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Abstract
Cognitive control can involve proactive (preparatory) and reactive (corrective) mechanisms. Using
a gaze-contingent eye tracking paradigm combined with fMRI, we investigated the involvement of
these different modes of control and their underlying neural networks, when switching between
different targets in multiple-target search. Participants simultaneously searched for two possible
targets presented among distractors, and selected one of them. In one condition, only one of the
targets was available in each display, so that the choice was imposed, and reactive control would
be required. In the other condition, both targets were present, giving observers free choice over
target selection, and allowing for proactive control. Switch costs emerged only when targets were
imposed and not when target selection was free. We found differential levels of activity in the
frontoparietal control network depending on whether target switches were free or imposed.
Furthermore, we observed core regions of the default mode network to be active during target
repetitions, indicating reduced control on these trials. Free and imposed switches jointly activated
parietal and posterior frontal cortices, while free switches additionally activated anterior frontal
cortices. These findings highlight unique contributions of proactive and reactive control during

visual search.
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1. Introduction

During search for a visual object, a mental representation of the target object is maintained in
visual working memory to guide attention toward potentially task-relevant regions (Desimone &
Duncan, 1995; Olivers & Eimer, 2011). In everyday situations, individuals may oftentimes try to find
multiple objects at the same time, which would require the maintenance of more than one target
representation. It has been shown that such multiple-target search can be challenging, often
resulting in reduced search performance (Barrett & Zobay, 2014; Dombrowe, Donk, & Olivers,
2011; Found & Miiller, 1996; Juola, Botella, & Palacios, 2004; Liu & Jigo, 2017; Maljkovic &
Nakayama, 1994; Menneer, Barrett, Phillips, Donnelly, & Cave, 2007), raising the question as to
how these multiple target representations are established for, and updated during, search — in
other words, how these representations are controlled.

Recent work from one of our labs suggests that when observers look for more than one
target, they may dynamically prioritize one of multiple potential target representations to guide
search at any given moment (Ort, Fahrenfort, & Olivers, 2017, 2018). Specifically, we found that
performance in multiple-target search depends on whether or not observers are given the
opportunity to freely choose the target to select. In a gaze-contingent search paradigm, observers
were instructed to always find one of two potential target colors. Importantly, they could either
freely select the target to look for on a particular trial, as both targets would always be available in
each search display, or the choice was imposed upon them, as only one of the two targets would
be present on each trial. Eye movement latencies showed that, relative to target repeats, target

switches were more costly when imposed than when made under free choice conditions. In further
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support of this, Van Driel, Ort, Fahrenfort, & Olivers (2019) recently conducted
electroencephalography (EEG) measurements during free and imposed choice, and found that free
switching between targets is associated with pre-trial power suppression in the beta band over
midfrontal electrodes — a signal that has been linked to choice behavior (Donner, Siegel, Fries, &
Engel, 2009; Spitzer & Haegens, 2017). In contrast, forced target switches elicited post-trial power
enhancement in the delta/theta band — a signal that has been associated with conflict detection
(Cavanagh & Frank, 2014; Cohen, 2014; Duprez, Gulbinaite, & Cohen, 2018). We interpret these
eye movement and EEG findings within an influential framework proposed by Braver (2012), which
assumes a division of cognitive control into two modes: proactive and reactive control. Proactive
control is invoked and maintained in anticipation of a task, whereas reactive control is triggered
whenever a conflict or unexpected event occurs. In multiple-target search, the availability of all
targets in a display allows for proactive control, as observers can freely prepare for either target (cf.
Arrington & Logan, 2004, 2005; Meiran, 1996). In contrast, imposing a target (i.e. by only
presenting only one of the two targets in the search display) would invoke reactive control, which is
reflected in a costly switching of attentional priority to the only available target. In the present study

we sought to uncover the brain areas underlying free and imposed multiple-target search.

1.1 Brain areas involved in different modes of control
Cognitive control has been extensively investigated in the context of the implementation of,
and switching between, different task sets (Meiran, 2010; E. K. Miller & Cohen, 2001). Task

switches have been associated with brain regions that are considered part of a general cognitive


https://doi.org/10.1101/559500
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/559500; this version posted August 20, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Running head: PROACTIVE AND REACTIVE TARGET SELECTION

control network that is distributed mainly over frontoparietal regions of the brain (Cole & Schneider,
2007; Dosenbach et al., 2006; Dosenbach, Fair, Cohen, Schlaggar, & Petersen, 2008; Duncan,
2010; Dove, Pollmann, Schubert, Wiggins, & Yves Von Cramon, 2000; Fedorenko, Duncan, &
Kanwisher, 2013; Kim, Cilles, Johnson, & Gold, 2012; Liston, Matalon, Hare, Davidson, & Casey,
2006; Power & Petersen, 2013, A. B. Smith, Taylor, Brammer, & Rubia, 2004). However, it is
unknown whether similar brain areas are also involved in switching representations within one and
the same task, which is the case when observers hold multiple target representations for the same
visual search task, and how this would differ for circumstances that enable different modes of
control.

The distinction between proactive and reactive control has mostly been studied in the
context of interference control across various domains, such as interference between competing
working memory representations (Burgess & Braver, 2010; Marklund & Persson, 2012), between
competing visual stimuli (De Pisapia & Braver, 2006; Jiang, Beck, Heller, & Egner, 2015), or
between competing stimulus-response mappings (Braver, Reynolds, & Donaldson, 2003; Jiang,
Wagner, & Egner, 2018; Ryman et al., 2018; Sohn, Ursu, Anderson, Stenger, & Carter, 2000). The
mode of control is commonly induced by manipulating the likelihood (or predictability) of upcoming
interference, following the assumption that whenever individuals anticipate interference, they will
strengthen proactive control. Some studies suggest that proactive and reactive control are
governed by different brain areas, but the findings are somewhat inconsistent, which may be
related to the different paradigms used, and to an emphasis on differences in the temporal

dynamics (with proactive assumed to occur prior to task onset, while reactive follows conflicting
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events). Based on their reviews of the literature, Braver (2012) as well as Irlbacher, Kraft, Kehrer,
& Brandt (2014) have suggested that both modes of control are governed by a similar set of brain
areas, but might be activated with different dynamics, as proactive control can be instantiated in
advance. These areas include the lateral prefrontal cortex and posterior parietal cortex, with
relatively minor differences between them, whereas reactive control may additionally recruit
midfrontal regions when there is conflict detection involved. Similar brain areas may therefore be
involved during control over target selection in multiple-target search.

Target selection in multiple-target search is associated with shifts in feature-based
attention between target-defining features. Such shifts of feature-based attention have previously
been linked to activity primarily in posterior parietal (i.e. superior parietal lobule) and posterior,
lateral frontal regions (i.e. inferior frontal junction and dorsal premotor cortex; Greenberg,
Esterman, Wilson, Serences, & Yantis, 2010; Liu, Slotnick, Serences, & Yantis, 2003; Pollmann,
Weidner, Mduller, Maertens, & Von Cramon, 2006; Pollmann, Weidner, Miller, & Von Cramon,
2000; Slagter et al., 2006, 2007; Wager, Jonides, & Reading, 2004). However, in most of these
studies, a feature shift was also associated with a change in response (Greenberg et al., 2010; Liu
et al., 2003; Pollmann et al., 2006; Slagter et al., 2006, 2007). Moreover, these studies did not
directly compare different modes of control over such shifts. They measured activity in response to
either cue- or task-induced changes of the task-relevant feature, but did not juxtapose self-
generated (free) to stimulus-induced (imposed) changes.

In one recent study, Gmeindl et al. (2016) did compare cue-induced to self-generated (i.e.

freely chosen) shifts of spatial attention. They found similar posterior parietal activity during both
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types of shifts, while self-generated shifts additionally activated the medial frontal cortex and lateral
frontopolar cortex. These medial frontal and frontopolar regions have also previously been shown
to be related to voluntary versus imposed action selection (Demanet, De Baene, Arrington, &
Brass, 2013; Forstmann, Brass, Koch, & von Cramon, 2006; Orr & Banich, 2013; Passingham,
Bengtsson, & Lau, 2010; Soon, Brass, Heinze, & Haynes, 2008; Taylor, Rushworth, & Nobre,
2008; Wisniewski, Goschke, & Haynes, 2016; Wisniewski, Reverberi, Tusche, & Haynes, 2015; J.
Zhang, Kriegeskorte, Carlin, & Rowe, 2013), and have been argued to be involved in the
evaluation of alternative goals in the context of exploratory behavior (Mansouri, Koechlin, Rosa, &
Buckley, 2017; Pollmann, 2016). The same areas may therefore be involved when observers

choose to change target in visual search, but this is currently unknown.

1.2 The present study

We sought to investigate differences in the locus or level of activated brain regions when
proactive and reactive control mechanisms operate in a context of multiple-target search.
Specifically, we set out to test whether differences between free and imposed switches between
targets during visual search for multiple objects are accompanied by differences in brain activity
that might be linked to proactive and reactive control processes. To that end, we adopted a fast-
paced, gaze-contingent eye tracking paradigm (Ort et al., 2017; illustrated in Figure 1A) in
combination with event-related fMRI. Participants were always instructed to look for two color-
defined targets and to make an eye movement towards one of them on every trial. In one block

type, both potential targets were present in a search display and participants were free to select
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either of them. In the other type of block, only one target was present and the choice was imposed.
We instructed participants to either make (when choice was free) or expect (when choice was
imposed) target switches. We reasoned that free target switches would be associated with
proactive, preparatory control mechanisms, while imposed switches would result in reactive,
compensatory control mechanisms. Differential neural activity for each switch type would constitute
evidence for proactive and reactive control having unique contributions to target selection during
multiple-target search. Based on the literature on both task and attention shifts, we expected to find
switch-related activity in the posterior parietal and posterior frontal cortex for both switch types. In
addition, we were interested to explore potential differences in the control network for free and
imposed target switches. In line with the literature on self-generated versus externally-cued choice,
we expected activity in the lateral frontopolar cortex as well as the medial frontal cortex to be

selectively active during free switches.

