
Running head: PROACTIVE AND REACTIVE TARGET SELECTION

Frontal  Cortex  Differentiates  Between  Free  and  Imposed  Target  Selection  in  Multiple-Target
Search

Eduard Ort1,2,*, Johannes J. Fahrenfort1,2,3, Reshanne Reeder4,5, Stefan Pollmann4,5, Christian N. L.
Olivers1,2

[1] Department of Experimental and Applied Psychology, Vrije Universiteit Amsterdam, 

[2] Institute for Brain and Behavior Amsterdam

[3] Department of Brain and Cognition, University of Amsterdam

[4] Center for Behavioral Brain Sciences, Otto-von-Guericke University Magdeburg,  

[5] Department of Experimental Psychology, Otto-von-Guericke University Magdeburg

* Corresponding author

Contact Information 

Eduard Ort: eduardxort@gmail.com, Vrije Universiteit Amsterdam, van der Boechorststraat 7, 1081

BT Amsterdam, The Netherlands.

Johannes J. Fahrenfort: fahrenfort.work@gmail.com, Vrije Universiteit Amsterdam, van der 

Boechorststraat 7, 1081 BT Amsterdam, The Netherlands

Reshanne Reeder: reshanne.reeder@ovgu.de, Universitätsplatz 2, 39106, Magdeburg, Germany

Stefan Pollmann: stefan.pollmann@ovgu.de, Universitätsplatz 2, 39106, Magdeburg, Germany

Christian N. L. Olivers: c.n.l.olivers@vu.nl, Vrije Universiteit Amsterdam, van der Boechorststraat 

7, 1081 BT Amsterdam, The Netherlands.

1

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 20, 2019. ; https://doi.org/10.1101/559500doi: bioRxiv preprint 

https://doi.org/10.1101/559500
http://creativecommons.org/licenses/by/4.0/


Running head: PROACTIVE AND REACTIVE TARGET SELECTION

Abstract

Cognitive control can involve proactive (preparatory) and reactive (corrective) mechanisms. Using

a gaze-contingent eye tracking paradigm combined with fMRI, we investigated the involvement of

these different modes of control and their underlying neural networks, when switching between

different targets in multiple-target search. Participants simultaneously searched for two possible

targets presented among distractors, and selected one of them. In one condition, only one of the

targets was available in each display, so that the choice was imposed, and reactive control would

be required. In the other condition, both targets were present, giving observers free choice over

target selection, and allowing for proactive control. Switch costs emerged only when targets were

imposed and not  when target selection was free.  We found differential  levels of  activity in the

frontoparietal  control  network  depending  on  whether  target  switches  were  free  or  imposed.

Furthermore, we observed core regions of the default mode network to be active during target

repetitions, indicating reduced control on these trials. Free and imposed switches jointly activated

parietal  and posterior  frontal  cortices,  while  free switches additionally  activated anterior  frontal

cortices.  These  findings  highlight  unique  contributions  of  proactive  and reactive  control  during

visual search.

Keywords: Visual attention, proactive cognitive control, reactive cognitive control, visual search,

eye movements, functional magnetic resonance imaging
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1. Introduction

During search for a visual object,  a mental representation of the target object is maintained in

visual working memory to guide attention toward potentially  task-relevant  regions (Desimone &

Duncan, 1995; Olivers & Eimer, 2011). In everyday situations, individuals may oftentimes try to find

multiple objects at the same time, which would require the maintenance of more than one target

representation.  It  has  been  shown  that  such  multiple-target  search  can  be  challenging,  often

resulting in reduced search performance (Barrett  & Zobay,  2014; Dombrowe, Donk,  & Olivers,

2011;  Found  & Müller,  1996;  Juola,  Botella,  & Palacios,  2004;  Liu  & Jigo,  2017;  Maljkovic  &

Nakayama, 1994; Menneer, Barrett, Phillips, Donnelly, & Cave, 2007), raising the question as to

how these multiple target representations are established for,  and updated during, search – in

other words, how these representations are controlled. 

Recent work from one of our labs suggests that when observers look for more than one

target,  they may dynamically  prioritize one of  multiple potential  target  representations to guide

search at any given moment (Ort, Fahrenfort, & Olivers, 2017, 2018). Specifically, we found that

performance  in  multiple-target  search  depends  on  whether  or  not  observers  are  given  the

opportunity to freely choose the target to select. In a gaze-contingent search paradigm, observers

were instructed to always find one of two potential  target colors. Importantly,  they could either

freely select the target to look for on a particular trial, as both targets would always be available in

each search display, or the choice was imposed upon them, as only one of the two targets would

be present on each trial. Eye movement latencies showed that, relative to target repeats, target

switches were more costly when imposed than when made under free choice conditions. In further
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support  of  this,  Van  Driel,  Ort,  Fahrenfort,  &  Olivers  (2019)  recently  conducted

electroencephalography (EEG) measurements during free and imposed choice, and found that free

switching between targets is associated with  pre-trial power suppression in the beta band over

midfrontal electrodes – a signal that has been linked to choice behavior (Donner, Siegel, Fries, &

Engel, 2009; Spitzer & Haegens, 2017). In contrast, forced target switches elicited post-trial power

enhancement in the delta/theta band – a signal that has been associated with conflict detection

(Cavanagh & Frank, 2014; Cohen, 2014; Duprez, Gulbinaite, & Cohen, 2018). We interpret these

eye movement and EEG findings within an influential framework proposed by Braver (2012), which

assumes a division of cognitive control into two modes:  proactive and reactive control. Proactive

control is invoked and maintained in anticipation of a task, whereas reactive control is triggered

whenever a conflict or unexpected event occurs. In multiple-target search, the availability of all

targets in a display allows for proactive control, as observers can freely prepare for either target (cf.

Arrington  &  Logan,  2004,  2005;  Meiran,  1996).  In  contrast,  imposing  a  target  (i.e.  by  only

presenting only one of the two targets in the search display) would invoke reactive control, which is

reflected in a costly switching of attentional priority to the only available target. In the present study

we sought to uncover the brain areas underlying free and imposed multiple-target search.

1.1 Brain areas involved in different modes of control

Cognitive control has been extensively investigated in the context of the implementation of,

and  switching  between,  different  task  sets  (Meiran,  2010;  E.  K.  Miller  &  Cohen,  2001).  Task

switches have been associated with brain regions that are considered part of a general cognitive
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control network that is distributed mainly over frontoparietal regions of the brain (Cole & Schneider,

2007; Dosenbach et al., 2006; Dosenbach, Fair, Cohen, Schlaggar, & Petersen, 2008; Duncan,

2010; Dove,  Pollmann, Schubert,  Wiggins,  & Yves Von Cramon, 2000; Fedorenko,  Duncan, &

Kanwisher, 2013; Kim, Cilles, Johnson, & Gold, 2012; Liston, Matalon, Hare, Davidson, & Casey,

2006; Power & Petersen, 2013, A. B. Smith, Taylor,  Brammer, & Rubia,  2004). However,  it  is

unknown whether similar brain areas are also involved in switching representations within one and

the same task, which is the case when observers hold multiple target representations for the same

visual search task, and how this would differ for  circumstances that  enable different modes of

control. 

The  distinction  between proactive  and  reactive  control  has  mostly  been  studied  in  the

context of interference control across various domains, such as interference between competing

working memory representations (Burgess & Braver, 2010; Marklund & Persson, 2012), between

competing visual  stimuli  (De Pisapia  & Braver,  2006;  Jiang,  Beck,  Heller,  & Egner,  2015),  or

between competing stimulus-response mappings (Braver, Reynolds, & Donaldson, 2003; Jiang,

Wagner, & Egner, 2018; Ryman et al., 2018; Sohn, Ursu, Anderson, Stenger, & Carter, 2000). The

mode of control is commonly induced by manipulating the likelihood (or predictability) of upcoming

interference, following the assumption that whenever individuals anticipate interference, they will

strengthen  proactive  control.  Some  studies  suggest  that  proactive  and  reactive  control  are

governed by different  brain  areas,  but  the  findings  are  somewhat  inconsistent,  which may be

related  to  the  different  paradigms  used,  and  to  an  emphasis  on  differences  in  the  temporal

dynamics (with proactive assumed to occur prior to task onset, while reactive follows conflicting
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events). Based on their reviews of the literature, Braver (2012) as well as Irlbacher, Kraft, Kehrer,

& Brandt (2014) have suggested that both modes of control are governed by a similar set of brain

areas, but might be activated with different dynamics, as proactive control can be instantiated in

advance.  These  areas  include  the  lateral  prefrontal  cortex  and  posterior  parietal  cortex,  with

relatively  minor  differences  between  them,  whereas  reactive  control  may  additionally  recruit

midfrontal regions when there is conflict detection involved. Similar brain areas may therefore be

involved during control over target selection in multiple-target search.

Target selection in multiple-target search is associated with shifts in feature-based

attention between target-defining features. Such shifts of feature-based attention have previously

been linked to activity primarily in posterior parietal  (i.e. superior parietal  lobule)  and posterior,

lateral  frontal  regions  (i.e.  inferior  frontal  junction  and  dorsal  premotor  cortex;  Greenberg,

Esterman, Wilson, Serences, & Yantis, 2010; Liu, Slotnick, Serences, & Yantis, 2003; Pollmann,

Weidner,  Müller,  Maertens,  & Von Cramon, 2006; Pollmann,  Weidner,  Müller,  & Von Cramon,

2000; Slagter et al., 2006, 2007; Wager, Jonides, & Reading, 2004). However, in most of these

studies, a feature shift was also associated with a change in response (Greenberg et al., 2010; Liu

et al., 2003; Pollmann et al., 2006; Slagter et al., 2006, 2007). Moreover, these studies did not

directly compare different modes of control over such shifts. They measured activity in response to

either  cue-  or  task-induced  changes  of  the  task-relevant  feature,  but  did  not  juxtapose  self-

generated (free) to stimulus-induced (imposed) changes. 

In one recent study, Gmeindl et al. (2016) did compare cue-induced to self-generated (i.e.

freely chosen) shifts of spatial attention. They found similar posterior parietal activity during both
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types of shifts, while self-generated shifts additionally activated the medial frontal cortex and lateral

frontopolar cortex. These medial frontal and frontopolar regions have also previously been shown

to be related to voluntary  versus imposed action  selection  (Demanet,  De Baene,  Arrington,  &

Brass, 2013; Forstmann, Brass, Koch, & von Cramon, 2006; Orr & Banich, 2013; Passingham,

Bengtsson,  & Lau,  2010;  Soon,  Brass,  Heinze,  & Haynes,  2008; Taylor,  Rushworth,  & Nobre,

2008; Wisniewski, Goschke, & Haynes, 2016; Wisniewski, Reverberi, Tusche, & Haynes, 2015; J.

Zhang,  Kriegeskorte,  Carlin,  &  Rowe,  2013),  and  have  been  argued  to  be  involved  in  the

evaluation of alternative goals in the context of exploratory behavior (Mansouri, Koechlin, Rosa, &

Buckley,  2017;  Pollmann,  2016).  The same areas may therefore  be involved  when observers

choose to change target in visual search, but this is currently unknown.

1.2 The present study

We sought to investigate differences in the locus or level of activated brain regions when

proactive  and  reactive  control  mechanisms  operate  in  a  context  of  multiple-target  search.

Specifically, we set out to test whether differences between free and imposed switches between

targets during visual search for multiple objects are accompanied by differences in brain activity

that might be linked to proactive and reactive control processes. To that end, we adopted a fast-

paced,  gaze-contingent  eye  tracking  paradigm  (Ort  et  al.,  2017;  illustrated  in  Figure  1A) in

combination with event-related fMRI.  Participants were always instructed to look for  two color-

defined targets and to make an eye movement towards one of them on every trial. In one block

type, both potential targets were present in a search display and participants were free to select
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either of them. In the other type of block, only one target was present and the choice was imposed.

