

1 Head motion predictability explains activity-dependent 2 suppression of vestibular balance control

3 Dietrich H^{1*}, Heidger F^{2*}, Schniepp R^{1,2}, MacNeilage PR^{1,3}, Glasauer S^{1,4}, Wuehr M¹

4 ¹German Center for Vertigo and Balance Disorders, University Hospital, LMU

5 Munich, Germany, ²Department of Neurology, University Hospital, LMU Munich,

6 Germany, ³Department of Psychology, Cognitive and Brain Sciences, University of

7 Nevada, USA, ⁴Institute of Medical Technology, Brandenburg University of

8 Technology Cottbus-Senftenberg, Senftenberg, Germany

9

10 * these authors contributed equally

11

12 Word count paper: 3964; word count abstract: 150; character count title: 96

13 References 42; Figures: 3

14

15 Correspondence:

16 Max Wuehr

17 University of Munich, German Center for Vertigo and Balance Disorders

18 Marchioninistrasse 15

19 81377 Munich, Germany

20 Phone +49 89 4400 74818

21 Max.Wuehr@med.uni-muenchen.de

22

23 Keywords: vestibular system; galvanic vestibular stimulation; balance; locomotion;

24 efference copy; feed-forward regulation

25

1 **Abstract**

2 Vestibular balance control is dynamically weighted during locomotion. This might result
3 from a selective suppression of vestibular inputs in favor of a feed-forward balance
4 regulation based on locomotor efference copies. The feasibility of such a feed-forward
5 mechanism should however critically depend on the predictability of head movements
6 (PHM) during locomotion. To test this, we studied in healthy subjects the differential
7 impact of a stochastic vestibular stimulation (SVS) on body sway (center-of-pressure,
8 COP) during standing and walking at different speeds using time-frequency analyses
9 and compared it to activity-dependent changes in PHM. SVS-COP coupling decreased
10 from standing to walking and further dropped with faster locomotion. Correspondingly,
11 PHM increased with faster locomotion. Furthermore, SVS-COP coupling depended on
12 the gait-cycle-phase with peaks corresponding to periods of least PHM. These findings
13 support the assumption that during stereotyped human self-motion, locomotor
14 efference copies selectively replace vestibular cues, similar to what was previously
15 observed in animal models.

16

17

18

19

20

21

1 **1. Introduction**

2 The vestibular system encodes head orientation and motion to facilitate balance
3 reflexes that ensure postural equilibrium during passive as well as self-initiated
4 movements (Angelaki & Cullen, 2008). During locomotion, i.e., stereotyped self-
5 motion, vestibular influences on balance control appear to be dynamically up- or down-
6 regulated in dependence on the phase and speed of the locomotor pattern.
7 Accordingly, the gain of vestibulospinal reflexes exhibits phasic modulations across
8 the locomotor cycle (Blouin et al., 2011; Dakin et al., 2013) with the result that balance
9 is particularly sensitive to vestibular perturbations at specific phases of the gait cycle
10 (Bent et al., 2004). Furthermore, vestibular influences appear to be down-weighted
11 during faster locomotion. Accordingly, the destabilizing impact of a vestibular loss or
12 perturbation on the gait pattern decreases with increasing locomotion speeds (Brandt
13 et al., 1999; Jahn et al., 2000; Schniepp et al., 2017; Schniepp et al., 2012; Wuehr et
14 al., 2016).

15

16 It was previously assumed that activity-dependent modulations of vestibular balance
17 reflexes might reflect an up- or down-regulation of a concurrent intrinsic feed-forward
18 control of posture (Lambert et al., 2012; MacNeilage & Glasauer, 2017; Roy & Cullen,
19 2004). Accordingly, balance adjustments during self-motion might not solely rely on
20 sensory feedback about how the body has moved, but also on predictions of resultant
21 movements derived from efference copies of the motor command (Straka et al., 2018).
22 Physiological evidence for such a direct feed-forward control mode has recently been
23 shown for animal locomotion. During *Xenopus laevis* tadpole swimming, intrinsic
24 efference copies of the locomotor command deriving from spinal central pattern
25 generators (CPG) were shown to directly trigger ocular adjustments for gaze
26 stabilization and selectively cancel out afferent vestibular inputs (Lambert et al., 2012;

1 von Uckermann et al., 2013). Thus, also during human stereotyped locomotion,
2 efference copies might provide estimates of resultant head motion and assist or even
3 substitute vestibular feedback cues in gaze and balance regulation. The feasibility of
4 such a direct feed-forward mechanism should however critically rely on the
5 predictability or stereotypy of head movements during locomotion (Chagnaud et al.,
6 2012).

7
8 Following this intuition, a statistically optimal model was recently proposed, that relates
9 an empirically quantified metric (i.e. the kinematic predictability metric) of head motion
10 predictability to the relative weighting of vestibular vs. motor efference copy cues in
11 gaze and balance regulation during locomotion (MacNeilage & Glasauer, 2017).
12 According to the model, activities linked to less stereotyped head movements should
13 be more dependent on vestibular cues than activities with highly predictable head
14 motion patterns. Likewise, timepoints during the stride cycle when head movement is
15 less stereotyped should exhibit more vestibular dependence. To assess this
16 hypothesis, we examined whether activity-dependent modulations of vestibular
17 balance reflexes can be explained by alterations in the predictability of head
18 movements. Modulations in vestibular balance control during different activities, i.e.,
19 standing as well as slow or faster walking, were studied by analyzing the differential
20 impact of a continuous stochastic vestibular stimulation (SVS) on body sway (i.e.,
21 center-of-pressure-displacements, COP) in the frequency (coherence) and time
22 (cross-correlation, phase) domain. In parallel, we quantified the predictability of head
23 kinematics associated with these activities and related this metric to an estimate of
24 relative sensory weight.

1 Using this theoretical and evidence-based approach we aimed to evaluate three
2 hypotheses concerning the role of vestibular cues in balance regulation: (1) Vestibular
3 influence on balance control should decrease from standing to walking due to the
4 presence of a locomotor efference copy; (2) the gain of vestibular balance reflexes
5 should depend on locomotor speed due to increasingly stereotyped head kinematics
6 during faster locomotion; (3) phasic modulations of vestibular balance reflexes across
7 the gait cycle should reflect phase-dependent alterations in head motion predictability.

8

9

10 **2. Materials and methods**

11 *Subjects*

12 Ten healthy subjects (mean age 29.3 ± 3.7 years, 3 females) participated in the study.
13 None of the participants reported any auditory, vestibular, neurologic, cardio-vascular
14 or orthopedic disorders. All subjects had normal or corrected-to-normal vision. Each
15 participant gave written informed consent prior to the experiments. The local Ethics
16 Committee approved the study protocol, which was conducted in conformity with the
17 Declaration of Helsinki.

18

19 *Galvanic vestibular stimulation*

20 A pair of conductive rubber electrodes was attached bilaterally over the left and right
21 mastoid process behind the ears. Stochastic vestibular stimulation (SVS) delivered via
22 this electrode configuration with the head facing forward primarily elicits a postural roll
23 response in the frontal plane (Fitzpatrick & Day, 2004; Schneider et al., 2002). Before
24 electrode placement, the skin surface at the electrode sites was cleaned and dried,
25 and a layer of electrode gel was applied before electrode placing to achieve uniform
26 current density and minimize irritation to the skin during stimulation. The SVS profile

1 consisted of a bandwidth-limited stochastic stimulus (frequency range: 0–25 Hz, peak
2 amplitude \pm 4.5 mA, root mean square 1.05 mA) delivered via a constant-current
3 stimulator (Model DS5, Digitimer, Hertfordshire, UK).

4

5 *Test procedures*

6 Each participant stood and walked on a pressure-sensitive treadmill (Zebris®, Isny,
7 Germany; h/p/cosmos®, Nussdorf-Traunstein, Germany; 1.6 m long; sampling rate of
8 100 Hz). Five different conditions were tested in randomized order: three stimulation
9 conditions with continuous SVS and two non-stimulation conditions. SVS was
10 presented during 180 s of quiet standing, as well as during slow walking at 0.4 m/s
11 and medium walking at 0.8 m/s, each for 600 s. Head movements without SVS
12 stimulation were recorded during walking at 0.4 and 0.8 m/s, each for 300 s. Walking
13 was guided by a metronome with a cadence of 52 steps/min for the slow and 78
14 steps/min for the medium walking speed, respectively. Walking speeds and cadences
15 were chosen in order to allow direct comparison with previous studies (Blouin et al.,
16 2011; Dakin et al., 2013; Iles et al., 2007). During trials, participants were instructed to
17 fixate on a target located 3 m in front of them at eye level. Before each recording,
18 participants were given 30 s to acclimatize to the preset treadmill speed and walking
19 cadence. Between trials, participants were given at least two minutes to recover.

