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Abstract

Cancer is driven by complex evolutionary dynamics involving billions of cells.
Increasing effort has been dedicated to sequence single tumour cells, but
obtaining robust measurements remains challenging. Here we show that multi-
region sequencing of bulk tumour samples contains quantitative information on

single-cell divisions that is accessible if combined with evolutionary theory.


https://doi.org/10.1101/560243
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/560243; this version posted February 25, 2019. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

Using high-throughput data from 16 human cancers, we measured the in vivo
per-cell point mutation rate (mean: 1.69x1078 bp per cell division) and per-cell
survival rate (mean: 0.57) in individual patient tumours from colon, lung and
renal cancers. Per-cell mutation rates varied 50-fold between individuals, and
per-cell survival rates were between nearly-homeostatic and almost perfect cell
doublings, equating to tumour ages between 1 and 19 years. Furthermore,
reanalysing a recent dataset of 89 whole-genome sequenced healthy
haematopoietic stem cells, we find 1.14 mutations per genome per cell division
and near perfect cell doublings (per-cell survival rate: 0.96) during early
haematopoietic development. Our analysis measures in vivo the most
fundamental properties of human cancer and healthy somatic evolution at

single-cell resolution within single individuals.

Introduction

Human cancers display tremendous inter-patient and intra-tumour genetic
heterogeneity!. This heterogeneity is the consequence of a clonal evolutionary
process marked by complex genomic changes?, parallel and convergent
evolution3, non-cell autonomous dynamics* and genomic instability® that leads to

metastatic spread, drug resistance and ultimately death.67.

However, the microscopic forces underlying cancer evolution at the single cell
level, such as the per-cell mutation rate and the per-cell survival rate remain
immeasurable within individual human tumours?8. Unlike species evolution for
which a timed fossil record exists?19, the lack of sequential data due to ethical

and technical limitations is a major obstacle to quantitate somatic evolution in
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both healthy and cancerous human tissue. Moreover, high intra-tumour
heterogeneity (ITH) necessitates measuring variation with extremely high
precision, ideally at single cell resolution3411. Precise single cell genomic
measurements remain challenging and if possible can only be realized on a
relative limited number of cells from tumours that may contain hundreds of

billions of cells12.13,

Here we show that multi-region bulk samples of single tumours contain
recoverable information about single cell divisions. Combining evolutionary
theory, tumour multi-region sequencing and the ubiquitous stochastic nature of

cell division and mutation accumulation can unravel this information.

ITH in multi-region data encodes the properties of single-cell divisions

All tumour cells from a tumour bulk sample descended from a most recent
common ancestor (MRCA) cell. In a tumour, typically composed of hundreds of
billions of cells, multiple spatially separated bulk samples differ in their exact
composition of somatic mutations, because mutations accumulate across
different branched cell lineages during growth 1415, (Figure 1A and Methods).
Branching is inevitable in evolutionary processes driven by cell division and

mutation, both in the presence and absence of clonal selection1.6.7.15-17,
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Figure 1: Multi-region tumour bulk sequencing encodes information on single cell lineages
and single cell divisions. a) Each of the seven spatially separated tumour bulk samples (in grey)
consists of thousands to millions of cancer cells that descended from a single most recent
common ancestor (MRCA) cell. The genomic make-up of the single ancestral cell is described by
the mutations clonal to the bulk sample. Those appear at high variant allele frequency in the
sample (bottom-left panel, in purple). The intersection of mutations in any two bulk MRCA cells
corresponds to the genomic profile of another more ancestral cell. This process continues back in
time until the MRCA cell of all the sampled cells is reached. b) The level of genomic variation
within a tumour is the direct consequence of mutation accumulation during cell divisions, leading
to complex branching structures. Intervening selective pressures, trimming certain branches
while favouring others, may further modify these structures. Importantly, the most fundamental
parameters, the per-cell mutation rates and per-cell survival rate that drive this process are not
directly observable. ¢) Per-cell mutation rate per division 4 and per-cell survival rate § leave
identifiable fingerprints in the observable patterns of intra-tumour genomic heterogeneity. Cell
divisions occur in increments of natural numbers and thus the mutational distance between any
two ancestral cells is a multiple of the mutation rate u. d) The quantized nature of cell divisions
leads to a characteristic distribution of mutational distances across cell lineages. The shape of the
distribution depends on the exact values of u and . Roughly four different scenarios of small and
large u and S are possible. Importantly, they influence the shape of the distribution differently
and thus constructing the distribution of mutational distances allows disentangling the per-cell
mutation rate u and per-cell survival rate . e) Spatial stochastic simulations of growing tumours
confirm the ability of mutational distance distributions to disentangle mutation and lineage
expansion rates. A Monte Carlo Markov Chain framework based on mutational distance
distributions reliably identifies mutation and lineage expansion rates in simulations of spatial
and stochastically growing tumours (u: Spearman Rho = 0.98,p = 4x10723; B: Spearman Rho
= 0.93,p = 8x107'¢, Relative error: 1, = 0.056, 75 = 0.045).
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The mutational distance, the number of somatic mutations different between two
ancestral cells, emerges from two dynamic processes: (i) the per-cell intrinsic
mutation rate per division y, and (ii) the number of cell divisions separating
ancestral cells in space and time. The latter depends on the per-cell survival rate
B, or in other words the probability for a single cell division to establish two
surviving lineages. Hence, the per-cell survival rate f accounts for lineage loss

due to cell death or differentiation (Figure 1b,c). A priori, both p and g are

unknown. Previous methods measure effective mutation rates %, but cannot

entangle these for evolution fundamental microscopic parameters 1517-19,

However, cell divisions must occur in increments of natural numbers (cells are 1,
2, 3,..,n cell divisions apart), whereas the cell intrinsic mutation rate follows a
Poisson distribution (Figure 1d). As described in the Methods, the distribution of
mutational distances in a tumour encodes these two properties of single cell
divisions. This is possible because many ancestral cells are only a few cell
divisions apart (SI Figure 19). Specifically, we show that the probability density

of mutational distances y in a tumour takes the following form:

P =y) =32, 32, P0) (LT 1) pra—pyiren 2, (1)

given a per-cell mutation rate y and a per cell survival rate § (Methods).
Equation (1) predicts four possible regimes for the distribution of mutational
distances, discriminated by wuni- or multimodality determined by the
combination of small or large u and § (Figure 1d). The parameters uncouple in

above equation and thus repeated sampling from the distribution allows
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measuring both parameters separately. Importantly, this can only be done when
enough (= 6) bulk samples are available for each tumour (Figure 1d & SI Figure
33). Moreover, our approach relies on comparing mutational distances between
samples and does not require a priori clonal decompositions of tumours. We
demonstrate that individual based stochastic simulations of spatial tumour
growth converge to the abovementioned analytical solution (Figure le &
Methods) and a Bayesian inference scheme recovers the imposed evolutionary
parameters (Figure 1le and Methods). We also demonstrate that our approach
remains robust when the underlying assumptions are relaxed, e.g. non-constant
mutation rates or the presence of subclonal selection during population
expansion (see Methods). Moreover, we also analyse how the sensitivity of the
evolutionary estimates depend on the quality and quantity of the genomic data

(see Methods).

Per-cell mutation and per-cell survival rate in healthy haematopoietic

development

Before we discuss properties of individual tumours, we tested our approach in a
biologically well-characterised in vivo example of somatic evolution. We make
use of the accumulation of somatic mutations during early development of the
healthy haematopoietic system as a benchmark. In a recent article Lee-Six and
colleagues whole genome sequenced 89 healthy haematopoietic stem cells of a
single 59 year old male 20. They subsequently constructed the phylogeny of
healthy haematopoiesis and estimated the per-cell mutation rate to be 1.2

mutations per genome per division during early development assuming perfect
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Figure 2: Per-cell mutation and per-cell survival rate inferences in healthy haematopoiesis
during development. a) Mutational distance distribution inferred from 89 whole genome

sequenced healthy haematopoietic stem cells (black dots), data taken from?20 and best theoretical

fit (grey line). MCMC inference for b) the mutation rate per cell division (u = 1.14*33% mutations

per whole genome per cell division) and c) the per-cell survival rate (8 = 0.9615-938) during early

development in healthy haematopoiesis. Median values and 95% credibility intervals were taken

from the posterior parameter distributions.

cell doublings. We can use the same sequencing information and construct the
distribution of mutational distances during early haematopoietic development.
Our framework of mutational distances allows a joint and independent inference
of the per-cell mutation and per-cell survival rate (Figure 2 and Methods). In
agreement with 20, we find a median mutation rate of u = 1.14*J1% mutations
per genome per division (shown is the medium mutation rate per bp/cell-
division and 95% credibility intervals). Furthermore, we infer a per-cell survival

rate of B = 0.9615938, independently confirming the original assumption of

almost perfect cell doubling during early development 2°.