We instructed participants to either make (when choice was free) or expect (when choice was

imposed)  target  switches.  We  reasoned  that  free  target  switches  would  be  associated  with

proactive,  preparatory  control  mechanisms,  while  imposed  switches  would  result  in  reactive,

compensatory control mechanisms. Differential neural activity for each switch type would constitute

evidence for proactive and reactive control having unique contributions to target selection during

multiple-target search. Based on the literature on both task and attention shifts, we expected to find

switch-related activity in the posterior parietal and posterior frontal cortex for both switch types. In

addition, we were interested to explore potential differences in the control network for free and

imposed target switches. In line with the literature on self-generated versus externally-cued choice,

we expected activity in the lateral  frontopolar cortex as well  as the medial  frontal  cortex to be

selectively active during free switches.

2. Methods

2.1. Data and code availability

Data and code was made publicly available on osf.io (https://osf.io/a8vxn). Unthresholded

statistical maps were uploaded to neurovault.org (https://neurovault.org/collections/5550/).

2.2 Participants

 A  sample  of  22  participants  (age:  21-35 years,  M = 27.3;  10 females,  12  males)  was

recruited  from the  subject  pool  of  the  Leibniz  Institute  of  Neurobiology  in  Magdeburg.  Three
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individuals were excluded due to insufficient eye tracking accuracy, reducing the final sample to 19

participants. All participants gave written consent according to the Declaration of Helsinki and were

reimbursed with 30 Euros. They reported normal or corrected-to-normal visual acuity and color

vision and were naive to the purpose of the experiment. The study was approved by the research

ethics board of Otto-von-Guericke University Magdeburg.
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Figure 1. Illustration of the study design and behavioral results. A) Each block began with a cue

indicating the two target colors for the subsequent sequence of 40 search displays. Depending on

the target availability condition, each search display contained either one of the two target colors or

both of  them. In case of only one target color  being available,  there could still  be two targets

carrying that color, to equate for the mere number of targets present (see section 2.3). Participants

were required to fixate one of the targets (indicated here by an arrow, which was not present in the

display); this triggered the next display, which appeared on an imaginary annulus surrounding the

location of the previously fixated target. B) The bar plots represent the mean saccade latencies on

switch trials and repeat trials for each level of target availability (one target vs. both targets). The

gray  lines  represent  the  mean  saccade  latencies  for  each  observer  individually.  Error  bars

represent the upper limit of the within-subjects 95% confidence intervals (Morey, 2008). C) The

violin  plots  depict  the distribution  of  switch costs,  which were computed by subtracting repeat

saccade latencies from switch saccade latencies, separately for the target availability conditions.

The horizontal lines in the box plots represent the first, second (median), and third quartiles. The

vertical lines represent the distance between minimum (lower quartile - 1.5 * interquartile range)

and maximum (upper quartile + 1.5 * interquartile range). Single dots indicate individual outliers. D)

Schematic and simplified equation of a drift  diffusion model (adapted from Kloosterman, et al.,

2019).  e  denotes encoding time,  d  denotes decision time, and  m denotes motor execution. E)

HDDM results  indicating  the  posterior  probability  distributions  for  drift  rates,  separately  for  all

experimental conditions.
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2.3 Stimuli, procedure, and design

The stimulus set consisted of five colored disks with a radius of 0.6 degrees visual angle

(dva). These colors were blue (RGB-values: 0, 130, 150), red (240, 0, 0), green (70, 135, 0), brown

(175, 100, 75), and purple (180, 80, 170). All stimulus colors were isoluminant (M = 21 cd/m2) and

presented on a uniform gray background (197, 197, 197). A search display was composed of five

disks placed on an imaginary annulus around fixation with a radius randomly drawn from values

between 3.6 and 4.4 dva around the starting point. Any two adjacent disks had an angular distance

of at least 45 degrees.

A block was initiated once participants steadily fixated a central white dot. First, a white

fixation cross was presented in the center of the screen for 500 ms, followed by the cue display for

2,500 ms and another fixation cross for 500 ms (Fig. 1A). In the cue display, two colored disks

were presented 1.0 dva to the left and right of fixation to mark these colors task-relevant for the

upcoming sequence of 40 search displays. In each search display, participants were required to

select a target-colored disk among a set of five disks by making a saccade toward it. After target

fixation, the search display disappeared and the fixated target was replaced by a black ring to

provide participants with a fixation point during the intertrial interval (uniformly jittered between 950

to 1050 ms). Because the coordinates of the previously fixated target served as the starting point

for the next display, the search displays moved across the screen throughout a block. To make

sure that search displays would fall within the margins of the screen, stimuli were moved closer to

each other on that part of the annulus that was closest to the center of the screen, whenever a

search display approached an edge of the screen. Importantly, the relative positions of the targets
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in the search display remained unpredictable. Saccades had to land within a radius of 0.9 dva to

the center of a target to trigger the next search display. If participants fixated one of the distractors,

they received auditory error  feedback and were required to make a corrective eye movement

toward a target.  The search was aborted if  no target was fixated within 3,000 ms, and a new

search display appeared, centered at the same location.

There were two main factors in this experiment: target availability (whether only one or both

targets were present in the search display), and transition type (whether target selection switched

or repeated from one trial to the next). The target availability factor was controlled at the block level

by presenting either only one, or both of the targets in the display. In the both-targets condition,

both cued targets appeared in the search display.  In the  one-target  condition,  only  one of the

targets was present. The transition type factor (target repeat vs. target switch) was determined by

the observer (both-targets blocks) or by a random sampling procedure (one-target blocks).

In both-targets blocks, participants were instructed that they were free to fixate either of the

target colors. However, to make sure that there would be sufficient switch trials, and that the time

between two consecutive switch trials would be long enough for the BOLD response triggered by

each of them to not overlap, it  was emphasized to participants that the total  number of target

switches in a block of 40 search displays should roughly be in the range of five to eight.  The

sampling procedure in one-target blocks then randomly selected (with replacement) a sequence of

repeat and switch trials from a pool of sequences that were recorded during both-targets blocks.

The motivation behind this was to match one-target blocks and both-targets blocks in terms of

switch rate and number of consecutive repeat trials. Importantly, neither features nor positions of
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the stimuli were replayed but only the sequence of switch and repeat trials. Because we did not yet

have any sequences to present at the outset of the experiment, we initialized a pool with four

arbitrarily prespecified sequences of switch and repeat trials (one each for five, six, seven, and

eight  switches per block).  To check whether  switch rates indeed did not  differ between target

availability  conditions,  we  ran  a  paired-samples  t-test  and  found  a  slight,  but  non-significant

difference (both-targets available: 6.4 switches, one-target available: 6.9 switches,  t(18) = 1.9,  p

= .07, Cohen’s d = 0.49, BF10 = 1).

Both-targets  available  and one-target  available  blocks  would  differ  not  only  in  terms of

target availability, but also in the mere number of targets in the display, which would make the one-

target available condition more difficult  than the both-targets available condition.  Therefore, we

included trials in the one-target available condition in which there were two target objects, but both

carried the same target color, so that still only one target color was present in the search display

(target duplicate, e.g. on blocks in which red and blue were task-relevant, there could be trials with

two red targets or two blue targets, but never with a red and a blue target). In addition, we included

trials in which two distractors shared a color (distractor duplicate; e.g., on blocks in which red and

blue were task-relevant, there could be trials with two green items, but only one red or one blue

item),  so  that  participants  could  not  identify  the  target  object  simply  by  detecting  a  feature

duplicate.  Likewise,  both-targets blocks  also  contained target  duplicate  trials  (two out  of  three

targets had the same color; e.g., on blocks in which red and blue were task-relevant, we had trials

with one red and two blue target objects) as well as distractor duplicate trials (e.g., on blocks in

which red and blue were task-relevant, there were trials with one red target, one blue target, and
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two green distractors). As a result, in each target availability condition, one half of trials contained a

target duplicate and the other half contained a distractor duplicate. This way, neither the number of

targets  nor  the  number  of  unique  colors  in  the  display  was  predictive  of  target  availability.

Supplementary Table S1 provides schematic representations of all types of search displays. Past

experiments using a similar paradigm have confirmed that behavior and ensuing switch costs are

consistently unaffected by this manipulation (Ort et al., 2017, 2018), as we also confirm here (see

section 3.1). Furthermore, to investigate whether there would be other experimental variables that

influenced the choice behavior  of  the participants  we ran a  series of  control  analyses.  These

analyses are summarized in the Supplementary Material online and Figure S1.

Because  we did  not  have  an  eye-tracker  available  outside  of  the  scanner,  participants

practiced  a  version  of  the  task  in  which  target  selection  responses  were  made using  mouse

tracking instead of eye movements (although this naturally involves making an eye movement to

the target too). They performed this task before the fMRI session started until they felt confident

they understood the task structure. A scanning session consisted of nine functional runs, each

seven minutes long. One participant requested to terminate the last run early (leaving eight runs of

data), while another participant completed ten runs because he expressed the wish to do another

run as he liked doing the experiment (data of this run were included). In a single run, both-targets

and one-target blocks alternated repeatedly until the end. For the first block in a run, the target

availability condition switched relative to the last complete block of the previous run. To make sure

that both block types would occur each at least twice per run and that a block would not exceed the

run duration, a block was interrupted after 88 seconds (mean complete block duration = 73 s), or
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five seconds before the run finished. This resulted in up to five complete blocks per run and, on

average, 32 complete blocks per session. Nevertheless, incomplete blocks were still analyzed up

to the point of termination.

2.4 Apparatus and functional MRI acquisition

The experiment was designed and presented using the OpenSesame software package

(version 3.1.9; Mathôt, Schreij, & Theeuwes, 2012) in combination with PyGaze (version 0.6), an

eye-tracking toolbox (Dalmaijer, Mathôt, & Van der Stigchel, 2013). Stimuli were back-projected on

a screen with a resolution of 1,280 x 1,024 pixels, at a viewing distance of 60 cm. Participants

viewed  the  screen  via  an  IR-reflecting  first  surface  mirror  attached  to  the  head  coil.  Eye

movements were recorded with the EyeLink  1000 remote eye-tracking system, (SR Research,

Mississauga, Ontario, Canada) at a sampling rate of 1000 Hz. The experimenter received real-time

feedback on system accuracy on a second monitor located in an adjacent room. After every run,

eye-tracker accuracy was assessed and improved as needed by applying a 9-point calibration and

validation procedure (mean calibration error was 0.48 dva).

Images were acquired using a 3 Tesla Philips Achieva dStream MRI scanner with a 32

channel head coil.  Functional  images were recorded using a T2*-weighted single-shot gradient

echo-planar images sequence with following parameters: 35 axial slices parallel to the AC-PC axis

(ascending order), slice thickness = 3 mm, in-plane resolution = 80 x 78 voxels (3 mm x 3 mm),

FOV = 240 mm x 240 mm, inter-slice gap of 10% (0.3 mm), whole-brain coverage, TR = 2 s, TE =

30 ms, flip angle = 90°, parallel acquisition with sensitivity encoding (SENSE) with reduction factor
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2. After the first five scans were discarded, 210 scans were acquired per functional run. Structural

images were recorded using a T1-weighted (T1w) MPRAGE sequence with following parameters:

192 slices, slice thickness = 1 mm, in-plane resolution = 256 x 256 voxels (1 mm x 1 mm), FOV =

256 mm x 256 mm, TR = 9.7 ms, TE = 4.7 ms, inversion time = 900 ms, flip angle = 8°. Distortions

of the B0 magnetic field, as well as pulse oximetry and respiratory trace were recorded, but these

data were not further processed.