2. Methods

2.1. Data and code availability

Data and code was made publicly available on osf.io (https://osf.io/a8vxn). Unthresholded
statistical maps were uploaded to neurovault.org (https://neurovault.org/collections/5550/).
2.2 Participants

A sample of 22 participants (age: 21-35 years, M = 27.3; 10 females, 12 males) was

recruited from the subject pool of the Leibniz Institute of Neurobiology in Magdeburg. Three
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individuals were excluded due to insufficient eye tracking accuracy, reducing the final sample to 19
participants. All participants gave written consent according to the Declaration of Helsinki and were
reimbursed with 30 Euros. They reported normal or corrected-to-normal visual acuity and color
vision and were naive to the purpose of the experiment. The study was approved by the research

ethics board of Otto-von-Guericke University Magdeburg.
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Figure 1. lllustration of the study design and behavioral results. A) Each block began with a cue
indicating the two target colors for the subsequent sequence of 40 search displays. Depending on
the target availability condition, each search display contained either one of the two target colors or
both of them. In case of only one target color being available, there could still be two targets
carrying that color, to equate for the mere number of targets present (see section 2.3). Participants
were required to fixate one of the targets (indicated here by an arrow, which was not present in the
display); this triggered the next display, which appeared on an imaginary annulus surrounding the
location of the previously fixated target. B) The bar plots represent the mean saccade latencies on
switch trials and repeat trials for each level of target availability (one target vs. both targets). The
gray lines represent the mean saccade latencies for each observer individually. Error bars
represent the upper limit of the within-subjects 95% confidence intervals (Morey, 2008). C) The
violin plots depict the distribution of switch costs, which were computed by subtracting repeat
saccade latencies from switch saccade latencies, separately for the target availability conditions.
The horizontal lines in the box plots represent the first, second (median), and third quartiles. The
vertical lines represent the distance between minimum (lower quartile - 1.5 * interquartile range)
and maximum (upper quartile + 1.5 * interquartile range). Single dots indicate individual outliers. D)
Schematic and simplified equation of a drift diffusion model (adapted from Kloosterman, et al.,
2019). e denotes encoding time, d denotes decision time, and m denotes motor execution. E)
HDDM results indicating the posterior probability distributions for drift rates, separately for all

experimental conditions.
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2.3 Stimuli, procedure, and design

The stimulus set consisted of five colored disks with a radius of 0.6 degrees visual angle
(dva). These colors were blue (RGB-values: 0, 130, 150), red (240, 0, 0), green (70, 135, 0), brown
(175, 100, 75), and purple (180, 80, 170). All stimulus colors were isoluminant (M = 21 cd/m?) and
presented on a uniform gray background (197, 197, 197). A search display was composed of five
disks placed on an imaginary annulus around fixation with a radius randomly drawn from values
between 3.6 and 4.4 dva around the starting point. Any two adjacent disks had an angular distance
of at least 45 degrees.

A block was initiated once participants steadily fixated a central white dot. First, a white
fixation cross was presented in the center of the screen for 500 ms, followed by the cue display for
2,500 ms and another fixation cross for 500 ms (Fig. 1A). In the cue display, two colored disks
were presented 1.0 dva to the left and right of fixation to mark these colors task-relevant for the
upcoming sequence of 40 search displays. In each search display, participants were required to
select a target-colored disk among a set of five disks by making a saccade toward it. After target
fixation, the search display disappeared and the fixated target was replaced by a black ring to
provide participants with a fixation point during the intertrial interval (uniformly jittered between 950
to 1050 ms). Because the coordinates of the previously fixated target served as the starting point
for the next display, the search displays moved across the screen throughout a block. To make
sure that search displays would fall within the margins of the screen, stimuli were moved closer to
each other on that part of the annulus that was closest to the center of the screen, whenever a

search display approached an edge of the screen. Importantly, the relative positions of the targets
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in the search display remained unpredictable. Saccades had to land within a radius of 0.9 dva to
the center of a target to trigger the next search display. If participants fixated one of the distractors,
they received auditory error feedback and were required to make a corrective eye movement
toward a target. The search was aborted if no target was fixated within 3,000 ms, and a new
search display appeared, centered at the same location.

There were two main factors in this experiment: target availability (whether only one or both
targets were present in the search display), and transition type (whether target selection switched
or repeated from one trial to the next). The target availability factor was controlled at the block level
by presenting either only one, or both of the targets in the display. In the both-targets condition,
both cued targets appeared in the search display. In the one-target condition, only one of the
targets was present. The transition type factor (target repeat vs. target switch) was determined by
the observer (both-targets blocks) or by a random sampling procedure (one-target blocks).

In both-targets blocks, participants were instructed that they were free to fixate either of the
target colors. However, to make sure that there would be sufficient switch trials, and that the time
between two consecutive switch trials would be long enough for the BOLD response triggered by
each of them to not overlap, it was emphasized to participants that the total number of target
switches in a block of 40 search displays should roughly be in the range of five to eight. The
sampling procedure in one-target blocks then randomly selected (with replacement) a sequence of
repeat and switch trials from a pool of sequences that were recorded during both-targets blocks.
The motivation behind this was to match one-target blocks and both-targets blocks in terms of

switch rate and number of consecutive repeat trials. Importantly, neither features nor positions of
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the stimuli were replayed but only the sequence of switch and repeat trials. Because we did not yet
have any sequences to present at the outset of the experiment, we initialized a pool with four
arbitrarily prespecified sequences of switch and repeat trials (one each for five, six, seven, and
eight switches per block). To check whether switch rates indeed did not differ between target
availability conditions, we ran a paired-samples t-test and found a slight, but non-significant
difference (both-targets available: 6.4 switches, one-target available: 6.9 switches, #18) = 1.9, p
= .07, Cohen’s d = 0.49, BF, = 1).

Both-targets available and one-target available blocks would differ not only in terms of
target availability, but also in the mere number of targets in the display, which would make the one-
target available condition more difficult than the both-targets available condition. Therefore, we
included trials in the one-target available condition in which there were two target objects, but both
carried the same target color, so that still only one target color was present in the search display
(target duplicate, e.g. on blocks in which red and blue were task-relevant, there could be trials with
two red targets or two blue targets, but never with a red and a blue target). In addition, we included
trials in which two distractors shared a color (distractor duplicate; e.g., on blocks in which red and
blue were task-relevant, there could be trials with two green items, but only one red or one blue
item), so that participants could not identify the target object simply by detecting a feature
duplicate. Likewise, both-targets blocks also contained target duplicate trials (two out of three
targets had the same color; e.g., on blocks in which red and blue were task-relevant, we had trials
with one red and two blue target objects) as well as distractor duplicate trials (e.g., on blocks in

which red and blue were task-relevant, there were trials with one red target, one blue target, and
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two green distractors). As a result, in each target availability condition, one half of trials contained a
target duplicate and the other half contained a distractor duplicate. This way, neither the number of
targets nor the number of unique colors in the display was predictive of target availability.
Supplementary Table S1 provides schematic representations of all types of search displays. Past
experiments using a similar paradigm have confirmed that behavior and ensuing switch costs are
consistently unaffected by this manipulation (Ort et al., 2017, 2018), as we also confirm here (see
section 3.1). Furthermore, to investigate whether there would be other experimental variables that
influenced the choice behavior of the participants we ran a series of control analyses. These
analyses are summarized in the Supplementary Material online and Figure S1.

Because we did not have an eye-tracker available outside of the scanner, participants
practiced a version of the task in which target selection responses were made using mouse
tracking instead of eye movements (although this naturally involves making an eye movement to
the target too). They performed this task before the fMRI session started until they felt confident
they understood the task structure. A scanning session consisted of nine functional runs, each
seven minutes long. One participant requested to terminate the last run early (leaving eight runs of
data), while another participant completed ten runs because he expressed the wish to do another
run as he liked doing the experiment (data of this run were included). In a single run, both-targets
and one-target blocks alternated repeatedly until the end. For the first block in a run, the target
availability condition switched relative to the last complete block of the previous run. To make sure
that both block types would occur each at least twice per run and that a block would not exceed the

run duration, a block was interrupted after 88 seconds (mean complete block duration = 73 s), or
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five seconds before the run finished. This resulted in up to five complete blocks per run and, on
average, 32 complete blocks per session. Nevertheless, incomplete blocks were still analyzed up

to the point of termination.

2.4 Apparatus and functional MRI acquisition

The experiment was designed and presented using the OpenSesame software package
(version 3.1.9; Mathét, Schreij, & Theeuwes, 2012) in combination with PyGaze (version 0.6), an
eye-tracking toolbox (Dalmaijer, Math6t, & Van der Stigchel, 2013). Stimuli were back-projected on
a screen with a resolution of 1,280 x 1,024 pixels, at a viewing distance of 60 cm. Participants
viewed the screen via an IR-reflecting first surface mirror attached to the head coil. Eye
movements were recorded with the EyelLink 1000 remote eye-tracking system, (SR Research,
Mississauga, Ontario, Canada) at a sampling rate of 1000 Hz. The experimenter received real-time
feedback on system accuracy on a second monitor located in an adjacent room. After every run,
eye-tracker accuracy was assessed and improved as needed by applying a 9-point calibration and
validation procedure (mean calibration error was 0.48 dva).

Images were acquired using a 3 Tesla Philips Achieva dStream MRI scanner with a 32
channel head coil. Functional images were recorded using a T2*-weighted single-shot gradient
echo-planar images sequence with following parameters: 35 axial slices parallel to the AC-PC axis
(ascending order), slice thickness = 3 mm, in-plane resolution = 80 x 78 voxels (3 mm x 3 mm),
FOV = 240 mm x 240 mm, inter-slice gap of 10% (0.3 mm), whole-brain coverage, TR =2 s, TE =

30 ms, flip angle = 90°, parallel acquisition with sensitivity encoding (SENSE) with reduction factor
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2. After the first five scans were discarded, 210 scans were acquired per functional run. Structural
images were recorded using a T1-weighted (T1w) MPRAGE sequence with following parameters:
192 slices, slice thickness = 1 mm, in-plane resolution = 256 x 256 voxels (1 mm x 1 mm), FOV =
256 mm x 256 mm, TR = 9.7 ms, TE = 4.7 ms, inversion time = 900 ms, flip angle = 8°. Distortions
of the BO magnetic field, as well as pulse oximetry and respiratory trace were recorded, but these

data were not further processed.

2.5 Eye-tracking data preprocessing

We compared the saccade latencies of eye movements (dwell time before a saccade was
executed) for repeat trials (current target category the same as the previous one) with those for
switch trials (current target category different from the previous one) for both target availability
conditions separately. We took the first saccade after search display onset with an amplitude
threshold of 1 dva around initial fixation, provided that a saccade was directed toward the selected
target (i.e. its direction deviated less than 30 angular degrees from the vector from fixation to the
target). This resulted in an average of 25.5% of all trials being removed. Note, as we used only the
first saccade of a trial and participants needed to select a target before actually fixating it, our
paradigm measures covert selection process. Next, a saccade latency filter was applied, in which
saccades quicker than 100 ms and slower than 3 standard deviations above the block mean for
that participant were excluded (2.2% of all search displays). If no target was being fixated, as could
have happened when the eye tracker calibration had deteriorated too much for that trial, both the

current as well as the next search display were excluded because neither could be labeled as a
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switch or repeat (10.6% of all search displays). For the same reason, we excluded the first search
display of each block (2.7% of all search displays). If the distance between the stimuli was lowered
to prevent the search displays to fall outside the screen, two stimuli could be too close to each
other to unambiguously decide which of the two was fixated. Trials on which this happened were
also excluded (7.4% of all search displays). In total, 34.4% of all trials were thus removed during
preprocessing (note that a single trial could meet multiple exclusion criteria). This is a typical
rejection rate for this paradigm (Ort et al., 2017, 2018, van Driel et al., 2019). Inferential statistics

were carried out with the afex R- package (Singmann et al., 2016).

