

1 **BREAKTHROUGH REPORT**

2 **Leaf Variegation and Impaired Chloroplast
3 Development Caused by a Truncated CCT Domain
4 gene in *albostrians* Barley**

5 **Mingjiu Li^{a,b}, Goetz Hensel^c, Martin Mascher^d, Michael Melzer^e, Nagaveni
6 Budhagatapalli^c, Twan Rutten^e, Axel Himmelbach^a, Sebastian Beier^f, Viktor
7 Korzun^g, Jochen Kumlehn^c, Thomas Börner^{b,1}, and Nils Stein^{a,1}**

8 ^aGenomics of Genetic Resources Group, Department of Genebank, Leibniz Institute
9 of Plant Genetics and Crop Plant Research (IPK), 06466 Seeland, Germany

10 ^bMolecular Genetics Group, Institute of Biology, Humboldt University, 10115 Berlin,
11 Germany

12 ^cPlant Reproductive Biology Group, Department of Physiology and Cell Biology,
13 Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Seeland,
14 Germany

15 ^dDomestication Genomics Group, Leibniz Institute of Plant Genetics and Crop Plant
16 Research (IPK), 06466 Seeland, Germany

17 ^eStructural Cell Biology Group, Department of Physiology and Cell Biology, Leibniz
18 Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Seeland, Germany

19 ^fBioinformatics and Information Technology Group, Department of Breeding
20 Research, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466
21 Seeland, Germany

22 ^gKWS LOCHOW GmbH, 29303 Bergen, Germany

23 ¹Corresponding authors:

24 Thomas Börner; thomas.boerner@rz.hu-berlin.de

25 Nils Stein; stein@ipk-gatersleben.de

26 Short title: *HvAST* in control of *albostrians* variegation

27 One-sentence summary: Leaf variegation in the barley mutant *albostrians* is caused

28 by mutation of a single CCT-domain containing gene with residual activity, which is

29 directed to the chloroplast.

30 The author responsible for distribution of materials integral to the findings

31 presented in this article in accordance with the policy described in the Instructions

32 for Authors (www.plantcell.org) is: Nils Stein (stein@ipk-gatersleben.de)

33 **ABSTRACT**

34 Chloroplasts fuel plant development and growth by converting solar into chemical
35 energy. They mature from proplastids through the concerted action of genes in both
36 the organellar and the nuclear genome. Defects in such genes impair chloroplast
37 development and may lead to pigment-deficient seedlings or seedlings with
38 variegated leaves. Such mutants are instrumental as tools for dissecting genetic
39 factors underlying the mechanisms involved in chloroplast biogenesis.
40 Characterization of the green-white variegated *albostrians* mutant of barley has
41 greatly broadened the field of chloroplast biology including the discovery of
42 retrograde signaling. Here, we report the identification of the *ALBOSTRIANS* gene
43 *HvAST* by positional cloning as well as its functional validation based on
44 independently induced mutants by TILLING and RNA-guided Cas9 endonuclease
45 mediated gene editing. The phenotypes of the independent *HvAST* mutants imply
46 residual activity of *HvAST* in the original *albostrians* allele conferring an imperfect
47 penetrance of the variegated phenotype even at homozygous state of the mutation.
48 *HvAST* is a homolog of the *Arabidopsis thaliana* CCT Motif transcription factor gene
49 *AtCIA2*, which was reported to be involved in the expression of nuclear genes
50 essential for chloroplast biogenesis. Interestingly, in barley we localized *HvAST* to
51 the chloroplast indicating novel without any clear evidence of nuclear localization.

52 INTRODUCTION

53 Chloroplasts are the site of photosynthesis. In higher plants, functional chloroplasts
54 differentiate from their progenitor organelles called proplastids. This process,
55 chloroplast biogenesis, depends on a network of environmental, temporal and
56 cellular factors (Pogson and Albrecht, 2011), with the latter including the expression
57 of both plastid and nuclear genes. The nuclear genome codes for the vast majority of
58 proteins required for chloroplast biogenesis. In barley, for instance, only 78 out of
59 about 3000 chloroplast proteins are encoded in the plastid genome (plastome)
60 (Saski et al., 2007; Petersen et al., 2013). Mutations in these nuclear genes may
61 result in defective plastids as reflected by frequently occurring leaf coloration
62 aberrations in different plant species. Chlorophyll-deficient mutants provide valuable
63 genetic tools for the identification of nuclear genes involved in chloroplast biogenesis
64 and regulation (Taylor et al., 1987; Barkan, 1998; Leon et al., 1998).

65 Specifically, mutations leading to variegation, due to their unique feature of exhibiting
66 both normal and defective plastids in different sectors of the same tissue, are of
67 great interest to research towards understanding (i) chloroplast biogenesis, (ii) cross-
68 communication between the nucleus and the other DNA-containing compartments
69 like plastids and mitochondria, (iii) and the molecular mechanism of variegation.
70 Genes involved in the variegation pattern formation have been cloned in monocot
71 and dicot species (e.g. Wu et al., 1999; Chen et al., 2000; Takechi et al., 2000;
72 Prikryl et al., 2008; Hayashi-Tsugane et al., 2014; Wang et al., 2016; Zheng et al.,
73 2016; Guan et al., 2017; Zagari et al., 2017). Despite the advances of identifying the
74 underlying genes, insights to the molecular mechanisms controlling the phenomenon
75 are rare (Sakamoto, 2003; Yu et al., 2007). Leaf variegation can occur when cells of
76 green and pigment-deficient sectors have distinct genotypes. Cells in green sectors
77 have a wild-type genotype with functional chloroplasts, while pigment-deficient
78 sectors consist of mutant cells with abnormal plastids. Multiple mechanisms, such as
79 somatic chimerism, transposable elements activity, and organellar genome
80 mutations, are involved in generating cells of a single plant with distinct genotypes
81 (Yu et al., 2007). In other cases, variegation occurs also in mutants with identical
82 genotype in the green and the chlorotic tissue sectors. Especially the latter cases
83 provide interesting genetic systems for investigations into the poorly understood
84 pathways of chloroplast biogenesis (Sakamoto, 2003; Putarjunan et al., 2013).

85 Due to the differences in leaf organization between monocots and dicots,
86 'variegation' in monocots is also referred to as 'striping'. The *iojap* and *albostrians*
87 mutants of maize and barley, respectively, are two well-studied examples of
88 mutations causing a striping phenotype. They belong to the group of mutants with
89 identical genotype in green and pigment-deficient tissues. The *iojap* gene codes for a
90 component of the 50S subunit of the plastid ribosome. Its role in ribosome assembly
91 or function is yet unknown (Han et al., 1992; Wanschers et al., 2012). The
92 *albostrians* mutant served as a model for studies on the transcriptional machinery of
93 the chloroplast genome (Hess et al., 1993; Zhelyazkova et al., 2012) and on
94 regulatory interactions between plastids, mitochondria and the nucleus (Bradbeer et
95 al., 1979; Hess et al., 1994; Hedtke et al., 1999; Nott et al., 2006). However,
96 elucidation of the mechanism leading to the *albostrians*-specific phenotype of
97 variegation was impeded by the fact that the causal underlying gene was unknown.
98 The *albostrians* mutant was selected in the 1950s after X-ray irradiation of the two-
99 rowed spring barley variety 'Haisa'. The phenotype is controlled by a single
100 recessive nuclear gene, which, however, has no complete penetrance; the progeny
101 of the fully green mutant segregates into green, variegated and albino seedlings in a
102 ratio of around 1:8:1 (Hagemann and Scholz, 1962). Green and variegated seedlings
103 with sufficient photosynthetically active green tissue will grow to maturity, remain
104 green and/or striped, respectively, and produce fertile flowers. The progeny again
105 will consist of green, white and variegated plants (Hagemann and Scholz, 1962). The
106 phenotype is very stable since changes of light conditions or temperature have
107 remained without effect (Hagemann and Scholz, 1962; Börner et al., 1976; Hess et
108 al., 1993). Similar to *iojap* (Walbot and Coe, 1979), the barley *HvAST* allele [termed
109 *Hvas* in (Hagemann and Scholz, 1962)] was originally described as a 'plastome
110 mutator', i.e. as a nuclear gene that induces plastome mutations because the
111 nuclear-gene induced albino phenotype showed a stable maternal inheritance
112 (Hagemann and Scholz, 1962). This hypothesis was underpinned originally by the
113 finding of so-called 'mixed cells' containing undifferentiated plastids and green
114 chloroplasts (Knoth and Hagemann, 1977). Later, it has been proposed, however,
115 that neither *iojap* nor *HvAST* are mutator genes since in either mutant the albinotic
116 leaf tissues were characterized by ribosome-deficient plastids (Börner et al., 1976;
117 Walbot and Coe, 1979; Börner and Hess, 1993) and the lack of plastid ribosomes is
118 stably inherited like a genuine plastome mutation (Zubko and Day, 1998). Indeed,

119 restriction patterns and sequence of the DNA in undifferentiated, ribosome-free
120 plastids of *albostrians* were identical with those of the chloroplast DNA in green
121 tissues of *albostrians* and in the barley wild-type varieties 'Haisa' and 'Morex' (Hess
122 et al., 1993; Zhelyazkova et al., 2012). Thus, the barley *HvAST* gene product is not
123 expected to act on chloroplast DNA but to be required for plastid ribosome assembly,
124 maintenance and/or function.

125 Recently, ample genomic resources have been developed in barley (Schulte et al.,
126 2009; Mayer et al., 2011; International Barley Genome Sequencing Consortium,
127 2012; Ariyadasa et al., 2014; Mascher et al., 2017) which are greatly facilitating gene
128 cloning (Mascher et al., 2014). Using these resources, we identified a candidate
129 gene by positional cloning and confirmed its identity with *ALBOSTRIANS* by
130 screening of a barley TILLING population (Gottwald et al., 2009) and by site-directed
131 mutagenesis using RNA-guided Cas9 endonuclease (Jinek et al., 2012). The gene
132 *HvAST* underlying the *albostrians* phenotype of variegation is identical with *HvCMF7*,
133 a member of the *CCT Motif* gene *Family (CMF)* of putative transcription factors
134 (Cockram et al., 2012). The transient analysis of an *HvAST:GFP* fusion in
135 conjunction with organelle markers revealed a strong subcellular localization of
136 *ALBOSTRIANS* to the chloroplast.

137 RESULTS

138 Map-based Cloning of the *HvAST* Gene

139 The mutant *Hvast* allele of barley causes variegation, characterized by green-white-
140 striped leaves (Figure 1A). The white leaf sectors contain undifferentiated plastids
141 virtually free of 70S ribosomes (Hess et al., 1993) while green parts harbor normal,
142 photosynthetically active chloroplasts. We allocated the gene *HvAST* to the long arm
143 of chromosome 7H by using two *F*₂ mapping populations [Morex x M4205 (MM4205)
144 and Barke x M4205 (BM4205)] each representing 182 gametes. Further fine
145 mapping of the gene in 2,688 gametes of population MM4205 delimited the *HvAST*
146 target region to a 0.06 cM interval (Figure 1B). The closest *HvAST* flanking markers
147 were anchored to the physical map of barley (International Barley Genome
148 Sequencing Consortium, 2012; Mascher et al., 2013) and by sequence comparison
149 and BAC library screening, five overlapping physical map contigs (Finger Printed
150 Contigs, FPcontigs) spanning a distance of around 0.40 Mbp (between flanking

151 markers Zip_2661 and 3_0168) were identified. Then, sixty BAC clones representing
152 the physical target interval were sequenced providing novel information for
153 developing and mapping of new BAC contig derived markers; delimiting the *HvAST*
154 locus to two overlapping BAC clones HVVMRXALLrA0395M21 and
155 HVVMRXALLmA0230A06 (Figure 1C). Eventually, a 46 Kbp region was found to be
156 the smallest genetic and physical interval comprising the *HvAST* locus (Figure 1D).
157 Sequence comparison to annotated genes defined on the Morex draft WGS
158 assembly (International Barley Genome Sequencing Consortium, 2012) revealed the
159 presence of a single gene locus, *MLOC_670* (GenBank accession ID AK366098).
160 The *HvAST* gene structure, supported by cDNA analysis, consists of three instead of
161 two exons as *in silico* predicted for *MLOC_670*. We discovered a 4 bp deletion by re-
162 sequencing of the *HvAST* gene in the *albostrians* mutant (line M4205) if compared to
163 the wild-type genotype (Figure 1E). This mutation is predicted to induce a shift of
164 reading frame and, as a consequence, a premature stop codon in the second exon
165 of the gene. This lesion is expected to result in (partial) loss of the gene function in
166 the mutant and makes the *MLOC_670* gene locus a very strong candidate for
167 representing the *HvAST* gene. The mutant allele in the original *albostrians* mutant is
168 designated as *Hvast1*.

169 **Functional Validation of the *HvAST* Gene by TILLING and Test of Allelism**

170 To verify the biological function of the gene *HvAST*, we screened an EMS induced
171 TILLING population (cv. Barke) (Gottwald et al., 2009) for independent mutated
172 alleles. Forty-two EMS-induced mutations, including 20 synonymous and 20 non-
173 synonymous mutations, one 9 bp deletion and one mutation leading to a premature
174 stop codon, were identified. Whereas no other mutant family exhibited any
175 chlorophyll / photosynthesis related phenotype, the M₃ progeny of the M₂-TILLING
176 family 6460-1 (carrying the premature stop codon) was segregating for albinism. All
177 homozygous mutant progeny of TILLING family 6460-1 showed a complete albino
178 phenotype (Figures 2A and 2B), while homozygous wild-type and heterozygous
179 plants from the segregating M₃ all represented entirely green seedlings. The linkage
180 between albino phenotype and mutant genotype of the *HvAST* candidate gene was
181 further validated through analysis of a large M₄ population comprising 245 individuals
182 derived from five M₃ heterozygous plants (Figure 2A). All homozygous M₄ mutants
183 grew into purely albino seedlings. The Mendelian segregation pattern ($\chi^2=0.74$; $df=2$;

184 $p=0.69$) of the M₄ generation indicated that, like the *albostrians* phenotype in M4205,
185 the albino phenotype was controlled by one single recessive gene. We observed
186 exceptions from the pure albino phenotype in homozygous mutant M₄ and M₅
187 progenies of TILLING family 6460-1 in the case of two seedlings showing very
188 narrow green sectors on the first leaf (Figures 2C) indicating an analogous, yet much
189 more severe phenotype compared to the variegation conferred by the original
190 *HvAST* mutation (*i.e.* the 4bp deletion). Due to the severity and predominance of
191 albino sectors, both M₄ and M₅ striped plants did not develop beyond the seedling
192 stage (Figure 2D). The pre-stop allele in the identified TILLING family 6460-1 is
193 designated as *Hvast2*.

