
Reconstruction of clone- and haplotype-specific cancer genome
karyotypes from bulk tumor samples

Sergey Aganezov1,2 and Benjamin J. Raphael1,*

1Department of Computer Science, Princeton University, Princeton, NJ 08540
2Present affiliation: Department of Computer Science, Johns Hopkins University, Baltimore, MD 21218

*Correspondence: braphael@princeton.edu

Abstract
Many cancer genomes are extensively rearranged with highly aberrant chromosomal karyotypes. These genome

rearrangements, or structural variants, can be detected in tumor DNA sequencing data by abnormal mapping of se-
quence reads to the reference genome. However, nearly all cancer sequencing to date is of bulk tumor samples which
consist of a heterogeneous mixture of normal cells and subpopulations of cancers cells, or clones, that harbor distinct
somatic structural variants. We introduce a novel algorithm, Reconstructing Cancer Karyotypes (RCK), to reconstruct
haplotype-specific karyotypes of one or more rearranged cancer genomes, or clones, that best explain the read align-
ments from a bulk tumor sample. RCK leverages specific evolutionary constraints on the somatic mutation process
in cancer to reduce ambiguity in the deconvolution of admixed DNA sequence data into multiple haplotype-specific
cancer karyotypes. In particular, RCK relies on generalizations of the infinite sites assumption that a genome re-
arrangement is highly unlikely to occur at the same nucleotide position more than once during somatic evolution.
RCK’s comprehensive model allows us to incorporate information both from short and long-read sequencing tech-
nologies and is applicable to bulk tumor samples containing a mixture of an arbitrary number of derived genomes.
We compared RCK to the state-of-the-art method ReMixT on a dataset of 17 primary and metastatic prostate can-
cer samples. We demonstrate that ReMixT’s limited support for heterogeneity and lack of evolutionary constrains
leads to reconstruction of implausible karyotypes. In contrast, RCK’s infers cancer karyotypes that better explain read
alignments from bulk tumor samples and are consistent with a reasonable evolutionary model. RCK’s reconstructions
of clone- and haplotype-specific karyotypes will aid further studies of the role of intra-tumor heterogeneity in cancer
development and response to treatment. RCK is available at https://github.com/raphael-group/RCK.

1 Introduction
The somatic mutations that drive cancer development range across all genomic scales, from single nucleotide mutations
through large-scale genome rearrangements [54, 20, 58, 47]. Whole-genome sequencing of tumor samples has enabled
the detection of all classes of somatic mutations; however, specialized algorithms are required to identify each class of
mutations from the short DNA sequence reads obtained by current technologies [31, 37, 28, 49, 30, 60]. In addition,
nearly all cancer sequencing to date has been of bulk tumor tissue, which is generally a mixture of normal (non-
cancerous) cells and (sub)populations of cancerous cells, or clones, that often are not genetically identical. Quantifying
this intra-tumor heterogeneity is essential for understanding the processes that drive cancer development and also helps
inform treatment strategies [2, 44, 34].

Here we consider the problem of describing the large-scale organization of one or more cancer genomes that are
derived form a normal human reference genome via large-scale rearrangements. The large-scale organization of a
cancer genome is described by two features. First, is the number of copies of each segment of the genome. Many
methods (e.g. [57, 9, 7, 40, 24, 19, 43, 63]) have been developed to identify copy number values for heterogeneous,
bulk tumor samples. Second, are genome rearrangements (e.g. chromosomal inversions and translocations) that link
together distant segments of the normal genome. Many methods have been developed to predict such novel adjacencies

(e.g. [51, 48, 30, 10, 60, 49, 16, 52, 66, 50, 27, 17]. However, these methods do not distinguish between adjacencies
from different homologous chromosomes or from different cancer clones within a bulk sample; i.e. they assume the
human genome is haploid reference and that the tumor is homogeneous.
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A more challenging problem is to combine and reconcile the information about segment copy numbers and novel
adjacencies into genome karyotypes, or the alignment of cancer genome and the healthy genome that depicts the
number of occurrences of every segment in the cancer genome, and the adjacencies between these segments on the
cancer genome. Multiple methods have been developed to solve some variations of this cancer genomes karyotype
reconstruction problem including [42, 32, 46, 35, 14, 11, 15]. However, each of these methods rely on simplifying as-
sumptions that do not adequately address the challenges in real cancer sequencing data. For example, SVclone [11]
focuses solely on inferring genome-specific copy numbers for novel adjacencies, without attempting to reconstruct
complete karyotypes of the derived genomes. PREGO [42] and Karyotype Reconstruction [15] assume that
the human reference genome is haploid, thus losing important information about alleles involved in rearrangements.
Weaver [32, 46] assumes that the cancer sample contains only a single derived genome (with a possible admixture of
the reference genome), and lacks a proper support of reciprocal novel adjacencies, which can emerge both from copy
number neutral somatic rearrangements (e.g., inversions, balanced translocations, etc), as well as from more complex
“catastrophic rearrangements” such as chromoplexy and chromothripsis [53, 6, 26, 4, 61, 41]. ReMixT [35] allows
for tumor heterogeneity, but fixes the number of derived genomes in the observed cancer sample to 2. Moreover, while
ReMixT aims to infer genome- and allele-specific segment copy numbers for a 2-genome sample (with a possible
admixture of the reference genome), the genome-specific copy numbers for novel adjacencies that are inferred by
ReMixT lack information about which homologous copies of the segments are actually involved in observed novel
adjacencies. Lastly, Weaver, and ReMixT produce karyotypes with biologically unlikely scenarios where rearrange-
ments occur repeatedly at the same homologous loci in different cancer clones. We summarize these limitations of
existing methods in Table S1.

Here we propose a novel algorithm, Reconstructing Cancer Karyotypes (RCK), for deriving the karyotypes of can-
cer genomes in a heterogeneous tumor sample from next-generation (and 3rd-generation, when available) sequencing
data. RCK distinguishes itself from existing methods by several features including: (i) support for diploid reference
genome distinguishing between alleles of segment copy numbers and novel adjacencies (ii) joint inference of both
segment and adjacency copy numbers in both clone- and haplotype-specific fashion; (iii) comprehensive support for
sample heterogeneity ranging from homogeneous samples with a single derived genome to heterogeneous samples
with an arbitrary number of clones; (iv) enforcement of somatic evolutionary constraints on all genomes within a sam-
ple; (v) unique ability to incorporate groups of novel adjacencies from 3rd-generation sequencing technologies into
the inference model. We demonstrate the advantages of RCK by comparing its performance to ReMixT on a dataset of
17 primary and metastatic prostate cancer samples. We find that RCK infers more plausible karyotypes that conform to
an evolutionary model and have allele-specific segment copy numbers that agree with leading copy number inference
algorithms.

2 Results
2.1 RCK algorithm
We introduce Reconstructing Cancer Karyotypes (RCK), an algorithm to construct the large-scale organization of one
or more cancer genomes present in a bulk tumor sample. Each cancer genome in the sample arises from a sequence
of somatic genome rearrangements and copy number number aberrations that transform a healthy normal genome
into a cancer genome. As a result of these somatic mutations, each cancer genome can be represented as a karyotype

graph – or more briefly a karyotype. A karyotype graph includes: (1) a collection of contiguous segments from
the human reference genome, each segment with a label (A or B) distinguishing the two homologous chromosomes;
(2) an integer copy number for each segment; (3) a collection of adjacencies that join the ends of segments; (4) an
integer copy number for each adjacency. The karyotype graph describes an alignment between the cancer genome and
healthy genome (analogous to the breakpoint graph [1, 3] in genome rearrangement studies). The karyotype graph also
represents the information about the cancer genome sequence that can be inferred from DNA sequencing technologies
whose reads lengths are shorter than the length of genome rearrangements.

RCK solves the following Cancer Karyotype Reconstruction Problem: given allele-specific segment copy numbers
and a list of novel adjacencies (i.e. pairs of genomic loci that are measured as adjacent in the cancer genome, but
distant in the normal reference) from a bulk tumor sample, derive karyotype graph(s) for the cancer genome(s) present
in the tumor sample. Several challenges emerge in the development of an algorithm to solve this problem. The first
challenge is that the many methods for inferring allele-specific copy numbers from bulk tumor sequencing data (e.g.
[57, 9, 7, 40, 24, 19, 35, 63]) do not preserve the allelic information across multiple adjacent segments. Specifically,
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Figure 1: Overview of the RCK algorithm. Read alignments from bulk tumor sample are input to existing algorithms
to identify clone- and allele-specific segment copy numbers (left) and novel adjacencies (right). The RCK algorithm
(blue shaded elements) builds a diploid interval adjacency graph integrating copy number and novel adjacency infor-
mation. RCK solves an mixed-integer linear program (MILP) that finds an optimal assignment of copy numbers and
novel adjacencies to alleles and clones, subject to copy number balance on segment ends and satisfying evolutionary
constraints from a generalized infinite sites model. Constraints on groups of novel adjacencies from the 3rd generation
sequencing technologies may optionally be included. The output of RCK are clone- and haplotype-specific cancer
genome karyotypes.
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these methods output a pair of copy number vectors, öc = [öc1, öc2,… , öc
m
] and úc = [úc1, úc2,… , úc

m
], where the pair

(öc
j
, úc

j
) À N2 indicates the number of copies of each of the two homologous copies of segment j from the reference

genome that are present in the cancer genome. However, each of these pairs are unordered: it is not known whether öc
j

is the number of segment from the maternal chromosome or the paternal chromosome; moreover, the identification of
öc
j

as maternal or paternal is independent for each j.
The second challenge results is that the many methods for inferring novel adjacencies from bulk tumor sequencing

data [51, 48, 30, 10, 60, 49, 16, 52, 66, 50, 27, 17] generally do not include two important attributes in their output:
(i) the alleles (maternal or paternal) that are joined by the adjacency; (ii) the copy number(s) of the adjacency in
each genome in the sample. Because of this incomplete information in the allele-specific copy numbers and novel
adjacencies, cancer genome karyotypes are not directly available.