2.6 Hierarchical drift diffusion modeling

To gain more insight into target selection beyond simple comparisons of mean saccade
latencies across conditions, we also performed drift diffusion modeling (DDM) on our data. DDMs
can estimate latent decision-related parameters in two-alternative choice experiments based on
response time distributions and choice probabilities (Wiecki, Sofer, & Frank, 2013). For example,
participants might be more cautious to respond when only one target is available than when both
target colors are present. Similarly, participants might need longer to select a stimulus to fixate on
switch trials when only one target is present. In these models, decision-making is assumed to be a
noisy information accumulation process in favor of one or the other alternative that continues until
a threshold for one option is exceeded and the corresponding response is executed (e.g. Ratcliff &
Rouder, 1998). We used a hierarchical Bayesian DDM, as implemented in the python-library

HDDM (version 0.6; Wiecki et al., 2013), which has the advantage of simultaneously estimating
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group and individual-subject parameters as well as obtaining a measure for the estimates’
uncertainty.

The standard DDM framework provides estimates for four parameters: drift rate v, non-
decision time t, boundary separation a, and starting point z (see Figure 1D). The drift rate
represents the speed with which evidence is accumulated during a decision process. It is related to
the difficulty of a decision, with hard decisions corresponding to low drift rates and easy decisions
to high drift rates. The non-decision time signifies the time needed to encode the stimulus and
execute the motor response and is therefore not related to the decision process itself. The
boundary separation parameter reflects how much evidence needs to be accumulated before a
decision is made, therefore representing response caution (speed-accuracy trade-off). Close
boundaries lead to quick and more inaccurate decisions, whereas wide boundaries lead to slower,
but more accurate decisions. The starting point denotes whether there is an a priori bias for one of
the options.

It has been shown that task repeats are associated with higher drift rates than target
switches, plausibly reflecting faster evidence accumulation when a target is repeated (e.g.
Karayanidis et al., 2009; Schmitz & Voss, 2012). Based on this finding, we also expected to find
higher drift rates for target repeats than for target switches. However, if individuals prepare a target
prior to search display onset in both-targets blocks, drift rates for free target switches should likely
be higher than for imposed switches, potentially even be as high as the drift rate for target repeats.
Furthermore, in Ort and colleagues (2017), we found base rate differences between both-targets

and one-target blocks in terms of saccade latencies: Saccades were generally faster in both-
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targets blocks than in one-target blocks, irrespective of transition type. This effect might imply
strategic differences, such as increased response caution when only one target was available
relative to when both were present. To investigate this hypothesis, we estimated a separate
boundary separation for both-targets and one-target blocks. As the boundary separation is usually
assumed to be under control of individuals and switch and repeat trials were unpredictable in one-
target blocks, we did not separately estimate this parameter for repeat and switch trials.

Unlike in standard two-forced choice tasks, there was no single correct or incorrect
response in our task. In fact, on every trial, participants could make five possible responses,
corresponding to each stimulus (targets and distractors). Therefore, to make our paradigm
compatible with the DDM framework, we did not consider individual stimuli as response options,
but only distinguished correct (saccades to targets) from incorrect (saccades to distractors)
responses. To test our hypotheses about the influence of the experimental conditions on drift rate
and boundary separation, we ran four models, in which we manipulated which parameters were
free to vary across experimental conditions. These models were: (1) basic model, in which both
boundary separation (a) and drift rate (v) were fixed across conditions; (2) decision boundary
model, in which a could vary between target availability conditions and v was fixed; (3) drift-rate
model, in which v could vary between target availability and transition type conditions, and a was
fixed; (4) full model, in which a and v could vary between target availability conditions, and v could
also vary between transition type condition. We did not estimate intertrial variability of starting point
and drift rate in any of the models and fixed the estimate for starting point and non-decision time

across conditions, as condition-specific differences in those parameters were implausible.
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Furthermore, we chose to use informative priors (see Wiecki et al., 2013). Nevertheless, once we
identified the best model, we also ran it with non-informative priors as control analysis; the results
were virtually identical. Supplementary Table S2 includes the full specifications of all models that
were tested.

For every model, 50,000 steps were sampled with Markov Chain Monte Carlo (MCMC). The
first 20,000 samples were discarded (“burn in”) and only every fifth sample was kept (“thinning”) to
facilitate convergence. Convergence was tested by visually inspecting all posterior distributions
(mc-trace, auto-correlation and marginal posterior histogram) of each parameter, and computing
the Gelman-Rubin (R-hat) convergence statistic. The data that were fed into the model were less
stringently preprocessed than for the saccade latency analysis. Specifically, neither the first
saccade was required to be directed to the eventually fixated target, nor were error trials excluded,
because the DDM utilizes both correct and incorrect trials to model reaction time distributions.

The best model was selected based on the lowest deviance information criterion (DIC).
Even though the DIC penalizes increased numbers of parameters in a model, it still has a bias to
prefer more complex models (Wiecki et al., 2013). Therefore, it should only be used as a heuristic
for model selection. Condition-specific differences in the parameters of the selected model were
analyzed using a Bayesian approach, that is, we sampled from the posterior distributions of the
parameters and compared the likelihood of samples being lower in one condition relative to the
other. We considered values larger than 97.5% or smaller than 2.5% significant. Note, even though
these posterior probabilities are not the same as confidence intervals, they can be interpreted in a

similar way (Wiecki et al., 2013). To test the predictive quality of the model, we compared actual
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data to simulated data, sampled from the posterior distribution of the fitted model and evaluated

the correspondence across several summary statistics.

2.7 Functional MRI preprocessing
FMRI data was preprocessed using FMRIPrep version 1.0.8 (Esteban et al., 2018), a Nipype
(Gorgolewski et al., 2011, 2018) based tool. Each T1w volume was corrected for intensity non-
uniformity using N4BiasFieldCorrection v2.1.0 (Tustison et al., 2010) and skull-stripped using
antsBrainExtraction.sh v2.1.0 (using the OASIS template). Brain surfaces were reconstructed
using recon-all from FreeSurfer v6.0.0 (Dale, Fischl, & Sereno, 1999), and the brain mask
estimated previously was refined with a custom variation of the method to reconcile ANTs-derived
and FreeSurfer-derived segmentations of the cortical gray-matter of Mindboggle (Klein et al.,
2017). Spatial normalization to the ICBM 152 Nonlinear Asymmetrical template version 2009c
(Fonov, Evans, McKinstry, Almli, & Collins, 2009) was performed through nonlinear registration
with the antsRegistration tool of ANTs v2.1.0 (Avants, Epstein, Grossman, & Gee, 2008), using
brain-extracted versions of both T1w volume and template. Segmentation of cerebrospinal fluid
(CSF), white-matter (WM) and gray-matter (GM) was performed on the brain-extracted T1w using
fast (Y. Zhang, Brady, & Smith, 2001) in FSL v5.0.9 (Jenkinson, Bannister, Brady, & Smith, 2002).
Functional data were motion corrected using mcflirt (FSL v5.0.9). "Fieldmap-less" distortion
correction was performed by co-registering the functional image to the same-subject T1w image
with inverted intensity (Huntenburg, 2014; Wang et al., 2017) and constrained with an average

fieldmap template (Treiber et al., 2016), implemented with antsRegistration (ANTs). This was
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followed by co-registration to the corresponding T1w using boundary-based registration (Greve &
Fischl, 2009) with 9 degrees of freedom, using bbregister (FreeSurfer v6.0.0). Motion correcting
transformations, field distortion correcting warp, BOLD-to-T1w transformation and T1w-to-template
(MNI) warp were concatenated and applied in a single step using antsApplyTransforms (ANTs
v2.1.0) using Lanczos interpolation. After the preprocessing with FMRIPrep, functional data were
further high-pass filtered at 1/50 Hz using the fsimaths implementation of Nipype.

Physiological noise regressors were extracted applying CompCor (Behzadi, Restom, Liau,
& Liu, 2007). Principal components were estimated for anatomical CompCor (aCompCor). A mask
to exclude signal with cortical origin was obtained by eroding the brain mask, ensuring it only
contained subcortical structures. For aCompCor, six components were calculated within the
intersection of the subcortical mask and the union of CSF and WM masks calculated in T1w space,
after their projection to the native space of each functional run. Frame-wise displacement (Power
et al., 2014) was calculated for each functional run using the implementation of Nipype. Many

internal operations of FMRIPrep use Nilearn (Abraham et al., 2014), principally within the BOLD-

processing workflow. See htips://fmriprep.readthedocs.io/en/1.0.8/workflows.html for more detail

on the pipeline.

2.8 Functional MRI analysis
2.8.1 General Linear model. To examine brain activity related to our experimental conditions, we
ran an event-related general linear model on the whole brain, separately for each run of each

subject. Prior to modeling, functional time series were spatially smoothed with a 5 mm FWHM
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Gaussian kernel with a nipype implementation of SUSAN (S. M. Smith & Brady, 1997). We
separately modeled all combinations of our experimental conditions (both-targets/switch, one-
target/switch, both-targets/repeat, one-target/repeat) as well as error trials and the response to the
cue display, using display onset times relative to the start of the run as event onset times and the
response times as event durations. These events were convolved with a canonical hemodynamic
response function (double-gamma), and, together with a number of nuisance regressors, formed
the design matrix. Nuisance regressors include the temporal derivative of each event type, motion-
related parameters (three regressors each for translation and rotation), framewise displacement
(FD), and six anatomical noise regressors (aCompCor). Finally, all volumes with a FD value
greater than 0.9 were treated as motion-related outliers and censored, that is effectively excluded
from the model. Finally, the data was prewhitened with an autoregressive model to account for
temporal autocorrelation (Woolrich, Ripley, Brady, & Smith, 2001). The resulting t-statistic maps
were combined across runs within participants in a fixed-effect analysis. Next, group analysis was
performed with threshold-free cluster enhancement (tfce; S. M. Smith & Nichols, 2009), a voxel-
based type statistic that combines the height and spatial extent of local activations. The
transformed p-value maps were corrected with nonparametric permutation testing (5000
permutations) as implemented in FSL’'s randomise (Winkler, Ridgway, Webster, Smith, & Nichols,
2014). Finally, the corrected maps were registered to the FreeSurfer surface (fsaverage)
coordinate system, using registration fusion (Wu et al., 2018). All reported results were initially

thresholded at o = .05, however, for illustration purposes, activity maps were also thresholded at
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the more stringent o = .01 and shown as overlays (all applied to p-values corrected for multiple
comparisons as per above).