194 The prominent characteristic of the *albostrians* mutant is the lack of 70S ribosomes
195 in the plastids of albinotic leaf sectors (Hess et al., 1993). We checked therefore
196 whether in albino leaves of the allelic TILLING mutant 6460-1 plastid ribosomes are
197 also missing. Indeed, as in *albostrians*, ribosomes could not be detected by electron
198 microscopy in defective plastids of the TILLING mutant (Figure 3A); and the plastid
199 rRNAs were missing in preparations from albino leaves as determined by
200 formaldehyde agarose gel electrophoresis and evaluation using an Agilent 2100
201 Bioanalyzer (Figure 3B). Consequently, the development of plastids in the albino
202 sectors of the TILLING mutant is extremely impeded, comparable in extent to
203 *albostrians* defective plastids. In contrast to the well-developed crescent-shaped
204 chloroplasts in the wild-type and green TILLING mutant, smaller and irregularly
205 shaped plastids are observed in the *albostrians* and albino TILLING mutants. Instead
206 of typical thylakoids and granum stacks as seen in wild-type chloroplasts, only a few
207 vesicle-like structures are found within mutant plastids (Figure 3A).

208 Crosses between plants carrying the original 4 bp deletion *HvAST* allele of genotype
209 M4205 (*ast1/ast1*) and the novel TILLING pre-stop allele (*AST/ast2*) demonstrated
210 the allelic state of both mutations. Seven of the 18 F₁ plants showed a green
211 phenotype as expected for plants heterozygous for the original *HvAST* allele
212 (*AST/ast1*). The remaining eleven plants (*ast1/ast2*), heterozygous for the two
213 mutated alleles, were either completely albino or green-white variegated (Figures 2E
214 and 2F). This analysis confirmed that the identified candidate gene at the
215 *MLOC_670* locus is the functional gene underlying the mutant phenotype of the
216 original *albostrians* mutant genotype M4205. We named the gene *HvAST* [for

217 *Hordeum vulgare ALBOSTRIANS* according to (Hagemann and Scholz, 1962;
218 Franckowiak et al., 1992)].

219 **Site-directed Mutagenesis of *HvAST* by RNA-guided Cas9 Endonuclease**

220 *HvAST* as the causal gene for the striped/albino phenotype was confirmed by the
221 allelic nature of the *albostrians* and TILLING mutants. Remarkably, the phenotype of
222 the homozygous TILLING mutant is much more severe than in the original
223 *albostrians* mutant, which is probably due to the different relative location of the two
224 mutations within the coding region (Figure 4). In an attempt to verify this presumption
225 and to reproduce the *albostrians* phenotype, we employed site-directed mutagenesis
226 by RNA-guided Cas9 endonuclease to generate new *HvAST* mutants close to the
227 original site of the *albostrians* mutation of M4205. Two *HvAST*-specific guide RNAs
228 (gRNAs) surrounding the 4 bp deletion region of the original *albostrians* mutant were
229 selected (Figures 5B and 5C). Twenty-one out of twenty-three T₀ regenerated
230 plantlets carried the intact T-DNA, *i.e.* an *OsU3* promoter-driven guide RNA and a
231 maize codon-optimized Cas9 controlled by the maize *UBIQUITIN1* promoter with first
232 intron. Twenty of these showed fully green leaves, whereas one plant (BG684E11,
233 carrying the gRNA specific for target motif 1 which resides a few base-pairs
234 upstream of the original *albostrians* mutation site) exhibited a green-white-striped
235 phenotype resembling that of mutant M4205. A variegated leaf of BG684E11 was
236 used for genotyping the pre-selected *HvAST*-region which revealed two mutant
237 alleles each carrying a single base-pair (A/T) insertion within target motif 1 at the
238 position expected to be cut by the gRNA/Cas9 complex (Figure 5D). Genotyping
239 revealed the chimeric nature of the original T₀ plant BG684E11, since four genotypic
240 classes could be observed in the corresponding T₁ progeny: homozygous *mutant*
241 *1/mutant 1* or *mutant 1/mutant 2* (class I), heterozygous *mutant 1/mutant 2* (class II),
242 *mutant 1* or *mutant 2/wild-type* (class III) and homozygous *wild-type/wild-type* (class
243 IV) (Figure 5E). The individuals of class I and II either showed green-white
244 variegated (Figure 5A) or albino leaves, while plants in the remaining two classes
245 exclusively were completely green. Hence, site-directed mutagenesis of *HvAST* by
246 RNA-guided Cas9 endonuclease reproduced a phenotype similar to *albostrians*,
247 which unambiguously confirmed *HvAST* as the functional associated gene. Our
248 findings supported also the hypothesis that the severity of the *HvAST* mutant

249 phenotype correlates with the relative position of lesions within the gene. The Cas9-
250 induced mutant allele with 1 bp insertion (nucleotide G) was designated as *Hvast3*.

251 ***HvAST* is a Member of the CCT MOTIF FAMILY of Genes and is Targeted to the**
252 **Plastids**

253 Sequence comparison revealed that *HvAST* encodes a putative protein with a length
254 of 459 amino acids (AA). It carries a CCT domain at AA position 403 to 447
255 according to survey on the NCBI's Conserved Domain Database (Marchler-Bauer et
256 al., 2017). CCT is a conserved domain of 43 AA found in the *Arabidopsis thaliana*
257 transcription factors CONSTANS (CO), CO-LIKE, and TIMING OF CHLOROPHYLL
258 A/B BINDING PROTEIN1 (TOC1) (Putterill et al., 1995; Strayer et al., 2000). The
259 gene *HvAST* was previously described as *HvCMF7* in a study on the evolution of the
260 CCT domain containing gene family (CMF) in Poaceae (Cockram et al., 2012).
261 Based on public gene expression data derived from eight tissues/growth stages of
262 barley International Barley Genome Sequencing Consortium (2012) the gene *HvAST*
263 is expressed in all eight tissues/stages reaching the highest level of expression in
264 young barley tillers and the lowest expression in the embryo and developing grains,
265 respectively (Supplemental Figure 1). So far investigated, CMF proteins were
266 proposed to represent transcription factors (Ben-Naim et al., 2006) and the CCT
267 domain was predicted to be a nucleus localization signal (Robert et al., 1998). For
268 *HvAST*, *in silico* prediction (Emanuelsson et al., 1999; Emanuelsson et al., 2000;
269 Small et al., 2004) indicated at high probability the presence of an N-terminal
270 chloroplast transit peptide (cTP) suggesting chloroplast targeting of the protein. We
271 tested the subcellular localization after fusing green fluorescent protein (GFP) to the
272 C-terminus of *HvAST*.

273 Four constructs were made for *HvAST*: wild-type *HvAST* (WT_HvAST:GFP), two
274 mutated forms [*i.e.* the original *albostrians* mutant M4205 (M4205_HvAST:GFP) and
275 the TILLING mutant 6460-1 (TILLING_HvAST:GFP)] and the cTP domain of *HvAST*
276 (cTP_83AA_HvAST:GFP) (Figure 6A). These fusion constructs, together with one
277 plastid marker pt-rk-CD3-999 (Nelson et al., 2007), respectively, were subjected to
278 transient expression experiments using biolistic bombardment of barley leaf
279 segments with vector-coated gold particles. The plastid marker pt-rk-CD3-999
280 (Nelson et al., 2007) was detected by its orange fluorescence (Figure 6, mCherry

281 column). Cells expressing only the GFP (non-fusion GFP control) showed green
282 fluorescence associated with the nucleus and the cytoplasm but not with plastids
283 (Figure 6B). In contrast, the mCherry signal of the plastid marker accumulated
284 exclusively in plastids (Figure 6C). WT_HvAST:GFP and its two truncated mutant
285 forms were detected as green fluorescence in leaf epidermal cells associated with
286 the nuclei and stronger with the plastids (Figures 6D, 6E and 6F). The plastid
287 localization of HvAST was further confirmed by the cTP_83AA_HvAST:GFP, which
288 showed strong accumulation of GFP signals in the plastids (Figure 6G). In total, 30-
289 50 cells for each of the five fusion constructs were checked for the presence of both
290 green and orange fluorescence.

291 To further confirm subcellular localization of HvAST, stably transgenic barley lines
292 carrying WT_HvAST:GFP were obtained through *Agrobacterium*-mediated
293 transformation. Consistently with results of the transient experiments, GFP
294 fluorescence was specifically targeted to the plastids in the epidermal cells (Figure
295 6H). Surprisingly, we could not detect GFP fluorescence in the mesophyll cells.

296 Taken together, the wild-type HvAST and its two mutated forms displayed a clear
297 compartmentalized accumulation in the plastids. Although also nuclear fluorescence
298 was visible in the transformed cells, which would support a role of the CCT domain
299 as a nuclear localization signal, further investigations are required to discriminate if
300 the observed localization of HvAST to the nucleus is only the consequence of
301 unspecific nuclear targeting of GFP as was reported in other systems before (Seibel
302 et al., 2007).

303 **DISCUSSION**

304 Leaf variegation in the barley mutant *albostrians* is distinct due to the incomplete
305 penetrance of the phenotype. Even if carrying the mutant allele at homozygous state,
306 plants may be completely green and the progeny of such a green plant will
307 segregate in a ratio of 1:8:1 for green, variegated, or albino phenotype, respectively.
308 This phenomenon implies residual activity of the affected allele and a threshold
309 mechanism involved at a critical decision point in chloroplast development /
310 maturation - a hypothesis, which can be further tested now, since the gene *HvAST*
311 was isolated by positional cloning.

312 The cloning of the gene *HvAST* was supported by four lines of evidence: (i) the
313 smallest genetic interval contained only a single gene in perfect linkage with the
314 phenotype, (ii) mutant analysis by TILLING revealed an independent pre-stop allele
315 leading to a related but more severe and fully penetrant phenotype, (iii) crossing of
316 the two independent mutant alleles proved their state of allelism, and last not least
317 (iv) *albostrians*-like alleles were induced by site-directed mutagenesis using RNA-
318 guided Cas9 endonuclease. In the original *albostrians* mutant allele, *ast1* of the
319 genotype M4205, a four base pair deletion at position 1123-1126 of the coding
320 sequence is predicted to induce a shift of reading frame and, as a consequence, a
321 premature stop codon in the second exon of the gene (Figure 4). During functional
322 validation of the identified gene, the characterization of two novel independent
323 mutant alleles, *ast2* and *ast3*, implied that severity and penetrance of the phenotype
324 is correlated with the relative position of the mutation as well as with allele dosage.
325 The albino phenotype conferred by *ast2*, induced by EMS and identified by TILLING,
326 suggested (almost) complete loss of protein activity. Though this phenotype is not
327 completely identical with the mostly striped progeny of *albostrians* barley, *ast2*
328 provided evidence for the identified gene *HvAST* representing *albostrians*, since also
329 two albino seedlings with tiny green stripes could be observed among 289 M₃, M₄
330 and M₅ progenies. F₁ plants heterozygous for *ast1/ast2* confirmed their allelic state
331 but also demonstrated that the phenotype is affected by allele dosage. In contrast to
332 M4205 (*ast1/ast1*), F₁ plants (*ast1/ast2*) were either albino or green-white variegated
333 but not a single fully green F₁ could be observed. Since plants heterozygous with
334 one wild-type allele (*AST/ast1*) are generally fully green, the severity of phenotype
335 thus varies in an allele-dosage dependent manner. The phenotypic difference of *ast1*
336 and *ast2* homozygous mutants provided the first indication of a correlation between
337 relative position of the mutation and severity of the phenotype. This hypothesis was
338 confirmed by a third allele, *ast3*, obtained via site-directed mutagenesis using RNA-
339 guided Cas9 endonuclease. A one-nucleotide insertion at 28 bp upstream of the 4 bp
340 deletion in *ast1* led to a frameshift and an *ast1*-similar gene product of seven amino
341 acids longer altered putative C-terminal sequence. Homozygous seedlings carrying
342 this mutation (*ast3/ast3*) resembled the typical *albostrians* green-white striped or
343 albino seedling phenotype, however, in contrast to *ast1/ast1* plants, no green
344 seedlings were observed indicating a more severe phenotype for *ast3/ast3* plants.

345 **HvAST is a CCT-domain Protein and Homolog of the *Arabidopsis* CIA2 Protein**

346 *In silico* analyses of the amino acid sequence of HvAST revealed at its N-terminus a
347 putative chloroplast transit peptide and near the C-terminus a CCT-domain qualifying
348 it to be a member (HvCMF7) of the larger CCT domain-containing gene family of the
349 Poaceae (Cockram et al., 2012). The CCT-domain is named after rather well studied
350 plant transcription factors: CONSTANS, CONSTANS-LIKE, and TOC1 (TIMING OF
351 CHLOROPHYLL A/B BINDING PROTEIN1) (Strayer et al., 2000). HvAST belongs to
352 a sub-gene family that is characteristic for carrying only a single CCT domain per
353 gene (Cockram et al., 2012) and CCT is the only domain of HvAST in common with
354 these transcription factors.

355 The closest homologs of *HvAST* in *Arabidopsis thaliana* are the genes
356 “CHLOROPLAST IMPORT APPARATUS 2 (AtCIA2)” and “CHLOROPLAST
357 IMPORT APPARATUS 2-LIKE (AtCIL)” (Sun et al., 2001). AtCIA2 encodes a
358 nucleus-localized transcription factor involved in expression of both protein
359 translocon and ribosomal protein genes by binding to the respective promoters (Sun
360 et al., 2009a). Yet, *HvAST* in barley might have a different function. As expected by
361 the *in silico* predicted chloroplast transit peptide, it could be shown that HvAST was
362 localized to barley chloroplasts in transient co-localization and stable transformation
363 experiments. GFP signal was also observed in the nucleus, which, however, is not
364 providing yet any evidence of dual targeting to the plastid and nucleus, since GFP
365 has a general tendency of nuclear localization as demonstrated by the GFP-only
366 controls in the transient expression experiments. Searching the public plant
367 proteomics database (Sun et al., 2009b) revealed no *HvAST* homologs of other plant
368 species targeted to the plastids. Thus, to our knowledge, HvAST represents the first
369 CCT domain protein found to be targeted to plastids.

