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Abstract 

Motivation: Medulloblastoma (MB) is the most common malignant brain tumor in children. 

Despite aggressive therapy, about one-third of patients with MB still die, and survivors suffer 

severe long-term side effects due to the treatments. The poor post-treatment outcomes are tightly 

linked to unpredictable drug resistance. Therefore, before developing robust single drug or drug 

combination recommendation algorithms, uncovering the underlying protein-protein interaction 

(PPI) network patterns that accurately explain and predict drug resistances for MB subtypes is 

essential and important.   

Results: In this study, we hypothesize that the loop sub-structure within the PPI network can 

explain and predict drug resistance. Both static and dynamic models are built to evaluate this 

hypothesis for three MB subtypes. Specifically, a static model is created to first validate that many 

reported therapeutic targets are located topologically on highly deregulated loop sub-structure and 

then to characterize the loop for tumors without treatment. Next, with the after-treatment time-

series genomics data, a dynamic hidden Markov model (HMM) with newly designed initialization 

scheme estimates the successful and unsuccessful occurrence probabilities for each given PPI and 
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then re-delineates the loop for post-treatment tumors. Finally, the comparison of loop structures 

pre- and post- treatment distinguishes effective and ineffective treatment options, demonstrating 

that the loop sub-structure is capable of interpreting the mechanism of drug resistance. In summary, 

effective treatments show much stronger inhibition of cell cycle and DNA replication proteins 

when compared to ineffective treatments after considering the cross talk of multiple pathways (the 

loop).  

Introduction 

MB is the most common malignant childhood brain tumor which are mostly found in 

patients with age under 16. There are four subtypes of MB: WNT, SHH, Group 3 and Group 4 [1].  

For children with average-risk and high-risk MB, the 5-year survival rates are 70%-80% and 60%-

65% [2], respectively. Therefore, about one-third of children diagnosed with MB will die of the 

disease. The major reason for the failure of provided treatments is unpredicted drug resistance. 

Various drug-resistance mechanisms are generally classified as either intrinsic or extrinsic. 

Extrinsic factors are mostly related to interactions with stromal cells and other tumor cells while 

intrinsic factors are mainly genetic variations, epigenetic altering and cross talk between multiple 

pathways. Genetic variations can lead to drug resistance as the first reasonable explanation by 

reducing the activities of drugs, for example, down-regulation or mutation in proteins on the same 

pathways as the drug targets [3]. Mutations of the target itself can also reduce or completely alter 

drug functions and lead to drug resistance [3]. The second type of intrinsic drug resistance 

mechanism is called multi-drug resistance. Multiple drugs with different mechanisms for entering 

the cell are used for effective chemotherapy since cell surface receptors or drug transporters can 

be lacking. However, cancer cells often present various unexplained simultaneous resistances to 

functionally unrelated drugs, a phenomenon that defines multi-drug resistance.  The effects of 

multi-drug resistance would finally either block the cell apoptosis process or activate the cancer 
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cell DNA repair process which serves as the third intrinsic drug resistance mechanism [4], [5]. The 

blocked cell death pathway can also result from up-regulation of cell survival promoting proteins, 

e.g., BCL2, or its upstream PI3K-AKT signaling pathways and down-regulation of cell apoptosis 

promoting proteins e.g., BAX. [3]. Epigenetic alteration (DNA methylation and histone 

alternations) is the fourth factor which could cause drug resistance. DNA methylation can inhibit 

tumor suppressor genes and also amplify the expression of oncogenes via hyper-methylation. 

Cross-talk between multiple pathways has been reported to induce resistance in various types of 

tumors, e.g., for breast cancer [5]. 

In addition, mathematical computational models have been developed to study and 

simulate cancer drug resistance. The first group of models are based on various types of classical 

differential equations. Faratian et al. [6] applied an ordinary differential equation (ODEs) based 

kinetic model to study the behaviors of PI3K in RTK inhibitor resistance. Sun [7] et al. developed 

a kinetic model to study the cross talk between EGF/EGFR/Ras/MEK/ERK and 

HGF/HGFR/PI3K/AKT pathways, and their model verified the connection between cross talk of 

several pathways and drug resistance. Coldman et al. [8] used a stochastic model to simulate the 

initialization and development of drug resistances due to point mutation and ultimately to estimate 

the probabilities of drug sensitive and drug resistant cells under different treatment protocols. Sun 

et al. [7] utilized lists of stochastic differential equations (SDEs) to simulate and differentiate the 

dynamics of drug-sensitive and drug-resistant cells, and their model presented distinct synergy 

patterns for BRAF + MEK versus BRAF + PI3K combos. Data-driven models are also widely 

applied to study drug resistance. Shukla et al. [9] analyzed methylation profiles of glioblastoma 

(GBM) samples and implemented a cox regression model to identify methylation biomarkers, 

concluding that targeting the NFkB pathway could prevent drug resistance for GBM. With patients’ 

expression data, Zeng et al. [10] developed a time involved module network rewiring (MNR) 
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model to prove that functional connections and reconnections for consistent modules could be 

taken as biomarkers to measure drug efficiency and resistance. In addition to different equations, 

the time-series HMM [11] model should also be capable of simulating post-treatment tumor 

dynamics. The expectation maximization (EM) algorithm [12], designed for likelihood 

maximization with latent variables, serves as the corresponding numerical strategy. However, 

“effective” initialization is always difficult when encountering the HMM algorithm due to the non-

convexity of the objective likelihood function. Starting with many different random initializations 

could always approach the global maximum likelihood numerically, however, it is time-consuming 

and could lead to very unstable dilemma with quite different initialization parameters and quite 

similar likelihoods - a definitely unacceptable situation, especially for our case. Several clustering 

related algorithms [13], [14] for continuous observations have proven their capabilities in finally 

arriving at the global maximum of likelihood. However, for discrete observations, it is usually hard 

to find relative robust and stable initialization schemes.   

Our loop hypothesis has firstly been proposed in [15] for LKB1 loss non-small cell lung 

cancer, and one PI3K and mTOR dual inhibitor based on the loop hypothesis has been numerically 

filtered out and biologically validated as the effective treatment. In this work, we will present a 

more detailed explanation about the hypothesis and its numerical validation for drug resistance. 