2.8.2 Deconvolution To gain further insight into the time course and extent of the BOLD
response as triggered by each event type, we ran a deconvolution analysis in brain regions that
are typically considered part of the multiple-demand (MD) network, that has been associated with
cognitive control in a variety of contexts (Duncan, 2010; Fedorenko, et al., 2013), plus showed
generic switch-related activity in our GLM analysis. To do this, we first converted the preprocessed
functional data to represent the percent signal change of the time series, concatenated them
across runs and averaged the resulting series within each region of interest (ROI). We defined
ROls based on an existing set of masks of MD subregions (Fedorenko et al., 2013). These ROls
were then combined with voxels that showed significant switch-related activity (collapsed over
target availability) in our GLM analysis, yielding 23 ROls in total. The deconvolution was performed
with nideconv (de Hollander & Knapen, 2018). We used the same regressors as in the GLM
analysis with the exception that the temporal derivative regressors were not included. All other
regressors were convolved with a Fourier basis set, comprising an intercept and four sine-cosine
pairs. Prior to estimation, the design matrix was oversampled 20-fold to improve the temporal
resolution. For each regressor, beta weights were estimated with ridge regression for each
participant separately. The deconvolved time series were extracted from the beta weights and
averaged across participants. To statistically test for significant activations, we used a permutation
test with 1000 permutations (MNE - one-sample t-test; Gramfort et al., 2013) and a cluster-based

approach to correct for multiple comparisons. Finally, to test for potential onset differences
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between proactive and reactive switch-related activity, we used fractional peak latency in
combination with the jackknife approach (Liesefeld, 2018, Luck, 2014; J. Miller, Patterson, &
Ulrich,1998). In doing so, we averaged the deconvolved time series of all but one participant and
identified the time point at which the time series reached 50% of the peak, separately for the
proactive and the reactive conditions. To mitigate the influence of local extreme values on the
latency estimation, for every time point we averaged the amplitude over five time consecutive
points (centered at the current time point). We repeated this procedure leaving out each participant
once and computed a paired-sample t-test over the onset estimates. To correct for the artificially
reduced error term in the jackknife approach, we followed Miller et al. (1998) by effectively dividing

the t-statistic by the degrees of freedom.

3. Results

3.1 Behavioral results

We observed switch costs (longer saccade latency after target switches than target repetitions)
only in one-target available blocks but not in both-targets available blocks (Fig. 1B-C). This was
statistically confirmed by a two-way repeated-measures ANOVA with target availability (both-
targets available vs. one-target available) and transition type (repeat vs. switch) as factors on
saccade latency. This ANOVA revealed significant main effects of target availability (F(1, 18) =
18.3, p < .001, n® = .50) and transition type (F(1, 18) = 23.3, p < .001, n° = .56), and a significant
interaction between them (F(1, 18) = 16.7, p < .001, n° = .48). A Bayes Factor analysis confirmed

this pattern by showing that the model including both main effects and the interaction effect
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explains the data best (BF = 7.8 x 10°) and was 12.2 times as likely as the next best model
including only the main effects. Overall, saccade latencies were lower in both-targets blocks than in
one-target blocks, and lower on switch trials than on repeat trials. Critically however, significant
switch costs emerged only in one-target blocks (target repeat: 388 ms vs. target switch: 452 ms;
t(18) = 5.1, p < .001, Cohen’s d = 0.63), and not on both-targets blocks (target repeat: 374 ms vs.
target switch: 388 ms; t(18) = 2.0, p = .06, Cohen’s d = 0.20). Bayesian t-tests confirmed this
conclusion by providing very strong evidence for the presence of switch costs in the one-target
condition (BFswicncosts = 374), but no conclusive evidence for either the presence of absence of
switch costs in the both-targets condition (BFsyichcosts = 1.2).

Next, we analyzed fixation accuracy, that is, the proportion of trials on which participants
fixated a target relative to all trials (see Table 1). The data pattern here confirms the saccade
latency results with switch costs in one-target blocks and no switch costs in both-targets blocks,
precluding an interpretation in terms of a speed-accuracy tradeoff. To test these results, we ran a
two-way repeated measures ANOVA with the same factors on accuracy, which also yielded
significant main effects of target availability (F(1, 18) = 42.6, p < .001, n° = .70) and transition type
(F(1, 18) = 37.8, p < .001, n° = .68), as well as a significant interaction between them (F(1, 18) =
28.6, p < .001, n? = .61). Again, this was supported by a Bayes Factor analysis indicating that the
full model (BF = 1.8 x 10'°) is 1,746 times more likely than the model with only main effects (BF =
1.8 x 107).

Finally, to test whether the different display types (target duplicate vs. distractor duplicate)

had an influence on the presence or absence of switch costs in each target availability condition,
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we ran a three-way repeated measures ANOVA with target availability, transition type and display
type as factors on saccade latency. However, neither the main effect display type, nor any of the
interactions that included that term were significant (p > .12). The full ANOVA results can be found

in the supplementary material online.

Table 1. Percentage correctly fixated targets for all conditions in all three experiments with within-
subject 95% confidence intervals (Morey, 2008).

Target Availability Target Switch Target Repeat
Both-Targets 96.1 [95.4, 97.0] 96.9 [96.2, 97.6]
One-Target 87.2 [85.4, 89.0] 95.3 [94.6, 96.0]

3.2 Hierarchical drift diffusion modeling results

Of all models that we ran (see Table S2), the full model with a variable drift rate for target
availability and transition type and a variable boundary separation for target availability performed
best in explaining the data, as indicated by the lowest DIC (-5.15 x 10°). The next best model was
the drift-rate-only model with a DIC of -5.13 x 10°. We estimated the posterior probability
distributions for the condition-specific drift rates and boundary separations and tested for
significance directly on the posterior distributions (see Figure 1E). Using the posterior probabilities,
we examined how likely it would be for parameter estimates to be greater in one condition
compared to another (P[X > Y]). For drift rates, we compared switch to repeat trials in both target
availability conditions separately. Drift rates were significantly higher in repeat trials than in switch
trials for one-target blocks (switch: Viean = 2.31, repeat: Vyean = 3.70, P[switch > repeat] = 0%). In

both-targets blocks drift rates were also higher for repeat trials than for switch trials, but the

28


https://doi.org/10.1101/559500
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/559500; this version posted August 20, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Running head: PROACTIVE AND REACTIVE TARGET SELECTION

difference was not as large (switch: Vpmea, = 3.88, repeat: Vimean = 4.22, P[switch > repeat] = 9%). This
suggests that participants needed more time to decide whenever selecting a different target than
on the previous trial, particularly when only one target was available. Nevertheless, the higher
likelihood for drift rates to be larger for repeat than switch trials when both targets were present
suggests that also in this condition, some switch-related cost was present. Even though the best
model included separate estimates for boundary separation for one-target blocks and both-targets
blocks, comparing these boundary separation estimates to each other yielded virtually the same
value (one-target available: amean = 1.17, both-targets available: ane., = 1.16, P[both-targets > one-
target] = 47%). This suggests that participants did not adjust their response caution across target
availability conditions. This finding is somewhat unintuitive given that the best model included a
separate boundary separation parameter for each target availability condition, but could be caused
by the DIC being biased toward the more complex model (see Wiecki, 2013). Finally, to confirm
that the full model accurately captured the data, we examined the quality of the model fit. In
addition, we also checked whether the simpler drift-rate-only model (only drift rate could vary
across experimental conditions) was also representative of the data, we analyzed that model as
well. For this purpose, we generated data by sampling from the posterior distributions of the
parameters and compared the simulated data to the original data. Importantly, key summary
statistics, such as accuracy, mean, median, quantiles (10, 30, 50, 70, 90) saccade latencies, were
all recovered in the simulated data, as indicated by all summary statistics lying within the 95%
credible intervals. This indicates that both models provide a good fit to the data and interpreting

their parameters is warranted.
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Figure 2. Cerebral activations for the free choice condition (proactive control demand). Activations
shown in yellow-red represent the contrast free switch > free repeat; activations shown in blue
represent the contrast free repeat > free switch. Group-level t-statistics maps were computed with
the tfce-method (S. M. Smith & Nichols, 2009) and corrected for multiple comparisons using
nonparametric permutation testing. The resulting P-value maps were thresholded at o = .05 and
projected onto the fsaverage surface using registration fusion (Wu et al., 2018), with translucent
coloring. In addition, regions that were also significant at o = .01 are shown in saturated colors.
Free switches were associated with higher activity than free repeats across both hemispheres in
dorsolateral prefrontal cortex (dIPFC), frontopolar cortex (FPC), dorsal premotor cortex (PMd),
inferior frontal junction (IFJ), anterior insula/frontal operculum cortex (alNS), posterior cingulate
gyrus (pCG), anterior cingulate gyrus (aCG), medial frontal cortex (spanning from the dorsal

anterior cingulate cortex to the frontal eye fields, mFC/dACC), superior parietal lobule (SPL),
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inferior parietal lobule (IPL), intracalcarine sulcus (ICS), right inferior temporal gyrus (ITG),
temporo-occipital cortex (TOC), and bilateral cerebellum (not shown here). Free repeats were
associated with higher activity than free repeats in the left precuneus (pc), bilateral ventromedial
prefrontal cortex (vmPFC), left medial temporal gyrus (MTG), left temporoparietal junction (TPJ)

and right temporal pole (TP).

3.3. Neuroimaging results

3.3.1 General linear model To determine whether the behavioral effects in terms of switch costs
are governed by separable cognitive control mechanisms, we used a general linear model (GLM)
to examine whether BOLD activity associated with updating a target representation depended on
how many unique targets were available in a search display. Before comparing switch-related
activity across target availability conditions, we first contrasted switch trials with repeat trials,
separately within the one-target and the both-targets condition. When both targets were available,
switches elicited widespread activations across cerebral cortex and cerebellum, in a network
reminiscent of the multiple-demand (MD) network (see Fig. 2 and Table 2). Bilateral frontal
activations include dorsolateral prefrontal cortex (dIPFC), frontopolar cortex, dorsal premotor cortex
(PMd), inferior frontal junction (IFJ), anterior insula / frontal operculum cortex (alNS), posterior
cingulate gyrus (pCG), and medial frontal cortex (spanning from the dorsal anterior cingulate cortex
to the frontal eye fields, mFC/dACC). Parietal activations were found bilaterally in the superior
parietal lobule (SPL), extending across the intraparietal sulcus (IPS) into the inferior parietal lobule

(IPL), including supramarginal and angular gyrus. In the occipital and temporal lobe, there was
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switch-related activity in the intracalcarine sulcus and in temporo-occipital regions, bilaterally and in
the right inferior temporal gyrus. Finally, several subregions in the cerebellum were activated as
well. When only one target was available, fewer significant clusters were found (see Fig. 3 and
Table 2). Activations were restricted primarily to posterior regions in the parietal and occipital lobe,
including IPS, SPL, and IPL as well as the cerebellum. However, two smaller activated regions

were also found in the left IFJ, and the dIPFC at the border with the frontopolar cortex.