370 Nevertheless, the exact molecular function of HvAST remains elusive. Based on the
371 analysis of independent *HvAST* mutant alleles, it can be concluded that the CCT
372 domain may be involved in overall HvAST-function, however, this domain is not
373 exclusively required to regulate proper chloroplast differentiation or maturation in
374 barley. The alleles *ast1* and *ast3* allow, at least in a threshold dependent manner,
375 the formation of fully functional chloroplasts in green seedlings and green leaf
376 sectors, hence normal differentiation of chloroplasts despite complete loss of the

377 CCT domain. Both mutated alleles reduce most likely the protein functionality but do
378 not completely destroy its function. The increasingly severe phenotype in mutant
379 alleles with defects progressing towards the N-terminus of the gene indicated the
380 presence of an additional, still to be described domain of the protein that is involved
381 in communicating its essential function in the different cell compartments. Further
382 protein-protein and DNA-protein interaction studies involving the series of barley
383 *HvAST* mutants will be required to further address this question.

384 It is interesting to note that we found phenotypic effects only for mutations that affect
385 large portions of the *HvAST* protein at its C-terminus. The TILLING population
386 contained also several mutations that introduced putative synonymous or non-
387 synonymous exchanges of amino acids into the protein sequence. All of them
388 showed the wild-type phenotype. The gradual increase in the amount of white leaves
389 and white leaf sectors with shifting the position of the mutation toward the N-terminus
390 of the *HvAST* protein and the absence of effects of point mutations leading to an
391 altered amino acid in this region suggests that the C-terminal part of the protein does
392 not have a catalytic function but potentially rather interacts with other proteins –
393 potentially involved in expression or regulation of genes required for plastid ribosome
394 formation. In case of the mutant *Hvast* alleles, this interaction would be less efficient
395 or missing suggesting the formation of a multiprotein-complex with less or no
396 remaining activity.

397 **HvAST – A Factor Involved in Chloroplast Ribosome Formation?**

398 Remarkably, green, green-white striped and white seedlings of the *albostrians*
399 mutant have all the same genotype; they are homozygous for the recessive mutant
400 allele (*ast1*) and they have identical plastid genomes (Hess et al., 1993; Zhelyazkova
401 et al., 2012). The different fate of plastids in *albostrians* leaves is therefore not
402 caused by a mutation in the DNA of those proplastids that do not develop into
403 chloroplasts. There is no environmental influence on the phenotype of *albostrians*
404 plants contrasting reports on other variegated plants with identical genotype in
405 differently colored leaf sectors like barley *tigrina* mutants or the *Arabidopsis*
406 *immutans* mutant. In these mutants the pigmentation of leaves and leaf sectors
407 depends on the light conditions, hence illumination induces chlorosis due to photo-
408 oxidation (Wettstein et al., 1974; Wetzel et al., 1994; Lee et al., 2003; Putarjunan et

409 al., 2013). Most certainly, it is the ribosome deficiency of all or only part of the
410 plastids, respectively, in the meristems of the first and following leaves that blocks
411 further chloroplast development and thus either causes the formation of completely
412 white or green-white variegated leaves, respectively. As was demonstrated before
413 (Knoth and Hagemann, 1977; Dorne et al., 1982) and confirmed in the present study,
414 plastids in white leave sectors of *albostrians* plants do not contain ribosomes, thus
415 HvAST is needed directly or indirectly for the biogenesis of plastid ribosomes. Since
416 HvAST or its homologs in *Arabidopsis* have not been described as a component of
417 plastid ribosomes, *i.e.* as a ribosomal protein *sensu stricto* (Yamaguchi and
418 Subramanian, 2000; Yamaguchi et al., 2000; Tiller et al., 2012), the HvAST protein
419 might not be associated with ribosomes or be associated only under certain
420 conditions and might be required for the assembly of plastid ribosomes rather than
421 for their function.

422 Conclusion

423 The identification of the barley gene *HvAST* has revealed novel insights into the role
424 of CCT-domain containing proteins. We show that a barley CCT-domain containing
425 protein is localized to plastids. This gene likely plays a crucial role during early
426 embryo development for plastid ribosome formation and hence for chloroplast
427 development. An *Arabidopsis* homolog of *HvAST* was previously published to act as
428 transcriptional regulator for nuclear genes coding for chloroplast ribosomal proteins
429 and for the chloroplast protein translocon (Sun et al., 2009a). Based on our findings,
430 a dual role of this special group of CCT domain proteins in nuclei and in plastids
431 cannot be ruled out. The identification of the gene causing the “*albostrians*”
432 phenotype will foster studies on early phases of chloroplast development, in
433 particular the formation of plastid ribosomes, on possible dual localization of CCT
434 proteins to nuclei and plastids, and on leaf variegation in non-chimeric plants.

435 METHODS

436 Plant Materials

437 The six-rowed spring barley cultivar 'Morex' and the two-rowed spring barley cultivar
438 'Barke' were used as maternal parent in crossings with the mutant line M4205
439 (Hagemann and Scholz, 1962), respectively. The obtained F₁ were self-pollinated to

440 obtain F₂ populations for genetic mapping. The two F₂ mapping populations were
441 designated as 'MM4205' ('Morex x M4205') and 'BM4205' ('Barke x M4205')
442 indicating the respective parental combinations of the crosses. All plants were grown
443 under greenhouse conditions with a day/night temperature and photoperiod cycle of
444 20°C/15°C and 16h light / 8h darkness, respectively.

445 **DNA Preparation**

446 DNA was isolated according to the protocol of Doyle and Doyle (1990) from leaf
447 samples collected from three-leaf stage greenhouse-grown seedlings and quantified
448 using NanoDrop Spectrophotometer (Thermo Scientific, Wilmington, USA) according
449 to the manufacturer's instructions and adjusted to 100 ng/μl for any PCR application.

450 **PCR Reaction**

451 DNA amplification reactions were performed in a total volume of 20 μl containing 40
452 ng of template DNA, 4 mM of dNTPs, 1 μl each of 5 μM forward and reverse primer,
453 0.5 units of HotStarTaq DNA polymerase (Qiagen, Düsseldorf, Germany) and 2 μl of
454 10x PCR buffer (100 mM Tris-HCl, pH 8.3; 500 mM KCl; 15 mM MgCl₂; 0.01%
455 gelatin). Touch-down PCR program was used with a GeneAmp 9700 thermal cycler
456 (Life Technologies GmbH, Darmstadt, Germany): initial denaturation at 94°C for 15
457 min followed by 5 cycles at 94°C for 30 s, annealing at 65°C to 60°C (-1°C/cycle) for
458 30 s, extension 1 min at 72°C, and then proceeded for 40 cycles 94°C for 30 s, 60°C
459 for 30 s, 72°C 1 min, and followed by a final extension at 72°C for 10 min. Detailed
460 information of the primers used for marker development is presented in
461 Supplemental Table 1.

462 **CAPS Assay**

463 SNP polymorphisms identified between the mapping parents were converted into
464 CAPS (Cleaved Amplified Polymorphic Sequences) markers (Thiel et al., 2004)
465 (Supplemental Table 1). For this purpose, PCR products were purified using the
466 NucleoFast® 96 PCR Kit (Macherey-Nagel, Düren, Germany) and sequenced on ABI
467 3730 XL (Life Technologies GmbH, Darmstadt, Germany). Sequences were aligned
468 by using Sequencher® version 5.2.3 software (Gene Codes Corporation, Ann Arbor,
469 MI USA. <http://www.genecodes.com>) for SNP identification. Subsequently,
470 SNP2CAPS software (Thiel et al., 2004) was adopted to select a suitable restriction

471 endonuclease. The resulting fragments were resolved by electrophoresis on 1.5%
472 (w/v) agarose, 1x TBE gels (Invitrogen GmbH, Darmstadt, Germany).

473 **Genetic Mapping**

474 As an initial step, 91 F₂ individuals from each population 'MM4205' and 'BM4205'
475 were selected for low resolution genetic mapping the gene *HvAST*. Genotyping was
476 performed by using the Illumina Golden Gate assay with a custom set of 381 BOPA
477 SNP markers (Close et al., 2009). Subsequently, only the 'MM4205' population was
478 further employed for fine mapping of the gene *HvAST* due to its higher rate of
479 polymorphic markers compared to the 'BM4205' population. Saturation mapping
480 within the 'MM4205' population (91 genotypes) was conducted in an effort to narrow
481 down the target genetic interval. Next, fine mapping the gene *HvAST* with an
482 additional 1344 F₂ plants was scheduled in two steps. First, 142 recombinants were
483 selected by screening 960 F₂ plants with flanking markers CAPS_2536 and
484 CAPS_2560 and used for further marker saturation. In a second step, 384
485 variegated or albino F₂ individuals were selected from 1920 F₂ plants and screened
486 for recombination between newly identified flanking markers Zip_2661 and
487 Zip_2680_1. In addition, the genotype at the *HvAST* locus was determined by
488 phenotyping 30 F₃ seedlings derived from each F₂ recombinant through self-
489 pollination. While wild-type F₂ plants are expected to yield 100% green progeny, F₃
490 families derived from heterozygous F₂ will segregate into 75% wild-type and 25%
491 variegated or albino plants. F₃ progeny of F₂ homozygous green mutants will
492 segregate into 10% green, 80% variegated, and 10% albino seedlings. All molecular
493 markers used for saturation mapping as well as for fine mapping relied on publicly
494 available genomic resources (Sato et al., 2009; Mayer et al., 2011; International
495 Barley Genome Sequencing Consortium, 2012; Mayer et al., 2012).

496 **Linkage Analysis**

497 Genetic linkage analysis was performed using JoinMap 4 software (Van Ooijen,
498 2006). Homozygous wild-type, heterozygous and homozygous mutant allele calls
499 were defined as A, H and B, respectively; missing data was indicated by a dash.
500 Maximum Likelihood algorithm and Kosambi's mapping function were chosen for
501 building the linkage maps. Markers were assigned into seven groups based on

502 Logarithm of Odds (LOD = 4) groupings. Visualization of maps derived from JoinMap
503 4 was achieved by MapChart software (Voorrips, 2002).

504 **Physical Mapping**

505 The target physical region was identified by anchoring the flanking genetic markers
506 to the physical map of barley (International Barley Genome Sequencing Consortium,
507 2012). Two anchoring strategies were applied: (1) *in silico* anchoring approach
508 through BLASTn (Mount, 2007), *i.e.* sequence of the markers were used to screen
509 by BLAST against the draft barley sequence assembly at IPK barley BLAST Server
510 (<http://webblast.ipk-gatersleben.de/barley/>) or the HarvEST Server
511 (<http://138.23.178.42/blast/index.html>). (2) Experimental anchoring via PCR
512 screening of a BAC library derived from barley cultivar 'Morex' (Schulte et al., 2011)
513 as previously described (Ariyadasa and Stein, 2012) (Supplemental Table 2). The
514 MTP (Minimal Tiling Path) BACs spanning the region represented by the physical
515 map contigs were shotgun sequenced (Beier et al., 2016) on the MiSeq® System
516 (Illumina MiSeq®, San Diego, CA, USA) (Supplemental Table 3). The shotgun reads
517 were assembled as described previously (International Barley Genome Sequencing
518 Consortium, 2012). Gene models were predicted on non-repetitive sequences
519 (Schmutz et al., 2014) of the target interval through alignment of gene models
520 defined on the Morex WGS assembly (International Barley Genome Sequencing
521 Consortium, 2012).

522 **TILLING Screening**

523 An ethylmethanesulfonate (EMS) induced TILLING population, comprising 7,979 M₂
524 plants, derived from a two-rowed malting barley cultivar 'Barke' (Gottwald et al.,
525 2009), was used for identification of independent mutated alleles of the gene *HvAST*.
526 Primers were designed covering the coding sequence of the gene *HvAST*
527 (Supplemental Table 4). PCR amplicons were analyzed combined with dsDNA
528 Cleavage Kit (DNF-480-3000) and Gel-dsDNA reagent kit (DNF-910-K1000)
529 according to the manufacturer's protocols (Advanced Analytical Technologies
530 GmbH, Heidelberg, Germany). Subsequently, the cleaved PCR products were
531 separated using the *AdvanCE*™ FS96 capillary electrophoresis system (Advanced
532 Analytical Technologies GmbH, Heidelberg, Germany) and results were interpreted
533 with assistance of the PRO Size™ software (Advanced Analytical Technologies

534 GmbH, Heidelberg, Germany). The identified M₂ TILLING mutants were confirmed
535 by Sanger sequencing of PCR amplicons derived from the respective families. Plant
536 families carrying non-synonymous mutations, deletions, or immature stop codons
537 were selected for propagation. Phenotyping was performed through M₃ to M₅
538 generation of the identified M₂ mutants. Heterozygous plants were propagated and
539 maintained for further reproduction. All the identified TILLING families carrying
540 mutation for the *HvAST* gene are summarized in Supplemental Table 5.

