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Abstract	
  

Cancer	
   is	
   driven	
   by	
   complex	
   evolutionary	
   dynamics	
   involving	
   billions	
   of	
   cells.	
  

Increasing	
   effort	
   has	
   been	
   dedicated	
   to	
   sequence	
   single	
   tumour	
   cells,	
   but	
  

obtaining	
  robust	
  measurements	
  remains	
  challenging.	
  Here	
  we	
  show	
  that	
  multi-­‐

region	
  sequencing	
  of	
  bulk	
  tumour	
  samples	
  contains	
  quantitative	
  information	
  on	
  

single-­‐cell	
   divisions	
   that	
   is	
   accessible	
   if	
   combined	
   with	
   evolutionary	
   theory.	
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Using	
   high-­‐throughput	
   data	
   from	
   16	
   human	
   cancers,	
   we	
  measured	
   the	
   in	
   vivo	
  

per-­‐cell	
  point	
  mutation	
  rate	
  (mean:	
  1.69×10!!	
  bp	
  per	
  cell	
  division)	
  and	
  per-­‐cell	
  

survival	
   rate	
   (mean:	
   0.57)	
   in	
   individual	
   patient	
   tumours	
   from	
   colon,	
   lung	
   and	
  

renal	
   cancers.	
   Per-­‐cell	
   mutation	
   rates	
   varied	
   50-­‐fold	
   between	
   individuals,	
   and	
  

per-­‐cell	
  survival	
  rates	
  were	
  between	
  nearly-­‐homeostatic	
  and	
  almost	
  perfect	
  cell	
  

doublings,	
   equating	
   to	
   tumour	
   ages	
   between	
   1	
   and	
   19	
   years.	
   Furthermore,	
  

reanalysing	
   a	
   recent	
   dataset	
   of	
   89	
   whole-­‐genome	
   sequenced	
   healthy	
  

haematopoietic	
  stem	
  cells,	
  we	
  find	
  1.14	
  mutations	
  per	
  genome	
  per	
  cell	
  division	
  

and	
   near	
   perfect	
   cell	
   doublings	
   (per-­‐cell	
   survival	
   rate:	
   0.96)	
   during	
   early	
  

haematopoietic	
   development.	
   Our	
   analysis	
   measures	
   in	
   vivo	
   the	
   most	
  

fundamental	
   properties	
   of	
   human	
   cancer	
   and	
   healthy	
   somatic	
   evolution	
   at	
  

single-­‐cell	
  resolution	
  within	
  single	
  individuals.	
  

Introduction	
  

Human	
   cancers	
   display	
   tremendous	
   inter-­‐patient	
   and	
   intra-­‐tumour	
   genetic	
  

heterogeneity1.	
   This	
   heterogeneity	
   is	
   the	
   consequence	
   of	
   a	
   clonal	
   evolutionary	
  

process	
   marked	
   by	
   complex	
   genomic	
   changes2,	
   parallel	
   and	
   convergent	
  

evolution3,	
  non-­‐cell	
  autonomous	
  dynamics4	
  and	
  genomic	
  instability5	
  that	
  leads	
  to	
  

metastatic	
  spread,	
  drug	
  resistance	
  and	
  ultimately	
  death1,6,7.	
  	
  

	
  

However,	
   the	
  microscopic	
   forces	
   underlying	
   cancer	
   evolution	
   at	
   the	
   single	
   cell	
  

level,	
   such	
   as	
   the	
   per-­‐cell	
   mutation	
   rate	
   and	
   the	
   per-­‐cell	
   survival	
   rate	
   remain	
  

immeasurable	
  within	
   individual	
  human	
  tumours2,8.	
  Unlike	
  species	
  evolution	
  for	
  

which	
  a	
   timed	
   fossil	
   record	
  exists9,10,	
   the	
   lack	
  of	
   sequential	
  data	
  due	
   to	
   ethical	
  

and	
   technical	
   limitations	
   is	
   a	
  major	
  obstacle	
   to	
  quantitate	
   somatic	
   evolution	
   in	
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both	
   healthy	
   and	
   cancerous	
   human	
   tissue.	
   Moreover,	
   high	
   intra-­‐tumour	
  

heterogeneity	
   (ITH)	
   necessitates	
   measuring	
   variation	
   with	
   extremely	
   high	
  

precision,	
   ideally	
   at	
   single	
   cell	
   resolution3,4,11.	
   Precise	
   single	
   cell	
   genomic	
  

measurements	
   remain	
   challenging	
   and	
   if	
   possible	
   can	
   only	
   be	
   realized	
   on	
   a	
  

relative	
   limited	
   number	
   of	
   cells	
   from	
   tumours	
   that	
   may	
   contain	
   hundreds	
   of	
  

billions	
  of	
  cells12,13.	
  	
  

	
  

Here	
   we	
   show	
   that	
   multi-­‐region	
   bulk	
   samples	
   of	
   single	
   tumours	
   contain	
  

recoverable	
   information	
   about	
   single	
   cell	
   divisions.	
   Combining	
   evolutionary	
  

theory,	
  tumour	
  multi-­‐region	
  sequencing	
  and	
  the	
  ubiquitous	
  stochastic	
  nature	
  of	
  

cell	
  division	
  and	
  mutation	
  accumulation	
  can	
  unravel	
  this	
  information.	
  	
  

	
  

ITH	
  in	
  multi-­‐region	
  data	
  encodes	
  the	
  properties	
  of	
  single-­‐cell	
  divisions	
  

All	
   tumour	
   cells	
   from	
   a	
   tumour	
   bulk	
   sample	
   descended	
   from	
   a	
   most	
   recent	
  

common	
  ancestor	
  (MRCA)	
  cell.	
   In	
  a	
   tumour,	
   typically	
  composed	
  of	
  hundreds	
  of	
  

billions	
   of	
   cells,	
  multiple	
   spatially	
   separated	
   bulk	
   samples	
   differ	
   in	
   their	
   exact	
  

composition	
   of	
   somatic	
   mutations,	
   because	
   mutations	
   accumulate	
   across	
  

different	
   branched	
   cell	
   lineages	
   during	
   growth	
   14,15,	
   (Figure	
   1A	
   and	
  Methods).	
  

Branching	
   is	
   inevitable	
   in	
   evolutionary	
   processes	
   driven	
   by	
   cell	
   division	
   and	
  

mutation,	
  both	
  in	
  the	
  presence	
  and	
  absence	
  of	
  clonal	
  selection1,6,7,15-­‐17.	
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Figure	
  1:	
  Multi-­‐region	
  tumour	
  bulk	
  sequencing	
  encodes	
  information	
  on	
  single	
  cell	
  lineages	
  

and	
  single	
  cell	
  divisions.	
  a)	
  Each	
  of	
  the	
  seven	
  spatially	
  separated	
  tumour	
  bulk	
  samples	
  (in	
  grey)	
  

consists	
   of	
   thousands	
   to	
   millions	
   of	
   cancer	
   cells	
   that	
   descended	
   from	
   a	
   single	
   most	
   recent	
  

common	
  ancestor	
  (MRCA)	
  cell.	
  The	
  genomic	
  make-­‐up	
  of	
  the	
  single	
  ancestral	
  cell	
  is	
  described	
  by	
  

the	
  mutations	
   clonal	
   to	
   the	
   bulk	
   sample.	
   Those	
   appear	
   at	
   high	
   variant	
   allele	
   frequency	
   in	
   the	
  

sample	
  (bottom-­‐left	
  panel,	
  in	
  purple).	
  The	
  intersection	
  of	
  mutations	
  in	
  any	
  two	
  bulk	
  MRCA	
  cells	
  

corresponds	
  to	
  the	
  genomic	
  profile	
  of	
  another	
  more	
  ancestral	
  cell.	
  This	
  process	
  continues	
  back	
  in	
  

time	
  until	
   the	
  MRCA	
   cell	
   of	
   all	
   the	
   sampled	
   cells	
   is	
   reached.	
  b)	
   The	
   level	
   of	
   genomic	
   variation	
  

within	
  a	
  tumour	
  is	
  the	
  direct	
  consequence	
  of	
  mutation	
  accumulation	
  during	
  cell	
  divisions,	
  leading	
  

to	
   complex	
   branching	
   structures.	
   Intervening	
   selective	
   pressures,	
   trimming	
   certain	
   branches	
  

while	
  favouring	
  others,	
  may	
  further	
  modify	
  these	
  structures.	
  Importantly,	
  the	
  most	
  fundamental	
  

parameters,	
  the	
  per-­‐cell	
  mutation	
  rates	
  and	
  per-­‐cell	
  survival	
  rate	
  that	
  drive	
  this	
  process	
  are	
  not	
  

directly	
   observable.	
   c)	
   Per-­‐cell	
   mutation	
   rate	
   per	
   division	
  𝜇	
  and	
   per-­‐cell	
   survival	
   rate	
  𝛽	
  leave	
  

identifiable	
   fingerprints	
   in	
   the	
  observable	
  patterns	
  of	
   intra-­‐tumour	
  genomic	
  heterogeneity.	
  Cell	
  

divisions	
  occur	
  in	
  increments	
  of	
  natural	
  numbers	
  and	
  thus	
  the	
  mutational	
  distance	
  between	
  any	
  

two	
  ancestral	
  cells	
  is	
  a	
  multiple	
  of	
  the	
  mutation	
  rate	
  𝜇.	
  d)	
  The	
  quantized	
  nature	
  of	
  cell	
  divisions	
  

leads	
  to	
  a	
  characteristic	
  distribution	
  of	
  mutational	
  distances	
  across	
  cell	
  lineages.	
  The	
  shape	
  of	
  the	
  

distribution	
  depends	
  on	
  the	
  exact	
  values	
  of	
  𝜇	
  and	
  𝛽.	
  Roughly	
  four	
  different	
  scenarios	
  of	
  small	
  and	
  

large	
  𝜇	
  and	
  𝛽	
  are	
   possible.	
   Importantly,	
   they	
   influence	
   the	
   shape	
   of	
   the	
   distribution	
   differently	
  

and	
  thus	
  constructing	
   the	
  distribution	
  of	
  mutational	
  distances	
  allows	
  disentangling	
   the	
  per-­‐cell	
  

mutation	
  rate	
  𝜇	
  and	
  per-­‐cell	
  survival	
  rate	
  𝛽.	
  e)	
  Spatial	
  stochastic	
  simulations	
  of	
  growing	
  tumours	
  

confirm	
   the	
   ability	
   of	
   mutational	
   distance	
   distributions	
   to	
   disentangle	
   mutation	
   and	
   lineage	
  

expansion	
   rates.	
   A	
   Monte	
   Carlo	
   Markov	
   Chain	
   framework	
   based	
   on	
   mutational	
   distance	
  

distributions	
   reliably	
   identifies	
  mutation	
   and	
   lineage	
   expansion	
   rates	
   in	
   simulations	
   of	
   spatial	
  

and	
   stochastically	
   growing	
   tumours	
   (𝜇:	
  Spearman	
   Rho	
  = 0.98, 𝑝 = 4×10!!"	
  ;	
  𝛽:	
  Spearman	
   Rho	
  

= 0.93, 𝑝 = 8×10!!"	
  ,	
  Relative	
  error:	
  𝜂! = 0.056,	
  𝜂! = 0.045).	
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The	
  mutational	
  distance,	
  the	
  number	
  of	
  somatic	
  mutations	
  different	
  between	
  two	
  

ancestral	
   cells,	
   emerges	
   from	
   two	
   dynamic	
   processes:	
   (i)	
   the	
   per-­‐cell	
   intrinsic	
  

mutation	
   rate	
   per	
   division	
  𝜇,	
   and	
   (ii)	
   the	
   number	
   of	
   cell	
   divisions	
   separating	
  

ancestral	
  cells	
  in	
  space	
  and	
  time.	
  The	
  latter	
  depends	
  on	
  the	
  per-­‐cell	
  survival	
  rate	
  

𝛽,	
   or	
   in	
   other	
  words	
   the	
   probability	
   for	
   a	
   single	
   cell	
   division	
   to	
   establish	
   two	
  

surviving	
   lineages.	
   Hence,	
   the	
   per-­‐cell	
   survival	
   rate	
  𝛽	
  accounts	
   for	
   lineage	
   loss	
  

due	
   to	
   cell	
   death	
   or	
   differentiation	
   (Figure	
   1b,c).	
   A	
   priori,	
   both	
  𝜇 	
  and	
  𝛽 	
  are	
  

unknown.	
   Previous	
   methods	
   measure	
   effective	
   mutation	
   rates	
  !
!
,	
   but	
   cannot	
  

entangle	
  these	
  for	
  evolution	
  fundamental	
  microscopic	
  parameters	
  15,17-­‐19.	
  	
  

	
  

However,	
  cell	
  divisions	
  must	
  occur	
  in	
  increments	
  of	
  natural	
  numbers	
  (cells	
  are	
  1,	
  

2,	
  3,…,n	
   cell	
  divisions	
  apart),	
  whereas	
   the	
   cell	
   intrinsic	
  mutation	
   rate	
   follows	
  a	
  

Poisson	
  distribution	
  (Figure	
  1d).	
  As	
  described	
  in	
  the	
  Methods,	
  the	
  distribution	
  of	
  

mutational	
   distances	
   in	
   a	
   tumour	
   encodes	
   these	
   two	
   properties	
   of	
   single	
   cell	
  

divisions.	
   This	
   is	
   possible	
   because	
   many	
   ancestral	
   cells	
   are	
   only	
   a	
   few	
   cell	
  

divisions	
  apart	
  (SI	
  Figure	
  19).	
  Specifically,	
  we	
  show	
  that	
  the	
  probability	
  density	
  

of	
  mutational	
  distances	
  𝑦	
  in	
  a	
  tumour	
  takes	
  the	
  following	
  form:	
  	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  𝑃 𝑌 = 𝑦 = 𝑃 𝑟 𝑖 − 1
𝑟 − 1 𝛽! 1− 𝛽 !!!𝑒!!" !! !

!!
!
!!!

!
!!! ,	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (1)	
  

	
  
given	
   a	
   per-­‐cell	
   mutation	
   rate	
  𝜇 	
  and	
   a	
   per	
   cell	
   survival	
   rate	
  𝛽 	
  (Methods).	
  

Equation	
   (1)	
   predicts	
   four	
   possible	
   regimes	
   for	
   the	
   distribution	
   of	
   mutational	
  

distances,	
   discriminated	
   by	
   uni-­‐	
   or	
   multimodality	
   determined	
   by	
   the	
  

combination	
  of	
   small	
   or	
   large	
  𝜇	
  and	
  𝛽	
  (Figure	
  1d).	
  The	
  parameters	
  uncouple	
   in	
  

above	
   equation	
   and	
   thus	
   repeated	
   sampling	
   from	
   the	
   distribution	
   allows	
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measuring	
  both	
  parameters	
  separately.	
  Importantly,	
  this	
  can	
  only	
  be	
  done	
  when	
  

enough	
  (≥ 6)	
  bulk	
  samples	
  are	
  available	
  for	
  each	
  tumour	
  (Figure	
  1d	
  &	
  SI	
  Figure	
  

33).	
  Moreover,	
  our	
  approach	
  relies	
  on	
  comparing	
  mutational	
  distances	
  between	
  

samples	
   and	
   does	
   not	
   require	
   a	
   priori	
   clonal	
   decompositions	
   of	
   tumours.	
   We	
  

demonstrate	
   that	
   individual	
   based	
   stochastic	
   simulations	
   of	
   spatial	
   tumour	
  

growth	
   converge	
   to	
   the	
   abovementioned	
   analytical	
   solution	
   (Figure	
   1e	
   &	
  

Methods)	
   and	
  a	
  Bayesian	
   inference	
   scheme	
   recovers	
   the	
   imposed	
  evolutionary	
  

parameters	
   (Figure	
   1e	
   and	
  Methods).	
  We	
   also	
   demonstrate	
   that	
   our	
   approach	
  

remains	
  robust	
  when	
  the	
  underlying	
  assumptions	
  are	
  relaxed,	
  e.g.	
  non-­‐constant	
  

mutation	
   rates	
   or	
   the	
   presence	
   of	
   subclonal	
   selection	
   during	
   population	
  

expansion	
   (see	
  Methods).	
  Moreover,	
  we	
  also	
  analyse	
  how	
   the	
  sensitivity	
  of	
   the	
  

evolutionary	
  estimates	
  depend	
  on	
  the	
  quality	
  and	
  quantity	
  of	
   the	
  genomic	
  data	
  

(see	
  Methods).	
  

	
  

Per-­‐cell	
  mutation	
  and	
  per-­‐cell	
   survival	
   rate	
   in	
  healthy	
  haematopoietic	
  

development	
  	
  

Before	
  we	
  discuss	
  properties	
  of	
  individual	
  tumours,	
  we	
  tested	
  our	
  approach	
  in	
  a	
  

biologically	
   well-­‐characterised	
   in	
   vivo	
   example	
   of	
   somatic	
   evolution.	
  We	
  make	
  

use	
  of	
   the	
   accumulation	
  of	
   somatic	
  mutations	
  during	
   early	
  development	
  of	
   the	
  

healthy	
  haematopoietic	
   system	
  as	
   a	
  benchmark.	
   In	
   a	
   recent	
   article	
  Lee-­‐Six	
   and	
  

colleagues	
  whole	
  genome	
  sequenced	
  89	
  healthy	
  haematopoietic	
   stem	
  cells	
  of	
  a	
  

single	
   59	
   year	
   old	
   male	
   20.	
   They	
   subsequently	
   constructed	
   the	
   phylogeny	
   of	
  

healthy	
   haematopoiesis	
   and	
   estimated	
   the	
   per-­‐cell	
   mutation	
   rate	
   to	
   be	
   1.2	
  

mutations	
  per	
  genome	
  per	
  division	
  during	
  early	
  development	
  assuming	
  perfect	
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Figure	
  2:	
  Per-­‐cell	
  mutation	
  and	
  per-­‐cell	
  survival	
  rate	
  inferences	
  in	
  healthy	
  haematopoiesis	
  

during	
   development.	
   a)	
   Mutational	
   distance	
   distribution	
   inferred	
   from	
   89	
   whole	
   genome	
  

sequenced	
  healthy	
  haematopoietic	
  stem	
  cells	
  (black	
  dots),	
  data	
  taken	
  from20	
  and	
  best	
  theoretical	
  

fit	
  (grey	
  line).	
  MCMC	
  inference	
  for	
  b)	
  the	
  mutation	
  rate	
  per	
  cell	
  division	
  (𝜇 = 1.14!!.!"!!.!"	
  mutations	
  

per	
  whole	
  genome	
  per	
  cell	
  division)	
  and	
  c)	
  the	
  per-­‐cell	
  survival	
  rate	
  (𝛽 = 0.96!!.!"#!!.!"#)	
  during	
  early	
  

development	
  in	
  healthy	
  haematopoiesis.	
  Median	
  values	
  and	
  95%	
  credibility	
  intervals	
  were	
  taken	
  

from	
  the	
  posterior	
  parameter	
  distributions.	
  	
  

	
  

cell	
   doublings.	
  We	
  can	
  use	
   the	
   same	
  sequencing	
   information	
  and	
   construct	
   the	
  

distribution	
   of	
  mutational	
   distances	
   during	
   early	
   haematopoietic	
   development.	
  