.95

‘ .
-1.0

p (corrected)

-95

IFJ
vIPFC

vIPFC

Figure 3. Cerebral activations for the imposed choice condition (reactive control demand).
Activations shown in yellow-red represent the contrast imposed switch > imposed repeat;
activations shown in blue represent the contrast imposed repeat > imposed switch. Group-level t-
statistics maps were computed with the tfce-method (S. M. Smith & Nichols, 2009) and corrected

for multiple comparisons using nonparametric permutation testing. The resulting P-value maps
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were thresholded at o = .05 and projected onto the fsaverage surface using registration fusion (Wu
et al., 2018), with translucent coloring. In addition, regions that were also significant at o = .01 are
shown in saturated colors. Imposed switches were associated with higher activity than imposed
repeats bilaterally in dorsolateral prefrontal cortex (dIPFC), left inferior frontal junction (IFJ),
superior parietal lobule (SPL), inferior parietal lobule (IPL), temporo-occipital cortex (TOC), and
bilateral cerebellum (not shown here). Imposed repeats were associated with higher activity than
imposed repeats in the left precuneus (pc), bilateral ventromedial (vmPFC), dorsomedial prefrontal

cortex (dmPFC), left medial temporal gyrus (MTG), and left hippocampus (HC).

Next, to statistically compare switch-related activity between target availability conditions,
we directly compared activity associated with each target availability condition to each other.
However, because target availability was manipulated at the block-level, when directly comparing
switch-related activity across target availability conditions, we might pick up on overall block
differences rather than true switch-related differences. We therefore computed a double contrast,
in which we first isolated switch-related activity per target availability condition by subtracting
repeat activity from switch activity, and next, contrasted these differences to obtain the neural
correlate of switching when both targets were available versus when one target was available.
When considering regions where switch-related activity was stronger in both-targets blocks than in
one-target blocks, we again found activations closely resembling the MD network, including
bilateral dIPFC, frontopolar cortex, mFC/dACC, pCG, SPL, IPS, and Cerebellum (Fig. 4). The

opposite contrast —more switch-related activity in the one-target condition than in both-targets
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available condition— yielded no significant activations. One possibility might be that in the one-
target condition, target representations often needed to be updated both on switch and repeat
trials, for example if participants did not anticipate any of the targets. If this is the case, switch and
repeat trials would be more similar in the one-target available condition, so that activity reflecting
switch costs would be reduced.

To investigate this possibility, we directly compared switch activations between target
availability conditions without taking repeat events into account (see Fig. S2). For the contrast
both-targets switch greater than one-target switch, a very similar pattern was found as in the
double-contrast analysis (only bilateral aINS and Caudate were additionally active), thus confirming
the previous findings and suggesting that block differences do not seem to play an important role.
More importantly, when considering the opposite contrast, significant clusters of activation were
now found in the left ventrolateral prefrontal cortex (vIPFC), precuneus, and left temporoparietal
junction, regions that have been considered part of the default mode network (DMN; Raichle, 2015;
Raichle et al., 2001). The DMN has recently been linked to automated behavior, not rigorously
governed by cognitive control (Vatansever, Menon, & Stamatakis, 2017). Therefore, stronger DMN
activations in one-target blocks could be explained by less control being applied during switches in
this condition compared to both-targets blocks. If so, the same should be true for repeat trials. For
this reason, these DMN activations might not have emerged in the double-contrast procedure, as
these activations canceled each other out when switch and repeat trials in the one-target condition
were contrasted with each other. To investigate whether there actually was DMN activity

associated with repeat trials, in an exploratory analysis, we examined whether there were regions
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in which repeat events led to stronger activation than switch events, separately for the both-targets
and one-target conditions.

In this exploratory analysis, we effectively reversed the contrast that was used to isolate
switch-related activity in the first step of the double contrast procedure. We indeed detected strong
activity along the medial wall of the PFC, the orbitofrontal cortex (OFC), the precuneus, the left
medial temporal gyrus (MTG), and the temporoparietal junction (TPJ) across both target availability
conditions (opposite contrast shown in blue in Fig. 2 and Fig. 3). In addition to these common
activations, the amygdala and the hippocampus were selectively active in the one-target blocks
(Fig. 3). Directly comparing both-targets to one-target repeat trials (not taking switch trials into
account), yielded three cluster in which there was stronger activity in the one-target condition.
These clusters were located in the precuneus, the medial PFC, MTG, and the TPJ (Fig. S3). The
opposite contrast did not show any significant activations, suggesting that the DMN was activated
more strongly when one target was available than when both targets were available, which could
indicate a higher demand for cognitive control during both-targets blocks than during one-target
blocks (see Discussion), or conversely, more automated behavior during the latter. To test this
hypothesis, finally, we compared activity between target availability conditions across all event
types (collapsed across transition type). This analysis indicates primarily DMN activity (precuneus,
vIPFC, TPJ, and medial PFC) in one-target blocks and MD network activity (bilateral dIPFC, aINS,
PMd, IFJ, frontopolar cortex, mFC/dACC, SPL) in both-targets blocks (Fig. S4), in line with the

hypothesis that more control is demanded during both-targets blocks.
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Taken together, the GLM findings demonstrate that for both-targets as well as one-target
switches, activations were found in what is known as the multiple-demand network. However,
these activations were stronger and more widespread for free switches than for imposed switches.
Furthermore, during repeat trials, the DMN was strongly active, particularly during one-target
blocks. Irrespective of transition type (switch versus repeat), the MD network seems to be more
engaged when both targets are available than when only one is there, in which case the DMN is

predominantly active.

CG
P aCG MEC / aCG pCG

p (corrected)
ICS
PMd Fiid
dIPFC
dIPFC
FPC FPC
alNS alNS

TOC
ITG

Figure 4. Cerebral regions in which free switch cost (free switch > free repeat) yielded stronger
activity than imposed switch cost (imposed switch > imposed repeat), shown in yellow-red. Group-
level t-statistics maps were computed with the tfce-method (S. M. Smith & Nichols, 2009) and
corrected for multiple comparisons using nonparametric permutation testing. The resulting P-value
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maps were thresholded at o = .05 and projected onto the fsaverage surface using registration
fusion (Wu et al., 2018), with translucent coloring. In addition, regions that were also significant at
a = .01 are shown in saturated colors. Free switch costs were associated with higher activity than
imposed switch cost across both hemispheres in dorsolateral prefrontal cortex (dIPFC), frontopolar
cortex (FPC), dorsal premotor cortex (PMd), inferior frontal junction (IFJ), anterior insula/frontal
operculum cortex (aINS), bilateral posterior cingulate gyrus (pCG), anterior cingulate gyrus (aCQG),
medial frontal cortex (mFC/dACC), superior parietal lobule (SPL), inferior parietal sulcus (IPS),
intracalcarine sulcus (ICS), right inferior temporal gyrus (ITG), temporo-occipital cortex (TOC), and

bilateral Cerebellum (not shown here).

3.3.2 Deconvolution analysis. The standard approach of modeling the BOLD response with
a canonical hemodynamic response function (HRF) maximizes sensitivity for activations at the
expense of being more biased towards a predefined shape of the response (Poldrack, Mumford, &
Nichols, 2011). To characterize potential interregional variability and accommodate non-standard
BOLD-responses not captured by the double-gamma function that we used in the GLM approach,
we employed a deconvolution analysis. Deconvolution has the advantage that the shape and the
time course of the HRF can vary and some temporal information can be retained. We limited this
analysis to ROls that are part of the MD network and showed switch-related activity (collapsed
across target availability) in the GLM (see section 2.8.2), to limit the number of analyses, while still
considering most regions in which switch-related activity might be found. Across both cerebral

cortex and cerebellum, 23 ROIs were considered. We focused on activation differences between
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imposed and free switches, specifically where the activation patterns diverge from the standard
GLM results described above. Such differences were found primarily for imposed switches.
Specifically, the deconvolution identified significant activity bilaterally in the anterior Insula (aINS)
and the left dorsal premotor cortex (PMd) located on the superior frontal gyrus. Nevertheless, in
these regions, free switches still elicited a stronger response than imposed switches (see Fig. 5).
Across all other ROIls, we observed four patterns: regions with neither imposed nor free switch
activity, regions with only free switch activity, regions with both imposed and free switch activity but
more activity on free switches, and regions with equal amounts of imposed and free switch activity.
However, in all those regions the deconvolution yielded the same qualitative pattern as the
standard GLM approach.

Note that beyond regional differences between imposed and free switches, these two
conditions could also differ in temporal aspects. In fact, a strong prediction of the dual mode of
control framework is that proactive control should begin before trial onset, whereas reactive control
should only be invoked after the search display onset. Van Driel and colleagues (2019) provided
strong support for this prediction using a very similar paradigm to ours in combination with more
time-sensitive EEG measures. To test for potential onset differences also in the fMRI signal, we
measured the estimated onset latency in combination with a jackknife approach. The results
yielded significantly earlier proactive switch activity in the left PMd (Mpracive = 1210 MS, Mreacive =
2237 ms, t,(18) = 2.77, p. = .01), right PMd (Mpracive = 1484 MS, Mreacive = 2300 ms, £(18) = 2.53, p,
=.02), left IFJ (Mproactive = 1484 MS, Mreacive = 2226 ms, t,(18) = 2.79, p. = .01), right IFJ (Mproacive =

1505 ms, Meactve = 2000 ms, £(18) = 2.99, p. = .008), left posterior parietal cortex (Mpoacive = 1721
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mMS, Mreacive = 2405 ms, t.(18) = 2.22, p. = .04), right posterior parietal cortex (Myrwacive = 1747 ms,
Mieacive = 2516 ms, t(18) = 3.33, p. = .004), and mFC/dACC (Mpractive = 1284 mS, Mreacive = 2026 ms,
,(18) = 2.79, p. = .01), but no such difference in the bilateral aINS (left: Mproactive = 2152 MS, Mreacive =
2115 ms, {,(18) = 0.41, p. = .69; right: Mgwactive = 1900 MS, Mreactive = 2410 ms, ,(18) = 1.50, p, = .15).
Some of these areas, notably mFC/dACC and PMd, are consistent with the midfrontal topography
of the free choice related beta-oscillatory suppression that was observed by van Driel et al (2019).
Note that one might also expect to find onset differences in the frontopolar cortex, given its
presumed role in voluntary switching (Mansouri et al., 2017, Pollmann, 2016). However, as there
was virtually no activity related to imposed switches in this region, onset difference could not

meaningfully be determined.
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Figure 5. Group-averaged beta estimates of neural activation time course in selected regions of
interest. Deconvolution analysis was used to model the BOLD response for each event type
separately. For each target availability condition, the difference of the time courses for switch and

repeat trials was computed and the resulting time courses are shown here. The shaded color
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bands represent 68% confidence intervals (+1 SEM). Thick lines as well as horizontal bars indicate
significant clusters (at o = .05) as produced by cluster-based permutation testing (5000
permutations). The black horizontal bars indicate the range over which the difference between the
target availability condition was significant. The marked time points (vertical dashed lines) indicate
the latency of 50% maximum amplitude as estimated using a jackknife approach, as a measure of

the onset of activation (Miller, Patterson and Ulrich, 1998; Luck, 2014; Liesefeld, 2018).