541 ***HvAST* Gene Structure Analysis**

542 Primary leaf was collected from seedlings 4 days after germination. Total RNA was
543 extracted using TRIzol® reagent (Invitrogen GmbH, Darmstadt, Germany) following
544 manufacturer's instructions. The concentration of the obtained RNA was determined
545 by help of a Qubit® 2.0 Fluorometer (Life Technologies GmbH, Darmstadt, Germany)
546 according to manufacturer's manual. Genomic DNA was removed from RNA
547 preparations by incubation with RNase-free DNase I (Fermentas, St. Leon-Rot,
548 Germany) following the manufacturer's instructions. The reactions were carried out
549 in a total volume of 10 µl containing 1 µg of RNA, 1 µl of 10x reaction buffer with
550 MgCl₂ (100 mM Tris-HCl, pH=7.5; 25 mM MgCl₂; 1 mM CaCl₂) and 1 unit of DNase I
551 (1 U/µl). Samples were incubated at 37°C for 30 min, followed by adding 1 µl of 50
552 mM EDTA and further incubation for 10 min at 65°C. The DNase I treated RNA was
553 then used as template for cDNA synthesis. Reverse transcription was performed
554 using the SuperScript™ III First-Strand Synthesis SuperMix for qRT-PCR (Invitrogen
555 GmbH, Darmstadt, Germany) following the manufacturer's protocol. The DNase-I
556 treated RNA was used as template in a total volume of 30 µl containing 15 µl of 2x
557 RT reaction mix, 3 µl of RT enzyme and 2 µl of DEPC-treated water. Reverse
558 transcription reaction were performed during the following cycling profile: 25°C for 10
559 min, 50°C for 30 min, 85°C for 5 min and finally hold at 4°C. Subsequently, the RNA
560 strand was removed from obtained cDNA by incubating at 37°C for 20 min after
561 adding 1 µl of *E.coli* RNase H. RT-PCR was set up in a total volume of 20 µl
562 containing 2 µl of cDNA template, 2 µl of 10x PCR buffer (100 mM Tris-HCl, pH 8.3;
563 500 mM KCl; 15 mM MgCl₂; 0.01% gelatin), 2 µl of dNTPs (40 mM), 1 µl each of 5
564 µM forward and reverse primer, 0.1 µl of HotStarTaq DNA polymerase (5 U/µl;
565 Qiagen, Düsseldorf, Germany) and 11.9 µl of nuclease-free water. After purification,
566 PCR product was sequenced by using Big Dye Terminator chemistry and an ABI

567 3730 XL instrument (Life Technologies GmbH, Darmstadt, Germany). The *HvAST*
568 gene structure was resolved by aligning the sequenced *HvAST* coding sequence to
569 genomic sequence of barley cv. Morex.

570 **Site-directed Mutagenesis by RNA-guided Cas9 Endonuclease**

571 The coding region of the gene *HvAST* of barley cultivar 'Golden Promise' was
572 sequenced and used for gRNA/Cas9 target motif selection and guideRNA design.
573 The search for genomic target motifs was focused to the region surrounding the 4 bp
574 deletion carried by the original *albostrians* mutant and one proper target on each
575 side of the deletion was selected through *in silico* analysis using the online prediction
576 tool (<https://www.deskgen.com/guidebook/>; the 'KNOCKIN' panel was chosen for
577 gRNA design) (Doench et al., 2014). A synthetic double-stranded oligonucleotide
578 carrying the target-specific part of the gRNA was inserted between the OsU3 (RNA
579 polymerase III) promoter and the downstream gRNA scaffold present in the
580 monocot-compatible intermediate vector pSH91 (Budhagatapalli et al., 2016). Next,
581 the fragment containing the expression cassettes of gRNA and Cas9 was introduced
582 into the binary vector p6i-d35S-TE9 (DNA-Cloning-Service, Hamburg, Germany)
583 using the *Sfil* restriction sites. The vectors constructed for the two target motifs were
584 then used in *Agrobacterium*-mediated co-transformation of barley cultivar 'Golden
585 Promise' for generation of primary mutant plants. Presence/absence of T-DNA of the
586 regenerated plantlets and mutation detection was achieved by PCR using custom
587 designed T-DNA-specific and *HvAST*-specific primers, respectively (Supplemental
588 Table 4).

589 **Formaldehyde Agarose Gel Electrophoresis**

590 Electrophoresis was performed under RNase-free conditions - the electrophoresis
591 chamber and comb were washed with 0.1% (v/v) DEPC-H₂O and the agarose gel,
592 which contained 2% (w/v) agarose, 1X 3-(N-morpholino) propanesulfonic acid
593 (MOPS) buffer and 6.29% (v/v) formaldehyde, was prepared with 0.1% (v/v) DEPC-
594 H₂O. The RNA sample (1-5 µg) was mixed with formaldehyde loading dye, which
595 contained 25 µl formamide (Carl Roth GmbH, Karlsruhe, Germany), 5 µl 10x MOPS
596 buffer (200 mM MOPS; 50 mM Sodium acetate; 10 mM EDTA; Carl Roth GmbH,
597 Karlsruhe, Germany) and 10 µl 37% formaldehyde (Carl Roth GmbH, Karlsruhe,
598 Germany), and incubated 5 min at 65°C for denaturation, followed by adding 2 µl

599 ethidium bromide (10 mg/ml; Carl Roth GmbH, Karlsruhe, Germany) to the mix and
600 electrophoresis in 1x MOPS buffer at 85 V for 2.5 hours. RNA was visualized in the
601 gel by excitation under UV light using the BioDocAnalyze Gel-analyze System
602 (Biometra GmbH, Göttingen, Germany).

603 **Transmission Electron Microscope Analysis**

604 The first leaf of seedlings at 3 days after germination was collected and three
605 independent plants were sampled for each genotype representing three biological
606 replicates. Leaf section preparation, fixation and embedding followed the protocol as
607 described elsewhere with minor modification (Schwarz et al., 2015). Instead of using
608 the Lowicryl HM20 resin, Spurr resin (Sigma-Aldrich Chemistry GmbH, Munich,
609 Germany) was used for embedding. Ultrathin leaf sections of approximately 70 nm
610 were used as probe for ultrastructural analysis by help of the transmission electron
611 microscope FEI Tecnai G²-Sphera 200 KV (Thermo Fisher Scientific, Oregon, USA).

612 **Subcellular Localization**

613 Either of the cTP domain of *HvAST*, the coding sequence of *HvAST* from wild-type
614 (cv. Haisa), *albostrians* mutant M4205 (cv. Haisa) or TILLING mutant 6460-1 (cv.
615 Barke) were fused to the N-terminus of the GFP reporter gene (Chiu et al., 1996)
616 through ligation into the *Spel/Hind*III cloning sites of the vector pSB179 (provided by
617 the Kumlehn lab), respectively. To verify the potential chloroplast localization of
618 *HvAST*, one plastid marker pt-rk-CD3-999 which fusions of the targeting sequence
619 (first 79 AA) of the small subunit of tobacco rubisco to gene of mCherry fluorescent
620 protein was employed, the expression cassette is driven by a Cauliflower Mosaic
621 Virus 35S promoter with dual enhancer elements (d35S). Detailed information of the
622 plastid marker can be found under
623 <https://www.arabidopsis.org/servlets/TairObject?type=stock&id=3001623338>. The
624 alternative forms of *HvAST*:GFP plasmids were tested via particle bombardment
625 using PDS-1000/He system with HeptaTM adaptor Particle Delivery System (Bio-Rad
626 Laboratories GmbH, Munich, Germany). The physical parameters, 1100 psi helium
627 pressure and 27 inch Hg vacuum had been set to reach efficient bombardment
628 conditions for barley epidermal cells. Preparation and delivery of DNA-coated gold
629 particles was performed according to (Budhagatapalli et al., 2016). The sample was

630 then scanned for the presence of fluorescence signals by help of a Confocal Laser
631 Scanning Microscopy LSM 780 (Carl Zeiss MicroImaging GmbH, Jena, Germany).

632 **Agrobacterium-mediated Barley Transformation**

633 Expression cassette of intermediate vector WT_HvAST:GFP, used for bombardment
634 experiment, was cloned into binary vector p6i-d35S-TE9 (DNA-Cloning-Service,
635 Hamburg, Germany) using the *Sfi* restriction sites. The derived vector was
636 designated as pML14. Subsequently, plasmid pML14 was used in *Agrobacterium*-
637 mediated transformation of barley cultivar 'Golden Promise' following the protocol
638 described elsewhere (Hensel et al., 2009).

639 **Accession Numbers**

640 Sequence of the *HvAST* gene is submitted to the European Nucleotide Archive with
641 accession number PRJEB22029. Accession number of BAC assembly for each
642 sequenced BAC clone is summarized in Supplemental Table 3.

643 **Supplemental Data**

644 **Supplemental Table 1.** Markers used for genetic mapping.

645 **Supplemental Table 2.** Anchoring markers to the physical map of barley.

646 **Supplemental Table 3.** List of the sequenced MTP BACs.

647 **Supplemental Table 4.** Primers used in this study.

648 **Supplemental Table 5.** Identified TILLING mutants for *HvAST*.

649

650 **ACKNOWLEDGMENTS**

651 We gratefully acknowledge M. Ziems, J. Pohl, S. König and I. Walde (IPK) for their
652 technical support in keeping plant material, performing TILLING analyses, and
653 Sanger sequencing; H. Mueller (IPK) for photography; S. Sommerfeld (IPK) for
654 barley transformation; M. Benecke and K. Hoffie for their help in electron microscopy
655 analysis; K. Lenz and N. Mehlitz (HUB and IPK) for initial mapping experiments; H.
656 Trautwein (IPK) for his help in particle bombardment experiments; A. Graner, R.
657 Zhou, M. Jost, S. Hiekel and N. Wendler (IPK) for helpful discussions. The work was
658 supported by a fellowship of the China Scholarship Council to M. Li, by Humboldt-
659 Innovation GmbH (SK043) to T. Börner, by grants STE 1102/13-1 and KU 1252/8-1

660 of the German Research Foundation (DFG) to N. Stein and J. Kumlehn, respectively,
661 and core funding of the Leibniz Institute of Plant Genetics and Crop Plant Research
662 (IPK).

663 AUTHOR CONTRIBUTIONS

664 N.S., T.B. and J.K. designed research; M.L., G.H., M. Melzer, N.B, T.R., A.H. and
665 V.K. performed experiments; M.L., M. Mascher, and S.B. analyzed data; and M.L.,
666 T.B. and N.S. wrote the paper.

667 REFERENCES

668 **Ariyadasa, R., and Stein, N.** (2012). Advances in BAC-based physical mapping and
669 map integration strategies in plants. *J Biomed Biotechnol* **2012**, 184854.

670 **Ariyadasa, R., Mascher, M., Nussbaumer, T., Schulte, D., Frenkel, Z.,**
671 **Poursarebani, N., Zhou, R., Steuernagel, B., Gundlach, H., Taudien, S.,**
672 **Felder, M., Platzer, M., Himmelbach, A., Schmutz, T., Hedley, P.E.,**
673 **Muehlbauer, G.J., Scholz, U., Korol, A., Mayer, K.F., Waugh, R.,**
674 **Langridge, P., Graner, A., and Stein, N.** (2014). A sequence-ready physical
675 map of barley anchored genetically by two million single-nucleotide
676 polymorphisms. *Plant Physiol.* **164**, 412-423.

677 **Barkan, A.** (1998). Approaches to investigating nuclear genes that function in
678 chloroplast biogenesis in land plants. *Methods Enzymol.* **297**, 38-57.

679 **Beier, S., Himmelbach, A., Schmutz, T., Felder, M., Taudien, S., Mayer, K.F.,**
680 **Platzer, M., Stein, N., Scholz, U., and Mascher, M.** (2016). Multiplex
681 sequencing of bacterial artificial chromosomes for assembling complex plant
682 genomes. *Plant Biotechnol J* **14**, 1511-1522.

683 **Ben-Naim, O., Eshed, R., Parnis, A., Teper-Bamnolker, P., Shalit, A., Coupland,**
684 **G., Samach, A., and Lifschitz, E.** (2006). The CCAAT binding factor can
685 mediate interactions between CONSTANS-like proteins and DNA. *Plant J.* **46**,
686 462-476.

687 **Börner, T., and Hess, W.R.** (1993). Altered nuclear, mitochondrial and plastid gene
688 expression in white barley cells containing ribosome-deficient plastids. In
689 *Plant Mitochondria*, A. Brennicke and U. Kück, eds (Weinheim: Verlag
690 Chemie), pp. 207-219.

691 **Börner, T., Schumann, B., and Hagemann, R.** (1976). Biochemical studies on a
692 plastid ribosome-deficient mutant of *Hordeum vulgare*. In *Genetics and*
693 *Biogenesis of Chloroplast and Mitochondria*, Bücher T, Neupert W, Sebald W,
694 and S. Werner, eds (Amsterdam: Elsevier/North Holland Biomedical Press),
695 pp. 41-48.

696 **Bradbeer, J.W., Atkinson, Y.E., Börner, T., and Hagemann, R.** (1979).
697 Cytoplasmic synthesis of plastid polypeptides may be controlled by plastid-
698 synthesised RNA. *Nature* **279**, 816-817.

699 **Budhagatapalli, N., Schedel, S., Gurushidze, M., Pencs, S., Hiekel, S., Rutten,**
700 **T., Kusch, S., Morbitzer, R., Lahaye, T., Panstruga, R., Kumlehn, J., and**
701 **Hensel, G.** (2016). A simple test for the cleavage activity of customized
702 endonucleases in plants. *Plant Methods* **12**, 18.

703 **Chen, M., Choi, Y., Voytas, D.F., and Rodermel, S.** (2000). Mutations in the
704 Arabidopsis VAR2 locus cause leaf variegation due to the loss of a chloroplast
705 FtsH protease. *Plant J.* **22**, 303-313.

706 **Chiu, W., Niwa, Y., Zeng, W., Hirano, T., Kobayashi, H., and Sheen, J.** (1996).
707 Engineered GFP as a vital reporter in plants. *Curr. Biol.* **6**, 325-330.

708 **Close, T.J., Bhat, P.R., Lonardi, S., Wu, Y., Rostoks, N., Ramsay, L., Druka, A.,**

709 Stein, N., Svensson, J.T., Wanamaker, S., Bozdag, S., Roose, M.L.,
710 Moscou, M.J., Chao, S., Varshney, R.K., Szucs, P., Sato, K., Hayes, P.M.,
711 Matthews, D.E., Kleinhofs, A., Muehlbauer, G.J., DeYoung, J., Marshall,
712 D.F., Madishetty, K., Fenton, R.D., Condamine, P., Graner, A., and
713 Waugh, R. (2009). Development and implementation of high-throughput SNP
714 genotyping in barley. *BMC Genomics* **10**, 582.

715 **Cockram, J., Thiel, T., Steuernagel, B., Stein, N., Taudien, S., Bailey, P.C., and**

716 O'Sullivan, D.M. (2012). Genome dynamics explain the evolution of flowering
717 time CCT domain gene families in the Poaceae. *PLoS One* **7**, e45307.

718 **Doench, J.G., Hartenian, E., Graham, D.B., Tothova, Z., Hegde, M., Smith, I.,**

719 Sullender, M., Ebert, B.L., Xavier, R.J., and Root, D.E. (2014). Rational
720 design of highly active sgRNAs for CRISPR-Cas9-mediated gene inactivation.
721 *Nat. Biotechnol.* **32**, 1262-1267.