RCK derives optimal cancer genome karyotype(s) from allele-specific copy numbers and novel adjacencies by
solving an optimization problem on a graph, called the Diploid Interval Adjacency Graph (DIAG) (Figure 1). The
vertices of the DIAG are extremities, or the positions in the human reference genome of the endpoints of the segments
that are rearranged to form the cancer genomes present in the sample. Specifically, we enumerate the segments of the
reference genome 1,… ,m. Each segment j has the form j

H
= [jt

H
, j

h

H
], where j

t

H
and j

h

H
are extremities. The label

t indicates that the extremity is the tail, or starting coordinate of the segment in the reference genome, while the label
h indicates the head, or ending coordinate in the reference genome. A haplotype label H À {A,B} indicates which
copy of the two homologous chromosomes in the reference (A or B) is the source of the segment. Adjacent extremities
of consecutive segments that follow each other along the chromosome in the genome constitute an adjacency. We
distinguish between two types of adjacencies: reference adjacencies that are present in the reference genome, and novel

adjacencies that are not present in the reference genome. Thus, the DIAG has three types of edges: (1) segment edges

{jt
H
, j

h

H
} join extremities from a segment; (2) reference adjacency edges {jh

H
, (j + 1)t

H
} join extremities of adjacent

segments on the reference genome; (3) novel adjacency edges {j�
H
, k

�
®

H ®}, where H ,H
® À {A,B}, and �, �

® À {t,h}.
Importantly, since a measured novel adjacency a = {j� , k�®} does not generally include allelic information, we add
all 4 possible labeled versions of the adjacency ({j�A , k�

®
A }, {j�A , k�

®
B }, {j�B , k�

®
A }, and {j�B , k�

®
B }) to the DIAG.

A chromosome in the cancer genome corresponds to a walk in the DIAG that alternates between segment edges
and reference/novel adjacency edges, and where the number of times every segment/adjacency edge is visited encodes
the respective segment/adjacency copy number (see Methods 4.2). Thus, all vertices (except telomere vertices) should
satisfy the copy number balance condition: the copy number of the incident segment edge equals the sum of the copy
numbers of the incident reference edge and novel adjacency edge(s).

The Cancer Karyotype Reconstruction Problem thus can be formulated as the problem of finding an edge mul-
tiplicity �

G
(e) for each edge e and each cancer genome G such that: (i) each extremity (vertex v) satisfies the copy

number balancing conditions (Equations (9), (10) in Methods); (ii) the copy numbers �
G
(j
A
) and �

G
(j
B
) of homol-

ogous segments j
A

and j
B

are approximately equal to the allele-specific copy numbers (öc
j

and úc
j
); (iii) most of the

novel adjacencies are present in at least one genome (i.e. �
G
(e) g 0 for novel adjacency edge e in at least one genome

G).
A major difficulty with the above formulation of the Cancer Genome Karyotype Reconstruction Problem is that

there are often numerous solutions, many of which are biologically implausible. Considerable ambiguity arises from
the lack of A/B labels on the measured novel adjacencies. The lack of allelic label means that each measured novel
adjacency corresponds to 4 edges in the DIAG. However, selecting one of these four possible allele-specific novel
adjacencies independently for each measured novel adjacency is unwise. Rather, the somatic evolutionary process
imposes several constraints on the possible structures of inferred karyotypes. In particular, we derive conditions on
allowed novel adjacencies from the infinite sites (IS) assumption commonly used in evolutionary studies. The infinite
sites assumption is that a mutation does not occur at the same locus more than once during the course of evolution.
The locus of a single-nucleotide mutation is readily defined as a genomic position. However, the locus for a large-
scale genome rearrangement is not apparent, and could be defined as either (or both) of the genomic positions of the
extremities in the adjacency as well as adjacent genomic positions of “reciprocal" extremities. We define multiple
constraints on the extremities that may be involved in novel adjacencies (Figure 1). These constraints generalize
the infinite sites assumption to the case of multiple genomes that are derived from a diploid reference genome by
a sequence of large-scale genome rearrangements. First, extremity-exclusivity is the constraint that an extremity
is involved in at most one novel adjacency. Second, homologous-extremity-exclusivity is the constraint that an
extremity and its homolog cannot both be involved in a novel adjacency. Third, homologous-reciprocal-extremity-
exclusivity is the constraint that an extremity and its reciprocal mate of the homologous chromosome cannot both
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be involved in a novel adjacency. All of these constraints are natural generalizations of the infinite sites assumption;
however, they have not been distinguished consistently in previous publications (See Methods). As a result, previous
methods can yield implausible genome reconstructions, as we will demonstrate below.

RCK solves the optimization problem of finding edge multiplicities �(e) satisfying conditions (i), (ii), and (iii)
above and also where the novel adjacencies inferred to be present (�

G
(e) > 0) satisfy the generalized infinite sites

constraints jointly across all clones. We solve this problem using a mixed-integer linear program (see Supplement
S2.2). RCK also allows for grouping of novel adjacencies that are measured to be present on the same cell or longer
read when such information is available from 3rd generation sequencing technologies (e.g. single cell sequencing,
linked read sequencing [66, 52, 16], or long read sequencing [49, 17, 50, 27]). See Methods 4.4 for further details.

2.2 Evaluation and comparison of RCK
We compare RCK to ReMixT, the only other existing method which both derives multiple tumor clones from bulk
sequencing data and distinguishes between homologous chromosomes. ReMixT takes read alignments and novel
adjacencies as input and infers clone- and allele-specific copy numbers for segments, as well as clone-specific copy
numbers for novel adjacencies. Importantly, ReMixT does not infer haplotype A/B labels for the extremities that
are involved in each novel adjacency. We will show below that this lack of assignment of each novel adjacency to a
homologous chromosome leads to unusual genome reconstructions in many cases.

2.2.1 Data processing

We analyze a cancer sequencing dataset from Gundem et al. [23], which consists of whole-genome sequencing data
from 49 samples from 10 metastatic prostate cancer patients. Segment copy numbers inferred by Battenberg [40]
were obtained from the publication [23] and read alignments for every sample were obtained from the authors. For
each sample, Battenberg output includes: (i) the number of clones; (ii) allele-specific copy numbers for each
genomic segment in each clone; (iii) the occurrence of a whole genome duplication (WGD) when reported tumor
ploidy > 3. We also used HATCHet [63], a recently developed algorithm that infers allele-specific copy numbers
for one or more cancer clones as well as the presence of WGD by joint analysis of multiple sequenced samples from
the same patient. We considered the 17 samples where both Battenberg and HATCHet agreed on the number of
clones present.

For novel adjacencies, we used the predictions from brass2 (https://github.com/cancerit/BRASS),
which we obtained from the the original publication [23]. brass2, like most methods that identify novel adjacen-
cies from aligned DNA sequence reads, has some uncertainty in the exact genomic coordinate involved in a novel
adjacency. This uncertainty can be an issue when determining whether an adjacency is part of a reciprocal event (e.g.
inversion or reciprocal translocation). Thus, we adjusted the coordinates of extremities to obtain refined coordinates
for loci involved in reciprocal novel adjacencies. For RCK, we also aligned the positions of extremities of segments
from Battenberg or HATCHet to the positions of extremities from novel adjacencies determined by brass2. See
Methods 4.6 for further details.

We divided the cancer samples into two groups according to the number of tumor clones predicted by both
Battenberg and HATCHet: homogeneous samples containing only one tumor clone (samples A21g, A21h, A24c,
A24d, A24e, A34a, A34c, A34d); and heterogeneous samples containing two tumor clones (samples A10c, A12c,
A12d, A17d, A31a, A31d, A31e, A31f, A32e). Notably, there was only one sample (A12c) where Battenberg
and HATCHet disagreed on the presence of a WGD.

For each sample, we ran RCK requiring that: (1) the only telomeres in the inferred cancer genomes are telomeres
from the reference genome (i.e. extremities that are not the endpoints of reference chromosomes have copy number
balance); (2) at least a fraction P of the input novel adjacencies are present in at least one of the derived genomes in a
sample, for P = 1.0, 0.9, 0.75, 0.5. ReMixT does not allow control over telomeres or the fraction of novel adjacencies,
and thus we ran ReMixT using default parameters.

2.2.2 Heterogeneous tumor samples

We first compared the allele-specific segment copy numbers inferred by ReMixT and the haplotype-specific seg-
ment copy numbers inferred by RCK to the allele-specific copy numbers from HATCHet and Battenberg, using
a length-weighted segment copy number distance (equation (15) in Methods). We found that in all but two cases
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Figure 2: A) Length-weighted segment copy number distances (eq. (15)) between segment copy numbers from
HATCHet and segment copy numbers output by ReMixT and RCK. B) Fractions of novel adjacencies (NAs) from
input that are inferred to be present by ReMixT or RCK for each sample in the heterogeneous group. RCK used
segment copy numbers from HATCHet in input and novel adjacency utilization parameter P = 1.0, 0.9, 0.75, 0.5.