Measuring the per-cell mutation rate in individual human tumours

We now proceed to in vivo per-cell mutation rates within individual human
tumours. A unique sample set?! amenable to our analysis is composed of 6
colorectal tumours (5 carcinomas, 1 adenoma) sequenced using multi-region

whole genome (3 tumours) and whole exome profiling (3 tumours) of up to 13
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bulk samples per tumour (median 7.6, minimum 6 samples per tumour as
required by our analysis). We calculated the pairwise genetic divergence for all
combinations of samples per tumour and used our MCMC approach to infer the
per-cell mutation rate u as well as the per-cell survival rate f from equation (1)
above. Simulations show that inferences are possible with as few as 6 tumour
samples (SI Figure 33). Despite the limited resolution (median 8 bulk samples
per tumour), our theoretically predicted mutational distance distribution
describes important features of the data well (Figure 3 and SI Figure 13). Similar
distributions emerge in stochastic simulations of tumour growth with
comparable data quality (SI Figure 34). When whole genome sequencing was
available, the mutational load was sufficient to apply the inference framework to
each chromosome separately (Figure 3 and SI Figures 1-3 & 9-18). The analysis
was restricted to regions of chromosomes with same copy number profile in all
samples of a tumour and inferences were normalised by copy-number and

genome content sequenced.

We found mutation rates per cell division to be elevated approximately 10 to 30
times compared to healthy somatic tissuel® across the whole genomes of the
three carcinomas (g, = (1.05335) 1078, g3 = (2.4%313) x1078 and up, =
(3.1%533)x107® bp/division, median mutation rate and 95% credibility

intervals), see Figure 3 and Methods. Mutation rates differed
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Figure 3: Mutational distance distributions reveal per-cell mutation and per-cell survival
rates. a-c) Mutational distance distributions (whole genome) for three colorectal carcinomas?!
(dots=data, grey line=theoretical prediction based on MCMC parameter estimates). Patient 04
(MSI+) has one order of magnitude larger mutational distances. Three additional distributions
are shown in SI Figure 13. d-f) Per-cell signature mutation rate per chromosome. Results are
consistent across chromosomes (Methods). g-i) The median overall mutation rates are
(Uoz = (1.035:48) X1078, g3 = (2.47942) x1078 and py, = (3.13335)x 1078 bp/division , dashed
lines), 10 to 30 times higher compared to healthy somatic cells. Patient 04 is MSI+ highlighted by
signature 6. j-1) Estimates of per-cell survival rates per chromosome are consistent across
chromosomes of the same patient (Median: 8y, = 0.5173:32, Bo3 = 0.65%5:92, By, = 0.337331), but

vary considerably between patients (SI Figure 15).

significantly between tumours, but not across chromosomes of the same tumour
(SI Figure 15). Recently it was suggested that mismatch repair efficacy differs
between coding and non-coding genomic regions?2. We find mutation rates in
coding compared to non-coding regions slightly elevated in mismatch repair

sufficient tumour 02 and slightly lower in tumour 03, but being equal in the
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mismatch repair deficient tumour 04 (SI Figure 5). We found comparably high
mutation rates per cell division for exonic mutations in two additional
carcinomas ( pos = 3.1¥372x107% bp/division and pge = 1.3%323x1078
bp/division), SI Figure 16. Instead, one adenoma showed a near normal per-cell
mutation rate (ucgs = 0.2915:12x1078 bp/divison), SI Figure 16. Overall this
suggests important differences in mutation accumulation at the single cell level
between tumours and is in good agreement with recent experimental in vitro

single cell mutation rate inferences?3.

To further unravel the underlying differences in mutation accumulation, we
decomposed somatic mutations into the most prevalent mutational signatures2*
for all three whole-genome sequenced colorectal carcinomas and inferred per-
cell mutation and per-cell survival rates per signature in each chromosome
(Figure 3 and Methods). Signature 5 was detected consistently across all
chromosomes for all three carcinomas, but the accumulation rate differed
between tumours ( wu5; = (0.513337)x1078, us3 = (1.141328)x1078, ugs =
(0.85%3:3¢)x 1078 bp/division). Signature 1 was identified in all chromosomes of
tumours 02 and 03 and was similar to a healthy somatic mutation rate (uj; =
(0.34%39¢)x1078, 53 = (0.07%3:33)x10~8 bp/division), further supporting its
previously proposed clocklike nature in aging human tissues2>. Consistent with
its classification as MSI+, Signature 6 was prominent in tumour 04 (u3s =
(0.89%3:32)x 1078 bp/division), comprising 39% of all mutations in the tumour
(63% if mutations of unclassified signatures are included). All somatic mutations
not assigned to abovementioned signatures were grouped as other (uJ:*¢" =
(0.492538)x 1078, ugs"e" = (1.1928:36)x107%, ugy"e” = (0.562559)x107°

bp/division). Overall our analysis suggests variation in between patient

signature mutation rates (SI Figure 7). In contrast, we do not find significant

10
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dependence of per-cell mutation rates on chromosomal ploidy: mutation rates
remained consistent for diploid, triploid and tetraploid chromosomal regions

after correcting for the genome size sequenced (SI Figure 8).

The differences in mutational signatures between individuals also manifest in
variable accumulation rates of substitution subtypes (SI Figure 6). In two
individuals, transitions are more likely than transversions. As expected C - T
transitions have the highest mutation rates, but accumulation rates differ
between individuals. Interestingly, the ranking of the rates of substitution
subtypes in two patients agree with the patterns of divergence between humans
and chimpanzees?®. In contrast, in one patient mutation rates for transitions and

transversions were similar (SI Figure 6b).

In addition, we inferred per-cell mutation rates per chromosome in 3 recently
published?” whole genome sequenced colon cancer patients (7, 9 and 9 tumour
samples). We also used data from two non-small cell lung cancers (NSCLC) from
the TRACERx study?8. These were the two cases (one squamous and one
adenocarcinoma) that had more than 6 samples per tumour from the 100
patients cohort (7 exome sequenced samples each), as well as five clear cell renal
cell carcinomas (CCRCC)?° (median 8, from 8 to 12 exome sequenced bulk
samples), (SI Figures 9-12 & 17,18). In concordance with our previous
observation we found consistent mutation rates across chromosomes for the
colon cancer patients. One MSI+ case has an increased mutation rate (1.8131¢x
1078 bp/divison) compared to two MSS patients (0.891513x1078, 0.997313x

1078 bp/divison). We found the lung squamous cell carcinoma to have a very

11
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high mutation rate (5.3%157$x1078 bp/division), in comparison the lung
adenocarcinoma had a lower mutation rate (1.4%029x1078 bp/division). Also,
three clear cell renal carcinomas showed elevated mutation rates (2.27393x
1078,3.17372x1078 & 0.79%348x 1078 bp/division). Surprisingly, two clear cell
renal carcinomas had near normal somatic mutation rates
(0.11%393x1078 & 0.115:3x 1078 bp/division), suggesting that at least in some

cases, cancer cells maintain near normal mutation rates per cell division.