Our	
  framework	
  of	
  mutational	
  distances	
  allows	
  a	
  joint	
  and	
  independent	
  inference	
  

of	
   the	
   per-­‐cell	
   mutation	
   and	
   per-­‐cell	
   survival	
   rate	
   (Figure	
   2	
   and	
  Methods).	
   In	
  

agreement	
   with	
   20,	
   we	
   find	
   a	
   median	
  mutation	
   rate	
   of	
  𝜇 = 1.14!!.!"!!.!"	
  mutations	
  

per	
   genome	
   per	
   division	
   (shown	
   is	
   the	
   medium	
   mutation	
   rate	
   per	
   bp/cell-­‐

division	
  and	
  95%	
  credibility	
  intervals).	
  Furthermore,	
  we	
  infer	
  a	
  per-­‐cell	
  survival	
  

rate	
   of	
  𝛽 = 0.96!!.!"#!!.!"# ,	
   independently	
   confirming	
   the	
   original	
   assumption	
   of	
  

almost	
  perfect	
  cell	
  doubling	
  during	
  early	
  development	
  20.	
  	
  

	
  

Measuring	
  the	
  per-­‐cell	
  mutation	
  rate	
  in	
  individual	
  human	
  tumours	
  

We	
   now	
   proceed	
   to	
   in	
   vivo	
   per-­‐cell	
   mutation	
   rates	
   within	
   individual	
   human	
  

tumours.	
   A	
   unique	
   sample	
   set21	
   amenable	
   to	
   our	
   analysis	
   is	
   composed	
   of	
   6	
  

colorectal	
   tumours	
   (5	
   carcinomas,	
   1	
   adenoma)	
   sequenced	
   using	
   multi-­‐region	
  

whole	
  genome	
  (3	
  tumours)	
  and	
  whole	
  exome	
  profiling	
  (3	
  tumours)	
  of	
  up	
  to	
  13	
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bulk	
   samples	
   per	
   tumour	
   (median	
   7.6,	
   minimum	
   6	
   samples	
   per	
   tumour	
   as	
  

required	
  by	
  our	
  analysis).	
  	
  We	
  calculated	
  the	
  pairwise	
  genetic	
  divergence	
  for	
  all	
  

combinations	
  of	
  samples	
  per	
  tumour	
  and	
  used	
  our	
  MCMC	
  approach	
  to	
  infer	
  the	
  

per-­‐cell	
  mutation	
  rate	
  𝜇	
  as	
  well	
  as	
  the	
  per-­‐cell	
  survival	
  rate	
  𝛽	
  from	
  equation	
  (1)	
  

above.	
   Simulations	
   show	
   that	
   inferences	
   are	
   possible	
  with	
   as	
   few	
   as	
   6	
   tumour	
  

samples	
   (SI	
   Figure	
  33).	
  Despite	
   the	
   limited	
   resolution	
   (median	
  8	
  bulk	
   samples	
  

per	
   tumour),	
   our	
   theoretically	
   predicted	
   mutational	
   distance	
   distribution	
  

describes	
  important	
  features	
  of	
  the	
  data	
  well	
  (Figure	
  3	
  and	
  SI	
  Figure	
  13).	
  Similar	
  

distributions	
   emerge	
   in	
   stochastic	
   simulations	
   of	
   tumour	
   growth	
   with	
  

comparable	
   data	
   quality	
   (SI	
   Figure	
   34).	
   When	
   whole	
   genome	
   sequencing	
   was	
  

available,	
  the	
  mutational	
  load	
  was	
  sufficient	
  to	
  apply	
  the	
  inference	
  framework	
  to	
  

each	
  chromosome	
  separately	
  (Figure	
  3	
  and	
  SI	
  Figures	
  1-­‐3	
  &	
  9-­‐18).	
  The	
  analysis	
  

was	
  restricted	
  to	
  regions	
  of	
  chromosomes	
  with	
  same	
  copy	
  number	
  profile	
  in	
  all	
  

samples	
   of	
   a	
   tumour	
   and	
   inferences	
   were	
   normalised	
   by	
   copy-­‐number	
   and	
  

genome	
  content	
  sequenced.	
  	
  	
  

	
  

We	
  found	
  mutation	
  rates	
  per	
  cell	
  division	
  to	
  be	
  elevated	
  approximately	
  10	
  to	
  30	
  

times	
   compared	
   to	
   healthy	
   somatic	
   tissue10	
   across	
   the	
   whole	
   genomes	
   of	
   the	
  

three	
   carcinomas	
   ( 𝜇!" = (1.0!!.!"!!.!")  ×10!! ,	
   𝜇!" = (2.4!!.!"!!.!")  ×10!! 	
  and	
   𝜇!" =

3.1!!.!"!!.!" ×10!! 	
  bp/division,	
   median	
   mutation	
   rate	
   and	
   95%	
   credibility	
  

intervals),	
  see	
  Figure	
  3	
  and	
  Methods.	
  Mutation	
  rates	
  differed	
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Figure	
  3:	
  Mutational	
  distance	
  distributions	
  reveal	
  per-­‐cell	
  mutation	
  and	
  per-­‐cell	
  survival	
  

rates.	
   a-­‐c)	
  Mutational	
  distance	
  distributions	
  (whole	
  genome)	
   for	
   three	
  colorectal	
  carcinomas21	
  

(dots=data,	
   grey	
   line=theoretical	
   prediction	
   based	
   on	
  MCMC	
   parameter	
   estimates).	
   Patient	
   04	
  

(MSI+)	
   has	
   one	
   order	
   of	
  magnitude	
   larger	
  mutational	
   distances.	
   Three	
   additional	
   distributions	
  

are	
   shown	
   in	
   SI	
   Figure	
   13.	
  d-­‐f)	
   Per-­‐cell	
   signature	
  mutation	
   rate	
   per	
   chromosome.	
   Results	
   are	
  

consistent	
   across	
   chromosomes	
   (Methods).	
   g-­‐i)	
   The	
   median	
   overall	
   mutation	
   rates	
   are	
  

(𝜇!" = (1.0!!.!"!!.!")  ×10!!, 𝜇!" = (2.4!!.!"!!.!")  ×10!!  and  𝜇!" = 3.1!!.!"!!.!" ×10!!  bp/division ,	
   dashed	
  

lines),	
  10	
  to	
  30	
  times	
  higher	
  compared	
  to	
  healthy	
  somatic	
  cells.	
  Patient	
  04	
  is	
  MSI+	
  highlighted	
  by	
  

signature	
   6.	
   j-­‐l)	
   Estimates	
   of	
   per-­‐cell	
   survival	
   rates	
   per	
   chromosome	
   are	
   consistent	
   across	
  

chromosomes	
  of	
  the	
  same	
  patient	
  (Median:	
  𝛽!" = 0.51!!.!"!!.!",𝛽!" = 0.65!!.!"!!.!",𝛽!" = 0.33!!.!"!!.!"),	
  but	
  

vary	
  considerably	
  between	
  patients	
  (SI	
  Figure	
  15).	
  	
  

	
  

significantly	
  between	
  tumours,	
  but	
  not	
  across	
  chromosomes	
  of	
  the	
  same	
  tumour	
  

(SI	
   Figure	
   15).	
   Recently	
   it	
  was	
   suggested	
   that	
  mismatch	
   repair	
   efficacy	
   differs	
  

between	
   coding	
   and	
   non-­‐coding	
   genomic	
   regions22.	
  We	
   find	
  mutation	
   rates	
   in	
  

coding	
   compared	
   to	
   non-­‐coding	
   regions	
   slightly	
   elevated	
   in	
   mismatch	
   repair	
  

sufficient	
   tumour	
   02	
   and	
   slightly	
   lower	
   in	
   tumour	
   03,	
   but	
   being	
   equal	
   in	
   the	
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mismatch	
   repair	
  deficient	
   tumour	
  04	
   (SI	
  Figure	
  5).	
  We	
   found	
  comparably	
  high	
  

mutation	
   rates	
   per	
   cell	
   division	
   for	
   exonic	
   mutations	
   in	
   two	
   additional	
  

carcinomas	
   ( 𝜇!" = 3.1!!.!"!!.!"×10!! 	
  bp/division	
   and	
   𝜇!" = 1.3!!.!"!!.!"×10!!	
  

bp/division),	
  SI	
  Figure	
  16.	
  Instead,	
  one	
  adenoma	
  showed	
  a	
  near	
  normal	
  per-­‐cell	
  

mutation	
   rate	
   (𝜇!"# = 0.29!!.!"!!.!"×10!! 	
  bp/divison),	
   SI	
   Figure	
   16.	
   Overall	
   this	
  

suggests	
   important	
  differences	
   in	
  mutation	
  accumulation	
  at	
  the	
  single	
  cell	
   level	
  

between	
   tumours	
   and	
   is	
   in	
   good	
   agreement	
   with	
   recent	
   experimental	
   in	
   vitro	
  

single	
  cell	
  mutation	
  rate	
  inferences23.	
  	
  

	
  

To	
   further	
   unravel	
   the	
   underlying	
   differences	
   in	
   mutation	
   accumulation,	
   we	
  

decomposed	
  somatic	
  mutations	
  into	
  the	
  most	
  prevalent	
  mutational	
  signatures24	
  

for	
   all	
   three	
  whole-­‐genome	
   sequenced	
   colorectal	
   carcinomas	
   and	
   inferred	
  per-­‐

cell	
   mutation	
   and	
   per-­‐cell	
   survival	
   rates	
   per	
   signature	
   in	
   each	
   chromosome	
  

(Figure	
   3	
   and	
   Methods).	
   Signature	
   5	
   was	
   detected	
   consistently	
   across	
   all	
  

chromosomes	
   for	
   all	
   three	
   carcinomas,	
   but	
   the	
   accumulation	
   rate	
   differed	
  

between	
   tumours	
   ( 𝜇!"!! = 0.51!!.!"!!.!" ×10!!, 𝜇!"!! = 1.14!!.!"!!.!" ×10!!, 𝜇!"!! =

0.85!!.!"!!.!" ×10!!  bp/division).	
  Signature	
  1	
  was	
  identified	
  in	
  all	
  chromosomes	
  of	
  

tumours	
  02	
  and	
  03	
  and	
  was	
   similar	
   to	
   a	
  healthy	
   somatic	
  mutation	
   rate	
   (𝜇!"!! =

0.34!!.!"!!.!" ×10!!, 𝜇!"!! = (0.07!!.!"!!.!")×10!! 	
  bp/division),	
   further	
   supporting	
   its	
  

previously	
  proposed	
  clocklike	
  nature	
   in	
  aging	
  human	
  tissues25.	
  Consistent	
  with	
  

its	
   classification	
   as	
   MSI+,	
   Signature	
   6	
   was	
   prominent	
   in	
   tumour	
   04	
   (𝜇!"!! =

(0.89!!.!"!!.!")×10!!	
  bp/division),	
   comprising	
  39%	
  of	
   all	
   mutations	
   in	
   the	
   tumour	
  

(63%	
  if	
  mutations	
  of	
  unclassified	
  signatures	
  are	
  included).	
  All	
  somatic	
  mutations	
  

not	
   assigned	
   to	
   abovementioned	
   signatures	
   were	
   grouped	
   as	
   other	
   (𝜇!"!"!!" =

0.49!!.!"!!.!" ×10!!, 𝜇!"!"!!" = 1.19!!.!"!!.!" ×10!!, 𝜇!"!"!!" = (0.56!!.!"!!.!")×10!! 	
  

bp/division).	
   Overall	
   our	
   analysis	
   suggests	
   variation	
   in	
   between	
   patient	
  

signature	
   mutation	
   rates	
   (SI	
   Figure	
   7).	
   In	
   contrast,	
   we	
   do	
   not	
   find	
   significant	
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dependence	
   of	
   per-­‐cell	
  mutation	
   rates	
   on	
   chromosomal	
   ploidy:	
  mutation	
   rates	
  

remained	
   consistent	
   for	
   diploid,	
   triploid	
   and	
   tetraploid	
   chromosomal	
   regions	
  

after	
  correcting	
  for	
  the	
  genome	
  size	
  sequenced	
  (SI	
  Figure	
  8).	
  	
  

	
  

The	
   differences	
   in	
   mutational	
   signatures	
   between	
   individuals	
   also	
  manifest	
   in	
  

variable	
   accumulation	
   rates	
   of	
   substitution	
   subtypes	
   (SI	
   Figure	
   6).	
   In	
   two	
  

individuals,	
   transitions	
   are	
   more	
   likely	
   than	
   transversions.	
   As	
   expected	
  C → T	
  

transitions	
   have	
   the	
   highest	
   mutation	
   rates,	
   but	
   accumulation	
   rates	
   differ	
  

between	
   individuals.	
   Interestingly,	
   the	
   ranking	
   of	
   the	
   rates	
   of	
   substitution	
  

subtypes	
  in	
  two	
  patients	
  agree	
  with	
  the	
  patterns	
  of	
  divergence	
  between	
  humans	
  

and	
  chimpanzees26.	
  In	
  contrast,	
  in	
  one	
  patient	
  mutation	
  rates	
  for	
  transitions	
  and	
  

transversions	
  were	
  similar	
  (SI	
  Figure	
  6b).	
  	
  

	
  

In	
   addition,	
  we	
   inferred	
   per-­‐cell	
  mutation	
   rates	
   per	
   chromosome	
   in	
   3	
   recently	
  

published27	
  whole	
  genome	
  sequenced	
  colon	
  cancer	
  patients	
  (7,	
  9	
  and	
  9	
  tumour	
  

samples).	
  We	
  also	
  used	
  data	
  from	
  two	
  non-­‐small	
  cell	
  lung	
  cancers	
  (NSCLC)	
  from	
  

the	
   TRACERx	
   study28.	
   These	
   were	
   the	
   two	
   cases	
   (one	
   squamous	
   and	
   one	
  

adenocarcinoma)	
   that	
   had	
   more	
   than	
   6	
   samples	
   per	
   tumour	
   from	
   the	
   100	
  

patients	
  cohort	
  (7	
  exome	
  sequenced	
  samples	
  each),	
  as	
  well	
  as	
  five	
  clear	
  cell	
  renal	
  

cell	
   carcinomas	
   (CCRCC)29	
   (median	
   8,	
   from	
   8	
   to	
   12	
   exome	
   sequenced	
   bulk	
  

samples),	
   (SI	
   Figures	
   9-­‐12	
   &	
   17,18).	
   In	
   concordance	
   with	
   our	
   previous	
  

observation	
   we	
   found	
   consistent	
   mutation	
   rates	
   across	
   chromosomes	
   for	
   the	
  

colon	
  cancer	
  patients.	
  One	
  MSI+	
  case	
  has	
  an	
  increased	
  mutation	
  rate	
  (1.8!!.!"!!.!"×

10!! 	
  bp/divison)	
   compared	
   to	
   two	
   MSS	
   patients	
   (0.89!!.!"!!.!"×10!! ,	
  0.99!!.!!!!.!"×

10!!	
  bp/divison).	
  We	
   found	
   the	
   lung	
   squamous	
   cell	
   carcinoma	
   to	
   have	
   a	
   very	
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high	
   mutation	
   rate	
   ( 5.3!!.!"!!.!"×10!! 	
  bp/division),	
   in	
   comparison	
   the	
   lung	
  

adenocarcinoma	
   had	
   a	
   lower	
   mutation	
   rate	
   (1.4!!.!"!!.!"×10!!	
  bp/division).	
   Also,	
  

three	
   clear	
   cell	
   renal	
   carcinomas	
   showed	
   elevated	
   mutation	
   rates	
   (2.2!!.!"!!.!"×

10!!, 3.1!!.!"!!.!"×10!!  &  0.79!!.!"!!.!"×10!!	
  bp/division).	
   Surprisingly,	
   two	
   clear	
   cell	
  

renal	
   carcinomas	
   had	
   near	
   normal	
   somatic	
   mutation	
   rates	
  

(0.11!!.!"!!.!"×10!!  &  0.1!!.!"!!.!"×10!!	
  bp/division),	
   suggesting	
   that	
   at	
   least	
   in	
   some	
  

cases,	
  cancer	
  cells	
  maintain	
  near	
  normal	
  mutation	
  rates	
  per	
  cell	
  division.	
  

	
  

Measuring	
  the	
  per-­‐cell	
  survival	
  rate	
  in	
  individual	
  human	
  tumours	
  	
  

Our	
   inference	
   scheme	
   allows	
   a	
   joint	
   estimate	
   of	
   the	
   mutation	
   rate	
   per	
   cell	
  

division	
  and	
  the	
  per-­‐cell	
  survival	
  rate.	
  We	
  observed	
  striking	
  differences	
   for	
   the	
  

per-­‐cell	
   survival	
  rates	
  between	
  the	
   tumours	
  discussed	
  above.	
  We	
   found	
   for	
   the	
  

colorectal	
   tumours	
   ( 𝛽!" = 0.51!!.!"!!.!",𝛽!" = 0.65!!.!"!!.!",𝛽!" = 0.33!!.!"!!.!" ),	
   where	
  

higher	
  𝛽	
  corresponds	
   to	
   less	
   cell	
   death.	
   The	
   rates	
   were	
   consistent	
   when	
   the	
  

analysis	
   was	
   based	
   only	
   on	
   individual	
   chromosomes	
   (Figure	
   3).	
   Interestingly,	
  

tumour	
   04	
   was	
   mismatch	
   repair	
   deficient	
   and	
   had	
   3	
   to	
   10	
   times	
   higher	
   sub-­‐

clonal	
  mutational	
  burden	
  compared	
  to	
  mismatch	
  efficient	
  carcinomas	
  (SI	
  Figure	
  

4),	
   but	
   remarkably	
   slower	
   growth.	
   Hence,	
   the	
   higher	
   mutational	
   load	
   in	
   this	
  

tumour	
  may	
   not	
   solely	
   be	
   due	
   to	
   mismatch	
   repair	
   deficiency,	
   but	
   also	
   due	
   to	
  

slower	
   growth	
   and	
   therefore	
   older	
   relative	
   tumour	
   age	
   (more	
   cell	
   divisions).	
  

This	
   is	
  also	
  consistent	
  with	
  clinical	
  observations	
  and	
  may	
  explain	
  partially	
  why	
  

MSI+	
   tumours	
  are	
  more	
  prevalent	
   in	
  older	
  patients	
  and	
   typically	
  have	
  a	
  better	
  

prognosis30-­‐32.	
  Per-­‐cell	
  survival	
  rates	
  inferred	
  from	
  exonic	
  mutations	
  also	
  varied	
  

for	
  two	
  additional	
  carcinomas	
  (𝛽!" = 0.83!!.!"!!.!", 𝛽!" = 0.43!!.!"!!.!")	
  and	
  was	
  at	
  the	
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lower	
   bound	
   for	
   the	
   adenoma	
   (𝛽!"# = 0.46!!.!"!!.!!).	
   The	
   3	
   independently	
   whole	
  

genome	
   sequenced	
   colon	
   cancers27	
   show	
   similar	
   per-­‐cell	
   survival	
   rates	
  

(𝛽!"!!" = 0.47!!.!"!!.!",	
  𝛽!"!!" = 0.45!!.!"!!.!",	
  𝛽!"!!" = 0.5!!.!"!!.!").	
  The	
  lung	
  squamous	
  cell	
  

carcinoma	
   had	
   a	
   very	
   low	
   per-­‐cell	
   survival	
   rate	
   ( 𝛽!"#!"!" = 0.36!!.!"!!.!" ).	
  