(samples A10c and A12c with a NAs utilization parameter P = 1.0), the segment copy numbers inferred by RCK
are more similar to the copy numbers from HATCHet (Figure 2A) and Battenberg (Figure S2A). We also ob-
served that RCK’s ability to control the fraction of input novel adjacencies that are required to be utilized in the
inferred karyotype (Methods 4.3, 4.5) allows for more plausible reconstructions: the distance between input copy
numbers is largest when we require RCK to use all novel adjacencies, but the distance decreases and stabilizes when a
small fraction of novel adjacencies are excluded (P f 0.9). We note that the largest distances between ReMixT and
HATCHet (or Battenberg) inferred copy numbers are on four samples (A31a, A31d, A31e, and A31f) where
both Battenberg and HATCHet inferred a WGD. In these four samples, the high segment copy number values
output by ReMixT also suggest many copy number changes; however, the large distances indicate that these inferred
copy numbers may not align well with copy numbers expected from a WGD.

We next compared the fraction of input novel adjacencies that were contained in the genomes reconstructed by
ReMixT and RCK. This value ranged from 0.75 to 0.92 for ReMixT (Figure 2B). In contrast, for RCK fraction of
utilized input novel adjacencies ranged from 0.5 to 1.0 with its lower bound explicitly controlled via the P parameter.
We observe that RCK frequently utilizes more novel adjacencies than the minimum required (value of P). This occurs
on 6/9 cancer samples (A10c, A31a, A31d, A31e, A31f, A32e) with HATCHet copy numbers and P = 0.75,
P = 0.5, and 5/9 samples with Battenberg input. RCK’s incorporation of novel adjacencies at a higher proportion
than the minimum required fraction P suggests that RCK is selectively including those novel adjacencies required to
achieve copy number balance.

Next, we analyzed the structure of karyotypes inferred by each method. Since ReMixT does not output A/B
labels for extremities involved in novel adjacencies, we investigated whether it was possible to derive A/B labels
on ReMixT adjacencies to produce reasonable cancer genomes that would allow for a copy number balance/excess
on the extremities of segments and comply with generalized IS constraints. We first observed that the karyotypes
reconstructed by ReMixT had a large number of extremities that are not telomeres in the reference and have copy
number excess (ranging from 41 to 133 per genome), corresponding to a large number of novel telomeres (Figure S1).
Such karyotypes correspond to unlikely cancer genomes having dozens or even hundreds of linear chromosomes with
novel telomeres, in addition to ~46 (~92 in WGD samples) derived linear chromosomes with reference telomeres. In
contrast, the RCK results reported here use only reference telomeres and thus the karyotypes have at most 48 (89 in
WGD samples) linear chromosomes in total.

We examined the frequency of violations of the generalized IS constraints. By construction, RCK karyotypes have
no such violations. In contrast, we identified three types of violations of generalized IS conditions in the ReMixT
karyotypes. The first is an intra-genome violation of the homologous-extremity-exclusivity constraint. This violation
occurs when the inferred segment copy numbers require that a novel adjacency a be assigned both a label A and a label
B in order to achieve copy number balance (Figure 3A). This situation requires that at least two large-scale somatic
rearrangements occur independently at the same genomic position on both homologous chromosomes, which is highly
unlikely. We find that karyotypes reconstructed by ReMixT contain such violations in 6/9 samples, ranging from 1 to
8 violations per genome, and from 1 to 12 violations per sample ( Figure 3B).

The second type of violation is an inter-genome violation of the homologous-extremity-exclusivity constraint.
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Figure 3: ReMixT karyotypes from the heterogeneous group of metastatic prostate cancer samples have numerous
violations of the generalized IS constraints. In graph panels A), C), and E) solid edges represent segment edges,
black-dashed edges represent reference adjacency edges, and red-dashed edges represent novel adjacency edges. In-
teger values indicate copy numbers of corresponding segment and adjacency edges. A) Example of a violation of the
homologous-extremity-exclusivity constraint. To obtain copy number balance, both homologous vertices 2hA and 2hB
must be involved in novel adjacencies. B) Number of novel adjacencies (NAs) in each cancer karyotype inferred by
ReMixT in each sample that violate the homologous-extremity-exclusivity constraint. C) Example of a violation of
the inter-genome homologous-extremity-exclusivity constraint. To obtain copy number balance, both homologous
vertices 2hA and 2hB (in different genomes) must be involved in novel adjacencies. D) Fractions x_y of the number
(x) of novel adjacencies (NAs) violating the inter-genome homologous-extremity-exclusivity constraint (on at least
one of the extremities involved in every novel adjacency) in ReMixT karyotypes, over the total number (y) of novel
adjacencies reported by ReMixT as being present in both genomes in the every sample. E) Example of a violation
of the intra-genome homologous-reciprocal-extremity-exclusivity constraint. To obtain copy number balance, both
homologous-reciprocal vertices 2hA and 3tB must be involved in novel adjacencies. We note that in addition to the vio-
lation of the intra-genome homologous-reciprocal-extremity-exclusivity) constraint, violations of the inter-genome
or both version(s) of this constraint are also possible (See Figure S7). F) Fractions x_y of the number (x) of recipro-
cal locations with violations of either intra- or inter-genome (or both) homologous-reciprocal-extremity-exclusivity
constraint in ReMixT karyotypes, over the total number (y) of reciprocal locations with both involved NAs reported
as being present by ReMixT.
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This violation occurs when a novel adjacency a is reported as being present in more than one genome in the sample,
but a label A must be assigned to at least one a’s extremities in in one genome, and a label B must be assigned to at
least one a’s extremities in another genome. This situation requires at least two large-scale somatic rearrangements
occur independently at the same homologous genomic location in two different tumor clones, which is highly unlikely.
We found that the karyotypes produced by ReMixT had such violations in all samples, with a substantial fraction
(ranging from 0.09 to 0.28) of novel adjacencies containing such violations (Figure 3D).

The third type of violation concerns pairs of reciprocal novel adjacencies. For a pair a = {x, uh}, b = {(u + 1)t, y}
of reciprocal novel adjacencies that involve reference adjacent extremities uh, (u+1)t possible violations of generalized
IS include intra/inter-genome violation of the homologous-extremity-exclusivity or intra/inter-genome violation of
the homologous-reciprocal-extremity-exclusivity constraints, or both. Any such violation requires that at least two
large-scale somatic rearrangements occur independently on the same or homologous genomic location both producing
pairs of reciprocal novel adjacencies, a situation which is highly unlikely. We found that karyotypes produced by
ReMixT had such violations in all samples; furthermore in 6/9 samples more than half of reciprocal novel adjacencies
had such violations (Figure 3F).

2.2.3 Homogeneous tumor samples

We ran RCK and ReMixT on cancer samples from the homogeneous group and analyzed the karyotypes output by
both methods, following the procedures described above for the heterogeneous samples. Since ReMixT assumes
that an input sample contains exactly two cancer clones, ReMixT’s results disagree with both Battenberg’s and
HATCHet’s predictions of one cancer clone in these samples. To obtain a partial comparison of the segment copy
number profiles inferred by ReMixT with the profiles inferred by Battenberg and HATCHet in each sample, we
used ReMixT’s clone with the highest cellular frequency. Overall, our analysis of inferred cancer genomes karyotypes
in the homogeneous group aligned with the findings for the heterogeneous group. In particular, we found that on every
sample in the homogeneous group, the segment copy numbers inferred by RCK (with P f 0.9) are more similar to
the copy numbers from Battenberg (Figure S6A) and HATCHet (Figure S6B) compared to the segment copy
numbers inferred by ReMixT. We also found that the fraction of input novel adjacency that were present in inferred
karyotypes ranged from 0.82 to 0.94 in ReMixT results and from 0.5 to 1.0 in RCK results (Figure S5). As in the case
of heterogeneous samples, we observed that segment copy number distances are largest for RCK when we require RCK
to use all novel adjacencies (a larger proportion than used in ReMixT), but the distances decrease and stabilize when
some novel adjacencies are excluded (P f 0.9).

Similar to the heterogeneous samples, we observed that karyotypes inferred by ReMixT had implausible features
including a large number (and multiplicity) of novel telomeres (Figure S3) and violations of the generalized infinite
sites constraints (Figures S4). In contrast, karyotypes inferred by RCK had no such issues. Overall, our analysis of
inferred cancer genomes karyotypes in the homogeneous group aligned with the findings for the heterogeneous group.

3 Discussion
We presented RCK, a novel algorithm for reconstructing clone- and haplotype-specific cancer genomes karyotypes
from bulk tumor samples. RCK accounts for heterogeneity in the observed tumor sample, correctly models the diploid
reference genome, and enforces biologically reasonable evolutionary constraints that generalize the infinite sites con-
straints to somatic large-scale rearrangements. RCK is, to the best of our knowledge, the only algorithm with these
features and also the only algorithm that can combine both next- and 3rd-generation sequencing data into the recon-
struction process, leveraging the long-range adjacency information from 3rd-generation sequencing technologies.

