sensitive	 to	 iron	 in	 tissues.	
For	 the	 atlases	 involved	 (BigBrain	 and	 all	 MRI	 atlases),	 the	 basal	 ganglia,	 red	 nucleus,	
thalamus,	 amygdala,	 and	 hippocampus	 were	 manually	 segmented	 at	 high	 resolution	 as	
additional	 shape	 priors	 to	 ensure	 atlas-to-atlas	 warping17	 and	 to	 help	 validate	 the	 final	
registration	outcomes.	We	expect	 the	described	dataset	 to	 greatly	 benefit	 the	 clinical	 and	
research	community.	
	
	
Methods 
Manual	segmentation	
Manual	 segmentations	 were	 used	 to	 facilitate	 atlas-to-atlas	 registration	 and	 validate	 the	
registration	 results.	 This	 approach	 ensures	 the	 optimal	 structural	 overlap	 in	 multi-modal	
registration17,	 and	 thus	 reduces	 the	 potential	 loss	 that	 is	 propagated	 to	 atlas-to-subject	
mapping.	 To	 simplify	 the	 notations	 for	 all	 atlases	 involved	 in	 this	 article,	 we	 refer	 to	 the	
symmetric	and	asymmetric	versions	of	ICBM152	2009b	release	as	ICBMsym	and	ICBMasym,	
respectively,	and	use	the	name	BigBrainSym	 to	call	 the	original	co-registered	BigBrain	atlas	
to	the	ICBM152	space	as	provided	in	the	BigBrain	2015	release.	To	aid	the	readers,	the	list	of	
short	 names	 for	 different	 atlases	 is	 provided	 in	 Table	 1.	 Here,	 eleven	 pairs	 of	 subcortical	
structures	were	manually	segmented	at	0.3×0.3×0.3mm3	resolution	for	BigBrainSym,	and	at	
0.5×0.5×0.5mm3	for	 the	MNI	PD25	and	the	 ICBM2009b	symmetric	and	asymmetric	atlases.	
These	structures	include	the	putamen,	caudate	nucleus,	globus	pallidus	pars	externa	(GPe),	
globus	 pallidus	 pars	 interna	 (GPi),	 nucleus	 accumbens	 (NAc),	 amygdala,	 thalamus,	 red	
nucleus	 (RN),	 substantia	 nigra	 (SN),	 subthalamic	 nucleus	 (STN),	 and	 hippocampus.	 The	
segmentation	 was	 performed	 using	 ITK-SNAP	 (itksnap.org)	 with	 the	 left	 and	 right	 side	
labelled	 separately.	 While	 the	 RN	 and	 the	 basal	 ganglia	 structures	 were	 labelled	 by	 the	
author	TA	and	revised	by	YX,	who	is	experienced	in	brain	anatomy,	the	rest	were	completed	
by	YX.	Here,	the	hippocampus	segmentation	follows	the	protocol	employed	by	DeKraker	et	
al.18,	 and	 the	 amygdala	 and	NAc	 labels	 follow	 the	 protocol	 by	 Pauli	 et	 al.6.	 The	 full	 list	 of	
segmented	structures	and	their	associated	label	numbers	are	provided	in	Table	2.	To	inspect	
the	 quality	 of	 manual	 segmentation,	 the	 same	 set	 of	 anatomical	 structures	 were	 also	
manually	segmented	by	a	co-author	(JD)	with	expertise	in	neuroanatomy	and	physiology,	for	
BigBrainSym,	 PD25,	 and	 ICBMsym	 at	 0.5×0.5×0.5mm3	 resolution.	 The	 segmentations	were	
compared	against	 those	by	YX	using	Dice	coefficient,	and	the	results	are	shown	 in	Table	3.	
For	 BigBrainSym,	 the	 segmentation	 by	 YX	 was	 downsampled	 to	 0.5×0.5×0.5mm3	 with	
nearest-neighbourhood	interpolation	for	comparison.			
	