Interestingly,	
   the	
   lung	
   squamous	
   cell	
   carcinoma	
   and	
   the	
   two	
   MSI+	
   colorectal	
  

cancers	
  have	
  amongst	
  the	
  highest	
  mutation	
  rates	
  but	
  the	
  lowest	
  per-­‐cell	
  survival	
  

probabilities	
  (Figure	
  4a).	
  In	
  comparison,	
  the	
  lung	
  adenocarcinoma	
  had	
  a	
  higher	
  

per-­‐cell	
   survival	
   rate	
   (𝛽!"#$#!" = 0.59!!.!"!!.!").	
   All	
   but	
   one	
   clear	
   cell	
   renal	
   cell	
  

carcinoma	
   had	
   high	
   per-­‐cell	
   survival	
   rates	
   (𝛽!!""!!" = 0.66!!.!"!!.!" ,	
  𝛽!!""!!" =

0.86!!.!"!!.!",	
  𝛽!!""!!" = 0.47!!.!"!!.!",	
  𝛽!!""!!" = 0.8!!.!!!!.!",	
  𝛽!!""!!" = 0.72!!.!"!!.!").	
  

	
  

Figure	
  4a	
  shows	
  each	
  tumour’s	
  per-­‐cell	
  survival	
  rate	
  𝛽	
  plotted	
  against	
  its	
  per-­‐cell	
  

mutation	
  rate	
  𝜇.	
  Healthy	
  homeostasis	
  implies	
  an	
  overall	
  constant	
  cell	
  population,	
  

corresponding	
   to	
  𝛽 = 1/3 ,	
   and	
   an	
   approximate	
   somatic	
   mutation	
   rate	
   of	
  

𝜇 = 1×10!!	
  (bp/division)	
   (Figure	
   4a).	
   Tumours	
   distribute	
  widely	
   across	
   these	
  

evolutionary	
  measures,	
  emphasizing	
   the	
  uniqueness	
  of	
  each	
   individual	
   tumour.	
  

The	
   adenoma	
   is	
   overall	
   most	
   similar	
   to	
   healthy	
   somatic	
   tissue.	
   Interestingly,	
  

there	
   seem	
   to	
   be	
   3	
   distinct	
   scenarios.	
   In	
   some	
   tumours,	
   per-­‐cell	
   survival	
   and	
  

mutation	
  rate	
  are	
  positively	
  correlated	
  (SpearmanRho	
  =0.85,	
  p=0.002,	
  excluding	
  

6	
   samples	
  with	
  near	
  normal	
  mutation	
  or	
  near	
  normal	
   survival	
   rate).	
  However,	
  

there	
   is	
   a	
   subset	
   (3	
   out	
   of	
   16)	
   of	
   tumours	
   with	
   accelerated	
   growth	
   and	
   near	
  

normal	
   somatic	
   mutation	
   rates	
   and	
   another	
   group	
   (3	
   out	
   of	
   16)	
   with	
   high	
  

somatic	
  mutation	
  rates	
  but	
  near	
  normal	
  per-­‐cell	
  survival	
  rates	
  (Figure	
  4a).	
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Figure	
  4:	
  Map	
  of	
  per-­‐cell	
  mutation	
  and	
  per-­‐cell	
  survival	
  rates	
  across	
  cancer	
  types.	
  a)	
  The	
  

intersection	
   of	
   the	
   dashed	
   lines	
   correspond	
   to	
   values	
   of	
   healthy	
   tissue	
   during	
   homeostasis	
  

(𝜇! = 1×10!!,𝛽! = 1/3).	
  White	
   background	
   corresponds	
   to	
   values	
   of	
  𝛽	
  that	
   allow	
   for	
   growing	
  

cell	
  populations,	
  shaded	
  area	
  describes	
  values	
  of	
  𝛽	
  that	
  would	
  lead	
  to	
  population	
  extinction	
  (see	
  

Methods).	
  Error	
  bars	
  show	
  95%	
  credibility	
  intervals.	
  There	
  are	
  three	
  different	
  patterns,	
  a	
  subset	
  

where	
  lineage	
  expansion	
  and	
  mutation	
  rates	
  correlate	
  positively	
  (SpearmanRho	
  =0.85,	
  p=0.002,	
  

excluding	
  6	
  samples	
  with	
  near	
  normal	
  mutation	
  or	
  near	
  normal	
  survival	
  rate),	
  a	
  subset	
  of	
  cases	
  

with	
  near	
  normal	
  mutation	
  and	
  another	
  group	
  with	
  near	
  normal	
  per-­‐cell	
  survival	
  rates.	
  	
  	
  b)	
  The	
  

per-­‐cell	
   survival	
   rate	
  𝛽	
  can	
   be	
   translated	
   into	
   tumour	
   age	
   at	
   diagnosis	
   (duration	
   from	
   tumour	
  

initiating	
   cell	
   to	
   diagnosis).	
   We	
   find	
   that	
   most	
   tumours	
   are	
   1	
   to	
   5	
   years	
   old	
   (Median:	
   MSS	
  

Colorectal	
  Carcinomas:	
  2.6 ±1.5	
  years,	
  Renal	
   cancers:	
  1.34 ± 0.9	
  years,	
  Colorectal	
  Adenoma:	
  3.5	
  

years,	
  MSI+	
  Carcinoma:	
  18.8	
  and	
  3.8	
  years,	
  Lung	
  adenocarcinoma:	
  1.9	
  years,	
  Lung	
  squamous	
  cell	
  

carcinoma:	
   11.3	
   years).	
   Error	
   bars	
   show	
   95%	
   credibility	
   intervals,	
   the	
   grey	
   line	
   assumes	
   a	
  

lineage	
   division	
   rate	
   once	
   every	
   2	
  weeks,	
   the	
   grey	
   area	
   corresponds	
   to	
   division	
   rates	
   of	
   once	
  

every	
  1	
  to	
  3	
  weeks	
  respectively.	
  	
  

	
  

Estimating	
  tumour	
  age	
  at	
  diagnosis	
  

The	
   per-­‐cell	
   survival	
   rate	
   inferences	
   allow	
   approximations	
   for	
   the	
   duration	
   of	
  

tumour	
   expansions	
   across	
   patients	
   and	
   cancer	
   types.	
   Assuming	
  10!!  tumour	
  

cells	
   at	
   diagnosis,	
   tumour	
   ages	
   are	
   between	
   30	
   and	
   600	
   generations	
   for	
   the	
  

fastest	
   growing	
   chromosomally	
   unstable	
   carcinoma	
   and	
   the	
   slowest	
   growing	
  

MSI+	
  carcinoma.	
  For	
  lineage	
  division	
  rates	
  of	
  once	
  every	
  two	
  weeks,	
  the	
  duration	
  

of	
   the	
   final	
   expansions	
   are	
   between	
   1	
   and	
   19	
   years	
   (Median:	
  MSS	
   Carcinoma:	
  

2.6±1.5	
  years,	
  Renal	
  cell	
  carcinoma:	
  1.34± 0.9	
  years,	
  Adenoma:	
  3.5	
  years,	
  MSI+	
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Carcinoma:	
  18.8	
  and	
  3.8	
  years,	
  Lung	
  adenocarcinoma:	
  1.9	
  years,	
  Lung	
  squamous	
  

cell	
   carcinoma:	
   11.3	
   years),	
   see	
   Figure	
   4b.	
   These	
   estimates	
   correspond	
   to	
   the	
  

duration	
   of	
   the	
   final	
   phase	
   of	
   cancer	
   cell	
   expansion	
   and	
   remain	
  within	
   a	
   10%	
  

error	
   bound	
   for	
   a	
   one	
   order	
   of	
   magnitude	
   deviation	
   of	
   the	
   tumour	
   size	
   at	
  

diagnosis	
  (SI	
  Figure	
  23).	
  Ranges	
  for	
  different	
  lineage	
  division	
  rates	
  are	
  shown	
  in	
  

Figure	
  4b.	
  	
  

	
  

Discussion	
  

Here	
  we	
  have	
  shown	
  how	
  the	
  mutational	
  burden,	
  now	
  routinely	
  measurable	
   in	
  

healthy	
   and	
   cancerous	
   tissues,	
   emerges	
   from	
   intertwined	
   microscopic	
  

evolutionary	
   forces,	
   the	
   per-­‐cell	
   mutation	
   and	
   per-­‐cell	
   survival	
   rate.	
   More	
  

importantly,	
   multi-­‐region	
   tumour	
   sequencing	
   allows	
   a	
   joint	
   inference	
   of	
   these	
  

forces	
  and	
  reveals	
  major	
  differences	
  between	
   individual	
  patients.	
  Furthermore,	
  

evolutionary	
   forces	
   may	
   intertwine	
   with	
   other	
   cell	
   intrinsic	
   and	
   extrinsic	
  

processes	
  and	
  may	
  or	
  may	
  not	
  change	
  in	
  time.	
  Unravelling	
  these	
  interactions	
  will	
  

require	
  further	
  more	
  fine-­‐grained	
  sampling	
  of	
  tumours,	
  ideally	
  both	
  in	
  time	
  and	
  

space.	
  Sequencing	
  of	
  potentially	
  thousands	
  of	
  single	
  cells	
  promises	
  a	
  significant	
  

information	
   gain	
   that	
  will	
   allow	
   for	
  much	
   higher	
   resolved	
  mutational	
   distance	
  

distributions	
  in	
  the	
  near	
  future.	
  Nevertheless,	
  it	
  seems	
  that	
  inferences	
  of	
  tumour	
  

evolution	
   and	
   subsequent	
   treatment	
   strategies	
   solely	
   based	
   on	
   population	
  

averages	
  risk	
  error	
  prone	
  conclusions	
  for	
  any	
  individual	
  patient.	
  A	
  personalised	
  

unravelling	
  of	
  the	
  microscopic	
  evolutionary	
  forces	
  appears	
  essential.	
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Methods	
  

	
  

The	
  distribution	
  of	
  mutational	
  distances	
  	
  	
  

	
  

Multi-­‐region	
   bulk	
   sequencing	
   of	
   tumours	
   allows	
   us	
   to	
   reconstruct	
   the	
  

evolutionary	
   history	
   of	
   single	
   cell	
   lineages,	
   see	
   also	
   Figure	
   1	
   in	
   the	
  main	
   text.	
  

Each	
   tumour	
   bulk	
   sequence	
   contains	
   information	
   about	
   clonal	
   and	
   sub-­‐clonal	
  

mutations.	
   Clonal	
   mutations	
   of	
   a	
   bulk	
   sample	
   are	
   present	
   in	
   all	
   cells	
   of	
   the	
  

sample	
   and	
   therefore	
   must	
   have	
   been	
   originated	
   from	
   a	
   single	
   joined	
   most	
  

recent	
   common	
   ancestor	
   cell	
   that	
   gave	
   rise	
   to	
   all	
   sampled	
   cells	
   in	
   the	
   tumour	
  

bulk.	
   In	
   contrast,	
   sub-­‐clonal	
   mutations	
   are	
   present	
   in	
   a	
   subset	
   of	
   cells	
   in	
   the	
  

tumour	
  bulk	
  and	
  arose	
  later	
  during	
  tumour	
  growth.	
  Consequently,	
  multiple	
  bulk	
  

sequences	
  allow	
  reconstructing	
  the	
  genomic	
  composition	
  of	
  multiple	
  single	
  cells	
  

that	
   existed	
   at	
   different	
   times	
   during	
   the	
   life	
   history	
   of	
   the	
   growing	
   tumour	
  

population.	
   This	
   principle	
   allows	
   us	
   to	
   apply	
   phylogenetic	
   methods	
   to	
   cancer	
  

genomic	
   data.	
   Mutations	
   that	
   distinguish	
   most	
   recent	
   common	
   ancestor	
   cells	
  

were	
   accumulated	
   during	
   a	
   finite	
   number	
   of	
   cell	
   divisions	
   (cell	
   divisions	
   are	
  

necessarily	
   quantised).	
   During	
   each	
   cell	
   division,	
   daughter	
   cells	
  might	
   acquire	
  

additional	
  novel	
  mutations.	
  The	
  number	
  of	
  novel	
  mutations	
  X	
  after	
  a	
  single	
  cell	
  

division	
   depends	
   on	
   the	
   mutation	
   rate	
  𝜇	
  and	
   the	
   length	
   of	
   the	
   genome	
  𝐿.	
   The	
  

number	
  of	
  novel	
  mutations	
  per	
  cell	
  division	
  𝑋	
  follows	
  a	
  Poisson	
  distribution	
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  (2)	
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with	
   mean	
   and	
   variance	
  𝜇𝐿.	
   Usually,	
   the	
   length	
   of	
   the	
   sequenced	
   genome	
  𝐿	
  is	
  

known	
   (for	
   example	
   the	
   exome	
   or	
   whole	
   genome	
   of	
   a	
   cancer	
   cell)	
   and	
   the	
  

mutation	
  rate	
  per	
  cell	
  division	
  𝜇	
  is	
  the	
  only	
  unknown	
  parameter.	
  Thus	
  sampling	
  

sufficiently	
   many	
   mutational	
   distances	
   of	
   single	
   cell	
   divisions	
   allows	
   us	
   (in	
  

principal)	
   to	
   reconstruct	
   the	
   underlying	
  Poisson	
   distribution	
   and	
   therefore	
   the	
  

inference	
   of	
   the	
   mean	
   mutation	
   rate	
   per	
   cell	
   division	
  𝜇.	
   However,	
   distances	
  

between	
  cells	
  of	
  a	
  lineage	
  might	
  be	
  larger	
  than	
  a	
  single	
  cell	
  division	
  and	
  double,	
  

triple	
   and	
   higher	
   modes	
   of	
   cell	
   division	
   contribute	
   to	
   the	
   distribution	
   of	
  

mutational	
  distances	
  of	
  multi-­‐region	
  samples.	
  For	
  example,	
  if	
  a	
  cell	
  divides	
  twice,	
  

it	
  will	
  acquire	
  novel	
  mutations	
  twice	
  and	
  the	
  total	
  number	
  of	
  mutations	
  𝑋! + 𝑋!	
  

is	
   the	
   sum	
   of	
   two	
   independently	
   Poisson	
   distributed	
   events	
  𝑋! 	
  and	
  𝑋! .	
   The	
  

number	
   of	
   novel	
   mutations	
  𝑋! + 𝑋!	
  is	
   again	
   Poisson	
   distributed,	
   but	
   now	
  with	
  

mean	
  2𝜇𝐿.	
   In	
   general,	
   a	
   cell	
   accumulates	
  𝑋! + 𝑋! +⋯+ 𝑋!	
  Poisson	
   distributed	
  

number	
  of	
  novel	
  mutations	
  

	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  𝑃 𝑋! + 𝑋! +⋯+ 𝑋! = (!!")!

!!
𝑒!!"# ,	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (3)	
  

	
  

after	
   𝑛 	
  cell	
   divisions.	
   However,	
   we	
   must	
   also	
   account	
   for	
   cell	
   death	
   or	
  

differentiation,	
   leading	
   to	
   lineage	
   extinction.	
   Indeed,	
   branching	
   in	
   the	
  

evolutionary	
  history	
  of	
  the	
  tumour	
  only	
  occurs	
  if	
  both	
  daughter	
  cells	
  survive.	
  We	
  

therefore	
   introduce	
  a	
  probability	
  𝛽	
  of	
  having	
   two	
  surviving	
   lineages	
  after	
  a	
  cell	
  

division	
  and	
  a	
  probability	
  1− 𝛽	
  of	
  a	
  single	
  surviving	
  lineage	
  respectively.	
  Thus,	
  𝑟	
  

cell	
  divisions	
  with	
  two	
  surviving	
  lineages	
  (successful	
  divisions)	
  are	
  accompanied	
  

by	
  𝑚	
  cell	
  divisions	
  with	
  only	
  a	
  single	
  surviving	
  lineage	
  (unsuccessful	
  divisions).	
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The	
  number	
  of	
  unsuccessful	
  divisions	
  𝑚	
  can	
  be	
  understood	
  as	
  a	
  random	
  variable	
  

again.	
  More	
  specifically,	
  they	
  follow	
  a	
  Negative	
  Binomial	
  distribution	
  	
  

	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  𝑃 𝑚 = 𝑚 − 1
𝑟 − 1 𝛽!(1− 𝛽)!!! .	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (4)	
  

	
  

Thus	
   the	
   number	
   of	
   mutations	
   acquired	
   between	
   two	
   successful	
   divisions	
  

depends	
   on	
   the	
  Poisson	
   distributed	
  mutation	
   rate	
  𝜇	
  and	
   the	
   Negative	
   binomial	
  

distributed	
  number	
  of	
  unsuccessful	
  divisions	
  𝑚.	
   Intuitively,	
  a	
   certain	
  measured	
  

mutational	
  burden	
  in	
  a	
  single	
  cell	
  lineage	
  or	
  bulk	
  sample	
  of	
  a	
  tumour	
  can	
  result	
  

either	
   from	
   many	
   unsuccessful	
   divisions	
   with	
   a	
   low	
   mutation	
   rate	
   or,	
  

alternatively	
  a	
  few	
  unsuccessful	
  divisions	
  with	
  high	
  mutation	
  rate.	
  Formally,	
  we	
  

can	
  write	
  for	
  the	
  total	
  number	
  of	
  mutations	
  between	
  two	
  successful	
  divisions	
  

	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  𝑌 = 𝑋!!
!!! ,	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (5)	
  

	
  

where	
  𝑋! 	
  are	
   independently	
   distributed	
   Poisson	
   random	
   variables	
   and	
  𝑚	
  is	
   a	
  

Negative	
  binomial	
  distributed	
  random	
  variable.	
  

	
  

Now	
  we	
  can	
  seek	
  the	
  probability	
  of	
  the	
  number	
  of	
  acquired	
  mutations	
  𝑌! 	
  after	
  𝑟	
  

successful	
  divisions.	
  We	
   first	
  note	
   that	
   the	
  probability	
   generating	
   functions	
   for	
  

both	
  Poisson	
  and	
  Negative	
  Binomial	
  distributed	
  random	
  variables	
  are	
  known	
  and	
  

given	
  by	
  

	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  𝐺! 𝑧 = 𝐸 𝑧! = 𝑒!(!!!)	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (6)	
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  𝐺! 𝑧 = 𝐸 𝑧! = ( !"
!! !!! !

)! .	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (7)	
  

	
  

Using	
   these	
   expressions	
   and	
   the	
   law	
   of	
   total	
   probability,	
   this	
   implies	
   for	
   the	
  

probability	
  density	
  function	
  of	
  the	
  joint	
  distribution	
  𝑌! 	
  	
  

	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  𝐺!! 𝑧 = ( !!!(!!!)

!!(!!!)!!(!!!)
)! .	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (8)	
  

	
  

Finally,	
   we	
   are	
   interested	
   in	
   the	
   probability	
   𝑃(𝑌! = 𝑦) ,	
   for	
   example	
   the	
  

probability	
   to	
   observe	
   a	
   certain	
   mutational	
   load	
  𝑦	
  given	
   a	
   mutation	
   rate	
  𝜇,	
   a	
  

number	
   of	
   successful	
   divisions	
  𝑟 	
  and	
   a	
   survival	
   rate	
  𝛽 .	
   We	
   can	
   expand	
   the	
  

probability	
  generating	
  function	
  into	
  a	
  power	
  series	
  and	
  write	
  

	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  𝐺!! 𝑧 = 𝐺! 𝑒! !!! = 𝑖 − 1
𝑟 − 1 𝛽!(1− 𝛽)!!!𝑒!"(!!!)!

!!! .	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (9)	
  

	
  

Expanding	
  the	
  exponential	
  function,	
  we	
  can	
  write	
  	
  

	
  

	
  	
  	
  	
  	
  	
  𝐺!! 𝑧 = 𝐺! 𝑒! !!! = 𝑖 − 1
𝑟 − 1 𝛽!(1− 𝛽)!!!𝑒!!" (!")

!

!!
!
!!! ,!

