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Abstract

Motivation: Medulloblastoma (MB) is the most common malignant brain tumor in children.
Despite aggressive therapy, about one-third of patients with MB still die, and survivors suffer
severe long-term side effects due to the treatments. The poor post-treatment outcomes are tightly
linked to unpredictable drug resistance. Therefore, before developing robust single drug or drug
combination recommendation algorithms, uncovering the underlying protein-protein interaction
(PPI) network patterns that accurately explain and predict drug resistances for MB subtypes is

essential and important.

Results: In this study, we hypothesize that the loop sub-structure within the PPI network can
explain and predict drug resistance. Both static and dynamic models are built to evaluate this
hypothesis for three MB subtypes. Specifically, a static model is created to first validate that many
reported therapeutic targets are located topologically on highly deregulated loop sub-structure and
then to characterize the loop for tumors without treatment. Next, with the after-treatment time-
series genomics data, a dynamic hidden Markov model (HMM) with newly designed initialization

scheme estimates the successful and unsuccessful occurrence probabilities for each given PPI and
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then re-delineates the loop for post-treatment tumors. Finally, the comparison of loop structures
pre- and post- treatment distinguishes effective and ineffective treatment options, demonstrating
that the loop sub-structure is capable of interpreting the mechanism of drug resistance. In summary,
effective treatments show much stronger inhibition of cell cycle and DNA replication proteins
when compared to ineffective treatments after considering the cross talk of multiple pathways (the

loop).
Introduction

MB is the most common malignant childhood brain tumor which are mostly found in
patients with age under 16. There are four subtypes of MB: WNT, SHH, Group 3 and Group 4 [1].
For children with average-risk and high-risk MB, the 5-year survival rates are 70%-80% and 60%-
65% [2], respectively. Therefore, about one-third of children diagnosed with MB will die of the
disease. The major reason for the failure of provided treatments is unpredicted drug resistance.
Various drug-resistance mechanisms are generally classified as either intrinsic or extrinsic.
Extrinsic factors are mostly related to interactions with stromal cells and other tumor cells while
intrinsic factors are mainly genetic variations, epigenetic altering and cross talk between multiple
pathways. Genetic variations can lead to drug resistance as the first reasonable explanation by
reducing the activities of drugs, for example, down-regulation or mutation in proteins on the same
pathways as the drug targets [3]. Mutations of the target itself can also reduce or completely alter
drug functions and lead to drug resistance [3]. The second type of intrinsic drug resistance
mechanism is called multi-drug resistance. Multiple drugs with different mechanisms for entering
the cell are used for effective chemotherapy since cell surface receptors or drug transporters can
be lacking. However, cancer cells often present various unexplained simultaneous resistances to
functionally unrelated drugs, a phenomenon that defines multi-drug resistance. The effects of

multi-drug resistance would finally either block the cell apoptosis process or activate the cancer
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cell DNA repair process which serves as the third intrinsic drug resistance mechanism [4], [5]. The
blocked cell death pathway can also result from up-regulation of cell survival promoting proteins,
e.g., BCL2, or its upstream PI3K-AKT signaling pathways and down-regulation of cell apoptosis
promoting proteins e.g., BAX. [3]. Epigenetic alteration (DNA methylation and histone
alternations) is the fourth factor which could cause drug resistance. DNA methylation can inhibit
tumor suppressor genes and also amplify the expression of oncogenes via hyper-methylation.
Cross-talk between multiple pathways has been reported to induce resistance in various types of

tumors, e.g., for breast cancer [5].

In addition, mathematical computational models have been developed to study and
simulate cancer drug resistance. The first group of models are based on various types of classical
differential equations. Faratian et al. [6] applied an ordinary differential equation (ODEs) based
kinetic model to study the behaviors of PI3K in RTK inhibitor resistance. Sun [7] et al. developed
a kinetic model to study the cross talk between EGF/EGFR/Ras/MEK/ERK and
HGF/HGFR/PI3K/AKT pathways, and their model verified the connection between cross talk of
several pathways and drug resistance. Coldman et al. [8] used a stochastic model to simulate the
initialization and development of drug resistances due to point mutation and ultimately to estimate
the probabilities of drug sensitive and drug resistant cells under different treatment protocols. Sun
et al. [7] utilized lists of stochastic differential equations (SDEs) to simulate and differentiate the
dynamics of drug-sensitive and drug-resistant cells, and their model presented distinct synergy
patterns for BRAF + MEK versus BRAF + PI3K combos. Data-driven models are also widely
applied to study drug resistance. Shukla et al. [9] analyzed methylation profiles of glioblastoma
(GBM) samples and implemented a cox regression model to identify methylation biomarkers,
concluding that targeting the NFkB pathway could prevent drug resistance for GBM. With patients’

expression data, Zeng et al. [10] developed a time involved module network rewiring (MNR)
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model to prove that functional connections and reconnections for consistent modules could be
taken as biomarkers to measure drug efficiency and resistance. In addition to different equations,
the time-series HMM [11] model should also be capable of simulating post-treatment tumor
dynamics. The expectation maximization (EM) algorithm [12], designed for likelihood
maximization with latent variables, serves as the corresponding numerical strategy. However,
“effective” initialization is always difficult when encountering the HMM algorithm due to the non-
convexity of the objective likelihood function. Starting with many different random initializations
could always approach the global maximum likelihood numerically, however, it is time-consuming
and could lead to very unstable dilemma with quite different initialization parameters and quite
similar likelihoods - a definitely unacceptable situation, especially for our case. Several clustering
related algorithms [13], [14] for continuous observations have proven their capabilities in finally
arriving at the global maximum of likelihood. However, for discrete observations, it is usually hard

to find relative robust and stable initialization schemes.