722 **Dorne, A.J., Carde, J.P., Joyard, J., Börner, T., and Douce, R.** (1982). Polar lipid
723 composition of a plastid ribosome-deficient barley mutant. *Plant Physiol.* **69**,
724 1467-1470.

725 **Doyle, J.J., and Doyle, J.L.** (1990). Isolation of plant DNA from fresh tissue. *Focus*
726 **12**, 13-15.

727 **Emanuelsson, O., Nielsen, H., and von Heijne, G.** (1999). ChloroP, a neural
728 network-based method for predicting chloroplast transit peptides and their
729 cleavage sites. *Protein Sci.* **8**, 978-984.

730 **Emanuelsson, O., Nielsen, H., Brunak, S., and von Heijne, G.** (2000). Predicting
731 subcellular localization of proteins based on their N-terminal amino acid
732 sequence. *J. Mol. Biol.* **300**, 1005-1016.

733 **Franckowiak, J.D., Lundqvist, U., and Konishi, T.** (1992). Recommended rules for
734 nomenclature and gene symbolization in barley. *Barley Genetics Newsletter*
735 **21**, 11.

736 **Gottwald, S., Bauer, P., Komatsuda, T., Lundqvist, U., and Stein, N.** (2009).
737 TILLING in the two-rowed barley cultivar 'Barke' reveals preferred sites of
738 functional diversity in the gene *HvHox1*. *BMC Res. Notes* **2**, 258.

739 **Guan, X., Li, Z., Zhang, Z., Wei, X., Xie, J., Chen, J., and Chen, Q.** (2017).
740 Overexpression of an *EazIP* gene devoid of transit peptide sequence induced
741 leaf variegation in tobacco. *PLoS One* **12**, e0175995.

742 **Hagemann, R., and Scholz, F.** (1962). A case of gene induced mutations of the
743 plasmotype in barley. *Theor Appl Genet* **32**, 50-59.

744 **Han, C.D., Coe, E.H., Jr., and Martienssen, R.A.** (1992). Molecular cloning and
745 characterization of *iojap* (*ij*), a pattern striping gene of maize. *EMBO J.* **11**,
746 4037-4046.

747 **Hayashi-Tsugane, M., Takahara, H., Ahmed, N., Himi, E., Takagi, K., Iida, S.,**

748 Tsugane, K., and Maekawa, M. (2014). A mutable albino allele in rice reveals
749 that formation of thylakoid membranes requires the *SNOW-WHITE LEAF1*
750 gene. *Plant Cell Physiol.* **55**, 3-15.

751 **Hedtke, B., Wagner, I., Börner, T., and Hess, W.R.** (1999). Inter-organellar
752 crosstalk in higher plants: impaired chloroplast development affects
753 mitochondrial gene and transcript levels. *Plant J.* **19**, 635-643.

754 **Hensel, G., Kastner, C., Oleszczuk, S., Riechen, J., and Kumlehn, J.** (2009).
755 Agrobacterium-mediated gene transfer to cereal crop plants: current protocols
756 for barley, wheat, triticale, and maize. *Int J Plant Genomics* **2009**, 835608.

757 **Hess, W.R., Muller, A., Nagy, F., and Börner, T.** (1994). Ribosome-deficient
758 plastids affect transcription of light-induced nuclear genes: genetic evidence
759 for a plastid-derived signal. *Mol. Gen. Genet.* **242**, 305-312.

760 **Hess, W.R., Prombona, A., Fieder, B., Subramanian, A.R., and Börner, T.** (1993).
761 Chloroplast *rps15* and the *rpoB/C1/C2* gene cluster are strongly transcribed in
762 ribosome-deficient plastids: evidence for a functioning non-chloroplast-
763 encoded RNA polymerase. *EMBO J.* **12**, 563-571.

764 **International Barley Genome Sequencing Consortium.** (2012). A physical,
765 genetic and functional sequence assembly of the barley genome. *Nature* **491**,
766 711-716.

767 **Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J.A., and Charpentier, E.**
768 (2012). A programmable dual-RNA-guided DNA endonuclease in adaptive
769 bacterial immunity. *Science* **337**, 816-821.

770 **Knoth, R., and Hagemann, R.** (1977). Struktur und Funktion der genetischen
771 Information in den Plastiden XVI. Die Feinstruktur der Plastiden und der
772 elektronenmikroskopische Nachweis echter Mischzellen in Blättern der
773 Plastommutationen auslösenden Genmutante *albostrians* von *Hordeum*
774 *vulgare* L. *Biol. Zent. Bl.* **96**, 141-150.

775 **Lee, K.P., Kim, C., Lee, D.W., and Apel, K.** (2003). *TIGRINA d*, required for
776 regulating the biosynthesis of tetrapyrroles in barley, is an ortholog of the *FLU*
777 gene of *Arabidopsis thaliana*. *FEBS Lett.* **553**, 119-124.

778 **Leon, P., Arroyo, A., and Mackenzie, S.** (1998). Nuclear control of plastid and
779 mitochondrial development in higher Plants. *Annu. Rev. Plant Physiol. Plant*
780 *Mol. Biol.* **49**, 453-480.

781 **Marchler-Bauer, A., Bo, Y., Han, L., He, J., Lanczycki, C.J., Lu, S., Chitsaz, F.,**
782 **Derbyshire, M.K., Geer, R.C., Gonzales, N.R., Gwadz, M., Hurwitz, D.I.,**
783 **Lu, F., Marchler, G.H., Song, J.S., Thanki, N., Wang, Z., Yamashita, R.A.,**
784 **Zhang, D., Zheng, C., Geer, L.Y., and Bryant, S.H.** (2017). CDD/SPARCLE:
785 functional classification of proteins via subfamily domain architectures.
786 *Nucleic Acids Res.* **45**, D200-D203.

787 **Mascher, M., Jost, M., Kuon, J.E., Himmelbach, A., Assfalg, A., Beier, S.,**
788 **Scholz, U., Graner, A., and Stein, N.** (2014). Mapping-by-sequencing
789 accelerates forward genetics in barley. *Genome Biol.* **15**, R78.

790 **Mascher, M., Muehlbauer, G.J., Rokhsar, D.S., Chapman, J., Schmutz, J., Barry,**
791 **K., Munoz-Amatriain, M., Close, T.J., Wise, R.P., Schulman, A.H.,**
792 **Himmelbach, A., Mayer, K.F., Scholz, U., Poland, J.A., Stein, N., and**
793 **Waugh, R.** (2013). Anchoring and ordering NGS contig assemblies by
794 population sequencing (POPSEQ). *Plant J.* **76**, 718-727.

795 **Mascher, M., Gundlach, H., Himmelbach, A., Beier, S., Twardziok, S.O., Wicker,**
796 **T., Radchuk, V., Dockter, C., Hedley, P.E., Russell, J., Bayer, M., Ramsay,**
797 **L., Liu, H., Haberer, G., Zhang, X.Q., Zhang, Q., Barrero, R.A., Li, L.,**
798 **Taudien, S., Groth, M., Felder, M., Hastie, A., Simkova, H., Stankova, H.,**
799 **Vrana, J., Chan, S., Munoz-Amatriain, M., Ounit, R., Wanamaker, S.,**
800 **Bolser, D., Colmsee, C., Schmutz, T., Aliyeva-Schnorr, L., Grasso, S.,**

801 **Tanskanen, J., Chailyan, A., Sampath, D., Heavens, D., Clissold, L., Cao,**
 802 **S., Chapman, B., Dai, F., Han, Y., Li, H., Li, X., Lin, C., McCooke, J.K.,**
 803 **Tan, C., Wang, P., Wang, S., Yin, S., Zhou, G., Poland, J.A., Bellgard, M.I.,**
 804 **Borisjuk, L., Houben, A., Dolezel, J., Ayling, S., Lonardi, S., Kersey, P.,**
 805 **Langridge, P., Muehlbauer, G.J., Clark, M.D., Caccamo, M., Schulman,**
 806 **A.H., Mayer, K.F.X., Platzer, M., Close, T.J., Scholz, U., Hansson, M.,**
 807 **Zhang, G., Braumann, I., Spannagl, M., Li, C., Waugh, R., and Stein, N.**
 808 **(2017). A chromosome conformation capture ordered sequence of the barley**
 809 **genome. Nature 544, 427-433.**

810 **Mayer, K.F., Waugh, R., Brown, J.W., Schulman, A., Langridge, P., Platzer, M.,**
 811 **Fincher, G.B., Muehlbauer, G.J., Sato, K., Close, T.J., Wise, R.P., and**
 812 **Stein, N. (2012). A physical, genetic and functional sequence assembly of the**
 813 **barley genome. Nature 491, 711-716.**

814 **Mayer, K.F., Martis, M., Hedley, P.E., Simkova, H., Liu, H., Morris, J.A.,**
 815 **Steuernagel, B., Taudien, S., Roessner, S., Gundlach, H., Kubalakova,**
 816 **M., Suchankova, P., Murat, F., Felder, M., Nussbaumer, T., Graner, A.,**
 817 **Salse, J., Endo, T., Sakai, H., Tanaka, T., Itoh, T., Sato, K., Platzer, M.,**
 818 **Matsumoto, T., Scholz, U., Dolezel, J., Waugh, R., and Stein, N. (2011).**
 819 **Unlocking the barley genome by chromosomal and comparative genomics.**
 820 **Plant Cell 23, 1249-1263.**

821 **Mount, D.W. (2007). Using the Basic Local Alignment Search Tool (BLAST). CSH**
 822 **Protoc 2007, pdb top17.**

823 **Nelson, B.K., Cai, X., and Nebenfuhr, A. (2007). A multicolored set of *in vivo***
 824 **organelle markers for co-localization studies in Arabidopsis and other plants.**
 825 **Plant J. 51, 1126-1136.**

826 **Nott, A., Jung, H.S., Koussevitzky, S., and Chory, J. (2006). Plastid-to-nucleus**
 827 **retrograde signaling. Annu. Rev. Plant Biol. 57, 739-759.**

828 **Petersen, J., Rogowska-Wrzesinska, A., and Jensen, O.N. (2013). Functional**
 829 **proteomics of barley and barley chloroplasts - strategies, methods and**
 830 **perspectives. Front Plant Sci 4, 52.**

831 **Petsalaki, E.I., Bagos, P.G., Litou, Z.I., and Hamodrakas, S.J. (2006). PredSL: a**
 832 **tool for the N-terminal sequence-based prediction of protein subcellular**
 833 **localization. Genomics Proteomics Bioinformatics 4, 48-55.**

834 **Pogson, B.J., and Albrecht, V. (2011). Genetic dissection of chloroplast biogenesis**
 835 **and development: an overview. Plant Physiol. 155, 1545-1551.**

836 **Prikryl, J., Watkins, K.P., Friso, G., van Wijk, K.J., and Barkan, A. (2008). A**
 837 **member of the Whirly family is a multifunctional RNA- and DNA-binding**
 838 **protein that is essential for chloroplast biogenesis. Nucleic Acids Res. 36,**
 839 **5152-5165.**

840 **Putarjunan, A., Liu, X., Nolan, T., Yu, F., and Rodermel, S. (2013). Understanding**
 841 **chloroplast biogenesis using second-site suppressors of *immutans* and *var2*.**
 842 **Photosynth Res 116, 437-453.**

843 **Putterill, J., Robson, F., Lee, K., Simon, R., and Coupland, G. (1995). The**
 844 **CONSTANS gene of Arabidopsis promotes flowering and encodes a protein**
 845 **showing similarities to zinc finger transcription factors. Cell 80, 847-857.**

846 **Robert, L.S., Robson, F., Sharpe, A., Lydiate, D., and Coupland, G. (1998).**
 847 **Conserved structure and function of the Arabidopsis flowering time gene**
 848 **CONSTANS in *Brassica napus*. Plant Mol. Biol. 37, 763-772.**

849 **Sakamoto, W. (2003). Leaf-variegated mutations and their responsible genes in**
 850 ***Arabidopsis thaliana*. Genes Genet. Syst. 78, 1-9.**

851 **Saski, C., Lee, S.B., Fjellheim, S., Guda, C., Jansen, R.K., Luo, H., Tomkins, J.,**
852 **Rognli, O.A., Daniell, H., and Clarke, J.L.** (2007). Complete chloroplast
853 genome sequences of *Hordeum vulgare*, *Sorghum bicolor* and *Agrostis*
854 *stolonifera*, and comparative analyses with other grass genomes. *Theor Appl*
855 *Genet* **115**, 571-590.

856 **Sato, K., Nankaku, N., and Takeda, K.** (2009). A high-density transcript linkage
857 map of barley derived from a single population. *Heredity (Edinb.)* **103**, 110-
858 117.

859 **Schmutz, T., Ma, L., Pousarebani, N., Bull, F., Stein, N., Houben, A., and**
860 **Scholz, U.** (2014). Kmasket - a tool for in silico prediction of single-copy FISH
861 probes for the large-genome species *Hordeum vulgare*. *Cytogenet Genome*
862 *Res* **142**, 66-78.

863 **Schulte, D., Close, T.J., Graner, A., Langridge, P., Matsumoto, T., Muehlbauer,**
864 **G., Sato, K., Schulman, A.H., Waugh, R., Wise, R.P., and Stein, N.** (2009).
865 The international barley sequencing consortium - at the threshold of efficient
866 access to the barley genome. *Plant Physiol.* **149**, 142-147.

867 **Schulte, D., Ariyadasa, R., Shi, B., Fleury, D., Saski, C., Atkins, M., deJong, P.,**
868 **Wu, C.C., Graner, A., Langridge, P., and Stein, N.** (2011). BAC library
869 resources for map-based cloning and physical map construction in barley
870 (*Hordeum vulgare* L.). *BMC Genomics* **12**, 247.

871 **Schwarz, N., Armbruster, U., Iven, T., Bruckle, L., Melzer, M., Feussner, I., and**
872 **Jahns, P.** (2015). Tissue-specific accumulation and regulation of zeaxanthin
873 epoxidase in *Arabidopsis* reflect the multiple functions of the enzyme in
874 plastids. *Plant Cell Physiol.* **56**, 346-357.

875 **Seibel, N.M., Eljouni, J., Nalaskowski, M.M., and Hampe, W.** (2007). Nuclear
876 localization of enhanced green fluorescent protein homomultimers. *Anal.*
877 *Biochem.* **368**, 95-99.