We hypothesize that the loop sub-structure, which considers the cross talk of multiple pathways 

(all signaling and cellular growth and death pathways) inside the protein network, covers 

promising therapeutic targets and concurrently could explain and predict drug resistance. The 

paper is organized as follows: The Materials and Methods section explains the details of both 

static and dynamic models. The Results section first starts with a static model and then the outputs 

from the dynamic model will be checked both mathematically and biologically to guarantee their 

further engagement in explaining and validating the loop theory. Next, we present the most 
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detailed explanation about why and how to utilize the loop to characterize drug resistance with 

multiple MB subtypes and treatment protocols. After validating and explaining the loop theory, 

interesting contrasts and connections between pre- and post-treatment loops are discussed. 

Discussions and conclusions are consequently summarized. 

 

Materials and Methods 

Gene expression data and background signaling network 

In order to prove our hypothesis, for the static model, we use gene expression data of 194 

MBs and 11 normal cerebellums from Cho et al [16]. In Cho’s work, the RNA expression data of 

all 194 MBs are clustered into 7 subgroups: C1 subgroup represents MYC-driven MBs, C3 

subgroup represents SHH type MBs, and C6 subgroup covers WNT type MBs. Three independent 

time-series RNA expression data are used as the input for the dynamic model. RNA expression 

data of time course experiments of OTX2 silencing and control experiments in the D425 MB cell 

line, characterized as representative of Group 3 MBs [17], are provided in Gene Expression 

Omnibus (GEO) with series GSE22875 with 6 independent time points which form 729 time-

sequenced data samples. Time-series RNA expression data for effective SMO inhibitor MK-4101 

on SHH type allograft MB tumors can be download from GEO with series number GSE77042 

(two doses, 40 and 80 mg/kg each day with five independent time points, forming 720 and 960 

time-sequenced data samples, separately). Different categories of pathways for system biology 

research represented in the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway database 

[18] are selected as directed background molecular interaction networks, and we focus particularly 

on signal transduction and cell growth and death pathways for humans. The R package “Pathview” 

[19] is applied to download KGMLs for all humans’ pathways while the package “KEGGgraph”  
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[20] facilitates the extraction of node connections from KGMLs for each pathway. Except for 

activation and inhibition PPIs, the PPIs (phosphorylation, dephosphorylation, ubiquitination, 

deubiquitination, glycosylation, methylation, indirect effect or state change) are classified as either 

activation or inhibition according to their specific functional behaviors for provided different 

protein pairs. The static and dynamic statuses of the remaining two PPIs, binding/association and 

dissociation, together with activation and inhibition PPIs, are defined in the following sub-section 

independently. 

 

Pre-treatment loop extraction model (static model)  

For a specific pathway in the KEGG pathway database, a complete full subroutine is a 

sequence of protein family interactions starting from receptor protein families on the cell 

membrane down through the terminal protein families in the nucleus or cytoplasm. For each 

provided subroutine in KEGG, we construct 2 binary sequences from the backward direction with 

the first sequence always ending with 1 and the second one always ending with 0. Assuming a 

subroutine with length L, then for the following edges, the binary input is described in the 

following pseudo-code form: 

 

 

 

 

It is worth mentioning that the binary sequence is defined with respect to edges, i.e., a 

subroutine with L + 1 nodes has length L, and, therefore, each subroutine is equipped with 2 binary 

sequences with both lengths equal to L. For each given PPI, we define 2 edge scores: state_1_score 

Loop each index from L-1 to 1 (decreasing order) 

 If current relation is not inhibition/repression: 

  binary input [current index] = binary input [current index + 1] 

 else: 

  binary input [current index] = 1 - binary input [current index + 1] 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 5, 2019. ; https://doi.org/10.1101/561076doi: bioRxiv preprint 

https://doi.org/10.1101/561076
http://creativecommons.org/licenses/by-nc-nd/4.0/


and state_0_score, which describe the probabilities of successful and unsuccessful occurrence of 

given PPI, separately. For the static mode, the definitions of these 2 scores are characterized as 

follows. The network extraction model in our numerical experiments is applied to all 3 MB 

subtypes. For a specific gene A, the expression ratio is defined as: 

 
r" =

Expres)*+,-(A)
Expres1,2)-,3(A)

 (1) 

Where 𝐸𝑥𝑝𝑟𝑒𝑠:;<=>(𝐴) and 𝐸𝑥𝑝𝑟𝑒𝑠@=A:>=B(𝐴) denotes the average expression of gene A among 

tumor and control samples. In our edge score model, assuming A and B are two proteins, we always 

assume protein A sits on the left of the edge and protein B sits on the right of the edge. We use the 

following equation to characterize the probability of occurrence of type I relation (activation or 

expression): 

 𝑠𝑡𝑎𝑡𝑒_1_score

= I1 −
|r" − rL|
2(r" + rL)

=
1
2
+ O1 −

|r" − rL|
(r" + rL)

P 2Q r" > 1	and	rL > 1

ε otherwise
 

(2) 

 

For type II relation (inhibition and repression), we have: 

 

state_1_score =

⎩
⎪
⎨

⎪
⎧
1
2 +

r" − rL
2(r" + rL)

r" > 1	and	r" > rL

1
2 −

rL − r"
2(r" + rL)

rL > 1	and	r" < rL

ε otherwise

 (3) 

For type III and IV relations (binding/association and dissociation), we have: 
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state_1_score = a
1
2
+
min
	
(r", rL)

r" + rL
r" > 1	and	rL > 1

	 	
ε otherwise

 (4) 

For all four types of relations above, state_0_score is complementary to state_1_score with 

respect to 1. For “otherwise” condition in each equation, we set up a uniform parameter 𝜀 as the 

estimation for edge score. For each subroutine, there are 2 different sum scores corresponding to 

each binary sequence as previous defined. The binary subroutine occurrence probability (BSOP) 

averages along all simple paths between any arbitrary header-terminal protein pair for each binary 

sequence. For a subroutine with L edges, its mathematical form is given below: 

 
BSOPLi = 	jedge_score(B3)

l

3mn

Lp  (5) 

Here, 𝐵B denotes the binary input for the lth edge (PPI) and edge score is computed according to 

Equations (2) – (4) according to PPI relation with proper condition matching. All complete PPI 

subroutines with either state 0 or 1 occurrence probabilities greater than acceptable thresholds are 

merged to form the final disease network. The detailed description about loop sub-structure 

extraction has been described in [15]. 