Measuring the per-cell survival rate in individual human tumours

Our inference scheme allows a joint estimate of the mutation rate per cell
division and the per-cell survival rate. We observed striking differences for the
per-cell survival rates between the tumours discussed above. We found for the
colorectal tumours (S, = 0.517392, B3 = 0.65%5:92, Bos = 0.337351 ), where
higher 5 corresponds to less cell death. The rates were consistent when the
analysis was based only on individual chromosomes (Figure 3). Interestingly,
tumour 04 was mismatch repair deficient and had 3 to 10 times higher sub-
clonal mutational burden compared to mismatch efficient carcinomas (SI Figure
4), but remarkably slower growth. Hence, the higher mutational load in this
tumour may not solely be due to mismatch repair deficiency, but also due to
slower growth and therefore older relative tumour age (more cell divisions).
This is also consistent with clinical observations and may explain partially why
MSI+ tumours are more prevalent in older patients and typically have a better
prognosis39-32, Per-cell survival rates inferred from exonic mutations also varied

for two additional carcinomas (Bys = 0.83%3:3¢, Boe = 0.43%3:33) and was at the

12
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lower bound for the adenoma (Bcrs = 0.4613-31). The 3 independently whole
genome sequenced colon cancers?” show similar per-cell survival rates
(Berey, = 0471803, Berey, = 0451303, Bere,s = 0-550:03)- The lung squamous cell
carcinoma had a very low per-cell survival rate (Byscic,, = 0.3620:01

Interestingly, the lung squamous cell carcinoma and the two MSI+ colorectal
cancers have amongst the highest mutation rates but the lowest per-cell survival

probabilities (Figure 4a). In comparison, the lung adenocarcinoma had a higher

per-cell survival rate (Byscic,, = 0.5970.02). All but one clear cell renal cell

carcinoma had high per-cell survival rates (Bccrrc,, = 0-66¥008, Bcecrrey, =

+0 +0.04 _ +0.10 +0.05
0.86Z 005':8CCRRC03 0.47Z503, Beerrey, = 0-820:06) Becrreys = 0-7210.08)-

Figure 4a shows each tumour’s per-cell survival rate 8 plotted against its per-cell
mutation rate . Healthy homeostasis implies an overall constant cell population,
corresponding to f =1/3, and an approximate somatic mutation rate of
u = 1x107° (bp/division) (Figure 4a). Tumours distribute widely across these
evolutionary measures, emphasizing the uniqueness of each individual tumour.
The adenoma is overall most similar to healthy somatic tissue. Interestingly,
there seem to be 3 distinct scenarios. In some tumours, per-cell survival and
mutation rate are positively correlated (SpearmanRho =0.85, p=0.002, excluding
6 samples with near normal mutation or near normal survival rate). However,
there is a subset (3 out of 16) of tumours with accelerated growth and near
normal somatic mutation rates and another group (3 out of 16) with high

somatic mutation rates but near normal per-cell survival rates (Figure 4a).

13
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Figure 4: Map of per-cell mutation and per-cell survival rates across cancer types. a) The
intersection of the dashed lines correspond to values of healthy tissue during homeostasis
(up, = 1x107°, 8, = 1/3). White background corresponds to values of § that allow for growing
cell populations, shaded area describes values of § that would lead to population extinction (see
Methods). Error bars show 95% credibility intervals. There are three different patterns, a subset
where lineage expansion and mutation rates correlate positively (SpearmanRho =0.85, p=0.002,
excluding 6 samples with near normal mutation or near normal survival rate), a subset of cases
with near normal mutation and another group with near normal per-cell survival rates. b) The
per-cell survival rate f can be translated into tumour age at diagnosis (duration from tumour
initiating cell to diagnosis). We find that most tumours are 1 to 5 years old (Median: MSS
Colorectal Carcinomas: 2.6 +1.5 years, Renal cancers: 1.34 + 0.9 years, Colorectal Adenoma: 3.5
years, MSI+ Carcinoma: 18.8 and 3.8 years, Lung adenocarcinoma: 1.9 years, Lung squamous cell
carcinoma: 11.3 years). Error bars show 95% credibility intervals, the grey line assumes a
lineage division rate once every 2 weeks, the grey area corresponds to division rates of once

every 1 to 3 weeks respectively.

Estimating tumour age at diagnosis

The per-cell survival rate inferences allow approximations for the duration of
tumour expansions across patients and cancer types. Assuming 10! tumour
cells at diagnosis, tumour ages are between 30 and 600 generations for the
fastest growing chromosomally unstable carcinoma and the slowest growing
MSI+ carcinoma. For lineage division rates of once every two weeks, the duration
of the final expansions are between 1 and 19 years (Median: MSS Carcinoma:

2.6 £1.5 years, Renal cell carcinoma: 1.34 + 0.9 years, Adenoma: 3.5 years, MSI+
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Carcinoma: 18.8 and 3.8 years, Lung adenocarcinoma: 1.9 years, Lung squamous
cell carcinoma: 11.3 years), see Figure 4b. These estimates correspond to the
duration of the final phase of cancer cell expansion and remain within a 10%
error bound for a one order of magnitude deviation of the tumour size at
diagnosis (SI Figure 23). Ranges for different lineage division rates are shown in

Figure 4b.

Discussion

Here we have shown how the mutational burden, now routinely measurable in
healthy and cancerous tissues, emerges from intertwined microscopic
evolutionary forces, the per-cell mutation and per-cell survival rate. More
importantly, multi-region tumour sequencing allows a joint inference of these
forces and reveals major differences between individual patients. Furthermore,
evolutionary forces may intertwine with other cell intrinsic and extrinsic
processes and may or may not change in time. Unravelling these interactions will
require further more fine-grained sampling of tumours, ideally both in time and
space. Sequencing of potentially thousands of single cells promises a significant
information gain that will allow for much higher resolved mutational distance
distributions in the near future. Nevertheless, it seems that inferences of tumour
evolution and subsequent treatment strategies solely based on population
averages risk error prone conclusions for any individual patient. A personalised

unravelling of the microscopic evolutionary forces appears essential.
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Methods

The distribution of mutational distances

Multi-region bulk sequencing of tumours allows us to reconstruct the
evolutionary history of single cell lineages, see also Figure 1 in the main text.
Each tumour bulk sequence contains information about clonal and sub-clonal
mutations. Clonal mutations of a bulk sample are present in all cells of the
sample and therefore must have been originated from a single joined most
recent common ancestor cell that gave rise to all sampled cells in the tumour
bulk. In contrast, sub-clonal mutations are present in a subset of cells in the
tumour bulk and arose later during tumour growth. Consequently, multiple bulk
sequences allow reconstructing the genomic composition of multiple single cells
that existed at different times during the life history of the growing tumour
population. This principle allows us to apply phylogenetic methods to cancer
genomic data. Mutations that distinguish most recent common ancestor cells
were accumulated during a finite number of cell divisions (cell divisions are
necessarily quantised). During each cell division, daughter cells might acquire
additional novel mutations. The number of novel mutations X after a single cell
division depends on the mutation rate u and the length of the genome L. The

number of novel mutations per cell division X follows a Poisson distribution

X
P(x) = &l emnt (2)
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with mean and variance uL. Usually, the length of the sequenced genome L is
known (for example the exome or whole genome of a cancer cell) and the
mutation rate per cell division u is the only unknown parameter. Thus sampling
sufficiently many mutational distances of single cell divisions allows us (in
principal) to reconstruct the underlying Poisson distribution and therefore the
inference of the mean mutation rate per cell division u. However, distances
between cells of a lineage might be larger than a single cell division and double,
triple and higher modes of cell division contribute to the distribution of
mutational distances of multi-region samples. For example, if a cell divides twice,
it will acquire novel mutations twice and the total number of mutations X; + X,
is the sum of two independently Poisson distributed events X; and X,. The
number of novel mutations X; + X, is again Poisson distributed, but now with
mean 2uL. In general, a cell accumulates X; + X, + --- + X,, Poisson distributed

number of novel mutations

X
P(X1 +X2 + .- +Xn) = %e_nﬂl‘, (3)

after n cell divisions. However, we must also account for cell death or
differentiation, leading to lineage extinction. Indeed, branching in the
evolutionary history of the tumour only occurs if both daughter cells survive. We
therefore introduce a probability S of having two surviving lineages after a cell
division and a probability 1 — 8 of a single surviving lineage respectively. Thus, r
cell divisions with two surviving lineages (successful divisions) are accompanied

by m cell divisions with only a single surviving lineage (unsuccessful divisions).
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The number of unsuccessful divisions m can be understood as a random variable

again. More specifically, they follow a Negative Binomial distribution
_(Mm— 1 r _ n-r
pem)= (") pra-p )

Thus the number of mutations acquired between two successful divisions
depends on the Poisson distributed mutation rate u and the Negative binomial
distributed number of unsuccessful divisions m. Intuitively, a certain measured
mutational burden in a single cell lineage or bulk sample of a tumour can result
either from many unsuccessful divisions with a low mutation rate or,
alternatively a few unsuccessful divisions with high mutation rate. Formally, we

can write for the total number of mutations between two successful divisions
Y =YX, (5)

where X; are independently distributed Poisson random variables and mis a

Negative binomial distributed random variable.