878 **Small, I., Peeters, N., Legeai, F., and Lurin, C.** (2004). Predotar: A tool for rapidly
879 screening proteomes for N-terminal targeting sequences. *Proteomics* **4**, 1581-
880 1590.

881 **Strayer, C., Oyama, T., Schultz, T.F., Raman, R., Somers, D.E., Mas, P., Panda,**
882 **S., Kreps, J.A., and Kay, S.A.** (2000). Cloning of the *Arabidopsis* clock gene
883 *TOC1*, an autoregulatory response regulator homolog. *Science* **289**, 768-771.

884 **Sun, C.W., Huang, Y.C., and Chang, H.Y.** (2009a). CIA2 coordinately up-regulates
885 protein import and synthesis in leaf chloroplasts. *Plant Physiol.* **150**, 879-888.

886 **Sun, C.W., Chen, L.J., Lin, L.C., and Li, H.M.** (2001). Leaf-specific upregulation of
887 chloroplast translocon genes by a CCT motif-containing protein, CIA2. *Plant*
888 *Cell* **13**, 2053-2061.

889 **Sun, Q., Zyballov, B., Majeran, W., Friso, G., Olinares, P.D., and van Wijk, K.J.**
890 (2009b). PPDB, the Plant Proteomics Database at Cornell. *Nucleic Acids Res.*
891 **37**, D969-974.

892 **Takechi, K., Sodmergen, Murata, M., Motoyoshi, F., and Sakamoto, W.** (2000).
893 The YELLOW VARIEGATED (VAR2) locus encodes a homologue of FtsH, an
894 ATP-dependent protease in *Arabidopsis*. *Plant Cell Physiol.* **41**, 1334-1346.

895 **Taylor, W.C., Barkan, A., and Martienssen, R.A.** (1987). Use of nuclear mutants in
896 the analysis of chloroplast development. *Dev. Genet.* **8**, 305-320.

897 **Thiel, T., Kota, R., Grosse, I., Stein, N., and Graner, A.** (2004). SNP2CAPS: a
898 SNP and INDEL analysis tool for CAPS marker development. *Nucleic Acids*
899 *Res.* **32**, e5.

900 **Tiller, N., Weingartner, M., Thiele, W., Maximova, E., Schottler, M.A., and Bock, R.** (2012). The plastid-specific ribosomal proteins of *Arabidopsis thaliana* can be divided into non-essential proteins and genuine ribosomal proteins. *Plant J.* **69**, 302-316.

901 **Van Ooijen, J.W.** (2006). JoinMap 4, Software for the calculation of genetic linkage maps in experimental populations. Kyazma BV, Wageningen, Netherlands.

902 **Voorrips, R.E.** (2002). MapChart: software for the graphical presentation of linkage maps and QTLs. *J. Hered.* **93**, 77-78.

903 **Walbot, V., and Coe, E.H.** (1979). Nuclear gene *iojap* conditions a programmed change to ribosome-less plastids in *Zea mays*. *Proc. Natl. Acad. Sci. U. S. A.* **76**, 2760-2764.

904 **Wang, Y., Wang, C., Zheng, M., Lyu, J., Xu, Y., Li, X., Niu, M., Long, W., Wang, D., Wang, H., Terzaghi, W., Wang, Y., and Wan, J.** (2016). WHITE PANICLE1, a Val-tRNA synthetase regulating chloroplast ribosome biogenesis in rice, is essential for early chloroplast development. *Plant Physiol.* **170**, 2110-2123.

905 **Wanschers, B.F., Szklarczyk, R., Pajak, A., van den Brand, M.A., Gloerich, J., Rodenburg, R.J., Lightowers, R.N., Nijtmans, L.G., and Huynen, M.A.** (2012). C7orf30 specifically associates with the large subunit of the mitochondrial ribosome and is involved in translation. *Nucleic Acids Res.* **40**, 4040-4051.

906 **Wettstein, D.V., Kahn, A., Nielsen, O.F., and Gough, S.** (1974). Genetic regulation of chlorophyll synthesis analyzed with mutants in barley. *Science* **184**, 800-802.

907 **Wetzel, C.M., Jiang, C.Z., Meehan, L.J., Voytas, D.F., and Rodermel, S.R.** (1994). Nuclear-organelle interactions: the *immutans* variegation mutant of *Arabidopsis* is plastid autonomous and impaired in carotenoid biosynthesis. *Plant J.* **6**, 161-175.

908 **Wu, D., Wright, D.A., Wetzel, C., Voytas, D.F., and Rodermel, S.** (1999). The *IMMUTANS* variegation locus of *Arabidopsis* defines a mitochondrial alternative oxidase homolog that functions during early chloroplast biogenesis. *Plant Cell* **11**, 43-55.

909 **Yamaguchi, K., and Subramanian, A.R.** (2000). The plastid ribosomal proteins. Identification of all the proteins in the 50 S subunit of an organelle ribosome (chloroplast). *J. Biol. Chem.* **275**, 28466-28482.

910 **Yamaguchi, K., von Knoblauch, K., and Subramanian, A.R.** (2000). The plastid ribosomal proteins. Identification of all the proteins in the 30 S subunit of an organelle ribosome (chloroplast). *J. Biol. Chem.* **275**, 28455-28465.

911 **Yu, F., Fu, A.G., Aluru, M., Park, S., Xu, Y., Liu, H.Y., Liu, X.Y., Foudree, A., Nambogga, M., and Rodermel, S.** (2007). Variegation mutants and mechanisms of chloroplast biogenesis. *Plant Cell and Environment* **30**, 350-365.

912 **Zagari, N., Sandoval-Ibanez, O., Sandal, N., Su, J., Rodriguez-Concepcion, M., Stougaard, J., Pribil, M., Leister, D., and Pulido, P.** (2017). SNOWY COTYLEDON 2 promotes chloroplast development and has a role in leaf variegation in both *Lotus japonicus* and *Arabidopsis thaliana*. *Mol Plant* **10**, 721-734.

913 **Zhelyazkova, P., Sharma, C.M., Forstner, K.U., Liere, K., Vogel, J., and Borner, T.** (2012). The Primary Transcriptome of Barley Chloroplasts: Numerous

949 Noncoding RNAs and the Dominating Role of the Plastid-Encoded RNA
950 Polymerase. *Plant Cell* **24**, 123-136.
951 **Zheng, M., Liu, X., Liang, S., Fu, S., Qi, Y., Zhao, J., Shao, J., An, L., and Yu, F.**
952 (2016). Chloroplast translation initiation factors regulate leaf variegation and
953 development. *Plant Physiol.* **172**, 1117-1130.
954 **Zubko, M.K., and Day, A.** (1998). Stable albinism induced without mutagenesis: a
955 model for ribosome-free plastid inheritance. *Plant J.* **15**, 265-271.

956

957 **FIGURE LEGENDS**

958 **Figure 1.** Map-based cloning of the *HvAST* gene.

959 **(A)** Examples of variegation of leaf coloration of the homozygous *albostrians* mutant
960 plants.

961 **(B)** High-resolution genetic mapping of the *HvAST* gene. One co-segregating marker
962 (Zip_2662) was identified and the recombination between contiguous markers was
963 indicated by the numbers below.

964 **(C)** Physical anchoring of markers to the sequenced MTP BACs. The two flanking
965 markers Zip_2661 and Contig_92279 as well as the co-segregating marker Zip_2662
966 were located on the same BAC clone HVVMRXALLrA0395M21 (FP contig_7112) as
967 indicated in green color. Each grey bar represents one BAC clone. FP contig: Finger
968 printed contig, defined as a set of overlapping BAC clones.

969 **(D)** Gene prediction based on repeat masked BAC assemblies of the target interval
970 through alignment to barley gene models published by IBSC (2012). A single gene,
971 *MLOC_670* (GenBank accession ID: AK366098) as indicated by the arrow, was
972 identified within the target interval between two flanking markers Zip_2661 and
973 Contig_92279, flanking a physical distance of around 46 Kbp.

974 **(E)** Structure of the gene *HvAST*: The mutant allele harbors a 4 bp deletion (red bar)
975 near the end of the first exon as compared to the wild-type allele found in genotype
976 Morex. The gene structure of *HvAST* is on according to cDNA analysis of barley
977 cultivar Morex.

978 **Figure 2.** Functional validation of *HvAST* by TILLING and allelism test.

979 **(A)** Phenotypic segregation population in M₄ of TILLING family 6460-1. The
980 homozygous pre-stop TILLING mutants show an albino phenotype and are delayed
981 in growth compared with the wild-type. The plants shown here are derived from three
982 heterozygous M₃ plants (*i.e.* 6460-1_4, 6460-1_9, and 6460-1_11).

983 **(B)** Example of homozygous *HvAST* pre-stop TILLING mutant, which exhibits an
984 albino phenotype.

985 **(C)** Examples of striped phenotype of the TILLING mutants. A single striped mutant
986 was identified in both M₄ generation (6460-1_9_19) and M₅ generation (6460-
987 1_4_21_19).

988 **(D)** Phenotype of the striped M₅ plant at later developmental stage. Both variegated
989 mutants did not reach the reproductive stage.

990 **(E)** and **(F)** F₁ hybrids of original *albostrians* mutant and pre-stop TILLING mutant
991 show either albino (MZ35-5_4) or green-white striped phenotype (MZ35-11_2).

992 **Figure 3.** Ultrastructural analysis of the *albostrians* and TILLING mutants and
993 analysis of rRNA from wild-type and mutant of TILLNG family 6460-1 using an
994 Agilent 2100 Bioanalyzer.

995 **(A)** Ultrastructural analysis of the *albostrians* and TILLING mutants. Green leaves of
996 the *albostrians* mutant (panels 1 and 5) and wild-type (for *HvAST* gene locus)
997 TILLING plant (panels 3 and 7) contain chloroplasts with fully differentiated grana
998 and stroma thylakoids and ribosomes. In contrast, only some vesicle-like structures
999 and plastoglobuli are observed in plastids of albino leaves of the *albostrians* (panels
1000 2 and 6) and TILLING (panels 4 and 8) mutants. The lower panels represent larger
1001 magnification of the corresponding plastid in the upper panel. Scale bar for panels 1-
1002 4: 1 μ m, and panels 5-8: 200 nm.

1003 **(B)** Analysis of rRNA from wild-type and mutant of TILLNG family 6460-1 using an
1004 Agilent 2100 Bioanalyzer. Homozygous wild-type (a), green sectors of the
1005 homozygous TILLING mutant (b) and white sectors of the homozygous TILLING
1006 mutant (c). Separation of total RNA extracted from the samples mentioned above in
1007 formaldehyde agarose gel (d).

1008 **Figure 4.** Alignment of HvAST protein sequences encoded by wild-type and mutant
1009 alleles. The position of the stop codon of the truncated proteins is indicated with a
1010 red asterisk. The altered amino acids of the truncated proteins are indicated by
1011 purple underlines. The CCT domain of HvAST protein is indicated by green
1012 underline. Alignment was performed by help of the online tool Clustal Omega and all
1013 gaps were deleted. The figure was generated by visualization under the online
1014 Jalview applet.

1015 **Figure 5.** Site-directed mutagenesis of *HvAST* gene by RNA-guided Cas9
1016 endonuclease.

1017 **(A)** Examples of the variegated homozygous *HvAST* mutants.

1018 **(B)** Gene structure of the *HvAST* gene. The region of 4 bp deletion carried by the
1019 original *albostrians* mutant is marked as red bar.

1020 **(C)** The genomic target motifs 1 and 2 (underlined) were selected up- and
1021 downstream of the 4bp deleted (indicated by green letters) in the original *albostrians*
1022 mutant. Guide RNAs were designed to address the sequences indicated by grey
1023 background. The protospacer adjacent motifs (PAM) bound by the Cas9 protein are
1024 marked with blue color.

1025 **(D)** Mutation detection in T_0 plants. One biallelic mutant was identified which carries
1026 a one-nucleotide insertion 3 bp upstream of the PAM of target motif 1.

1027 **(E)** Inheritance of mutations in the T_1 generation. The progenies of the T_0
1028 homogeneously biallelic mutant segregated into four classes of plants based on the
1029 genotypic status of the *HvAST* gene. All the homozygous (Class I) and biallelic
1030 mutants (Class II) exhibit either green-white striped or albino phenotypes, while
1031 heterozygous/chimeric mutants with wild-type allele (Class III) and homozygous wild-
1032 type plants show green phenotype.

1033 **Figure 6.** Subcellular localization of HvAST:GFP fusion proteins.