!!! 	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (10)	
  

	
  

and	
   thus,	
   we	
   find	
   for	
   the	
   probability	
   of	
   having	
  𝑦	
  mutations	
   after	
  𝑟	
  successful	
  

divisions	
  

	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  𝑃 𝑌! = 𝑦 = 𝑖 − 1
𝑟 − 1 𝛽!(1− 𝛽)!!!𝑒!!" (!")

!

!!
!
!!! .	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (11)	
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A	
   complete	
   description	
   of	
   the	
   distribution	
   of	
  mutational	
   distances	
   requires	
   an	
  

expression	
  for	
  the	
  expected	
  distribution	
  of	
  successful	
  divisions	
  𝑟	
  (the	
  number	
  of	
  

branching	
  events	
  between	
  two	
  cell	
  lineages).	
  Remaining	
  general,	
  we	
  can	
  write	
  	
  

	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  𝑃 𝑌 = 𝑦 = 𝑃 𝑌 = 𝑦 𝑟 𝑃 𝑟 = 𝑃 𝑟 𝑃(𝑌! = 𝑦)!
!!!

!
!!! .	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (12)	
  

	
  

Substituting	
   equation	
   (11)	
   the	
  probability	
   density	
   for	
   the	
  mutational	
   distances	
  

becomes	
  

	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  𝑃 𝑌 = 𝑦 = 𝑃(𝑟) 𝑖 − 1
𝑟 − 1 𝛽!(1− 𝛽)!!!𝑒!!" (!")

!

!!
!
!!!

!
!!! .	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (13)	
  

	
  

Note,	
  the	
  expected	
  distribution	
  of	
  successful	
  divisions	
  𝑃(𝑟)	
  is	
  independent	
  of	
  the	
  

underlying	
  mutation	
  rate	
  𝜇,	
   it	
  only	
  depends	
  on	
   the	
  per-­‐cell	
   survival	
  probability	
  

𝛽 .	
   It	
   therefore	
   does	
   not	
   impede	
   our	
   ability	
   to	
   disentangle	
  𝜇 	
  and	
  𝛽 .	
   In	
   the	
  

following	
  we	
  derive	
  an	
  explicit	
  expression	
  for	
  𝑃(𝑟)	
  for	
  an	
  exponentially	
  growing	
  

population.	
  	
  

	
  

The	
   distribution	
   of	
   successful	
   divisions	
  𝒓	
  for	
   an	
   exponentially	
   expanding	
  

population	
  

	
  

Expanding	
   on	
   classical	
   results	
   of	
   coalescence	
   theory33	
   we	
   can	
   derive	
   an	
  

analytical	
  expression	
   for	
   the	
  distribution	
  of	
  successful	
  divisions	
  𝑟	
  in	
   the	
  case	
  of	
  

an	
  exponentially	
  growing	
  cancer	
  cell	
  population.	
  Assume	
  a	
  population	
  of	
  cancer	
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cells	
  grows	
  exponentially	
  in	
  time	
  with	
  𝑁 𝑡 = 𝑁!𝑒!"# .	
  Here	
  𝛽	
  corresponds	
  to	
  the	
  

survival	
   probability	
   of	
   two	
   lineages	
   that	
   was	
   introduced	
   above	
   and	
   time	
  𝑡	
  is	
  

measured	
   in	
  generations.	
  We	
  are	
   interested	
   in	
  events	
  backward	
   in	
   time	
  𝑡 → −𝑡	
  

and	
   thus	
  our	
  population	
   effectively	
   shrinks	
   exponentially	
  𝑁 −𝑡 = 𝑁!𝑒!!" .	
   The	
  

probability	
  of	
  coalescence	
  of	
  two	
  cells	
  at	
  time	
  𝑡	
  given	
  no	
  coalescence	
  before	
  𝑡	
  is	
  

approximately	
  1− !
!(!)

	
  and	
   the	
  probability	
   to	
   coalesce	
   at	
   time	
  𝑡	
  is	
   !
!(!)

.	
   Thus	
   the	
  

probability	
   that	
   the	
   first	
   coalescence	
   occurs	
   at	
   exactly	
   time	
  𝑡	
  is	
   approximately	
  

given	
  by	
  	
  

	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  𝑃 𝑡 = !
!(!)

[1− !
!(!)

] ≈ !!"

!!
!!!
!!! exp !!!!"

!!!
.	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (14)	
  

	
  

In	
  our	
  case,	
  we	
  are	
  concerned	
  with	
  mutational	
  distances	
  and	
  thus	
  we	
  ask	
  for	
  the	
  

distribution	
  of	
  times	
  between	
  coalescence	
  events	
  Δ𝑡	
  rather	
  than	
  the	
  distribution	
  

of	
   coalescence	
   time	
  𝑡.	
   However,	
   we	
   can	
   directly	
   infer	
   this	
   distribution	
   from	
  

equation	
   (14),	
   by	
   rewriting	
   Δ𝑡 = 𝑡! − 𝑡 	
  as	
   the	
   time	
   of	
   the	
   initiating	
   cell	
  

population	
  at	
  some	
  point	
  in	
  the	
  past.	
  By	
  substituting	
  	
  

𝑡! = log 𝑁! /(𝛽)	
  we	
   have	
  Δ𝑡 = !"# !!
!"

− 𝑡	
  and	
   we	
   find	
   for	
   the	
   distribution	
   of	
  

times	
  between	
  coalescence	
  events	
  

	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  𝑃 Δ𝑡 = 𝑃 !"# !!
!

− 𝑡 = 𝑒!!" exp !!!!!!!"

!!!
.	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (15)	
  

	
  

This	
  is	
  for	
  sufficiently	
  large	
  𝑁!	
  well	
  approximated	
  by	
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  𝑃 Δ𝑡 = 𝑒!!" exp − !!!"

!
.	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (16)	
  

	
  

Examples	
  of	
  Equation	
  (15)	
  and	
  (16)	
  are	
  shown	
  in	
  SI	
  Figure	
  20.	
  We	
  can	
  discretise	
  

this	
  probability	
  density	
   function	
   to	
  derive	
   at	
   the	
  probability	
   for	
   the	
  number	
  of	
  

successful	
  divisions	
  𝑟	
  via	
  

	
  

𝑃 𝑟 = 𝑑𝑡  𝑃 Δ𝑡 = 𝑑𝑡  
!!!

!

!!!

!

𝑒!!" exp −
𝑒!!"

𝛽 	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  = exp − !!!(!!!)

!
− exp − !!!"

!
.	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (17)	
  

	
  

As	
  we	
   are	
   interested	
   in	
   positive	
   branch	
   length	
   only,	
  we	
  need	
   to	
   normalise	
   the	
  

distribution	
  for	
  non-­‐negative	
  integers.	
  The	
  normalising	
  factor	
  is	
  1− exp − !!!

!
,	
  

and	
   the	
  distribution	
  of	
  successful	
  divisions	
  𝑟	
  in	
  an	
  exponentially	
  expanding	
  cell	
  

population	
  becomes	
  	
  

	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  𝑃 𝑟 =
!"# !!

!!(!!!)

! !!"# !!
!!"

!

!!!"# !!
!!
!

.	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (18)	
  

	
  

In	
   combination	
   with	
   equation	
   (13)	
   this	
   allows	
   a	
   complete	
   description	
   of	
   the	
  

distribution	
  of	
  mutational	
  distances	
  in	
  exponentially	
  growing	
  cell	
  populations,	
  SI	
  

Figure	
  21.	
  Interestingly,	
  equation	
  (18)	
  predicts	
  that	
  on	
  average	
  most	
  successful	
  

divisions	
  are	
  only	
  a	
  few	
  cell	
  divisions	
  a	
  part	
  (SI	
  Figure	
  19).	
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This	
   probability	
   density	
   fits	
   the	
   distribution	
   of	
   mutational	
   distances	
   from	
  

simulated	
   tumour	
   growth	
   exactly	
   (Figure	
   1e).	
   Furthermore,	
   utilising	
   MCMC	
  

methods,	
   this	
  distribution	
  allows	
  solving	
  the	
   inverse	
  problem.	
  We	
  can	
  infer	
  the	
  

single	
   cell	
   parameters	
   (mutation	
   rate	
  𝜇	
  and	
   cell	
   survival	
   rate	
  𝛽)	
   from	
  one	
   time	
  

measures	
   of	
   the	
   distribution	
   of	
   distances	
   of	
   multiple	
   samples	
   from	
   a	
   single	
  

tumour.	
  	
  

	
  

Properties	
  of	
  the	
  mutational	
  distance	
  distribution	
  	
  

	
  

We	
   introduced	
   the	
   distribution	
   of	
   mutational	
   distances	
   as	
   a	
   measure	
   to	
  

disentangle	
  per-­‐cell	
  mutation	
  and	
  per-­‐cell	
  survival	
  rates.	
  This	
  distribution	
  has	
  2	
  

free	
  parameters	
   that	
  determine	
   its	
   shape	
   (𝜇:	
   the	
  number	
  of	
  mutations	
  per	
   cell	
  

division	
   and	
  𝛽:	
   the	
   per-­‐cell	
   survival	
   probability).	
   The	
   combination	
   of	
   these	
   2	
  

parameters	
  allows	
  for	
  different	
  shapes	
  of	
  the	
  distribution	
  and	
  predicts	
  4	
  possible	
  

distinct	
  scenarios	
  given	
  by	
  the	
  combination	
  of	
  small	
  and	
  large	
  𝜇	
  and	
  𝛽.	
  Examples	
  

for	
   the	
   theoretically	
  expected	
  shape	
  of	
   the	
  mutational	
  distance	
  distribution	
  are	
  

shown	
   in	
   SI	
   Figure	
   21.	
   A	
   multi-­‐modal	
   distribution	
   is	
   expected	
   for	
   sufficiently	
  

large	
   mutation	
   rates	
   per	
   cell	
   division	
  𝜇	
  (SI	
   Figure	
   21a	
   &	
   b).	
   In	
   contrast,	
   uni-­‐

modal	
  distributions	
  become	
  evident	
  for	
  smaller	
  mutation	
  rates	
  𝜇	
  (SI	
  Figure	
  21c	
  

&	
  d).	
  The	
  per-­‐cell	
   survival	
  probability	
  𝛽	
  determines	
   the	
  height	
  of	
   the	
  modes	
  as	
  

well	
   as	
   the	
   length	
   of	
   the	
   tail	
   (emphasized	
   by	
   at	
   least	
   one	
   order	
   of	
  magnitude	
  

differences	
  in	
  the	
  y-­‐	
  and	
  x-­‐axes	
  of	
  the	
  panels	
  in	
  SI	
  Figure	
  21).	
  In	
  SI	
  Figure	
  34	
  we	
  

show	
   that	
   these	
   scenarios	
   are	
   reproduced	
   in	
   stochastic	
   spatial	
   simulations	
   of	
  

tumour	
   growth.	
   Also	
   note,	
   in	
   SI	
   Figure	
   34	
  we	
   plot	
   examples	
   of	
   the	
  mutational	
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distance	
  distribution	
  (with	
  fixed	
  𝜇	
  and	
  different	
  𝛽)	
  at	
  scale	
  to	
  emphasize	
  some	
  of	
  

the	
  significant	
  differences.	
  	
  	
  

	
  

Spatial	
   intermixing,	
   sequencing	
   noise	
   and	
   the	
   number	
   of	
   mutational	
  

distances	
  

	
  

Our	
   method	
   of	
   mutational	
   distances	
   does	
   not	
   require	
   the	
   construction	
   of	
  

phylogenetic	
   trees.	
   Instead,	
   it	
   is	
   based	
   on	
   pairwise	
   mutational	
   distances	
   (the	
  

number	
   of	
   mutations	
   that	
   separate	
   ancestral	
   cells)	
   and	
   thus	
   we	
   construct	
  

pairwise	
  differences	
  of	
  mutational	
  counts.	
  	
  

	
  

The	
  mutational	
   load	
   of	
   ancestral	
   cells	
   is	
   constructed	
   from	
   intersections	
   of	
   the	
  

complete	
  lists	
  of	
  mutations	
  of	
  all	
  combinations	
  of	
  bulk	
  samples.	
  The	
  mutational	
  

distances	
  correspond	
  to	
  the	
  number	
  of	
  unique	
  mutations	
  between	
  any	
  two	
  such	
  

intersections.	
  	
  

	
  

If	
   we	
   were	
   sampling	
   on	
   a	
   tree	
   of	
   perfectly	
   defined	
   species,	
   the	
   number	
   of	
  

inferable	
   intermitted	
   branches	
   would	
   be	
   in	
   the	
   order	
  2𝑛 − 2,	
   given	
  𝑛	
  species.	
  

However,	
  our	
  situation	
  is	
  slightly	
  different.	
  A	
  spatial	
  bulk	
  cancer	
  sample	
  contains	
  

multiple	
   lineages	
   of	
   cells	
   that	
   are	
   sequenced.	
   Due	
   to	
   cell	
   intermixing	
   and	
  

subclonal	
   mutations,	
   groups	
   of	
   cells	
   in	
   the	
   same	
   sample	
   may	
   have	
   distinct	
  

common	
  ancestors.	
  In	
  SI	
  Figure	
  22a	
  we	
  show	
  that,	
  if	
  we	
  were	
  able	
  to	
  sequence	
  at	
  

perfect	
   clonal	
   single	
   cell	
   resolution,	
   we	
   would	
   indeed	
   infer	
  2𝑛 − 2	
  uniquely	
  

different	
  intermittent	
  mutational	
  distances.	
  However,	
  allowing	
  realistic	
  spatially	
  

sampled	
  bulk	
  populations	
  with	
   lineage	
   intermixing	
   results	
   in	
  more	
   identifiable	
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ancestral	
  populations	
  and	
  thus	
  more	
  mutational	
  distances	
  (SI	
  Figure	
  22).	
  Given	
  𝑛	
  

independent	
   bulk	
   samples,	
  we	
   can	
   split	
   the	
   data	
   into	
   smaller	
   sets	
   containing	
  𝑖	
  

samples.	
   For	
   each	
   such	
   set	
  we	
  have	
   !! 	
  possible	
   intersections	
   and	
   the	
  possible	
  

number	
   of	
   intersections	
   between	
   𝑖 − 1 	
  and	
   𝑖 	
  subsets	
   becomes	
   !
!!!

!
! .	
  

Consequently,	
  the	
  maximal	
  combinatorial	
  number	
  of	
  mutational	
  distances	
  given	
  

𝑛	
  bulk	
  samples	
  is	
  	
  

	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   !
!

!
!!! =

!!!  ![!!!!]

!![!!!]
≈ !!

!"
− 2𝑛!!!

!!! 	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (19)	
  

	
  

and	
   scales	
   faster	
   (leading	
   term	
  ~4!)	
   compared	
   to	
   the	
   number	
   of	
   intermittent	
  

branches	
   of	
   a	
   binary	
   time	
   ordered	
   tree	
   (~2𝑛)	
   (SI	
   Figure	
   23).	
   This	
   is	
   also	
  

exemplified	
  in	
  SI	
  Figure	
  22,	
  which	
  compares	
  the	
  mutational	
  distance	
  distribution	
  

given	
   a	
   perfectly	
   inferable	
   clonal	
   structure	
   (species	
   tree)	
   to	
   the	
   case	
   of	
   spatial	
  

tumour	
   bulk	
   sampling	
   with	
   lineage	
   intermixing	
   and	
   noise	
   from	
   sequencing	
  

depth.	
   It	
   has	
   to	
   be	
   said	
   that	
   not	
   each	
   of	
   these	
   distances	
   is	
   unique	
   and	
  we	
  will	
  

sample	
   some	
   of	
   the	
   same	
   distances	
   repeatedly.	
   However,	
   the	
   extractable	
  

information	
   is	
   sufficient	
   to	
   recover	
   the	
   theoretically	
   predicted	
   distribution	
   of	
  

mutational	
  distances	
  (Figure	
  1e	
  and	
  SI	
  Figures	
  22,	
  27,	
  28	
  &	
  34).	
  	
  

	
  

	
  

Connection	
  of	
  the	
  effective	
  survival	
  rate	
  and	
  a	
  microscopic	
  death	
  rate	
  

	
  

Throughout	
   our	
   derivation	
   of	
   the	
   mutational	
   distance	
   distribution	
   we	
   use	
   an	
  

effective	
  survival	
  rate	
  𝛽	
  to	
  model	
  cell	
  death.	
  We	
  defined	
  𝛽	
  as	
  the	
  probability	
  that	
  

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted February 25, 2019. ; https://doi.org/10.1101/560243doi: bioRxiv preprint 

https://doi.org/10.1101/560243
http://creativecommons.org/licenses/by-nc/4.0/


	
   26	
  

both	
  cell	
  lineages	
  survive	
  after	
  cell	
  division,	
  while	
  1− 𝛽	
  is	
  the	
  probability	
  of	
  only	
  

a	
   single	
   surviving	
   cell	
   lineage.	
   This	
   concept	
   is	
   closely	
   related	
   to	
   cell	
   fitness,	
   as	
  

cells	
   with	
   higher	
  𝛽 	
  have	
   on	
   average	
   more	
   successful	
   cell	
   divisons	
   and	
   thus	
  

produce	
  (given	
  the	
  same	
  number	
  of	
  cell	
  divisions	
  per	
  unit	
  time)	
  more	
  surviving	
  

offspring	
  compared	
  to	
  cells	
  with	
  lower	
  𝛽.	
  On	
  could	
  also	
  formulate	
  cell	
  death	
  with	
  

a	
  microscopic	
  perspective	
  that	
  would	
  suggest	
  a	
  certain	
  probability	
  of	
  cell	
  death	
  𝛼	
  

for	
   each	
   daughter	
   cell	
   after	
   division.	
   Such	
   a	
   probability	
   would	
   allow	
   three	
  

outcomes	
   after	
   a	
   cell	
   division:	
   with	
   probability	
  (1− 𝛼)! 	
  both	
   daughter	
   cells	
  

survive,	
   with	
   probability	
   2𝛼(1− 𝛼) 	
  one	
   daughter	
   cell	
   survives	
   and	
   with	
  

probability	
  𝛼! 	
  both	
   daughter	
   cells	
   die.	
   However,	
   as	
   we	
   are	
   bound	
   to	
   find	
  

surviving	
   cell	
   lineages	
   in	
   every	
   possible	
   measure	
   of	
   tumours,	
   none	
   of	
   the	
  

observed	
  cell	
  lineages	
  can	
  have	
  gone	
  extinct.	
  Thus	
  an	
  event	
  where	
  both	
  daughter	
  

cells	
   died	
   (cell	
   lineage	
   extinction)	
   did	
   not	
   occur	
   within	
   the	
   observable	
   data.	
  

Mathematically,	
  this	
  implies	
  that	
  every	
  measurement	
  conditions	
  cell	
  division	
  on	
  

non-­‐extinction	
  of	
  both	
  daughter	
  cells	
  and	
  we	
  can	
  write	
  

	
  

𝛽 ≡ 𝑃 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙  𝑑𝑖𝑣𝑖𝑠𝑖𝑜𝑛   𝑛𝑜𝑛  𝑒𝑥𝑡𝑖𝑛𝑐𝑡𝑖𝑜𝑛)

=
𝑃(𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙  𝑑𝑖𝑣𝑖𝑠𝑖𝑜𝑛  &  𝑛𝑜𝑛  𝑒𝑥𝑡𝑖𝑛𝑐𝑡𝑖𝑜𝑛)

𝑃(𝑛𝑜𝑛  𝑒𝑥𝑡𝑖𝑛𝑐𝑡𝑖𝑜𝑛) ,	
  

	
  

and	
  with	
  the	
  corresponding	
  probabilities	
  𝛼	
  we	
  get	
  	
  

	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  𝛽 = (!!!)!