20

21 **2.2 Data analysis**

22 *Center-of-pressure displacements, head kinematics, and gait parameters*

23 For each stance and walking trial, the continuous trajectory of the center-of-pressure
24 (COP) was computed as the weighted average of the pressure data recorded from the
25 treadmill by using the standard method for determining the barycenter
26 (*sum of mass x position*)/*sum of mass* (Terrier & Deriaz, 2013). COP motion was

1 analyzed in the medio-lateral (ML) dimension, i.e., the primary dimension of postural
2 responses induced by binaural bipolar SVS (Fitzpatrick & Day, 2004). Head kinematics
3 in ML dimension (i.e., linear head acceleration in the ML dimension and angular head
4 velocity in the roll plane) were measured with an inertial measurement unit (IMU)
5 containing a triaxial accelerometer and gyroscope (APDM, Inc., Portland, OR,
6 sampling rate of 128 Hz), strapped to the forehead. Furthermore, for each walking trial,
7 the following spatiotemporal gait parameters were analyzed: base width, stride length,
8 stride time, single support percentage and double support percentage, as well as the
9 coefficient of variation (CV) of each of these parameters.

10

11 *Cross-correlation and coherence analysis*

12 For all stimulation trials, correlation analysis in the frequency (coherence) and time
13 (cross-correlation, phase) domain was used to estimate the average SVS-induced
14 variations in COP-displacements. Coherence estimates with confidence limits were
15 computed based on the auto-spectra of the SVS and COP signals ($P_{AA}(f)$ and $P_{BB}(f)$
16 respectively) as well as the cross-spectrum ($P_{AB}(f)$) using a finite fast Fourier
17 transform with a block size of 2 s resulting in a frequency resolution of 0.5 Hz
18 (Rosenberg, Amjad, Breeze, Brillinger, & Halliday, 1989):

$$19 \quad C_{AB}(f) = \frac{|P_{AB}(f)|}{P_{AA}(f)P_{BB}(f)}$$

20

21 This yielded 95% confidence limits for coherence estimates of 0.033 for stance and
22 0.010 for walking trials respectively. The resultant coherence estimate is a unitless
23 measure bounded between 1 (indicating a perfect linear relationship) and 0 (indicating
24 independence between the two signals).

25

1 Cross-correlations between SVS and COP signals were computed to determine the
2 onset and peak of SVS-induced COP displacements. For this purpose, the inverse
3 Fourier transform of the cross-spectrum $P_{AB}(f)$ was computed and normalized by the
4 norm of the input vectors to obtain unitless correlation values bounded between -1 and
5 1 (Blouin et al., 2011). Resultant 95% confidence limits for cross-correlation estimates
6 were 0.015 for stance and 0.008 for walking trials respectively. Finally, phase
7 estimates between the SVS and COP signals were estimated from the complex valued
8 coherence function. This allows to determine the phase lag corresponding to frequency
9 bandwidths with significant SVS-COP coherence estimates (Dakin et al., 2007). The
10 slope of the phase values over the range of significant coherence estimates was
11 computed using regression analysis and multiplied by $1000/2\pi$ to yield an estimate of
12 the phase lag in milliseconds.

13

14 For the two walking stimulation trials, we further analyzed phasic modulations in the
15 correlation between SVS and COP signals across the average gait cycle, using time-
16 dependent coherence analysis according to a previously described procedure (Blouin
17 et al., 2011; Dakin et al., 2013). First SVS and COP signals were cut into individual
18 strides synchronized to the left heel strike and then time-normalized by resampling
19 each stride to a total of 300 samples. The first 250 strides of each trial were taken for
20 further analysis and padded at the start and end with data from the previous and
21 subsequent strides to avoid distortions in the subsequent correlation analysis. Time-
22 dependent coherence was then estimated using a Morlet wavelet decomposition
23 based on the method of Zhan et al (Zhan et al., 2006), with a resultant frequency
24 resolution of 0.5 Hz and 95% confidence limits of 0.018.

25

26 *Head motion predictability*

1 Head motion predictability was quantified separately for linear head acceleration and
2 angular head velocity according to a previously proposed procedure (MacNeilage &
3 Glasauer, 2017). First, IMU signals were cut into individual strides synchronized to the
4 left heel strike and further time-normalized by resampling each stride to a total of 300
5 samples. Head motion data from the first 125 strides ($N = 125$) was used for further
6 analysis and averaged to reconstruct the mean head motion trajectory across the stride
7 cycle, i.e., the stride-cycle attractor. Subsequently, the total variance SS_{tot} and residual
8 variance SS_{res} of head motion were calculated:

9

10
$$SS(t)_{tot} = \frac{1}{N} \sum_{i=1}^N (h(t)_i - \bar{h})^2$$

11

12
$$SS(t)_{res} = \frac{1}{N} \sum_{i=1}^N (h(t)_i - f(t))^2$$

13

14 where $h(t)_i$ is the head motion during the i th stride at the normalized stride time t , \bar{h}
15 is the average head motion over all stride cycle phases and strides, and $f(t)$ denotes
16 the stride cycle attractor. Correspondingly, SS_{tot} quantifies the signal deviation from
17 the overall mean signal whereas SS_{res} gives the signal deviation from the stride cycle
18 attractor.

19

20 Using these metrics, the proportion of head motion variance that can be explained by
21 the stride cycle attractor, i.e., explained variance ($V_{exp} = 1 - SS_{res}/SS_{tot}$), and the
22 proportion of residual head motion variance $V_{res} = SS_{res}/SS_{tot}$ can be derived. Low
23 values of V_{res} indicate a high head motion predictability. Hence, knowing the exact
24 stride cycle phase, feed-forward signals of the locomotor command can provide

1 reliable information about the most likely ongoing movement. However, as V_{res}
2 increases, head motion prediction based on stride cycle phase information becomes
3 less accurate and additional sensory cues are required for head motion estimation.
4 These considerations can be expressed in the form of a statistically optimal model, i.e.,
5 the maximum likelihood estimation model for cue integration (Ernst & Banks, 2002).
6 Accordingly, head motion \hat{H} can be estimated by a weighted linear combination of
7 vestibular (sensory, S) and efference copy (motor, M) cues with weights w_{sens} and
8 w_{mot} corresponding to the relative reliability of these cues:

9

10
$$\hat{H} = w_{sens}S + w_{mot}M$$

11

12

13
$$w_{sens} = \frac{\sigma_{mot}^2}{\sigma_{sens}^2 + \sigma_{mot}^2} \quad w_{mot} = \frac{\sigma_{sens}^2}{\sigma_{sens}^2 + \sigma_{mot}^2}$$

14

15

16 The above weights can now be estimated using the head motion data based on the
17 following two assumptions: (1) According to Weber's law, sensory noise is assumed to
18 be signal-dependent, i.e., its variance should be proportional to the squared signal
19 (Fechner, 1860). As the average signal is approximately zero for oscillatory locomotor
20 movements, sensory noise can be estimated by $\sigma_{sens}^2 = kSS_{tot}$, with the Weber's
21 fraction k . (2) If the intended head motion during each stride equals the stride cycle
22 attractor, motor noise can be estimated as $\sigma_{mot}^2 = SS_{res}$. Based on these assumptions,
23 sensory weight can be expressed as directly proportional to V_{res} :¹

¹ $w_{sens} = \frac{SS_{res}}{k*SS_{tot}+SS_{res}} * \frac{1/SS_{tot}}{1/SS_{tot}} = \frac{V_{res}}{V_{res}+k}$