4. Discussion
In this study we set out to examine which brain regions are recruited in multiple-target search,
depending on whether observers are free to select a target or whether they are forced to select a
particular target. For this purpose, we asked observers to look for multiple targets and we
manipulated whether both or only one of the two potential target colors were present in a search
display. We reasoned that the presence of both targets would enable observers to use proactive
control to prepare a search, whereas the presence of only a single item would require reactive
control whenever the observer expected the wrong target. In accordance with previous findings
(Ort et al., 2017, 2018), we found clear switch costs in terms of both saccade latency and saccade
accuracy when only one target category was present in a search display, while there were no
switch costs when both targets were available. This finding is further supported by the results of
hierarchical drift diffusion modeling, which revealed lower drift rates on switch compared to repeat
trials when one target was available. When both targets were present, drift rates were also lower

for switch than for repeat trials, but this difference was much smaller than in the one-target
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condition. This suggests that observers used the predictability of the both-targets condition to
prepare selection of either one of the targets, so that potential costs associated with updating the
currently active target representations remained latent.

Importantly, using fMRI measures we provide new evidence regarding the neural
mechanisms underlying these switches of feature-based attention. We found the frontoparietal
multiple-demand network (Duncan, 2010; Fedorenko, et al., 2013) to be strongly associated with
free target switches. Imposed target switches elicited a similar, yet weaker activity pattern in the
posterior parietal cortex (PPC), and relatively smaller activity clusters in frontal regions at the
inferior frontal junction (IFJ) and dorsolateral prefrontal cortex (dIPFC). Furthermore, the direct
comparison of free and imposed switches indicates that the multiple-demand network is more
strongly involved during free than during imposed switches. In contrast, parts of the default mode
network are activated stronger in blocks involving imposed switches. Assuming that target
availability conditions primarily differed with respect to whether observers used proactive control
(both-targets available) or reactive control (one-target available), our findings suggest that these
two modes of control can indeed be dissociated during multiple-target search. More specifically, by
means of a deconvolution analysis, we were able to categorize these differential activations into
regions that exclusively activate for free switches (dIPFC, frontopolar cortex, and medial frontal
cortex/mFC) and regions that are also active during imposed switches but to a lesser extent (IFJ,
dorsal premotor cortex/PMd, and PPC). Furthermore, these regions activated earlier for free
switches, corroborating their role in preparatory cognitive control in anticipation of a demanding

event.
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The observed activations for imposed switches are reminiscent of earlier reports on
stimulus or task-induced feature-based attention shifts with activations primarily located bilaterally
in PPC and PMd (Greenberg et al., 2010; Liu et al., 2003; Pollmann et al., 2006, 2000, Slagter et
al., 2006, 2007). This also matches the observation that IFJ and PPC are involved in updating and
representing task sets across a variety of tasks (Brass & von Cramon, 2004; Kim et al., 2012). In
particular, it has been suggested that while IFJ is responsible for updating task-specific
information, the PPC maintains such information and implements task sets (Brass & von Cramon,
2004; Bunge, Kahn, Wallis, Miller, & Wagner, 2003; Greenberg et al., 2010; Shulman, 2002;
Slagter et al., 2007). Finally, the activity in the anterior insula that we observed after deconvolution
analyses of both types of switches may be part of a network that signals salient events (such as
the absence of an expected target color) and the need to initiate a cascade of control signals that
eventually update the active target representation (Menon & Uddin, 2010; Power & Petersen,
2013; Seeley et al., 2007). We isolated the neural response to feature-based attention shifts from
the additional types of changes that may contribute to task-switch costs (e.g. Meiran, 2010), in
particular shifts of stimulus-response mapping. Our findings suggest that establishing a new
attentional set is a rather “cheap” process that requires only minimal frontal activity (see Ort,
Fahrenfort, ten Cate, & Olivers, 2019; Moore & Weissman, 2010 for behavioral and
electrophysiological evidence). Furthermore, similar to Gmeindl et al. (2016), we directly compared
endogenous, self-initiated target switches to imposed switches, but of feature-based rather than

spatial attention. Importantly, our design allowed us to link either switch-related activity to specific
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events in the experiment. In doing so, we show that there is common, but also distinct neural
activity underlying these types of switches.

However, some findings were unexpected, in particular with respect to imposed switches.
First, with the standard GLM approach, we did not observe any significant imposed-switch-related
activity in the dorsal premotor cortex (PMd; presumably the location of the human frontal eye
fields), an area that has previously been shown to be related specifically to feature-based attention
shifts (Kim et al., 2012). Using deconvolution, we were able to detect significant, but relatively
weak activity in the left PMd. A possible explanation may be that in contrast to earlier studies of
feature-based attention shifts (e.g. reviewed in Kim et al.,, 2012), in our study, there were no
changes in the stimulus-response mapping associated with imposed switches. Note that an
imposed target shift did not systematically signal a particular eye movement as target location and
target identity were unrelated. Therefore, there was no need to activate or update a certain
stimulus-response mapping, which has been suggested to be a function of the PMd (e.g. Badre &
D’Esposito, 2009; Hopfinger, Buonocore, & Mangun, 2000; Kim et al.,, 2012). This is also
supported by Pollmann and colleagues (2006), who, during a visual search task, separated
attention shifts from response shifts and found only the latter to activate the PMd.

Second, unlike Jiang and colleagues (2018), we did not observe any activity in the anterior
cingulate cortex (ACC) related to imposed switches. This region has been linked to conflict
monitoring in numerous studies (e.g. Botvinick, Nystrom, Fissell, Carter, & Cohen, 1999; Ito,
Stuphorn, Brown, & Schall, 2003; Jiang et al., 2015; Kerns et al., 2004; Ullsperger, Danielmeier, &

Jocham, 2014). As observers could not anticipate imposed target switches, we also expected a
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degree of surprise whenever the target changed. This signal has been suggested to be related to
conflict-processing and to originate in the medial frontal cortex (e.g. Cavanagh & Frank, 2014).
However, experienced conflict in Jiang et al. (2018) may have been stronger due to the fact that
participants were explicitly cued as to which task to expect, while in our study any build-up of
expectations was left to the observer. Furthermore, unlike in the Jiang et al. study, observers did
not have to manage a target-specific stimulus-response mapping in our study. Overall, we believe
that target selection in our paradigm was relatively easy and therefore did not evoke strong
conflict-related signals in the frontal cortex. That said, in a recent EEG study with a very similar
paradigm (van Driel et al., 2019), we did observe a power enhancement in the delta/theta-
frequency band after imposed switches over midfrontal electrodes. This signal has been suggested
to be related to conflict-processing and to originate in the medial frontal cortex (e.g. Cavanagh &
Frank, 2014). It remains to be investigated why we found no corresponding source here.

Some support for the hypothesis that relatively little control was exerted in the imposed
target condition comes from the default mode network activity that we observed, particularly for
repeat trials. The default mode networkhas recently been shown to not just reflect an idle brain
state, but to also activate during various tasks (Elton & Gao, 2015; Konishi, McLaren, Engen, &
Smallwood, 2015; Smallwood et al., 2013; V. Smith, Mitchell, & Duncan, 2018; Spreng, 2012;
Spreng et al.,, 2014; Vatansever et al., 2017). Even though its functional significance is still
debated, there is increasing evidence that suggests the default mode network is related to
internally-generated thought (Konishi et al., 2015), decoupled from immediate sensory input or

context-representation (V. Smith et al., 2018). Maybe most importantly, Vatansever and colleagues
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(2017) demonstrated that even though the cognitive control network is strongly involved in
acquiring task rules, once those rules have been learned, the default mode network becomes
active while applying them. They concluded that whenever the current task context is predictable,
individuals enter a form of “autopilot” mode in which correct responses can be made without
explicit cognitive control. We argue the same may happen in our paradigm: During phases of target
repeats, participants were able to select the correct target disk in a low-control, automated manner.

The activation patterns associated with free switches are similar to previously reported
activations related to proactive control demand (Irlbacher et al., 2014; Jiang et al., 2018). In
addition to parietal and posterior frontal activity as was also observed for imposed switches, two
key activations are of primary importance here. First, there were strong medial activations
spanning from dorsal anterior cingulate cortex (dACC) to the supplementary motor area (SMA).
Activity in these regions has been associated with self-generated choice (Demanet et al., 2013;
Forstmann et al., 2006; Gmeindl et al., 2016; Orr & Banich, 2013; Passingham et al., 2010; Soon
et al., 2008; Taylor et al., 2008; Wisniewski et al., 2016; Wisniewski et al., 2015; J. Zhang et al.,
2013). The present pattern of activations matches those findings, consistent with the idea that
participants used the available information to prepare a switch trial in advance. Second, activity
was found in the lateral frontopolar cortex. This region has been associated with making free
decisions, but also with the evaluation of alternative goals in the context of exploratory behavior
(Mansouri et al., 2017; Pollmann, 2016). We believe that this activity might reflect participants
evaluating whether or not to switch to the other target color during a streak of target repeats.

Nevertheless, even though these activations were specific to the free choice condition, they may
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only indirectly relate to proactive control, inasmuch as this information can be used by a cognitive
control system to signal when (and supposedly how much) proactive control should be invoked.

In addition, we also found activity along the dIPFC. In line with an interpretation in terms of
proactive control, this activity might reflect preparatory updating and maintaining of task rules
(Braver, Paxton, Locke, & Barch, 2009). However, as the dIPFC has been linked to a wide range of
executive functions, such as working memory, planning, and inhibition (e.g. Niendam et al., 2012),
we cannot exclude that other factors caused the activations in this region. For example, dIPFC
activity could have been caused by additional mental effort and working memory demand
associated with overall planning or keeping track of the switches, in order to adhere to the task
instructions (e.g. Braver et al., 1997; Bunge, Ochsner, Desmond, Glover, & Gabrieli, 2001;
Dosenbach et al., 2008; Rypma & D’Esposito, 1999; Shenhav, Botvinick, & Cohen, 2013).
Nevertheless, it could be argued such additional cognitive processes, despite not being cognitive
control in a strict sentence, are essential for proactive control. In this sense, proactive control
requires the maintenance of the current and the targeted state (working memory), planning target
selection on future trials (planning) and making the decision to invoke proactive control at a given
moment (intention). Therefore, the actual usage of proactive control can be seen as a
consequence of an cascade of other cognitive processes.