On real cancer sequencing data, we found that RCK infers cancer karyotypes which inferred segment copy numbers
are closer to those produced by state-of-the-art copy number inference tools (HATCHet and Battenberg), and
which novel adjacencies conform with constraints from an infinite sites evolutionary model. In contrast, ReMixT’s
approach of using novel adjacencies to “adjust” copy numbers generally led to allele-specific segment copy numbers
that were different from those of HATCHet and Battenberg. Moreover, the novel adjacencies that are present in
ReMixT inferred karyotypes often require biologically implausible rearrangements. These results demonstrate that
“linking” of copy numbers via novel adjacencies without considering the underlying somatic evolutionary process is
not advisable.

While the proposed RCK method uses a very comprehensive somatic evolutionary model and addresses several
shortcomings of the previous approaches, there are limitations and avenues for future improvements. First, in the RCK
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results presented here, we assume that no new telomeres are introduced in the cancer genomes, i.e. all telomeres are
telomeres of the reference genome. RCK allows for non-reference telomeres to be specified; however, we have not in-
corporated telomere selection into the objective function of the optimization. Such novel telomeres can correspond to
real telomeres, but in many cases are likely due to missing novel adjacencies in the input data. Second, we can further
generalize RCK to simultaneously analyze multiple samples from the same individual, perhaps including a phyloge-
netic [62] or longitudinal constraints [38]. Simultaneously analysis of multiple samples has proved useful in copy
number inference [63]. Third, it would be helpful to model a patient-specific germline genome that includes germline
structural variations, long repetitive segments, etc. Finally, one could further leverage information in 3rd-generation
sequencing data by including haplotype-specific labeling of extremities involved in groups of novel adjacencies.

RCK’s inference of clone- and haplotype-specific cancer karyotypes enables further studies of the somatic mu-
tational processes that produce highly rearranged cancer genomes, as well as improved characterization of specific
functional changes (e.g., loss of heterozygosity, novel haplotype-specific fusion genes, etc). Higher-resolution recon-
structions of cancer karyotypes can also help researchers illuminate differences/similarities between different types of
cancer in general and lead to a more targeted and personalized medical treatments in specific patients.

4 Methods
We start by considering the case of “perfect” input data and the problem of reconstructing karyotype of a single
mutated genome in sections 4.1 – 4.2. Then we extend to the case of a heterogeneous cancer sample (section 4.3). and
describe how our model can incorporate (when available) information from 3rd-generation sequencing technologies
(section 4.4). In section 4.5 we describe a more general case where there is uncertainty in input segment copy number
values.

4.1 Single derived genome
We view cancer as a process propagated by a sequential application of somatic large-scale rearrangements starting
with a diploid reference genome R and ending with a derived genome G. Every chromosome in a diploid reference
genome R is present in two homologous copies, which we label by A and B respectively. A segment jA = [jtA, jhA]
is a contiguous part of a reference chromosome labeled A; its endpoints j

t

A and j
h

A are called extremities. We label
segments 1 through m in a multichromosomal diploid reference genome R. In a mutated genome that is derived from
the reference via large-scale rearrangements, segments can be absent, present more than once, and appear both in
forward and reverse orientation. We denote by *jA = [jhA , jtA] a reversed instance of segment jA.

Extremities that demarcate the beginning and the end of a chromosome are called telomeres and we define by T (G)
the set of telomeres in genome G .

A pair (jA, kB) of consecutive segments on a chromosome determines an adjacency {jhA , ktB} (i.e., a pair of extrem-
ities that are adjacent on a chromosome). A genome G determines a set A(G) of adjacencies present in it.

For a diploid reference genome R with k chromosomes we define a set T (R) = {1tA, 1tB,… ,m
h

A,m
h

B} of reference
telomeres and note that T (R) = 4k. We further note that a multichromosomal diploid reference R determines a set
A(R) of reference adjacencies as follows:

A(R) = {{jh
H
, (j + 1)t

H
} › j À {1, 2,… ,m * 1};H À {A,B}; jh, (j + 1)t Ã T (R)}.1 (1)

A derived genome G corresponds to a collection of concatenation of segments (i.e., derived chromosomes), where
segments in each novel concatenation can originate from any homologous copy of any of the chromosomes in the
diploid reference R. Each derived chromosome thus corresponds to a word from the following alphabet:

⌃ = {j
H

› j À {±1,±2,… ,±m};H À {A,B}}. (2)

Adjacencies that are present in a mutated genome G but are not present in the reference are called novel and we
denote by A

N
(G) a set of novel adjacencies in genome G. We note that since there are no novel adjacencies in the

reference we have A
N
(R) = Á. We say that a set A of adjacencies satisfies infinite sites if no two adjacencies in A

1We assume that every segment appears exactly once in a forward orientation the reference genome.
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Figure 4: A) Example of a diploid reference genome R containing two pairs of homologous chromosomes (chromo-
somes labeled by A are shown in dark blue/green, and homologous copies labeled by B are shown in light blue/green)
that are “partitioned” into 12 consecutive segments labeled 1 through 12. B) Reference genome R is shown as a col-
lection of concatenations of segments, with segments located on chromosomes labeled A shown in dark blue/green
and segments located on chromosomes labeled B shown in light blue/green. The “pointy” end of each segment j cor-
respond to extremity j

h, while the “flat” end corresponds to extremity j
t. Dashed lines determine adjacencies between

segments’ extremities. A set T (R) = {1tA, 1tB, 5hA, 5hB, 6tA, 6tB, 12hA, 12hB} corresponds to telomeres in the shown diploid
reference genome R. A diploid segment copy number profile CR = (a,b) is shown for the genome R with colors
(dark/light blue/green) corresponding to A/B labeled segments. C) A derived genome G obtained via multiple large-
scale rearrangements from the reference genome R. Red dashed lines correspond to novel adjacencies (e.g., {3hA, 7hB}).
A diploid segment copy number profile CG = (a,b) is shown for the genome G with colors (dark/light blue/green)
corresponding to A/B labeled segments. A set T (G) = T (R) of telomeres in the derived genome G equals to that in
the original reference genome R.

involve the same extremity. For a reference adjacency {jh
H
, (j + 1)t

H
} À A(R) we call extremities jh

H
and (j + 1)t

H

reciprocal.
We assume that the large-scale somatic rearrangements that “break” and “reglue” chromosomes do not affect the

same genomic locations (on either of the or A/B copies) more than once during the entire somatic evolutionary process
(i.e., generalized infinite sites). We note that under generalized IS only reference adjacencies can participate in breaks,
however we also note that novel adjacencies produced by rearrangements can further be amplified/deleted via other
rearrangements. For a break r of an adjacency {j�

H
, k

�
®

H ®} involving extremities j�
H

and k
�
®

H ® under the generalized IS
at every point before and after r in the somatic evolutionary process none of the reference/novel adjacencies involving
either j�

H
, k

�
®

H ® or j�
öH

, k
�
®

öH ®
can be involved in any other rearrangement(s) (breaks), where H ,H

® À {A,B}, öA = B, and
öB = A. Examples of rearrangements that violate the generalized IS and consecutive implications for novel adjacencies
in the derived genomes are shown in supplementary Figure S9.

With the generalized IS assumption for somatic evolution propagated by large-scale rearrangements we naturally
obtain several constraints for the derived genome which we list below:

a) extremity-exclusivity: every extremity j
�

H
is involved in at most one novel adjacency from A

N
(G). This con-

straint is based on the fact that for a novel adjacency a to involve an extremity j
�

H
there must have been a

large-scale rearrangement breaking a reference adjacency involving j
�

H
in the first place (and possible several
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other reference adjacencies). Having more than 1 novel adjacency involving j
�

H
would correspond to the sce-

nario where some other rearrangement must have broken some adjacency involving j
�

H
, which is prohibited

under generalized IS.

b) homologous-extremity-exclusivity: if an extremity j
�

H
is involved in a novel adjacency from A

N
(G), then

the homologous extremity j
�

ÇH
is not involved in any novel adjacency from A

N
(G). This constraint follows

the logic outlined in extremity-exclusivity, but considers A/B labeled homologous extremities j�
H

and j
�

öH

: for
both j

�

H
and j

�

öH

extremities to be involved in novel adjacencies there must have been at least two large-scale
rearrangements breaking homologous reference adjacencies involving both extremities j

�

H
and j

�

öH

, which is
prohibited under the generalized IS.

c) homologous-reciprocal-extremity-exclusivity: if an extremity j
�

H
from the reference adjacency {j�

H
, k

�
®

H
} is

involved in a novel adjacency from A
N
(G), then the homologous extremity k

�

ÇH
, is not involved in any novel ad-

jacency from A
N
(G). This constraint follows the justification provided in homologous-extremity-exclusivity:

for both extremities j�
H

and k
�
®

öH

to be involved in novel adjacencies there must have been two large-scale rear-

rangements breaking both homologous reference adjacencies {j�
H
, k

�
®

H
} and {j�

öH

, k
�
®

öH

} which is prohibited under
the generalized IS.