1

2

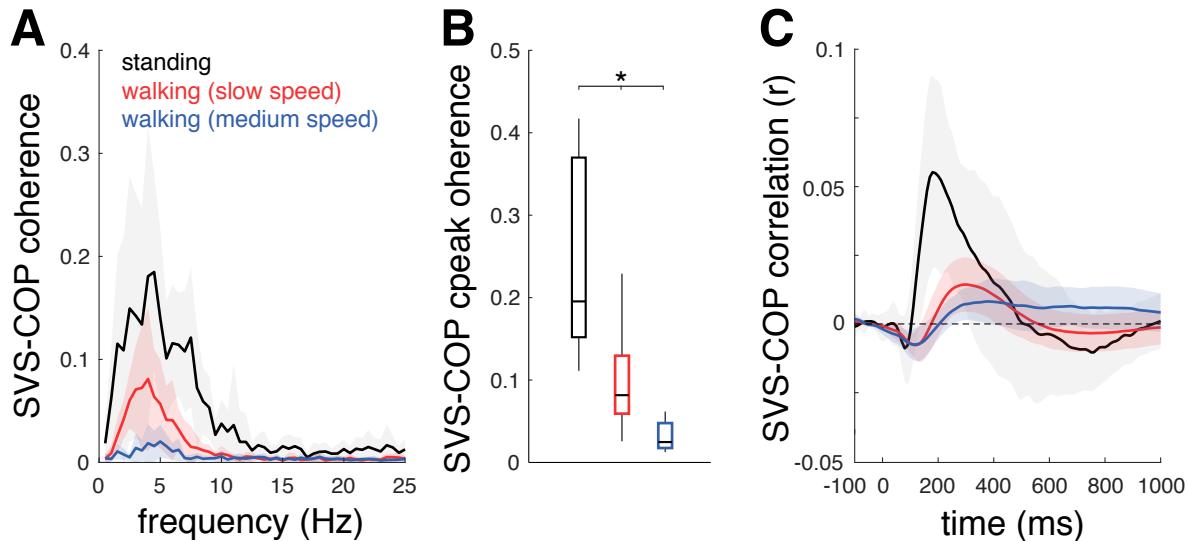
$$w_{sens} = \frac{V_{res}}{V_{res} + k}$$

3

4 **2.3 Statistical analysis**

5 Data are reported as mean \pm SD. The effects of correlation analysis parameters, head
6 predictability estimates, and gait parameters were analyzed using a repeated-
7 measures analysis of variance (rmANOVA) and Bonferroni post hoc analysis with
8 condition (standing, slow and medium walking) as factor. Results were considered
9 significant if $p < 0.05$. Statistical analysis was performed using SPSS (Version 25.0;
10 IBM Corp., Armonk, NY).

11


12

13 **3. Results**

14 All participants exhibited significant correlations between SVS and COP displacements
15 in both the frequency and time domain. SVS-COP coherence within the 0–25 Hz
16 bandwidth peaked at 4.8 ± 1.4 Hz for standing, 3.5 ± 1.3 Hz for slow and 4.9 ± 1.4 Hz
17 for medium walking speed ($F_{2,18} = 2.4$; $p = 0.119$; Figure 1A). Peak coherence dropped
18 from standing to slow walking and further decreased with faster walking ($F_{2,18} = 32.7$; p
19 < 0.001 ; Figure 1B). Cross-correlation analysis revealed a short latency component of
20 SVS-induced COP responses at 85 ± 11 ms for standing and slightly later responses
21 for slow (118 ± 22 ms) and medium (118 ± 15 ms) walking speeds ($F_{2,18} = 15.5$; $p <$
22 0.001). A medium latency response of opposite polarity occurred at 203 ± 45 ms for
23 standing and slightly later for slow (274 ± 30 ms) and medium (284 ± 32 ms) walking
24 speeds ($F_{2,18} = 22.7$; $p < 0.001$; Figure 1C). Phase lags at frequency bandwidth with
25 significant coherence estimates corresponded to the medium latency response with

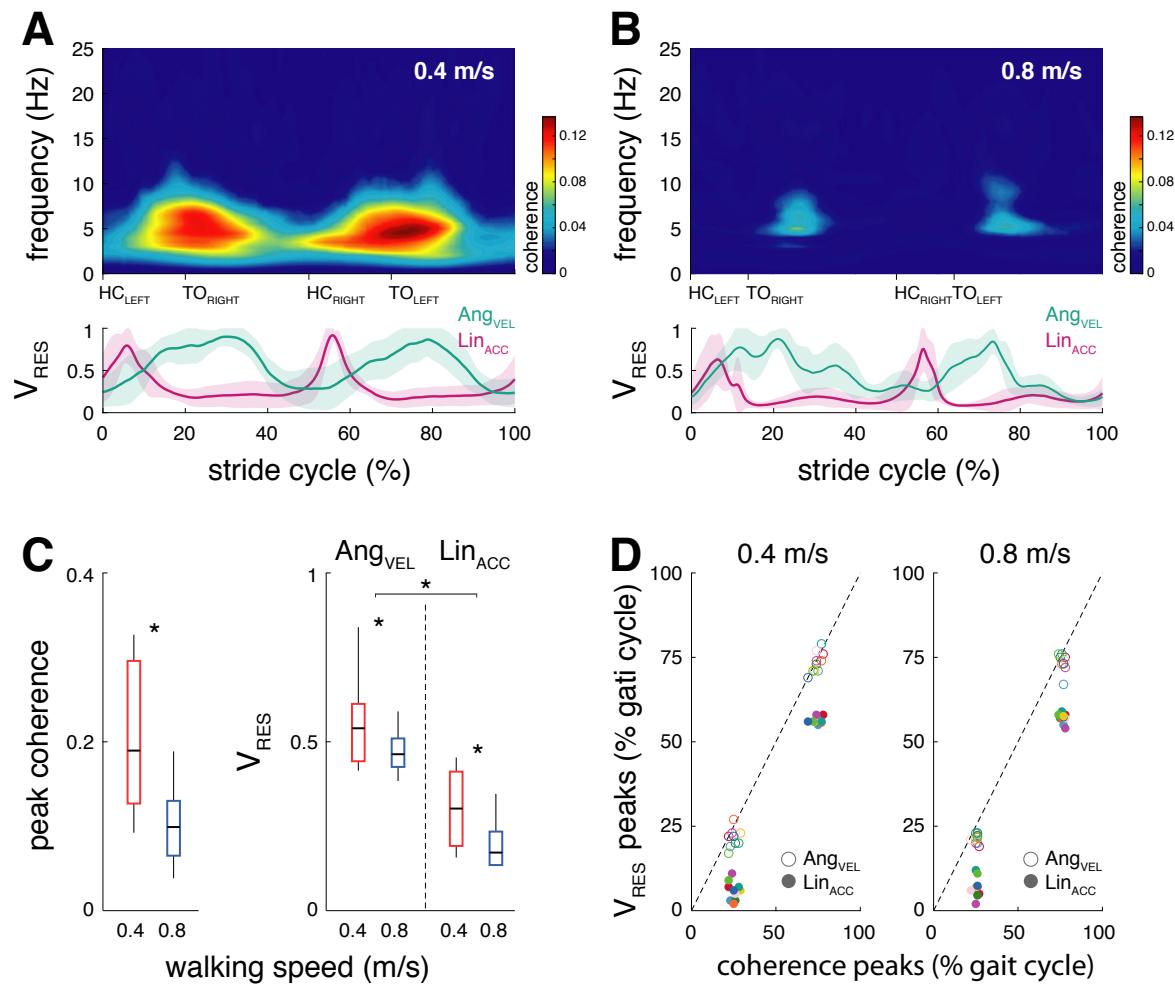
1 204 ± 44 ms for standing, and 270 ± 31 ms for slow, and 269 ± 35 ms for medium
2 walking speed ($F_{2,18} = 17.0$; $p < 0.001$).

3

4

5 **Figure 1: Correlation analysis in frequency and time domain for coupling between SVS and**
6 **COP displacements during different activities.**

7 (A) Coherence functions, (B) peak coherence values, and (C) corresponding cross-
8 correlations between SVS and COP displacements. SVS-COP coherence drops from
9 standing to slow walking and is further reduced at faster walking speed. SVS-induced COP
10 displacements exhibit a short latency response around 80-120 ms and a medium latency
11 response of opposite polarity at around 200-290 ms. * indicates a significant difference.


12 SVS: *stochastic vestibular stimulation*; COP: *center-of-pressure*

13

14 Similar to global coherence estimates, time-frequency analysis of SVS-COP coupling
15 across the gait cycle revealed a drop of peak coherence from slow to medium walking
16 speed ($F_{1,9} = 15.5$; $p < 0.001$, Figure 2A-C). Analysis of head motion predictability
17 revealed a corresponding decrease in mean head motion V_{res} (i.e., an increase in head
18 motion predictability) from slow to medium walking speed for both linear head
19 acceleration and angular head velocity ($F_{1,18} = 14.0$; $p = 0.001$, Figure 2A-C).
20 Furthermore, head motion predictability was generally higher for linear head

1 acceleration compared to angular head velocity ($F_{1,18} = 44.7$; $p < 0.001$, Figure 2C).
2 SVS-COP coupling across the gait cycle exhibited phasic modulations with two distinct
3 peaks occurring at $25.0 \pm 2.4\%$ and $74.3 \pm 2.7\%$ of the gait cycle during slow walking
4 and at $25.4 \pm 1.4\%$ and $76.6 \pm 1.4\%$ of the gait cycle during walking at medium speed
5 (Figure 2A,B). In accordance, the estimated head motion predictability was similarly
6 modulated throughout the gait cycle. Periods of maximum V_{res} (i.e., least predictability)
7 of angular head velocity corresponded to peaks of SVS-COP coherence (at $21.6 \pm$
8 2.8% and $73.5 \pm 3.1\%$ of the gait cycle during slow walking and $21.3 \pm 1.3\%$ and 73.4
9 $\pm 2.6\%$ of the gait cycle during medium walking). In contrast, peaks of linear head
10 acceleration V_{res} occurred at considerably earlier instances of the gait cycle ($5.9 \pm$
11 2.8% and $56.4 \pm 1.0\%$ of the gait cycle during slow walking and $6.7 \pm 2.9\%$ and $56.9 \pm$
12 1.4% of the gait cycle during medium walking).