!!!!
= !!!

!!!
.	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (20)	
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In	
   our	
   scenario	
  𝛽	
  and	
  𝛼	
  are	
   interchangeable.	
   We	
   also	
   can	
   rearrange	
   equation	
  

(20)	
  to	
  solve	
  for	
  𝛼,	
  	
  

	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  𝛼 = !!!
!!!

.	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (21)	
  

	
  

If	
  we	
  interpret	
  𝛼	
  as	
  the	
  probability	
  of	
  random	
  cell	
  death	
  after	
  a	
  division,	
  𝛼	
  must	
  

be	
   smaller	
   than	
  1/2.	
   If	
  𝛼 	
  were	
   larger	
   than	
   1/2,	
   tumour	
   populations	
   extinct	
  

almost	
   surely	
   after	
   sufficiently	
   many	
   cell	
   divisions.	
   This	
   implies	
  𝛽 > 1/3	
  for	
  

growing	
   populations,	
   if	
  𝛼 	
  was	
   interpreted	
   as	
   random	
   cell	
   death.	
   	
   Computer	
  

simulations	
  confirmed	
  that	
  for	
  our	
  purpose	
  indeed	
  𝛼	
  and	
  𝛽	
  are	
  interchangeable.	
  

Interestingly,	
   this	
   also	
   suggests	
   that	
   in	
   real	
   cancer	
   genomics	
   data	
   we	
   should	
  

always	
   find	
  𝛽 > 1/3.	
   Interestingly	
   in	
   16	
   cancers	
   analysed,	
   in	
   all	
   cases	
  we	
  have	
  

𝛽 > 1/3,	
   but	
   we	
   find	
   two	
   examples	
   that	
   are	
   close	
   to	
   the	
   predicted	
   minimal	
  

possible	
  value	
  for	
  growing	
  populations	
  (0.34	
  &	
  0.36).	
  	
  

	
  

Non-­‐constant	
  cell	
  death	
  and	
  tumour	
  age	
  inferences	
  

Cell	
   death	
   is	
   cell	
   intrinsic	
   in	
   our	
   model.	
   This	
   cell	
   intrinsic	
   death	
   may	
   have	
  

different	
  underlying	
  causes	
  and	
  the	
  combined	
  effect	
  of	
  these	
  causes	
  corresponds	
  

to	
   the	
   inferred	
  𝛽	
  parameter.	
  However,	
   it	
   is	
   also	
  possible	
   that	
  death	
  varies	
  with	
  

time,	
  e.g.	
  positive	
  selection	
  could	
  select	
  for	
  lineages	
  that	
  avoid	
  programmed	
  cell	
  

death	
  or	
  escape	
  the	
  immune	
  system	
  more	
  efficiently.	
  To	
  show	
  the	
  effects	
  of	
  such	
  

a	
   change	
   on	
   the	
   errors	
   of	
   our	
   estimates	
   one	
   can	
   for	
   example	
   think	
   of	
   the	
  

following	
  time	
  dependence	
  of	
  the	
  cell-­‐survival	
  rate:	
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  𝛽 = 𝛽 𝑁(𝑡) = !
!!!!!"(!)

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (22)	
  

	
  

This	
   Fermi-­‐function	
   is	
   a	
   particular	
   but	
   common	
   choice	
   to	
   model	
   such	
   time	
  

dependences.	
   Here,	
  𝑁(𝑡)	
  corresponds	
   to	
   the	
   number	
   of	
   tumour	
   cells	
   at	
   time	
  𝑡	
  

and	
  𝜏	
  is	
   a	
   free	
  parameter	
   that	
   can	
  be	
   chosen	
   to	
  adjust	
   the	
  precise	
   shape	
  of	
   the	
  

Fermi	
   function.	
   In	
   this	
   example,	
   the	
   function	
   is	
   such	
   that	
   at	
   time	
  𝑡 = 0	
  tumour	
  

cells	
   start	
  with	
  a	
   survival	
  probability	
  𝛽 = 1/2.	
   Cell	
   survival	
   rates	
   increase	
  with	
  

time	
   (positive	
   selection)	
   and	
   will	
   reach	
   the	
   maximum	
   survival	
   rate	
  𝛽 = 1	
  at	
   a	
  

certain	
   tumour	
   size	
  𝑁	
  (SI	
   Figure	
   24	
   a).	
   The	
   parallel	
   change	
   of	
  𝛽	
  for	
   all	
   cells	
  

simultaneously	
   is	
   unrealistic,	
   but	
   represents	
   a	
   worst-­‐case	
   scenario	
   for	
   our	
  

inference	
  scheme.	
  	
  

	
  

The	
  most	
  critical	
  implication	
  of	
  the	
  parameter	
  𝛽	
  is	
  the	
  estimation	
  of	
  tumour	
  age.	
  

What	
  error	
  would	
  we	
  do,	
  if	
  such	
  a	
  process	
  occurs	
  undetected	
  by	
  our	
  method?	
  In	
  

this	
  scenario	
  average	
  tumour	
  growth	
  is	
  given	
  by	
  the	
  differential	
  equation:	
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= !(!)

!!!!!(!)/!
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (23)	
  

	
  

Assuming	
   that	
  a	
   tumour	
   is	
  diagnosed	
  at	
  a	
  certain	
  size	
  𝑁! ,	
   then	
   tumour	
  age	
  𝑇	
  is	
  

given	
  (rearranging	
  and	
  integrating	
  the	
  above	
  differential	
  equation)	
  by:	
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  (24)	
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This	
  integral	
  cannot	
  be	
  expressed	
  in	
  simple	
  analytical	
  functions,	
  but	
  we	
  can	
  solve	
  

it	
  numerically	
  for	
  any	
  combination	
  of	
  𝜏	
  and	
  𝑁! .	
  Furthermore	
  it	
  is	
  easy	
  to	
  see	
  that	
  

the	
   dominating	
   term	
   of	
   the	
   integral	
   is	
   of	
   the	
   order	
  ~Log[𝑁!].	
   To	
   calculate	
   the	
  

relative	
  error,	
  we	
  would	
  need	
  to	
  compare	
  this	
  time	
  to	
  the	
  situation	
  of	
  unchanged	
  

𝛽.	
  This	
  time	
  is	
  given	
  by	
  undisturbed	
  exponential	
  growth	
  and	
  is	
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  (25)	
  

	
  

The	
  relative	
  error	
  in	
  the	
  tumour	
  age	
  estimation	
  then	
  is	
  1− 𝑇/𝑇!.	
  We	
  can	
  choose	
  

the	
  scale	
  parameter	
  𝜏	
  such	
  that	
  all	
  tumour	
  cells	
  will	
  have	
  acquired	
  the	
  maximum	
  

possible	
   per-­‐cell	
   survival	
   rate	
  𝛽 = 1	
  at	
   a	
   certain	
   tumour	
   size,	
   e.g.	
   for	
  𝜏 = 10!	
  

cancer	
   cells	
   (at	
   least	
   2	
   orders	
   of	
   magnitude	
   below	
   the	
   current	
   detection	
  

threshold).	
  SI	
  Figure	
  24b	
  shows	
  the	
  relative	
  errors	
  of	
  age	
  inferences	
  for	
  tumours	
  

diagnosed	
   at	
   different	
   sizes	
  𝑁! .	
   The	
   error	
   increases	
   for	
   larger	
   tumour	
   size	
   at	
  

diagnosis,	
   as	
   fitter	
   cells	
   have	
  more	
   time	
   to	
   cause	
   deviations	
   from	
   the	
   original	
  

prediction.	
  However,	
  even	
  in	
  the	
  worst	
  case	
  scenario,	
  the	
  error	
  remains	
  < 20%	
  

and	
   in	
   more	
   realistic	
   situations	
   is	
  < 5%.	
   Therefore,	
   even	
   in	
   the	
   worst-­‐case	
  

scenario	
  and	
  a	
  hypothetical	
  tumour	
  age	
  of	
  e.g.	
  5	
  years,	
  an	
  error	
  of	
  20%	
  adds	
  an	
  

uncertainty	
  of	
  ±1	
  year.	
  In	
  most	
  situations	
  the	
  deviation	
  would	
  be	
  much	
  smaller.	
  	
  

	
  

Dependence	
  of	
  tumour	
  age	
  estimation	
  on	
  tumour	
  size	
  at	
  diagnosis	
  

Given	
   a	
   per-­‐cell	
   survival	
   rate	
  𝛽	
  we	
   can	
   estimate	
   the	
   number	
   of	
   generations	
  

necessary	
   to	
   generate	
   a	
   tumour	
   of	
   certain	
   size.	
   The	
   time	
   to	
   diagnosis	
  𝑇!	
  only	
  

depends	
  logarithmically	
  on	
  the	
  number	
  of	
  tumour	
  cells	
  𝑁!	
  at	
  diagnosis	
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  (26)	
  

	
  

given	
  some	
  arbitrary	
  proliferation	
  rate	
  𝜆.	
  Again	
  we	
  can	
  ask,	
  what	
  is	
  the	
  relative	
  

error	
  if	
  a	
  tumour	
  is	
  diagnosed	
  at	
  a	
  different	
  size	
  𝑁!.	
  As	
  before,	
  the	
  relative	
  error	
  

𝜂!	
  is	
  given	
  by	
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  (27)	
  

	
  

SI	
  Figure	
  24	
  shows	
  that	
  even	
  if	
   the	
  number	
  of	
  tumour	
  cells	
  differs	
  by	
  orders	
  of	
  

magnitude,	
   the	
   relative	
   error	
   in	
   tumour	
   age	
   estimations	
   remains	
   small.	
   One	
  

order	
   of	
  magnitude	
   discrepancy	
   in	
   the	
   tumour	
   size	
   estimation	
   corresponds	
   to	
  

approx.	
  10%	
  error	
  of	
  tumour	
  age	
  estimates.	
  	
  

	
  

	
  

Individual	
  based	
  stochastic	
  simulations	
  of	
  tumour	
  growth	
  

	
  

Individual	
   based	
   stochastic	
   simulations	
   of	
   mutation	
   accumulation	
   in	
   spatially	
  

growing	
   tumours	
  confirmed	
  our	
  premise	
   in	
  silico.	
  We	
  simulated	
   tumours	
  of	
  ~1	
  

million	
  cells	
  on	
  a	
  2	
  dimensional	
  grid	
  with	
  varying	
  birth	
  death	
  and	
  mutation	
  rates	
  

using	
  an	
  implementation	
  of	
  the	
  Gillespie	
  algorithm	
  (SI	
  Figure	
  26).	
  A	
  cell	
  division	
  

produces	
   two	
   surviving	
   cells	
   with	
   probability	
  𝛽 	
  or	
   one	
   surviving	
   cell	
   with	
  

probability	
  1− 𝛽 .	
   We	
   also	
   implemented	
   an	
   alternative	
   version,	
   where	
   each	
  

daughter	
  cell	
  survives	
  with	
  a	
  probability	
  𝛼	
  after	
  cell	
  division.	
  These	
  simulations	
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confirmed	
   the	
   equivalence	
   of	
  𝛼	
  and	
  𝛽.	
   During	
   each	
   cell	
   division,	
   each	
   daughter	
  

cell	
   inherits	
   the	
   mutations	
   of	
   its	
   parent	
   and	
   in	
   addition	
   accumulates	
   novel	
  

mutations.	
  The	
  number	
  of	
  novel	
  mutations	
  is	
  drawn	
  from	
  a	
  Poisson	
  distribution	
  

with	
   mean	
  𝜇.	
   During	
   simulations,	
   the	
   mutations	
   for	
   each	
   cell	
   as	
   well	
   as	
   the	
  

division	
  history	
  of	
  each	
  cell	
  are	
  recorded.	
  	
  

	
  

We	
  took	
  bulk	
  samples	
  (between	
  100	
  and	
  10k	
  cells	
  per	
  bulk)	
  from	
  each	
  simulated	
  

tumour.	
  These	
  samples	
  were	
  either	
  distributed	
  at	
  maximal	
  distance	
   	
   (SI	
  Figure	
  

26a)	
   or	
   randomly	
   distributed	
   (SI	
   Figure	
   26b).	
   For	
   most	
   inferences,	
   we	
   used	
  

maximal	
  distance	
  sampling.	
  Sequencing	
  errors	
  were	
  simulated	
  for	
  each	
  bulk	
  by	
  

binomial	
   sampling	
   assuming	
   sequencing	
   depths	
   of	
   100x	
   or	
   200x,	
   generating	
  

realistic	
   mutation	
   distributions	
   comparable	
   to	
   available	
   cancer	
   genomic	
  

sequencing	
   data.	
   	
  We	
   then	
   constructed	
   all	
   pairwise	
  mutational	
   distances	
   of	
   all	
  

ancestral	
  cell	
  lineages	
  for	
  each	
  simulation	
  separately.	
  Figure	
  1	
  shows	
  an	
  example	
  

of	
   the	
  mutational	
   distance	
  distribution	
   from	
  200	
   simulated	
   tumour	
   samples.	
   It	
  

resembles	
   the	
   theoretically	
   predicted	
   mutational	
   distance	
   distribution	
   almost	
  

perfectly.	
  

	
  

To	
   infer	
   the	
   mutation	
   rate	
  𝜇	
  and	
   the	
   per-­‐cell	
   survival	
   rate	
  𝛽	
  solely	
   from	
   the	
  

distribution	
   of	
   mutational	
   distances	
   without	
   any	
   prior	
   knowledge	
   on	
   the	
  

simulation,	
   we	
   adopted	
   a	
   probabilistic	
   Bayesian	
   Metropolis-­‐Hastings	
   (MCMC)	
  

algorithm	
  (see	
  also	
  below	
  for	
  details).	
  9	
  bulk	
  samples	
  allow	
  to	
  infer	
  the	
  true	
  per-­‐

cell	
  mutation	
  rate	
  𝜇	
  and	
  per-­‐cell	
  survival	
  rate	
  𝛽	
  with	
  high	
  precision	
  (𝜇:	
  Spearman	
  

Rho	
   = 0.98,𝑝 = 4×10!!" 	
  ;	
   𝛽: 	
  Spearman	
   Rho	
   = 0.93,𝑝 = 8×10!!" 	
  ,	
   Relative	
  

error:	
  𝜂! = 0.056 ,	
  𝜂! = 0.045 ),	
   Figure	
   1e.	
   The	
   robustness	
   of	
   the	
   inference	
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scheme	
   to	
  more	
   relaxed	
  model	
   assumptions	
   and	
  data	
   quality	
   and	
  quantity	
   are	
  

discussed	
  below	
  in	
  more	
  detail.	
  	
  

	
  

Bayesian	
  parameter	
  inference	
  

	
  

We	
  now	
  discuss	
  the	
  inverse	
  problem,	
  that	
  is,	
  can	
  we	
  reliably	
  identify	
  the	
  single	
  

cell	
   parameters	
   (per-­‐cell	
   mutation	
   rate,	
   per-­‐cell	
   survival	
   probability)	
   given	
  

measured	
  distances	
  of	
  multi-­‐region	
  sequenced	
  cancer	
  samples.	
  These	
  distances	
  

might	
  be	
  inferred	
  from	
  either	
  forward	
  in	
  time	
  simulated	
  tumour	
  growth,	
  or	
  data	
  

from	
  multi-­‐region	
  sequenced	
  cancer	
  samples.	
  	
  	
  

	
  

We	
   use	
   a	
   Markov	
   chain	
   Monte	
   Carlo	
   method	
   (MCMC),	
   more	
   precisely	
   we	
  

implemented	
  a	
  standard	
  Metropolis-­‐Hastings-­‐algorithm.	
  The	
  algorithm	
  works	
  as	
  

follows:	
  

(i) Create	
  a	
  new	
  random	
  set	
  of	
  model	
  parameters	
  𝒘	
  given	
  the	
  current	
  set	
  

of	
   parameters	
  𝒗 	
  from	
   a	
   defined	
   probability	
   density	
  𝑄 ,	
   such	
   that	
  

𝑄 𝑥 𝑦 = 𝑄(𝑦|𝑥).	
  	
  

(ii) Calculate	
  the	
  likelihood	
  𝐿(𝑃 𝒘 )	
  of	
  the	
  model	
  distribution	
  𝑃(𝒘)	
  given	
  

the	
  data.	
  

(iii) Calculate	
   the	
   ratio	
   of	
   the	
   new	
   and	
   old	
   likelihood	
  𝜌 = 𝐿(𝑃 𝒘 )/

𝐿(𝑃 𝒗 ).	
   Accept	
   the	
   new	
   parameter	
   set	
  with	
   probability	
  𝜌	
  otherwise	
  

reject.	
  	
  

(iv) Repeat	
  

In	
   our	
   case	
   the	
  model	
   distribution	
   is	
   given	
   by	
   equation	
   (13).	
   To	
   calculate	
   the	
  

likelihood	
  of	
  equation	
  (13)	
  given	
  the	
  data,	
  we	
  have	
  to	
  choose	
  a	
  cut	
  off	
  for	
  the	
  two	
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infinite	
   sums.	
   However,	
   real	
   data	
   always	
   has	
   a	
  maximum	
  mutational	
   distance.	
  

Higher	
  terms	
  of	
  the	
  infinite	
  sums	
  contribute	
  to	
  higher	
  mutational	
  distances.	
  The	
  

distribution	
  of	
   interest	
  does	
  not	
   change	
   for	
   a	
   sufficiently	
  high	
   cut	
   off	
   and	
  each	
  

observed	
  data	
  set	
  only	
  requires	
  finite	
  many	
  terms.	
  We	
  used	
  uninformed	
  uniform	
  

prior	
  distributions	
  for	
  the	
  per-­‐cell	
  mutation	
  rate	
  𝜇	
  and	
  the	
  per-­‐cell	
  survival	
  rate	
  

𝛽	
  in	
  all	
  cases.	
  Point	
  estimates	
  were	
  extracted	
  as	
  sample	
  medians	
  from	
  the	
  MCMC	
  

inferences	
  for	
  the	
  mutation	
  rate	
  and	
  cell	
  survival	
  rate	
  separately.	
  The	
  ranges	
  of	
  

the	
   uniform	
   priors	
   can	
   be	
   adjusted	
   to	
   optimise	
   acceptance	
   rates	
   and	
  

computational	
   time.	
   In	
   our	
   implementation,	
   a	
   new	
   set	
   of	
   parameters	
   is	
   always	
  

relative	
  to	
  the	
  previously	
  accepted	
  parameter	
  set	
  𝒘!"# = 𝒘!"# +Φ 𝒘 ,	
  where	
  Φ	
  

is	
  the	
  prior	
  parameter	
  distribution.	
  A	
  typical	
  range	
  used	
  in	
  our	
  inference	
  scheme	
  

is	
  Φ!"#$%&' 𝛽 = −0.06,+0.06 	
  and	
  Φ!"#$%&' 𝜇 = [−5,+5]	
   for	
   whole	
   genome	
  

sequencing,	
   but	
   could	
   also	
   vary	
   for	
   data	
   sets	
  with	
   higher	
   or	
   lower	
  mutational	
  

burden.	
  We	
  tested	
  the	
  robustness	
  of	
  the	
  MCMC	
  framework	
  and	
  in	
  addition	
  used	
  

Gamma	
  distributions	
  as	
  prior	
  (SI	
  Figure	
  27).	
  The	
  MCMC	
  inference	
  converges	
  to	
  

the	
  same	
  parameter	
  sets,	
  independent	
  of	
  the	
  prior	
  distribution	
  of	
  choice,	
  or	
  the	
  

initial	
   starting	
   condition	
   of	
   the	
  Markov	
   Chain.	
   If	
   both	
   parameters	
   are	
   inferred	
  

simultaneously,	
  they	
  converge	
  to	
  the	
  correct	
  initially	
  set	
  of	
  parameter	
  values.	
  If	
  

one	
  of	
   the	
  parameters	
   is	
   fixed	
   to	
   the	
  correct	
  value,	
   the	
  second	
  parameter	
  does	
  

converge	
  to	
  the	
  correct	
  value	
  (SI	
  Figure	
  27).	
  	