Now we can seek the probability of the number of acquired mutations Y, after r
successful divisions. We first note that the probability generating functions for
both Poisson and Negative Binomial distributed random variables are known and

given by

Gx(2) = E(z¥) = et*™V (6)

18


https://doi.org/10.1101/560243
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/560243; this version posted February 25, 2019. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

Gn(2) = EE™) = (57" (7)

1- (1 ,B)Z

Using these expressions and the law of total probability, this implies for the

probability density function of the joint distribution Y,

eﬂ(

Gy, (z) = (W)r (8)

Finally, we are interested in the probability P(Y, = y), for example the
probability to observe a certain mutational load y given a mutation rate y, a
number of successful divisions r and a survival rate f. We can expand the

probability generating function into a power series and write
Gy, (2) = Gu(er#0) = 52, (L7 1) B0 = pyiTetneD, (©)
Expanding the exponential function, we can write
Gy, (2) = (V) = 35,32, (LT ) B —pyiren 2, (10)

and thus, we find for the probability of having y mutations after r successful

divisions

P, =) =32, (L7 1) 71— e, (11)

r
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A complete description of the distribution of mutational distances requires an
expression for the expected distribution of successful divisions r (the number of

branching events between two cell lineages). Remaining general, we can write

P(Y =y) =22, P(Y = yIr)P(r) = X2, PP (Y, = y). (12)

Substituting equation (11) the probability density for the mutational distances

becomes
P(Y =y) =32, 32, P@) (L D) pra-piren @ 13)
r=14i=r r—1 y!

Note, the expected distribution of successful divisions P(r) is independent of the
underlying mutation rate y, it only depends on the per-cell survival probability
pB. It therefore does not impede our ability to disentangle y and . In the
following we derive an explicit expression for P(r) for an exponentially growing

population.

The distribution of successful divisions r for an exponentially expanding

population
Expanding on classical results of coalescence theory33 we can derive an

analytical expression for the distribution of successful divisions r in the case of

an exponentially growing cancer cell population. Assume a population of cancer
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cells grows exponentially in time with N(t) = Nye?Pt. Here 8 corresponds to the
survival probability of two lineages that was introduced above and time ¢ is
measured in generations. We are interested in events backward in time t —» —t
and thus our population effectively shrinks exponentially N(—t) = NyeP¢. The

probability of coalescence of two cells at time t given no coalescence before t is

—L_and the probability to coalesce at time t is —_ Thus the

approximately 1 — NGO NO

probability that the first coalescence occurs at exactly time t is approximately

given by

= Lt — =)~ e (2
P®) = 5 TS — ) = S ep (). (14)

In our case, we are concerned with mutational distances and thus we ask for the
distribution of times between coalescence events At rather than the distribution
of coalescence time t. However, we can directly infer this distribution from
equation (14), by rewriting At =t, —t as the time of the initiating cell

population at some point in the past. By substituting

to = log(N,) /(B) we have At = % —tand we find for the distribution of

times between coalescence events

(15)

P(At) =P (% — t) = e Plexp (—1_N06_Bt)

BNo

This is for sufficiently large N, well approximated by
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P(At) = e Pltexp (— e;ft). (16)

Examples of Equation (15) and (16) are shown in SI Figure 20. We can discretise
this probability density function to derive at the probability for the number of

successful divisions r via

r+1 r+1 —Bt
P(r) = f dt P(At) = f dt e Ptexp (_eﬁ )
_ e~ B(r+1) e~ Br
= exp (— 3 ) — exp (— 2 ) (17)

As we are interested in positive branch length only, we need to normalise the

-B
distribution for non-negative integers. The normalising factor is 1 — exp (— e?),

and the distribution of successful divisions r in an exponentially expanding cell

population becomes

P(r) = exp< 5 H))_e_xp( e_’fr>. (18)

ool

In combination with equation (13) this allows a complete description of the
distribution of mutational distances in exponentially growing cell populations, SI
Figure 21. Interestingly, equation (18) predicts that on average most successful

divisions are only a few cell divisions a part (SI Figure 19).
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This probability density fits the distribution of mutational distances from
simulated tumour growth exactly (Figure 1e). Furthermore, utilising MCMC
methods, this distribution allows solving the inverse problem. We can infer the
single cell parameters (mutation rate y and cell survival rate ) from one time
measures of the distribution of distances of multiple samples from a single

tumour.

Properties of the mutational distance distribution

We introduced the distribution of mutational distances as a measure to
disentangle per-cell mutation and per-cell survival rates. This distribution has 2
free parameters that determine its shape (u: the number of mutations per cell
division and f: the per-cell survival probability). The combination of these 2
parameters allows for different shapes of the distribution and predicts 4 possible
distinct scenarios given by the combination of small and large p and 8. Examples
for the theoretically expected shape of the mutational distance distribution are
shown in SI Figure 21. A multi-modal distribution is expected for sufficiently
large mutation rates per cell division u (SI Figure 21a & b). In contrast, uni-
modal distributions become evident for smaller mutation rates u (SI Figure 21c
& d). The per-cell survival probability f determines the height of the modes as
well as the length of the tail (emphasized by at least one order of magnitude
differences in the y- and x-axes of the panels in SI Figure 21). In SI Figure 34 we
show that these scenarios are reproduced in stochastic spatial simulations of

tumour growth. Also note, in SI Figure 34 we plot examples of the mutational
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distance distribution (with fixed u and different ) at scale to emphasize some of

the significant differences.

Spatial intermixing, sequencing noise and the number of mutational

distances

Our method of mutational distances does not require the construction of
phylogenetic trees. Instead, it is based on pairwise mutational distances (the
number of mutations that separate ancestral cells) and thus we construct

pairwise differences of mutational counts.

The mutational load of ancestral cells is constructed from intersections of the
complete lists of mutations of all combinations of bulk samples. The mutational
distances correspond to the number of unique mutations between any two such

intersections.

If we were sampling on a tree of perfectly defined species, the number of
inferable intermitted branches would be in the order 2n — 2, given n species.
However, our situation is slightly different. A spatial bulk cancer sample contains
multiple lineages of cells that are sequenced. Due to cell intermixing and
subclonal mutations, groups of cells in the same sample may have distinct
common ancestors. In SI Figure 22a we show that, if we were able to sequence at
perfect clonal single cell resolution, we would indeed infer 2n — 2 uniquely
different intermittent mutational distances. However, allowing realistic spatially

sampled bulk populations with lineage intermixing results in more identifiable
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ancestral populations and thus more mutational distances (SI Figure 22). Given n
independent bulk samples, we can split the data into smaller sets containing i

samples. For each such set we have (’l‘) possible intersections and the possible
number of intersections between i —1 and i subsets becomes (,")(7).

Consequently, the maximal combinatorial number of mutational distances given

n bulk samples is

4" nFn+ n
S () = et ~ == 2m (19)

and scales faster (leading term ~4™) compared to the number of intermittent
branches of a binary time ordered tree (~2n) (SI Figure 23). This is also
exemplified in SI Figure 22, which compares the mutational distance distribution
given a perfectly inferable clonal structure (species tree) to the case of spatial
tumour bulk sampling with lineage intermixing and noise from sequencing
depth. It has to be said that not each of these distances is unique and we will
sample some of the same distances repeatedly. However, the extractable
information is sufficient to recover the theoretically predicted distribution of

mutational distances (Figure 1e and SI Figures 22, 27, 28 & 34).

Connection of the effective survival rate and a microscopic death rate

Throughout our derivation of the mutational distance distribution we use an

effective survival rate § to model cell death. We defined £ as the probability that
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both cell lineages survive after cell division, while 1 — f8 is the probability of only
a single surviving cell lineage. This concept is closely related to cell fitness, as
cells with higher f have on average more successful cell divisons and thus
produce (given the same number of cell divisions per unit time) more surviving
offspring compared to cells with lower . On could also formulate cell death with
a microscopic perspective that would suggest a certain probability of cell death a
for each daughter cell after division. Such a probability would allow three
outcomes after a cell division: with probability (1 — a)? both daughter cells
survive, with probability 2a(1 — @) one daughter cell survives and with
probability @? both daughter cells die. However, as we are bound to find
surviving cell lineages in every possible measure of tumours, none of the
observed cell lineages can have gone extinct. Thus an event where both daughter
cells died (cell lineage extinction) did not occur within the observable data.
Mathematically, this implies that every measurement conditions cell division on

non-extinction of both daughter cells and we can write

B = P(successful division| non extinction)

P(successful division & non extinction)

)

P(non extinction)

and with the corresponding probabilities a we get

B _ (1-a)? _ 1-a (20)

1-a2  1+a’
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In our scenario 8 and « are interchangeable. We also can rearrange equation

(20) to solve for «,

_ 1=k
a=p (21)

If we interpret a as the probability of random cell death after a division, @ must
be smaller than 1/2. If @ were larger than 1/2, tumour populations extinct
almost surely after sufficiently many cell divisions. This implies § > 1/3 for
growing populations, if @ was interpreted as random cell death. Computer
simulations confirmed that for our purpose indeed a and f are interchangeable.
Interestingly, this also suggests that in real cancer genomics data we should
always find f > 1/3. Interestingly in 16 cancers analysed, in all cases we have
B > 1/3, but we find two examples that are close to the predicted minimal

possible value for growing populations (0.34 & 0.36).