Our loop hypothesis has firstly been proposed in [15] for LKB1 loss non-small cell lung
cancer, and one PI3K and mTOR dual inhibitor based on the loop hypothesis has been numerically
filtered out and biologically validated as the effective treatment. In this work, we will present a
more detailed explanation about the hypothesis and its numerical validation for drug resistance.
We hypothesize that the loop sub-structure, which considers the cross talk of multiple pathways
(all signaling and cellular growth and death pathways) inside the protein network, covers
promising therapeutic targets and concurrently could explain and predict drug resistance. The
paper is organized as follows: The Materials and Methods section explains the details of both
static and dynamic models. The Results section first starts with a static model and then the outputs
from the dynamic model will be checked both mathematically and biologically to guarantee their

further engagement in explaining and validating the loop theory. Next, we present the most
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detailed explanation about why and how to utilize the loop to characterize drug resistance with
multiple MB subtypes and treatment protocols. After validating and explaining the loop theory,
interesting contrasts and connections between pre- and post-treatment loops are discussed.

Discussions and conclusions are consequently summarized.

Materials and Methods
Gene expression data and background signaling network

In order to prove our hypothesis, for the static model, we use gene expression data of 194
MBs and 11 normal cerebellums from Cho et al [16]. In Cho’s work, the RNA expression data of
all 194 MBs are clustered into 7 subgroups: C1 subgroup represents MYC-driven MBs, C3
subgroup represents SHH type MBs, and C6 subgroup covers WNT type MBs. Three independent
time-series RNA expression data are used as the input for the dynamic model. RNA expression
data of time course experiments of OTX2 silencing and control experiments in the D425 MB cell
line, characterized as representative of Group 3 MBs [17], are provided in Gene Expression
Omnibus (GEO) with series GSE22875 with 6 independent time points which form 729 time-
sequenced data samples. Time-series RNA expression data for effective SMO inhibitor MK-4101
on SHH type allograft MB tumors can be download from GEO with series number GSE77042
(two doses, 40 and 80 mg/kg each day with five independent time points, forming 720 and 960
time-sequenced data samples, separately). Different categories of pathways for system biology
research represented in the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway database
[18] are selected as directed background molecular interaction networks, and we focus particularly
on signal transduction and cell growth and death pathways for humans. The R package “Pathview”

[19] is applied to download KGMLs for all humans’ pathways while the package “KEGGgraph”
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[20] facilitates the extraction of node connections from KGMLs for each pathway. Except for
activation and inhibition PPIs, the PPIs (phosphorylation, dephosphorylation, ubiquitination,
deubiquitination, glycosylation, methylation, indirect effect or state change) are classified as either
activation or inhibition according to their specific functional behaviors for provided different
protein pairs. The static and dynamic statuses of the remaining two PPIs, binding/association and
dissociation, together with activation and inhibition PPIs, are defined in the following sub-section

independently.

Pre-treatment loop extraction model (static model)

For a specific pathway in the KEGG pathway database, a complete full subroutine is a
sequence of protein family interactions starting from receptor protein families on the cell
membrane down through the terminal protein families in the nucleus or cytoplasm. For each
provided subroutine in KEGG, we construct 2 binary sequences from the backward direction with
the first sequence always ending with 1 and the second one always ending with 0. Assuming a
subroutine with length L, then for the following edges, the binary input is described in the

following pseudo-code form:

Loop each index from L-1 to 1 (decreasing order)
If current relation is not inhibition/repression:
binary input [current index] = binary input [current index + 1]
else:

binary input [current index] = 1 - binary input [current index + 1]

It is worth mentioning that the binary sequence is defined with respect to edges, i.e., a
subroutine with L + 1 nodes has length L, and, therefore, each subroutine is equipped with 2 binary

sequences with both lengths equal to L. For each given PPI, we define 2 edge scores: state 1 score
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and state_0_score, which describe the probabilities of successful and unsuccessful occurrence of
given PPI, separately. For the static mode, the definitions of these 2 scores are characterized as
follows. The network extraction model in our numerical experiments is applied to all 3 MB

subtypes. For a specific gene A, the expression ratio is defined as:

— Exprestumor (A)
EXprescontrol (A)

(1)

ra

Where ExpreSiymor(A) and Expres ontro1 (A) denotes the average expression of gene A among
tumor and control samples. In our edge score model, assuming A and B are two proteins, we always
assume protein A sits on the left of the edge and protein B sits on the right of the edge. We use the
following equation to characterize the probability of occurrence of type I relation (activation or
expression):

state_1_score
Irp — sl 1 Il _ Irp — gl

1——m—=—+
2(ra+1g) 2 (ra +rg)
€ otherwise

l/z r, >landrg > 1 @)

For type Il relation (inhibition and repression), we have:

1, fa~Ts > 1andr, >
- +—— r andr r
2 2(rp +r1R) A A B
state_1_score =<1 g —I'p (3)
————— rg>1landr, <rg
2 2(rp+r1R)
€ otherwise

For type III and IV relations (binding/association and dissociation), we have:
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1 min(rAJ rB)
Sy 1 1
state_1 score =<2 + s+ g ry, > 1landrg > @)
€ otherwise

For all four types of relations above, state 0 score is complementary to state 1 score with
respect to 1. For “otherwise” condition in each equation, we set up a uniform parameter € as the
estimation for edge score. For each subroutine, there are 2 different sum scores corresponding to
each binary sequence as previous defined. The binary subroutine occurrence probability (BSOP)
averages along all simple paths between any arbitrary header-terminal protein pair for each binary

sequence. For a subroutine with L edges, its mathematical form is given below:

L

BSOPg, = Z edge_score(Bl)/L %)

I=1

Here, B; denotes the binary input for the 1th edge (PPI) and edge score is computed according to
Equations (2) — (4) according to PPI relation with proper condition matching. All complete PPI
subroutines with either state 0 or 1 occurrence probabilities greater than acceptable thresholds are
merged to form the final disease network. The detailed description about loop sub-structure

extraction has been described in [15].