 

Post-treatment loop extraction model (dynamic model)  

The dynamic evolutions of the loop sub-structure are studied with implementation of the 

following HMM algorithm. Discrete binary observations O are defined for each type of PPIs as 

follows. For activation/expression, binding/association and dissociation types of PPIs, we have: 

O = r1 r" > 1	and	rL > 1
0 otherwise

 (6) 

And for inhibition/repression type of PPIs, we have: 
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O = r1 r" > 1	and	r" > rL
0 otherwise

 (7) 

In this work, we propose a newly designed HMM initialization scheme as described in 

detail below that first generates time-series “fake” state sequences, which are partial outputs from 

the static model, and then the learned “supervised” HMM parameter pair from the “fake” sequence 

is selected as the initial parameter pair for the real unsupervised HMM problem. Finally, the Baum-

Welch algorithm is used for iteration updates until the likelihood reaches its maximum. For our 

specific case, since HMM algorithms will be applied to study the dynamic behavior for each PPI, 

we therefore have a learned optimal triple pair 𝜆∗ = (𝜋∗, 𝐴∗, 𝐵∗) with dimensions 2 by 1, 2 by 2 

and 2 by 2 for each PPI. In the dynamic model, we utilize the probabilities inside the state transition 

matrix A as newly defined edge scores, so for each given PPI A to B, we update two edge scores 

(state_1_score and state_0_score) as: 

 𝑠𝑡𝑎𝑡𝑒_1_𝑠𝑐𝑜𝑟𝑒 = 	
𝑎yn + 𝑎nn

2  

(8) 
 𝑠𝑡𝑎𝑡𝑒_0_𝑠𝑐𝑜𝑟𝑒 = 	

𝑎yy + 𝑎ny
2  

 

HMM with the newly designed initialization scheme 

Step 0: Generate multiple time-series “fake” state-observation sequences 

For each time point t = 1, 2, …, T: 

The discrete state sequences for difference types of PPI are defined according to 

Equations (2) – (4). Specifically, if the state_1_score for each type of PPI is > 0.5, the 

state is 1, otherwise is 0.  

Step 1: Generate initial HMM parameter set 
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With the generated “fake” state-observation sequences, compute each parameter by counting 

the frequency, for example, components 𝑎yyin the state transition matrix A, 𝜋y in initial state 

vector, 𝑏yy in observation matrix can be estimated as follows: 

𝑎yy =
∑ ∑ 𝐼}𝑆:� = 0, 𝑆:�n� = 0���n

:mn
�
�mn

∑ ∑ 𝐼}𝑆:� = 0, 𝑆:�n� = 0���n
:mn

�
�mn + ∑ ∑ 𝐼}𝑆:� = 0, 𝑆:�n� = 1���n

:mn
�
�mn

 

(9) 𝜋y =
∑ 𝐼}𝑆n� = 0��
�mn

∑ 𝐼}𝑆n� = 0��
�mn + ∑ 𝐼}𝑆n� = 1��

�mn
 

𝑏yy =
∑ ∑ 𝐼}𝑆:� = 0, 𝑂:� = 0��

:mn
�
�mn

∑ ∑ 𝐼}𝑆:� = 0, 𝑂:� = 0��
:mn

�
�mn + ∑ ∑ 𝐼}𝑆:� = 0, 𝑂:� = 1���n

:mn
�
�mn

 

All rest components unlisted can be estimated similarly. In the equation, 𝑆:� and 𝑂:� denote the 

state and observation of sample d at time t. In this way, we get the initial parameter set 𝜆(y) =

}𝜋(y), 𝐴(y), 𝐵(y)�. Here 𝐼 is the indicator function. 

Step 2: Iterative steps 

For k = 1, 2, … 

Update the parameter set by Baum-Welch algorithm, and at each iterative step, with the 

current parameter set 𝜆(�) = }𝜋(�), 𝐴(�), 𝐵(�)� , compute the objective likelihood 𝐿� =

∑ 𝑃}𝑂��𝜆(�)��
�mn = ∑ ∑ 𝑃}𝑂��𝑆�, 𝜆(�)� ∙ 𝑃}𝑆��𝜆(�)���∈�

�
�mn . To be consistent with previous 

notations, the superscript d denotes sample index, therefore, both 𝑂� and 𝑆� are vectors of 

length T. In detail, we have: 

 
𝜋�
(�) =

∑ 𝑃}𝑂�, 𝑆n� = 𝑖�𝜆(��n)��
�mn

∑ 𝑃}𝑂��𝜆(��n)��
�mn

 

(10) 
 

𝑎��
(�) =

∑ ∑ 𝑃}𝑂�, 𝑆:� = 𝑖, 𝑆:�n� = 𝑗�𝜆(��n)���n
:mn

�
�mn

∑ ∑ 𝑃}𝑂�, 𝑆:� = 𝑖�𝜆(��n)���n
:mn

�
�mn
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𝑏�B
(�) =

∑ ∑ 𝑃}𝑂�, 𝑆:� = 𝑖�𝜆(��n)��
:mn

�
�mn ∙ 𝐼}𝑂:� = 𝑙�

∑ ∑ 𝑃}𝑂�, 𝑆:� = 𝑖�𝜆(��n)��
:mn

�
�mn

 

With 

 𝜋�
(�) = 𝑃}𝑆n = 𝑖�𝜆(�)�,	

(11) 

 𝑎��
(�) = 𝑃}𝑆: = 𝑖, 𝑆:�n = 𝑗�𝜆(�)� 

 𝑏�B
(�) = 𝑃}𝑆: = 𝑗, 𝑂: = 𝑙�𝜆(�)� 

 𝑃}𝑂�, 𝑆:� = 𝑖�𝜆(��n)� = 𝛼:,�
(�)(𝑖) ∙ 𝛽:,�

(�)(𝑖) 

 
𝑃}𝑂��𝜆(��n)� =j𝑃}𝑂�, 𝑆n� = 𝑖�𝜆(��n)�

n

�my

 

 𝑃}𝑂�, 𝑆:� = 𝑖, 𝑆:�n� = 𝑗�𝜆(��n)� = 𝛼:,�
(�)(𝑖) ∙ 𝑎��

(��n) ∙ 𝑏
�,����

�
(��n) ∙ 𝛽:�n,�

(�) (𝑖) 

Here, 𝛼:,�
(��n)(𝑖) and 𝛽:,�

(��n)(𝑖) are updated recursively with forward and backward direction, 

separately. 