Beyond that, the present findings provide further support for multiple-state models of
working memory postulating that the number of memory items that can concurrently affect behavior
at any given moment is limited (Huang & Pashler, 2007; Oberauer, 2002; Olivers, Peters,

Houtkamp, & Roelfsema, 2011). The fact that we observed switch costs indicates that observers
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did not distribute resources equally across multiple target representations. This interpretation is
supported by the fMRI results which show switch-related activity in both target availability
conditions in regions that have previously been associated with updating of attentional sets
(Greenberg et al., 2010; Liu et al., 2003; Polimann et al., 2006, 2000, Slagter et al., 2006, 2007;
Wager et al., 2004), including bilateral posterior parietal cortex and inferior frontal junction. Switch-
related activity in these regions suggests that in both target availability conditions switch trials were
associated with priority shifts, therefore supporting dynamic weighing of attentional relevance

between target representation (see also van Driel et al., 2019).

Table 2. Localization of activations for the main contrasts. Coordinates of local maxima are
reported in MNI152-space. Large clusters were split into subclusters based on anatomical
considerations. Structure labels are based on the Harvard-Oxford anatomical atlas.

Structure t-statistic X Y Z

Proactive Switch > Proactive Repeat

Left Anterior Insula 8.26 -33 21 8
Right Anterior Insula 8.24 33 24 8
Left Precentral Gyrus / Inferior Frontal Junction® 8.25 -45 0 38
Right P tral G / Inferior Frontal

ig ' recentral Gyrus / Inferior Fronta 6.95 59 8 o5
Junction®
Left Middle Frontal Gyrus / Dorsal Premotor - 58 57 6 54
Cortex®
Right Middle Frontal D | P t

ig iddle Frontal Gyrus / Dorsal Premotor 8.41 o7 12 47
Cortex®
Superior Frontal Gyrus / Medial Frontal Gyrus® 8.31 0 18 47
Posterior Cingulate Gyrus 7.69 0 -30 28
Left Intraparietal Sulcus? 9.35 -30 -54 44
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Right Intraparietal Sulcus? 9.27 36 -45 41
Left Inferior Parietal Lobule 8.99 -30 -75 27
Right Superior Parietal Lobule 8.92 39 -63 61
Right Intracalcarine Sulcus 6.19 24 -72 8
Left Intracalcarine Sulcus 6.16 -18 -66 5
Left Cerebellum (Crus I)* 8.9 -33 -63 -32
Right Cerebellum (Crus ) 8.75 36 -57 -32

Proactive Repeat > Proactive Switch

Medial Frontal Cortex 7.08 -3 57 -9
Left Orbitofrontal Cortex 6.62 -39 36 -15
Right Orbitofrontal Cortex 5.36 33 39 -15
Subcallosal Gyrus 5.88 0 15 -9
Medial Frontopolar Cortex 5.64 0 60 19
Right Temporal Pole 6.35 51 15 -32
Left Middle Temporal Gyrus 5.99 -60 0 -25
jj:;t?;izior Parietal Lobule / Temporoparietal 6.18 45 57 o4
Precuneus 6.13 -6 -54 21
Reactive Switch > Reactive Repeat
Left Lateral Frontopolar Cortex 5.28 -42 39 11
Left Precentral Gyrus / Inferior Frontal Junction® 5.04 -42 0 34
Left Intraparietal Sulcus? 6.76 -30 -51 44
Right Intraparietal Sulcus? 6.21 36 -45 41
Left Fusiform Gyrus 5.55 -33 -54 -19
Cerebellum (Vermis VI)' 5.74 6 -72 -25
Right Cerebellum (Crus ) 5.67 33 -54 -35
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Left Cerebellum (Crus I)* 5.16 -39 -51 -35
Reactive Repeat > Reactive Switch
Medial Frontal Cortex 7.69 0 45 -12
Medial Frontopolar Cortex 6.07 -4 58 4
Left Temporal Pole 5.61 -48 9 -35
Right Amygdala 4.53 15 -9 -15
Left Amygdala 3.98 -15 -7 -16
Left Hippocampus 6.51 -24 -21 -15
Right Hippocampus 4.42 24 -24 -12
Left Precuneus 6.29 -15 -48 34
jjggt?;igior Parietal Lobule / Temporoparietal 588 57 69 31
Proactive Switch Cost > Reactive Switch Cost
Right Lateral Frontopolar Cortex 7.59 48 42 24
Left Lateral Frontopolar Cortex 6.5 -36 63 18
gi;q:;l(\gliddle Frontal Gyrus / Dorsal Premotor 247 o4 15 47
Right Middle Frontal Gyrus 6.04 51 30 38
Superior Frontal Gyrus / Medial Frontal Gyrus® 6.11 3 21 51
Posterior Cingulate Gyrus 5.27 0 -33 28
Right Superior Parietal Lobule 7.59 42 -60 61
Right Intraparietal Sulcus? 5.61 33 -51 40
Left Intraparietal Sulcus* 5.08 -30 -57 50
Left Cerebellum (Crus I) 6.65 -36 -63 -32
Right Cerebellum (Crus I) 5.08 36 -57 -32

" These structure labels were retrieved from the Probabilistic cerebellar atlas (included in FSL).
*These structure labels were retrieved from the Juelich Histological Atlas.
S Additional labels were provided to further specify anatomical location or functional significance.
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5. Conclusion

We investigated the contributions of proactive and reactive control to target selection during
multiple-target search. We found that both control mechanisms activate a similar network that has
previously been associated with shifts of feature-based attention, with proactive control eliciting
greater activity generally. In addition, proactive switching also activated other frontal regions that
have been linked to free choice and evaluating alternative options other than the current action.
We argue that these signals represent control processes to update target representations. The
current study elucidates the behavioral and neural profiles of different target switching control
strategies.
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Supplemental Material

Three-way repeated measures ANOVA on mean saccade latency with transition type, target
availability and display variation as factors

We included different display variations including duplicate targets and duplicate distractors
to control for number of targets and prevent potential strategies of looking for anything that
occurred twice. In a control analysis, we wanted to check whether these different display variations
affected the presence and magnitude of switch costs in each target availability condition. For this
purpose, we ran a three-way repeated-measures ANOVA with target availability (both targets vs.
one target available), transition type (switch vs. repeat) and display variation (target duplicate vs.
distractor duplicate) as factors on saccade latency. This yielded significant main effects of
transition type (F(1,18) = 22.7, p < .001, n°= 0.56), and target availability (F(1,18) = 17.6, p = .001,
n? = 0.49), and a two-way interaction between target availability and transition type (F(1,18) = 15.86,
p = .001, n° = 0.46). None of the other effects reached significance: main effect display variation
(F(1,18) =~ 0.0, p = .95, n° < 0.001), the two-way interaction between target availability and display
variation (F(1,18) = 0.41, p = .53, n° = 0.02), the two-way interaction between transition type and
display variation (F(1,18) = 0.41, p = .53, n° = 0.02), and three-way interaction (F(1,18) = 0.67, p
= .42, n° = 0.04). A Bayes Factor analysis confirmed this pattern by showing that the model
including the main effects transition type and target availability and the interaction between them
explains the data best (BF = 6.7 x 10') and was 5.9 times as likely as the next best model that
additionally included the main effect display variation. Taken together, these findings suggest that

switch costs, expressed in saccade latency, did not depend on specific the display variations.
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We ran the same three-way ANOVA on accuracy. This ANOVA indicated that the main
effects (target availability: F(1,18) = 41.4, p < .001, n° = 0.70; transition type: F(1,18) = 35.9, p
< .001, n? = 0.67; display variation: F(1,18) = 8.91, p = .008, n° = 0.33), and the two-way
interactions between target availability and trial transition (F(1,18) = 27.3, p < .001, n° = 0.60) and
between target availability and display variation (F(1,18) = 12.3, p = .003, n° = 0.41) were
significant. Neither the two-way interaction between transition type and display variation (F(1,18) =
3.5, p = .08, n° = 0.16), nor the three-way interaction (F(1,18) = 1.98, p = .18, n° = 0.1) reached
significance. Even though accuracy systematically varied with the display variation, such that
displays with more targets were associated with higher accuracy, the critical interaction of trial
transition and target availability was not affected. Thus, switch costs did not depend on the

particular display variation we used.

Table S1. Mean saccade latencies and within-subject 95% CI (Morey, 2008) in ms and percentage
correctly fixated targets with within-subject 95% CI for all display variations. Both target availability
conditions (both-targets available and one-target available) had two variations of displays, to
control for number of target items and duplicate colors in the display. The row Example Array
depicts an example of each display variation. The row # trials represents the mean number (and
the min-max range across participants in brackets) of trials per condition. The rows Repeat and
Switch and provide the mean saccade latencies for target switches and target repetitions, for each
of these display variations. Examples here are for trials on which red and blue were cued as target

colors.
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Target Availability Both-Targets One-Target
Distractor Distractor
Display Variati T t Duplicat T t Duplicat
isplay Variation arget Duplicate Duplicate arget Duplicate Duplicate
Example Array % g ° ® E ° ® ’ ® ° . ®
o O e o o O [ 2N ]
Repeat [224[103,329] |228[122, 320] 219126, 302] |221 [114, 311]
# trials
Switch |49 [32, 69] 51 [28, 73] 42 [25, 65] 39 [14, 56]
R 74 7 4,382 7 1
Saccade |TiEPeat |374[366,383] 373364, 382] 389 [383, 396] | 387 [381, 393]
Lat
AN \switch |385[376,394]  |391[379, 403] | 452439, 466]  |450 [429, 472]
Repeat |96.0[95.4,96.6] |97.8[96.8,98.7] | 96.8[95.9,97.6] |93.8[93.0, 94.6]
Accuracy
Switch |95.4 [94.3,96.5] |97.0[96.0,98.0] | 90.5[89.2, 91.8] |84.0[80.8, 87.3]

Additional Behavioral Analysis reveal no major strategic difference across participants

To gain more insight into different strategies participants might use, we analysed choice
behavior in more detail. Overall, these additional analyses suggest that most individuals apply
similar strategies when selecting the target to fixate. Specifically, we ran following analyses: (1)
Does the streak length (of successive repeat trials) per block vary across participants? For
example, if a participant chose the strategy to switch every 6 trials, the streak length should be
around 6 with a small standard deviation. In contrast, if a participant switches on each of the first 6
trials of a block and then sticks with one color for the rest of the block, streak length should be
smaller and have a higher variability. As Figure S1A demonstrates, most participants used a rather

regular switching approach with not too much variability (M = 4.12 repeats, min-max range over
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participants: 1.99 — 7.52). Exceptions are participant 1 and (to some extent) participant 21 who
seem to have a bias toward short streak lengths, and participant 4 who seems to behave rather
randomly.