We call a genome G proper, if the above three conditions are met.
A genome G determines a diploid segment copy number profile CG = (a = [a1, a2,… , a

m
],b = [b1, b2,… , b

m
]),

where values (a
j
, b

j
) À N2 indicate the number of copies of segments jA and jB in G. We note that in a diploid

reference R we have a
j
= b

j
= 1 for every segment j. An example of a diploid segment copy number profiles CG and

CR for a derived genome G and a reference R are shown in Figure 4.
When a mutated genome G is derived from a diploid reference R current technologies do not allow us to measure

its diploid segment copy number profile CG directly. Rather there exist several methods [57, 9, 7, 40, 24, 19, 35, 63]
that are capable of measuring a pair öc = [öc1, öc2,… , öc

m
], úc = [úc1, úc2,… , úc

m
] of vectors, where for every segment j an

unlabeled (allele-specific) pair (öc
j
, úc

j
) À N2 represents copy numbers of segments jA and jB in G, but without A/B

labels explicitly associated with the measured values. In other words, we know that {a
j
, b

j
} = {öc

j
, úc

j
}, but it is unclear

whether (a
j
, b

j
) = (öc

j
, úc

j
) or (a

j
, b

j
) = (úc

j
, öc

j
) (example shown in Figure 6).

Furthermore, when a genome G derives from a diploid reference R we can not measure a set A(G) of adjacencies
in G directly, but rather we can only measure an obfuscated version of the set A

N
(G) of novel adjacencies in G. That

is, for every novel adjacency {j�
H
, k

�
®

H ®} À A
N
(G) we can only measure an unlabeled (i.e., with involved extremities

missing the A/B labels) adjacency {j� , k�®} (e.g., for a derived genome G shown in Figure 4 instead of measuring a
novel adjacency {3hA, 7hB} À A

N
(G) we measure an unlabeled novel adjacency {3h, 7h}). There exist several methods

capable of producing the unlabeled novel adjacencies both from a standard short-read bulk sequencing data [51, 48,
30, 10, 60] as well as from 3rd-generation sequencing technologies [49, 16, 52, 66, 50, 27, 17].

We note that if a set ÉA of unlabeled novel adjacencies is measured from a proper derived genome, it satisfies the
generalized infinite sites conditions: since in unlabeled novel adjacencies involved extremities lack A/B labels, only
the (unlabeled) extremity-exclusivity constraint (i.e., on unlabeled extremities) must be satisfied, which is achieved,
because in proper genome conditions extremity-exclusivity and homologous-extremity-exclusivity guarantee that
for every pair j�A , j

�

B of homologous extremities at most one of them is involved in any novel adjacency from A
N
(G),

and thus the unlabeled extremity j
� is also involved in at most one measured unlabeled novel adjacency from ÉA

N
.

We assume that large-scale rearrangements that generated a mutated genome G from a diploid reference R have
not created novel telomeres (i.e., T (G) ” T (R)), and formulate the following problem of reconstructing mutated
genome from measurement data:

Problem 1. Given a diploid reference R, allele-specific copy number measurements (öc
j
, úc

j
) À N2

for every segment j,

and a set ÉA
N

of unlabeled novel adjacencies that satisfies (unlabeled) extremity-exclusivity constraint, find a proper

genome G satisfying:

1. for every adjacency a = {j�
H
, k

�
®

H ®} À A(G) either {j� , k�®} À ÉA
N

or a À A(R);

2. for every adjacency {j� , k�®} À ÉA
N

there exist labels H ,H
® À {A,B}, such that {j�

H
, k

�
®

H ®} À A
N
(G);
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3. for every (a
j
, b

j
) À CG either (a

j
, b

j
) = (öc

j
, úc

j
) or (a

j
, b

j
) = (úc

j
, öc

j
);

4. T (G) ” T (R).

Since the measured unlabeled novel adjacencies do not have the A/B labels, we do not know the true underlying
novel adjacencies that produced a measurement. For an unlabeled novel adjacency a = {j� , k�®} we defined by
h(a) = {{j�

H
, k

�
®

H ®} › H ,H
® À {A,B}} a set of the four possible novel adjacencies that can be obtained by A/B

labeling extremities in a. For a given set A of unlabeled novel adjacencies we define a set H(A) of all possible novel
adjacencies as follows:

H(A) = {h(a) › a À A} = {{j�
H
, k

�
®

H ®} › {j� , k�®} À A;H ,H
® À {A,B}}. (3)

We note that when a set ÉA
N

of measured unlabeled novel adjacencies comes from a genome G, it follows that
A

N
(G) ” H( ÉA

N
). A union A(R) ‰H( ÉA

N
) of sets A(R) and H( ÉA

N
) represents all possible adjacencies that can be

present in the observed mutated genome G.

4.2 Diploid Interval Adjacency Graph
We reformulate Problem 1 of finding a proper derived genome G from the measurement data as a graph-theoretic
problem. First, we define the diploid interval adjacency graph (DIAG), which can be viewed as a generalization of a
breakpoint graph used in the area of comparative genomics [1, 65, 3], or graphs used in the area of structural analysis
of normal and cancer genomes with haploid reference structure [36, 42, 32, 12, 15, 35]. A DIAG G(R, ÉA

N
) = (V ,E)

is constructed on a set {1, 2,… ,m} of segments, and a set A = A(R) ‰H( ÉA
N
) of adjacencies.

The set V of vertices is in one-to-one correspondence with all segments’ extremities. Formally we define V as
follows:

V = {j�
H

› j À {1, 2,… ,m}; � À {t,h};H À {A,B}}. (4)

The set E of edges in a DIAG is comprised of two types of edges: segment edges E
S

and adjacency edges E
A

.
The set E

S
of segment edges represents segments as follows:

E
S
= {{jt

H
, j

h

H
} › j À {1, 2,… ,m};H À {A,B}}. (5)

The set E
A

of adjacency edges is in a one-to-one correspondence with a set A = A(R) ‰H( ÉA
N
) of adjacencies: i.e.,

every adjacency a = {j�
H
, k

�
®

H ®} À A is represented by a corresponding adjacency edge e
a
= {j�

H
, k

�
®

H ®} À E
A

(e.g.,
an example DIAG is shown in Figure 5).

Every adjacency edge e
a
À E

A
that corresponds a reference adjacency a À A(R) we call a reference adjacency

edge, and we denote by E
R
” E

A
a set of all reference adjacency edges in E

A
. We also define a set E

N
= E

A
‰E

R
of

novel adjacency edges, with edges in E
N

respectively corresponding to novel adjacencies in H( ÉA
N
). Since adjacency

edges and adjacencies are in one-to-one correspondence we allow ourselves to use adjacencies when referring to
adjacency edges and vice versa.

Since every vertex v = j
�

H
À V is incident to exactly one segment edge {jt

H
, j

h

H
} À E

S
, we define e

S
(v) À E

S
to

be a segment edge incident to a vertex v, and define e
S
(j
H
) À E

S
to be a segment edge corresponding to a segment

j
H

. Every vertex v À V is incident to at most one reference adjacency edge, and we define e
R
(v) À E

R
to be a

reference adjacency edge containing vertex v, if such adjacency exists. Naturally, we define E
N
(v) ” E

N
to be a set

of novel adjacency edges incident to v À V .
Every chromosome in a derived genome G determines a segment-adjacency edge alternating walk in the corre-

sponding DIAG, that starts and ends at telomere vertices in T (G) (examples are shown in the supplement Figure S8B).
Such an alternating walk spells out a concatenation of segments from the reference genome, corresponding to a derived
chromosome in G. Thus, a derived genome G determines a collection of segment-adjacency edge alternating walks.
The number of times a segment edge {jt

H
, j

h

H
} À E

S
is traversed (in either direction) across all walks determined by

G corresponds to the segment copy number (e.g., �({jtA, jhA}) = a
j
). Similarly, the number of times an adjacency edge

e = {j�
H
, k

�
®

H ®} À E
A

is traversed (in either direction) across all walks determined by G corresponds to an adjacency

copy number (i.e., the number of times an adjacency corresponding to an edge e is present in G). A genome G thus
determines an edge multiplicity function � : E ô N on both segment and adjacency edges (example is shown in the
supplement Figure S8A). We call the corresponding DIAG G(R,A

N
,�) a weighted DIAG.
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1A 2 A 3 A 6 B7 B
12 A6 A 11A

A)

B)

DIAG

2

2

2

Figure 5: A DIAG G(R, ÉA
N
) = (V ,E) constructed on a set {1, 2,… , 12} of segments, and a set A(R) ‰H( ÉA

N
) of

adjacencies, where a set A(R) corresponds to reference adjacencies in a diploid reference R shown in Figure 4B, and a
set ÉA

N
= {{3h, 7h}, {2h, 9h}, {4t, 8t}, {4h, 4h}, {5t, 8h}, {3t, 10t}, {6h, 11t}} represents unlabeled novel adjacencies

that were measured from a derived genome G shown in Figure 4C. Telomere vertices T (G) = T (R) ” V are shown
as squares, and non-telomere vertices are shown as circles. Solid edges correspond to segment edges in E

S
, with dark

blue/green edges corresponding to segments labeled A, and light blue/green edges corresponding to segments labeled
B. Reference adjacency edges E

R
are shown as black-dashed edges, and novel adjacency edges E

N
are shown as

red-dotted edges.