 For t = 1, 𝛼n,�
(�)(𝑖) = 𝜋�

(��n) ∙ 𝑏
�,���
(��n) 

For t = 2, …, T – 1, 

𝛼:�n,�
(�) (𝑖) = �j𝛼:,�

(�)(𝑗) ∙ 𝑎��
(��n)

n

�my

� ∙ 𝑏
�,����

�
(��n) 

(12) 
 For t =T,  𝛽�,�

(�)(𝑖) = 1 

For t = T -1, …, 1, 

𝛽:,�
(�)(𝑖) =j𝑎��

(��n)
n

�my

∙ 𝑏
�,����

�
(��n) ∙ 𝛽:�n,�

(�) (𝑖) 

 

Step 3: Stop the iteration 
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Given 𝜀, stop the iteration, when |𝐿��n − 𝐿�| < 𝜀. 

 

Evaluation of loop inhibition / activation ability for both static and dynamic models 

The capability of the loop to inhibit / activate any protein X on the loop is computed in the 

following steps. Step 1: given any gene X from the loop, for any gene Y from the rest of the loop, 

find all shortest paths from genes Y to X and create corresponding two binary sequences for each 

path. Step 2: replace 0 and 1 in each binary sequence with the corresponding state_0_score and 

state_1_score. Step 3: for each shortest path, we can evaluate its failure (fails to inhibit gene X) 

and success (succeeds to inhibit gene X) scores by averaging the corresponding binary sequences 

separately. Step 4: for the whole loop impact to protein X, we repeat steps 1 – 3 for each of the 

remaining proteins on loop and collect all shortest paths with strong inhibition capabilities (average 

score > 0.95). We use the sum of all above threshold scores as the inhibition ability of the loop to 

protein X, applying a similar procedure to measure loop activation ability to protein X.  

 

Results 

Core signaling networks and loops of 3 MB subtypes (WNT, SHH and Group 3)  

We used 2 signaling subroutine thresholds, 0.9 and 0.8, to obtain 3 signaling networks for 

each subtype separately.  The extracted 3 loops are presented in Fig. 1A, 1B and 1C; the static 

model demonstrates its capability to distinguish the extracted loop substructures for these 3 MB 

subtypes to some extent, and the corresponding Venn diagrams under the highest threshold 0.9 are 

compared (see Fig. 1D). More detailed selected loop edges under different thresholds are presented 

in Supplementary Table S1. Table 1 provides the hit rates for literature reported essential genes 

and drug targets of MB subtypes, with more details in Supplementary File S1 and 
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Supplementary Table S1. Drug targets were obtained from the DrugBank database [21]. For SHH 

and Group 3 subtype MBs, over 87.5% and 75.6% of reported therapeutic targets come from the 

complete loop substructure L1, and with threshold 0.8, the loops predicted by the static model 

cover 100% and 82.4% of all validated therapeutic targets for each MB subtype, respectively. In 

order to avoid confusion, it is necessary to explain the complete loop sub-structure L1 which is 

obtained by extracting the complete loop sub-structure directly based on provided PPI knowledge 

from the KEGG pathway database without considering any genomics data. Moreover, many 

missed targets are head genes, e.g., WNT3A, or the tail genes, e.g., PARP.  

 

Table 1: Hit rates for literature reporting therapeutic targets for each of the 3 MB subtypes. The more 
detailed drug target information for each MB subtype is listed in Supplementary Table S2. The detailed 
literature references are attached in Supplementary File S2. 

WNT type MBs threshold = 0.9 threshold = 0.8 
Numbers of reported therapeutic targets (total) 10 10 
Numbers of reported therapeutic targets (from 
loop 𝐿@) 

4 4 

Targets selected by algorithm (from loop 𝐿y.�,y.�) 3 4 
Hit rate 75% 100% 
SHH type MBs threshold = 0.9 threshold = 0.8 
Numbers of reported therapeutic targets (total) 16 16 
Numbers of reported therapeutic targets (from 
loop 𝐿@) 

14 14 

Targets selected by algorithm (from loop 𝐿y.�,y.�) 4 14 
Hit rate 28.6% 100% 
Group 3 type MBs threshold = 0.9 threshold = 0.8 
Numbers of reported therapeutic targets (total) 45 45 
Numbers of reported therapeutic targets (from 
loop 𝐿@) 

34 34 

Targets selected by algorithm (from loop 𝐿y.�,y.�) 12 28 
Hit rate 35.3% 82.4% 
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Numerical evaluation of dynamic model outputs 

Two types of comparisons are made between the newly designed initialization scheme 

and random initialization: the maximum likelihoods computed and the cost of computational 

time. 50 random initializations are applied to each PPI. The computed likelihoods and cost 

computational time under 3 different schemes are attached in Supplementary Table S2. Here, 

we present the computed normalized likelihoods with different initialization schemes with 

respect to all activation PPI relations considered (see Fig. 2), the other 3 types of PPI relations 

are detailed in Supplementary Fig. S1-3. The complete learned state transition matrices for both 

datasets are attached in Supplementary Table S3. Sub-graphs in Fig. 2 and Supplementary 

Fig. S1-3 demonstrate that for most provided PPIs with 4 classified relations, the new 

initialization scheme can finally achieve comparable maximum likelihood when compared with 

random initializations. The robustness of the new initialization scheme is actually attributed to 

the rationality in the static model. As shown in Fig. 2, there are many red dots that could 

coincide with or are very close to green lines (constant horizontal lines with value 1.0), which 

means that for some PPIs, the computed likelihoods after one iteration with the newly designed 

initialization scheme are already quite close to their global maximum likelihoods. Specifically 