Post-treatment loop extraction model (dynamic model)

The dynamic evolutions of the loop sub-structure are studied with implementation of the
following HMM algorithm. Discrete binary observations O are defined for each type of PPIs as

follows. For activation/expression, binding/association and dissociation types of PPIs, we have:

O={1 rpa>1landrg >1
0 otherwise

(6)

And for inhibition/repression type of PPIs, we have:
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1 ry>1andry >rp

0= {0 otherwise 0

In this work, we propose a newly designed HMM initialization scheme as described in
detail below that first generates time-series “fake” state sequences, which are partial outputs from
the static model, and then the learned “supervised” HMM parameter pair from the “fake” sequence
is selected as the initial parameter pair for the real unsupervised HMM problem. Finally, the Baum-
Welch algorithm is used for iteration updates until the likelihood reaches its maximum. For our
specific case, since HMM algorithms will be applied to study the dynamic behavior for each PPI,
we therefore have a learned optimal triple pair A* = (7%, A*, B*) with dimensions 2 by 1, 2 by 2
and 2 by 2 for each PPI. In the dynamic model, we utilize the probabilities inside the state transition
matrix A as newly defined edge scores, so for each given PPI A to B, we update two edge scores

(state 1 score and state 0 score) as:

ag1 +a
state_1_score = %
®)
Qoo + a
state_0_score = %

HMM with the newly designed initialization scheme

Step 0: Generate multiple time-series “fake” state-observation sequences

For each time pointt=1, 2, ..., T:
The discrete state sequences for difference types of PPI are defined according to
Equations (2) — (4). Specifically, if the state 1 score for each type of PPI is > 0.5, the
state is 1, otherwise is 0.

Step 1: Generate initial HMM parameter set
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With the generated “fake” state-observation sequences, compute each parameter by counting
the frequency, for example, components a,oin the state transition matrix A, 1, in initial state

vector, by, in observation matrix can be estimated as follows:

o Yo 2zt 1(S8 = 0,88, =0)

00 = = =

3=1 Z?=111(5td =0, Std+1 = 0) + ZZ=1 ZLfI(Std =0, Sg+1 = 1)
Zfi’:ﬂ(sf = 0)

o~ 3=1I(Sf = O) + 23=1I(5fi = 1) )

_ X1 21 [(SF = 0,0¢ = 0)
-1 Z?=1I(Std =0,0f = O) + Xa-1 Z?;ff(std =0,0f = 1)

bOO

All rest components unlisted can be estimated similarly. In the equation, S¢ and Of denote the
state and observation of sample d at time t. In this way, we get the initial parameter set A(?) =
(@, A, B®). Here I is the indicator function.

Step 2: Iterative steps

Fork=1,2, ...

Update the parameter set by Baum-Welch algorithm, and at each iterative step, with the
current parameter set A = (7, A0), B ' compute the objective likelihood L¥ =

YO_ 1 P(0%AW)) = ¥0_ | Fsaes P(094]S%, 200) - P(S4|AUD). To be consistent with previous
notations, the superscript d denotes sample index, therefore, both 0¢ and S¢ are vectors of
length T. In detail, we have:

00 _ Za=1 P(0% Sf = iA%™)
l o_ P(04at-D)

(10)
Lo _ 28 X1 P04, 5 = 1,58, = j]a%)
! b YIZip(04,5¢ = i|atk—D)
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b(k) — Zd 12 1P(0d St = l|/1(k 1)) I(Od l)
' Do X1 P(04,5¢ = i|ak-D)

With
m) = P(S; = i]a®),
(k) =P(S; = 1,5t = j[A®)
by = P(S, = j,0, = 1]A®)
P(0%,5¢ = i]2%D) = a))) - BX 1) (I
1
P(04]2¢-0) = 3" P(0¢,5¢ = i]a~V)
i=0

P(0%, 8¢ = 0,54 = j]1* ) = aggd () af V- b7V B 4O

t+1,d

Here, at(z_l)(i) and Bt(z_l)(i) are updated recursively with forward and backward direction,

separately.

®) (k=1) , 5 (k-1)
Fort=1,a;;(i) =m, bde

Fort=2,...,T—-1,

(k) (k) (k—l) L (k—1)
r1a(l) = [Z biod.,

For t =T, ﬂ(k)(l) =1

(12)

Fort=T-1,...,1,

(")@—Z (k-1) b(k 1) ﬁt(f)l,d(i)

Step 3: Stop the iteration
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Given &, stop the iteration, when |L¥*1 — [¥| < &.