We note that DIAG is allowed to have self-loop adjacency edges that correspond to a self-loop novel adjacencies
in H( ÉA

N
). Such self-loop novel adjacencies can be produced by breakage-fusion-bridge cycles, inverted tandem

duplications, and other more complex large-scale genome rearrangements that have been observed in cancer [22, 64,
33, 25]. We define by l(a) : E

A
ô {1, 2} an auxiliary function that outputs 2 if a is a self-loop adjacency (edge), and

1 otherwise. We say that a vertex v À V exhibits a copy number balance provided:

�(e
S
(v)) = �(e

R
(v)) +

…
eÀEN (v)

l(e) � �(e). (6)

Similarly, we say that a vertex v À V exhibits a copy number excess provided:

�(e
S
(v)) > �(e

R
(v)) +

…
eÀEN (v)

l(e) � �(e). (7)

The following theorem follows directly from previous work [29, 45]:

Theorem 1. A weighted DIAG G = (V ,E,�), can be decomposed into a collection of segment-adjacency edge

alternating walks that start and end at a set T ” V of telomere vertices, such that every edge e À E is traversed �(e)
times, if:

1. every non-telomere vertex v À V ‰ T is copy number balanced,

2. and every telomere vertex v À T ” V has a copy number excess.

When the derived genome is allowed to have circular chromosomes, which have been extensively observed and
studied in cancer [8, 21, 59, 18, 56], Theorem 1 provides not only a necessary, but also a sufficient condition for
a derived genome to exist. For an extended discussion about DIAG decomposition into segment-adjacency edge
alternating walks please refer to supplementary material section S2.1.

For every unlabeled novel adjacency a À ÉA
N

and a DIAG G(R, ÉA
N
) we define by h

E(a) ” E
N

a subset of novel
adjacency edges corresponding to adjacencies in h(a). Furthermore, given a weighted DIAG G(R, ÉA

N
) = (V ,E,�),
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for every unlabeled novel adjacency a À ÉA
N

we define by h
E

+(a) ” h
E(a) ” E

N
a subset of adjacency edges with

positive multiplicities as follows:
h
E

+(a) = {e › e À h
E(a);�(e) > 0}. (8)

Now we readily reformulate the Problem 1, allowing a derived genome to contain circular chromosomes, into a
problem of finding edge multiplicities in the associated DIAG as follows:

Problem 2. Given a DIAG G(R, ÉA
N
), where the set ÉA

N
of unlabeled novel adjacencies satisfies (unlabeled) extremity-

exclusivity constraint, and allele-specific copy number measurements (öc
j
, úc

j
) À N2

for every segment j of telomere

vertices find an edge multiplicity function � : E ô N such that:

1. for every unlabeled adjacency a À ÉA
N

, hE+(a) = 1;

2. for every self-loop unlabeled adjacency a = {j� , j�} À ÉA
N

, �({j�A , j�B}) = 0;

3. for every pair a = {u, jh}, b = {(j + 1)t, v} À ÉA
N

of unlabeled novel adjacencies, such that {jh
H
, (j + 1)t

H
} À

A(R), there exist a
® = {u

H
, j

h

H ®} À h
E

+(a) and b
® = {(j + 1)t

H ® , vH ®®} À h
E

+(b), where H ,H
®
,H

®® À {A,B};

4. for every segment j, either (�(e
S
(jA)),�(eS (jB))) = (öc

j
, úc

j
) or (�(e

S
(jA)),�(eS (jB))) = (úc

j
, öc

j
);

5. every non-telomere vertex v À V ‰ T (R) exhibits copy number balance (eq. (6));

6. every telomere vertex v À T (R) ” V exhibits either copy number balance (eq. (6)) or copy number excess

(eq. (7)).

We note, that finding an edge multiplicity function � in Problem 2 guarantees the existence of a proper derived
genome that determines �, but such derived genome does not necessarily need to be unique. A resulting weighted
DIAG G = (V ,E,�) thus determines a haplotype-specific karyotype of the derived genome in question.

4.3 Multiple derived genomes
The sequencing assays in cancer genomics can involve biological samples that can be genetically heterogeneous (i.e.,
comprised of cells with different derived genomes, also sometimes referred to in the literature as clones). Let us
assume that a sample (i.e., set of genomes) S = (G1, G2,… , G

n
) in question is comprised of n genomes all of which

have derived from a diploid reference R via large-scale rearrangements. A sample S = (G1, G2,… , G
n
) determines

a pair C
S
= (A = [a1, a2,… , a

n
]T ,B = [b1,b2,… ,b

n
]T ) of n ù m diploid segment copy number matrices, where

genome-specific segment copy number vectors a
i
= [a

i,1, ai,2,… , a
i,m

] and b
i
= [b

i,1, bi,2,… , b
i,m

] contain integer
values a

i,j
, b

i,j
À N that correspond to the number of times segments jA and jB appear in genome G

i
À S respectively.

We denote by A[j] = [a1,j , a2,j ,… , a
n,j
]T and by B[j] = [b1,j , b2,j ,… , b

n,j
]T vectors of copy number values for

segments jA and jB across all genomes G
i
À S.

For a sample s = (G1, G2,… , G
n
) we do not measure the pair C

S
= (A,B) of its nùm diploid segment copy matri-

ces directly, but rather we measure a pair ÉC = (öC = [öc1,öc2,… ,öc
n
]T , úC = [úc1,úc2,… ,úc

n
]T ) of nùm allele-specific seg-

ment copy number matrices, such that for every segment j either (A[j],B[j]) = (öC[j], úC[j]) or (A[j],B[j]) = (úC[j], öC[j]).
Examples of allele-specific vs diploid alongside other errors in a noise-free segment copy number inferences with
different limiting assumptions about the sample’s structure are shown in Figure 6.

For a sample S = (G1, G2,… , G
n
) we define by A(S) = ∑

GiÀS A(G
i
) a set of all adjacencies and by A

N
(S) =∑

GiÀsAN
(G

i
) a set of all novel adjacencies present in any (subset) of the genomes in S.

Similarly to the case of a single derived genome, out ability to measure novel adjacencies from a sample S =
(G1, G2,… , G2) is obfuscated. For every novel adjacency a = {j�

H
, k

�
®

H ®} À A
N
(S) we can only measure an unlabeled

counterpart {j� , k�®} and we also loose the information about which genome(s) in sample S the underlying novel
adjacency a is actually present in. We define by ÉA

N
a set of unlabeled adjacencies measured from a sample S.

We generalize the previously introduced constraints on possible structures of the derived genomes G
i
À S for

the sample S. We call a sample s = (G1, G2,… , G
n
) proper if the extremity-exclusivity, homologous-extremity-

exclusivity, and homologous-reciprocal-extremity-exclusivity assumptions hold, with a set A
N
(G) substituted with

a set A
N
(S) (i.e., considering a set A

N
(S) of novel adjacencies across all of the genomes in the observed sample S).

Substituting A
N
(G) with A

N
(S) allows us to impose the generalized IS constraints for the whole somatic evolutionary
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SCN inference errors

Structures

1A

1B

2 A

2 B 3 B

3 A 4 A

4 B

5 A

5 B

6 A

6 B

7 A

7 B

8 A

8 B 9 B

9 A

10 B

10A 11A

11B

12 A

12 B

R =< (1A, 2A, 3A, 4A, 5 A), (1B, 2B, 3B, 4B, 5 B), (6 A, 7 A, 8 A, 9 A, 10 A, 11A, 12A), (6 B, 7 B, 8 B, 9 B, 10 B, 11B, 12B) >

12 B

12 A

1A

1B

2 A

2 B

3 A 3 B

4 A 4 A

4 B5 B

5 A

6 B

6 A

7 B

8 B 8 B9 B

10 B 11B

11A

G =< (1A, 2A, 3A, − 7 B, − 6 B), (1B, 2B, − 9 B, − 8 B, 4A, −4A, 8 B, 5 A), (− 5 B, −4B, −3B, 10 B, 11B, 12B), (6 A, 11A, 12A) >

A)

B)

C)

1A 2 A 3 A 4 A2 A 3 A 2 A 3 A

1B 2 B 3 B 4 B1B 2 B 3 B 4 B1B 2 B 1B 2 B 3 B 4 B

1B 2 B 3 B 4 B1B 2 B1A 2 A 3 A 4 A

G1 =< (1A, 2A, 3A, 2A, 3A, 2A, 3A, 4A),
(1B, 2B, 1B, 2B, 3B, 4B) >

G2 =< (1A, 2A, 3A, 4A), (1B, 2B, 3B, 4B),
(1B, 2B, 1B, 2B, 3B, 4B), (1B, 2B, 3B, 4B) >

A)

B) C) D) E)
= [4 , 5 , 4, 3] 1 = [3 , 5 , 4, 2]

2 = [5 , 5 , 4, 4]
= [ 1, 3, 2, 2]
= [ 3, 2, 2, 1]

= 1 = [ 1, 2, 3, 1]

2 = [ 1, 4, 1, 3]

= 1 = [ 2, 3, 1, 1]

2 = [ 4, 1, 3, 1]

R =
= [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
= [ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]

G =
= [1, 1, 1, 2, 1, 1, 0 , 0 , 0 , 0 , 1, 1]
= [ 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1]