  

	
  

	
  Examples	
  of	
  MCMC	
  chains	
  and	
  resulting	
  parameter	
  distributions	
  are	
  shown	
  in	
  SI	
  

Figures	
  1-­‐3,	
  SI	
  Figures	
  10-­‐18	
  &	
  Si	
  Figures	
  27,28.	
  Our	
  method	
  is	
  able	
  to	
  recover	
  

the	
  parameter	
  sets	
  of	
  simulated	
  tumour	
  growth	
  reliably	
  with	
  high	
  precision,	
  see	
  

Figure	
  1	
   in	
   the	
  main	
   text,	
  e.	
  g.,	
  9	
  bulk	
  samples	
  allow	
  to	
   infer	
   the	
   true	
  mutation	
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rate	
  𝜇 	
  and	
   per-­‐cell	
   survival	
   rate	
  𝛽 	
  with	
   high	
   precision	
   ( 𝜇: 	
  Spearman	
   Rho	
  

= 0.98,𝑝 = 4×10!!" 	
  ;	
  𝛽: 	
  Spearman	
   Rho	
  = 0.93,𝑝 = 8×10!!" 	
  ,	
   Relative	
   error:	
  

𝜂! = 0.056,	
  𝜂! = 0.045).	
   Inferences	
   remain	
   possible	
   for	
   up	
   to	
   6	
   independent	
  

bulk	
  samples	
  (SI	
  Figure	
  33)	
  and	
  reduced	
  sequencing	
  depth	
  of	
  25x	
  (SI	
  Figure	
  32).	
  	
  	
  	
  

	
  

Robustness	
   of	
   evolutionary	
   parameter	
   inferences	
   on	
  model	
   assumptions	
  

and	
  data	
  quality	
  and	
  quantity	
  

	
  

Our	
   theoretical	
   derivation	
   of	
   the	
   mutational	
   distance	
   distribution	
   and	
   our	
  

computational	
   framework	
   of	
   per-­‐cell	
   mutation	
   and	
   per-­‐cell	
   survival	
   inference	
  

are	
  based	
  on	
  a	
  set	
  of	
  assumptions.	
  In	
  the	
  following	
  we	
  discuss	
  these	
  assumptions	
  

in	
   more	
   detail	
   and	
   quantify	
   the	
   robustness	
   of	
   our	
   parameter	
   inferences	
   to	
  

violations	
  of	
  these	
  assumptions.	
  	
  	
  

	
  

Non-­‐constant	
  per-­‐cell	
  mutation	
  rate	
  

	
  

We	
   assume	
   that	
  with	
   each	
   cell	
   division	
   cancer	
   cells	
   acquire	
  𝑋	
  novel	
  mutations,	
  

where	
  𝑋	
  is	
  a	
  Poisson	
  distributed	
  random	
  variable	
  with	
  a	
  constant	
  mean	
  mutation	
  

rate	
  𝜇.	
  However,	
   in	
  principal,	
   the	
  mean	
  mutation	
   rate	
  𝜇	
  could	
   itself	
   vary.	
  These	
  

changes	
   might	
   occur	
   in	
   bursts	
   (e.g.	
   sudden	
   APOBEC	
   activity)	
   or	
   change	
   more	
  

steadily	
  over	
  time.	
  We	
  discuss	
  two	
  additional	
  scenarios.	
  The	
  first	
  scenario	
  allows	
  

the	
   rate	
  𝜇 	
  to	
   be	
   a	
   random	
   variable.	
   We	
   choose	
   an	
   exponential	
   distribution	
  

𝑃(𝜇!"#) = (1/𝜆)𝑒!!/! .	
   In	
   this	
   scenario	
   one	
   allows	
   for	
   considerable	
   noise	
   in	
  

single	
  cell	
  divisions,	
   for	
  example	
  cell	
  divisions	
  with	
   lower	
  mutation	
  rates	
  and	
  a	
  

few	
   cell	
   divisions	
   with	
   much	
   higher	
   mutation	
   rates	
   (modelling	
   e.g.	
   random	
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bursts	
  due	
   to	
  APOBEC	
  activity	
  or	
  other	
  events).	
   In	
   the	
   second	
  scenario	
  we	
  can	
  

consider	
  a	
  situation	
  where	
  the	
  mutation	
  rate	
  grows	
  with	
  time.	
  e.g.:	
  𝜇 𝑡 = 𝜇! +

0.5Log[2]×𝑡.	
   For	
   our	
   simulations,	
   this	
   implies	
   an	
   approximately	
   10-­‐20	
   times	
  

increased	
  mutation	
  rate	
  at	
  the	
  time	
  of	
  sampling	
  compared	
  to	
  the	
  beginning.	
  	
  

	
  

Parameter	
   inferences	
   for	
   these	
   scenarios	
   are	
   shown	
   in	
   SI	
   Figure	
   28.	
   An	
  

exponentially	
   distributed	
   rate	
   parameter	
  𝜇	
  (the	
   number	
   of	
   mutations	
   remains	
  

Poisson	
   but	
   with	
   the	
   non-­‐constant	
   rate	
   parameter	
   𝜇 )	
   adds	
   noise	
   to	
   the	
  

distribution	
  of	
  the	
  mutational	
  distances	
  compared	
  to	
  the	
  constant	
  rate	
  scenario	
  

(e.g.	
  SI	
  Figure	
  28a-­‐f),	
  but	
  the	
  parameter	
  inference	
  remains	
  robust	
  (e.g.	
  SI	
  Figure	
  

28g-­‐l),	
  although	
  leading	
  to	
  slightly	
  lower	
  estimates	
  of	
  survival	
  rates.	
  The	
  second	
  

scenario	
   of	
   a	
   linear	
   increasing	
   mutation	
   rate	
   causes	
   significant	
   error	
   in	
   the	
  

estimation	
  of	
  the	
  mutation	
  rate	
  parameters	
  (SI	
  Figure	
  28m-­‐r),	
  mostly	
  because	
  of	
  

the	
   distortion	
   of	
   the	
   mutational	
   distance	
   distribution,	
   against	
   which	
   the	
  

theoretical	
   model	
   does	
   not	
   fit	
   (SI	
   Figure	
   28s).	
   However,	
   the	
   inferred	
   effective	
  

mutation	
   rate	
   corresponds	
   to	
   the	
   time	
   averaged	
   mean	
   mutation	
   rate	
   on	
   the	
  

course	
  of	
  the	
  stochastic	
  simulation.	
  In	
  SI	
  Figure	
  28t,u	
  we	
  show	
  the	
  relative	
  error	
  

in	
  the	
  estimation	
  of	
  the	
  parameters	
  under	
  the	
  different	
  mutation	
  rate	
  models	
  (20	
  

instances	
  of	
  simulated	
  tumours	
  per	
  scenario).	
  	
  

	
  

Non-­‐exponential	
  tumour	
  growth	
  

	
  

The	
   analytical	
   derivation	
   of	
   the	
   mutational	
   distance	
   distribution	
   is	
   based	
   on	
  

exponentially	
  growing	
  tumour.	
  Although	
  space	
   is	
  not	
  modelled	
  explicitly	
   in	
  our	
  

theoretical	
  derivation,	
  it	
  is	
  an	
  essential	
  ingredient	
  as	
  only	
  spatial	
  sampling	
  allows	
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constructing	
  sufficiently	
  many	
  different	
  cell	
  lineages	
  within	
  single	
  tumours.	
  The	
  

mode	
   of	
   growth,	
   e.g.	
   exponential	
   vs.	
   peripheral	
   could	
   alter	
   the	
   properties	
   of	
  

which	
   and	
   how	
   many	
   different	
   lineages	
   are	
   sampled	
   in	
   space.	
   We	
   therefore	
  

introduced	
  an	
  additional	
  parameter	
  𝑎	
  into	
  our	
  computational	
  stochastic	
  tumour	
  

simulations	
   that	
   models	
   the	
   ability	
   of	
   a	
   cell	
   to	
   proliferate	
   in	
   the	
  

presence/absence	
  of	
  empty	
  space	
  in	
  its	
  direct	
  neighbourhood.	
  If	
  𝑎 = 1,	
  a	
  cell	
  can	
  

always	
   proliferate	
   regardless	
   of	
   empty	
   space	
   in	
   its	
   direct	
   neighbourhood	
   by	
  

pushing	
  cells	
  and	
  creating	
  an	
  empty	
  spot.	
  This	
  results	
  in	
  exponential	
  growth	
  (SI	
  

Figure	
   29a	
   &	
   d),	
   however	
   the	
   spatial	
   proximity	
   of	
   more	
   recent	
   offspring	
   is	
  

maintained.	
  If	
  0 ≤ 𝑎 < 1	
  cells	
  only	
  proliferate	
  with	
  a	
  probability	
  according	
  to	
  the	
  

value	
  𝑎	
  in	
   the	
   absence	
   of	
   empty	
   space,	
   thus	
   favouring	
   cells	
   at	
   the	
   less	
   dense	
  

peripheral	
   boundary	
   of	
   the	
   tumour.	
   This	
   leads	
   to	
   polynomial	
   growth	
   (SI	
  

Figure29c	
   &	
   f).	
   We	
   tested	
   the	
   ability	
   of	
   our	
   method	
   to	
   robustly	
   recover	
   the	
  

mutation	
  rate	
  for	
  different	
  values	
  of	
  𝑎,	
  such	
  as	
  𝑎 = 1	
  (SI	
  Figure	
  29a),	
  𝑎 = 0.5	
  (SI	
  

Figure	
  27b)	
  and	
  𝑎 = 0.25	
  (SI	
  Figure	
  29c).	
  Although	
  the	
  variance	
  of	
  the	
  parameter	
  

inference	
  slightly	
  increases,	
  the	
  relative	
  error	
  𝜂	
  remained	
  below	
  10%	
  in	
  the	
  vast	
  

majority	
   of	
   cases	
   (SI	
   Figure	
   29).	
   Hence,	
   deviations	
   from	
   exponential	
   growth	
  

increase	
  uncertainties,	
  but	
  the	
  inference	
  remains	
  robust.	
  	
  	
  	
  	
  

	
  	
  

Partial	
  selective	
  sweeps	
  

	
  

Positive	
   selection	
   and	
   partial	
   selective	
   sweeps	
   could	
   impact	
   our	
   inference	
   of	
  

evolutionary	
   parameters.	
   In	
   order	
   to	
   test	
   the	
   robustness	
   of	
   our	
  method	
   to	
   the	
  

effects	
   of	
   selection,	
   we	
   ran	
   simulations	
   with	
   varying	
   strength	
   of	
   positively	
  

selected	
  clones.	
  Here	
  positive	
  selection	
  confers	
  a	
  proliferation	
  advantage	
  to	
  cells.	
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SI	
   Figure	
   26	
   shows	
   examples	
   of	
   10	
   simulated	
   tumours	
   as	
   well	
   as	
   the	
   spatial	
  

sampling	
   schemes,	
   such	
  as	
  maximum	
  distance	
   spatial	
   sampling	
   (SI	
  Figure	
  26a)	
  

vs.	
   random	
   spatial	
   sampling	
   (SI	
   Figure	
   26b).	
   We	
   selected	
   simulations	
   with	
   a	
  

partial	
   selective	
   sweep	
   and	
   excluded	
   scenarios	
   where	
   the	
   selected	
   subclone	
  

reached	
   fixation	
   before	
   sampling	
   (in	
   this	
   scenario	
   the	
   tumour	
   goes	
   back	
   to	
   be	
  

uni-­‐clonal	
  and	
  thus	
  within-­‐clone	
  neutral	
  again).	
  SI	
  Figure	
  30	
  provides	
  a	
  summary	
  

of	
   the	
   inferences	
   for	
  neutral	
   tumours	
   (selection	
  coefficient	
   s=0;	
  SI	
  Figure	
  30a),	
  

compared	
  to	
  tumours	
  with	
  varying	
  selection	
  strength	
  (s=0.1,	
  s=0.25	
  and	
  s=0.5;	
  SI	
  

Figure	
   30a	
   &	
   b).	
   Note	
   the	
   high	
   coefficients	
   of	
   selection	
   that	
   infer	
   fitness	
  

advantages	
  of	
  up	
  to	
  50%	
  (s=0.5)	
  to	
  a	
  selected	
  sub-­‐clone	
  in	
  our	
  simulations.	
  The	
  

presence	
   of	
   positively	
   selected	
   sub-­‐clones	
   adds	
   uncertainty	
   to	
   the	
   mutational	
  

distance	
   distributions.	
   However,	
   even	
   for	
   very	
   strong	
   positive	
   selection	
   of	
  

𝑠 = 0.5	
  (corresponding	
   to	
   a	
   50%	
   fitness	
   advantage)	
   mutation	
   rate	
   inferences	
  

remain	
  robust	
  (relative	
  error:	
  𝜂! = 0.1)	
  and	
  also	
  per-­‐cell	
  survival	
  rate	
  estimates	
  

remain	
  stable	
  (relative	
  error:	
  𝜂! = 0.1	
  for	
  𝑠 = 0.5,	
  SI	
  Figure	
  30).	
  	
  	
  

	
  

Spatial	
  sampling	
  strategies	
  and	
  sampling	
  biases	
  

	
  

The	
  construction	
  of	
  mutational	
  distances	
  relies	
  on	
  detecting	
  differences	
  between	
  

ancestral	
   cells	
   that	
   are	
   inferred	
   from	
  mutations	
   of	
   bulk	
   or	
   single	
   cell	
   samples.	
  

One	
   would	
   expect	
   that	
   genetic	
   and	
   spatial	
   distance	
   of	
   samples	
   is	
   on	
   average	
  

positively	
   correlated	
   (although	
   the	
   relation	
   is	
   non-­‐linear	
   and	
   probably	
   more	
  

involved)34.	
   Thus	
   the	
   relative	
   location	
   of	
   samples	
   potentially	
   influences	
  

inferences.	
  We	
   compared	
   parameter	
   inferences	
   from	
   tumours	
  with	
   a	
  maximal	
  

distance	
   sampling	
   strategy	
   (which	
   is	
   the	
   most	
   common	
   current	
   sampling	
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strategy	
  in	
  clinical	
  practice)	
  and	
  a	
  random	
  sampling	
  strategy,	
  where	
  positions	
  of	
  

sampled	
   bulks	
   are	
   assigned	
   randomly	
   (SI	
   Figure	
   26).	
   In	
   both	
   cases,	
   inferences	
  

are	
  robust	
  against	
  different	
  spatial	
  sampling	
  schemes	
  for	
  both	
  the	
  mutation	
  rate	
  

(SI	
  Figure	
  31a)	
  and	
  the	
  survival	
  rate	
  (SI	
  Figure	
  31b).	
  Maximal	
  distance	
  sampling	
  

appears	
   to	
   perform	
   slightly	
   better	
   compared	
   to	
   random	
   sampling	
   strategies.	
  

Inferences	
   throughout	
   this	
   manuscript	
   relied	
   on	
   a	
   maximal	
   distance	
   sampling	
  

strategy,	
  if	
  not	
  stated	
  otherwise.	
  	
  	
  

	
  

Sequencing	
  depth	
  	
  

	
  

Our	
   stochastic	
   simulations	
   allow	
   us	
   to	
   reproduce	
   the	
   effects	
   of	
   sequencing	
  

coverage	
   on	
   the	
   final	
   data	
   and	
   consequently	
   our	
   evolutionary	
   parameter	
  

inferences.	
  Briefly,	
  we	
  generate	
  dispersed	
  coverage	
  values	
   for	
   input	
  mutations.	
  

We	
  do	
  that	
  by	
  sampling	
  a	
  coverage	
  from	
  a	
  Poisson	
  distribution:	
  Poisson λ = Z 	
  

with	
   mean	
  𝜆	
  equal	
   to	
   a	
   desired	
   sequencing	
   depth	
  𝑍.	
   Once	
   we	
   have	
   sampled	
   a	
  

depth	
  value	
  k	
  for	
  a	
  mutation,	
  we	
  sample	
  its	
  frequency	
  (number	
  of	
  reads	
  with	
  the	
  

variant	
  allele	
  frequency)	
  with	
  a	
  Binomial	
  trail.	
  We	
  use	
  𝑓 ∼ Binomial(𝑛, 𝑘),	
  where	
  

𝑛	
  is	
   the	
  proportion	
  of	
  cells	
  carrying	
  this	
  mutation	
  given	
  all	
  cells	
  sampled	
  in	
  the	
  

simulated	
  biopsy.	
  	
  

	
  

In	
   SI	
   Figure	
   32	
   we	
   show	
   that	
   parameter	
   inferences	
   based	
   on	
   the	
   mutational	
  

distance	
   distribution	
   remain	
   robust	
   for	
   low	
   sequencing	
   coverage.	
   Sequencing	
  

depth	
   in	
   the	
  available	
  data	
  varied.	
   In	
  general	
  Exome	
  sequencing	
  had	
  very	
  high	
  

coverage:	
  Lung	
  Cancer	
  TracerX	
  median	
  coverage	
  28:	
  426x,	
  Renal	
  cancer	
  analysis	
  

coverage	
   29:	
   >100x.	
   Whole	
   genome	
   sequencing	
   had	
   lower	
   coverage:	
   Median	
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coverage	
  of	
  colorectal	
  cancers	
  from	
  Cross	
  et	
  al.	
  21:	
  55x.	
  Whole	
  genomes	
  of	
  single	
  

colon	
   stem	
   cells	
   in	
   Roerink	
   et	
   al.	
   27	
   were	
   sequenced	
   from	
   single	
   cell	
   derived	
  

Organoids	
  sequenced	
  at	
  30x	
  coverage.	
  	
  

	
  

Number	
  of	
  independent	
  samples	
  per	
  tumour	
  

	
  

SI	
   Figure	
   33	
   shows	
   parameter	
   inferences	
   for	
   multiple	
   independent	
   spatial	
  

tumour	
   simulations	
   with	
   6	
   to	
   9	
   bulk	
   samples.	
   Fewer	
   samples,	
   as	
   expected,	
  

increase	
  the	
  noise	
  of	
  the	
  mutational	
  distance	
  distribution.	
  Parameter	
  inferences	
  

from	
   up	
   to	
   6	
   samples	
   remain	
   robust.	
   In	
   the	
   analysis	
   of	
   real	
   tumours	
   in	
   this	
  

manuscript,	
   the	
  distribution	
  of	
   independent	
   samples	
  per	
   tumour	
   is	
   (number	
  of	
  

cases	
   × 	
  number	
   of	
   independent	
   samples):	
   2×6; 4×7;   5×8; 4×9; 1×13 .	
   This	
  

corresponds	
   to	
   129	
   tumour	
   samples	
   in	
   total	
   with	
   a	
   median	
   of	
   8	
   samples	
   per	
  

tumour.	
  In	
  addition,	
  we	
  also	
  include	
  the	
  analysis	
  of	
  89	
  whole	
  genome	
  sequenced	
  

healthy	
  haematopoietic	
   stem	
  cells	
   from	
  a	
  single	
  healthy	
  donor	
   (Figure	
  2	
   in	
   the	
  

main	
  text).	
  	