Non-constant cell death and tumour age inferences

Cell death is cell intrinsic in our model. This cell intrinsic death may have
different underlying causes and the combined effect of these causes corresponds
to the inferred f parameter. However, it is also possible that death varies with
time, e.g. positive selection could select for lineages that avoid programmed cell
death or escape the immune system more efficiently. To show the effects of such
a change on the errors of our estimates one can for example think of the

following time dependence of the cell-survival rate:
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B=BIN®) = —=5 (22)

This Fermi-function is a particular but common choice to model such time
dependences. Here, N(t) corresponds to the number of tumour cells at time ¢t
and 7 is a free parameter that can be chosen to adjust the precise shape of the
Fermi function. In this example, the function is such that at time ¢t = 0 tumour
cells start with a survival probability § = 1/2. Cell survival rates increase with
time (positive selection) and will reach the maximum survival rate § = 1 at a
certain tumour size N (SI Figure 24 a). The parallel change of S for all cells
simultaneously is unrealistic, but represents a worst-case scenario for our

inference scheme.

The most critical implication of the parameter f is the estimation of tumour age.
What error would we do, if such a process occurs undetected by our method? In

this scenario average tumour growth is given by the differential equation:

v __ N
dt ~ 1+e~N®/T

(23)

Assuming that a tumour is diagnosed at a certain size Nj, then tumour age T is

given (rearranging and integrating the above differential equation) by:

e—N/‘L’

T=[¢=—dN (24)
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This integral cannot be expressed in simple analytical functions, but we can solve
it numerically for any combination of t and Njp. Furthermore it is easy to see that
the dominating term of the integral is of the order ~Log[N,;]. To calculate the
relative error, we would need to compare this time to the situation of unchanged

p. This time is given by undisturbed exponential growth and is

T, = ~E%0l (25)

The relative error in the tumour age estimation then is 1 — T /T,. We can choose
the scale parameter t such that all tumour cells will have acquired the maximum
possible per-cell survival rate § = 1 at a certain tumour size, e.g. fort = 10°
cancer cells (at least 2 orders of magnitude below the current detection
threshold). SI Figure 24b shows the relative errors of age inferences for tumours
diagnosed at different sizes Np. The error increases for larger tumour size at
diagnosis, as fitter cells have more time to cause deviations from the original
prediction. However, even in the worst case scenario, the error remains < 20%
and in more realistic situations is < 5%. Therefore, even in the worst-case
scenario and a hypothetical tumour age of e.g. 5 years, an error of 20% adds an

uncertainty of +1 year. In most situations the deviation would be much smaller.

Dependence of tumour age estimation on tumour size at diagnosis

Given a per-cell survival rate f we can estimate the number of generations
necessary to generate a tumour of certain size. The time to diagnosis Tp only

depends logarithmically on the number of tumour cells N, at diagnosis
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TD — LOg[ND] (26)

given some arbitrary proliferation rate 4. Again we can ask, what is the relative
error if a tumour is diagnosed at a different size N,. As before, the relative error

7 is given by

Ta _ 4 _ Log[Na]
=1 Log[Np] (27)

SI Figure 24 shows that even if the number of tumour cells differs by orders of
magnitude, the relative error in tumour age estimations remains small. One
order of magnitude discrepancy in the tumour size estimation corresponds to

approx. 10% error of tumour age estimates.

Individual based stochastic simulations of tumour growth

Individual based stochastic simulations of mutation accumulation in spatially
growing tumours confirmed our premise in silico. We simulated tumours of ~1
million cells on a 2 dimensional grid with varying birth death and mutation rates
using an implementation of the Gillespie algorithm (SI Figure 26). A cell division
produces two surviving cells with probability f or one surviving cell with
probability 1 — . We also implemented an alternative version, where each

daughter cell survives with a probability a after cell division. These simulations
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confirmed the equivalence of @ and . During each cell division, each daughter
cell inherits the mutations of its parent and in addition accumulates novel
mutations. The number of novel mutations is drawn from a Poisson distribution
with mean p. During simulations, the mutations for each cell as well as the

division history of each cell are recorded.

We took bulk samples (between 100 and 10k cells per bulk) from each simulated
tumour. These samples were either distributed at maximal distance (SI Figure
26a) or randomly distributed (SI Figure 26b). For most inferences, we used
maximal distance sampling. Sequencing errors were simulated for each bulk by
binomial sampling assuming sequencing depths of 100x or 200x, generating
realistic mutation distributions comparable to available cancer genomic
sequencing data. We then constructed all pairwise mutational distances of all
ancestral cell lineages for each simulation separately. Figure 1 shows an example
of the mutational distance distribution from 200 simulated tumour samples. It
resembles the theoretically predicted mutational distance distribution almost

perfectly.

To infer the mutation rate u and the per-cell survival rate 8 solely from the
distribution of mutational distances without any prior knowledge on the
simulation, we adopted a probabilistic Bayesian Metropolis-Hastings (MCMC)
algorithm (see also below for details). 9 bulk samples allow to infer the true per-
cell mutation rate p and per-cell survival rate § with high precision (u: Spearman
Rho = 0.98,p = 4x10723 ; B: Spearman Rho = 0.93,p = 8x10716 , Relative

error: 1, = 0.056, ng = 0.045), Figure le. The robustness of the inference
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scheme to more relaxed model assumptions and data quality and quantity are

discussed below in more detail.

Bayesian parameter inference

We now discuss the inverse problem, that is, can we reliably identify the single
cell parameters (per-cell mutation rate, per-cell survival probability) given
measured distances of multi-region sequenced cancer samples. These distances
might be inferred from either forward in time simulated tumour growth, or data

from multi-region sequenced cancer samples.

We use a Markov chain Monte Carlo method (MCMC), more precisely we
implemented a standard Metropolis-Hastings-algorithm. The algorithm works as
follows:

(i) Create a new random set of model parameters w given the current set
of parameters v from a defined probability density Q, such that
Qxly) = Qv x).

(i)  Calculate the likelihood L(P(w)) of the model distribution P(w) given
the data.

(iii)  Calculate the ratio of the new and old likelihood p = L(P(w))/
L(P(v)). Accept the new parameter set with probability p otherwise
reject.

(iv) Repeat

In our case the model distribution is given by equation (13). To calculate the

likelihood of equation (13) given the data, we have to choose a cut off for the two
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infinite sums. However, real data always has a maximum mutational distance.
Higher terms of the infinite sums contribute to higher mutational distances. The
distribution of interest does not change for a sufficiently high cut off and each
observed data set only requires finite many terms. We used uninformed uniform
prior distributions for the per-cell mutation rate u and the per-cell survival rate
p in all cases. Point estimates were extracted as sample medians from the MCMC
inferences for the mutation rate and cell survival rate separately. The ranges of
the uniform priors can be adjusted to optimise acceptance rates and
computational time. In our implementation, a new set of parameters is always
relative to the previously accepted parameter set Wyeyw = Woig + ®(w), where @
is the prior parameter distribution. A typical range used in our inference scheme
is @ yniform (B) = [—0.06,+0.06] and P irorm (1) = [—5,+5] for whole genome
sequencing, but could also vary for data sets with higher or lower mutational
burden. We tested the robustness of the MCMC framework and in addition used
Gamma distributions as prior (SI Figure 27). The MCMC inference converges to
the same parameter sets, independent of the prior distribution of choice, or the
initial starting condition of the Markov Chain. If both parameters are inferred
simultaneously, they converge to the correct initially set of parameter values. If
one of the parameters is fixed to the correct value, the second parameter does

converge to the correct value (SI Figure 27).

Examples of MCMC chains and resulting parameter distributions are shown in SI
Figures 1-3, SI Figures 10-18 & Si Figures 27,28. Our method is able to recover
the parameter sets of simulated tumour growth reliably with high precision, see

Figure 1 in the main text, e. g, 9 bulk samples allow to infer the true mutation
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rate u and per-cell survival rate f with high precision (u: Spearman Rho
=0.98,p = 4x10723 ; B: Spearman Rho = 0.93,p = 8x1071%, Relative error:

Ny = 0.056,ng = 0.045). Inferences remain possible for up to 6 independent

bulk samples (SI Figure 33) and reduced sequencing depth of 25x (SI Figure 32).