Here,	the	Dice	coefficient	(κ)	for	assessing	inter-rater	variability	is	computed	by:		
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κ =
2|𝐴 ∩ 𝐵|
|𝐴| + |𝐵|

	

where	A	and	B	are	two	different	segmentations,	respectively,	and	| ∙ |	represents	the	number	
of	 voxels	within	 the	 segmentation.	 	A	 value	of	κ = 1	 represents	 a	prefect	overlap,	 and	no	
overlap	gives	a	value	of	0.		

	

Synthetic	T2w	PD25	template	
As	the	MNI	PD25	dataset	primarily	 leverages	the	T2*w	contrast	to	visualize	the	subcortical	
structures	 (e.g.,	 the	 STN,	 RN	 and	 SN),	 direct	mapping	 between	 the	 PD25	 T1-T2*	 atlas	 and	
T2w	MRI	 scans	 can	 be	 challenging	 due	 to	 differences	 in	 image	 contrasts.	 To	 facilitate	 the	
inter-contrast	registration,	a	synthetic	T2w	PD25	atlas,	𝐼,-./012	was	constructed	as:	
	

𝐼 = 	 𝐼042 + (𝐼042 − 𝐼04/01∗)	
		 	 	 	 𝐼,-./012 = 	 𝐼9:,; ∙	(Max{I}	–	I	)	
	
where	𝐼042	and	𝐼04/01∗	are	the	T1w	and	T1-T2*	PD25	atlases,	𝐼9:,; 	 is	the	brain	mask,	and	
Max{I}	 is	 the	maximum	value	within	 the	 image	 I.	The	 resulting	synthetic	T2w	PD25	atlas	 is	
shown	in	Fig.2,	alongside	the	co-registered	BigBrain	atlas.	
	
Atlas	registration	
We	 employed	 BigBrainSym	 to	 initiate	 the	 atlas-to-atlas	 registration	 as	 it	 provided	 a	 good	
starting	 point.	 There	 are	 two	 main	 difficulties	 in	 mapping	 BigBrainSym	 to	 the	 ICBM152	
atlases.	First,	 the	reconstructed	histological	volume	has	a	unique	and	different	appearance	
from	the	 ICBM152	atlases,	making	accurate	nonlinear	registration	with	conventional	 image	
similarity	metrics	 (e.g.,	mutual	 information)	 challenging.	 Second,	 tissue	 tear	 and	distortion	
from	 histology	 handling	 created	 unrealistic	 morphology	 (e.g.,	 excessive	 distortion	 in	
hippocampus)	 and	 artifacts	 (e.g.,	 tear	 in	 right	 thalamus)	 that	 can	 adversely	 influence	 the	
mapping.	To	mitigate	 these	 issues,	we	 implemented	a	 two-stage	multi-contrast	 strategy	 to	
warp	between	BigBrainSym	 and	 the	 ICBM152	 atlases,	 by	 using	 the	MNI	 PD25	 space	 as	 an	
intermediate	 template	 and	 adding	 anatomical	 segmentations	 as	 shape	 priors	 to	 further	
guide	the	registration.	More	specifically,	BigBrainSym	was	first	nonlinearly	registered	to	the	
PD25	 space,	 which	 was	 then	 deformed	 to	 the	 ICBMsym	 or	 ICBMasym	 atlas.	 Lastly,	 the	
deformation	 fields	 from	 the	 two	 stages	 were	 concatenated,	 and	 used	 to	 resample	 the	
BigBrainSym	 to	 the	 ICBM152	 space.	 For	 both	 stages,	 we	 used	 antsRegistration	 from	 the	
Advanced	 Normalization	 Tools	 (ANTs,	 stnava.github.io/ANTs)	 to	 achieve	 the	 image	
registration,	and	all	images	were	processed	in	MINC2	format.	
	