2.5 Eye-tracking data preprocessing

We compared the saccade latencies of eye movements (dwell time before a saccade was

executed) for repeat trials (current target category the same as the previous one) with those for

switch trials (current target category different from the previous one) for both target availability

conditions  separately.  We took the first  saccade after  search display  onset  with an amplitude

threshold of 1 dva around initial fixation, provided that a saccade was directed toward the selected

target (i.e. its direction deviated less than 30 angular degrees from the vector from fixation to the

target). This resulted in an average of 25.5% of all trials being removed. Note, as we used only the

first saccade of a trial and participants needed to select a target before actually fixating it,  our

paradigm measures covert selection process. Next, a saccade latency filter was applied, in which

saccades quicker than 100 ms and slower than 3 standard deviations above the block mean for

that participant were excluded (2.2% of all search displays). If no target was being fixated, as could

have happened when the eye tracker calibration had deteriorated too much for that trial, both the

current as well as the next search display were excluded because neither could be labeled as a
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switch or repeat (10.6% of all search displays). For the same reason, we excluded the first search

display of each block (2.7% of all search displays). If the distance between the stimuli was lowered

to prevent the search displays to fall outside the screen, two stimuli could be too close to each

other to unambiguously decide which of the two was fixated. Trials on which this happened were

also excluded (7.4% of all search displays). In total, 34.4% of all trials were thus removed during

preprocessing (note that  a single  trial  could  meet  multiple  exclusion  criteria).  This  is  a typical

rejection rate for this paradigm (Ort et al., 2017, 2018, van Driel et al., 2019). Inferential statistics

were carried out with the afex R- package (Singmann et al., 2016).

2.6 Hierarchical drift diffusion modeling

To gain more insight into target selection beyond simple comparisons of mean saccade

latencies across conditions, we also performed drift diffusion modeling (DDM) on our data. DDMs

can estimate latent decision-related parameters in two-alternative choice experiments based on

response time distributions and choice probabilities (Wiecki, Sofer, & Frank, 2013). For example,

participants might be more cautious to respond when only one target is available than when both

target colors are present. Similarly, participants might need longer to select a stimulus to fixate on

switch trials when only one target is present. In these models, decision-making is assumed to be a

noisy information accumulation process in favor of one or the other alternative that continues until

a threshold for one option is exceeded and the corresponding response is executed (e.g. Ratcliff &

Rouder,  1998).  We used  a  hierarchical  Bayesian  DDM,  as  implemented  in  the  python-library

HDDM  (version 0.6; Wiecki et al., 2013), which has the advantage of simultaneously estimating
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group  and  individual-subject  parameters  as  well  as  obtaining  a  measure  for  the  estimates’

uncertainty.

The standard DDM framework provides estimates for four parameters: drift  rate  v,  non-

decision  time  t,  boundary  separation  a, and  starting  point z  (see  Figure  1D).  The  drift  rate

represents the speed with which evidence is accumulated during a decision process. It is related to

the difficulty of a decision, with hard decisions corresponding to low drift rates and easy decisions

to high drift  rates. The non-decision time signifies the time needed to encode the stimulus and

execute  the  motor  response  and  is  therefore  not  related  to  the  decision  process  itself.  The

boundary separation parameter reflects how much evidence needs to be accumulated before a

decision  is  made,  therefore  representing  response  caution  (speed-accuracy  trade-off).  Close

boundaries lead to quick and more inaccurate decisions, whereas wide boundaries lead to slower,

but more accurate decisions. The starting point denotes whether there is an a priori bias for one of

the options.

It  has  been  shown  that  task  repeats  are  associated  with  higher  drift  rates  than  target

switches,  plausibly  reflecting  faster  evidence  accumulation  when  a  target  is  repeated  (e.g.

Karayanidis et al., 2009; Schmitz & Voss, 2012). Based on this finding, we also expected to find

higher drift rates for target repeats than for target switches. However, if individuals prepare a target

prior to search display onset in both-targets blocks, drift rates for free target switches should likely

be higher than for imposed switches, potentially even be as high as the drift rate for target repeats.

Furthermore, in Ort and colleagues (2017), we found base rate differences between both-targets

and one-target  blocks  in  terms of  saccade latencies:  Saccades were generally  faster  in  both-
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targets blocks than in one-target  blocks,  irrespective of  transition type.  This  effect  might  imply

strategic  differences,  such as increased response caution when only  one target  was available

relative  to  when  both  were  present.  To  investigate  this  hypothesis,  we  estimated  a  separate

boundary separation for both-targets and one-target blocks. As the boundary separation is usually

assumed to be under control of individuals and switch and repeat trials were unpredictable in one-

target blocks, we did not separately estimate this parameter for repeat and switch trials. 

Unlike  in  standard  two-forced  choice  tasks,  there  was  no  single  correct  or  incorrect

response in  our  task.  In  fact,  on  every  trial,  participants  could  make five possible  responses,

corresponding  to  each  stimulus  (targets  and  distractors).  Therefore,  to  make  our  paradigm

compatible with the DDM framework, we did not consider individual stimuli as response options,

but  only  distinguished  correct  (saccades  to  targets)  from  incorrect  (saccades  to  distractors)

responses. To test our hypotheses about the influence of the experimental conditions on drift rate

and boundary separation, we ran four models, in which we manipulated which parameters were

free to vary across experimental conditions. These models were: (1) basic model, in which both

boundary separation  (a) and drift  rate (v) were fixed across conditions;  (2)  decision boundary

model, in which a could vary between target availability conditions and v was fixed; (3) drift-rate

model, in which v could vary between target availability and transition type conditions, and a was

fixed; (4) full model, in which a and v could vary between target availability conditions, and v could

also vary between transition type condition. We did not estimate intertrial variability of starting point

and drift rate in any of the models and fixed the estimate for starting point and non-decision time

across  conditions,  as  condition-specific  differences  in  those  parameters  were  implausible.
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Furthermore, we chose to use informative priors (see Wiecki et al., 2013). Nevertheless, once we

identified the best model, we also ran it with non-informative priors as control analysis; the results

were virtually identical. Supplementary Table S2 includes the full specifications of all models that

were tested. 

For every model, 50,000 steps were sampled with Markov Chain Monte Carlo (MCMC). The

first 20,000 samples were discarded (“burn in”) and only every fifth sample was kept (“thinning”) to

facilitate convergence. Convergence was tested by visually inspecting all  posterior distributions

(mc-trace, auto-correlation and marginal posterior histogram) of each parameter, and computing

the Gelman-Rubin (R-hat) convergence statistic. The data that were fed into the model were less

stringently  preprocessed  than  for  the  saccade  latency  analysis.  Specifically,  neither  the  first

saccade was required to be directed to the eventually fixated target, nor were error trials excluded,

because the DDM utilizes both correct and incorrect trials to model reaction time distributions.  

The best model  was selected based on the lowest  deviance information criterion (DIC).

Even though the DIC penalizes increased numbers of parameters in a model, it still has a bias to

prefer more complex models (Wiecki et al., 2013). Therefore, it should only be used as a heuristic

for model selection. Condition-specific differences in the parameters of the selected model were

analyzed using a Bayesian approach, that is, we sampled from the posterior distributions of the

parameters and compared the likelihood of samples being lower in one condition relative to the

other. We considered values larger than 97.5% or smaller than 2.5% significant. Note, even though

these posterior probabilities are not the same as confidence intervals, they can be interpreted in a

similar way (Wiecki et al., 2013). To test the predictive quality of the model, we compared actual
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data to simulated data, sampled from the posterior distribution of the fitted model and evaluated

the correspondence across several summary statistics.

2.7 Functional MRI preprocessing

FMRI data was preprocessed using FMRIPrep version 1.0.8 (Esteban et  al.,  2018),  a Nipype

(Gorgolewski et al., 2011, 2018) based tool. Each T1w volume was corrected for intensity non-

uniformity  using  N4BiasFieldCorrection v2.1.0  (Tustison  et  al.,  2010)  and  skull-stripped  using

antsBrainExtraction.sh v2.1.0  (using  the  OASIS  template).  Brain  surfaces  were  reconstructed

using  recon-all from  FreeSurfer  v6.0.0  (Dale,  Fischl,  &  Sereno,  1999),  and  the  brain  mask

estimated previously was refined with a custom variation of the method to reconcile ANTs-derived

and  FreeSurfer-derived  segmentations  of  the  cortical  gray-matter  of  Mindboggle  (Klein  et  al.,

2017).  Spatial  normalization  to the ICBM 152 Nonlinear  Asymmetrical  template  version 2009c

(Fonov, Evans, McKinstry, Almli,  & Collins,  2009) was performed through nonlinear registration

with the  antsRegistration tool of ANTs v2.1.0 (Avants, Epstein, Grossman, & Gee, 2008), using

brain-extracted versions of both T1w volume and template. Segmentation of cerebrospinal fluid

(CSF), white-matter (WM) and gray-matter (GM) was performed on the brain-extracted T1w using

fast (Y. Zhang, Brady, & Smith, 2001) in FSL v5.0.9 (Jenkinson, Bannister, Brady, & Smith, 2002).

Functional data were motion corrected using mcflirt (FSL v5.0.9). "Fieldmap-less" distortion

correction was performed by co-registering the functional image to the same-subject T1w image

with inverted intensity (Huntenburg, 2014; Wang et al., 2017) and constrained with an average

fieldmap template  (Treiber  et  al.,  2016),  implemented  with  antsRegistration (ANTs).  This  was
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followed by co-registration to the corresponding T1w using boundary-based registration (Greve &

Fischl, 2009) with 9 degrees of freedom, using  bbregister (FreeSurfer v6.0.0). Motion correcting

transformations, field distortion correcting warp, BOLD-to-T1w transformation and T1w-to-template

(MNI) warp were concatenated and applied in a single step using  antsApplyTransforms (ANTs

v2.1.0) using Lanczos interpolation. After the preprocessing with FMRIPrep, functional data were

further high-pass filtered at 1/50 Hz using the fslmaths implementation of Nipype.

Physiological noise regressors were extracted applying CompCor (Behzadi, Restom, Liau,

& Liu, 2007). Principal components were estimated for anatomical CompCor (aCompCor). A mask

to exclude signal  with cortical  origin was obtained by eroding the brain mask, ensuring it  only

contained  subcortical  structures.  For  aCompCor,  six  components  were  calculated  within  the

intersection of the subcortical mask and the union of CSF and WM masks calculated in T1w space,

after their projection to the native space of each functional run. Frame-wise displacement (Power

et al.,  2014) was calculated for each functional  run using the implementation of Nipype.  Many

internal operations of FMRIPrep use Nilearn (Abraham et al., 2014), principally within the BOLD-

processing workflow.  See  https://fmriprep.readthedocs.io/en/1.0.8/workflows.html for  more detail

on the pipeline.