Robustness of evolutionary parameter inferences on model assumptions

and data quality and quantity

Our theoretical derivation of the mutational distance distribution and our
computational framework of per-cell mutation and per-cell survival inference
are based on a set of assumptions. In the following we discuss these assumptions
in more detail and quantify the robustness of our parameter inferences to

violations of these assumptions.

Non-constant per-cell mutation rate

We assume that with each cell division cancer cells acquire X novel mutations,
where X is a Poisson distributed random variable with a constant mean mutation
rate 4. However, in principal, the mean mutation rate u could itself vary. These
changes might occur in bursts (e.g. sudden APOBEC activity) or change more
steadily over time. We discuss two additional scenarios. The first scenario allows
the rate u to be a random variable. We choose an exponential distribution
P(Upyp) = (1/A2)e %, In this scenario one allows for considerable noise in
single cell divisions, for example cell divisions with lower mutation rates and a

few cell divisions with much higher mutation rates (modelling e.g. random

34


https://doi.org/10.1101/560243
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/560243; this version posted February 25, 2019. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

bursts due to APOBEC activity or other events). In the second scenario we can
consider a situation where the mutation rate grows with time. e.g.: u(t) = yo +
0.5Log[2]xt. For our simulations, this implies an approximately 10-20 times

increased mutation rate at the time of sampling compared to the beginning.

Parameter inferences for these scenarios are shown in SI Figure 28. An
exponentially distributed rate parameter u (the number of mutations remains
Poisson but with the non-constant rate parameter ¢) adds noise to the
distribution of the mutational distances compared to the constant rate scenario
(e.g. SI Figure 28a-f), but the parameter inference remains robust (e.g. SI Figure
28g-1), although leading to slightly lower estimates of survival rates. The second
scenario of a linear increasing mutation rate causes significant error in the
estimation of the mutation rate parameters (SI Figure 28m-r), mostly because of
the distortion of the mutational distance distribution, against which the
theoretical model does not fit (SI Figure 28s). However, the inferred effective
mutation rate corresponds to the time averaged mean mutation rate on the
course of the stochastic simulation. In SI Figure 28t,u we show the relative error
in the estimation of the parameters under the different mutation rate models (20

instances of simulated tumours per scenario).

Non-exponential tumour growth

The analytical derivation of the mutational distance distribution is based on
exponentially growing tumour. Although space is not modelled explicitly in our

theoretical derivation, it is an essential ingredient as only spatial sampling allows
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constructing sufficiently many different cell lineages within single tumours. The
mode of growth, e.g. exponential vs. peripheral could alter the properties of
which and how many different lineages are sampled in space. We therefore
introduced an additional parameter a into our computational stochastic tumour
simulations that models the ability of a cell to proliferate in the
presence/absence of empty space in its direct neighbourhood. If a = 1, a cell can
always proliferate regardless of empty space in its direct neighbourhood by
pushing cells and creating an empty spot. This results in exponential growth (SI
Figure 29a & d), however the spatial proximity of more recent offspring is
maintained. If 0 < a < 1 cells only proliferate with a probability according to the
value a in the absence of empty space, thus favouring cells at the less dense
peripheral boundary of the tumour. This leads to polynomial growth (SI
Figure29c & f). We tested the ability of our method to robustly recover the
mutation rate for different values of a, such as a = 1 (SI Figure 29a), a = 0.5 (SI
Figure 27b) and a = 0.25 (SI Figure 29c). Although the variance of the parameter
inference slightly increases, the relative error 7 remained below 10% in the vast
majority of cases (SI Figure 29). Hence, deviations from exponential growth

increase uncertainties, but the inference remains robust.

Partial selective sweeps

Positive selection and partial selective sweeps could impact our inference of
evolutionary parameters. In order to test the robustness of our method to the
effects of selection, we ran simulations with varying strength of positively

selected clones. Here positive selection confers a proliferation advantage to cells.
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SI Figure 26 shows examples of 10 simulated tumours as well as the spatial
sampling schemes, such as maximum distance spatial sampling (SI Figure 26a)
vs. random spatial sampling (SI Figure 26b). We selected simulations with a
partial selective sweep and excluded scenarios where the selected subclone
reached fixation before sampling (in this scenario the tumour goes back to be
uni-clonal and thus within-clone neutral again). SI Figure 30 provides a summary
of the inferences for neutral tumours (selection coefficient s=0; SI Figure 30a),
compared to tumours with varying selection strength (s=0.1, s=0.25 and s=0.5; SI
Figure 30a & b). Note the high coefficients of selection that infer fitness
advantages of up to 50% (s=0.5) to a selected sub-clone in our simulations. The
presence of positively selected sub-clones adds uncertainty to the mutational
distance distributions. However, even for very strong positive selection of
s = 0.5 (corresponding to a 50% fitness advantage) mutation rate inferences
remain robust (relative error: n, = 0.1) and also per-cell survival rate estimates

remain stable (relative error: ng = 0.1 for s = 0.5, SI Figure 30).

Spatial sampling strategies and sampling biases

The construction of mutational distances relies on detecting differences between
ancestral cells that are inferred from mutations of bulk or single cell samples.
One would expect that genetic and spatial distance of samples is on average
positively correlated (although the relation is non-linear and probably more
involved)34. Thus the relative location of samples potentially influences
inferences. We compared parameter inferences from tumours with a maximal

distance sampling strategy (which is the most common current sampling
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strategy in clinical practice) and a random sampling strategy, where positions of
sampled bulks are assigned randomly (SI Figure 26). In both cases, inferences
are robust against different spatial sampling schemes for both the mutation rate
(SI Figure 31a) and the survival rate (SI Figure 31b). Maximal distance sampling
appears to perform slightly better compared to random sampling strategies.
Inferences throughout this manuscript relied on a maximal distance sampling

strategy, if not stated otherwise.

Sequencing depth

Our stochastic simulations allow us to reproduce the effects of sequencing
coverage on the final data and consequently our evolutionary parameter
inferences. Briefly, we generate dispersed coverage values for input mutations.
We do that by sampling a coverage from a Poisson distribution: Poisson(A = Z)
with mean A equal to a desired sequencing depth Z. Once we have sampled a
depth value k for a mutation, we sample its frequency (number of reads with the
variant allele frequency) with a Binomial trail. We use f ~ Binomial(n, k), where
n is the proportion of cells carrying this mutation given all cells sampled in the

simulated biopsy.

In SI Figure 32 we show that parameter inferences based on the mutational
distance distribution remain robust for low sequencing coverage. Sequencing
depth in the available data varied. In general Exome sequencing had very high
coverage: Lung Cancer TracerX median coverage 28: 426x, Renal cancer analysis

coverage 29: >100x. Whole genome sequencing had lower coverage: Median
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coverage of colorectal cancers from Cross et al. 21: 55x. Whole genomes of single
colon stem cells in Roerink et al. 27 were sequenced from single cell derived

Organoids sequenced at 30x coverage.

Number of independent samples per tumour

SI Figure 33 shows parameter inferences for multiple independent spatial
tumour simulations with 6 to 9 bulk samples. Fewer samples, as expected,
increase the noise of the mutational distance distribution. Parameter inferences
from up to 6 samples remain robust. In the analysis of real tumours in this
manuscript, the distribution of independent samples per tumour is (number of
cases X number of independent samples): 2X6;4X7; 5xX8;4%x9;1x13 . This
corresponds to 129 tumour samples in total with a median of 8 samples per
tumour. In addition, we also include the analysis of 89 whole genome sequenced
healthy haematopoietic stem cells from a single healthy donor (Figure 2 in the

main text).

Genomic analysis of cancer samples

Details of the bioinformatics-analysis of the multi-region sequenced tumour
samples can be found for the colon carcinomas and the adenoma in?1, the
additional three single cell whole genome sequenced colon cancers?? the renal
cell carcinomas in?? and the lung squamous and adenocarcinoma in?8. Details on
the methodology and sequencing of single stem cells in healthy haematopoiesis

can be found in20.
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Mutational signature inference

For each sample we found the set of signatures (among those signatures
reported in CRC) that best explained the totality of mutations in the sample.
Specifically we did a non-negative regression of the sample’s mutations against
all the CRC signatures?4 and found those signatures with non-zero coefficients.