Evaluation of loop inhibition / activation ability for both static and dynamic models

The capability of the loop to inhibit / activate any protein X on the loop is computed in the
following steps. Step 1: given any gene X from the loop, for any gene Y from the rest of the loop,
find all shortest paths from genes Y to X and create corresponding two binary sequences for each
path. Step 2: replace 0 and 1 in each binary sequence with the corresponding state 0 score and
state 1 score. Step 3: for each shortest path, we can evaluate its failure (fails to inhibit gene X)
and success (succeeds to inhibit gene X) scores by averaging the corresponding binary sequences
separately. Step 4: for the whole loop impact to protein X, we repeat steps 1 — 3 for each of the
remaining proteins on loop and collect all shortest paths with strong inhibition capabilities (average
score > (0.95). We use the sum of all above threshold scores as the inhibition ability of the loop to

protein X, applying a similar procedure to measure loop activation ability to protein X.

Results
Core signaling networks and loops of 3 MB subtypes (WNT, SHH and Group 3)

We used 2 signaling subroutine thresholds, 0.9 and 0.8, to obtain 3 signaling networks for
each subtype separately. The extracted 3 loops are presented in Fig. 1A, 1B and 1C; the static
model demonstrates its capability to distinguish the extracted loop substructures for these 3 MB
subtypes to some extent, and the corresponding Venn diagrams under the highest threshold 0.9 are
compared (see Fig. 1D). More detailed selected loop edges under different thresholds are presented
in Supplementary Table S1. Table 1 provides the hit rates for literature reported essential genes

and drug targets of MB subtypes, with more details in Supplementary File S1 and
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Supplementary Table S1. Drug targets were obtained from the DrugBank database [21]. For SHH
and Group 3 subtype MBs, over 87.5% and 75.6% of reported therapeutic targets come from the
complete loop substructure L., and with threshold 0.8, the loops predicted by the static model
cover 100% and 82.4% of all validated therapeutic targets for each MB subtype, respectively. In
order to avoid confusion, it is necessary to explain the complete loop sub-structure L. which is
obtained by extracting the complete loop sub-structure directly based on provided PPI knowledge
from the KEGG pathway database without considering any genomics data. Moreover, many

missed targets are head genes, e.g., WNT3A, or the tail genes, e.g., PARP.

Table 1: Hit rates for literature reporting therapeutic targets for each of the 3 MB subtypes. The more
detailed drug target information for each MB subtype is listed in Supplementary Table S2. The detailed

literature references are attached in Supplementary File S2.

WNT type MBs threshold = 0.9 threshold = 0.8
Numbers of reported therapeutic targets (total) 10 10
Numbers of reported therapeutic targets (from 4 4
loop L.)
Targets selected by algorithm (from loop Ly g.9) 3 4
Hit rate 75% 100%
SHH type MBs threshold = 0.9 threshold = 0.8
Numbers of reported therapeutic targets (total) 16 16
Numbers of reported therapeutic targets (from

14 14
loop L,)
Targets selected by algorithm (from loop Ly g.9) 4 14
Hit rate 28.6% 100%
Group 3 type MBs threshold = 0.9 threshold = 0.8
Numbers of reported therapeutic targets (total) 45 45
Numbers of reported therapeutic targets (from

34 34
loop L.)
Targets selected by algorithm (from loop Ly g.9) 12 28
Hit rate 35.3% 82.4%
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Numerical evaluation of dynamic model outputs

Two types of comparisons are made between the newly designed initialization scheme
and random initialization: the maximum likelihoods computed and the cost of computational
time. 50 random initializations are applied to each PPI. The computed likelihoods and cost
computational time under 3 different schemes are attached in Supplementary Table S2. Here,
we present the computed normalized likelihoods with different initialization schemes with
respect to all activation PPI relations considered (see Fig. 2), the other 3 types of PPI relations
are detailed in Supplementary Fig. S1-3. The complete learned state transition matrices for both
datasets are attached in Supplementary Table S3. Sub-graphs in Fig. 2 and Supplementary
Fig. S1-3 demonstrate that for most provided PPIs with 4 classified relations, the new
initialization scheme can finally achieve comparable maximum likelihood when compared with
random initializations. The robustness of the new initialization scheme is actually attributed to
the rationality in the static model. As shown in Fig. 2, there are many red dots that could
coincide with or are very close to green lines (constant horizontal lines with value 1.0), which
means that for some PPIs, the computed likelihoods after one iteration with the newly designed
initialization scheme are already quite close to their global maximum likelihoods. Specifically
(See Supplementary Table S2), for activation type PPIs, 70.7% (GSE22875), 74.4%
(GSE77042 with dose = 40 mg/kg), and 73.9% (GSE77042 with dose = 80 mg/kg) of the
normalized likelihood ratios between one and multiple iterations are greater than 0.9 (rounded to
the hundredth), similarly, for inhibition type PPIs, the corresponding ratios are 68.5%
(GSE22875), 65.2% (GSE77042 with dose = 40 mg/kg), and 66.4% (GSE77042 with dose = 80
mg/kg), for binding/association type PPIs, the corresponding ratios are 73.1% (GSE22875),
74.9% (GSE77042 with dose = 40 mg/kg), and 76.8% (GSE77042 with dose = 80 mg/kg), for

dissociation type PPIs, the corresponding ratios are 68.2% (GSE22875), 90.9% (GSE77042 with
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dose = 40 mg/kg) and 81.8% (GSE77042 with dose = 80 mg/kg). This phenomenon from the
other perspective, demonstrates the rationality in the static model, in detail, e.g., for activation
PPIs, by considering RNA expression alone, when r, > 1 and r5 > 1, and the state 1 score is

greater than 0.5, then it is quite likely that protein A could activate protein B in real.