2.8 Functional MRI analysis

2.8.1 General Linear model.  To examine brain activity related to our experimental conditions, we

ran an event-related general linear model on the whole brain,  separately for each run of each

subject. Prior to modeling,  functional time series were spatially smoothed with a 5 mm FWHM
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Gaussian  kernel  with  a  nipype  implementation  of  SUSAN  (S.  M.  Smith  &  Brady,  1997).  We

separately  modeled  all  combinations  of  our  experimental  conditions  (both-targets/switch,  one-

target/switch, both-targets/repeat, one-target/repeat) as well as error trials and the response to the

cue display, using display onset times relative to the start of the run as event onset times and the

response times as event durations. These events were convolved with a canonical hemodynamic

response function (double-gamma), and, together with a number of nuisance regressors, formed

the design matrix. Nuisance regressors include the temporal derivative of each event type, motion-

related parameters (three regressors each for translation and rotation), framewise displacement

(FD),  and  six  anatomical  noise  regressors  (aCompCor).  Finally,  all  volumes  with  a  FD value

greater than 0.9 were treated as motion-related outliers and censored, that is effectively excluded

from the model. Finally, the data was prewhitened with an autoregressive model to account for

temporal autocorrelation (Woolrich, Ripley, Brady, & Smith, 2001). The resulting  t-statistic maps

were combined across runs within participants in a fixed-effect analysis. Next, group analysis was

performed with threshold-free cluster enhancement (tfce; S. M. Smith & Nichols, 2009), a voxel-

based  type  statistic  that  combines  the  height  and  spatial  extent  of  local  activations.  The

transformed  p-value  maps  were  corrected  with  nonparametric  permutation  testing  (5000

permutations) as implemented in FSL’s randomise (Winkler, Ridgway, Webster, Smith, & Nichols,

2014).  Finally,  the  corrected  maps  were  registered  to  the  FreeSurfer  surface  (fsaverage)

coordinate system, using registration fusion (Wu et al.,  2018). All  reported results were initially

thresholded at α = .05, however, for illustration purposes, activity maps were also thresholded at
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the more stringent α = .01 and shown as overlays (all applied to p-values corrected for multiple

comparisons as per above).

2.8.2 Deconvolution  To gain further insight into the time course and extent of the BOLD

response as triggered by each event type, we ran a deconvolution analysis in brain regions that

are typically considered part of the multiple-demand (MD) network, that has been associated with

cognitive control in a variety of contexts (Duncan, 2010; Fedorenko, et al., 2013), plus showed

generic switch-related activity in our GLM analysis. To do this, we first converted the preprocessed

functional  data  to represent  the  percent  signal  change  of  the  time series,  concatenated them

across runs and averaged the resulting series within each region of interest (ROI). We defined

ROIs based on an existing set of masks of MD subregions (Fedorenko et al., 2013). These ROIs

were then combined with  voxels  that  showed significant  switch-related activity  (collapsed over

target availability) in our GLM analysis, yielding 23 ROIs in total. The deconvolution was performed

with nideconv (de Hollander  & Knapen,  2018).  We used the same regressors as  in  the GLM

analysis with the exception that the temporal derivative regressors were not included. All  other

regressors were convolved with a Fourier basis set, comprising an intercept and four sine-cosine

pairs.  Prior  to estimation,  the design matrix  was oversampled 20-fold to improve the temporal

resolution.  For  each  regressor,  beta  weights  were  estimated  with  ridge  regression  for  each

participant  separately.  The deconvolved time series were extracted from the beta weights and

averaged across participants. To statistically test for significant activations, we used a permutation

test with 1000 permutations (MNE - one-sample t-test; Gramfort et al., 2013) and a cluster-based

approach  to  correct  for  multiple  comparisons.  Finally,  to  test  for  potential  onset  differences
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between  proactive  and  reactive  switch-related  activity,  we  used  fractional  peak  latency  in

combination  with  the  jackknife  approach  (Liesefeld,  2018,  Luck,  2014;  J.  Miller,  Patterson,  &

Ulrich,1998). In doing so, we averaged the deconvolved time series of all but one participant and

identified the time point  at  which the time series reached 50% of  the peak,  separately for  the

proactive and the reactive conditions.  To mitigate the influence of local extreme values on the

latency estimation,  for  every time point  we averaged the amplitude over five time consecutive

points (centered at the current time point). We repeated this procedure leaving out each participant

once and computed a paired-sample t-test over the onset estimates. To correct for the artificially

reduced error term in the jackknife approach, we followed Miller et al. (1998) by effectively dividing

the t-statistic by the degrees of freedom. 

3. Results

3.1 Behavioral results

We observed switch costs (longer saccade latency after target switches than target repetitions)

only in one-target available blocks but not in both-targets available blocks (Fig. 1B-C). This was

statistically  confirmed  by  a  two-way  repeated-measures  ANOVA  with  target  availability  (both-

targets available  vs.  one-target  available)  and transition  type (repeat  vs.  switch)  as factors on

saccade latency. This ANOVA revealed significant main effects of target availability (F(1, 18) =

18.3, p < .001, η2 = .50) and transition type (F(1, 18) = 23.3, p < .001, η2 = .56), and a significant

interaction between them (F(1, 18) = 16.7, p < .001, η2 = .48). A Bayes Factor analysis confirmed

this  pattern  by  showing  that  the  model  including  both  main  effects  and  the  interaction  effect
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explains the data best  (BF = 7.8 x 105)  and was 12.2 times as likely  as the next  best  model

including only the main effects. Overall, saccade latencies were lower in both-targets blocks than in

one-target blocks, and lower on switch trials than on repeat trials. Critically however, significant

switch costs emerged only in one-target blocks (target repeat: 388 ms vs. target switch: 452 ms;

t(18) = 5.1, p < .001, Cohen’s d = 0.63), and not on both-targets blocks (target repeat: 374 ms vs.

target switch: 388 ms;  t(18) = 2.0,  p = .06,  Cohen’s d = 0.20). Bayesian t-tests confirmed this

conclusion by providing very strong evidence for the presence of switch costs in the one-target

condition (BFSwitchCosts = 374), but no conclusive evidence for either the presence of absence of

switch costs in the both-targets condition (BFSwitchCosts = 1.2).

Next, we analyzed fixation accuracy, that is, the proportion of trials on which participants

fixated a target relative to all  trials (see Table 1).  The data pattern here confirms the saccade

latency results with switch costs in one-target blocks and no switch costs in both-targets blocks,

precluding an interpretation in terms of a speed-accuracy tradeoff. To test these results, we ran a

two-way  repeated  measures  ANOVA  with  the  same  factors  on  accuracy,  which  also  yielded

significant main effects of target availability (F(1, 18) = 42.6, p < .001, η2 = .70) and transition type

(F(1, 18) = 37.8, p < .001, η2 = .68), as well as a significant interaction between them (F(1, 18) =

28.6, p < .001, η2 = .61). Again, this was supported by a Bayes Factor analysis indicating that the

full model (BF = 1.8 x 1010) is 1,746 times more likely than the model with only main effects (BF =

1.8 x 107).

Finally, to test whether the different display types (target duplicate vs. distractor duplicate)

had an influence on the presence or absence of switch costs in each target availability condition,
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we ran a three-way repeated measures ANOVA with target availability, transition type and display

type as factors on saccade latency. However, neither the main effect display type, nor any of the

interactions that included that term were significant (p > .12). The full ANOVA results can be found

in the supplementary material online.

Table 1. Percentage correctly fixated targets for all conditions in all three experiments with within-
subject 95% confidence intervals (Morey, 2008).

Target Availability Target Switch Target Repeat

Both-Targets 96.1 [95.4, 97.0] 96.9 [96.2, 97.6]

One-Target 87.2 [85.4, 89.0] 95.3 [94.6, 96.0]

3.2 Hierarchical drift diffusion modeling results

Of  all  models  that  we  ran  (see  Table  S2),  the  full  model  with  a  variable  drift  rate  for  target

availability and transition type and a variable boundary separation for target availability performed

best in explaining the data, as indicated by the lowest DIC (-5.15 x 105). The next best model was

the  drift-rate-only  model  with  a  DIC  of  -5.13  x  105.  We  estimated  the  posterior  probability

distributions  for  the  condition-specific  drift  rates  and  boundary  separations  and  tested  for

significance directly on the posterior distributions (see Figure 1E). Using the posterior probabilities,

we  examined  how  likely  it  would  be  for  parameter  estimates  to  be  greater  in  one  condition

compared to another (P[X > Y]). For drift rates, we compared switch to repeat trials in both target

availability conditions separately. Drift rates were significantly higher in repeat trials than in switch

trials for one-target blocks (switch: vmean = 2.31, repeat:  vmean = 3.70, P[switch > repeat] = 0%). In

both-targets  blocks  drift  rates  were also  higher  for  repeat  trials  than for  switch  trials,  but  the
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difference was not as large (switch: vmean = 3.88, repeat: vmean = 4.22, P[switch > repeat] = 9%). This

suggests that participants needed more time to decide whenever selecting a different target than

on the previous trial,  particularly when only one target was available.  Nevertheless,  the higher

likelihood for drift rates to be larger for repeat than switch trials when both targets were present

suggests that also in this condition, some switch-related cost was present. Even though the best

model included separate estimates for boundary separation for one-target blocks and both-targets

blocks, comparing these boundary separation estimates to each other yielded virtually the same

value (one-target available: amean = 1.17, both-targets available: amean = 1.16, P[both-targets > one-

target] = 47%). This suggests that participants did not adjust their response caution across target

availability conditions. This finding is somewhat unintuitive given that the best model included a

separate boundary separation parameter for each target availability condition, but could be caused

by the DIC being biased toward the more complex model (see Wiecki, 2013). Finally, to confirm

that  the full  model  accurately  captured the data,  we examined the quality  of  the model  fit.  In

addition,  we also  checked whether  the simpler  drift-rate-only  model  (only  drift  rate could  vary

across experimental conditions) was also representative of the data, we analyzed that model as

well.  For  this  purpose,  we  generated data  by  sampling  from the posterior  distributions  of  the

parameters  and  compared  the  simulated  data  to  the  original  data.  Importantly,  key  summary

statistics, such as accuracy, mean, median, quantiles (10, 30, 50, 70, 90) saccade latencies, were

all recovered in the simulated data, as indicated by all  summary statistics lying within the 95%

credible intervals. This indicates that both models provide a good fit to the data and interpreting

their parameters is warranted.
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Figure 2. Cerebral activations for the free choice condition (proactive control demand). Activations

shown in yellow-red represent the contrast free switch > free repeat; activations shown in blue

represent the contrast free repeat > free switch. Group-level t-statistics maps were computed with

the tfce-method  (S.  M.  Smith  &  Nichols,  2009)  and  corrected  for  multiple  comparisons  using

nonparametric permutation testing. The resulting P-value maps were thresholded at  α = .05 and

projected onto the fsaverage surface using registration fusion (Wu et al., 2018), with translucent

coloring. In addition, regions that were also significant at  α = .01 are shown in saturated colors.

Free switches were associated with higher activity than free repeats across both hemispheres in

dorsolateral  prefrontal  cortex (dlPFC),  frontopolar  cortex (FPC),  dorsal  premotor  cortex (PMd),

inferior frontal  junction (IFJ),  anterior insula/frontal  operculum cortex (aINS), posterior  cingulate

gyrus  (pCG),  anterior  cingulate  gyrus  (aCG),  medial  frontal  cortex  (spanning  from the  dorsal

anterior  cingulate  cortex  to  the  frontal  eye fields,  mFC/dACC),  superior  parietal  lobule  (SPL),
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inferior  parietal  lobule  (IPL),  intracalcarine  sulcus  (ICS),  right  inferior  temporal  gyrus  (ITG),

temporo-occipital  cortex  (TOC),  and bilateral  cerebellum (not  shown here).  Free repeats were

associated with higher activity than free repeats in the left precuneus (pc), bilateral ventromedial

prefrontal cortex (vmPFC), left medial temporal gyrus (MTG), left temporoparietal junction (TPJ)

and right temporal pole (TP).