Taking	advantage	of	the	contrast	similarity	between	BigBrainSym	and	the	T1-T2*	PD25	atlas,	
we	used	this	pair	of	images	to	achieve	the	registration	in	the	first	stage.	Inherited	from	the	
data	 in	 the	native	histological	 space,	BigBrainSym	 contains	 a	 few	problematic	 examples	of	
anatomical	 morphology	 and	 artefacts.	 Besides	 those	 mentioned	 earlier,	 BigBrainSym	 also	
has	an	oversized	pineal	 gland	and	 tectum	 -	 likely	 from	 tissue	 stretching	during	histological	
processing.	 To	 cope	 with	 these,	 the	 pineal	 gland	 was	 removed	 from	 BigBrainSym	 for	
registration	 to	 avoid	 over-stretching	 of	 local	 deformation,	 which	 can	 adversely	 affect	 the	
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overall	 registration,	 and	 the	 tectum	 was	 segmented	 in	 addition	 to	 the	 11	 subcortical	
structures	 in	both	atlases	to	constrain	the	registration.	The	multi-class	segmentations	were	
placed	in	one	image	for	each	atlas	and	blurred	by	a	Gaussian	kernel	with	a	full-width-at-half-
maximum	 (FWHM)	 of	 0.5	 mm.	 Finally,	 they	 were	 used	 jointly	 with	 the	 atlases	 during	
registration.	 Here,	 we	 used	Mattes	mutual	 information	 and	 cross-correlation	 for	 the	 atlas	
pair	(weight=1)	and	the	segmentations	(weight=0.8),	respectively.	
	
As	shown	in	Fig.	1,	to	map	the	PD25	space	to	the	ICBM152	space,	the	T1w	and	T2w	contrasts	
(synthetic	T2w	contrast	for	PD25),	together	with	the	subcortical	segmentations,	were	jointly	
employed.	Similar	to	the	first	stage,	the	labels	of	11	subcortical	structures	were	blurred	by	a	
Gaussian	kernel	with	a	FWHM=0.5mm.	For	each	contrast	pair,	a	cross-correlation	metric	was	
used,	 and	 weights	 of	 1,	 1,	 and	 0.8	 were	 assigned	 to	 T1w	 contrast,	 T2w	 contrast,	 and	
subcortical	segmentations,	respectively	during	registration	cost	function	optimization.		
	
In	 the	 two-stage	 registration	 strategy,	PD25	was	used	as	an	 intermediate	volume	due	 to	a	
few	considerations.	First,	compared	with	the	previous	approach	that	uses	intensity	inversion	
and	 a	 T1	map	 as	 the	 intermediate	 volume,	 the	 T1-T2*	 fusion	 contrast	 of	 PD25	 has	much	
closer	resemblance	to	BigBrain,	particularly	for	the	subcortical	structures.	This	can	facilitate	
automatic	 registration.	 Second,	 BigBrain	 was	 derived	 from	 a	 65-year-old	 healthy	 male,	
whose	 age	 is	 within	 the	 range	 of	 PD25	 cohort	 (age=58±7	 years). The	 difference	 in	 brain	
atrophy	 patterns	 in	 normal	 aging	 and	 Parkinson’s	 disease	 without	 cognitive	 impairment	
(target	 group	 for	 PD25)	 is	 relatively	 small19,	 and	 pair-wise	 nonlinear	 registration	 should	
sufficiently	account	for	the	anatomical	differences.	Lastly,	we	hope	the	resulting	dataset	can	
benefit	both	healthy	and	pathological	population,	as	well	as	neurosurgical	applications,	such	
as	 deep	 brain	 stimulation	 (DBS).	 The	 inclusion	 of	 PD25	 atlas,	 therefore,	 will	 be	 very	
beneficial.	
	