Figure 6: Description of errors in noise-free segment copy number (SCN) inference for a heterogeneous (i.e., 2
genomes) and haplotype-specific (i.e., A/B labeled segments) sample S = (G1, G2) under different limiting assumption
about the sample’s structure. A) A 2-genome proper sample S = (G1, G2) with every genome G

i
À S depicted

both as collections of adjacent blocks as well as corresponding sequences of signed block. B) SCN inference under
the assumption that the sample in question is homogeneous (i.e., comprised of a single derived genome) and with
no consideration given to the fact that every segment has two distinct A/B instances of it (haploid-reference). In a
vector c = [c1, c2, c3, c4] for a segment j a value c

j
corresponds to an average over sums a

i,j
+ b

i,j
= öc

i,j
+ úc

i,j

of diploid/allele-specific SCNs across genomes G
i
À S. C) SCN inference under the assumption that the sample

is homogeneous, but distinguishing between A/B labeled copies of every segment, though not preserving the alleles
labels mapping to true A/B labels across segments. Colors encode true labeling (dark blue – A, light blue – B), flipped

alleles are shown for segments 2 and 4). In vectors öc = [öc1, öc2, öc3, öc4] and úc = [úc1, úc2, úc3, úc4] for a segment j values
öc
j
, úc

j
correspond to averages (öc1,j + öc2,j)_2 and (úc1,j + úc2,j)_2 of genome- and allele-specific copy number values. D)

SCN inference under the assumption that the sample is heterogeneous, but with a haploid-reference assumption. In
vectors c1 = [c1,1, c1,2, c1,3, c1,4] and c2 = [c2,1, c2,2, c2,3, c2,4] for a segment j and genome G

i
the value c

i,j
equals

to the sum öc
i,j

+ úc
i,j

of allele-specific copy number values in a genome G
i
. E) Allele- and genome specific SCN

inference. Colors encode true labeling (dark blue – A, light blue – B), flipped alleles are shown for segment 2 and 4
(i.e., (a1,2, b2,2) = (úc1,2, öc2,2) and (a1,4, b2,4) = (úc1,4, öc2,4)).

process (i.e., take into account rearrangement that occur on all the branches of the somatic phylogenetic tree) that
produced the observed sample S. We note that if a set ÉA

N
of unlabeled novel adjacencies comes from a proper sample

S, then ÉA
N

satisfies the generalized IS conditions (by satisfying the (unlabeled) extremity-exclusivity constraint).
Moreover, we note that if a sample S = (G1, G2,… , G

n
) is proper, then any subsample (including individual derived

genomes G
i
À S) of S is also proper.

A generalized version of Problem 1 for a sample S = (G1, G2,… , G
n
) is stated below:

Problem 3. Given a diploid reference R, a pair ÉC = (öC, úC) of n ù m allele-specific segment copy number matrices,

and a set ÉA
N

of measured unlabeled novel adjacencies that satisfies (unlabeled) extremity-exclusivity constraint, find

a proper sample s = (G1, G2,… , G
n
) such that:

1. for every adjacency a = {j�
H
, k

�
®

H ®} À A(s), either {j� , k�®} À ÉA
N

or a À A(R);

2. for every adjacency {j� , k�®} À ÉA
N

, there exists a unique pair H ,H
® À {A,B} of labels, such that {j�®

H
, k

�
®

H ®} À
A(s);

3. for every segment j, either (A[j],B[j]) = (öC[j], úC[j]) or (A[j],B[j]) = (úC[j], öC[j]);

4. for every genome G
i
À s, the telomere set T (G

i
) ” T (R).

In a sample S = (G1, G2,… , G
n
) and a set ÉA

N
of unlabeled novel adjacencies measured form S, we observe a

DIAG G(R, ÉA
N
) = (V ,E). Every genome G

i
À S determines a genome-specific edge multiplicity function �

i
: E ô

N as was previously described in a case of a single derived genome.
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We extend previously introduced copy number balancing conditions (6) and (7) on vertices in V , using genome-
specific edge multiplicity functions. For a genome G

i
À S, a vertex v À V exhibits copy number balance provided:

�
i
(e

S
(v)) = �

i
(e

R
(v)) +

…
eÀEN (v)

l(e) � �
i
(e), (9)

and a vertex v À V exhibits copy number excess provided:

�
i
(e

S
(v)) > �

i
(e

R
(v)) +

…
eÀEN (v)

l(e) � �
i
(e). (10)

For every unlabeled adjacency a À ÉA
N

and a genome G
i
À S we define by h

E

i,+(a) ” h
E(a) a subset of novel

adjacency edges in h
E(a) with positive copy number as determined by the genome-specific edge multiplicity function

�
i

as follows:
h
E

i,+(a) = {e › e À h
E(a),�

i
(e) > 0}, (11)

and we then naturally generalize the definition of hE+(a) for the sample S = (G1, G2,… , G
n
) case:

h
E

+(a) =
Õ

GiÀS
h
E

i,+(a). (12)

For every segment j
H

we define by �[j,H] = [�1(eS (jH )),�2(eS (jH )),… ,�
n
(e

S
(j
H
))]T a vector of genome-

specific edge multiplicity functions’ values on the segment edge e
S
(j
H
) À E

S
.

We now reformulate a general Problem 3 of finding a proper sample S = (G1, G2,… , G
n
) in terms of finding edge

multiplicity functions �1,�2,… ,�
n
: E ô N in the corresponding DIAG as follows:

Problem 4. Given a DIAG G(R, ÉA
N
) = (V ,E), where a set ÉA

N
of unlabeled novel adjacencies satisfies (unla-

beled) extremity-exclusivity constraint, and a pair ÉC = (öC, úC) of nùm allele-specific segment copy number matrices,

find edge multiplicity functions �1,�2,… ,�
n
: E ô N such that:

1. for every adjacency a À ÉA
N

, hE+(a) = 1;

2. for every i À [n] and every adjacency a = {j� , j�} À ÉA
N

, �
i
({j�A , j�

®
B }) = 0;

3. for every pair a = {u, jh}, b = {(j + 1)t, v} À ÉA
N

of unlabeled novel adjacencies, such that {jhA , (j + 1)tA} À
A(R), there exists a

® = {u
H
, j

h

H ®} À h
E

+(a) and b
® = {(j + 1)t

H ® , vH ®®} À h
E

+(b), where H ,H
®
,H

®® À {A,B};

4. for every segment j, either (�[j,A],�[j,B]) = (öC[j], úC[j]) or (�[j,A],�[j,B]) = (úC[j], öC[j]);

5. for every i À [n] and every non-telomere vertex v À V ‰ T (R) the equality (9) holds;

6. for every i À [n] and every telomere vertex v À T (R) ” V either the equality (9) or the inequality (10) hold.

4.4 3rd generation sequencing technologies and novel adjacency groups
Besides the cost-efficient next-generation sequencing technologies (i.e., bulk-sequencing with short paired-end reads),
there exist other, more expensive, 3rd-generation sequencing technologies (e.g., single-cell, barcoded linked reads, and
long-read sequencing) that can provide additional insight about measured unlabeled novel adjacencies [16, 52, 66, 49,
50, 27, 17]. We observe a sample S = (G1, G2,… , G

n
) and a set ÉA

N
of unlabeled novel adjacencies coming from S.

We define a 3rd-generation sequencing experiment as either all reads obtained in a single-cell sequencing essay, a set of
reads annotated with the same barcode in the barcoded sequencing experiment, or a single long read obtained by a long-
read sequencing technology. Let us assume that a 3rd-generation sequencing experiment on a S = (G1, G2,… , G

n
)

identifies a group u ” ÉA
N

of unlabeled novel adjacencies. Since every 3rd-generation sequencing experiment is
conducted either on a single cell (e.g., single-cell) and thus produces data from a single derived genome, or on a part
of a single derived chromosome (e.g., bar-codded, long-range) present in a single derived genome, the group u of
unlabeled adjacencies is guaranteed to originate from a single derived genome G

i
À S.
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We note that for every unlabeled novel adjacency a = {j� , k�®} measured from a sample S = (G1, G2,… , G
n
)

there exist a unique novel adjacency counterpart {j�
H
, k

�
®

H ®} À A
N
(S), when S is proper. Or, more formally, h(a) „

A
N
(S) = 1. Thus, for every group u ” ÉA

N
of unlabeled novel adjacencies measured via a single 3rd-generation

sequencing experiment on a proper sample S = (G1, G2,… , G
n
) for at least one genome G

i
À S we have:

…
aÀu

A
N
(G

i
) „ h(a) = A

N
(G

i
) „H(u) = u. (13)

4.5 Uncertainty in copy number measurements
As we have stated before, there exist several methods that for a given sample S = (G1, G2,… , G

n
) aim to infer a

pair ÉC = (öC, úC) of n ù m allele-specific segment copy number matrices. Loss of explicit information about A/B labels
across segments in such inference (while preserving segment’s specific allele separation across all genomes in S) is
often not the only limitation of these methods. It is also often the case for sequences of reference-adjacent segments
to be grouped together into larger non overlapping fragments, for which the allele-specific copy numbers are inferred.

More formally, we call a sequence (j, j + 1,… , j + l) of reference adjacent segments a fragment and denote it by
f[j,l]. We denote by F a collection of non overlapping fragments that cover all of the segments.

When allele-specific copy numbers are inferred on fragments, rather than individual segments, we naturally obtain
the same copy number values for all segments within every overarching fragment, which may be incorrect for some
or even all segments within the observed fragment. On the other hand, allele-specific nature of the inferred fragments
copy numbers preserves allele separation not only across genomes, but also across segments within each fragment.
We thus view available allele-specific copy numbers for fragments as an approximation of the true underlying segment
copy numbers, and try to infer the true underlying diploid segment copy number values, while leveraging the allele
separation preservation across segments within each fragment.