3.3. Neuroimaging results

3.3.1 General linear model  To determine whether the behavioral effects in terms of switch costs

are governed by separable cognitive control mechanisms, we used a general linear model (GLM)

to examine whether BOLD activity associated with updating a target representation depended on

how many unique targets were available  in  a search display.  Before comparing switch-related

activity  across  target  availability  conditions,  we  first  contrasted  switch  trials  with  repeat  trials,

separately within the one-target and the both-targets condition. When both targets were available,

switches  elicited  widespread  activations  across  cerebral  cortex  and  cerebellum,  in  a  network

reminiscent  of  the  multiple-demand  (MD)  network  (see  Fig.  2  and  Table  2).  Bilateral  frontal

activations include dorsolateral prefrontal cortex (dlPFC), frontopolar cortex, dorsal premotor cortex

(PMd), inferior  frontal  junction (IFJ),  anterior  insula /  frontal  operculum cortex (aINS), posterior

cingulate gyrus (pCG), and medial frontal cortex (spanning from the dorsal anterior cingulate cortex

to the frontal eye fields, mFC/dACC).  Parietal  activations were found bilaterally in the superior

parietal lobule (SPL), extending across the intraparietal sulcus (IPS) into the inferior parietal lobule

(IPL), including supramarginal and angular gyrus. In the occipital and temporal lobe, there was
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switch-related activity in the intracalcarine sulcus and in temporo-occipital regions, bilaterally and in

the right inferior temporal gyrus. Finally, several subregions in the cerebellum were activated as

well. When only one target was available, fewer significant clusters were found (see Fig. 3 and

Table 2). Activations were restricted primarily to posterior regions in the parietal and occipital lobe,

including IPS, SPL, and IPL as well as the cerebellum. However, two smaller activated regions

were also found in the left IFJ, and the dlPFC at the border with the frontopolar cortex.

Figure  3. Cerebral  activations  for  the  imposed  choice  condition  (reactive  control  demand).

Activations  shown  in  yellow-red  represent  the  contrast  imposed  switch  >  imposed  repeat;

activations shown in blue represent the contrast imposed repeat > imposed switch. Group-level t-

statistics maps were computed with the tfce-method (S. M. Smith & Nichols, 2009) and corrected

for  multiple comparisons using nonparametric  permutation testing.  The resulting P-value maps
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were thresholded at α = .05 and projected onto the fsaverage surface using registration fusion (Wu

et al., 2018), with translucent coloring. In addition, regions that were also significant at α = .01 are

shown in saturated colors. Imposed switches were associated with higher activity than imposed

repeats  bilaterally  in  dorsolateral  prefrontal  cortex  (dlPFC),  left  inferior  frontal  junction  (IFJ),

superior parietal lobule (SPL), inferior parietal lobule (IPL), temporo-occipital cortex (TOC), and

bilateral cerebellum (not shown here). Imposed repeats were associated with higher activity than

imposed repeats in the left precuneus (pc), bilateral ventromedial (vmPFC), dorsomedial prefrontal

cortex (dmPFC), left medial temporal gyrus (MTG), and left hippocampus (HC).

Next, to statistically compare switch-related activity between target availability conditions,

we  directly  compared  activity  associated  with  each  target  availability  condition  to  each  other.

However, because target availability was manipulated at the block-level, when directly comparing

switch-related  activity  across  target  availability  conditions,  we  might  pick  up  on  overall  block

differences rather than true switch-related differences. We therefore computed a double contrast,

in  which  we first  isolated  switch-related  activity  per  target  availability  condition  by  subtracting

repeat activity from switch activity,  and next,  contrasted these differences to obtain the neural

correlate of switching when both targets were available versus when one target was available.

When considering regions where switch-related activity was stronger in both-targets blocks than in

one-target  blocks,  we  again  found  activations  closely  resembling  the  MD  network,  including

bilateral  dlPFC,  frontopolar  cortex,  mFC/dACC,  pCG, SPL,  IPS,  and Cerebellum (Fig.  4).  The

opposite  contrast  –more switch-related activity  in  the  one-target  condition  than in  both-targets
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available condition– yielded no significant  activations. One possibility might be that in the one-

target condition,  target representations often needed to be updated both on switch and repeat

trials, for example if participants did not anticipate any of the targets. If this is the case, switch and

repeat trials would be more similar in the one-target available condition, so that activity reflecting

switch costs would be reduced. 

To  investigate  this  possibility,  we  directly  compared  switch  activations  between  target

availability conditions without taking repeat events into account (see Fig. S2). For the contrast

both-targets switch  greater  than one-target  switch,  a very similar  pattern was found as in  the

double-contrast analysis (only bilateral aINS and Caudate were additionally active), thus confirming

the previous findings and suggesting that block differences do not seem to play an important role.

More importantly, when considering the opposite contrast, significant clusters of activation were

now found in the left ventrolateral prefrontal cortex (vlPFC), precuneus, and left temporoparietal

junction, regions that have been considered part of the default mode network (DMN; Raichle, 2015;

Raichle et al., 2001). The DMN has recently been linked to automated behavior, not rigorously

governed by cognitive control (Vatansever, Menon, & Stamatakis, 2017). Therefore, stronger DMN

activations in one-target blocks could be explained by less control being applied during switches in

this condition compared to both-targets blocks. If so, the same should be true for repeat trials. For

this reason, these DMN activations might not have emerged in the double-contrast procedure, as

these activations canceled each other out when switch and repeat trials in the one-target condition

were  contrasted  with  each  other.  To  investigate  whether  there  actually  was  DMN  activity

associated with repeat trials, in an exploratory analysis, we examined whether there were regions
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in which repeat events led to stronger activation than switch events, separately for the both-targets

and one-target conditions. 

In this exploratory analysis, we effectively reversed the contrast that was used to isolate

switch-related activity in the first step of the double contrast procedure. We indeed detected strong

activity along the medial wall of the PFC, the orbitofrontal cortex (OFC), the precuneus, the left

medial temporal gyrus (MTG), and the temporoparietal junction (TPJ) across both target availability

conditions (opposite contrast shown in blue in Fig. 2 and Fig. 3). In addition to these common

activations, the amygdala and the hippocampus were selectively active in the one-target blocks

(Fig. 3).  Directly comparing both-targets to one-target repeat trials (not taking switch trials into

account),  yielded three cluster in which there was stronger activity in the one-target  condition.

These clusters were located in the precuneus, the medial PFC, MTG, and the TPJ (Fig. S3). The

opposite contrast did not show any significant activations, suggesting that the DMN was activated

more strongly when one target was available than when both targets were available, which could

indicate a higher demand for cognitive control during both-targets blocks than during one-target

blocks (see Discussion), or conversely, more automated behavior during the latter. To test this

hypothesis,  finally,  we compared activity between target  availability  conditions across all  event

types (collapsed across transition type). This analysis indicates primarily DMN activity (precuneus,

vlPFC, TPJ, and medial PFC) in one-target blocks and MD network activity (bilateral dlPFC, aINS,

PMd, IFJ, frontopolar cortex, mFC/dACC, SPL) in both-targets blocks (Fig. S4), in line with the

hypothesis that more control is demanded during both-targets blocks.
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Taken together, the GLM findings demonstrate that for both-targets as well as one-target

switches,  activations  were found in what  is  known as  the multiple-demand network.  However,

these activations were stronger and more widespread for free switches than for imposed switches.

Furthermore,  during  repeat  trials,  the  DMN was  strongly  active,  particularly  during  one-target

blocks. Irrespective of transition type (switch versus repeat), the MD network seems to be more

engaged when both targets are available than when only one is there, in which case the DMN is

predominantly active.

Figure 4. Cerebral regions in which free switch cost (free switch > free repeat) yielded stronger

activity than imposed switch cost (imposed switch > imposed repeat), shown in yellow-red. Group-

level  t-statistics maps were computed with the tfce-method (S. M. Smith & Nichols,  2009) and

corrected for multiple comparisons using nonparametric permutation testing. The resulting P-value
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maps were thresholded at  α = .05 and projected onto the fsaverage surface using registration

fusion (Wu et al., 2018), with translucent coloring. In addition, regions that were also significant at

α = .01 are shown in saturated colors. Free switch costs were associated with higher activity than

imposed switch cost across both hemispheres in dorsolateral prefrontal cortex (dlPFC), frontopolar

cortex (FPC), dorsal premotor cortex (PMd), inferior frontal junction (IFJ),  anterior insula/frontal

operculum cortex (aINS), bilateral posterior cingulate gyrus (pCG), anterior cingulate gyrus (aCG),

medial  frontal  cortex (mFC/dACC),  superior  parietal  lobule (SPL), inferior  parietal  sulcus (IPS),

intracalcarine sulcus (ICS), right inferior temporal gyrus (ITG), temporo-occipital cortex (TOC), and

bilateral Cerebellum (not shown here). 

3.3.2 Deconvolution analysis. The standard approach of modeling the BOLD response with

a canonical  hemodynamic response function (HRF) maximizes sensitivity  for  activations at  the

expense of being more biased towards a predefined shape of the response (Poldrack, Mumford, &

Nichols, 2011). To characterize potential interregional variability and accommodate non-standard

BOLD-responses not captured by the double-gamma function that we used in the GLM approach,

we employed a deconvolution analysis. Deconvolution has the advantage that the shape and the

time course of the HRF can vary and some temporal information can be retained. We limited this

analysis to ROIs that are part of the MD network and showed switch-related activity (collapsed

across target availability) in the GLM (see section 2.8.2), to limit the number of analyses, while still

considering most regions in  which switch-related activity might  be found. Across both cerebral

cortex and cerebellum, 23 ROIs were considered. We focused on activation differences between
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imposed and free switches, specifically where the activation patterns diverge from the standard

GLM  results  described  above.  Such  differences  were  found  primarily  for  imposed  switches.

Specifically, the deconvolution identified significant activity bilaterally in the anterior Insula (aINS)

and the left dorsal premotor cortex (PMd) located on the superior frontal gyrus. Nevertheless, in

these regions, free switches still elicited a stronger response than imposed switches (see Fig. 5).

Across all other ROIs, we observed four patterns: regions with neither imposed nor free switch

activity, regions with only free switch activity, regions with both imposed and free switch activity but

more activity on free switches, and regions with equal amounts of imposed and free switch activity.

However,  in  all  those  regions  the  deconvolution  yielded  the  same  qualitative  pattern  as  the

standard GLM approach.

Note  that  beyond  regional  differences  between  imposed  and  free  switches,  these  two

conditions could also differ in temporal aspects. In fact, a strong prediction of the dual mode of

control framework is that proactive control should begin before trial onset, whereas reactive control

should only be invoked after the search display onset. Van Driel and colleagues (2019) provided

strong support for this prediction using a very similar paradigm to ours in combination with more

time-sensitive EEG measures. To test for potential onset differences also in the fMRI signal, we

measured  the  estimated  onset  latency  in  combination  with  a  jackknife  approach.  The  results

yielded significantly earlier proactive switch activity in the left PMd (Mproactive  = 1210 ms, Mreactive  =

2237 ms, tc(18) = 2.77, pc = .01), right PMd (Mproactive = 1484 ms, Mreactive = 2300 ms, tc(18) = 2.53, pc

= .02), left IFJ (Mproactive  = 1484 ms, Mreactive  = 2226 ms, tc(18) = 2.79, pc = .01), right IFJ (Mproactive  =

1505 ms, Mreactive  = 2000 ms, tc(18) = 2.99, pc = .008), left posterior parietal cortex (Mproactive  = 1721
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ms, Mreactive  = 2405 ms, tc(18) = 2.22,  pc = .04), right posterior parietal cortex (Mproactive  = 1747 ms,

Mreactive = 2516 ms, tc(18) = 3.33, pc = .004), and mFC/dACC (Mproactive = 1284 ms, Mreactive = 2026 ms,

tc(18) = 2.79, pc = .01), but no such difference in the bilateral aINS (left: Mproactive = 2152 ms, Mreactive =

2115 ms, tc(18) = 0.41, pc = .69; right: Mproactive = 1900 ms, Mreactive = 2410 ms, tc(18) = 1.50, pc = .15).

Some of these areas, notably mFC/dACC and PMd, are consistent with the midfrontal topography

of the free choice related beta-oscillatory suppression that was observed by van Driel et al (2019).