(2) Next, to quantify the regularity with which participants switched targets throughout a
block, we split blocks into three parts (first 14, middle 14 and last 13 trials) and checked how many
switches fell in each tercile. Figure S1B shows that approximately the same number of switches
occurred in each tercile, further supporting the conclusion that participants spread out the switching
over the course of a block. Again a handful of participants showed more switches in the first tercile
than in the other two, indicative of a strategy that relies on performing the required number of
switch trials in the beginning of a block and staying with the same color for the rest of it. We
computed the ratio of number of switches in the first tercile with number of switches in the last
tercile and correlated this with switch rate, streak length, switch costs in one-target block, switch
costs in both-targets blocks, and the difference between these two types of blocks. Importantly,
only the correlation of streak length and the ratio of early vs. late switches was significant
(Spearman’s p (18) = -0.51, p = 0.03), suggesting that participants that switched a lot early in the
block, also have shorter streak lengths altogether. This confirms that these individuals most likely
applied the strategy of first reaching the required number of switches before sticking with one color
for the rest of the block. None of the other correlations was significant (Spearman’s p < 0.26, p >
0.27. Here, we also correlated switch rate across participants with difference of switch costs

between both-targets available and one-target available condition, but also this correlation was not
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significant (Spearman’s p (18) = 0.17, p = 0.47), suggesting that the main findings did not depend
on how often participants switched between the targets.

(3) Next, we investigated whether the number of targets in the display influenced the
likelihood that participant would switch. However, this factor had no influence on target selection
(t(18) = 0.72, p = .48, Cohen’s d = 0.12, BF = 0.3).

(4) To see whether switch costs depended on which color was selected on a trial, we
computed switch cost separately for each target color. This analysis revealed no significant effect
of color on the switch costs in neither of the target availability conditions (see Figure S1C). Note,
when splitting up the trials based on the target color, only 25 observations are left in the smallest
cells on average. Therefore, these analyses have to be interpreted with care.

(5) Finally, we checked whether the likelihood to switch depended on the target color by
running an ANOVA on switch rate, but also this was not the case, suggesting that participants did

not have a preference for switching to a specific color (F(3.06,55.13) = 0.75, p = 0.53).
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Fig S1. Additional behavioral analysis to investigate strategic difference across participants with
respect to switch behavior. (A) Boxplot showing the mean streak length (number of repeat trials in
between two successive switch trials). The vertical lines in the box plots represent quartiles. The
horizontal line represents the minimum (lower quartile - 1.5 * interquartile range) and maximum

(upper quartile + 1.5 * interquartile range) while single dots beyond that range indicate individual

70


https://doi.org/10.1101/559500
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/559500; this version posted August 20, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Running head: PROACTIVE AND REACTIVE TARGET SELECTION
outliers. (B) Number of switches in the first, second and third tercile of a block, separately for
participants (separate lines). (C) Switch costs for each color in the experiment, separately for each

target availability condition.

Table S2. All models that were compared during the drift diffusion modeling. The column
Parameters depending on Target Availability indicates which parameters (a and/or v), were
allowed to vary across the two levels of target availability. The column Parameters depending on
Transition Type indicates the same, but for transition type. DIC represents the deviance
information criterion, which can be used to compare models. A lower DIC is better. For all models,
we used informative priors (Wiecki et al., 2013), a fixed non-decision time, starting point, and fixed

inter-trial variability. All models were checked for convergence.

Parameters depending on | Parameters depending on
Priors DIC
Target availability Transition Type
- - informative -50192
v v informative -51323
a - informative -50557
a, Vv Y informative -51486
a, v Y noninformative -51486
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Table S3. Localization of activations for additionally analyzed contrasts. Coordinates of local

maxima are reported in MNI152-space. Large clusters were split into subclusters based on

anatomical considerations. Structure labels are based on the Harvard-Oxford anatomical atlas.

Structure t-statistic X Y z
Proactive Switch > Reactive Switch

Right Lateral Frontopolar Cortex 7.63 48 42 24
Left Lateral Frontopolar Cortex 6.27 -36 63 18
Right Anterior Insula 6.94 33 24 8
Left Anterior Insula 6.22 -33 21 8
Right Middle Frontal Gyrus / Dorsal Premotor

6.88 24 15 47
Cortex®
Left Superior Frontal Gyrus / Dorsal Premotor

6.71 -27 -6 54
Cortex®
Left Precentral Gyrus / Inferior Frontal Junction® 5.66 -48 3 38
Superior Frontal Gyrus / Medial Frontal Gyrus® 6.87 3 18 51
Anterior Cingulate Gyrus 4.03 3 9 28
Right Orbitofrontal Cortex 4.54 24 51 -15
Posterior Cingulate Gyrus 5.00 0 -33 28
Right Superior Parietal Lobule 8.56 39 -63 61
Left Superior Parietal Lobule 5.69 -30 -57 51
Right Intraparietal Sulcus” 6.38 39 -45 41
Right Precuneus 5.76 3 -66 54
Right Intracalcarine Sulcus 5.74 24 -72 8
Left Cerebellum (Crus )’ 7.15 -26 -63 -32
Right Cerebellum (Crus I)* 5.94 33 -60 -32
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Left Caudate (Body) 5.12 -15 -21 5

Right Caudate (Head) 4.53 15 24 8

Reactive Switch > Proactive Switch

Left Orbitofrontal Cortex 6.25 -36 36 -15

Left Precuneus 5.2 -3 -57 24

Left Inferior Parietal Lobule / Temporoparietal
4.97 -45 -57 24
Junction®

Proactive Events > Reactive Events (collapsed across Trial Transition)

Left Lateral Frontopolar Cortex 6.42 -36 63 18
Right Lateral Frontopolar Cortex 6.66 48 42 24
Left Middle Frontal Gyrus / Dorsal Premotor

6.48 -27 -6 54
Cortex®
Right Middle Frontal Gyrus / Dorsal Premotor

6.24 27 10 50
Cortex®
Left Middle Frontal Gyrus / Dorsolateral Prefrontal

4.47 -51 27 41
Cortex®
Right Anterior Insula 7.48 33 24 8
Left Anterior Insula 6.07 -33 21 8
Superior Frontal Gyrus / Medial Frontal Gyrus® 6.95 3 15 54
Anterior Cingulate Gyrus 6.44 9 27 31
Right Precentral Gyrus / Inferior Frontal Junction® 5.84 51 9 21
Left Precentral Gyrus / Inferior Frontal Junction® 4.97 -48 3 38
Right Orbitofrontal Cortex 4.92 24 54 -15
Right Superior Parietal Lobule 7.99 39 -63 61
Right Intraparietal Sulcus* 6.13 39 -45 41
Left Intraparietal Sulcus? 5.48 -30 | -52 43
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Right Intracalcarine Sulcus 5.4 24 -72 8
Left Intracalcarine Sulcus 5.2 -24 -75 5
Left Cerebellum (Crus I)* 6.42 -36 -64 -32
Right Cerebellum (Crus I)* 6.03 33 -60 -32

Reactive Events > Proactive Events (collapsed across Trial Transition)

Left Orbitofrontal Cortex 6.33 -36 36 -15
Medial Frontopolar Cortex 5.55 -3 60 -9
Left Precuneus 7.47 -12 -51 38
Left Inferior Parietal Lobule / Temporoparietal

5.89 -42 -57 24
Junction®

Reactive Repeat > Proactive Repeat

Medial Frontopolar Cortex 5.29 9 45 -9
Superior Frontal Gyrus / Dorsomedial Prefrontal

4.37 0 51 31
Cortex®
Left Precuneus 5.52 -12 -51 38
Right Precuneus 4.42 9 -54 31

" These structure labels were retrieved from the Probabilistic cerebellar atlas (included in FSL).
*These structure labels were retrieved from the Juelich Histological Atlas.

S Additional labels were provided to further specify anatomical location or functional significance.
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Figure S2. Cerebral activations for free and imposed switches, not taking respective repeat trials
into account. Activations shown in yellow-red represent the contrast free switch > imposed switch.
Activations shown in blue represent the contrast imposed switch > free switch. Group-level t-
statistics maps were computed with the tfce-method (S. M. Smith & Nichols, 2009) and corrected
for multiple comparisons using nonparametric permutation testing. The resulting P-value maps
were thresholded at o = .05 and projected onto the fsaverage surface using registration fusion (Wu
et al., 2018), with translucent coloring. In addition, regions that were also significant at o = .01 are
shown in saturated colors. Free switches were associated with higher activity than imposed
switches across both hemispheres in dorsolateral prefrontal cortex (dIPFC), frontopolar cortex
(FPC), dorsal premotor cortex (PMd), right inferior frontal junction (IFJ), anterior insula/frontal

operculum cortex (alNS), left posterior cingulate gyrus (pCG), left anterior cingulate gyrus (aCQG),
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bilateral medial frontal cortex/ dorsal anterior cingulate cortex (mMFC/dACC) and bilateral superior
parietal lobule (SPL). Imposed switches were associated with higher activity than free switches in

the right precuneus (pc), left temporoparietal junction and ventrolateral prefrontal cortex (vIPFC).

p (corrected)

pcC

MTL MTL

Figure S3. Cerebral regions in which imposed repeats yielded stronger activity than free repeats,
not taking respective repeat trials into account (shown in yellow-red). Group-level t-statistics maps
were computed with the tfce-method (S. M. Smith & Nichols, 2009) and corrected for multiple
comparisons using nonparametric permutation testing. The resulting P-value maps were
thresholded at o = .05 and projected onto the fsaverage surface using registration fusion (Wu et
al., 2018), with translucent coloring. In addition, regions that were also significant at o = .01 are
shown in saturated colors. Imposed switches were associated with higher activity than imposed
switches across both hemispheres in the precuneus (pc), medial prefrontal cortex (mPFC), medial

temporal gyrus (MTG), and the left temperoparietal junction.
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Figure S4. Cerebral activations for the free choice condition compared to the imposed choice
condition, irrespective of transition type. Activations shown in yellow-red represent the contrast free
events > imposed events. Activations shown in blue represent the contrast imposed events > free
events. Group-level t-statistics maps were computed with the tfce-method (S. M. Smith & Nichols,
2009) and corrected for multiple comparisons using nonparametric permutation testing. The
resulting P-value maps were thresholded at o = .05 and projected onto the fsaverage surface
using registration fusion (Wu et al., 2018), with translucent coloring. In addition, regions that were
also significant at o = .01 are shown in saturated colors. Free events were associated with higher
activity than imposed events across both hemispheres in dorsolateral prefrontal cortex (dIPFC),

frontopolar cortex (FPC), dorsal premotor cortex (PMd), right inferior frontal junction (IFJ), anterior
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insula/frontal operculum cortex (alNS), bilateral medial frontal cortex/ dorsal anterior cingulate
cortex (mFC/dACC) and bilateral superior parietal lobule (SPL). Imposed events were associated
with higher activity than free events in the precuneus (pc), left temporoparietal junction, medial

prefrontal cortex (mPFC), ventrolateral prefrontal cortex (vIPFC).
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