Biological evaluation of dynamic model outputs — Increased upstream inhibition signaling

(PI3K-AKT, PI3K-AKT themselves are inhibited) after OTX2 silencing

Based on KEGG pathway database, there are different subroutines in PI3K-AKT and TGF-
P signaling transduction pathways that finally inhibit MYC. In this sub-subsection, we first
determine if any subroutine fails to inhibit MYC (state 0 score > 50%) in dynamic manner after
treatment. It is interesting to note that, according to our prediction results, there are 3019 (around
9.6% of the total) different subroutines in PI3K-AKT that will fail to inhibit MYC after treatment.
Next, we are interested in how many subroutines in PI3K-AKT pathway could successfully inhibit
MYC (state_1_score > 50%). Based on our prediction results, there are 28087 (around 89.1% of
the total, 2.18 times of that before treatment) different subroutines that could inhibit MYC after
treatment, 28018 of which can successfully inhibit MYC by inhibiting PI3K-AKT protein family
that has been validated on exactly the same cell line (direct validation of up-regulation of PTEN)
after reducing OTX2 level [22]. In the same work, it is also reported that OTX2 level is positively
correlated with TGF-£ signaling activity. Therefore, TGF-f signaling pathway should NOT have
the capability to inhibit MYC after OTX2 silencing, and our results identify 47 (shrinks to 38.5%
of that before treatment) subroutines from TGF-f pathway which could numerically inhibit MYC
after treatment. All the computational details about these 2 pathways are presented in
Supplementary Table S4. The detailed pre- and post-treatment comparisons are described in

Table 2.
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Table 2: Occurrence probabilities for those subroutines that either activate or inhibit MYC in different

signaling transduction pathways according to KEGG pathway database before and after OTX2 inhibition.

Total # activated

Total # activated

Total # signaling

Pathwa signaling subroutines si)grl(l)altiil:lg subroutines that v g:;;;relﬁci.or
nalrlv ' targeting MYC tai'uetinu M(;?C targeting MYC b (/)aft r gT§2 ’
¢ before OTX2 o OTX2 based on KEGG loncin
silencing silencing pathway database g
ERBB 5 8 960 5.2%/8.3%
MAPK 1252 3998 88498 1.4%/4.5%
WNT 29082 46 38336 75.9% /0.1%
HIPPO 8902 1987 16814 52.9%/11.8%
JAK-STAT 10356 493 16604 62.4% /3%
Total # inhibited T‘“Z‘i' #:;‘l'i‘l‘lb‘ted Total # signaling Occurrence
Pathwa signaling subroutines subgrou tinges subroutines that robability before
nam ' targeting MYC targeting MYC targeting MYC b / after t(%ITXZ
¢ before OTX2 e OTX2 based on KEGG loncin
silencing . . pathway database g
silencing
PI3K-AKT 12862 28087 31512 40.8% /89.1%
TGF-S 122 47 270 45.2% /17.4%

Biological evaluation of dynamic model outputs — Decreased upstream activation signaling

(WNT, HIPPO and JAK-STAT) after OTX2 inhibition

Even though the behaviors of subroutines that could activate MYC are not mentioned [22],

we still investigate the simulated behaviors of those subroutines after OTX2 silencing in our study.

MYC could be finally activated by different subroutines in ERBB, MAPK, WNT, HIPP, and JAK-

STAT signaling transduction pathways in the KEGG pathway database. In this sub-subsection, we

will determine if all subroutines targeting the oncogene MYC in different signaling pathways are

de-activated in time-dependent manner after OTX2 silencing. The evaluation criterion is for those

subroutines that finally activate MYC, we check their occurrence frequencies in the activated states

(state 1 score > 50%), and the occurrence probabilities before and after OTX2 silencing are

summarized in Table 2 below. All aforementioned signaling pathways that could activate MYC

show very low activation probabilities after OTX2 silencing (< 12%), therefore, it is fair to say


https://doi.org/10.1101/561076
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/561076; this version posted March 5, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

those signaling transduction pathways are de-activated after OTX2 silencing. All scored

subroutines that finally activated MYC are attached in Supplementary Table S4.

Hypothesize loop as the measurement of drug resistance evaluation and prediction

In previous sub-sections, post-OTX2 silencing behaviors of different signaling pathways
that could either activate or inhibit MYC are studied independently, and it is quite obvious that
after OTX2 silencing, WNT, JAK-STAT, and HIPPO signaling pathways are strongly inhibited,
but the MAPK pathway is more highly activated. This phenomenon shows that after effective
treatments, some pathways which positively contributed to tumor development can definitely be
suppressed, however, other similarly functioned (e.g. activating MYC) pathways could become
even more activated. This motivates us to boldly hypothesize that the loop sub-structure which
considers the crossing talking of various pathways concurrently should be considered as a
reasonable explanation for drug resistance. Under our hypothesis, a treatment (drug / drug combo)
is efficient when after treatment, the loop demonstrates stronger inhibition abilities to cell cycle
and DNA replication related proteins. To clarify, when we apply loop to explain the drug resistance,
we use the complete loop extracted from all KEGG pathways considered, not just the before-

treatment partial disease loop.

Effective treatment validates loop hypothesis: except CDKI1, all rest cell cycle proteins get

inhibited after considering cross talk of multiple pathways.