Note  that  one  might  also  expect  to  find  onset  differences  in  the  frontopolar  cortex,  given  its

presumed role in voluntary switching (Mansouri et al., 2017, Pollmann, 2016). However, as there

was virtually  no activity  related to imposed switches in  this  region,  onset  difference could  not

meaningfully be  determined.
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Figure 5. Group-averaged beta estimates of neural activation time course in selected regions of

interest.  Deconvolution  analysis  was  used  to  model  the  BOLD response  for  each  event  type

separately. For each target availability condition, the difference of the time courses for switch and

repeat trials  was computed and the resulting time courses are shown here.  The shaded color
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bands represent 68% confidence intervals (±1 SEM). Thick lines as well as horizontal bars indicate

significant  clusters  (at  α  =  .05)  as  produced  by  cluster-based  permutation  testing  (5000

permutations). The black horizontal bars indicate the range over which the difference between the

target availability condition was significant. The marked time points (vertical dashed lines) indicate

the latency of 50% maximum amplitude as estimated using a jackknife approach, as a measure of

the onset of activation (Miller, Patterson and Ulrich, 1998; Luck, 2014; Liesefeld, 2018). 

4. Discussion

In this study we set out to examine which brain regions are recruited in multiple-target search,

depending on whether observers are free to select a target or whether they are forced to select a

particular  target.  For  this  purpose,  we  asked  observers  to  look  for  multiple  targets  and  we

manipulated whether both or only one of the two potential target colors were present in a search

display. We reasoned that the presence of both targets would enable observers to use proactive

control to prepare a search, whereas the presence of only a single item would require reactive

control whenever the observer expected the wrong target. In accordance with previous findings

(Ort et al., 2017, 2018), we found clear switch costs in terms of both saccade latency and saccade

accuracy when only one target category was present in a search display, while there were no

switch costs when both targets were available. This finding is further supported by the results of

hierarchical drift diffusion modeling, which revealed lower drift rates on switch compared to repeat

trials when one target was available. When both targets were present, drift rates were also lower

for  switch  than  for  repeat  trials,  but  this  difference  was  much  smaller  than  in  the  one-target
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condition.  This  suggests that  observers used the predictability  of  the both-targets condition  to

prepare selection of either one of the targets, so that potential costs associated with updating the

currently active target representations remained latent. 

Importantly,  using  fMRI  measures  we  provide  new  evidence  regarding  the  neural

mechanisms underlying these switches of  feature-based attention.  We found the frontoparietal

multiple-demand network (Duncan, 2010; Fedorenko, et al., 2013) to be strongly associated with

free target switches. Imposed target switches elicited a similar, yet weaker activity pattern in the

posterior  parietal  cortex (PPC),  and relatively  smaller  activity  clusters in  frontal  regions at  the

inferior  frontal  junction (IFJ) and dorsolateral  prefrontal  cortex (dlPFC).  Furthermore,  the direct

comparison of  free and imposed switches indicates  that  the multiple-demand network is  more

strongly involved during free than during imposed switches. In contrast, parts of the default mode

network  are  activated  stronger  in  blocks  involving  imposed  switches.  Assuming  that  target

availability conditions primarily differed with respect to whether observers used proactive control

(both-targets available) or reactive control (one-target available), our findings suggest that these

two modes of control can indeed be dissociated during multiple-target search. More specifically, by

means of a deconvolution analysis, we were able to categorize these differential activations into

regions that exclusively activate for free switches (dlPFC, frontopolar cortex, and medial frontal

cortex/mFC) and regions that are also active during imposed switches but to a lesser extent (IFJ,

dorsal  premotor  cortex/PMd,  and  PPC).  Furthermore,  these  regions  activated  earlier  for  free

switches, corroborating their role in preparatory cognitive control in anticipation of a demanding

event.
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The  observed  activations  for  imposed  switches  are  reminiscent  of  earlier  reports  on

stimulus or task-induced feature-based attention shifts with activations primarily located bilaterally

in PPC and PMd (Greenberg et al., 2010; Liu et al., 2003; Pollmann et al., 2006, 2000, Slagter et

al., 2006, 2007). This also matches the observation that IFJ and PPC are involved in updating and

representing task sets across a variety of tasks (Brass & von Cramon, 2004; Kim et al., 2012). In

particular,  it  has  been  suggested  that  while  IFJ  is  responsible  for  updating  task-specific

information, the PPC maintains such information and implements task sets (Brass & von Cramon,

2004;  Bunge,  Kahn,  Wallis,  Miller,  & Wagner,  2003;  Greenberg et  al.,  2010;  Shulman,  2002;

Slagter et al., 2007). Finally, the activity in the anterior insula that we observed after deconvolution

analyses of both types of switches may be part of a network that signals salient events (such as

the absence of an expected target color) and the need to initiate a cascade of control signals that

eventually  update  the active  target  representation  (Menon & Uddin,  2010;  Power  & Petersen,

2013; Seeley et al., 2007). We isolated the neural response to feature-based attention shifts from

the additional types of changes that may contribute to task-switch costs (e.g. Meiran, 2010), in

particular  shifts  of  stimulus-response  mapping.  Our  findings  suggest  that  establishing  a  new

attentional  set  is  a  rather  “cheap”  process that  requires  only  minimal  frontal  activity  (see Ort,

Fahrenfort,  ten  Cate,  &  Olivers,  2019;  Moore  &  Weissman,  2010  for  behavioral  and

electrophysiological evidence). Furthermore, similar to Gmeindl et al. (2016), we directly compared

endogenous, self-initiated target switches to imposed switches, but of feature-based rather than

spatial attention. Importantly, our design allowed us to link either switch-related activity to specific
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events in the experiment. In doing so, we show that there is common, but also distinct neural

activity underlying these types of switches. 

However, some findings were unexpected, in particular with respect to imposed switches.

First, with the standard GLM approach, we did not observe any significant imposed-switch-related

activity in  the dorsal premotor cortex (PMd; presumably the location of  the human frontal  eye

fields), an area that has previously been shown to be related specifically to feature-based attention

shifts (Kim et al.,  2012). Using deconvolution,  we were able to detect significant,  but relatively

weak activity in the left PMd. A possible explanation may be that in contrast to earlier studies of

feature-based attention  shifts  (e.g.  reviewed in  Kim et  al.,  2012),  in  our  study,  there were no

changes  in  the  stimulus-response  mapping  associated  with  imposed  switches.  Note  that  an

imposed target shift did not systematically signal a particular eye movement as target location and

target  identity  were  unrelated.  Therefore,  there  was  no  need  to  activate  or  update  a  certain

stimulus-response mapping, which has been suggested to be a function of the PMd (e.g. Badre &

D’Esposito,  2009;  Hopfinger,  Buonocore,  &  Mangun,  2000;  Kim  et  al.,  2012).  This  is  also

supported  by  Pollmann  and  colleagues  (2006),  who,  during  a  visual  search  task,  separated

attention shifts from response shifts and found only the latter to activate the PMd. 

Second, unlike Jiang and colleagues (2018), we did not observe any activity in the anterior

cingulate  cortex  (ACC)  related  to  imposed  switches.  This  region  has  been  linked  to  conflict

monitoring  in  numerous  studies  (e.g.  Botvinick,  Nystrom,  Fissell,  Carter,  &  Cohen,  1999;  Ito,

Stuphorn, Brown, & Schall, 2003; Jiang et al., 2015; Kerns et al., 2004; Ullsperger, Danielmeier, &

Jocham, 2014). As observers could not anticipate imposed target switches, we also expected a
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degree of surprise whenever the target changed. This signal has been suggested to be related to

conflict-processing and to originate in the medial frontal cortex (e.g. Cavanagh & Frank, 2014).

However, experienced conflict in Jiang et al. (2018) may have been stronger due to the fact that

participants were explicitly  cued as to which task to expect, while in our study any build-up of

expectations was left to the observer. Furthermore, unlike in the Jiang et al. study, observers did

not have to manage a target-specific stimulus-response mapping in our study. Overall, we believe

that  target  selection  in  our  paradigm was  relatively  easy  and  therefore  did  not  evoke  strong

conflict-related signals in the frontal cortex. That said, in a recent EEG study with a very similar

paradigm  (van  Driel  et  al.,  2019),  we  did  observe  a  power  enhancement  in  the  delta/theta-

frequency band after imposed switches over midfrontal electrodes. This signal has been suggested

to be related to conflict-processing and to originate in the medial frontal cortex (e.g. Cavanagh &

Frank, 2014). It remains to be investigated why we found no corresponding source here.

Some support for the hypothesis that relatively little control was exerted in the imposed

target condition comes from the default mode network activity that we observed, particularly for

repeat trials. The default mode networkhas recently been shown to not just reflect an idle brain

state, but to also activate during various tasks (Elton & Gao, 2015; Konishi, McLaren, Engen, &

Smallwood,  2015; Smallwood et  al.,  2013;  V.  Smith,  Mitchell,  & Duncan,  2018; Spreng, 2012;

Spreng  et  al.,  2014;  Vatansever  et  al.,  2017).  Even  though  its  functional  significance  is  still

debated,  there  is  increasing  evidence  that  suggests  the  default  mode  network  is  related  to

internally-generated thought (Konishi  et  al.,  2015),  decoupled from immediate sensory input  or

context-representation (V. Smith et al., 2018). Maybe most importantly, Vatansever and colleagues
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(2017)  demonstrated  that  even  though  the  cognitive  control  network  is  strongly  involved  in

acquiring task rules,  once those rules have been learned,  the default  mode network becomes

active while applying them. They concluded that whenever the current task context is predictable,

individuals  enter  a  form of  “autopilot”  mode in  which correct  responses can be made without

explicit cognitive control. We argue the same may happen in our paradigm: During phases of target

repeats, participants were able to select the correct target disk in a low-control, automated manner.

The activation  patterns associated with  free switches are similar  to  previously  reported

activations  related  to  proactive  control  demand (Irlbacher  et  al.,  2014;  Jiang  et  al.,  2018).  In

addition to parietal and posterior frontal activity as was also observed for imposed switches, two

key  activations  are  of  primary  importance  here.  First,  there  were  strong  medial  activations

spanning from dorsal anterior cingulate cortex (dACC) to the supplementary motor area (SMA).

Activity in these regions has been associated with self-generated choice (Demanet et al., 2013;

Forstmann et al., 2006; Gmeindl et al., 2016; Orr & Banich, 2013; Passingham et al., 2010; Soon

et al., 2008; Taylor et al., 2008; Wisniewski et al., 2016; Wisniewski et al., 2015; J. Zhang et al.,

2013). The present pattern of activations matches those findings, consistent  with the idea that

participants used the available information to prepare a switch trial in advance. Second, activity

was found in the lateral  frontopolar  cortex.  This  region has been associated with making free

decisions, but also with the evaluation of alternative goals in the context of exploratory behavior

(Mansouri  et al.,  2017; Pollmann,  2016).  We believe that  this activity might reflect participants

evaluating whether or not  to switch to the other target color  during a streak of  target  repeats.

Nevertheless, even though these activations were specific to the free choice condition, they may
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only indirectly relate to proactive control, inasmuch as this information can be used by a cognitive

control system to signal when (and supposedly how much) proactive control should be invoked. 

In addition, we also found activity along the dlPFC. In line with an interpretation in terms of

proactive  control,  this  activity  might  reflect  preparatory updating and maintaining  of  task rules

(Braver, Paxton, Locke, & Barch, 2009). However, as the dlPFC has been linked to a wide range of

executive functions, such as working memory, planning, and inhibition (e.g. Niendam et al., 2012),

we cannot exclude that other factors caused the activations in this region. For example, dlPFC

activity  could  have  been  caused  by  additional  mental  effort  and  working  memory  demand

associated with overall planning or keeping track of the switches, in order to adhere to the task

instructions  (e.g.  Braver  et  al.,  1997;  Bunge,  Ochsner,  Desmond,  Glover,  &  Gabrieli,  2001;

Dosenbach  et  al.,  2008;  Rypma  &  D’Esposito,  1999;  Shenhav,  Botvinick,  &  Cohen,  2013).