13

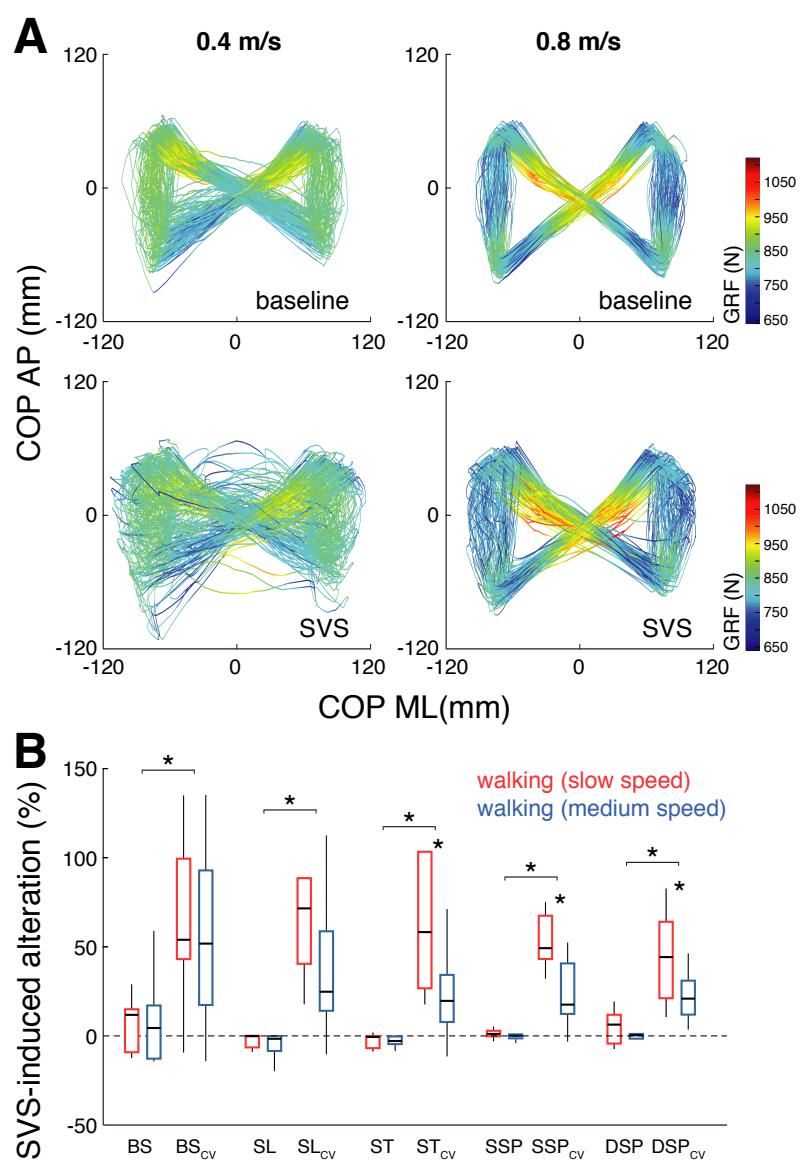


Figure 2: Time-frequency analysis of coupling between SVS and COP displacements and corresponding estimates of head motion predictability

(A,B) Average time-dependent coherence between SVS and COP at slow and medium walking speed (upper panels) and corresponding average head motion V_{res} curves (lower panels) in dependence on the gait cycle phase. (C) Peak coherence and corresponding average V_{res} for angular head velocity and linear head acceleration. (D) Temporal correspondence between phase-dependent peaks in SVS-COP coherence and peaks in head motion V_{res} at slow and medium walking speed. Both SVS-COP coupling as well as head motion predictability decrease with faster locomotion and are phase-dependently modulated across the gait cycle. SVS-COP coupling exhibits two peaks across the stride cycle that correspond well to periods of highest V_{res} (i.e., least predictability) of angular head velocity. * indicates a significant difference. SVS: *stochastic vestibular stimulation*; COP: *center-of-pressure*; V_{res} : *residual variance*; Ang_{VEL} : *angular head velocity*; Lin_{ACC} : *linear head acceleration*; HC: *heel contact*; TO: *toe off*

1 Continuous SVS did not affect the average spatiotemporal walking pattern but resulted
2 in a considerable increase of stride-to-stride variability (i.e., increased CV) of all
3 analyzed gait parameters (Figure 3B). This effect was diminished during medium
4 compared to slow walking for the CV of stride time ($F_{1,9} = 5.9$; $p = 0.038$), single support
5 percentage ($F_{1,9} = 7.7$; $p = 0.022$), and double support percentage ($F_{1,9} = 5.9$; $p =$
6 0.038).

7

8

9 **Figure 3: Effects of SVS and walking speed on spatiotemporal gait parameters**

10 (A) Representative examples of COP trajectories during slow (left) and medium (right)
11 walking speed for trials without stimulation (upper panel) and with continuous SVS (lower

1 panel). (B) Percentage differences in gait parameters for walking with continuous SVS
2 compared to baseline walking at the two locomotor speeds. SVS does not affect the mean
3 gait pattern but induces increased stride-to-stride fluctuations (i.e., increased CV values)
4 in all gait parameters. This effect diminishes with faster locomotion. * indicates a significant
5 difference. SVS: *stochastic vestibular stimulation*; COP: *center-of-pressure*; BS: *base*
6 *width*; SL: *stride length*; ST: *stride time*; SSP: *single support percentage*; DSP: *double*
7 *support percentage*; CV: *coefficient of variation*

8

9

10 **4. Discussion**

11 Here we observed that activity-dependent modulations of vestibular influence on
12 balance control closely match differences in head motion predictability. This finding
13 supports a previously proposed model (MacNeilage & Glasauer, 2017), based on the
14 idea that during stereotyped locomotion, efference copies of locomotor commands
15 may be used in conjunction with sensory, especially vestibular, cues in order to
16 estimate resultant head movements and trigger adequate balance adjustments. The
17 extent to which balance regulation during locomotion relies on concurrent vestibular
18 vs. motor feed-forward signals should further depend on the reliability of these
19 estimates, such that higher weighting is given to the less noisy estimate (Ernst &
20 Banks, 2002). Accordingly, we found that activities linked to less stereotyped head
21 movements (i.e., standing or slow walking) were more sensitive to externally triggered
22 vestibular cues than activities with highly predictable head motion patterns (i.e. faster
23 walking). Furthermore, we found that during walking, sensitivity to SVS was highest at
24 the times of lowest head movement predictability. Thus, the present results provide a
25 reasonable explanation for the dynamic weighting of vestibular influences across and
26 within different activities and further emphasize the possibility of an intrinsic feed-
27 forward regulation of balance during human locomotion based on locomotor efference

1 copies. In the following, we will discuss these findings with respect to their functional
2 implications and possible physiological correlates.

3

4 The influence of externally triggered vestibular cues on body sway (i.e., SVS-COP
5 coherence) was attenuated during walking compared to standing (Figure 1). This
6 agrees with the recently reported decrease of vestibular influence on body balance
7 after gait initiation and the corresponding increase after gait termination (Tisserand et
8 al., 2018). Such general down-weighting of vestibular influence during locomotion is
9 consistent with predictions of the model employed here. During locomotion, the
10 presence of an efference copy of locomotor commands imposes an upper limit for the
11 weighting of sensory influences, i.e., $w_{sens} < 1/(1 + k) < 1$, which depends on the
12 Weber's fraction k , the proportionality constant for signal dependent noise
13 (MacNeilage & Glasauer, 2017). Thus, in contrast to standing, balance regulation
14 during locomotion will always be partially governed by a locomotor efference copy, i.e.,
15 $w_{mot} > 0$. Previous literature indicates that the attenuation of balance-related
16 vestibular reflex gains during locomotion is a more general phenomenon that also
17 concerns vestibulo-ocular reflex pathways (Dietrich & Wuehr, 2019). Accordingly, it
18 was shown in patients with a unilateral vestibular failure that spontaneous nystagmus
19 resulting from a vestibular tone imbalance is considerably dampened during
20 ambulation (Jahn et al., 2002). A complete suppression of the horizontal vestibulo-
21 ocular reflex has been demonstrated in tadpole swimming, i.e., a locomotor activity
22 where the spatiotemporal coupling between rhythmic propulsive locomotor movements
23 and resultant head displacements is high (Chagnaud et al., 2012; Lambert et al., 2012).
24 Similar effects were also observed in other non-vestibular sensory modalities. For
25 instance, proprioceptive stretch reflexes that govern postural control during standing
26 are known to be selectively suppressed during locomotion (Dietz et al., 1985).