Atlas	registration	evaluation	
The	 quality	 of	 atlas	 registration	 was	 assessed	 with	 two	 widely	 employed	 approaches:	 1)	
anatomical	 landmark	 (fiducials)	 registration	 errors	 and	 2)	 atlas-based	 subcortical	
segmentation	accuracy.	While	the	first	metric	evaluates	the	matching	of	distinct	anatomical	
features,	 the	 latter	 validates	 the	 correspondence	 of	 subcortical	 structures.	 Both	 metrics	
were	 computed	 for	 BigBrain-to-PD25,	 PD25-to-ICBM152	 (symmetric	 and	 asymmetric	
versions),	and	finally	BigBrain-to-ICBM152	(symmetric	and	asymmetric	versions)	registration.	
Additionally,	 as	a	 reference,	we	also	 calculated	 the	 two	metrics	between	BigBrainSym	 and	
ICBMsym.		
	
To	 assess	 the	 atlas	 alignment	 with	 landmark	 registration	 errors,	 we	 used	 the	 anatomical	
fiducials	(AFIDs)	framework	introduced	by	Lau	et	al.20	(2019).	For	the	framework,	anatomical	
landmarks	 were	 selected	 by	 eight	 experienced	 raters	 for	 BigBrainSym,	 ICBMsym,	 and	
ICBMasym,	and	the	 final	 landmark	coordinates	at	each	 location	was	obtained	by	averaging	
the	results	from	all	raters	after	filtering	out	outlier	points.	Following	the	same	protocol,	the	
final	anatomical	landmarks	for	the	MNI	PD25	atlas	were	produced	by	five	experience	raters	
based	on	the	T1w	atlas.	The	full	details	of	the	landmark	picking	protocols	and	the	associated	
software	can	be	found	in	the	original	AFIDs	article20.	Since	for	BigBrainSym,	excessive	tissue	
tear	and	distortion	exists,	we	excluded	the	pineal	gland	and	culmen	from	the	original	AFIDs	
protocol20	for	registration	validation.	The	30	anatomical	landmarks	employed	for	registration	

.CC-BY-NC-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted July 9, 2019. ; https://doi.org/10.1101/561118doi: bioRxiv preprint 

https://doi.org/10.1101/561118
http://creativecommons.org/licenses/by-nc-nd/4.0/


6	
	

validation	are	listed	in	Table	4,	where	the	Euclidean	distance	between	the	transformed	point	
and	the	target	point	was	computed	for	each	landmark	location.			
	
The	 Dice	 coefficient	 (κ)	 metric	 was	 used	 to	 evaluate	 the	 quality	 of	 volumetric	 overlap	
between	 the	 native	 manual	 segmentation	 and	 the	 corresponding	 labels	 warped	 from	
another	atlas.	For	smaller	structures,	such	as	the	midbrain	nuclei,	values	greater	than	0.7	are	
usually	 accepted	 as	 good	 segmentations	 while	 for	 larger	 structures,	 values	 above	 0.8	 are	
preferred.	

Data Records 
The	complete	dataset	includes	deformed	atlases,	subcortical	segmentations,	and	inter-atlas	
spatial	 transformations.	 More	 specifically,	 we	 supply	 the	 BigBrain	 atlas	 deformed	 to	 the	
PD25,	 ICBMsym,	 and	 ICBMasym	 atlases	 at	 three	 different	 resolutions	 (0.3×0.3×0.3mm3,	
0.5×0.5×0.5mm3,	 and	 1×1×1mm3).	 The	 subcortical	 segmentations	 (see	 Table	 2)	 were	
included	 for	 BigBrainSym	 at	 0.3×0.3×0.3mm3,	 and	 for	 PD25,	 ICBMsym,	 and	 ICBMasym	 at	
0.5×0.5×0.5mm3.	 All	 these	 image	 volumes	 are	 made	 available	 in	 both	MINC2	 and	 NIfTI-1	
formats.	The	script	mnc2nii	from	MINC	Toolkit	(http://bic-mni.github.io)	was	used	for	image	
format	 conversion.	 Lastly,	 the	 dataset	 provides	 the	 nonlinear	 transformations	 for	
BigBrainSym-to-PD25,	PD25-to-ICBMsym,	PD25-to-ICBMasym,	BigBrainSym-to-ICBMsym,	and	
BigBrainSym-to-ICBMasym	 registrations.	 All	 these	 transformations	 are	 provided	 in	 MINC	
transformation	 format.	 The	 full	 dataset	 can	 be	 accessible	 at	 the	Open	 Science	 Framework	
(OSF)21	 (http://doi.org/10.17605/OSF.IO/XKQB3),	 as	well	 as	 the	main	project	 page	 for	 the	
MNI	 PD25	 atlases	 at	 nist.mni.mcgill.ca/?p=1209.	 In	 addition,	 all	manually	 segmented	 label	
maps	 and	 brain	 atlases	 are	 also	 made	 available	 in	 BIDS	 format	 at	 OpenNeuro.org22	
(https://openneuro.org/datasets/ds002016/versions/1.0.0). 
	