In the paper [23] (dataset GSE22875), different gene ontology (GO) [24] annotated gene
sets related to cell cycle and DNA regulations are proven to be strongly down-regulated after

silencing OTX2. Therefore, we first prove that biologically validated down-regulated genes in


https://doi.org/10.1101/561076
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/561076; this version posted March 5, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

dataset GSE22875 which also sat on the loop can be validated numerically for stable down-
regulation by considering the cross talk of multiple pathways and post-treatment time-series data.
Next, we compare numbers of strong inhibition and activation shortest paths for the same set of
cell cycle and DNA replication proteins between pre- and post-treatment conditions for Group 3
type MBs under the loop hypothesis. The complete considered GO annotated gene sets and KEGG
annotated cell cycle check points (only intersections with pathways mentioned ahead), and their
topological distribution among the disease network are summarized in Supplementary Table S5.
The computed loop inhibition and activation capabilities are presented in Supplementary Table
SS. For dataset GSE22875, among the 33 cell cycle and DNA replication related proteins, mRNA
expression level of CCND3, CDK2, E2F2/3 and MYC have been biologically validated to be
strongly down-regulated, as are the protein levels of CCND3 and MYC [23]. When compared to
the numerical simulation, all above mentioned proteins (100% agreements) are predicted to be
consistently inhibited according to the mathematical assumptions embedded within the HMM
algorithm. For one group 3 MB driver mutation gene MYC, when we were validating inhibition
of MYC by considering individual KEGG pathways independently, it is interesting to note that
there are still many different subroutines that have higher probabilities to activate MYC, but when
finally merging into the loop structure which covers the cross talks between different signaling
pathways presents much stronger global inhibition (948 V.S. 34) capability. Both strong successful
inhibition and unsuccessful inhibition shortest paths in loop targeting MYC are presented in
Supplementary Fig. S4. All strongly MYC successful and unsuccessful post-treatment inhibition
subroutines (break into edges) are attached in Supplementary Table S6. As aforementioned, after
OTX2 silencing, the inhibited PI3K-AKT pathway activity reports its indirect (directly related to

PTEN) contribution to tumor suppression. Therefore, the other exciting find is that even under
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really high average threshold 0.95, multiple PPIs from the PI3K-AKT pathway do appear as

strongly successful inhibition subroutines.

To further illustrate the loop hypothesis, comparison analyses analogous to Table 2 are
performed for the same set of cell cycle and DNA replication proteins by considering the
integrative cross talk of various signaling transduction and cellular process pathways under both
before and after treatment conditions. Specifically, Table 3 presents numbers of strong inhibition
and activation shortest paths targeting representative cell cycle phase check points for both before
and after treatments for comparison. The complete comparisons for all GO and KEGG annotated

cell cycle and DNA replication proteins are listed in Supplementary Table SS.

Table 3: Comparison of numbers of strong (average path score > 0.95) inhibition and activation shortest
paths for representative cell cycle phase check points between before and after treatments conditions for

Group 3 subtype MBs under the loop hypothesis (considering cross talk of multiple pathways instead).

# of Inhibition shortest paths / # of Activation shortest paths (Group 3 MBs)

Gene Symbol Before Treatment After Treatment
MYC 2/517 948 /34
CDK1 47172787 138 /2028
CDK2 549 /248 993/2
CDK4 0/3206 374 /49
CDK6 150/0 3/2

CCNAL 0/666 158/0
CCNA2 0/1331 597/0
CCNBI 1925/5 355/129
CCNB2 1925/ 4 355/197
CCND1 810 /246 1573737
CCND2 7327693 455/ 126
CCND3 624/0 977/35
CCNE1 537/572 1982/0
CCNE2 0/881 599/3
E2F2 1013/0 1376 /218
E2F3 0/3143 1381/216
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Ineffective treatments validate loop hypothesis: most cell cycle proteins fail to be inhibited

after considering cross talk of multiple pathways.

The computed dynamic PPI probabilities for GSE77042 are based on treatments with doses
=40 and 80 mg/kg once a day. According to biological experiments, MK-4101 treatments with
doses of both 40 and 80 mg/kg each day failed to inhibit tumor growth (see Fig. 1B and C in [25]).
Gene expression analysis in Fig. SD in [25] concluded the same: at doses = 40 and 80 mg/kg each
day, cell cycle related genes do not present strongly stable inhibited evidence at all in time evolved
manner. When comparing with simulation results, for genes related to G1-S transitions, the loop
presents much higher activation capabilities than most representative proteins. The loop with dose
= 80 mg/kg once a day illustrates much stronger inhibition impact compared that with dose 40
mg/kg once a day (most blue squares are above red triangles, see Supplementary Fig. S5). Similar
trends have been shown in other biological experimental results, e.g., tumors treated with 80 mg/kg
once a day present lower tumor volume growth rate and mice body weight change compared with
those treated with 40 mg/kg once a day. Similarly, for dataset GSE77042, the comparison of
numbers of strong inhibition and activation paths for representative cell cycle check points
between before and after treatment conditions are presented in Table 4, and the more detailed

information are attached in Supplementary Table SS5.

For effective treatments (see Table 3), except CDK1, the post-treatment loop presents
much stronger inhibition capabilities to all the rest cell cycle check point proteins compared to
activation capabilities. For most cell cycle check point proteins, sharp contrasts between inhibition
and activation capabilities can be directly observed when comparing pre-treatment and post-
treatment loops. However, for ineffective treatments (see Table 4), for most cell cycle check point
proteins, there are no inhibition and activation capabilities differences between pre-treat and post-

treat loops, and all three loops present much stronger activation capabilities. The loop
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state 0 score and state 1 score for both Group 3 and SHH MBs under pre- and post-treatment
conditions are attached in Supplementary Table S6 as well.
Table 4: Comparison of numbers of strong (average path score > 0.95) inhibition and activation shortest

paths for representative cell cycle phase check points between before and after treatments conditions for

SHH subtype MBs under the loop hypothesis (considering cross talk of multiple pathways instead).