(See Supplementary Table S2), for activation type PPIs, 70.7% (GSE22875), 74.4% 

(GSE77042 with dose = 40 mg/kg), and 73.9% (GSE77042 with dose = 80 mg/kg) of the 

normalized likelihood ratios between one and multiple iterations are greater than 0.9 (rounded to 

the hundredth), similarly, for inhibition type PPIs, the corresponding ratios are 68.5% 

(GSE22875), 65.2% (GSE77042 with dose = 40 mg/kg), and 66.4% (GSE77042 with dose = 80 

mg/kg), for binding/association type PPIs, the corresponding ratios are 73.1% (GSE22875), 

74.9% (GSE77042 with dose = 40 mg/kg), and 76.8% (GSE77042 with dose = 80 mg/kg), for 

dissociation type PPIs, the corresponding ratios are 68.2% (GSE22875), 90.9% (GSE77042 with 
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dose = 40 mg/kg) and 81.8% (GSE77042 with dose = 80 mg/kg). This phenomenon from the 

other perspective, demonstrates the rationality in the static model, in detail, e.g., for activation 

PPIs, by considering RNA expression alone, when 𝑟� > 1 and 𝑟� > 1, and the state_1_score is 

greater than 0.5, then it is quite likely that protein A could activate protein B in real.   

 

Biological evaluation of dynamic model outputs ¾ Increased upstream inhibition signaling 

(PI3K-AKT, PI3K-AKT themselves are inhibited) after OTX2 silencing 

Based on KEGG pathway database, there are different subroutines in PI3K-AKT and TGF-

𝛽  signaling transduction pathways that finally inhibit MYC. In this sub-subsection, we first 

determine if any subroutine fails to inhibit MYC (state_0_score > 50%) in dynamic manner after 

treatment. It is interesting to note that, according to our prediction results, there are 3019 (around 

9.6% of the total) different subroutines in PI3K-AKT that will fail to inhibit MYC after treatment. 

Next, we are interested in how many subroutines in PI3K-AKT pathway could successfully inhibit 

MYC (state_1_score > 50%). Based on our prediction results, there are  28087 (around 89.1% of 

the total, 2.18 times of that before treatment) different subroutines that could inhibit MYC after 

treatment, 28018 of which can successfully inhibit MYC by inhibiting PI3K-AKT protein family 

that has been validated on exactly the same cell line (direct validation of up-regulation of PTEN) 

after reducing OTX2 level [22]. In the same work, it is also reported that OTX2 level is positively 

correlated with TGF-𝛽 signaling activity. Therefore, TGF-𝛽 signaling pathway should NOT have 

the capability to inhibit MYC after OTX2 silencing, and our results identify 47 (shrinks to 38.5% 

of that before treatment) subroutines from TGF-𝛽 pathway which could numerically inhibit MYC 

after treatment. All the computational details about these 2 pathways are presented in 

Supplementary Table S4. The detailed pre- and post-treatment comparisons are described in 

Table 2. 
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Table 2: Occurrence probabilities for those subroutines that either activate or inhibit MYC in different 
signaling transduction pathways according to KEGG pathway database before and after OTX2 inhibition.  

Pathway 
name 

Total # activated 
signaling subroutines 

targeting MYC 
before OTX2 

silencing 

Total # activated 
signaling 

subroutines 
targeting MYC 

after OTX2 
silencing 

Total # signaling 
subroutines that 
targeting MYC 
based on KEGG 

pathway database 

Occurrence 
probability before 

/ after OTX2 
silencing 

ERBB 5 8 960 5.2% / 8.3% 
MAPK 1252 3998 88498 1.4% / 4.5% 
WNT 29082 46 38336 75.9% / 0.1% 

HIPPO 8902 1987 16814 52.9% / 11.8% 
JAK-STAT 10356 493 16604 62.4% / 3% 

Pathway 
name 

Total # inhibited 
signaling subroutines 

targeting MYC 
before OTX2 

silencing 

Total #inhibited 
signaling 

subroutines 
targeting MYC 

after OTX2 
silencing 

Total # signaling 
subroutines that 
targeting MYC 
based on KEGG 

pathway database 

Occurrence 
probability before 

/ after OTX2 
silencing 

PI3K-AKT 12862 28087 31512 40.8% / 89.1% 
TGF-𝛽 122 47 270 45.2% / 17.4% 

 

Biological evaluation of dynamic model outputs ¾ Decreased upstream activation signaling 

(WNT, HIPPO and JAK-STAT) after OTX2 inhibition 

Even though the behaviors of subroutines that could activate MYC are not mentioned [22], 

we still investigate the simulated behaviors of those subroutines after OTX2 silencing in our study. 

MYC could be finally activated by different subroutines in ERBB, MAPK, WNT, HIPP, and JAK-

STAT signaling transduction pathways in the KEGG pathway database. In this sub-subsection, we 

will determine if all subroutines targeting the oncogene MYC in different signaling pathways are 

de-activated in time-dependent manner after OTX2 silencing. The evaluation criterion is for those 

subroutines that finally activate MYC, we check their occurrence frequencies in the activated states 

(state_1_score > 50%), and the occurrence probabilities before and after OTX2 silencing are 

summarized in Table 2 below. All aforementioned signaling pathways that could activate MYC 

show very low activation probabilities after OTX2 silencing (< 12%), therefore, it is fair to say 
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those signaling transduction pathways are de-activated after OTX2 silencing. All scored 

subroutines that finally activated MYC are attached in Supplementary Table S4. 

 

Hypothesize loop as the measurement of drug resistance evaluation and prediction 

In previous sub-sections, post-OTX2 silencing behaviors of different signaling pathways 

that could either activate or inhibit MYC are studied independently, and it is quite obvious that 

after OTX2 silencing, WNT, JAK-STAT, and HIPPO signaling pathways are strongly inhibited, 

but the MAPK pathway is more highly activated. This phenomenon shows that after effective 

treatments, some pathways which positively contributed to tumor development can definitely be 

suppressed, however, other similarly functioned (e.g. activating MYC) pathways could become 

even more activated. This motivates us to boldly hypothesize that the loop sub-structure which 

considers the crossing talking of various pathways concurrently should be considered as a 

reasonable explanation for drug resistance. Under our hypothesis, a treatment (drug / drug combo) 

is efficient when after treatment, the loop demonstrates stronger inhibition abilities to cell cycle 

and DNA replication related proteins. To clarify, when we apply loop to explain the drug resistance, 

we use the complete loop extracted from all KEGG pathways considered, not just the before-

treatment partial disease loop. 