1
2 During locomotion, vestibular feedback is thought to be essential for maintenance of
3 dynamic stability by fine-tuning the timing and magnitude of foot placement (Bent et
4 al., 2004; Blouin et al., 2011; Wuehr et al., 2016). In line with this, significant SVS-COP
5 coupling during locomotion led to an increased spatiotemporal variability of stride-to-
6 stride walking movements despite of the otherwise unaffected average gait parameters
7 (Figure 3). Both SVS-COP coupling and increased stride-to-stride variability decreased
8 from slow to medium walking speed (Figure 1-3). This observation is in line with
9 previous studies reporting that the destabilizing impact of a vestibular loss or external
10 vestibular perturbation is considerably attenuated during fast compared to slow
11 locomotion (Brandt et al., 1999; Dakin et al., 2013; Jahn et al., 2000; Schniepp et al.,
12 2012). Moreover, in agreement with previous reports (Bent et al., 2004; Blouin et al.,
13 2011; Dakin et al., 2013), we found that SVS-COP coupling was phase-dependently
14 modulated during locomotion, exhibiting two consistent peaks across the gait cycle
15 with equal timing for both examined walking speeds. Both speed- and phase-
16 dependent changes in SVS-COP coupling closely matched concomitant changes in
17 head motion predictability (Figure 2). Accordingly, V_{res} of linear acceleration and
18 angular velocity of head motion decreased with faster locomotion (i.e., increased
19 predictability) and consistently exhibited two local maxima across the gait cycle (i.e.,
20 least predictability). Furthermore, phasic modulation of SVS-COP coupling across the
21 locomotor cycle temporally matched modulations of V_{res} of angular head velocity rather
22 than of linear head acceleration. This suggests that the observed SVS-induced COP
23 displacements primarily reflect responses to activation of semicircular canal afferents
24 conveyed through vestibulospinal tracts. In line with this, semicircular canal afferent
25 stimulation was previously shown to trigger medium-latency body sway responses at
26 the frequency bandwidth and phase lags observed in the present study, whereas short-

1 latency responses triggered by otolith afferents via reticulospinal tracts occur at a
2 higher bandwidth (> 10 Hz) with shorter phase lags (Cathers et al., 2005; Dakin et al.,
3 2007).

4

5 Previous reports hypothesized that the activity-dependent modulation of vestibular
6 feedback during locomotion is reflected by concurrent changes in muscle activation or
7 foot placement patterns to stabilize posture (Bent et al., 2004; Blouin et al., 2011; Dakin
8 et al., 2013). Others have proposed that vestibular down-regulation during faster
9 locomotion simply occurs due to a larger degree of automated behavior that tends to
10 rely less on sensory feedback (Brandt et al., 1999). The present findings alternatively
11 suggest that rather than automation, changes in head motion predictability define the
12 activity-dependent modulation of vestibular control of balance during locomotion.
13 Accordingly, the ratio of sensory vs. motor noise generally becomes greater with
14 increasing locomotion speed, which should lead to a down-weighting of vestibular
15 feedback in favor of a direct feed-forward regulation of balance based on efference
16 copies from the locomotor commands. Moreover, the phase-dependent modulation of
17 vestibular influences would similarly reflect changes in the proportion of sensory vs.
18 motor noise across the gait cycle. An analogous re-weighting of sensory vs. motor
19 cues based on the relative precision of these signals could further explain the
20 previously described speed- and phase-dependent modulation of other non-vestibular
21 feedback cues (i.e., visual and proprioception) occurring during human locomotion
22 (Dietz, 2002; Jahn et al., 2001; Logan et al., 2014; Wuehr et al., 2013; Wuehr et al.,
23 2014).

24

25 The relationship between the activity-dependent modulation of vestibular influences
26 and changes in head motion predictability suggests that during human locomotion an

1 intrinsic feed-forward mechanism based on locomotor efference copies plays a part in
2 balance regulation, which was previously thought to be purely controlled by
3 sensorimotor reflexes. Traditionally, motor efference copies are primarily considered
4 to serve as predictors of sensory consequences arising from one's own actions,
5 thereby enabling the brain to distinguish self-generated sensory signals (reafference)
6 from sensory inputs caused by unpredictable external influences (exafference) (Cullen,
7 2004; Sperry, 1950; von Holst & Mittelstaedt, 1950). Recent research, however, has
8 expanded this view, suggesting that internal motor predictions are also involved in
9 coordinating action of different motor systems that are otherwise functionally and
10 anatomically unrelated (Straka et al., 2018). One well described example of such an
11 efference copy-mediated motor-to-motor coupling is the interaction between the
12 mammalian locomotor and respiratory motor system, which is coordinated by intrinsic
13 efference copies derived from CPG activity in the lumbar spinal cord (Onimaru &
14 Homma, 2003). More recently, CPG-derived locomotor efference copies were shown
15 to directly mediate compensatory eye movements for gaze stabilization during aquatic
16 locomotion in *Xenopus laevis* tadpoles (Lambert et al., 2012) and adult frogs (von
17 Uckermann et al., 2013) – a task that is usually thought to be mediated by the vestibulo-
18 ocular reflex. Moreover, this direct coupling between spinal and ocular motor signals
19 was shown to be accompanied by a selective suppression of vestibular inputs to
20 extraocular motoneurons. Whether such selective gating of vestibular feedback occurs
21 at the level of the brainstem extraocular or vestibular nuclei or other brain regions such
22 as the cerebellum yet remains unknown. In favor of a cerebellar origin, it was previously
23 shown that the phasic modulation of vestibulospinal neuron activity in the lateral
24 vestibular nucleus observed during locomotion in cats depends on the presence of an
25 intact cerebellum and is disrupted by its removal (Orlovsky, 1972; Udo et al., 1982).
26 Given its prominent role in adaptive plasticity of vestibular reflexes (Angelaki & Cullen,

1 2008; Dietrich & Straka, 2016; Gittis & du Lac, 2006), the cerebellum might thus serve
2 as a convergence site for the weighting and integration of self-motion derived
3 vestibular cues and intrinsic locomotor efference copies.

4

5 **Acknowledgements**

6 This work was supported by the German Federal Ministry of Education and Research
7 (01EO1401) and the German Research Foundation (MA 6233/1-1).

8

9 **Competing interests**

10 The corresponding author states on behalf of all authors that there are no conflicts of
11 interest.

12

13 **References**

14 Angelaki, D. E., & Cullen, K. E. (2008). Vestibular system: the many facets of a
15 multimodal sense. *Annual Review of Neuroscience*, 31, 125-150.
16 doi:10.1146/annurev.neuro.31.060407.125555

17

18 Bent, L. R., Inglis, J. T., & McFadyen, B. J. (2004). When is vestibular information
19 important during walking? *Journal of Neurophysiology*, 92(3), 1269-1275.