We took these as the candidate signatures for each sample.

For each mutation in each sample, we determined the likelihood of the mutation
under each of the candidate signatures. We assigned a mutation to a candidate
signature where the likelihood under that signature was at least twice that under
any other. If there was no such signature, we assigned the mutation to
‘Signature.Other’. The method was originally developed in3> and is based on the
R-package “SomaticSignatures” 36. We did not adjust for differences in nucleotide
composition when calculating differences between coding and non-coding
regions as we wanted to infer the overall point mutation rate in these regions,
see for example SI Figure 5. Nucleotide dependent mutation rate estimates are
shown in SI Figure 6. Nucleotide composition was adjusted for to calculate the

mutation rates of mutational signatures using standard tools3®.

Per-cell survival rate and stem cell properties

The data from Hans Clevers and colleagues?’ measures mutational burden in

single colon stem cells by expanding isolated donor derived single cells into
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organoids. Thus in this case the inferences most certainly correspond to stem
cell population dynamics. Furthermore, our analysis relies on mutational
distances between ancestral cells and thus surviving lineages within the tumour
population throughout its evolutionary history. These lineages of ancestral cells
probably also represent stem cell lineages. If there is a dichotomy of stem and
non-stem cells in these tumours, our method corresponds to the survival rate of
stem cell lineages. This is further supported by the fact that our model describes
the mutation accumulation in healthy haematopoietic stem cell lineages well
(Figure 2 in the main text). Ultimately, it is the expansion of the stem cell
population that determines tumour growth. In particular for solid tumours there
is accumulating evidence that the fraction of stem cells is high compared to most

blood cancers, explaining the common failure of targeted therapy in solid

tumours37:38,
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SI Figure 1: Patient 02 mutational distance distribution and MCMC parameter inference
per chromosome. Chromosomes with sub-clonal copy number alterations were discarded from
the analysis. Original data taken from?1.
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SI Figure 3: Patient 04 mutational distance distribution and MCMC parameter inference
per chromosome. Chromosomes with sub-clonal copy number alterations were discarded from
the analysis. Original data taken from?1.
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SI Figure 4: Mutational load of sub-clonal and clonal mutations of Patients 02-04.
Mutations were classified as clonal if they were present in all bulk samples of the tumour3®.
Mutations present within a subset of samples of a tumour were classified as sub-clonal. MSI
tumour 04 shows both higher clonal and sub-clonal mutational burden compared to MSS
tumours 02 and 03.
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SI Figure 5: Inference of per-cell mutation and per-cell survival rate for whole genome
(per chromosome, open grey circles), non-coding (black squares) and coding mutations
(red circles) in Patients 02-04. The coding mutation rate in patient 02 is slightly increased
compared to whole genome inferences (uhy; = 1x1078, u22 = 2.8x1078), they are slightly lower
in patient 03 (ujs; = 2.4x1078, 423 =2.02x107%) and the same in patient 04 (u); = 3.1x
1078, ud% = 3.08x1078). Non-coding mutation rates agree with median whole genome mutation
rates. Recently it was suggested that mismatch repair efficacy differs in coding and non-coding
regions of the genome?2. Consistent with this hypothesis the MSI+ tumour in Patient 04 shows
the exact same mutation rate per cell division in whole genome, non-coding and coding genome
regions. The per-cell survival rate inferences are across whole genome, non-coding and coding
genome regions.
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SI Figure 6: Mutation rates for mutational subtypes. The mutation rate for each mutational
subtype was inferred based on our MCMC algorithm for individual chromosomes (see Figure 2 in
the main text) for all 3 patients separately and normalised for the C & T content at each
chromosome. In Patient 02 and 04 transitions show higher mutation rates than transversions.
Interestingly, in Patient 02 the mutation rates for the transversions T = Aand T — G are below a
detection threshold, whereas in Patient 04 they are detectable. The overall pattern of somatic
mutation accumulation in theses two patients agrees with patterns of genome divergence
between human and chimpanzees2t. Patient 03 shows a distinct pattern of mutation
accumulation. Here transitions and transversions appear equally likely, with C = X mutations
slightly more likely compared to T — X mutations.
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SI Figure 7: Distribution of mutational signature mutation rate per chromosome for
Patients 02-04. Mutation rates per cell division of mutational signatures differ significantly
between patients. (*: p<0.05, ** :p<0.01, ***: p<0.001, Mann-Whitney-U-test).
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SI Figure 9: Mutational distance distribution and MCMC inference for individual
chromosomes inferred from 7 whole genome sequenced samples of a MSI+ colon cancer
patient. Data was taken from?7
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SI Figure 10: Mutational distance distribution and MCMC inference for individual
chromosomes inferred from 9 whole genome sequenced samples of a MSS colon cancer
patient. Data was taken from?7.
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SI Figure 11: Mutational distance distribution and MCMC inference for individual
chromosomes inferred from 9 whole genome sequenced samples of a MSS colon cancer
patient. Data was taken from?7.
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SI Figure 12: Inference of the mutation rate u per cell division and the per-cell survival
rate f per chromosome for the three patients shown in SI Figures 9-11. Insets show median
mutation and per-cell survival rates. Patient 1 is MSI+ and presents with a higher mutation rate
per cell division compared to patients 2 and 3. Data was taken from?7.
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SI Figure 13: Mutational distance distributions constructed from the whole genome of a)-
c) tumours 02-04 from?! and d)-f) Patients 1-3 from?’. Grey lines show the theoretical
mutational distance distribution based on best inferences and black dots correspond the
mutational distances in the tumours. Note the different scales for the mutational distances and
the order of magnitude difference between overall probabilities of distances across patients.
These mutational distance distributions fall into different classes based on the per-cell mutation
rate and per-cell survival rate as illustrated in SI Figure21.
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SI Figure 14: Coefficient of determination between per-chromosome estimates and the
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9-11.

L ok a) * ok ok 1.2} b) * ok k

>‘<: < 10f

S sf * %% * k% Q@

g ] [ " © * % % %k

A ° ] s 08 [ | N

k4 ° g ; ©

8. 206 8

;: 3 5 )

0] = g Z ] 04 g

82 ] 3 8 g
Q —

§1 8 g o2

E o

20 0.0
02 03 04 02 03 04

Patient ID Patient ID
c) 1.2[ d)

* k% * %

N
=)

% %%

Per-cell survival rate 8
o o o
N o @
o
© OEDOD

*

OgiDo @D
—

N
CED® D

o
[N}

a Q
| j i
P1 P2 P3 P1 P2 P3
Patient ID Patient ID

Mutation rate y (bp/division x 1078)

=)
o
o

SI Figure 15: Between patient differences of evolutionary parameters. Shown are the
inferences of the mutation and per-cell survival rates per chromosome (dots) for 6 whole
genome sequenced colorectal cancers. Panels (a) and (b) show the cohort of Cross et al. 21 and
panels (c) and (d) the original patients by Roerink et al.2? A Mann-Whitney-U-test was used to
test between patient differences, symbols correspond to the short notation: * = p < 0.01,
** =p < 0.001 and *** = p < 0.0001.
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SI Figure 16: Mutational distance distribution and MCMC inference from a single exome
sequenced adenoma (top) and two exome sequenced carcinomas (bottom). Note, the
adenoma shows smaller mutational differences between ancestral cells compared to both
carcinomas and presents with a near normal mutation rate, see main text also. However the per-
cell survival probability is higher compared to normal tissue and the adenoma is expected to

clonally expand.
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SI Figure 17: Mutational distance distribution and MCMC inference from 5 exome
sequenced renal cell carcinomas??. Surprisingly, two renal cell carcinomas appear to have near
normal mutation rates (EV003 and EV005), similar to the colon adenoma. However, all 5 cases
present with high per cell survival probabilities.
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SI Figure 18: Mutational distance distribution and MCMC inference from 2 TracerX
patients28, Note, the first case has an approximately 5 times increased distance of mutational
distances compared to most colon, renal and lung cases analysed here. Together with the MSI
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colorectal cancer this patient has the highest mutation rate per cell division. Similar to the MSI
colorectal cancer, this patient also presents with low per-cell survival probability, suggesting
more cell death and cell turn over compared to other cases.
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SI Figure 19: Distribution of cell divisions r in an exponentially growing population according to
equation (18).
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SI Figure 20: Approximation of the probability of coalescence time differences. Shown is
1—Noe_t _

the approximatione Mo =e™° " for different values of Ny. The approximation works well