Nevertheless, it could be argued such additional cognitive processes, despite not being cognitive

control  in a strict  sentence,  are essential  for  proactive control.  In this  sense,  proactive control

requires the maintenance of the current and the targeted state (working memory), planning target

selection on future trials (planning) and making the decision to invoke proactive control at a given

moment  (intention).  Therefore,  the  actual  usage  of  proactive  control  can  be  seen  as  a

consequence of an cascade of other cognitive processes. 

Beyond  that,  the  present  findings  provide  further  support  for  multiple-state  models  of

working memory postulating that the number of memory items that can concurrently affect behavior

at  any  given  moment  is  limited  (Huang  &  Pashler,  2007;  Oberauer,  2002;  Olivers,  Peters,

Houtkamp, & Roelfsema, 2011). The fact that we observed switch costs indicates that observers
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did not distribute resources equally across multiple target representations. This interpretation is

supported  by  the  fMRI  results  which  show  switch-related  activity  in  both  target  availability

conditions  in  regions  that  have  previously  been  associated  with  updating  of  attentional  sets

(Greenberg et al., 2010; Liu et al., 2003; Pollmann et al., 2006, 2000, Slagter et al., 2006, 2007;

Wager et al., 2004), including bilateral posterior parietal cortex and inferior frontal junction. Switch-

related activity in these regions suggests that in both target availability conditions switch trials were

associated  with  priority  shifts,  therefore  supporting  dynamic  weighing  of  attentional  relevance

between target representation (see also van Driel et al., 2019).

Table  2.  Localization  of  activations  for  the  main  contrasts.  Coordinates  of  local  maxima  are
reported  in  MNI152-space.  Large  clusters  were  split  into  subclusters  based  on  anatomical
considerations. Structure labels are based on the Harvard-Oxford anatomical atlas.

Structure t-statistic X Y Z

Proactive Switch > Proactive Repeat

Left Anterior Insula 8.26 -33 21 8

Right Anterior Insula 8.24 33 24 8

Left Precentral Gyrus / Inferior Frontal Junction§ 8.25 -45 0 38

Right Precentral Gyrus / Inferior Frontal 
Junction§ 6.95 52 8 25

Left Middle Frontal Gyrus / Dorsal Premotor 
Cortex§ 7.58 -27 -6 54

Right Middle Frontal Gyrus / Dorsal Premotor 
Cortex§ 8.41 27 12 47

Superior Frontal Gyrus / Medial Frontal Gyrus§ 8.31 0 18 47

Posterior Cingulate Gyrus 7.69 0 -30 28

Left Intraparietal Sulcus‡ 9.35 -30 -54 44
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Right Intraparietal Sulcus‡ 9.27 36 -45 41

Left Inferior Parietal Lobule 8.99 -30 -75 27

Right Superior Parietal Lobule 8.92 39 -63 61

Right Intracalcarine Sulcus 6.19 24 -72 8

Left Intracalcarine Sulcus 6.16 -18 -66 5

Left Cerebellum (Crus I)† 8.9 -33 -63 -32

Right Cerebellum (Crus I)† 8.75 36 -57 -32

Proactive Repeat > Proactive Switch

Medial Frontal Cortex 7.08 -3 57 -9

Left Orbitofrontal Cortex 6.62 -39 36 -15

Right Orbitofrontal Cortex 5.36 33 39 -15

Subcallosal Gyrus 5.88 0 15 -9

Medial Frontopolar Cortex 5.64 0 60 19

Right Temporal Pole 6.35 51 15 -32

Left Middle Temporal Gyrus 5.99 -60 0 -25

Left Inferior Parietal Lobule / Temporoparietal 
Junction§ 6.18 -45 -57 24

Precuneus 6.13 -6 -54 21

Reactive Switch > Reactive Repeat

Left Lateral Frontopolar Cortex 5.28 -42 39 11

Left Precentral Gyrus / Inferior Frontal Junction§ 5.04 -42 0 34

Left Intraparietal Sulcus‡ 6.76 -30 -51 44

Right Intraparietal Sulcus‡ 6.21 36 -45 41

Left Fusiform Gyrus 5.55 -33 -54 -19

Cerebellum (Vermis VI)† 5.74 6 -72 -25

Right Cerebellum (Crus I)† 5.67 33 -54 -35
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Left Cerebellum (Crus I)† 5.16 -39 -51 -35

Reactive Repeat > Reactive Switch

Medial Frontal Cortex 7.69 0 45 -12

Medial Frontopolar Cortex 6.07 -4 58 4

Left Temporal Pole 5.61 -48 9 -35

Right Amygdala 4.53 15 -9 -15

Left Amygdala 3.98 -15 -7 -16

Left Hippocampus 6.51 -24 -21 -15

Right Hippocampus 4.42 24 -24 -12

Left Precuneus 6.29 -15 -48 34

Left Inferior Parietal Lobule / Temporoparietal 
Junction§ 5.88 -57 -69 31

Proactive Switch Cost > Reactive Switch Cost

Right Lateral Frontopolar Cortex 7.59 48 42 24

Left Lateral Frontopolar Cortex 6.5 -36 63 18

Right Middle Frontal Gyrus / Dorsal Premotor 
Cortex§ 7.47 24 15 47

Right Middle Frontal Gyrus 6.04 51 30 38

Superior Frontal Gyrus / Medial Frontal Gyrus§ 6.11 3 21 51

Posterior Cingulate Gyrus 5.27 0 -33 28

Right Superior Parietal Lobule 7.59 42 -60 61

Right Intraparietal Sulcus‡ 5.61 33 -51 40

Left Intraparietal Sulcus‡ 5.08 -30 -57 50

Left Cerebellum (Crus I)† 6.65 -36 -63 -32

Right Cerebellum (Crus I)† 5.08 36 -57 -32
† These structure labels were retrieved from the Probabilistic cerebellar atlas (included in FSL). 
‡ These structure labels were retrieved from the Juelich Histological Atlas. 
§ Additional labels were provided to further specify anatomical location or functional significance. 
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5. Conclusion

We investigated the contributions of proactive and reactive control to target selection during

multiple-target search. We found that both control mechanisms activate a similar network that has

previously been associated with shifts of feature-based attention, with proactive control eliciting

greater activity generally. In addition, proactive switching also activated other frontal regions that

have been linked to free choice and evaluating alternative options other than the current action.

We argue that these signals represent control processes to update target representations. The

current  study elucidates  the behavioral  and neural  profiles  of  different  target  switching control

strategies.
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Supplemental Material

Three-way repeated measures ANOVA on mean saccade latency with transition type, target

availability and display variation as factors

We included different display variations including duplicate targets and duplicate distractors

to  control  for  number  of  targets  and  prevent  potential  strategies  of  looking  for  anything  that

occurred twice. In a control analysis, we wanted to check whether these different display variations

affected the presence and magnitude of switch costs in each target availability condition. For this

purpose, we ran a three-way repeated-measures ANOVA with target availability (both targets vs.

one target available), transition type (switch vs. repeat) and display variation (target duplicate vs.

distractor  duplicate) as  factors  on  saccade  latency.  This  yielded  significant  main  effects  of

transition type (F(1,18) = 22.7, p < .001, η2 = 0.56), and target availability (F(1,18) = 17.6, p = .001,

η2 = 0.49), and a two-way interaction between target availability and transition type (F(1,18) = 15.6,

p = .001,  η2 = 0.46). None of the other effects reached significance: main effect display variation

(F(1,18) ≈ 0.0, p = .95, η2 < 0.001), the two-way interaction between target availability and display

variation (F(1,18) = 0.41, p = .53, η2 = 0.02), the two-way interaction between transition type and

display variation (F(1,18) = 0.41, p = .53, η2 = 0.02), and three-way interaction (F(1,18) = 0.67, p

= .42,  η2 = 0.04).  A Bayes Factor  analysis  confirmed this  pattern  by showing that  the model

including the main effects transition type and target availability and the interaction between them

explains the data best (BF = 6.7 x 1014) and was 5.9 times as likely as the next best model that

additionally included the main effect display variation. Taken together, these findings suggest that

switch costs, expressed in saccade latency, did not depend on specific the display variations. 
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We ran the same three-way ANOVA on accuracy. This ANOVA indicated that the main

effects (target availability:  F(1,18) = 41.4,  p < .001,  η2 = 0.70; transition type:  F(1,18) = 35.9,  p

< .001,  η2 =  0.67;  display  variation:  F(1,18)  =  8.91,  p  =  .008,  η2 =  0.33),  and  the  two-way

interactions between target availability and trial transition (F(1,18) = 27.3, p < .001, η2 = 0.60) and

between  target  availability  and  display  variation (F(1,18)  =  12.3,  p  =  .003,  η2 =  0.41)  were

significant. Neither the two-way interaction between transition type and display variation (F(1,18) =

3.5,  p = .08, η2 = 0.16), nor the three-way interaction (F(1,18) = 1.98,  p = .18,  η2 = 0.1) reached

significance.  Even  though  accuracy  systematically  varied  with  the  display  variation,  such  that

displays with more targets were associated with higher accuracy, the critical  interaction of trial

transition  and  target  availability  was  not  affected.  Thus,  switch  costs  did  not  depend  on  the

particular display variation we used. 

Table S1. Mean saccade latencies and within-subject 95% CI (Morey, 2008) in ms and percentage

correctly fixated targets with within-subject 95% CI for all display variations. Both target availability

conditions  (both-targets  available  and  one-target  available)  had  two  variations  of  displays,  to

control  for number of target items and duplicate colors in the display.  The row  Example Array

depicts an example of each display variation. The row # trials represents the mean number (and

the min-max range across participants in brackets) of trials per condition. The rows Repeat  and

Switch and provide the mean saccade latencies for target switches and target repetitions, for each

of these display variations. Examples here are for trials on which red and blue were cued as target

colors.
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Target Availability Both-Targets One-Target

Display Variation Target Duplicate Distractor
Duplicate

Target Duplicate Distractor
Duplicate

Example Array

# trials
Repeat 224 [103, 329] 228 [122, 320] 219 [126, 302] 221 [114, 311]

Switch 49 [32, 69] 51 [23, 73] 42 [25, 65] 39 [14, 56]

Saccade 
Latency

Repeat 374 [366, 383] 373 [364, 382] 389 [383, 396] 387 [381, 393]

Switch 385 [376, 394] 391 [379, 403] 452 [439, 466] 450 [429, 472]

Accuracy
Repeat 96.0 [95.4, 96.6] 97.8 [96.8, 98.7] 96.8 [95.9, 97.6] 93.8 [93.0, 94.6]

Switch 95.4 [94.3, 96.5] 97.0 [96.0, 98.0] 90.5 [89.2, 91.8] 84.0 [80.8, 87.3]

Additional Behavioral Analysis reveal no major strategic difference across participants

To gain more insight into different strategies participants might use, we analysed choice

behavior  in  more detail.  Overall,  these additional  analyses suggest  that  most  individuals  apply

similar strategies when selecting the target to fixate. Specifically, we ran following analyses: (1)

Does  the  streak  length  (of  successive  repeat  trials)  per  block  vary  across  participants?  For

example, if a participant chose the strategy to switch every 6 trials, the streak length should be

around 6 with a small standard deviation. In contrast, if a participant switches on each of the first 6

trials of a block and then sticks with one color for the rest of the block, streak length should be

smaller and have a higher variability. As Figure S1A demonstrates, most participants used a rather

regular switching approach with not too much variability (M = 4.12 repeats, min-max range over
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participants: 1.99 – 7.52). Exceptions are participant 1 and (to some extent) participant 21 who

seem to have a bias toward short streak lengths, and participant 4 who seems to behave rather

randomly. 