20

21 Blouin, J. S., Dakin, C. J., van den Doel, K., Chua, R., McFadyen, B. J., & Inglis, J. T.
22 (2011). Extracting phase-dependent human vestibular reflexes during locomotion
23 using both time and frequency correlation approaches. *J Appl Physiol (1985)*, 111(5),
24 1484-1490. doi:10.1152/japplphysiol.00621.2011

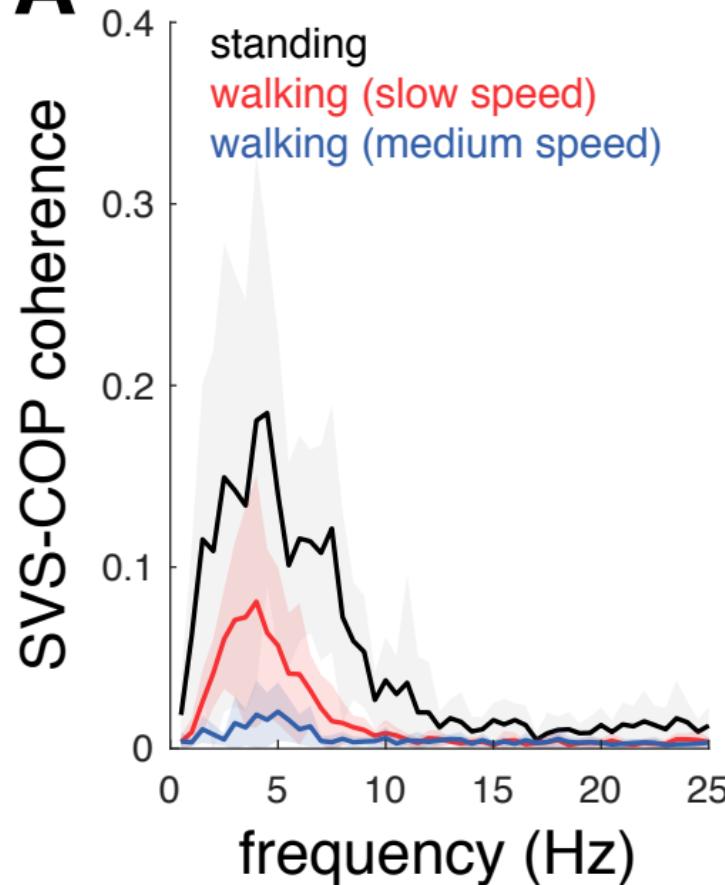
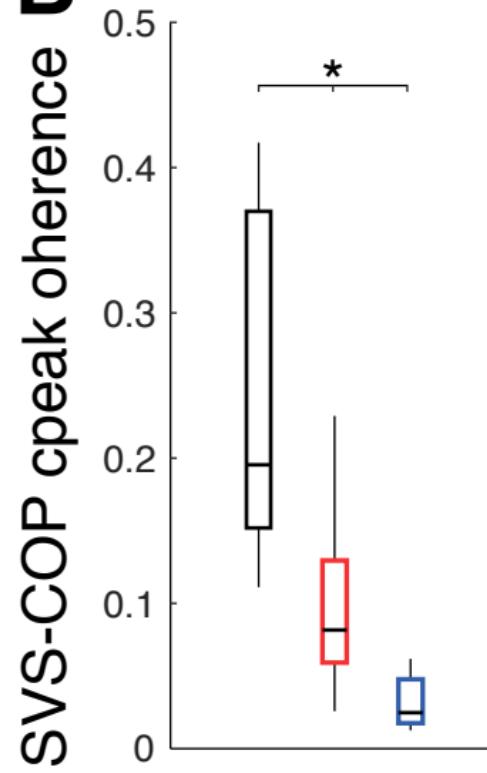
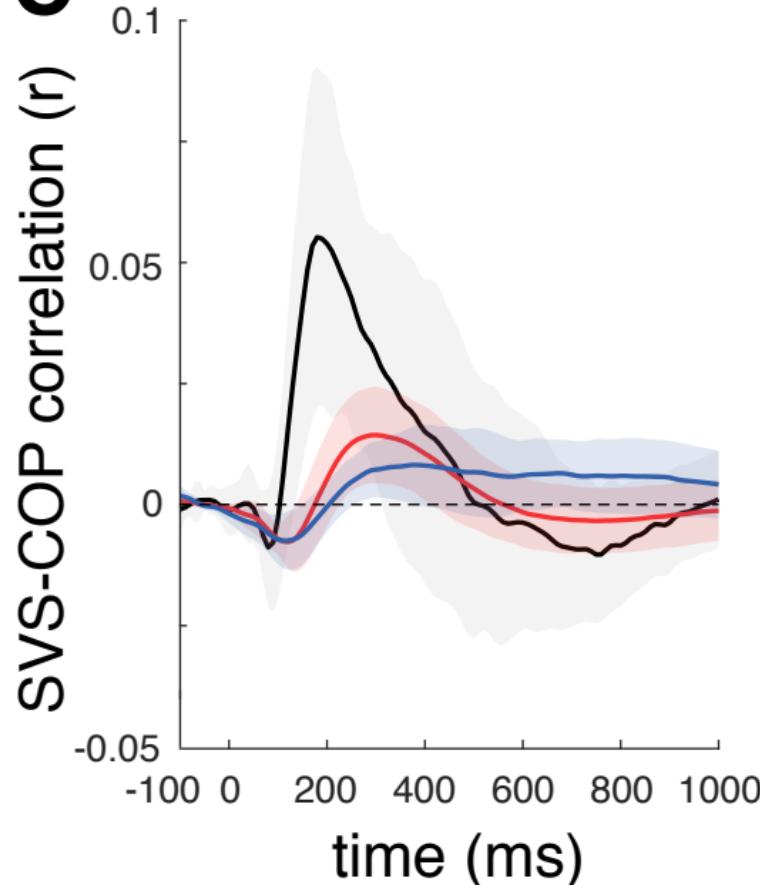
25

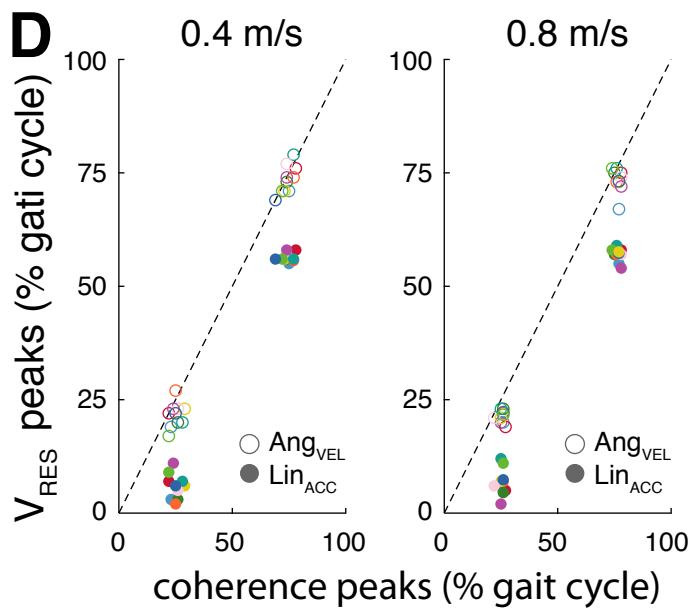
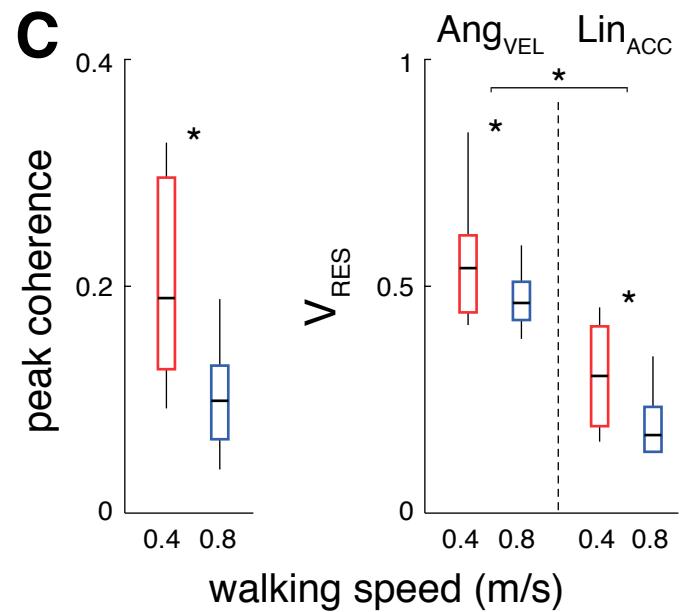
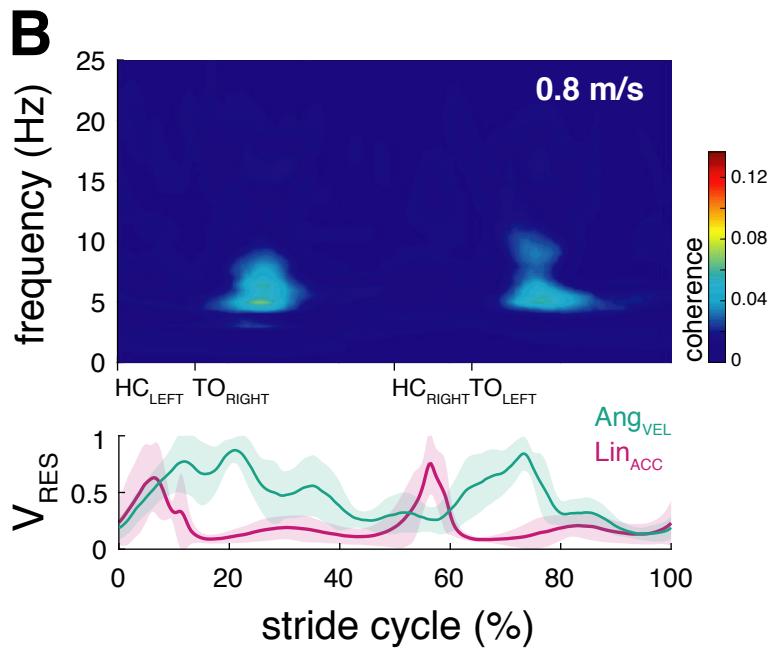
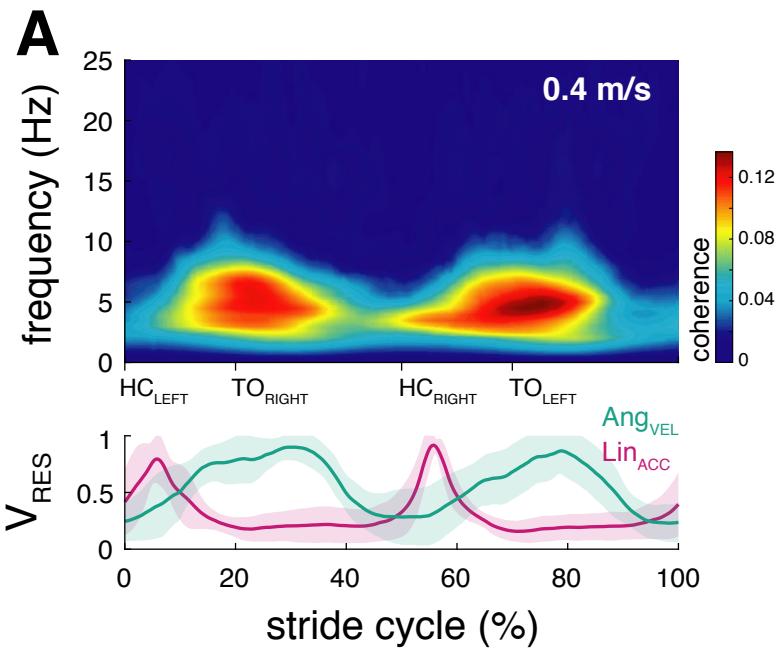
26 Brandt, T., Strupp, M., & Benson, J. (1999). You are better off running than walking
27 with acute vestibulopathy. *Lancet*, 354(9180), 746. doi:10.1016/S0140-
28 6736(99)03179-7