  

	
  

Genomic	
  analysis	
  of	
  cancer	
  samples	
  

	
  

Details	
   of	
   the	
   bioinformatics-­‐analysis	
   of	
   the	
   multi-­‐region	
   sequenced	
   tumour	
  

samples	
   can	
   be	
   found	
   for	
   the	
   colon	
   carcinomas	
   and	
   the	
   adenoma	
   in21,	
   the	
  

additional	
   three	
   single	
   cell	
  whole	
   genome	
   sequenced	
   colon	
   cancers27	
   the	
   renal	
  

cell	
  carcinomas	
  in29	
  and	
  the	
  lung	
  squamous	
  and	
  adenocarcinoma	
  in28.	
  Details	
  on	
  

the	
  methodology	
  and	
  sequencing	
  of	
  single	
  stem	
  cells	
   in	
  healthy	
  haematopoiesis	
  

can	
  be	
  found	
  in20.	
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Mutational	
  signature	
  inference	
  

	
  

For	
   each	
   sample	
   we	
   found	
   the	
   set	
   of	
   signatures	
   (among	
   those	
   signatures	
  

reported	
   in	
   CRC)	
   that	
   best	
   explained	
   the	
   totality	
   of	
   mutations	
   in	
   the	
   sample.	
  

Specifically	
  we	
  did	
  a	
  non-­‐negative	
  regression	
  of	
   the	
  sample’s	
  mutations	
  against	
  

all	
   the	
  CRC	
   signatures24	
   and	
   found	
   those	
   signatures	
  with	
  non-­‐zero	
   coefficients.	
  

We	
  took	
  these	
  as	
  the	
  candidate	
  signatures	
  for	
  each	
  sample.	
  	
  

	
  

For	
  each	
  mutation	
  in	
  each	
  sample,	
  we	
  determined	
  the	
  likelihood	
  of	
  the	
  mutation	
  

under	
  each	
  of	
   the	
  candidate	
  signatures.	
  We	
  assigned	
  a	
  mutation	
   to	
  a	
  candidate	
  

signature	
  where	
  the	
  likelihood	
  under	
  that	
  signature	
  was	
  at	
  least	
  twice	
  that	
  under	
  

any	
   other.	
   If	
   there	
   was	
   no	
   such	
   signature,	
   we	
   assigned	
   the	
   mutation	
   to	
  

‘Signature.Other’.	
  The	
  method	
  was	
  originally	
  developed	
  in35	
  and	
  is	
  based	
  on	
  the	
  

R-­‐package	
  “SomaticSignatures”	
  36.	
  We	
  did	
  not	
  adjust	
  for	
  differences	
  in	
  nucleotide	
  

composition	
   when	
   calculating	
   differences	
   between	
   coding	
   and	
   non-­‐coding	
  

regions	
  as	
  we	
  wanted	
   to	
   infer	
   the	
  overall	
  point	
  mutation	
  rate	
   in	
   these	
   regions,	
  

see	
   for	
  example	
  SI	
  Figure	
  5.	
  Nucleotide	
  dependent	
  mutation	
  rate	
  estimates	
  are	
  

shown	
   in	
  SI	
  Figure	
  6.	
  Nucleotide	
  composition	
  was	
  adjusted	
   for	
   to	
   calculate	
   the	
  

mutation	
  rates	
  of	
  mutational	
  signatures	
  using	
  standard	
  tools36.	
  

	
  

Per-­‐cell	
  survival	
  rate	
  and	
  stem	
  cell	
  properties	
  

	
  

The	
   data	
   from	
   Hans	
   Clevers	
   and	
   colleagues27	
   measures	
   mutational	
   burden	
   in	
  

single	
   colon	
   stem	
   cells	
   by	
   expanding	
   isolated	
   donor	
   derived	
   single	
   cells	
   into	
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organoids.	
   Thus	
   in	
   this	
   case	
   the	
   inferences	
  most	
   certainly	
   correspond	
   to	
   stem	
  

cell	
   population	
   dynamics.	
   Furthermore,	
   our	
   analysis	
   relies	
   on	
   mutational	
  

distances	
  between	
  ancestral	
  cells	
  and	
  thus	
  surviving	
  lineages	
  within	
  the	
  tumour	
  

population	
  throughout	
  its	
  evolutionary	
  history.	
  These	
  lineages	
  of	
  ancestral	
  cells	
  

probably	
  also	
   represent	
   stem	
  cell	
   lineages.	
   If	
   there	
   is	
   a	
  dichotomy	
  of	
   stem	
  and	
  

non-­‐stem	
  cells	
  in	
  these	
  tumours,	
  our	
  method	
  corresponds	
  to	
  the	
  survival	
  rate	
  of	
  

stem	
  cell	
  lineages.	
  This	
  is	
  further	
  supported	
  by	
  the	
  fact	
  that	
  our	
  model	
  describes	
  

the	
   mutation	
   accumulation	
   in	
   healthy	
   haematopoietic	
   stem	
   cell	
   lineages	
   well	
  

(Figure	
   2	
   in	
   the	
   main	
   text).	
   Ultimately,	
   it	
   is	
   the	
   expansion	
   of	
   the	
   stem	
   cell	
  

population	
  that	
  determines	
  tumour	
  growth.	
  In	
  particular	
  for	
  solid	
  tumours	
  there	
  

is	
  accumulating	
  evidence	
  that	
  the	
  fraction	
  of	
  stem	
  cells	
  is	
  high	
  compared	
  to	
  most	
  

blood	
   cancers,	
   explaining	
   the	
   common	
   failure	
   of	
   targeted	
   therapy	
   in	
   solid	
  

tumours37,38.	
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SI	
   Figure	
   1:	
   Patient	
   02	
  mutational	
   distance	
  distribution	
   and	
  MCMC	
  parameter	
   inference	
  
per	
  chromosome.	
  Chromosomes	
  with	
  sub-­‐clonal	
  copy	
  number	
  alterations	
  were	
  discarded	
  from	
  
the	
  analysis.	
  Original	
  data	
  taken	
  from21.	
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SI	
   Figure	
   2:	
   Patient	
   03	
  mutational	
   distance	
  distribution	
   and	
  MCMC	
  parameter	
   inference	
  
per	
  chromosome.	
  Chromosomes	
  with	
  sub-­‐clonal	
  copy	
  number	
  alterations	
  were	
  discarded	
  from	
  
the	
  analysis.	
  Original	
  data	
  taken	
  from21.	
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SI	
   Figure	
   3:	
   Patient	
   04	
  mutational	
   distance	
  distribution	
   and	
  MCMC	
  parameter	
   inference	
  
per	
  chromosome.	
  Chromosomes	
  with	
  sub-­‐clonal	
  copy	
  number	
  alterations	
  were	
  discarded	
  from	
  
the	
  analysis.	
  Original	
  data	
  taken	
  from21.	
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  SI	
   Figure	
   4:	
   Mutational	
   load	
   of	
   sub-­‐clonal	
   and	
   clonal	
   mutations	
   of	
   Patients	
   02-­‐04.	
  
Mutations	
   were	
   classified	
   as	
   clonal	
   if	
   they	
   were	
   present	
   in	
   all	
   bulk	
   samples	
   of	
   the	
   tumour39.	
  
Mutations	
   present	
   within	
   a	
   subset	
   of	
   samples	
   of	
   a	
   tumour	
   were	
   classified	
   as	
   sub-­‐clonal.	
   MSI	
  
tumour	
   04	
   shows	
   both	
   higher	
   clonal	
   and	
   sub-­‐clonal	
   mutational	
   burden	
   compared	
   to	
   MSS	
  
tumours	
  02	
  and	
  03.	
  	
  	
  
	
  
	
  

	
  
SI	
   Figure	
   5:	
   Inference	
   of	
   per-­‐cell	
  mutation	
   and	
   per-­‐cell	
   survival	
   rate	
   for	
   whole	
   genome	
  
(per	
   chromosome,	
   open	
   grey	
   circles),	
   non-­‐coding	
   (black	
   squares)	
   and	
   coding	
  mutations	
  
(red	
   circles)	
   in	
   Patients	
   02-­‐04.	
   The	
   coding	
  mutation	
   rate	
   in	
   patient	
   02	
   is	
   slightly	
   increased	
  
compared	
  to	
  whole	
  genome	
  inferences	
  (𝜇!"!" = 1×10!!, 𝜇!"!" = 2.8×10!!),	
  they	
  are	
  slightly	
  lower	
  
in	
   patient	
   03	
  (𝜇!"!" = 2.4×10!!, 𝜇!"!" = 2.02×10!!) 	
  and	
   the	
   same	
   in	
   patient	
   04	
  (𝜇!"!" = 3.1×
10!!, 𝜇!"!" = 3.08×10!!).	
  Non-­‐coding	
  mutation	
  rates	
  agree	
  with	
  median	
  whole	
  genome	
  mutation	
  
rates.	
  Recently	
   it	
  was	
  suggested	
   that	
  mismatch	
  repair	
  efficacy	
  differs	
   in	
  coding	
  and	
  non-­‐coding	
  
regions	
  of	
   the	
  genome22.	
  Consistent	
  with	
   this	
  hypothesis	
   the	
  MSI+	
   tumour	
   in	
  Patient	
  04	
  shows	
  
the	
  exact	
  same	
  mutation	
  rate	
  per	
  cell	
  division	
  in	
  whole	
  genome,	
  non-­‐coding	
  and	
  coding	
  genome	
  
regions.	
  The	
  per-­‐cell	
   survival	
   rate	
   inferences	
  are	
  across	
  whole	
  genome,	
  non-­‐coding	
  and	
  coding	
  
genome	
  regions.	
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SI	
   Figure	
  6:	
  Mutation	
   rates	
   for	
  mutational	
   subtypes.	
  The	
  mutation	
  rate	
  for	
  each	
  mutational	
  
subtype	
  was	
  inferred	
  based	
  on	
  our	
  MCMC	
  algorithm	
  for	
  individual	
  chromosomes	
  (see	
  Figure	
  2	
  in	
  
the	
   main	
   text)	
   for	
   all	
   3	
   patients	
   separately	
   and	
   normalised	
   for	
   the	
   C	
   &	
   T	
   content	
   at	
   each	
  
chromosome.	
   In	
   Patient	
   02	
   and	
  04	
   transitions	
   show	
  higher	
  mutation	
   rates	
   than	
   transversions.	
  
Interestingly,	
  in	
  Patient	
  02	
  the	
  mutation	
  rates	
  for	
  the	
  transversions	
  T → A	
  and	
  T → G	
  are	
  below	
  a	
  
detection	
   threshold,	
  whereas	
   in	
   Patient	
   04	
   they	
   are	
   detectable.	
   The	
   overall	
   pattern	
   of	
   somatic	
  
mutation	
   accumulation	
   in	
   theses	
   two	
   patients	
   agrees	
   with	
   patterns	
   of	
   genome	
   divergence	
  
between	
   human	
   and	
   chimpanzees26.	
   Patient	
   03	
   shows	
   a	
   distinct	
   pattern	
   of	
   mutation	
  
accumulation.	
   Here	
   transitions	
   and	
   transversions	
   appear	
   equally	
   likely,	
   with	
  C → X	
  mutations	
  
slightly	
  more	
  likely	
  compared	
  to	
  T → X	
  mutations.	
  	
  	
  	
  

	
  
SI	
   Figure	
   7:	
   Distribution	
   of	
   mutational	
   signature	
   mutation	
   rate	
   per	
   chromosome	
   for	
  
Patients	
   02-­‐04.	
   Mutation	
   rates	
   per	
   cell	
   division	
   of	
   mutational	
   signatures	
   differ	
   significantly	
  
between	
  patients.	
  (*:	
  p<0.05,	
  **	
  :p<0.01,	
  ***:	
  p<0.001,	
  Mann-­‐Whitney-­‐U-­‐test).	
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  SI	
  Figure	
  8:	
  Distribution	
  of	
  mutational	
  signature	
  mutation	
  rate	
  for	
  different	
  chromosomes	
  
of	
  Patient	
  03	
  sorted	
  by	
  ploidy.	
  After	
  normalizing	
  for	
  ploidy,	
  mutation	
  rate	
  distributions	
  do	
  not	
  
differ	
  significantly	
  (p>0.3,	
  Mann-­‐Whitney-­‐U-­‐test).	
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SI	
   Figure	
   9:	
   Mutational	
   distance	
   distribution	
   and	
   MCMC	
   inference	
   for	
   individual	
  
chromosomes	
   inferred	
   from	
  7	
  whole	
  genome	
  sequenced	
  samples	
  of	
  a	
  MSI+	
  colon	
  cancer	
  
patient.	
  Data	
  was	
  taken	
  from27	
  
	
  

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted February 25, 2019. ; https://doi.org/10.1101/560243doi: bioRxiv preprint 

https://doi.org/10.1101/560243
http://creativecommons.org/licenses/by-nc/4.0/


	
   51	
  

	
  
SI	
   Figure	
   10:	
   Mutational	
   distance	
   distribution	
   and	
   MCMC	
   inference	
   for	
   individual	
  
chromosomes	
   inferred	
   from	
  9	
  whole	
   genome	
   sequenced	
   samples	
   of	
   a	
  MSS	
   colon	
   cancer	
  
patient.	
  Data	
  was	
  taken	
  from27.	
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SI	
   Figure	
   11:	
   Mutational	
   distance	
   distribution	
   and	
   MCMC	
   inference	
   for	
   individual	
  
chromosomes	
   inferred	
   from	
  9	
  whole	
   genome	
   sequenced	
   samples	
   of	
   a	
  MSS	
   colon	
   cancer	
  
patient.	
  Data	
  was	
  taken	
  from27.	
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SI	
   Figure	
   12:	
   Inference	
   of	
   the	
  mutation	
   rate	
  𝝁	
  per	
   cell	
   division	
   and	
   the	
   per-­‐cell	
   survival	
  
rate	
  𝜷	
  per	
  chromosome	
  for	
  the	
  three	
  patients	
  shown	
  in	
  SI	
  Figures	
  9-­‐11.	
  Insets	
  show	
  median	
  
mutation	
  and	
  per-­‐cell	
  survival	
  rates.	
  Patient	
  1	
  is	
  MSI+	
  and	
  presents	
  with	
  a	
  higher	
  mutation	
  rate	
  
per	
  cell	
  division	
  compared	
  to	
  patients	
  2	
  and	
  3.	
  Data	
  was	
  taken	
  from27.	
  	
  
	
  
	
  

	
  
SI	
  Figure	
  13:	
  Mutational	
  distance	
  distributions	
  constructed	
  from	
  the	
  whole	
  genome	
  of	
  a)-­‐
c)	
   tumours	
   02-­‐04	
   from21	
   and	
   d)-­‐f)	
   Patients	
   1-­‐3	
   from27.	
   Grey	
   lines	
   show	
   the	
   theoretical	
  
mutational	
   distance	
   distribution	
   based	
   on	
   best	
   inferences	
   and	
   black	
   dots	
   correspond	
   the	
  
mutational	
  distances	
   in	
   the	
   tumours.	
  Note	
   the	
  different	
  scales	
   for	
   the	
  mutational	
  distances	
  and	
  
the	
   order	
   of	
   magnitude	
   difference	
   between	
   overall	
   probabilities	
   of	
   distances	
   across	
   patients.	
  
These	
  mutational	
  distance	
  distributions	
  fall	
  into	
  different	
  classes	
  based	
  on	
  the	
  per-­‐cell	
  mutation	
  
rate	
  and	
  per-­‐cell	
  survival	
  rate	
  as	
  illustrated	
  in	
  SI	
  Figure21.	
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SI	
   Figure	
   14:	
   Coefficient	
   of	
   determination	
   between	
   per-­‐chromosome	
   estimates	
   and	
   the	
  
best	
   estimates	
   of	
   the	
   mutational	
   distance	
   distributions.	
   Shown	
   are	
   the	
   coefficients	
   of	
  
determination	
  per	
  chromosome	
  for	
  tumours	
  02-­‐04	
  and	
  Patients	
  1-­‐3	
  as	
  shown	
  in	
  SI	
  Figures	
  1-­‐3	
  &	
  
9-­‐11.	
  	
  	
  
	
  
	
  

	
  
SI	
   Figure	
   15:	
   Between	
   patient	
   differences	
   of	
   evolutionary	
   parameters.	
   Shown	
   are	
   the	
  
inferences	
   of	
   the	
   mutation	
   and	
   per-­‐cell	
   survival	
   rates	
   per	
   chromosome	
   (dots)	
   for	
   6	
   whole	
  
genome	
  sequenced	
  colorectal	
  cancers.	
  Panels	
  (a)	
  and	
  (b)	
  show	
  the	
  cohort	
  of	
  Cross	
  et	
  al.	
   21	
  and	
  
panels	
  (c)	
  and	
  (d)	
   the	
  original	
  patients	
  by	
  Roerink	
  et	
  al.27	
  A	
  Mann-­‐Whitney-­‐U-­‐test	
  was	
  used	
  to	
  
test	
   between	
   patient	
   differences,	
   symbols	
   correspond	
   to	
   the	
   short	
   notation:	
  ∗  = 𝑝 < 0.01 ,	
  
∗∗  = 𝑝 < 0.001	
  and	
  ∗∗∗  = 𝑝 < 0.0001.	
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SI	
   Figure	
  16:	
  Mutational	
   distance	
  distribution	
   and	
  MCMC	
   inference	
   from	
  a	
   single	
   exome	
  
sequenced	
   adenoma	
   (top)	
   and	
   two	
   exome	
   sequenced	
   carcinomas	
   (bottom).	
   Note,	
   the	
  
adenoma	
   shows	
   smaller	
   mutational	
   differences	
   between	
   ancestral	
   cells	
   compared	
   to	
   both	
  
carcinomas	
  and	
  presents	
  with	
  a	
  near	
  normal	
  mutation	
  rate,	
  see	
  main	
  text	
  also.	
  However	
  the	
  per-­‐
cell	
   survival	
   probability	
   is	
   higher	
   compared	
   to	
   normal	
   tissue	
   and	
   the	
   adenoma	
   is	
   expected	
   to	
  
clonally	
  expand.	
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SI	
   Figure	
   17:	
   Mutational	
   distance	
   distribution	
   and	
   MCMC	
   inference	
   from	
   5	
   exome	
  
sequenced	
  renal	
  cell	
  carcinomas29.	
  Surprisingly,	
  two	
  renal	
  cell	
  carcinomas	
  appear	
  to	
  have	
  near	
  
normal	
  mutation	
  rates	
  (EV003	
  and	
  EV005),	
  similar	
   to	
   the	
  colon	
  adenoma.	
  However,	
  all	
  5	
  cases	
  
present	
  with	
  high	
  per	
  cell	
  survival	
  probabilities.	
  	
  	
  
	
  
	
  
	
  

	
  SI	
   Figure	
   18:	
   Mutational	
   distance	
   distribution	
   and	
   MCMC	
   inference	
   from	
   2	
   TracerX	
  
patients28.	
   Note,	
   the	
   first	
   case	
   has	
   an	
   approximately	
   5	
   times	
   increased	
   distance	
   of	
  mutational	
  
distances	
   compared	
   to	
  most	
   colon,	
   renal	
   and	
   lung	
   cases	
   analysed	
   here.	
   Together	
  with	
   the	
  MSI	
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colorectal	
  cancer	
   this	
  patient	
  has	
   the	
  highest	
  mutation	
  rate	
  per	
  cell	
  division.	
  Similar	
   to	
   the	
  MSI	
  
colorectal	
   cancer,	
   this	
   patient	
   also	
   presents	
   with	
   low	
   per-­‐cell	
   survival	
   probability,	
   suggesting	
  
more	
  cell	
  death	
  and	
  cell	
  turn	
  over	
  compared	
  to	
  other	
  cases.	
  	