Technical Validation 
Anatomical	landmark	registration	
Landmark	registration	errors	were	computed	for	all	individual	anatomical	landmarks	and	for	
the	five	sets	of	atlas-to-atlas	registrations	involved	in	this	dataset.	The	results	are	shown	in	
Table	4.	The	calculated	mean	registration	errors	are	2.31,	1.00,	1.17,	1.71,	and	1.77	mm	for	
BigBrainSym-to-PD25,	 PD25-to-ICBMasym,	 PD25-to-ICBMsym,	 BigBrainSym-to-ICBMasym,	
and	BigBrainSym-to-ICBMsym,	respectively.	For	comparison,	in	Table	4,	the	results	were	also	
listed	 for	BigBrain’s	original	 registration	 to	 the	 symmetric	 ICBM152	 space	 (BigBrainSym	 vs.	
ICBMsym).	 In	 general,	 the	 introduced	 two-stage	 registration	 strategy	 resulted	 in	 a	 slightly	
better	mean	registration	error	(1.77±1.25	mm)	than	the	previous	registration	for	BigBrain	vs.	
ICBMsym	 (1.83±1.47	 mm),	 but	 by	 performing	 a	 pair-wise	 Wilcoxon	 signed	 rank	 test,	 this	
difference	 is	 not	 significant	 (p=0.959).	 As	 mentioned	 in	 the	 original	 AFIDs	 article20,	
ventricular	features	(e.g.,	ventral	occipital	horns)	generally	have	higher	landmark	placement	
errors,	and	landmark	placement	is	also	more	difficult	for	individual	subjects	than	population-
averaged	atlases.	This	can	be	even	more	challenging	 for	histological	data,	where	unnatural	
deformation	 and	 unique	 individual	 anatomical	 features	 exist.	 As	 shown	 in	 Table	 4,	 the	
registration	 error	 varies	 for	 different	 anatomical	 landmarks,	 potential	 users	 should	
sufficiently	consider	this	factor	during	their	application	of	this	co-registration.	
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When	 looking	 closer	 at	 all	 registration	 results,	 the	 averaged	 errors	 from	 MRI-to-MRI	
registrations	 were	 lower	 than	 those	 from	 BigBrain-to-MRI	 registrations.	 This	 is	 expected,	
since	 individual	 anatomical	 variability	 is	 more	 pronounced	 than	 group-averaged	 anatomy	
and	 inter-modality	 registration	 is	more	challenging.	Also,	 in	 terms	of	 landmark	 registration	
errors,	 BigBrainSym	 is	 better	 aligned	 with	 the	 ICBM152	 space	 than	 PD25	 for	 certain	
landmarks,	 likely	due	 to	better	population	 representativeness	with	a	 larger	cohort	and	 the	
fact	 that	 the	 BigBrain	 landmarks	 were	 tagged	 within	 the	 BigBrainSym	 atlas20,	 potentially	
making	the	these	landmark	placement	more	biased	towards	the	ICBM152	space.		
	