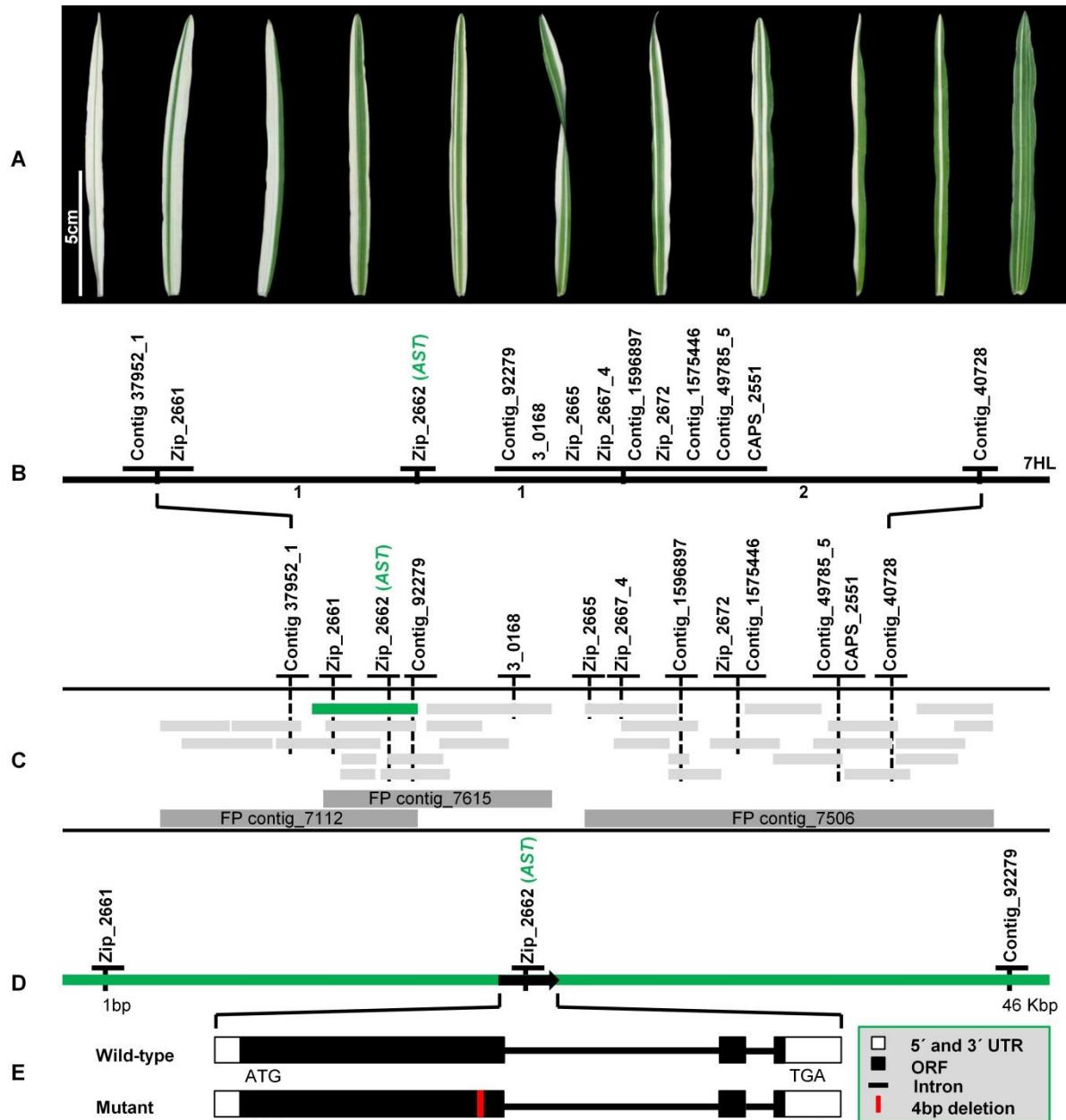
1034 **(A)** Schematic drawing of the constructs used in biolistic bombardment. *pZmUbi*:
1035 maize *UBIQUITIN1* promoter. *pCaMVd35S*: Cauliflower Mosaic Virus double 35S
1036 promoter. mCherry: mCherry fluorescent protein. GFP: green fluorescent protein.
1037 tNOS: *Agrobacterium NOPALINE SYNTHASE* terminator. WT_HvAST: Coding

1038 sequence of wild-type *HvAST* gene. M4205_HvAST: Coding sequence of mutant
1039 allele *Hvast1* of the original *albostrians* mutant line M4205. TILLING_HvAST: Coding
1040 sequence of mutant allele *Hvast2* of the pre-stop TILLING mutant line 6460-1.
1041 cTP_83AA_HvAST: N-terminal chloroplast transit peptide of HvAST with a length of
1042 83 amino acids as predicted by online tool PredSL (Petsalaki et al., 2006). The
1043 schematic drawing is not in proportion with gene length.

1044 **(B)** Bombardment using gold particles coated with pSB179 plasmid (expressing GFP
1045 driven by the maize *UBIQUITIN1* promoter) as control. The green fluorescence is
1046 observed in the nucleus and the cytoskeleton / cytoplasm.

1047 **(C)** Biolistic assay for plastid marker pt-rk-CD3-999 which carries the *mCherry* gene
1048 driven by a double 35S promoter. The mCherry signal (orange color) exclusively
1049 accumulates in the plastids.

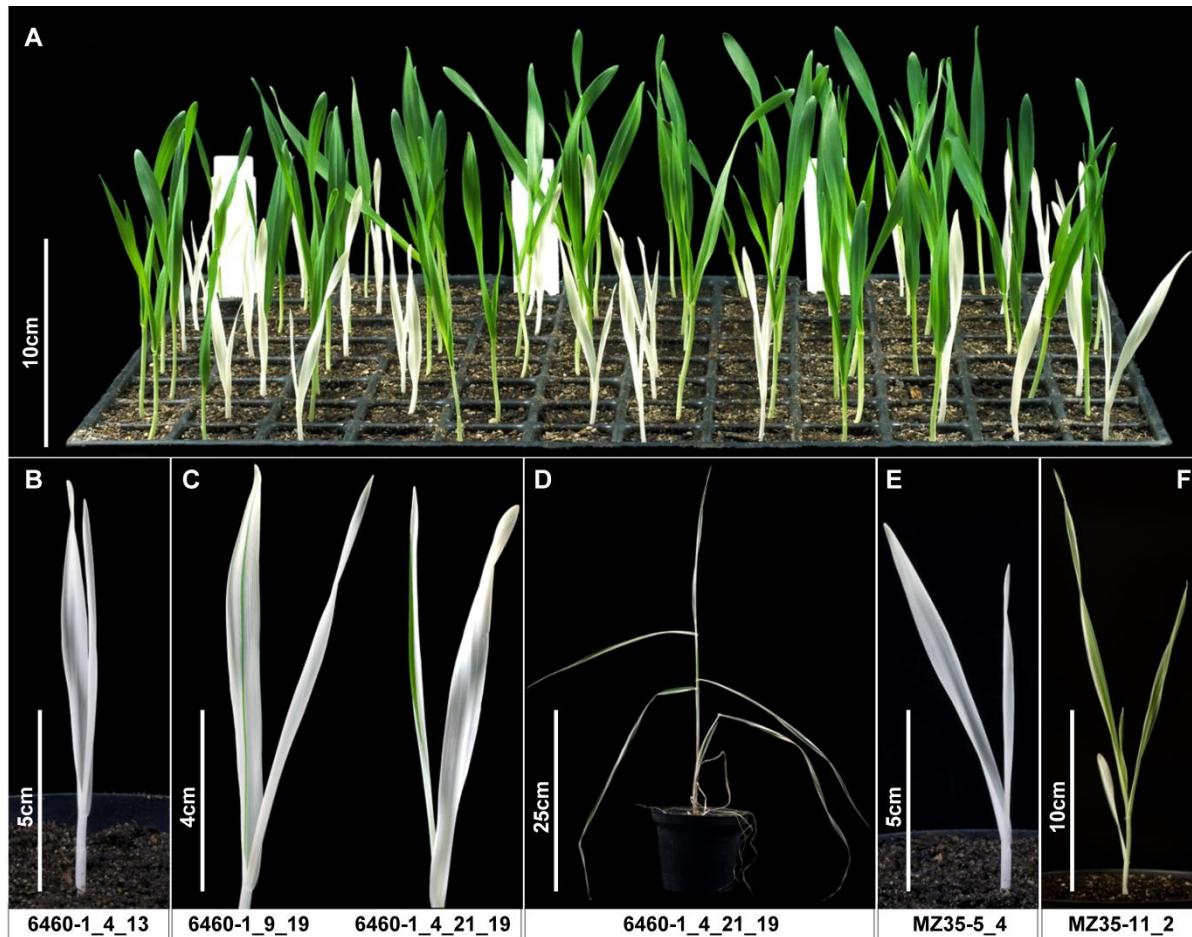
1050 **(D)** Particle co-bombardment of both plastid marker pt-rk-CD3-999 and wild-type
1051 fusion construct WT_HvAST:GFP. The bright field, GFP, and mCherry signals are
1052 displayed as individual channels and the merged channels are shown on the
1053 rightmost panel. GFP and mCherry fluoresce green and orange, respectively. The
1054 green fluorescence of the wild-type fusion protein accumulates in plastids and
1055 nucleus of the barley epidermal cells. Thus, HvAST protein targeted to plastid; the
1056 nucleus signal, nevertheless, cannot be resolved since GFP alone also shows clear
1057 strong accumulation in the nucleus.

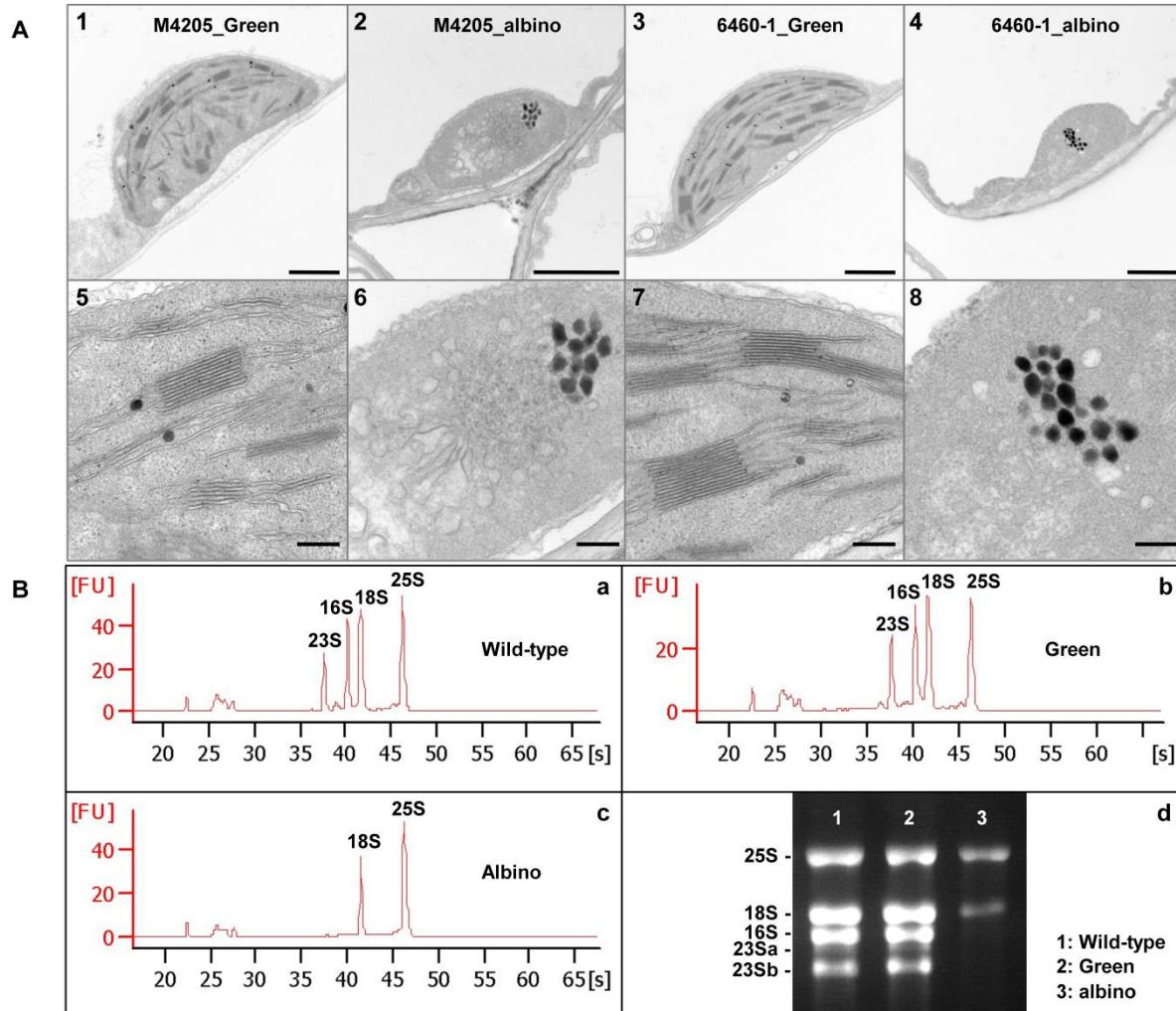

1058 **(E)** and **(F)** Subcellular localization of the two mutant proteins M4205_HvAST:GFP
1059 **(E)** and TILLING_HvAST:GFP **(F)** was also investigated by co-bombardment with
1060 the plastid marker pt-rk-CD3-999 and display the same subcellular localization as the
1061 wild-type protein **(D)**.

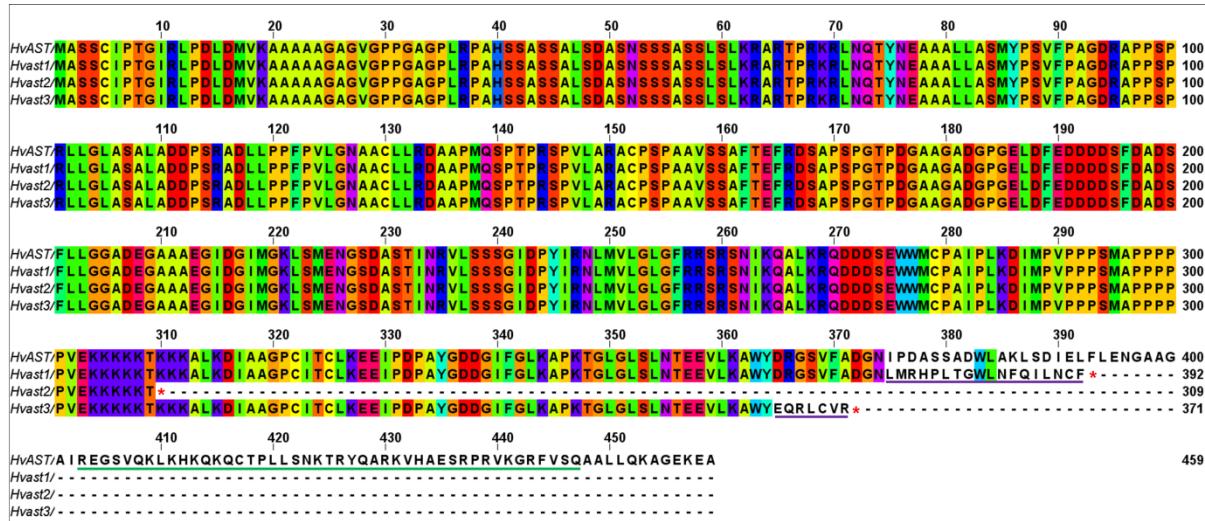
1062 **(G)** The chloroplast localization of HvAST was further confirmed by the fact that its
1063 N-terminal (83 AA chloroplast transit peptide) drives the GFP protein into plastids.

1064 **(H)** Subcellular localization of WT_HvAST:GFP in barley stable transgenic lines.
1065 Consistent with the results from transient expression, the GFP fluorescence,
1066 characterized by photospectrometric analysis with an emission peak at wavelength
1067 509 nm, was specifically accumulated in the plastids.