(2) Next,  to quantify the regularity with which participants switched targets throughout a

block, we split blocks into three parts (first 14, middle 14 and last 13 trials) and checked how many

switches fell in each tercile. Figure S1B shows that approximately the same number of switches

occurred in each tercile, further supporting the conclusion that participants spread out the switching

over the course of a block. Again a handful of participants showed more switches in the first tercile

than in the other two, indicative of a strategy that relies on performing the required number of

switch trials in the beginning of a block and staying with the same color for the rest of it.   We

computed the ratio of number of switches in the first tercile with number of switches in the last

tercile and correlated this with switch rate, streak length, switch costs in one-target block, switch

costs in both-targets blocks, and the difference between these two types of blocks. Importantly,

only  the  correlation  of  streak  length  and  the  ratio  of  early  vs.  late  switches  was  significant

(Spearman’s ρ (18) =  -0.51, p = 0.03), suggesting that participants that switched a lot early in the

block, also have shorter streak lengths altogether. This confirms that these individuals most likely

applied the strategy of first reaching the required number of switches before sticking with one color

for the rest of the block. None of the other correlations was significant (Spearman’s p < 0.26, p >

0.27.  Here,  we  also  correlated  switch  rate  across  participants  with  difference  of  switch  costs

between both-targets available and one-target available condition, but also this correlation was not
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significant (Spearman’s ρ (18) =  0.17, p = 0.47), suggesting that the main findings did not depend

on how often participants switched between the targets. 

(3)  Next,  we  investigated  whether  the  number  of  targets  in  the  display  influenced  the

likelihood that participant would switch. However, this factor had no influence on target selection

(t(18) = 0.72, p = .48, Cohen’s d = 0.12, BF = 0.3). 

(4)  To see whether  switch costs depended on which color  was selected on a trial,  we

computed switch cost separately for each target color. This analysis revealed no significant effect

of color on the switch costs in neither of the target availability conditions (see Figure S1C). Note,

when splitting up the trials based on the target color, only 25 observations are left in the smallest

cells on average. Therefore, these analyses have to be interpreted with care. 

(5) Finally, we checked whether the likelihood to switch depended on the target color by

running an ANOVA on switch rate, but also this was not the case, suggesting that participants did

not have a preference for switching to a specific color (F(3.06,55.13) = 0.75, p = 0.53).
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Fig S1.  Additional behavioral analysis to investigate strategic difference across participants with

respect to switch behavior. (A) Boxplot showing the mean streak length (number of repeat trials in

between two successive switch trials).  The vertical lines in the box plots represent quartiles. The

horizontal line represents the minimum (lower quartile - 1.5 * interquartile range) and maximum

(upper quartile + 1.5 * interquartile range) while single dots beyond that range indicate individual
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outliers. (B) Number of switches in the first,  second and third tercile of a block,  separately for

participants (separate lines). (C) Switch costs for each color in the experiment, separately for each

target availability condition. 

Table  S2.  All  models  that  were  compared  during  the  drift  diffusion  modeling.  The  column

Parameters  depending  on  Target  Availability indicates  which  parameters  (a and/or  v),  were

allowed to vary across the two levels of target availability. The column Parameters depending on

Transition  Type  indicates  the  same,  but  for  transition  type.  DIC represents  the  deviance

information criterion, which can be used to compare models. A lower DIC is better. For all models,

we used informative priors (Wiecki et al., 2013), a fixed non-decision time, starting point, and fixed

inter-trial variability. All models were checked for convergence. 

Parameters depending on

Target availability

Parameters depending on

Transition Type
Priors DIC

- - informative -50192

v v informative -51323

a - informative -50557

a, v v informative -51486

a, v v noninformative -51486
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Table  S3.  Localization  of  activations  for  additionally  analyzed  contrasts.  Coordinates  of  local

maxima  are  reported  in  MNI152-space.  Large  clusters  were  split  into  subclusters  based  on

anatomical considerations. Structure labels are based on the Harvard-Oxford anatomical atlas.

Structure t-statistic X Y Z

Proactive Switch > Reactive Switch

Right Lateral Frontopolar Cortex 7.63 48 42 24

Left Lateral Frontopolar Cortex 6.27 -36 63 18

Right Anterior Insula 6.94 33 24 8

Left Anterior Insula 6.22 -33 21 8

Right Middle Frontal Gyrus / Dorsal Premotor 

Cortex§
6.88 24 15 47

Left Superior Frontal Gyrus / Dorsal Premotor 

Cortex§
6.71 -27 -6 54

Left Precentral Gyrus / Inferior Frontal Junction§ 5.66 -48 3 38

Superior Frontal Gyrus / Medial Frontal Gyrus§ 6.87 3 18 51

Anterior Cingulate Gyrus 4.03 3 9 28

Right Orbitofrontal Cortex 4.54 24 51 -15

Posterior Cingulate Gyrus 5.00 0 -33 28

Right Superior Parietal Lobule 8.56 39 -63 61

Left Superior Parietal Lobule 5.69 -30 -57 51

Right Intraparietal Sulcus‡ 6.38 39 -45 41

Right Precuneus 5.76 3 -66 54

Right Intracalcarine Sulcus 5.74 24 -72 8

Left Cerebellum (Crus I)† 7.15 -26 -63 -32

Right Cerebellum (Crus I)† 5.94 33 -60 -32
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Left Caudate  (Body) 5.12 -15 -21 5

Right Caudate (Head) 4.53 15 24 8

Reactive Switch > Proactive Switch

Left Orbitofrontal Cortex 6.25 -36 36 -15

Left Precuneus 5.2 -3 -57 24

Left Inferior Parietal Lobule / Temporoparietal 

Junction§
4.97 -45 -57 24

Proactive Events > Reactive Events (collapsed across Trial Transition)

Left Lateral Frontopolar Cortex 6.42 -36 63 18

Right Lateral Frontopolar Cortex 6.66 48 42 24

Left Middle Frontal Gyrus / Dorsal Premotor 

Cortex§
6.48 -27 -6 54

Right Middle Frontal Gyrus / Dorsal Premotor 

Cortex§
6.24 27 10 50

Left Middle Frontal Gyrus / Dorsolateral Prefrontal 

Cortex§
4.47 -51 27 41

Right Anterior Insula 7.48 33 24 8

Left Anterior Insula 6.07 -33 21 8

Superior Frontal Gyrus / Medial Frontal Gyrus§ 6.95 3 15 54

Anterior Cingulate Gyrus 6.44 9 27 31

Right Precentral Gyrus / Inferior Frontal Junction§ 5.84 51 9 21

Left Precentral Gyrus / Inferior Frontal Junction§ 4.97 -48 3 38

Right Orbitofrontal Cortex 4.92 24 54 -15

Right Superior Parietal Lobule 7.99 39 -63 61

Right Intraparietal Sulcus‡ 6.13 39 -45 41

Left Intraparietal Sulcus‡ 5.48 -30 -52 43
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Right Intracalcarine Sulcus 5.4 24 -72 8

Left Intracalcarine Sulcus 5.2 -24 -75 5

Left Cerebellum (Crus I)† 6.42 -36 -64 -32

Right Cerebellum (Crus I)† 6.03 33 -60 -32

Reactive Events > Proactive Events (collapsed across Trial Transition)

Left Orbitofrontal Cortex 6.33 -36 36 -15

Medial Frontopolar Cortex 5.55 -3 60 -9

Left Precuneus 7.47 -12 -51 38

Left Inferior Parietal Lobule / Temporoparietal 

Junction§
5.89 -42 -57 24

Reactive Repeat > Proactive Repeat

Medial Frontopolar Cortex 5.29 9 45 -9

Superior Frontal Gyrus / Dorsomedial Prefrontal 

Cortex§
4.37 0 51 31

Left Precuneus 5.52 -12 -51 38

Right Precuneus 4.42 9 -54 31
† These structure labels were retrieved from the Probabilistic cerebellar atlas (included in FSL). 

‡ These structure labels were retrieved from the Juelich Histological Atlas. 

§ Additional labels were provided to further specify anatomical location or functional significance. 
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Figure S2. Cerebral activations for free and imposed switches, not taking respective repeat trials

into account. Activations shown in yellow-red represent the contrast free switch > imposed switch.

Activations  shown in blue represent  the contrast  imposed switch  > free switch.  Group-level  t-

statistics maps were computed with the tfce-method (S. M. Smith & Nichols, 2009) and corrected

for  multiple comparisons using nonparametric  permutation testing.  The resulting P-value maps

were thresholded at α = .05 and projected onto the fsaverage surface using registration fusion (Wu

et al., 2018), with translucent coloring. In addition, regions that were also significant at α = .01 are

shown  in  saturated  colors.  Free  switches  were  associated  with  higher  activity  than  imposed

switches  across  both  hemispheres  in  dorsolateral  prefrontal  cortex  (dlPFC),  frontopolar  cortex

(FPC),  dorsal  premotor  cortex  (PMd),  right  inferior  frontal  junction  (IFJ),  anterior  insula/frontal

operculum cortex (aINS), left posterior cingulate gyrus (pCG), left anterior cingulate gyrus (aCG),
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bilateral medial frontal cortex/ dorsal anterior cingulate cortex (mFC/dACC) and bilateral superior

parietal lobule (SPL). Imposed switches were associated with higher activity than free switches in

the right precuneus (pc), left temporoparietal junction and ventrolateral prefrontal cortex (vlPFC).

Figure S3. Cerebral regions in which imposed repeats yielded stronger activity than free repeats,

not taking respective repeat trials into account (shown in yellow-red). Group-level t-statistics maps

were computed with the tfce-method (S. M. Smith & Nichols,  2009) and corrected for  multiple

comparisons  using  nonparametric  permutation  testing.  The  resulting  P-value  maps  were

thresholded at α = .05 and projected onto the fsaverage surface using registration fusion (Wu et

al., 2018), with translucent coloring. In addition, regions that were also significant at  α = .01 are

shown in saturated colors. Imposed switches were associated with higher activity than imposed

switches across both hemispheres in the precuneus (pc), medial prefrontal cortex (mPFC), medial

temporal gyrus (MTG), and the  left temperoparietal junction.
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Figure S4.  Cerebral  activations for  the free choice condition compared to the imposed choice

condition, irrespective of transition type. Activations shown in yellow-red represent the contrast free

events > imposed events. Activations shown in blue represent the contrast imposed events > free

events. Group-level t-statistics maps were computed with the tfce-method (S. M. Smith & Nichols,

2009)  and  corrected  for  multiple  comparisons  using  nonparametric  permutation  testing.  The

resulting P-value maps were thresholded at  α = .05 and projected onto the fsaverage surface

using registration fusion (Wu et al., 2018), with translucent coloring. In addition, regions that were

also significant at α = .01 are shown in saturated colors. Free events were associated with higher

activity than imposed events across both hemispheres in dorsolateral prefrontal cortex (dlPFC),

frontopolar cortex (FPC), dorsal premotor cortex (PMd), right inferior frontal junction (IFJ), anterior
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insula/frontal  operculum cortex  (aINS),  bilateral  medial  frontal  cortex/  dorsal  anterior  cingulate

cortex (mFC/dACC) and bilateral superior parietal lobule (SPL). Imposed events were associated

with higher activity than free events in the precuneus (pc), left temporoparietal junction, medial

prefrontal cortex (mPFC), ventrolateral prefrontal cortex (vlPFC).
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