Subcortical	structural	segmentation	
Dice	 coefficients	were	 calculated	 for	 11	pairs	of	 anatomical	 structures	 as	 listed	 in	 Table	5,	
and	 the	 results	are	 listed	 for	all	atlas-to-atlas	alignments.	The	mean	Dice	coefficients	were	
computed	at	0.94,	0.94,	0.94,	0.93,	0.93	for	BigBrainSym-to-PD25,	PD25-to-ICBMasym,	PD25-
to-ICBMsym,	 BigBrainSym-to-ICBMasym,	 and	 BigBrainSym-to-ICBMsym,	 respectively.	 In	
contrast	 to	a	mean	κ	 value	of	0.77	 from	the	original	warping	of	BigBrain	 to	 the	symmetric	
ICBM152	 space,	 the	 new	 strategy	 greatly	 improved	 the	 subcortical	 alignment	 for	 all	
structures	of	 interest.	By	adding	manual	 labels	 in	multi-contrast	registration,	the	alignment	
of	 subcortical	 anatomy	 was	 relatively	 consistent	 across	 different	 registrations.	 This	 helps	
ensure	 the	 quality	 of	 atlas-to-subject	 registration	 for	 future	 investigations	 by	 reducing	 the	
accuracy	loss	in	multi-modal	atlas-to-atlas	warping,	and	the	same	approach17	was	employed	
earlier	for	histology-to-MRI	registration.	Although	the	manual	segmentations	were	also	used	
for	 validation,	 the	 improved	 deformation	 is	 substantial	 in	 terms	 of	 Dice	 coefficient	
measurements	 for	 the	 subcortical	 structures,	 and	 it	 is	 also	 evident	 by	 visual	 inspection	 in	
Fig.3,	particularly	for	the	regions	annotated	with	colored	arrows.	
	
Usage Notes 
We	provide	the	refined	deformation	matrices	in	MINC	transformation	format	to	comply	with	
the	 existing	 releases	 of	 the	 BigBrain	 dataset.	 The	 linear	 and	 original	 nonlinear	
transformations	between	 the	BigBrain	 atlas	 in	native	histological	 space	and	 the	 symmetric	
ICBM152	 space	 are	 available	 at	
ftp://bigbrain.loris.ca/BigBrainRelease.2015/3D_Volumes/MNI-ICBM152_Space.		
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Figures 
	

	
Figure	1.	Manual	segmentation	of	the	subcortical	structures	for	the	BigBrainSym	atlas	by	the	
author	YX	with	hippocampus	shown	as	semi-transparent	(top	row)	and	the	schematic	of	the	
two-stage	 registration	 strategy	 for	 BigBrain-to-ICBM152	 alignment	 (bottom	 row).	 For	 the	
registration	strategy,	the	contrast	pairs	used	at	each	registration	stage	are	also	listed.	
	
	
	

	
Figure	2.	Comparison	of	the	BigBrain	atlas	registered	to	PD25	atlas,	T1-T2*	fusion	PD25	atlas,	
and	synthetic	T2w	PD25	atlas	with	corresponding	slices	across	images.	The	results	are	shown	
for	the	entire	brain	(left)	and	the	deep	brain	region	(right).		
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Figure	 3.	 Comparison	 of	 ICBMsym,	 new	 co-registered	 BigBrain	 to	 ICBMsym,	 and	
BigBrainSym.	 Each	 row	 corresponds	 to	 the	 same	 slice	within	 each	 atlas,	 and	 each	 column	
shows	 the	 axial,	 sagittal,	 and	 coronal	 views	 of	 an	 atlas.	 The	 visible	 improvements	 in	 red	
nucleus,	 tectum,	 and	 hippocampus	 are	 annotated	 with	 blue,	 pink,	 and	 yellow	 arrows	 in	
different	 anatomical	 views,	 respectively.	Note	 that	 for	 in	 the	 new	 registration	 of	 BigBrain,	
the	pineal	gland	was	removed.	
	