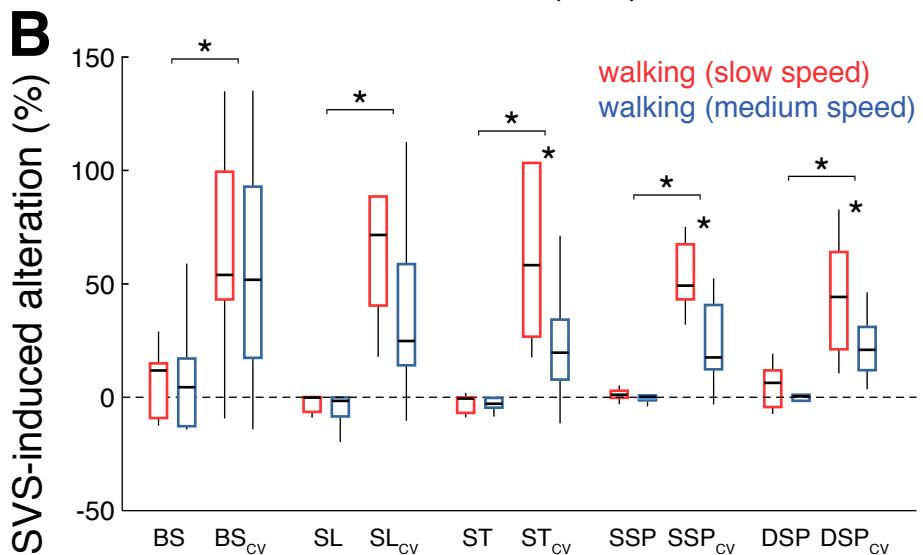
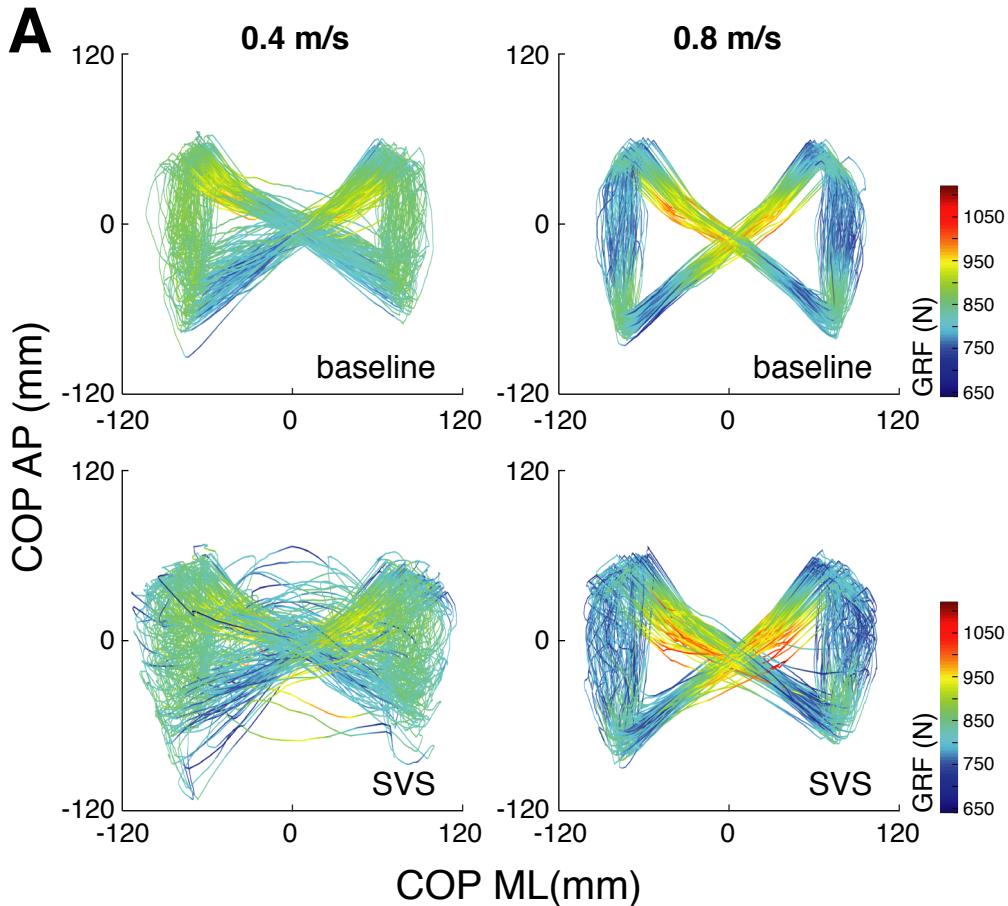
29

30 Cathers, I., Day, B. L., & Fitzpatrick, R. C. (2005). Otolith and canal reflexes in human
31 standing. *Journal of Physiology*, 563(Pt 1), 229-234. doi:10.1113/jphysiol.2004.079525

32




33 Chagnaud, B. P., Simmers, J., & Straka, H. (2012). Predictability of visual perturbation
34 during locomotion: implications for corrective efference copy signaling. *Biological
35 Cybernetics*, 106(11-12), 669-679. doi:10.1007/s00422-012-0528-0