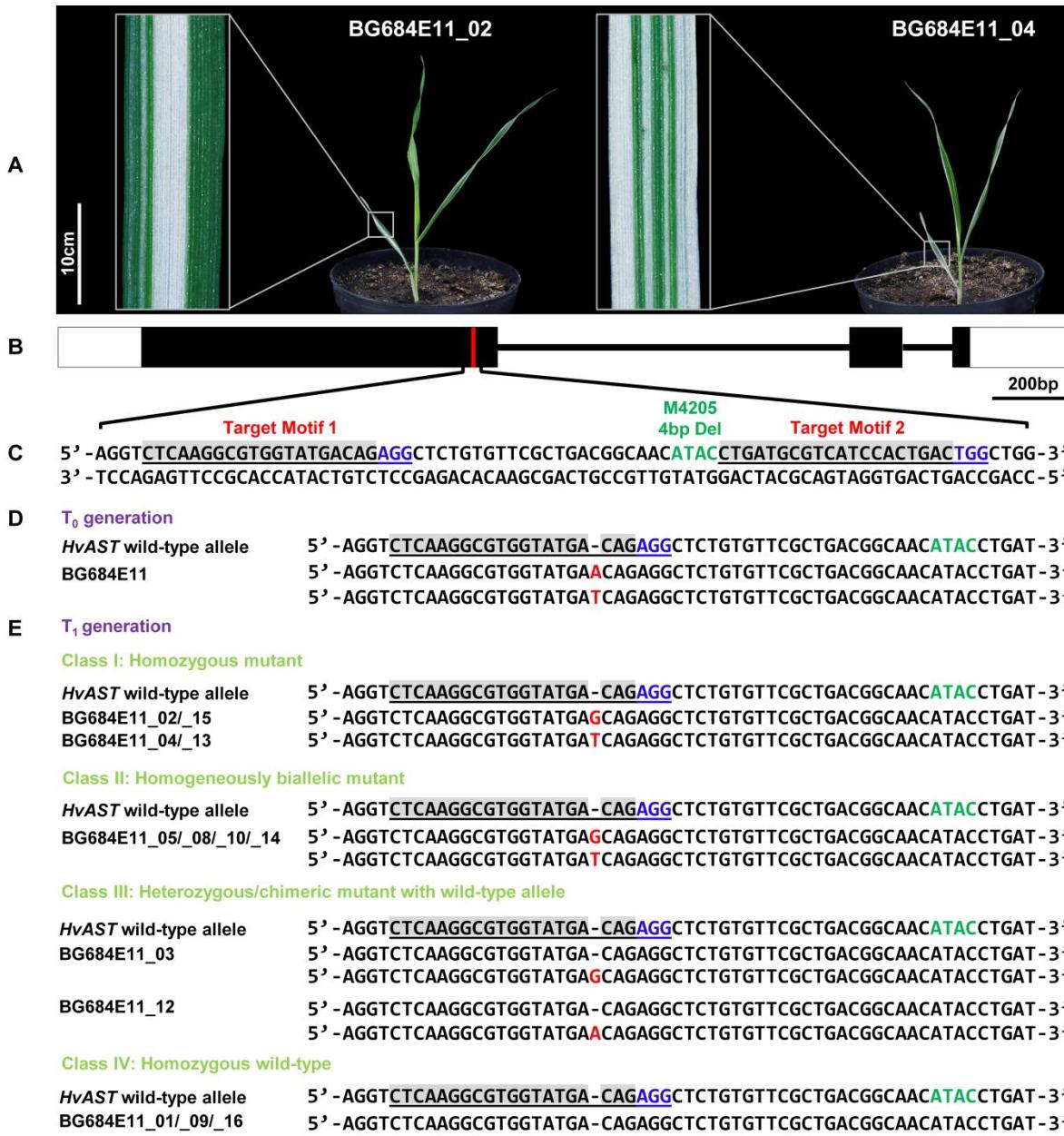
1068 The yellow arrows in the merged panels indicate the nucleus. The first leaf of 10-
1069 day-old barley seedlings was used for particle bombardment. The fluorescence was
1070 checked 24 hours after bombardment. Scale bar for all images is 20 μ m.

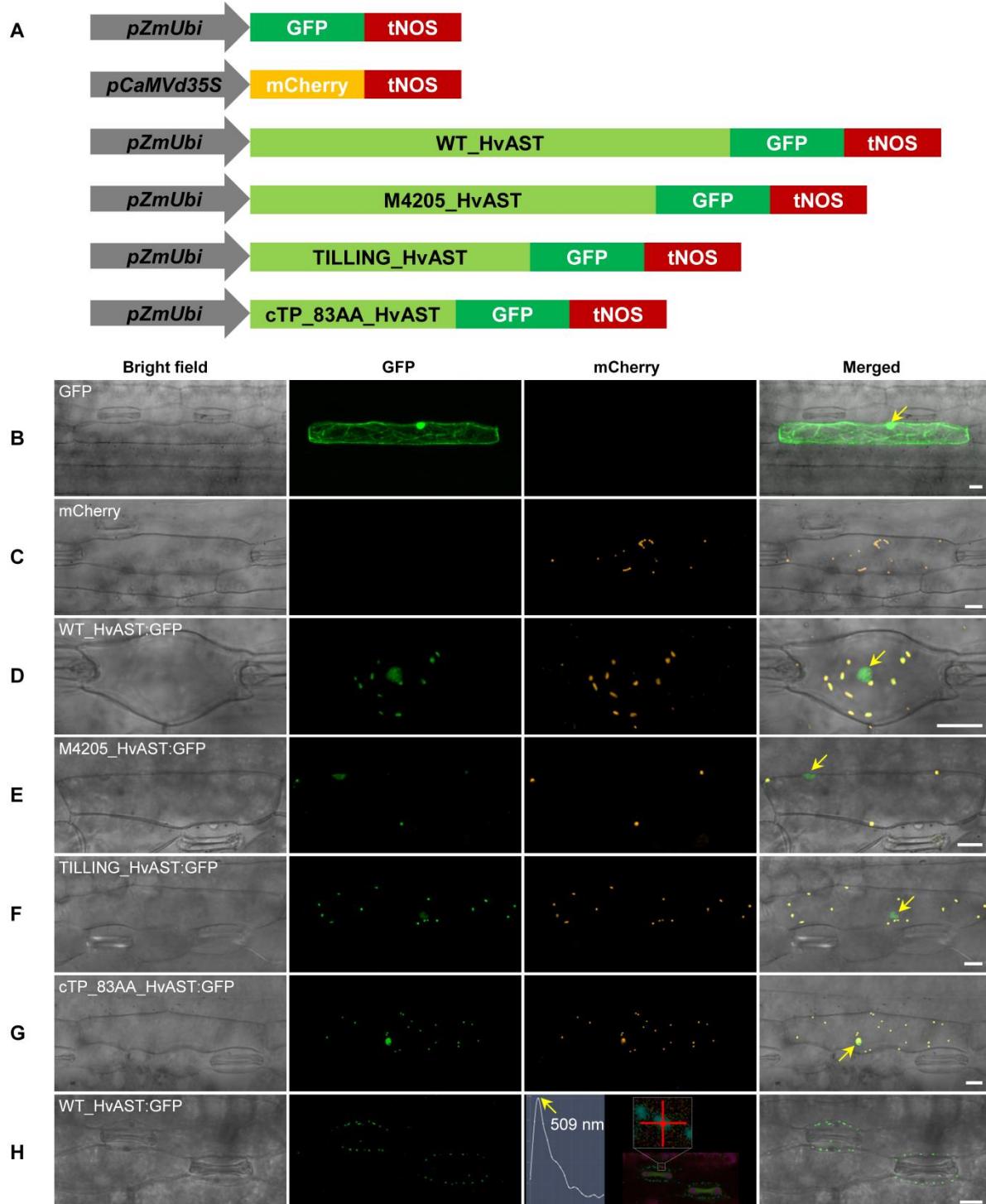

1071




1072

1073 **Figure 1.** Map-based cloning of the *HvAST* gene.


1074 **(A)** Examples of variegation of leaf coloration of the homozygous *albostrians* mutant plants.
1075 **(B)** High-resolution genetic mapping of the *HvAST* gene. One co-segregating marker (Zip_2662) was
1076 identified and the recombination between contiguous markers was indicated by the numbers below.
1077 **(C)** Physical anchoring of markers to the sequenced MTP BACs. The two flanking markers Zip_2661
1078 and Contig_92279 as well as the co-segregating marker Zip_2662 were located on the same BAC
1079 clone HVVMRXALLrA0395M21 (FP contig_7112) as indicated in green color. Each grey bar
1080 represents one BAC clone. FP contig: Finger printed contig, defined as a set of overlapping BAC
1081 clones.
1082 **(D)** Gene prediction based on repeat masked BAC assemblies of the target interval through alignment
1083 to barley gene models published by IBSC (2012). A single gene, *MLOC_670* (GenBank accession ID:
1084 AK366098) as indicated by the arrow, was identified within the target interval between two flanking
1085 markers Zip_2661 and Contig_92279, flanking a physical distance of around 46 Kbp.
1086 **(E)** Structure of the gene *HvAST*: The mutant allele harbors a 4 bp deletion (red bar) near the end of
1087 the first exon as compared to the wild-type allele found in genotype Morex. The gene structure of
1088 *HvAST* is on according to cDNA analysis of barley cultivar Morex.



1119
1120
1121 **Figure 4.** Alignment of HvAST protein sequences encoded by wild-type and mutant alleles. The
1122 position of the stop codon of the truncated proteins is indicated with a red asterisk. The altered amino
1123 acids of the truncated proteins are indicated by purple underlines. The CCT domain of HvAST protein
1124 is indicated by green underline. Alignment was performed by help of the online tool Clustal Omega
1125 and all gaps were deleted. The figure was generated by visualization under the online Jalview applet.
1126
1127

1128
 1129 **Figure 5.** Site-directed mutagenesis of *HvAST* gene by RNA-guided Cas9 endonuclease.

1130 **(A)** Examples of the variegated homozygous *HvAST* mutants.
 1131 **(B)** Gene structure of the *HvAST* gene. The region of 4 bp deletion carried by the original *albostrians*
 1132 mutant is marked as red bar.
 1133 **(C)** The genomic target motifs 1 and 2 (underlined) were selected up- and downstream of the 4bp
 1134 deleted (indicated by green letters) in the original *albostrians* mutant. Guide RNAs were designed to
 1135 address the sequences indicated by grey background. The protospacer adjacent motifs (PAM) bound
 1136 by the Cas9 protein are marked with blue color.
 1137 **(D)** Mutation detection in *T₀* plants. One biallelic mutant was identified which carries a one-nucleotide
 1138 insertion 3 bp upstream of the PAM of target motif 1.
 1139 **(E)** Inheritance of mutations in the *T₁* generation. The progenies of the *T₀* homogeneously biallelic
 1140 mutant segregated into four classes of plants based on the genotypic status of the *HvAST* gene. All
 1141 the homozygous (Class I) and biallelic mutants (Class II) exhibit either green-white striped or albino
 1142 phenotypes, while heterozygous/chimeric mutants with wild-type allele (Class III) and homozygous
 1143 wild-type plants show green phenotype.

1145 **Figure 6.** Subcellular localization of HvAST:GFP fusion proteins.

1146 **(A)** Schematic drawing of the constructs used in biolistic bombardment. *pZmUbi*: maize *UBIQUITIN1*
 1147 promoter. *pCaMVd35S*: Cauliflower Mosaic Virus double 35S promoter. mCherry: mCherry
 1148 fluorescent protein. GFP: green fluorescent protein. tNOS: *Agrobacterium NOPALINE SYNTHASE*
 1149 terminator. WT_HvAST: Coding sequence of wild-type *HvAST* gene. M4205_HvAST: Coding
 1150 sequence of mutant allele *Hvast1* of the original *albostrians* mutant line M4205. TILLING_HvAST:
 1151 Coding sequence of mutant allele *Hvast2* of the pre-stop TILLING mutant line 6460-1.
 1152 cTP_83AA_HvAST: N-terminal chloroplast transit peptide of HvAST with a length of 83 amino acids
 1153 as predicted by online tool PredSL (Petsalaki et al., 2006). The schematic drawing is not in proportion
 1154 with gene length.

1155 (B) Bombardment using gold particles coated with pSB179 plasmid (expressing GFP driven by the
1156 maize *UBIQUITIN1* promoter) as control. The green fluorescence is observed in the nucleus and the
1157 cytoskeleton / cytoplasm.
1158 (C) Biolistic assay for plastid marker pt-rk-CD3-999 which carries the *mCherry* gene driven by a
1159 double 35S promoter. The mCherry signal (orange color) exclusively accumulates in the plastids.
1160 (D) Particle co-bombardment of both plastid marker pt-rk-CD3-999 and wild-type fusion construct
1161 WT_HvAST:GFP. The bright field, GFP, and mCherry signals are displayed as individual channels
1162 and the merged channels are shown on the rightmost panel. GFP and mCherry fluoresce green and
1163 orange, respectively. The green fluorescence of the wild-type fusion protein accumulates in plastids
1164 and nucleus of the barley epidermal cells. Thus, HvAST protein targeted to plastid; the nucleus signal,
1165 nevertheless, cannot be resolved since GFP alone also shows clear strong accumulation in the
1166 nucleus.
1167 (E) and (F) Subcellular localization of the two mutant proteins M4205_HvAST:GFP (E) and
1168 TILLING_HvAST:GFP (F) was also investigated by co-bombardment with the plastid marker pt-rk-
1169 CD3-999 and display the same subcellular localization as the wild-type protein (D).
1170 (G) The chloroplast localization of HvAST was further confirmed by the fact that its N-terminal (83 AA
1171 chloroplast transit peptide) drives the GFP protein into plastids.
1172 (H) Subcellular localization of WT_HvAST:GFP in barley stable transgenic lines. Consistent with the
1173 results from transient expression, the GFP fluorescence, characterized by photospectrometric analysis
1174 with an emission peak at wavelength 509 nm, was specifically accumulated in the plastids.
1175 The yellow arrows in the merged panels indicate the nucleus. The first leaf of 10-day-old barley
1176 seedlings was used for particle bombardment. The fluorescence was checked 24 hours after
1177 bombardment. Scale bar for all images is 20 μ m.
1178