# of Inhibition shortest paths / # of Activation shortest paths (SHH MBs)

Gene Symbol Before Treatment After T:galflngl/el?gt)(dose = | After T;gz;;gfl?gt)(dose -
CDK1 107 /530 0/17 0/1593
CDK2 0/455 57/ 1544 0/0
CDK4 0/1928 85/2074 99 /164
CDK6 0/1915 86 /1552 99 /159
CCNAl 0/215 61/985 52/1
CCNA2 0/401 370/ 1190 52/0
CCNBI 409 /28 0/0 0/22
CCNB2 409/ 4 1491 /1 767/22
CCND1 222 /103 1397 /253 1130/ 58

CCND2 216/537 1072 /324 616/125
CCND3 49/3 1002 / 1725 361/87
CCNE1 0/521 608 /1542 789/0
CCNE2 0/507 37571208 14/0
E2F2 220/0 1/1980 0/33
E2F3 0/1292 177 /1980 0/33

Both pre- and post-treatment loops present unique set of strongly “activated” and “de-

activated” loop edges.

After validating and explaining the loop theory, the more interesting subsequent question
is: what is the difference between pre- and post- treatment loops? This question will be addressed
firstly by considering both strongly “activated” and “de-activated” (here, strongly “activated” here
means state 1 score > 0.9, and strongly “de-activated” equals state 0 score > 0.9) edges within

the same loop under pre and post-treatment conditions. Different comparison results with threshold
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= 0.9 are presented in Supplementary Table S7. The corresponding pie chart plot is attached as
Fig. 3A. First, it is interesting to note that despite considering strongly “activated” or “de-activated”
edges, both have around half (50%) of themselves exclusively, i.e., a unique set of strongly de-
regulated loop edges before treatment and simultaneously another unique set of strongly de-
regulated loop edges after treatment exist. This echoes with what we stressed before when
validating the loop hypothesis: we should consider the full complete loop, not any other partial
structures, since it is nonsensical to assume that after treatment, only the loop sub-structure which
is closely related to the disease pre-treatment loop gets strongly influenced. Importantly, 41.8% of
“activated” and 4.8% of “de-activated” pre-treatment loop edges switch to opposite original status
after treatment, but 5.4% of “activated” and 36.7% of “deactivated” pre-treatment loop edges keep
their original status. All these observations and cross verifications demonstrate that the loop theory
should be considered as a very important tool capable of characterizing the drug effects and

forecasting drug resistance.

Comparisons of pathway engagements under pre and post-treatment conditions: almost all

pathways present much stronger capabilities in inhibiting all cell cycle related proteins.

In this sub-section, comparison of pathway engagements in either activating or inhibiting
cell cycle and DNA replication proteins under both pre- and post-treatment conditions will be
evaluated, respectively. For each cell cycle and DNA replication related proteins, similar analyses
with different comparisons will be performed individually for each pathway. Tabular analysis
results are collected in Supplementary Table S7 (sheets with format = “protein STAT”), a more
intuitive MYC graphical presentation is attached below (see Fig. 3B), and the remaining
representative graphical representations are plotted in Fig. 4A, 4B and 4C. All cell cycle and DNA

replication proteins’ successful and unsuccessful activation and inhibition loop edges with
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pathway annotations are attached in Supplementary Table S7 (sheets with format =
“protein LOOP_EDGES”). Strikingly, for all cell cycle and DNA replication related proteins,
almost all pathways present much stronger inhibition and much weaker activation capabilities after

effective treatment.

Discussion and Conclusions

In this paper, we hypothesize that the signaling loop sub-structures embedded in the PPI
network in regulating driver mutation genes, cell cycle and DNA replication genes can be used as
a tool to interpret and predict drug resistance. Both static and dynamic (HMM) models with newly
designed initialization scheme which infer PPI static and dynamic activity probabilities separately
are proposed to facilitate hypothesis validation and explanation. The HMM dynamic model with
this newly designed initialization scheme presents promising stability and accurateness under both
numerical and biological examinations and multiple datasets. This initialization scheme should
work quite well for other datasets as well. The loop hypothesis is validated by multiple
comparisons, i.e., comparisons between pre- and post-treatments, efficient and ineffective
treatments. The signaling loop presents sharp contrasts (see Table 3) in regulating cell cycle and
DNA replications proteins when compared between pre- and post-effective-treatments, however,
when treating with ineffective options, the loop presents no apparent regulating capability
difference for partial or most of the cell cycle and DNA replication proteins (see Table 4).
Furthermore, with further investigation, it is very exciting to observe that almost all pathways
within the loop play a larger role in controlling each cell cycle and DNA replication protein. Also,
when comparing the pre and post-effective treatment loops, we find that partial previously highly
activated loop edges are successfully de-activated after effective treatments, however, it is also

shown that both pre and post-effective treatment loops have around half of their loop edges either
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highly activated or de-activated exclusively, and this provides rationale for working with the
complete loop-substructure embedded in the PPI network, rather than just focusing on a partial
loop which is only related to disease network (before treatments). Unfortunately, we must point
out that the due to the limited availability of public medulloblastoma data, we could not find the
RNA expression data for both group 3 medulloblastoma cell line D425 and the control normal
cerebellum samples from the same platform. Similar embarrassment holds for dataset GSE77042
as well, so we use different patients’ samples instead as the input for the static model in order to
present the comparison. In future work, the accuracy of the static model may improve with the
incorporation multiple types of data (mutation, methylation, etc.), and the consideration of more
pathways with other functionalities (e.g., metabolism). Lastly and most importantly, promising
single drug and drug combination prediction algorithms which take drug resistance as one of the

most important drug effect indicators will be developed based on the loop hypothesis in future.
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Figures