	
	
	
	
	
Tables 
	
	
	 Description	

BigBrainSym	 The	registration	of	BigBrain	to	 ICBM152	symmetric	space	provided	as	 in	the	2015	BigBrain	
data	release			

PD25	 The	MNI	PD25	atlas	for	a	Parkinson’s	disease	cohort	

ICBMsym	 The	symmetric	version	of	ICBM152	2009b	atlas	

ICBMasym	 The	asymmetric	version	of	ICBM152	2009b	atlas	

Table	1.	Descriptions	for	all	the	abbreviations	of	atlases	employed.	
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Label number Nucleus Label number Nucleus 

1 Left red nucleus 2 Right red nucleus 

3 Left substantia nigra 4 Right substantia nigra 

5 Left subthalamic nucleus 6 Right subthalamic nucleus 

7 Left caudate 8 Right caudate 

9 Left putamen 10 Right putamen 

11 Left globus pallidus externa 12 Right globus pallidus externa 

13 Left globus pallidus interna 14 Right globus pallidus interna 

15 Left thalamus 16 Right thalamus 

17 Left hippocampus 18 Right hippocampus 

19 Left nucleus accumbens 20 Right nucleus accumbens 

21 Left amygdala 22 Right amygdala 

Table	2.	Label	numbers	with	the	corresponding	nuclei	for	subcortical	segmentation	of	all	
atlases.	
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 BigBrainSym ICBMsym PD25 

L Red Nucleus 
0.94 0.96 0.93 

R Red Nucleus 0.95 0.96 0.91 
L SN 0.92 0.91 0.94 
R SN 0.94 0.91 0.93 
L STN 0.87 0.89 0.92 
R STN 0.90 0.89 0.91 
L Caudate 0.94 0.97 0.92 
R Caudate 0.94 0.97 0.94 
L Putamen 0.97 0.96 0.97 
R Putamen 0.97 0.96 0.96 
L GPe 0.96 0.96 0.98 
R GPe 0.95 0.96 0.98 
L GPi 0.93 0.96 0.92 
R GPi 0.93 0.94 0.93 
L Thalamus 0.98 0.98 0.98 
R Thalamus 0.98 0.98 0.98 
L hippocampus 0.94 0.97 0.96 
R hippocampus 0.94 0.97 0.96 
L Nucleus 
Accumbens 0.96 0.97 0.93 
R Nucleus 
Accumbens 0.96 0.97 0.95 
L Amygdala 0.96 0.96 0.97 
R Amygdala 0.95 0.96 0.97 

	
Table	3.	Inter-rater	structural	segmentation	measured	as	Dice	coefficient.			
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BigBrainSym-
to-PD25 

PD25-to-
ICBMasym 

PD25-to-
ICBMsym 

BigBrainSym-
to-ICBMasym 

BigBrainSym-
to-ICBMsym 

BigBrainSym 
vs.ICBMsym 

AC 0.73 0.26 0.19 0.72 0.62 0.74 
PC 0.23 0.23 0.21 0.36 0.40 0.45 
infracollicular 
sulcus 1.62 1.46 1.52 0.74 1.39 6.36 

PMJ 2.39 0.53 0.18 1.81 2.07 0.61 
superior 
interpeduncular 
fossa 

2.31 0.72 0.42 1.52 2.17 1.62 

R superior LMS 2.00 0.36 0.37 1.61 2.00 1.23 
L superior LMS 1.90 0.39 0.49 1.97 1.32 1.34 
R inferior LMS 0.55 0.26 2.09 0.57 2.28 1.60 
L inferior LMS 1.49 0.22 1.82 1.48 1.16 1.89 
intermammillary 
sulcus 0.50 0.29 0.52 0.75 0.61 0.52 

R MB 0.63 0.30 0.51 0.66 0.30 1.13 
L MB 0.43 0.58 0.92 0.79 0.80 1.15 
R LV at AC 3.14 0.86 0.50 2.21 2.68 1.98 
L LV at AC 4.61 2.09 1.77 2.47 2.85 2.05 
R LV at PC 2.63 2.25 2.22 0.49 0.79 1.27 
L LV at PC 2.07 2.84 1.49 2.12 1.20 1.31 
genu of CC 0.64 0.29 0.68 0.81 0.83 0.65 
splenium of CC 2.20 0.56 0.53 1.85 1.98 2.23 
R AL temporal 
horn 1.48 1.59 1.78 0.16 0.45 0.70 