  	
  
	
  
	
  

SI	
  Figure	
  19:	
  Distribution	
  of	
  cell	
  divisions	
  r	
  in	
  an	
  exponentially	
  growing	
  population	
  according	
  to	
  
equation	
  (18).	
  	
  	
  
	
  

	
  
SI	
   Figure	
  20:	
  Approximation	
  of	
   the	
  probability	
   of	
   coalescence	
   time	
  differences.	
  Shown	
  is	
  

the	
   approximation	
  𝑒
!!!!!!!

!! ≈ 𝑒!!!! 	
  for	
   different	
   values	
   of	
  𝑁!.	
   The	
   approximation	
   works	
   well	
  
even	
  for	
  small	
  𝑁!.	
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SI	
   Figure	
   21:	
   Predicted	
   shapes	
   of	
   the	
   mutational	
   distance	
   distribution	
   for	
   different	
  
combinations	
  of	
  small	
  and	
  large	
  𝝁	
  and	
  𝜷.	
  The	
  expected	
  shape	
  of	
  the	
  distribution	
  differs	
  greatly	
  
between	
   different	
   combinations	
   of	
   parameters.	
   (a,b)	
  Multi-­‐modality	
   is	
   evident	
   for	
   sufficiently	
  
large	
  mutation	
  rates	
  per	
  cell	
  division.	
  (c,d)	
  Uni-­‐modality	
  becomes	
  dominant	
  for	
  small	
  mutation	
  
rates	
  per	
  cell	
  division.	
  Furthermore,	
  the	
  length	
  of	
  the	
  tail	
  as	
  well	
  as	
  the	
  height	
  of	
  the	
  distribution	
  
is	
  largely	
  determined	
  by	
  the	
  per-­‐cell	
  survival	
  rate.	
  
	
  
	
  

	
  
SI	
  Figure	
  22:	
  Mutational	
  distance	
  distribution	
  in	
  idealised	
  and	
  realistic	
  data.	
  (a)	
  We	
  show	
  
the	
  mutational	
  distance	
  distribution	
  inferred	
  from	
  a	
  single	
  stochastic	
  simulation	
  with	
  𝜇 = 15	
  and	
  
𝛽 = 0.8	
  for	
  a	
  situation	
  with	
  perfect	
  clonal	
  information,	
  no	
  lineage	
  intermixing	
  and	
  no	
  sequencing	
  
noise.	
   In	
   this	
   situation	
   repeated	
  sampling	
  of	
  pairwise	
  mutational	
  distances	
  only	
   finds	
  a	
   limited	
  
number	
   of	
   discrete	
   distributed	
   peaks.	
   Discrete	
   peaks	
   and	
   a	
   declining	
   tail	
   are	
   hinted,	
   but	
   the	
  
expect	
  theoretical	
  distribution	
  is	
  not	
  obvious.	
  (b)	
  Mutational	
  distance	
  distribution	
  reconstructed	
  
from	
   a	
   simulation	
  with	
   same	
   parameters,	
   but	
   realistic	
   spatial	
   sampling	
   of	
   intermixed	
   lineages	
  
and	
   sequencing	
   depth	
   noise.	
   Many	
   more	
   unique	
   mutational	
   distances	
   are	
   evident.	
   The	
  
distribution	
  remains	
  noisy	
  (it	
  is	
  derived	
  from	
  9	
  bulk	
  samples).	
  (c)	
  The	
  same	
  distribution	
  as	
  in	
  (b)	
  
(black	
   dots),	
   also	
   noisy	
   allows	
   reconstructing	
   the	
   theoretically	
   expected	
   mutational	
   distance	
  
distribution	
  and	
  to	
  infer	
  the	
  underlying	
  evolutionary	
  parameters	
  𝜇	
  and	
  𝛽.	
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SI	
   Figure	
   23:	
   Number	
   of	
   sampled	
   distances.	
  The	
  number	
  of	
   intermittent	
  branches	
  of	
  a	
   time	
  
ordered	
   binary	
   tree	
   is	
  2𝑛 − 2	
  and	
   scales	
   linearly	
   in	
   the	
   number	
   of	
   available	
   tumour	
   samples	
  𝑛	
  
(grey	
  line).	
  In	
  contrast,	
  the	
  number	
  of	
  pairwise	
  distances	
  scales	
  ~4!	
  and	
  thus	
  exponential	
  in	
  the	
  
number	
  of	
   tumour	
  samples	
  𝑛.	
  The	
  exact	
  expression	
   is	
  given	
  by	
  black	
  dash-­‐dotted	
   line,	
  whereas	
  
the	
   light	
   grey	
   line	
   shows	
   an	
   approximation	
   for	
   sufficiently	
   large	
  𝑛.	
   The	
   number	
   of	
   pairwise	
  
differences	
   scales	
   very	
   fast	
   with	
   the	
   number	
   of	
   samples	
   n.	
   This	
   is	
   not	
   a	
   problem	
   for	
   current	
   bulk	
  
tumour	
  samples	
  where	
  𝑛 ≈ 7  𝑡𝑜  13.	
  However,	
  in	
  the	
  case	
  of	
  healthy	
  haematopoiesis	
  𝑛 = 89	
  samples	
  
are	
  available	
  and	
  thus	
  calculating	
  all	
  pairwise	
  differences	
  is	
  impossible.	
  However,	
  in	
  that	
  case	
  we	
  are	
  
interested	
   in	
   early	
   branching	
   and	
   thus	
   restricted	
   our	
   analysis	
   to	
   distances	
   between	
   the	
   first	
   16	
  
identifiable	
  ancestral	
  cells.	
  	
  	
  
	
  
	
  
	
  
	
  

	
  
SI	
   Figure	
   24:	
   Relative	
   error	
   of	
   tumour	
   age	
   estimates	
   for	
   time	
   dependent	
   cell-­‐survival	
  
parameter	
  𝜷.	
   (a)	
   Shape	
  of	
   the	
  Fermi-­‐function	
   to	
  model	
   the	
   time	
  dependence	
  of	
  𝛽	
  for	
  different	
  
scale	
  parameters	
  𝜏.	
  In	
  our	
  example,	
  cells	
  start	
  with	
  survival	
  probability	
  1/2	
  and	
  will	
  acquire	
  the	
  
maximal	
   survival	
  probability	
  of	
  1	
  eventually.	
  (b)	
  Relative	
  error	
  of	
   tumour	
  age	
  estimates,	
   given	
  
different	
  𝜏	
  parameters	
   and	
   different	
   times	
   (tumour	
   size)	
   of	
   diagnosis	
  𝑁! .	
   Even	
   if	
   a	
   tumour	
   has	
  
acquired	
  a	
  maximal	
  per-­‐cell	
   survival	
  probability	
  of	
  1	
  already	
  when	
  only	
  1	
  million	
   tumour	
  cells	
  
are	
   present	
   (the	
   current	
   detection	
   threshold	
   is	
   approx.	
   100	
   million	
   cancer	
   cells),	
   the	
   relative	
  
error	
  remains	
  <20%.	
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SI	
   Figure	
   25:	
   Relative	
   error	
   of	
   tumour	
   age	
   inferences	
   based	
   on	
   the	
   tumour	
   size	
   at	
  
diagnosis.	
   Plotted	
   is	
   |1 − !"# !!

!"# !!
| 	
  over	
  𝑁! ,	
   the	
   actual	
   tumour	
   age	
   at	
   diagnosis,	
   if	
   for	
   the	
  

calculation	
   of	
   tumour	
   age	
   a	
   size	
   of	
  𝑁! = 10!!	
  cells	
   was	
   assumed.	
   Deviations	
   of	
   one	
   order	
   of	
  
magnitude	
   of	
   tumour	
   size	
   at	
   diagnosis	
   correspond	
   to	
   approx.	
   10%	
   error	
   for	
   the	
   estimation	
   of	
  
tumour	
  ages.	
  	
  
	
  
	
  

	
  
SI	
   Figure	
   26:	
   Examples	
   of	
   spatial	
   simulations	
  with	
   partial	
   selective	
   sweeps	
   and	
   varying	
  
selection	
  strength	
  (s=0.1	
  to	
  s=0.5).	
  Positively	
  selected	
  cells	
  are	
  shown	
  in	
  red,	
  background	
  wild	
  
type	
   cells	
   in	
   blue.	
   Each	
   cell	
   carries	
   up	
   to	
   thousands	
   of	
   private	
  mutations	
   accumulated	
   during	
  
stochastic	
  growth	
  that	
  are	
  not	
  indicated	
  by	
  colour	
  here.	
  Small	
  areas	
  and	
  numbers	
  correspond	
  to	
  
the	
   locations	
   of	
   bulk	
   samples.	
   (a)	
   Maximal	
   distance	
   sampling	
   strategy.	
   (b)	
   Randomly	
   placed	
  
sampling	
   strategy.	
   In	
   each	
   case	
   9	
   samples	
   were	
   used	
   for	
   the	
   construction	
   of	
   the	
   mutational	
  
distance	
  distribution	
  and	
  the	
  parameter	
  inference.	
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SI	
  Figure	
  27:	
  MCMC	
  parameter	
  inference.	
  (a)	
  Shown	
  is	
  one	
  example	
  of	
  the	
  mutational	
  distance	
  
distribution	
  inferred	
  from	
  9	
  bulk	
  samples	
  of	
  one	
  stochastic	
  spatial	
  simulation	
  of	
  tumour	
  growth.	
  
Subsequent	
   panels	
   show	
   different	
   scenarios	
   for	
   the	
   MCMC	
   inference,	
   based	
   on	
   uniform	
   prior	
  
(b,c),	
  Gamma	
  prior	
  (d,e)	
  and	
  different	
  scenarios	
  where	
  one	
  of	
  the	
  parameters	
  is	
  fixed	
  a	
  priori	
  (f-­‐
w).	
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SI	
   Figure	
   28:	
   Robustness	
   of	
   the	
  method	
   of	
  mutational	
   distances	
   to	
   changes	
   in	
  mutation	
  
rate	
   over	
   time.	
   Examples	
   of	
   mutational	
   distance	
   distributions	
   and	
   corresponding	
   parameter	
  
inferences	
  reconstructed	
  from	
  9	
  bulk	
  samples	
  of	
  stochastic	
  spatial	
  simulations	
  of	
  tumour	
  growth	
  
with	
   different	
   modes	
   of	
   mutation	
   accumulation.	
   (a-­‐f)	
   Mutational	
   distances	
   and	
   parameter	
  
inferences	
   for	
   two	
   representative	
   cases	
   of	
   simulated	
   tumours	
  with	
   standard	
   Poisson	
  mutation	
  
accumulation.	
   (g-­‐l)	
  Mutational	
   distances	
   and	
   parameter	
   inferences	
   for	
   two	
   simulated	
   tumours	
  
where	
  the	
  mutation	
  rate	
  is	
  itself	
  a	
  random	
  variable	
  (here	
  with	
  an	
  exponential	
  distribution).	
  (m-­‐r)	
  
Mutational	
  distances	
  and	
  parameter	
   inferences	
   for	
  simulated	
  tumours	
  where	
  the	
  mutation	
  rate	
  
increases	
  linearly	
  in	
  time.	
  In	
  all	
  these	
  cases	
  the	
  ground	
  truth	
  mutation	
  rate	
  was	
  15	
  and	
  survival	
  
rate	
   was	
   0.8.	
   Goodness	
   of	
   fit	
   measure	
   (s),	
   absolute	
   error	
   in	
   the	
   estimation	
   of	
   the	
   per-­‐cell	
  
mutation	
  rate	
  (t)	
  and	
  the	
  per-­‐cell	
  survival	
  rate	
  (u)	
   for	
  the	
  three	
  different	
  models	
  (20	
  simulated	
  
tumour	
  instances	
  per	
  scenario).	
  
	
  
	
  

	
  
SI	
   Figure	
   29:	
   Robustness	
   to	
   non-­‐exponential	
   tumour	
   growth.	
   (a)	
   If	
  all	
   cells	
  are	
  allowed	
  to	
  
proliferate	
  within	
  a	
   tumour,	
   this	
   gives	
   rise	
   to	
   exponential	
   growth.	
   (b)	
  Peripheral	
  or	
   ‘boundary	
  
driven’	
   growth	
   leads	
   to	
  polynomial	
   expansion	
   instead.	
  (c-­‐e)	
  Mutational	
  distance	
   inferences	
   for	
  
the	
   aggression	
   coefficient	
  𝑎 = 1,	
  𝑎 = 0.5	
  and	
  𝑎 = 0.25	
  (probability	
   to	
   proliferate	
   in	
   the	
   absence	
  
of	
   empty	
   space).	
   (f-­‐h)	
   Per-­‐cell	
   survival	
   rate	
   inferences.	
   Dashed	
   lines	
   show	
   ground	
   truth,	
   dots	
  
represent	
   parameter	
   inference	
   from	
   one	
   stochastic	
   spatial	
   simulation	
   and	
   9	
   independent	
   bulk	
  
samples.	
  The	
  relative	
  error	
  𝜂	
  is	
  shown	
  in	
  each	
  panel.	
  	
  
	
  
	
  

	
  
SI	
  Figure	
  30:	
  Robustness	
  to	
  partial	
  selective	
  sweeps.	
  Parameter	
  estimates	
  of	
  the	
  (a)	
  per-­‐cell	
  
mutation	
  rate	
  and	
  (b)	
  per	
  cell	
  survival	
  rate	
  for	
  a	
  series	
  of	
  stochastic	
  spatial	
  simulations	
  of	
  tumour	
  
growth	
   with	
   partial	
   selective	
   sweeps	
   and	
   varying	
   selection	
   strength	
  𝑠.	
   In	
  our	
   simulations	
  𝑠 = 0	
  
corresponds	
  to	
  the	
  absence	
  of	
  positively	
  selected	
  clones.	
  A	
  clone	
  with	
  𝑠 = 0.5	
  proliferates	
  50%	
  faster	
  
compared	
  to	
  background	
  clones	
  and	
  thus	
  rises	
  in	
  frequency	
  over	
  time.	
  Examples	
  of	
  these	
  simulated	
  
tumours	
  are	
   shown	
   in	
  SI	
  Figure	
  24.	
  For	
  each	
  parameter	
  estimate	
  9	
  bulk	
   samples	
  were	
  used	
   to	
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reconstruct	
   the	
   mutational	
   distance	
   distribution.	
   Dashed	
   lines	
   show	
   the	
   exact	
   parameters	
  
imposed	
  on	
  the	
  simulations.	
  The	
  relative	
  error	
  𝜂	
  is	
  shown	
  in	
  both	
  panels.	
  	
  
	
  
	
  

	
  
SI	
  Figure	
  31:	
  Robustness	
  to	
  different	
  spatial	
  sampling	
  strategies.	
  For	
  parameter	
  inferences	
  9	
  
bulk	
  samples	
  per	
  tumour	
  were	
  used	
  to	
  construct	
  the	
  mutational	
  distance	
  distribution.	
  Examples	
  
for	
  the	
  different	
  sampling	
  strategies	
  are	
  shown	
  in	
  SI	
  Figure	
  24.	
  (a)	
  absolute	
  and	
  relative	
  errors	
  in	
  
the	
   estimation	
   of	
   the	
   per-­‐cell	
   mutation	
   rate	
   (a)	
   and	
   per-­‐cell	
   survival	
   rate	
   (b)	
   for	
   random	
   vs	
  
maximal	
  distance	
  sampling	
  strategies.	
  
	
  
	
  

	
  
SI	
  Figure	
  32:	
  Parameter	
  inference	
  is	
  robust	
  to	
  sequencing	
  depth.	
  Shown	
  are	
  the	
  parameter	
  
inferences	
  of	
   the	
  mutation	
  rate	
  (a)	
   and	
  the	
  survival	
   rate	
  (b)	
   for	
  10	
  spatial	
   tumour	
  simulations	
  
with	
  𝜇 = 15	
  and	
  𝛽 = 0.8	
  from	
  the	
  mutational	
  distance	
  distribution	
  derived	
  from	
  9	
  bulk	
  samples	
  
with	
  simulated	
  sequencing	
  depth	
  of	
  200x,	
  50x	
  and	
  25x.	
  Shown	
  are	
  also	
  the	
  relative	
  errors	
  𝜂	
  for	
  
each	
  scenario.	
  
	
  
	
  

	
  
SI	
  Figure	
  33:	
  Robustness	
  of	
  parameter	
  inference	
  for	
  decreasing	
  number	
  of	
  bulk	
  samples.	
  
Shown	
  are	
  inference	
  results	
  for	
  stochastic	
  spatial	
  tumour	
  simulations	
  and	
  a	
  different	
  number	
  of	
  
bulk	
   samples	
   analysed.	
   Decreasing	
   the	
   number	
   of	
   bulk	
   samples	
   increases	
   parameter	
  
uncertainties,	
  but	
  the	
  inferences	
  remain	
  robust	
  for	
  up	
  to	
  6	
  bulk	
  samples.	
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SI	
  Figure	
  34:	
  Spatial	
  stochastic	
  simulations	
  with	
  high	
  mutation	
  rate	
  per	
  cell	
  division	
  and	
  
different	
   per-­‐cell	
   survival	
   rates.	
   Panels	
   (a)-­‐(c)	
   show	
   examples	
   for	
   the	
   mutational	
   distance	
  
distribution	
   reconstructed	
   for	
   cases	
   of	
   high	
  mutation	
   rate	
   and	
  different	
   per-­‐cell	
   survival	
   rates.	
  
The	
  distributions	
  are	
  plotted	
  with	
  same	
  y-­‐axes	
  to	
  show	
  the	
  dramatic	
  differences	
  in	
  the	
  shape	
  of	
  
the	
  distributions	
  (notice	
  the	
  different	
  scales	
  of	
  x-­‐axis	
  thought).	
  The	
  inset	
  of	
  panel	
  (a)	
  shows	
  the	
  
same	
  distribution,	
  just	
  with	
  a	
  differently	
  scaled	
  y-­‐axis.	
  Panels	
  (d)	
  &	
  (e)	
  show	
  the	
  inference	
  of	
  the	
  
evolutionary	
  parameters	
   for	
   independent	
  stochastic	
  runs	
  of	
  spatial	
   tumour	
  simulations	
  (9	
  bulk	
  
samples	
  per	
  simulation).	
  Inferences	
  are	
  robust	
  for	
  low	
  and	
  high	
  death	
  and	
  high	
  mutation	
  rates	
  as	
  
shown	
  by	
  the	
  small	
  relative	
  errors	
  𝜂.	
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SI	
   Figure	
   35:	
   Mutational	
   distance	
   distribution	
   and	
   MCMC	
   inference	
   from	
   stochastic	
  
individual	
   based	
   simulated	
   tumours.	
   Dashed	
   lines	
   show	
   true	
   parameter	
   values.	
   Parameter	
  
inference	
   clusters	
   around	
   true	
   values,	
   see	
   also	
   Figure	
   1	
   in	
   the	
  main	
   text	
   for	
   a	
   summary	
   of	
   all	
  
inferred	
  parameter	
  values.	
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SI	
   Figure	
  36:	
  Mutational	
  distance	
  distribution	
  and	
  MCMC	
   inference	
   from	
  a	
   second	
   set	
   of	
  
stochastic	
   individual	
   based	
   simulated	
   tumours.	
   Dashed	
   lines	
   show	
   true	
   parameter	
   values.	
  
Parameter	
  inference	
  clusters	
  around	
  true	
  values,	
  see	
  also	
  Figure	
  1	
  in	
  the	
  main	
  text	
  for	
  a	
  summary	
  
of	
  all	
  inferred	
  parameter	
  values.	
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