 

Effective treatment validates loop hypothesis: except CDK1, all rest cell cycle proteins get 

inhibited after considering cross talk of multiple pathways. 

In the paper [23] (dataset GSE22875), different gene ontology (GO) [24] annotated gene 

sets related to cell cycle and DNA regulations are proven to be strongly down-regulated after 

silencing OTX2. Therefore, we first prove that biologically validated down-regulated genes in 
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dataset GSE22875 which also sat on the loop can be validated numerically for stable down-

regulation by considering the cross talk of multiple pathways and post-treatment time-series data. 

Next, we compare numbers of strong inhibition and activation shortest paths for the same set of 

cell cycle and DNA replication proteins between pre- and post-treatment conditions for Group 3 

type MBs under the loop hypothesis. The complete considered GO annotated gene sets and KEGG 

annotated cell cycle check points (only intersections with pathways mentioned ahead), and their 

topological distribution among the disease network are summarized in Supplementary Table S5. 

The computed loop inhibition and activation capabilities are presented in Supplementary Table 

S5. For dataset GSE22875, among the 33 cell cycle and DNA replication related proteins, mRNA 

expression level of CCND3, CDK2, E2F2/3 and MYC have been biologically validated to be 

strongly down-regulated, as are the protein levels of CCND3 and MYC [23]. When compared to 

the numerical simulation, all above mentioned proteins (100% agreements) are predicted to be 

consistently inhibited according to the mathematical assumptions embedded within the HMM 

algorithm. For one group 3 MB driver mutation gene MYC, when we were validating inhibition 

of MYC by considering individual KEGG pathways independently, it is interesting to note that 

there are still many different subroutines that have higher probabilities to activate MYC, but when 

finally merging into the loop structure which covers the cross talks between different signaling 

pathways presents much stronger global inhibition (948 V.S. 34) capability. Both strong successful 

inhibition and unsuccessful inhibition shortest paths in loop targeting MYC are presented in 

Supplementary Fig. S4. All strongly MYC successful and unsuccessful post-treatment inhibition 

subroutines (break into edges) are attached in Supplementary Table S6.  As aforementioned, after 

OTX2 silencing, the inhibited PI3K-AKT pathway activity reports its indirect (directly related to 

PTEN) contribution to tumor suppression. Therefore, the other exciting find is that even under 
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really high average threshold 0.95, multiple PPIs from the PI3K-AKT pathway do appear as 

strongly successful inhibition subroutines. 

To further illustrate the loop hypothesis, comparison analyses analogous to Table 2 are 

performed for the same set of cell cycle and DNA replication proteins by considering the 

integrative cross talk of various signaling transduction and cellular process pathways under both 

before and after treatment conditions. Specifically, Table 3 presents numbers of strong inhibition 

and activation shortest paths targeting representative cell cycle phase check points for both before 

and after treatments for comparison. The complete comparisons for all GO and KEGG annotated 

cell cycle and DNA replication proteins are listed in Supplementary Table S5. 

Table 3: Comparison of numbers of strong (average path score > 0.95) inhibition and activation shortest 
paths for representative cell cycle phase check points between before and after treatments conditions for 
Group 3 subtype MBs under the loop hypothesis (considering cross talk of multiple pathways instead). 

# of Inhibition shortest paths / # of Activation shortest paths (Group 3 MBs) 
Gene Symbol Before Treatment After Treatment 

MYC 2 / 517 948 / 34 
CDK1 47 / 2787 138 / 2028 
CDK2 549 / 248 993 / 2 
CDK4 0 / 3206 374 / 49 
CDK6 150 / 0 3 / 2 

CCNA1 0 / 666 158 / 0 
CCNA2 0 / 1331 597 / 0 
CCNB1 1925 / 5 355 / 129 
CCNB2 1925 / 4 355 / 197 
CCND1 810 / 246 1573 / 37 
CCND2 732 / 693 455 / 126 
CCND3 624 / 0 977 / 35 
CCNE1 537 / 572 1982 / 0  
CCNE2 0 / 881 599 / 3 
E2F2 1013 / 0 1376 / 218 
E2F3 0 / 3143 1381 / 216 
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Ineffective treatments validate loop hypothesis: most cell cycle proteins fail to be inhibited 

after considering cross talk of multiple pathways. 

The computed dynamic PPI probabilities for GSE77042 are based on treatments with doses 

= 40 and 80 mg/kg once a day. According to biological experiments, MK-4101 treatments with 

doses of both 40 and 80 mg/kg each day failed to inhibit tumor growth (see Fig. 1B and C in [25]). 

Gene expression analysis in Fig. 5D in [25] concluded the same: at doses = 40 and 80 mg/kg each 

day, cell cycle related genes do not present strongly stable inhibited evidence at all in time evolved 

manner. When comparing with simulation results, for genes related to G1-S transitions, the loop 

presents much higher activation capabilities than most representative proteins. The loop with dose 

= 80 mg/kg once a day illustrates much stronger inhibition impact compared that with dose 40 

mg/kg once a day (most blue squares are above red triangles, see Supplementary Fig. S5). Similar 

trends have been shown in other biological experimental results, e.g., tumors treated with 80 mg/kg 

once a day present lower tumor volume growth rate and mice body weight change compared with 

those treated with 40 mg/kg once a day. Similarly, for dataset GSE77042, the comparison of 

numbers of strong inhibition and activation paths for representative cell cycle check points 

between before and after treatment conditions are presented in Table 4, and the more detailed 

information are attached in Supplementary Table S5.  

For effective treatments (see Table 3), except CDK1, the post-treatment loop presents 

much stronger inhibition capabilities to all the rest cell cycle check point proteins compared to 

activation capabilities. For most cell cycle check point proteins, sharp contrasts between inhibition 

and activation capabilities can be directly observed when comparing pre-treatment and post-

treatment loops. However, for ineffective treatments (see Table 4), for most cell cycle check point 

proteins, there are no inhibition and activation capabilities differences between pre-treat and post-

treat loops, and all three loops present much stronger activation capabilities. The loop 
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state_0_score and state_1_score for both Group 3 and SHH MBs under pre- and post-treatment 

conditions are attached in Supplementary Table S6 as well. 