even for small N,,.
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SI Figure 21: Predicted shapes of the mutational distance distribution for different
combinations of small and large u and . The expected shape of the distribution differs greatly
between different combinations of parameters. (a,b) Multi-modality is evident for sufficiently
large mutation rates per cell division. (c¢,d) Uni-modality becomes dominant for small mutation
rates per cell division. Furthermore, the length of the tail as well as the height of the distribution
is largely determined by the per-cell survival rate.
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SI Figure 22: Mutational distance distribution in idealised and realistic data. (a) We show
the mutational distance distribution inferred from a single stochastic simulation with 4 = 15 and
B = 0.8 for a situation with perfect clonal information, no lineage intermixing and no sequencing
noise. In this situation repeated sampling of pairwise mutational distances only finds a limited
number of discrete distributed peaks. Discrete peaks and a declining tail are hinted, but the
expect theoretical distribution is not obvious. (b) Mutational distance distribution reconstructed
from a simulation with same parameters, but realistic spatial sampling of intermixed lineages
and sequencing depth noise. Many more unique mutational distances are evident. The
distribution remains noisy (it is derived from 9 bulk samples). (c) The same distribution as in (b)
(black dots), also noisy allows reconstructing the theoretically expected mutational distance
distribution and to infer the underlying evolutionary parameters y and £.
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SI Figure 23: Number of sampled distances. The number of intermittent branches of a time
ordered binary tree is 2n — 2 and scales linearly in the number of available tumour samples n
(grey line). In contrast, the number of pairwise distances scales ~4™ and thus exponential in the
number of tumour samples n. The exact expression is given by black dash-dotted line, whereas
the light grey line shows an approximation for sufficiently large n. The number of pairwise
differences scales very fast with the number of samples n. This is not a problem for current bulk
tumour samples where n = 7 to 13. However, in the case of healthy haematopoiesis n = 89 samples
are available and thus calculating all pairwise differences is impossible. However, in that case we are
interested in early branching and thus restricted our analysis to distances between the first 16
identifiable ancestral cells.
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SI Figure 24: Relative error of tumour age estimates for time dependent cell-survival
parameter B. (a) Shape of the Fermi-function to model the time dependence of § for different
scale parameters 7. In our example, cells start with survival probability 1/2 and will acquire the
maximal survival probability of 1 eventually. (b) Relative error of tumour age estimates, given
different T parameters and different times (tumour size) of diagnosis Np. Even if a tumour has
acquired a maximal per-cell survival probability of 1 already when only 1 million tumour cells
are present (the current detection threshold is approx. 100 million cancer cells), the relative
error remains <20%.

59


https://doi.org/10.1101/560243
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/560243; this version posted February 25, 2019. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

25
20
15
10

Relative error of tumour age (%)

108 10° 10' 10'" 10' 10" 10
Number of tumour cells at diagnosis
SI Figure 25: Relative error of tumour age inferences based on the tumour size at

diagnosis. Plotted is |1 — -8l
Log[Np]

calculation of tumour age a size of N, = 10! cells was assumed. Deviations of one order of

magnitude of tumour size at diagnosis correspond to approx. 10% error for the estimation of
tumour ages.

| over N,, the actual tumour age at diagnosis, if for the

Examples of spatial tumour simulations with partial selective sweeps and maximal spatial distance sampling
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The same spatial simulations with random spatial sampling
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SI Flgure 26 Examples of spatlal simulations with partial selectlve sweeps and varying
selection strength (s=0.1 to s=0.5). Positively selected cells are shown in red, background wild
type cells in blue. Each cell carries up to thousands of private mutations accumulated during
stochastic growth that are not indicated by colour here. Small areas and numbers correspond to
the locations of bulk samples. (a) Maximal distance sampling strategy. (b) Randomly placed
sampling strategy. In each case 9 samples were used for the construction of the mutational
distance distribution and the parameter inference.
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SI Figure 27: MCMC parameter inference. (a) Shown is one example of the mutational distance
distribution inferred from 9 bulk samples of one stochastic spatial simulation of tumour growth.
Subsequent panels show different scenarios for the MCMC inference, based on uniform prior
(b,c), Gamma prior (d,e) and different scenarios where one of the parameters is fixed a priori (f-
w).
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Mutational distance distributions from simulations with constant mutation rate
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SI Figure 28: Robustness of the method of mutational distances to changes in mutation
rate over time. Examples of mutational distance distributions and corresponding parameter
inferences reconstructed from 9 bulk samples of stochastic spatial simulations of tumour growth
with different modes of mutation accumulation. (a-f) Mutational distances and parameter
inferences for two representative cases of simulated tumours with standard Poisson mutation
accumulation. (g-1) Mutational distances and parameter inferences for two simulated tumours
where the mutation rate is itself a random variable (here with an exponential distribution). (m-r)
Mutational distances and parameter inferences for simulated tumours where the mutation rate
increases linearly in time. In all these cases the ground truth mutation rate was 15 and survival
rate was 0.8. Goodness of fit measure (s), absolute error in the estimation of the per-cell
mutation rate (t) and the per-cell survival rate (u) for the three different models (20 simulated
tumour instances per scenario).
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SI Figure 29: Robustness to non-exponential tumour growth. (a) If all cells are allowed to
proliferate within a tumour, this gives rise to exponential growth. (b) Peripheral or ‘boundary
driven’ growth leads to polynomial expansion instead. (c-e) Mutational distance inferences for
the aggression coefficienta = 1, a = 0.5 and a = 0.25 (probability to proliferate in the absence
of empty space). (f-h) Per-cell survival rate inferences. Dashed lines show ground truth, dots
represent parameter inference from one stochastic spatial simulation and 9 independent bulk
samples. The relative error 1 is shown in each panel.
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SI Figure 30: Robustness to partial selective sweeps. Parameter estimates of the (a) per-cell
mutation rate and (b) per cell survival rate for a series of stochastic spatial simulations of tumour
growth with partial selective sweeps and varying selection strength s. In our simulations s = 0
corresponds to the absence of positively selected clones. A clone with s = 0.5 proliferates 50% faster
compared to background clones and thus rises in frequency over time. Examples of these simulated
tumours are shown in SI Figure 24. For each parameter estimate 9 bulk samples were used to
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reconstruct the mutational distance distribution. Dashed lines show the exact parameters
imposed on the simulations. The relative error 7 is shown in both panels.
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SI Figure 31: Robustness to different spatial sampling strategies. For parameter inferences 9
bulk samples per tumour were used to construct the mutational distance distribution. Examples
for the different sampling strategies are shown in SI Figure 24. (a) absolute and relative errors in
the estimation of the per-cell mutation rate (a) and per-cell survival rate (b) for random vs
maximal distance sampling strategies.
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SI Figure 32: Parameter inference is robust to sequencing depth. Shown are the parameter
inferences of the mutation rate (a) and the survival rate (b) for 10 spatial tumour simulations
with g = 15 and 8 = 0.8 from the mutational distance distribution derived from 9 bulk samples
with simulated sequencing depth of 200x, 50x and 25x. Shown are also the relative errors n for
each scenario.
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SI Figure 33: Robustness of parameter inference for decreasing number of bulk samples.
Shown are inference results for stochastic spatial tumour simulations and a different number of
bulk samples analysed. Decreasing the number of bulk samples increases parameter
uncertainties, but the inferences remain robust for up to 6 bulk samples.
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SI Figure 34: Spatial stochastic simulations with high mutation rate per cell division and
different per-cell survival rates. Panels (a)-(c) show examples for the mutational distance
distribution reconstructed for cases of high mutation rate and different per-cell survival rates.
The distributions are plotted with same y-axes to show the dramatic differences in the shape of
the distributions (notice the different scales of x-axis thought). The inset of panel (a) shows the
same distribution, just with a differently scaled y-axis. Panels (d) & (e) show the inference of the
evolutionary parameters for independent stochastic runs of spatial tumour simulations (9 bulk
samples per simulation). Inferences are robust for low and high death and high mutation rates as
shown by the small relative errors 7.
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SI Figure 35: Mutational distance distribution and MCMC inference from stochastic
individual based simulated tumours. Dashed lines show true parameter values. Parameter
inference clusters around true values, see also Figure 1 in the main text for a summary of all
inferred parameter values.
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SI Figure 36: Mutational distance distribution and MCMC inference from a second set of
stochastic individual based simulated tumours. Dashed lines show true parameter values.
Parameter inference clusters around true values, see also Figure 1 in the main text for a summary
of all inferred parameter values.
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