L AL temporal 
horn 1.76 1.31 2.12 1.86 2.78 4.69 

R superior AM 
temporal horn 3.86 1.19 0.54 2.86 3.68 0.89 

L superior AM 
temporal horn 4.89 1.89 1.63 3.01 3.32 1.68 

R inferior AM 
temporal horn 3.43 2.24 2.34 1.75 1.53 0.83 

L inferior AM 
temporal horn 4.13 1.53 2.07 2.35 1.88 1.88 

R indusium 
griseum origin 2.24 1.26 1.95 1.30 0.58 1.21 

L indusium 
griseum origin 2.76 0.31 2.48 2.67 1.39 0.74 

R ventral 
occipital horn 5.46 1.22 1.23 4.58 4.57 2.54 

L ventral 
occipital horn 7.00 1.58 1.38 5.09 5.29 5.88 

R olfactory 
sulcal fundus 0.81 0.55 0.55 0.72 0.66 2.62 

L olfactory 
sulcal fundus 1.42 0.84 0.45 2.16 1.60 3.06 

Mean±sd 2.31±1.66 1.00±0.74 1.17±0.76 1.71±1.16 1.77±1.25 1.83±1.47 

Table	4.	Landmark	registration	errors	(mm)	for	all	registrations,	as	well	as	for	the	BigBrain	vs.	
ICBMsym	registration	in	BigBrain	2015	data	release.		
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 BigBrainSym-
to-PD25 

PD25-to-
ICBMasym 

PD25-to-
ICBMsym 

BigBrainSym-
to-ICBMasym 

BigBrainSym-
to-ICBMsym 

BigBrainSym 
vs.ICBMsym 

L Red Nucleus 
0.91 0.90 0.91 0.89 0.89 0.76	

R Red 
Nucleus 0.93 0.92 0.91 0.90 0.90 0.70	
L SN 0.94 0.91 0.91 0.91 0.92 0.79	
R SN 0.92 0.92 0.91 0.92 0.92 0.77	
L STN 0.91 0.85 0.84 0.87 0.86 0.76	
R STN 0.88 0.87 0.86 0.88 0.88 0.73	
L Caudate 0.97 0.97 0.97 0.97 0.97 0.91	
R Caudate 0.97 0.97 0.97 0.97 0.96 0.88	
L Putamen 0.97 0.97 0.97 0.97 0.97 0.91	
R Putamen 0.97 0.97 0.97 0.96 0.97 0.86	
L GPe 0.93 0.92 0.93 0.92 0.92 0.74	
R GPe 0.90 0.93 0.93 0.89 0.90 0.71	
L GPi 0.90 0.92 0.92 0.90 0.90 0.72	
R GPi 0.93 0.92 0.92 0.92 0.93 0.73	
L Thalamus 0.98 0.98 0.98 0.98 0.98 0.88	
R Thalamus 0.98 0.98 0.98 0.98 0.98 0.89	
L 
hippocampus 0.94 0.95 0.95 0.93 0.93 0.62	
R 
hippocampus 0.94 0.95 0.95 0.94 0.94 0.75	
L Nucleus 
Accumbens 0.94 0.95 0.95 0.94 0.94 0.55 
R Nucleus 
Accumbens 0.94 0.94 0.94 0.94 0.94 0.60 
L Amygdala 

0.95 0.96 0.96 0.95 0.94 0.81 
R Amygdala 

0.95 0.96 0.96 0.96 0.95 0.84 
	
Table	5.	Dice	coefficients	of	subcortical	structures	for	all	atlas-to-atlas	registrations,	as	well	
as	for	the	BigBrain	vs.	 ICBMsym	 registration	 in	BigBrain	2015	data	release.	 In	the	table,	L	=	
left	and	R	=	right.	
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