Table 4: Comparison of numbers of strong (average path score > 0.95) inhibition and activation shortest 

paths for representative cell cycle phase check points between before and after treatments conditions for 
SHH subtype MBs under the loop hypothesis (considering cross talk of multiple pathways instead). 

# of Inhibition shortest paths / # of Activation shortest paths (SHH MBs) 

Gene Symbol Before Treatment After Treatment (dose = 
40 mg/kg) 

After Treatment (dose = 
80 mg/kg) 

CDK1 107 / 530 0 / 17 0 / 1593 
CDK2 0 / 455 57 / 1544 0 / 0 
CDK4 0 / 1928 85 / 2074 99 / 164 
CDK6 0 / 1915 86 / 1552 99 / 159 

CCNA1 0 / 215 61 / 985 52 / 1 
CCNA2 0 / 401 370 / 1190 52 / 0 
CCNB1 409 / 28 0 / 0 0 / 22 
CCNB2 409 / 4 1491 / 1 767 / 22 
CCND1 222 / 103 1397 / 253 1130 / 58 
CCND2 216 / 537 1072 / 324 616 / 125 
CCND3 49 / 3 1002 / 1725 361 / 87 
CCNE1 0 / 521 608 / 1542 789 / 0 
CCNE2 0 / 507 375 / 1208 14 / 0 
E2F2 220 / 0 1 / 1980 0 / 33 

E2F3 0 / 1292 177 / 1980 0 / 33 
 

Both pre- and post-treatment loops present unique set of strongly “activated” and “de-

activated” loop edges. 

After validating and explaining the loop theory, the more interesting subsequent question 

is: what is the difference between pre- and post- treatment loops? This question will be addressed 

firstly by considering both strongly “activated” and “de-activated” (here, strongly “activated” here 

means state_1_score > 0.9, and strongly “de-activated” equals state_0_score > 0.9) edges within 

the same loop under pre and post-treatment conditions. Different comparison results with threshold 
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= 0.9 are presented in Supplementary Table S7. The corresponding pie chart plot is attached as 

Fig. 3A. First, it is interesting to note that despite considering strongly “activated” or “de-activated” 

edges, both have around half (50%) of themselves exclusively, i.e., a unique set of strongly de-

regulated loop edges before treatment and simultaneously another unique set of strongly de-

regulated loop edges after treatment exist. This echoes with what we stressed before when 

validating the loop hypothesis: we should consider the full complete loop, not any other partial 

structures, since it is nonsensical to assume that after treatment, only the loop sub-structure which 

is closely related to the disease pre-treatment loop gets strongly influenced. Importantly, 41.8% of 

“activated” and 4.8% of “de-activated” pre-treatment loop edges switch to opposite original status 

after treatment, but 5.4% of “activated” and 36.7% of “deactivated” pre-treatment loop edges keep 

their original status. All these observations and cross verifications demonstrate that the loop theory 

should be considered as a very important tool capable of characterizing the drug effects and 

forecasting drug resistance. 

 

Comparisons of pathway engagements under pre and post-treatment conditions: almost all 

pathways present much stronger capabilities in inhibiting all cell cycle related proteins. 

In this sub-section, comparison of pathway engagements in either activating or inhibiting 

cell cycle and DNA replication proteins under both pre- and post-treatment conditions will be 

evaluated, respectively. For each cell cycle and DNA replication related proteins, similar analyses 

with different comparisons will be performed individually for each pathway. Tabular analysis 

results are collected in Supplementary Table S7 (sheets with format = “protein_STAT”), a more 

intuitive MYC graphical presentation is attached below (see Fig. 3B), and the remaining 

representative graphical representations are plotted in Fig. 4A, 4B and 4C. All cell cycle and DNA 

replication proteins’ successful and unsuccessful activation and inhibition loop edges with 
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pathway annotations are attached in Supplementary Table S7 (sheets with format = 

“protein_LOOP_EDGES”). Strikingly, for all cell cycle and DNA replication related proteins, 

almost all pathways present much stronger inhibition and much weaker activation capabilities after 

effective treatment. 

 

Discussion and Conclusions 

In this paper, we hypothesize that the signaling loop sub-structures embedded in the PPI 

network in regulating driver mutation genes, cell cycle and DNA replication genes can be used as 

a tool to interpret and predict drug resistance. Both static and dynamic (HMM) models with newly 

designed initialization scheme which infer PPI static and dynamic activity probabilities separately 

are proposed to facilitate hypothesis validation and explanation. The HMM dynamic model with 

this newly designed initialization scheme presents promising stability and accurateness under both 

numerical and biological examinations and multiple datasets. This initialization scheme should 

work quite well for other datasets as well. The loop hypothesis is validated by multiple 

comparisons, i.e., comparisons between pre- and post-treatments, efficient and ineffective 

treatments. The signaling loop presents sharp contrasts (see Table 3) in regulating cell cycle and 

DNA replications proteins when compared between pre- and post-effective-treatments, however, 

when treating with ineffective options, the loop presents no apparent regulating capability 

difference for partial or most of the cell cycle and DNA replication proteins (see Table 4). 