36



- 1 Cullen, K. E. (2004). Sensory signals during active versus passive movement. *Curr
2 Opin Neurobiol*, 14(6), 698-706. doi:10.1016/j.conb.2004.10.002
3
- 4 Dakin, C. J., Inglis, J. T., Chua, R., & Blouin, J. S. (2013). Muscle-specific modulation
5 of vestibular reflexes with increased locomotor velocity and cadence. *Journal of
6 Neurophysiology*, 110(1), 86-94. doi:10.1152/jn.00843.2012
7
- 8 Dakin, C. J., Son, G. M., Inglis, J. T., & Blouin, J. S. (2007). Frequency response of
9 human vestibular reflexes characterized by stochastic stimuli. *Journal of Physiology*,
10 583(Pt 3), 1117-1127. doi:10.1113/jphysiol.2007.133264
11
- 12 Dietrich, H., & Straka, H. (2016). Prolonged vestibular stimulation induces homeostatic
13 plasticity of the vestibulo-ocular reflex in larval *Xenopus laevis*. *European Journal of
14 Neuroscience*, 44(1), 1787-1796. doi:10.1111/ejn.13269
15
- 16 Dietrich, H., & Wuehr, M. (2019). Strategies for Gaze Stabilization Critically Depend
17 on Locomotor Speed. *Neuroscience*. doi:10.1016/j.neuroscience.2019.01.025
18
- 19 Dietz, V. (2002). Proprioception and locomotor disorders. *Nat Rev Neurosci*, 3(10),
20 781-790. doi:10.1038/nrn939
21
- 22 Dietz, V., Quintern, J., & Berger, W. (1985). Afferent control of human stance and gait:
23 evidence for blocking of group I afferents during gait. *Exp Brain Res*, 61(1), 153-163.
24
- 25 Ernst, M. O., & Banks, M. S. (2002). Humans integrate visual and haptic information in
26 a statistically optimal fashion. *Nature*, 415(6870), 429-433. doi:10.1038/415429a
27
- 28 Fechner, G. T. (1860). *Elemente der Psychophysik*: Breitkopf und Härtel.
29
- 30 Fitzpatrick, R. C., & Day, B. L. (2004). Probing the human vestibular system with
31 galvanic stimulation. *J Appl Physiol* (1985), 96(6), 2301-2316.
32 doi:10.1152/japplphysiol.00008.2004
33
- 34 Gittis, A. H., & du Lac, S. J. C. o. i. n. (2006). Intrinsic and synaptic plasticity in the
35 vestibular system. 16(4), 385-390.
36
- 37 Iles, J. F., Baderin, R., Tanner, R., & Simon, A. (2007). Human standing and walking:
38 comparison of the effects of stimulation of the vestibular system. *Experimental Brain
39 Research*, 178(2), 151-166. doi:10.1007/s00221-006-0721-2
40
- 41 Jahn, K., Strupp, M., & Brandt, T. (2002). Both actual and imagined locomotion
42 suppress spontaneous vestibular nystagmus. *Neuroreport*, 13(16), 2125-2128.
43
- 44 Jahn, K., Strupp, M., Schneider, E., Dieterich, M., & Brandt, T. (2000). Differential
45 effects of vestibular stimulation on walking and running. *Neuroreport*, 11(8), 1745-
46 1748.
47

- 1 Jahn, K., Strupp, M., Schneider, E., Dieterich, M., & Brandt, T. (2001). Visually induced
2 gait deviations during different locomotion speeds. *Exp Brain Res*, 141(3), 370-374.
3 doi:10.1007/s002210100884
- 4
- 5 Lambert, F. M., Combes, D., Simmers, J., & Straka, H. (2012). Gaze stabilization by
6 efference copy signaling without sensory feedback during vertebrate locomotion.
7 *Current Biology*, 22(18), 1649-1658. doi:10.1016/j.cub.2012.07.019
- 8
- 9 Logan, D., Ivanenko, Y. P., Kiemel, T., Cappellini, G., Sylos-Labini, F., Lacquaniti, F.,
10 & Jeka, J. J. (2014). Function dictates the phase dependence of vision during human
11 locomotion. *J Neurophysiol*, 112(1), 165-180. doi:10.1152/jn.01062.2012
- 12
- 13 MacNeilage, P. R., & Glasauer, S. (2017). Quantification of Head Movement
14 Predictability and Implications for Suppression of Vestibular Input during Locomotion.
15 *Front Comput Neurosci*, 11, 47. doi:10.3389/fncom.2017.00047
- 16
- 17 Onimaru, H., & Homma, I. (2003). A novel functional neuron group for respiratory
18 rhythm generation in the ventral medulla. *J Neurosci*, 23(4), 1478-1486.
- 19
- 20 Orlovsky, G. N. (1972). Activity of vestibulospinal neurons during locomotion. *Brain*
21 *Res*, 46, 85-98.
- 22
- 23 Rosenberg, J., Amjad, A., Breeze, P., Brillinger, D., & Halliday, D. (1989). The Fourier
24 approach to the identification of functional coupling between neuronal spike trains.
25 *Progress in Biophysics and Molecular Biology*, 53(1), 1-31.
- 26
- 27 Roy, J. E., & Cullen, K. E. (2004). Dissociating self-generated from passively applied
28 head motion: neural mechanisms in the vestibular nuclei. *Journal of Neuroscience*,
29 24(9), 2102-2111. doi:10.1523/JNEUROSCI.3988-03.2004
- 30
- 31 Schneider, E., Glasauer, S., & Dieterich, M. (2002). Comparison of human ocular
32 torsion patterns during natural and galvanic vestibular stimulation. *J Neurophysiol*,
33 87(4), 2064-2073. doi:10.1152/jn.00558.2001
- 34
- 35 Schniepp, R., Schlick, C., Schenkel, F., Pradhan, C., Jahn, K., Brandt, T., & Wuehr,
36 M. (2017). Clinical and neurophysiological risk factors for falls in patients with bilateral
37 vestibulopathy. *Journal of Neurology*, 264(2), 277-283. doi:10.1007/s00415-016-8342-
38 6
- 39
- 40 Schniepp, R., Wuehr, M., Neuhaeusser, M., Kamenova, M., Dimitriadis, K., Klopstock,
41 T., . . . Jahn, K. (2012). Locomotion speed determines gait variability in cerebellar
42 ataxia and vestibular failure. *Movement Disorders*, 27(1), 125-131.
43 doi:10.1002/mds.23978
- 44
- 45 Sperry, R. W. (1950). Neural basis of the spontaneous optokinetic response produced
46 by visual inversion. *J Comp Physiol Psychol*, 43(6), 482-489.
- 47
- 48 Straka, H., Simmers, J., & Chagnaud, B. P. (2018). A New Perspective on Predictive
49 Motor Signaling. *Current Biology*, 28(5), R232-R243. doi:10.1016/j.cub.2018.01.033

- 1
- 2 Terrier, P., & Deriaz, O. (2013). Non-linear dynamics of human locomotion: effects of
3 rhythmic auditory cueing on local dynamic stability. *Front Physiol*, 4, 230.
4 doi:10.3389/fphys.2013.00230
- 5
- 6 Tisserand, R., Dakin, C. J., Van der Loos, M. H., Croft, E. A., Inglis, T. J., & Blouin, J.-
7 S. (2018). Down regulation of vestibular balance stabilizing mechanisms to enable
8 transition between motor states. *eLife*, 7.
- 9
- 10 Udo, M., Kamei, H., Matsukawa, K., & Tanaka, K. (1982). Interlimb coordination in cat
11 locomotion investigated with perturbation. II. Correlates in neuronal activity of Deiter's
12 cells of decerebrate walking cats. *Exp Brain Res*, 46(3), 438-447.
- 13
- 14 von Holst, E., & Mittelstaedt, H. (1950). Das Reafferenzprinzip. Wechselwirkungen
15 zwischen Zentralnervensystem und Peripherie. *Die Naturwissenschaften*, 37(20), 464-
16 476.
- 17
- 18 von Uckermann, G., Le Ray, D., Combes, D., Straka, H., & Simmers, J. (2013). Spinal
19 efference copy signaling and gaze stabilization during locomotion in juvenile Xenopus
20 frogs. *Journal of Neuroscience*, 33(10), 4253-4264. doi:10.1523/JNEUROSCI.4521-
21 12.2013
- 22
- 23 Wuehr, M., Nusser, E., Decker, J., Krafczyk, S., Straube, A., Brandt, T., . . . Schniepp,
24 R. (2016). Noisy vestibular stimulation improves dynamic walking stability in bilateral
25 vestibulopathy. *Neurology*, 86(23), 2196-2202. doi:10.1212/WNL.0000000000002748
- 26
- 27 Wuehr, M., Schniepp, R., Pradhan, C., Ilmberger, J., Strupp, M., Brandt, T., & Jahn, K.
28 (2013). Differential effects of absent visual feedback control on gait variability during
29 different locomotion speeds. *Exp Brain Res*, 224(2), 287-294. doi:10.1007/s00221-
30 012-3310-6
- 31
- 32 Wuehr, M., Schniepp, R., Schlick, C., Huth, S., Pradhan, C., Dieterich, M., . . . Jahn,
33 K. (2014). Sensory loss and walking speed related factors for gait alterations in patients
34 with peripheral neuropathy. *Gait Posture*, 39(3), 852-858.
35 doi:10.1016/j.gaitpost.2013.11.013
- 36
- 37 Zhan, Y., Halliday, D., Jiang, P., Liu, X., & Feng, J. (2006). Detecting time-dependent
38 coherence between non-stationary electrophysiological signals--a combined statistical
39 and time-frequency approach. *Journal of Neuroscience Methods*, 156(1-2), 322-332.
40 doi:10.1016/j.jneumeth.2006.02.013
- 41
- 42

A**B****C**