Figure 1: Larger yellow genes are reported therapeutic targets. Signaling interactions from different
pathways are indicated with different colors. Dashed and solid lines denote the failure and successful
occurrence of the provide PPIs, respectively. (A): Core signaling network and signaling loops of WNT
MB. Color schemes: blue (MTOR only), red (PI3K-AKT only), green (CAMP only), purple (JAK-STAT
only), orange (HIPPO only), pink (APELIN only), light blue (TGF-BETA only), dark yellow (MAPK
only), and black (shared by multiple pathways). (B): Core signaling network and signaling loops of SHH
MB. Color schemes: blue (Sphingolipid only), red (MAPK only), green (PI3K-AKT only), purple
(APELIN only), orange (MTOR only), pink (CAMP only), light blue (AMPK only), dark yellow (TNF
only), and black (shared by multiple pathways). (C): Core signaling network and signaling loops of
Group 3 MB. Color schemes: blue (MAPK only), red (CAMP only), green (RAS only), purple (RAP-1
only), orange (PI3K-AKT only), pink (APELIN, Apoptosis, and Necroptosis only), light blue
(Phospholipase D, NF-kappa B, and CALCIUM), dark blue (AMPK and HIPPO), light green (TNF
only), grey (HIF-1 only), dark yellow (MTOR and WNT only), and black (shared by multiple pathways).

(D): The Venn diagram for 3 MB subtypes’ loop edges with highest subroutine threshold 0.9.
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Figure 2: The comparisons of computed likelihoods with different initialization schemes for all activation
PPI types of relations. Among the total 11774 activation edges considered, for (A): dataset GSE22875,
dataset GSE77042 with (B): dose 40 mg/kg and with (C): dose 80 mg/kg, the computed maximum
likelihoods of 10976 (93.2%), 11336 (96.3%), and 11272 (95.7%) activation edges by the new
initialization scheme have the normalized likelihood (= computed likelihood by scheme X/
computed_likelihood by random_initialization) > 0.9. Scheme X could be new initialization scheme, and
new initialization scheme after one iteration. (D): comparison of computational times is presented, and for

each type of PPI, the new initialization scheme costs only 1/7 of the time that it would take if starting with

50 random initializations.
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Figure 3: (A): Visualized comparisons between pre and post-treatment loops (threshold = 0.9). (B):
Comparisons of pathway engagements in regulating MYC when considering both pre and post-treatment
conditions. “Success” is defined as successful inhibition + unsuccessful activation and “Failure” is defined

as successful activation + unsuccessful inhibition.
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Figure 4: Comparisons of pathway engagements in regulating (A): CDK4 (left) and E2F3 (right), (B):
CCNAL1 (left) and CCNBI1 (right), (C): CCND3 (left) and CCNE2 (right), when considering both pre and
post-treatment conditions. “Success” is defined as successful inhibition + unsuccessful activation and

“Failure” is defined as successful activation + unsuccessful inhibition.
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Supplementary Figures

Supplementary Figure S1: The comparisons of computed likelihoods with different initialization schemes
for all inhibition PPI types of relations. Among the total 2214 inhibition edges considered, for (A): dataset
GSE22875 , dataset GSE77042 with (B): dose 40 mg/kg and with (C): dose 80 mg/kg, the computed
maximum likelihoods of 2025 (91.5%), 2056 (92.9%), and 2087 (94.3%) inhibition edges by the new
initialization scheme have the normalized likelihood (= computed likelihood by scheme X/
computed_likelihood by random_initialization) > 0.9. Scheme X could be new initialization scheme, and

new initialization after one iteration.
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Supplementary Figure S2: The comparisons of computed likelihoods with different initialization schemes
for all binding PPI types of relations. Among the total 1064 binding edges considered, for (A): dataset
GSE22875, dataset GSE77042 with (B): dose 40 mg/kg and with (C): dose 80 mg/kg, the computed
maximum likelihoods of 997 (93.7%), 1018 (95.7%), and 1019 (95.8%) binding edges by the new
initialization scheme have the normalized likelihood (= computed likelihood by scheme X/
computed_likelihood by random_initialization) > 0.9. Scheme X could be new initialization scheme, and

new initialization scheme after one iteration.
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Supplementary Figure S3: The comparisons of computed likelihoods with different initialization schemes
for all dissociation PPI types of relations. Among the total 22 dissociation edges considered, for (A): dataset
GSE22875, dataset GSE77042 with (B): dose 40 mg/kg and with (C): dose 80 mg/kg, the computed
maximum likelihoods of 22 (100%), 21 (95.5%), and 22 (100%) dissociation edges by the new initialization
scheme  have the  normalized  likelihood (=  computed likelihood by scheme — X/
computed_likelihood by random_initialization) > 0.9. Scheme X could be new initialization scheme, and

new initialization scheme after one iteration.
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Supplementary Figure S4: High (score > 0.95) inhibition (green) and activation (red) shortest paths to
MYC. White background nodes are rest loop nodes. Enlarged purple node is gene MYC, enlarged light
green boarded nodes are proteins that on paths which presents stronger inhibition capabilities to gene MYC
only, enlarged light red boarded nodes are proteins that on paths which presents stronger activation
capabilities to gene MYC only, and enlarged light blue boarded nodes are proteins that on paths which

presents both strong inhibition and activation capabilities to gene MYC.
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Supplementary Figure S5: Normalized capability difference = [inhibition score — activation score] / max

[inhibition score, activation score] between representative cell cycle related proteins.
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