Furthermore, with further investigation, it is very exciting to observe that almost all pathways 

within the loop play a larger role in controlling each cell cycle and DNA replication protein. Also, 

when comparing the pre and post-effective treatment loops, we find that partial previously highly 

activated loop edges are successfully de-activated after effective treatments, however, it is also 

shown that both pre and post-effective treatment loops have around half of their loop edges either 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 5, 2019. ; https://doi.org/10.1101/561076doi: bioRxiv preprint 

https://doi.org/10.1101/561076
http://creativecommons.org/licenses/by-nc-nd/4.0/


highly activated or de-activated exclusively, and this provides rationale for working with the 

complete loop-substructure embedded in the PPI network, rather than just focusing on a partial 

loop which is only related to disease network (before treatments). Unfortunately, we must point 

out that the due to the limited availability of public medulloblastoma data, we could not find the 

RNA expression data for both group 3 medulloblastoma cell line D425 and the control normal 

cerebellum samples from the same platform. Similar embarrassment holds for dataset GSE77042 

as well, so we use different patients’ samples instead as the input for the static model in order to 

present the comparison. In future work, the accuracy of the static model may improve with the 

incorporation multiple types of data (mutation, methylation, etc.), and the consideration of more 

pathways with other functionalities (e.g., metabolism). Lastly and most importantly, promising 

single drug and drug combination prediction algorithms which take drug resistance as one of the 

most important drug effect indicators will be developed based on the loop hypothesis in future.  
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Figures 

Figure 1: Larger yellow genes are reported therapeutic targets. Signaling interactions from different 

pathways are indicated with different colors. Dashed and solid lines denote the failure and successful 

occurrence of the provide PPIs, respectively. (A): Core signaling network and signaling loops of WNT 

MB. Color schemes: blue (MTOR only), red (PI3K-AKT only), green (CAMP only), purple (JAK-STAT 

only), orange (HIPPO only), pink (APELIN only), light blue (TGF-BETA only), dark yellow (MAPK 

only), and black (shared by multiple pathways). (B): Core signaling network and signaling loops of SHH 

MB. Color schemes: blue (Sphingolipid only), red (MAPK only), green (PI3K-AKT only), purple 

(APELIN only), orange (MTOR only), pink (CAMP only), light blue (AMPK only), dark yellow (TNF 

only), and black (shared by multiple pathways). (C): Core signaling network and signaling loops of 

Group 3 MB. Color schemes: blue (MAPK only), red (CAMP only), green (RAS only), purple (RAP-1 

only), orange (PI3K-AKT only), pink (APELIN, Apoptosis, and Necroptosis only), light blue 

(Phospholipase D, NF-kappa_B, and CALCIUM), dark blue (AMPK and HIPPO), light green (TNF 

only), grey (HIF-1 only), dark yellow (MTOR and WNT only), and black (shared by multiple pathways). 

(D): The Venn diagram for 3 MB subtypes’ loop edges with highest subroutine threshold 0.9. 
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Figure 2: The comparisons of computed likelihoods with different initialization schemes for all activation 

PPI types of relations. Among the total 11774 activation edges considered, for (A): dataset GSE22875, 

dataset GSE77042 with (B): dose 40 mg/kg and with (C): dose 80 mg/kg, the computed maximum 

likelihoods of 10976 (93.2%), 11336 (96.3%), and 11272 (95.7%) activation edges by the new 

initialization scheme have the normalized likelihood (= computed_likelihood_by_scheme X/ 

computed_likelihood_by_random_initialization) > 0.9. Scheme X could be new initialization scheme, and 

new initialization scheme after one iteration. (D): comparison of computational times is presented, and for 

each type of PPI, the new initialization scheme costs only 1/7 of the time that it would take if starting with 

50 random initializations. 
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Figure 3: (A): Visualized comparisons between pre and post-treatment loops (threshold = 0.9). (B): 

Comparisons of pathway engagements in regulating MYC when considering both pre and post-treatment 

conditions. “Success” is defined as successful inhibition + unsuccessful activation and “Failure” is defined 

as successful activation + unsuccessful inhibition. 
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Figure 4: Comparisons of pathway engagements in regulating (A): CDK4 (left) and E2F3 (right), (B): 

CCNA1 (left) and CCNB1 (right), (C): CCND3 (left) and CCNE2 (right), when considering both pre and 

post-treatment conditions. “Success” is defined as successful inhibition + unsuccessful activation and 

“Failure” is defined as successful activation + unsuccessful inhibition. 
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Supplementary Figures 

Supplementary Figure S1: The comparisons of computed likelihoods with different initialization schemes 

for all inhibition PPI types of relations. Among the total 2214 inhibition edges considered, for (A): dataset 

GSE22875 , dataset GSE77042 with (B): dose 40 mg/kg and with (C): dose 80 mg/kg, the computed 

maximum likelihoods of 2025 (91.5%), 2056 (92.9%), and 2087 (94.3%) inhibition edges by the new 

initialization scheme have the normalized likelihood (= computed_likelihood_by_scheme X/ 

computed_likelihood_by_random_initialization) > 0.9. Scheme X could be new initialization scheme, and 

new initialization after one iteration.  
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Supplementary Figure S2: The comparisons of computed likelihoods with different initialization schemes 

for all binding PPI types of relations. Among the total 1064 binding edges considered, for (A): dataset 

GSE22875, dataset GSE77042 with (B): dose 40 mg/kg and with (C): dose 80 mg/kg, the computed 

maximum likelihoods of 997 (93.7%), 1018 (95.7%), and 1019 (95.8%) binding edges by the new 

initialization scheme have the normalized likelihood (= computed_likelihood_by_scheme X/ 

computed_likelihood_by_random_initialization) > 0.9. Scheme X could be new initialization scheme, and 

new initialization scheme after one iteration. 
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Supplementary Figure S3: The comparisons of computed likelihoods with different initialization schemes 

for all dissociation PPI types of relations. Among the total 22 dissociation edges considered, for (A): dataset 

GSE22875, dataset GSE77042 with (B): dose 40 mg/kg and with (C): dose 80 mg/kg, the computed 

maximum likelihoods of 22 (100%), 21 (95.5%), and 22 (100%) dissociation edges by the new initialization 

scheme have the normalized likelihood (= computed_likelihood_by_scheme X/ 

computed_likelihood_by_random_initialization) > 0.9. Scheme X could be new initialization scheme, and 

new initialization scheme after one iteration. 
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Supplementary Figure S4: High (score > 0.95) inhibition (green) and activation (red) shortest paths to 

MYC. White background nodes are rest loop nodes. Enlarged purple node is gene MYC, enlarged light 

green boarded nodes are proteins that on paths which presents stronger inhibition capabilities to gene MYC 

only, enlarged light red boarded nodes are proteins that on paths which presents stronger activation 

capabilities to gene MYC only, and enlarged light blue boarded nodes are proteins that on paths which 

presents both strong inhibition and activation capabilities to gene MYC. 
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Supplementary Figure S5: Normalized capability difference = [inhibition score – activation score] / max 

[inhibition score, activation score] between representative cell cycle related proteins. 
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