Let us observe a pair ÉC = (öC, úC) of n ù m allele-specific segment copy number matrices, a pair C = (A,B) of
n ù m diploid segment copy number matrices, and a set F of fragments. For every fragment f À F we define a
length-weighted copy number distance C * ÉC

f
as follows:

C * ÉC
f
= min

d,d
®

{d,d®}={öc,úc}

…
jÀf

…
iÀ[n]

⇠
a

i,j
* d

i,j
 + b

i,j
* d

®
i,j

⇡
� L(j), (14)

where L(j) is the total number of base pairs (i.e., length) of segment j. We further define a copy number distance
C * ÉC

F
between pairs C and ÉC of diploid and allele-specific segment copy number matrices as follows:

C * ÉC
F
=

…
fÀF

C * ÉC
f
. (15)

We now extend the previous Problem 3 of finding a sample from the measured data to the case when the mea-
sured allele-specific segment copy numbers are noisy and (optionally) information from 3rd-generation sequencing
experiments is available:

Problem 5. Given a diploid reference R, a pair ÉC = (öC, úC) of nùm allele-specific segment copy number matrices, a set

F of fragments, a set ÉA
N

of measured unlabeled novel adjacencies that satisfies (unlabeled) extremity-exclusivity con-

straint, and (optionally) a set U of groups of unlabeled novel adjacencies, find a proper sample s = (G1, G2,… , G
n
)

such that:

1. for every adjacency a = {j� , k�®} À A(s) either {j� , k�®} À ÉA
N

or a À A(R);

2. for every adjacency a = {j� , k�®} À ÉA
N

there exists a unique pair H ,H
® À {A,B} of labels, such that

{j�
H
, k

�
®

H ®} À A
N
(s);

3. for every adjacency group u À U , there exists (at least one) genome G
i
À s such that A

N
(G

i
) „H(u) = u;

4. for every genome G
i
À s the T (G

i
) ” T (R);

and the copy number distance C
s
* ÉC

F
is minimized.
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A reformulation of Problem 5 in terms of finding edge multiplicity functions on the edges of the corresponding
DIAG is provided below:

Problem 6. Given a DIAG G(R, ÉA
N
) = (V ,E), where a set ÉA

N
of unlabeled measured novel adjacencies satisfies

(unlabeled) extremity-exclusivity constraint, a (optionally) set U of groups of unlabeled novel adjacencies, a pair

ÉC = (öC, úC) of n ù m allele-specific segment copy number matrices, and a set F of fragments, find edge multiplicities

functions �1,�2,… ,�
n
: E ô N such that:

1. for every adjacency a À ÉA
N

we have hE+(a) = 1;

2. for every i À [n] and every adjacency a = {j� , j�} À ÉA
N

, �
i
({j�A , j�B}) = 0;

3. for every adjacency group u À U there exists (at least one) i À [n] such that
≥

aÀu hEi,+(a) = u;

4. for every pair a = {u, jh}, b = {(j + 1)t, v} À ÉA
N

of unlabeled novel adjacencies, such that {jhA , (j + 1t)A} À
A(R), there exists a

® = {u
H
, j

h

H ®} À h
E

+(a) and b
® = {(j + 1)t

H ® , vH ®} À h
E

+(b), where H ,H
®
,H

®® À {A,B};

5. for every i À [n] and every non-telomere vertex v À V ‰ T (R) the equality (9) holds;

6. for every i À [n] and every telomere vertex v À T (R) ” V either the equality (9) or the inequality (10) hold;

and such that for a pair C
�
= (A

�
,B

�
) of diploid segment copy number matrices (determined by values of edge

multiplicity functions �1,�2,… ,�
n

on segments edges E
S

), the copy number distance C
�
* ÉC

F
is minimized.

In the Supplement, we derive a mixed integer linear program (MILP) optimization problem that solves Problem 6.

4.6 Deriving extremities and novel adjacencies from data
Segment copy number inference methods often define a fixed-size partition of the reference genome into segments and
thus constrain the coordinates of segments extremities. Every measured unlabeled novel adjacency determines a pair
{(chr1,coord1, str1), (chr2,coord2,str2)}, where chr

i
determines the chromosome of origin the genomic

loci i, coord
i

determined the coordinate of the genomic loci i on the respective chromosome chr
i
, and str

i
À

{+,*} determined the strand of origin of the genomic loci i.
Extremities of segments that are inferred by methods that measure clone- and allele-specific segment copy numbers

and those involved in measured unlabeled novel adjacencies do not always align. Moreover, there is often a small
uncertainty in the exact values of the coordinate coord

i
of the genomic loci i involved in a novel adjacencies.

We first address the issue of refining the positions of extremities involved in reciprocal novel adjacencies. For
every sample S we first observe all unlabeled novel adjacencies ÉA

N
measured from S and sort the positions involved

in adjacencies from ÉA
N

on every chromosome (in descending order of the coord values). Then, using a sliding
window approach, we update the coordinates for any consecutive pair p

i
, p

j
of positions which resembles a reciprocal

signature: i.e., if the distance coord
i
*coord

j
 was less than 50 base pairs and str

i
ë str

j
, we update the values

of the coordinates in positions p
i

and p
j

so that they have a coordinate distance of 1, with the position having a +
strand appearing prior to the position having a * strand (Figure 7A).

Then, for allele-specific segment copy number input (e.g., from Battenberg and HATCHet) we partition frag-
ments, on which allele-specific copy number values are measured, into smaller segments such that extremities of
obtained segments either correspond to the coordinates of extremities involved in the preprocessed novel adjacencies
from ÉA

N
, or to the extremities of the original fragments (Figure 7B). Copy numbers on newly obtained segments are

inherited from the values of the “parent” fragments.
Lastly, in order to compute length-weighted segment copy number distances between RCK, ReMixT,

Battenberg, and HATCHet inferences on the prostate cancer samples, we refined the fragments/segments on which
the copy numbers were inferred as demonstrate in Figure S10).
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p4 = (a, 500, +) p5 = (a, 600, -)
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Figure 7: Derivation of the input for ReMixT and RCK. A) An example of derivation of coordinates that resemble
a reciprocal signature in measured unlabeled novel adjacencies on a chromosome a. Positions p1 = (a, 100,+) and
p2 = (a, 107,*) have reciprocal signature (i.e., coord1 * coord2 = 7 < 50 and str1 = * ë str2 = +).
Updated pair {p®1 = (a, 103,+), p®2 = (a, 104,*)} of coordinates constitutes a reciprocal location. B) An example
of partitioning of a set F = {f1, f2, f3, f4} of fragments from allele-specific copy number calls into a set S =
{s1, s2, s3, s4, s5, s6, s7, s8} of segments. Extremities of segments in S correspond to either preprocessed coordinates
of unlabeled novel adjacencies (e.g., sh1 = p

®
1, st2 = p

®
2) or to the extremities of fragments in F (e.g. sh3 = f

h

2 , st4 = f
t

3).
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Code availability
RCK is available on GitHub at https://github.com/raphael-group/RCK.
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J R Aparicio, Andrew Tutt, Anieta M Sieuwerts, ÃĚke Borg, Gilles Thomas, Anne Vincent Salomon, Andrea L
Richardson, Anne-Lise Børresen-Dale, P Andrew Futreal, Michael R Stratton, Peter J Campbell, and Breast
Cancer Working Group of the International Cancer Genome Breast Cancer Working Group of the International
Cancer Genome Consortium. The life history of 21 breast cancers. Cell, 149(5):994–1007, 5 2012.

23

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 25, 2019. ; https://doi.org/10.1101/560839doi: bioRxiv preprint 

https://doi.org/10.1101/560839
http://creativecommons.org/licenses/by-nc-nd/4.0/


[41] Layla Oesper, Simone Dantas, and Benjamin J Raphael. Identifying simultaneous rearrangements in cancer
genomes. Bioinformatics (Oxford, England), 34(2):346, 11 2017.

[42] Layla Oesper, Anna Ritz, Sarah J Aerni, Ryan Drebin, and Benjamin J Raphael. Reconstructing cancer genomes
from paired-end sequencing data. BMC bioinformatics, 13 Suppl 6(Suppl 6):S10, 4 2012.

[43] Layla Oesper, Gryte Satas, and Benjamin J. Raphael. Quantifying tumor heterogeneity in whole-genome and
whole-exome sequencing data. Bioinformatics, 30(24):3532–3540, 12 2014.

[44] Ann-Marie Patch, Elizabeth L. Christie, Dariush Etemadmoghadam, Dale W. Garsed, Joshy George, Sian Fere-
day, Katia Nones, Prue Cowin, Kathryn Alsop, Peter J. Bailey, Karin S. Kassahn, Felicity Newell, Michael C. J.
Quinn, Stephen Kazakoff, Kelly Quek, Charlotte Wilhelm-Benartzi, Ed Curry, Huei San Leong, Anne Hamilton,
Linda Mileshkin, George Au-Yeung, Catherine Kennedy, Jillian Hung, Yoke-Eng Chiew, Paul Harnett, Michael
Friedlander, Michael Quinn, Jan Pyman, Stephen Cordner, Patricia OâĂŹBrien, Jodie Leditschke, Greg Young,
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